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Abstract

Programs written in powerful, higher-order languages like Scheme, ML, and Common Lisp
should run as fast as their FORTRAN and C counterparts. They should, but they don’t.
A major reason is the level of optimisation applied to these two classes of languages.
Many FORTRAN and C compilers employ an arsenal of sophisticated global optimisations
that depend upon data-flow analysis: common-subexpression elimination, loop-invariant
detection, induction-variable elimination, and many, many more. Compilers for higher-
order languages do not provide these optimisations. Without them, Scheme, LISP and
ML compilers are doomed to produce code that runs slower than their FORTRAN and C
counterparts.
The problem is the lack of an explicit control-flow graph at compile time, something which
traditional data-flow analysis techniques require. In this dissertation, I present a technique
for recovering the control-flow graph of a Scheme program at compile time. I give examples
of how this information can be used to perform several data-flow analysis optimisations,
including copy propagation, induction-variable elimination, useless-variable elimination,
and type recovery.
The analysis is defined in terms of a non-standard semantic interpretation. The denotational
semantics is carefully developed, and several theorems establishing the correctness of the
semantics and the implementing algorithms are proven.
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Chapter 1

Introduction

1.1 My Thesis

Control-flow analysis is feasible and useful for higher-order languages.

Higher-order programming languages, such as Scheme and ML, are more difficult to
implement efficiently than more traditional languages such as C or FORTRAN. Complex,
state-of-the-art Scheme compilers can produce code that is roughly as efficient as that
produced by simple, non-optimising C compilers [Kranz+ 86]. However, Scheme and ML
compilers still cannot compete successfully with complex, state-of-the-art C and FORTRAN

compilers.

A major reason for this gap is the level of optimisation applied to these two classes
of languages. Many FORTRAN and C compilers employ an arsenal of sophisticated global
optimisations that depend upon data-flow analysis: common-subexpression elimination,
loop-invariant detection, induction-variable elimination, and many, many more. Scheme
and ML compilers do not provide these optimisations. Without them, these compilers are
doomed to produce code that runs slower than their FORTRAN and C counterparts.

One key problem is the lack of an explicit control-flow graph at compile time, something
traditional data-flow analysis techniques require. In this dissertation, I develop an analysis
for recovering the control-flowgraph from a Scheme program at compile time. This analysis
uses an intermediate representation called CPS, or continuation-passing style, and a general
analysis framework called non-standard abstract semantic interpretation.

After developing the analysis, I present proofs of its correctness, give algorithms for
computing it, and discuss implementation tricks that can be applied to the algorithms. This
establishes the first half of my thesis: control-flow analysis is feasible for higher-order
languages.

The whole point of control-flow analysis is that it enables important data-flow program
optimisations. To demonstrate this, I use the results of the control-flow analysis to develop
several of these classical data-flow analyses and optimisations for higher-order languages.
This establishes the second half of my thesis: control-flow analysis is useful for higher-order
languages.

1



2 Chapter 1. Introduction

1.2 Structure of the Dissertation

This dissertation has the following structure:

� The rest of this chapter discusses data-flow analysis, higher-order languages, and why
it is difficult to do the one in the other.

� The following chapter (2) introduces the two basic tools we’ll need to develop the
analysis: the CPS intermediate representation, and the technique of non-standard
abstract semantic interpretation.

� Next we develop the basic control-flow analysis. Chapter 3 presents the analysis; this
is the core of the dissertation. Chapter 4 contains proofs that establish the analysis’
correctness and computability.

� After developing the analysis as a mathematical function, we turn to algorithms for
computing this function. Chapter 5 develops the algorithms, and discusses some
details of an implementation that I wrote. Chapter 6 contains proofs showing that the
algorithms compute the analysis function.

� Chapter 7 develops three applications using control-flow analysis: induction-variable
elimination, useless-variable elimination, and constant propagation.

� Control-flow analysis has limitations. Chapter 8 discusses these limits, and presents
an extension (reflow analysis) that can be used to exceed them. Chapters 9 and 10
discuss four more applications that rely on reflow analysis: type recovery, future
analysis, copy propagation, and lambda propagation.

� The dissertation proper closes with chapters on future directions, related work, and
conclusions (chapters 11–13).

� This is followed by two appendices, one containing a code listing for a control-flow
analysis implementation, and one giving the results of applying this program to some
simple Scheme procedures.

1.2.1 Skipping the Math

This dissertation has a fair amount of mathematics in it, mostly denotational semantics. In
spite of this, I have made a particular effort to make it comprehensible to the reader who
prefers writing programs to proving theorems. Most of the serious mathematics is carefully
segregated into distinct chapters; each of these chapters begins with a half-page summary
that states the chapter’s main results. Feel free to read the summary, take the results on
faith, and skip the math.
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1.3 Flow Analysis and Higher-Order Languages

1.3.1 Flow Analysis

Flow analysis is a traditional optimising compiler technique for determining useful infor-
mation about a program at compile time. Flow analysis determines path-invariant facts
about textual points in a program. A flow analysis problem is a question of the form:

“What is true at a given textual point p in my program, independent of the
execution path taken to p from the start of the program?”

Example domains of interest might be the following:

� Range analysis: What range of values is a given reference to an integer variable
constrained to lie within? Range analysis can be used, for instance, to do array
bounds checking at compile time.

� Loop invariant detection: Do all possible prior assignments to a given variable
reference lie outside its containing loop?

Over the last thirty years, standard techniques have been developed [Aho+ 86, Hecht 77]
to answer these questions for the standard imperative languages (e.g., Pascal, C, Ada, Bliss,
and chiefly FORTRAN). Flow analysis is perhaps the chief tool in the optimising compiler
writer’s bag of tricks; figure 1.1 gives a partial list of the code optimisations that can be
performed using flow analysis.

1.3.2 Higher-Order Languages

A higher-order programming language (HOL) is one that permits higher-order procedures
— procedures that can take other procedures as