
Database Encryption – An Overview of Contemporary Challenges
and Design Considerations

Erez Shmueli
Deutsche Telekom

Laboratories; and the
Department of

Information Systems
Engineering, Ben-Gurion

University.
Beer Sheva, Israel

erezshmu@bgu.ac.il

Ronen Vaisenberg
School of Computer

Science, University of
California.

Irvine, CA, USA1

ronen@uci.edu

Yuval Elovici
Deutsche Telekom

Laboratories; and the
Department of

Information Systems
Engineering, Ben-Gurion

University.
Beer Sheva, Israel

elovici@bgu.ac.il

Chanan Glezer
Deutsche Telekom

Laboratories at Ben-
Gurion University.
Beer Sheva, Israel

chanan@bgu.ac.il

ABSTRACT
This article describes the major challenges and design
considerations pertaining to database encryption. The
article first presents an attack model and the main
relevant challenges of data security, encryption
overhead, key management, and integration footprint.
Next, the article reviews related academic work on
alternative encryption configurations pertaining to
encryption locus; indexing encrypted data; and key
management. Finally, the article concludes with a
benchmark using the following design criteria:
encryption configuration, encryption granularity and
keys storage.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database
Administration - Security, integrity and protection.

General Terms
Security

Keywords
Database Encryption, Security, Privacy.

1. INTRODUCTION
Conventional database security solutions and
mechanisms are divided into three layers; physical
security, operating system security and DBMS
(Database Management System) security [1]. With
regard to the security of stored data, access control

(i.e., authentication and authorization) has proved to be
useful, as long as that data is accessed using the
intended system interfaces. However, access control is
useless if the attacker simply gains access to the raw
database data, bypassing the traditional mechanisms.
This kind of access can easily be gained by insiders,
such as the system administrator and the database
administrator (DBA).
The aforementioned layers are therefore not sufficient
to guarantee the security of a database when database
content is kept in a clear-text, readable form. One of
the advanced measures being incorporated by
enterprises to address this challenge of private data
exposure, especially in the banking, financial,
insurance, government, and healthcare industries, is
database encryption. While database-level encryption
does not protect data from all kinds of attacks, it offers
some level of data protection by ensuring that only
authorized users can see the data, and it protects
database backups in case of loss, theft, or other
compromise of backup media.
In this survey, we focus on the academic work and
propose a design-oriented framework which can be
used by native and 3rd party DB encryption providers
as well as DBAs and corporate IS developers.

2. ATTACK MODEL AND
CHALLENGES
A database encryption scheme should meet several
requirements. Among them are the requirements for
data security, high performance, and detection of
unauthorized modifications [2]. Inspired by that
pioneer work in the field, we adopt these requirements
and add several requirements that relate to the
practicality of such an encryption solution. Each
requirement will be discussed in details in the
following subsections.

.
1 Research performed while at the Department of Information
Systems Engineering, Ben-Gurion University

SIGMOD Record, September 2009 (Vol. 38, No. 3) 29

2.1 Database Security – Models and
Attacks
2.1.1 Database operational model
As with current database systems, when discussing the
model for database encryption we assume a client-
server scenario. The client has a combination of
sensitive and non-sensitive data stored in a database at
the server. Whether or not the two parties are co-
located does not make a difference in terms of security.
The server’s added responsibility is to protect the
client’s sensitive data, i.e., to ensure its confidentiality
and its integrity.
This model has three major points of vulnerability with
respect to client data:

(1) Data-in-motion - All client-server
communication can be secured through
standard means, e.g., an SSL connection,
which is the current de facto standard for
securing Internet communication. Therefore,
communication security poses no real
challenge and we ignore it in the remainder of
this paper.

(2) Data-in-use - An adversary can access the
memory of the database software directly and
extract sensitive information. This attack can
be prevented using a tampered proof hardware
for protecting the database server's memory,
and therefore is also ignored in the remainder
of this paper.

(3) Data-at-rest - Typically, DBMSs protect
stored data through access control
mechanisms. However, its goals should not be
confused with those of data confidentiality
since attacks against the stored data may be
performed by accessing database files
following a path other than through the
database software, by physical removal of the
storage media or by access to the database
backup files.

Different security mechanisms can be categorized
based on the level of trust in the database server, which
can range from fully trusted to fully untrusted:

(1) Fully trusted - In this scenario, the server can
perform all of the operations and no threat
exists. Obviously this scenario is not of our
interest, and is ignored in the remainder of
this paper.

(2) Fully un-trusted - In this scenario, a client
does not even trust the server with clear text
queries; hence, it involves the server
performing encrypted queries over encrypted
data. This scenario corresponds to the
Database as a Service (DAS) model.

(3) Partially trusted – The database server itself
together with its memory and the DBMS

software is trusted, but the secondary storage
is not.

In our literature review we will categorize the different
schemes based on their trust in the database server.

2.1.2 Attacks compromising security
An attacker can be categorized into three classes [3]:

(1) Intruder - A person who gains access to a
computer system and tries to extract valuable
information.

(2) Insider - A person who belongs to the group
of trusted users and tries to get information
beyond his own access rights.

(3) Administrator - A person who has privileges
to administer a computer system, but uses his
administration rights in order to extract
valuable information.

2.1.2.1 Passive attacks
According to [4], a secure index in an encrypted
database should not reveal any information on the
database plaintext values. We extend this requirement,
by categorizing the possible information leaks:

(1) Static leakage - Gaining information on the
database plaintext values by observing a
snapshot of the database at a certain time. For
example, if the database is encrypted in a way
that equal plaintext values are encrypted to
equal ciphertext values, statistics about the
plaintext values, such as their frequencies can
easily be learned.

(2) Linkage leakage - Gaining information on the
database plaintext values by linking a table
value to its position in the index. For example,
if the table value and the index value are
encrypted the same way (both ciphertext
values are equal), an observer can search the
table cipher text value in the index, determine
its position and estimate its plaintext value.

(3) Dynamic leakage - Gaining information about
the database plaintext values by observing and
analyzing the changes performed in the
database over a period of time. For example,
if a user monitors the index for a period of
time, and if in this period of time only one
value is inserted (no values are updated or
deleted), the observer can estimate its
plaintext value based on its position in the
index.

2.1.2.2 Active attacks
In addition to the passive attacks that observe the
database, active attacks that modify the database
should also be considered. Active attacks are more
problematic in the sense that they may mislead the
user. Unauthorized modifications can be made in
several ways [5]:

30 SIGMOD Record, September 2009 (Vol. 38, No. 3)

(1) Spoofing - Replacing a ciphertext value with
a generated value. Assuming that the
encryption keys are secure, a possible attacker
might try to generate a valid ciphertext value,
and substitute the current valid value stored
on the disk. Assuming that the encryption
keys were not compromised, this attack poses
a relatively low risk.

(2) Splicing - Replacing a ciphertext value with a
different cipher text value. Under this attack,
the encrypted content from a different
location is copied to a new location under
attack.

(3) Replay - Replacing a cipher text value with an
old version previously updated or deleted.

Note that each of the above attacks is highly
correlated to the leakage vulnerabilities discussed
before: static leakage and spoofing, linkage
leakage and splicing and dynamic leakage and
replay attack.

2.2 Encryption Overhead
Added security measures typically introduce
significant computational overhead to the running time
of general database operations. However, it is desirable
to reduce this overhead to the minimum that is really
needed, and thus:

(1) It should be possible to encrypt only sensitive
data while keeping insensitive data
unencrypted.

(2) Only data of interest should be
encrypted/decrypted during queries'
execution.

(3) Some vendors do not permit encryption of
indexes, while others allow users to build
indexes based on encrypted values. The latter
approach results in a loss of some of the most
obvious characteristics of an index - range
searches, since a typical encryption algorithm
is not order-preserving.

(4) In addition, it is desirable that the encrypted
database should not require much more
storage than the original one.

2.3 Integration Footprint
Incorporating an encryption solution over an existing
DBMS should be easy to integrate, namely, it should
have:

(1) Minimal influence on the application layer
(2) Minimal influence on the DBA work
(3) Minimal influence on the DBMS architecture

2.4 Handling Encryption Keys
The way encryption keys are being used can have a
significant influence on both the security of the

database and the practicality of the solution. The
following issues should be considered:

(1) Cryptographic Access Control – Encrypting
the whole database using the same key, even
if access control mechanisms are used is not
enough. For example, an insider who has the
encryption key and bypasses the access
control mechanism can access data that are
beyond his security group. Encrypting objects
from different security groups using different
keys ensures that a user who owns a specific
key can decrypt only those objects within his
security group [6].

(2) Secure Key Storage – Encryption keys should
be kept securely, e.g., storing the keys inside
the database server allows an intruder access
to both the keys and the encrypted data, and
thus encryption is worthless.

(3) Key Recovery – If encryption keys are lost or
damaged, the encrypted data is worthless.
Thus, it should be possible to recover
encryption keys whenever needed.

3. ALTERNATIVE CONFIGURATIONS
A large body of work exists in the field of database
encryption. Related work can be generally categorized
into four main classes: file system encryption, DBMS
encryption, application level encryption and client side
encryption. Related work also deals with indexing
encrypted data, and keys' management.

3.1 File-System Encryption
The encryption scheme presented in [7] suggests
encrypting the entire physical disk allowing the
database to be protected. The main disadvantage of this
scheme is that the entire database is encrypted using a
single encryption key, and thus discretionary access
control cannot be supported.

3.2 DBMS-Level Encryption
Several database encryption schemes have been
proposed in the literature. The one presented in [8] is
based on the Chinese-Reminder theorem, where each
row is encrypted using different sub-keys for different
cells. This scheme enables encryption at the level of
rows and decryption at the level of cells. Another
scheme, presented in [2], extends the encryption
scheme presented in [8], by supporting multilayer
access control. It classifies subjects and objects into
distinct security classes that are ordered in a hierarchy,
such that an object with a particular security class can
be accessed only by subjects in the same or a higher
security class. The scheme presented in [9] proposes
encryption for a database based on Newton's
interpolating polynomials.

SIGMOD Record, September 2009 (Vol. 38, No. 3) 31

The database encryption scheme presented in [10] is
based on the RSA public-key scheme and suggests two
database encryption schemes: one column oriented and
the other row oriented. One disadvantage of all the
above schemes is that the basic element in the database
is a row and not a cell, thus the structure of the
database is modified. In addition, all of those schemes
require re-encrypting the entire row when a cell value
is modified. Thus, in order to perform an update
operation, all the encryption keys should be available.
The SPDE scheme which [11] encrypts each cell in the
database individually together with its cell coordinates
(table name, column name and row-id). In this way
static leakage attacks are prevented since equal
plaintext values are encrypted to different cipher-text
values. Furthermore, splicing attacks are prevented
since each cipher-text value is correlated with a
specific location, trying to move it to a different
location will be easily detected. Further security
analysis and fixes to this scheme can be found in [12].

3.3 Application-Level Encryption
In [13] a Web Data Service Provider Middleware
(WDSP) application is suggested which translates the
user queries into a new set of queries which execute of
the encrypted DBMS. The model was implemented as
the DataProtector1 System which serves as an http-
level rule-based middleman who regulates access to
secure data stored on web service provider. The
solution is attractive to public data storage, backup and
sharing services which are very popular on the web
nowadays.

3.4 Client-Side Encryption
The recent explosive increase in Internet usage,
together with advances in software and networking,
has resulted in organizations being able to easily share
data for a variety of purposes. This has led to a new
paradigm termed “Database as a Service” (DAS) [3,
14] in which the whole process of database
management is outsourced by enterprises to reduce
costs and to concentrate on the core business.
One fundamental problem with this architecture
(besides performance degradation due to remote access
to data) is data privacy. That is, sensitive data have to
be securely stored and protected against untrustworthy
servers. Encryption is one promising solution to this
problem.
Defining the encryption scheme under the assumption
that the server is not trusted, raises the question of how
a query is evaluated if data are encrypted and the
server has no access to the encryption keys [15].

1 www.ics.uci.edu/~projects/dataprotector

3.5 Indexing Encrypted Data
The indexing scheme proposed in [16] suggests
encrypting the whole database row and assigning a set
identifier to each value in this row. The indexing
scheme in [17] suggests building a B-Tree index over
the table plaintext values and then encrypting the table
at the row level and the B-Tree at the node level. The
indexing scheme in [18] is based on constructing the
index on the plaintext values and encrypting each page
of the index separately. Since the uniform encryption
of all pages is likely to provide many cipher breaking
clues, the indexing scheme provided in [16] proposes
encrypting each index page using a different key
depending on the page number. However, in these
schemes, it is not possible to encrypt different portions
of the same page using different keys.
The indexing scheme suggested in [19] enables the
server to search for pre-defined keywords within a
document using a special trapdoor supplied by the user
for that keyword. The encryption function suggested in
[20] preserves order, and thus allows range queries to
be directly applied to the encrypted data without
decrypting it. In addition it enables the construction of
standard indexes on the cipher-text values. However,
the order of values is sensitive information in most
cases and should not be exposed. The encryption
scheme provided in [15] suggests computing the
bitwise exclusive or (XOR) of the plaintext values with
a sequence of pseudo-random bits generated by the
client according to the plaintext value and a secure
encryption key.
In addition to table encryption, the SPDE scheme that
is presented in [11] offers a novel method for indexing
encrypted columns. However this method is very
limited and is extended in [4] in order to solve
elementary problems such as unauthorized
modifications and discretionary access control. Further
analysis and fixes to this scheme can be found in [13].

3.6 Keys' Management
Many techniques for generating encryption keys were
mentioned in the literature; however, most of them are
neither convenient nor flexible in the real applications.
The scheme in [21] and its extension in [22] propose a
novel database encryption scheme for enhanced data
sharing inside a database, while preserving data
privacy. In this scheme, a pair of keys is generated for
each user. The key pair is separated when it is
generated. The private key is kept by user at the client
end, while the public key is kept in the database server.

32 SIGMOD Record, September 2009 (Vol. 38, No. 3)

4. CONCLUSIONS
Based on our review, Table 1 compares several
database encryption deployment configurations. To
summarize, the best flexibility is achieved when the
encryption is made inside the DBMS. File-System
encryption, even though being easy to deploy, does not
allow using different encryption keys and does not
allow choosing which data to encrypt/decrypt and thus
have a significant influence on both data security and
performance.
Table 2 summarizes the influence of encryption
granularity on several aspects. Better performance and
preserving the structure of the database cannot be
achieved using page or whole table encryption
granularity. However, special techniques can be used,
in order to cope with unauthorized modifications and
information leakage, when single values or
record/node granularity encryption is used.

Table 1. Comparing Different Database Encryption
Configurations.

File-

System
Encryption

DBMS
Encryption

Application
Encryption

Encryption
at the Client

Side

Finest
encryption
granularity
supported

Page Cell Cell Cell

Support for
internal
DBMS

mechanisms
(e.g. index,

foreign
key...).

+ + - -

Support for
cryptographic
access control

- + + +

Performance Best Medium Low Worst

Compatibility
with legacy
applications

+ + - -

Table 3 summarizes the dependency between the trust
in the server and the keys' storage. If we have no trust
in the database server, we would prefer to keep the
encryption keys only at the client side. In cases where
the database server itself is fully trusted, but its
physical storage is not, we can store the keys at the
server side in some protected region.

Table 2. Risk in Different Levels of Encryption
Granularities.

Information

Leakage
Unauthorized
Modifications

Structure
Perseverance Performance

Single
Values Worst Worst Best Best

Record/
Nodes Low Low Medium Medium

Pages Medium Medium Low Low

Whole Best Best Worst Worst

Our survey indicates that sophisticated and robust
database encryption features are available in both the
academia and commercial worlds [23], however, their
adoption by clients is still lagging because of practical
constraints such as cost of deployment and
performance overhead. In order for such advanced
features to be widely adopted the aforementioned
criteria need to be given top consideration by database
encryption researchers and developers.

Table 3. Keys Storage Options and Trust in Server.

 Server Side Keys per
Session Client Side

Absolute + + +

Partial - + +

None - - +

5. ACKNOWLEDGMENTS
This research was supported by Deutsche Telekom
AG.

6. REFERENCES
[1] Fernandez EB, Summers RC, Wood C (1980)

Database Security and Integrity. Addison-Wesley,
Massachusetts.

[2] Min-Shiang H, Wei-Pang Y (1997) Multilevel
Secure Database Encryption with Subkeys. Data
and Knowledge Engineering 22, 117-131.

[3] Bouganim L, Pucheral P (2002) Chip-secured data
access: confidential data on untrusted servers. The
28th Int. Conference on Very Large Data Bases,
Hong Kong, China, pp. 131-142.

SIGMOD Record, September 2009 (Vol. 38, No. 3) 33

[4] Elovici Y, Waisenberg R, Shmueli E, Gudes E
(2004) A Structure Preserving Database
Encryption Scheme. SDM 2004, Workshop on
Secure Data Management, Toronto, Canada,
August.

[5] Vingralek R (2002) Gnatdb: A small-footprint,
secure database system. The 28th Int'l Conference
on Very Large Databases, Hong Kong, China,
August, pp. 884-893.

[6] Bertino E, Ferrari E (2002) Secure and Selective
Dissemination of XML Documents. ACM
Transactions on Information and System Security,
5(3), 290-331.

[7] Kamp PH (2003) GBDE – GEOM based disk
encryption Source. BSDCon '03, pp. 57-68.

[8] Davida GI, Wells DL, Kam JB (1981) A Database
Encryption System with subkeys. ACM Trans.
Database Syst. 6, 312-328.

[9] Buehrer D, Chang C (1991) A cryptographic
mechanism for sharing databases. The
International Conference on Information &
Systems. Hangzhou, China, pp. 1039-1045.

[10] Chang C, Chan CW (2003) A Database Record
Encryption Scheme Using RSA Public Key
Cryptosystem and Its Master Keys. The
international conference on Computer networks
and mobile computing.

[11] Shmueli E, Waisenberg R, Elovici Y, Gudes E
(2005) Designing secure indexes for encrypted
databases. Proceedings of Data and Applications
Security, 19th Annual IFIP WG 11.3 Working
Conference, USA.

[12] Kühn U (2006) Analysis of a Database and Index
Encryption Scheme – Problems and Fixes. Secure
Data Management.

[13] Merhotra S, Gore B (2009) A Middleware
approach for managing and of outsourced personal
data, NSF Workshop on Data and Application
Security, Arlignton, Virginia, February 2009.

[14] Hacigümüs H, Iyer B, Li C, Mehrotra S (2002)
Executing SQL over encrypted data in the
database-service-provider model. The ACM
SIGMOD'2002, Madison, WI, USA.

[15] Song DX, Wagner D, Perrig A (2000) Practical
Techniques for Searches on Encrypted Data. The
2000 IEEE Security and Privacy Symposium,
May.

[16] Bayer R, Metzger JK (1976) On the Encipherment
of Search Trees and Random Access Files. ACM
Trans Database Systems, 1, 37-52.

[17] Damiani E, De Capitani diVimercati S, Jajodia S,
Paraboschi S, Samarati P (2003) Balancing
Confidentiality and Efficiency in Untrusted
Relational DBMSs. CCS03, Washington, pp. 27-
31.

[18] Iyer B, Mehrotra S, Mykletun E, Tsudik G, Wu Y
(2004) A Framework for Efficient Storage
Security in RDBMS. E. Bertino et al. (Eds.):
EDBT 2004, LNCS 2992, pp. 147-164.

[19] Boneh D, Crescenzo GD, Ostrovsky R, Persiano G
(2004) Public Key Encryption with Keyword
Search. Encrypt 2004, LNCS 3027. pp. 506-522.

[20] Agrawal R, Kiernan J, Srikant R, Xu Y (2004)
Order Preserving Encryption for Numeric Data.
The ACM SIGMOD'2004, Paris, France.

[21] He J, Wang M (2001) Cryptography and
Relational Database Management Systems,
Proceedings of IEEE Symposium on the
International Database Engineering &
Applications, Washington, DC, USA.

[22] Chen G, Chen K, Dong J (2006) A Database
Encryption Scheme for Enhanced Security and
Easy Sharing. CSCWD'06, IEEE Proceedings,
IEEE Computer Society, Los Alamitos. CA, pp. 1-
6.

[23] The Forrester Wave: Database Encryption
Solutions, Q3 2005.

34 SIGMOD Record, September 2009 (Vol. 38, No. 3)

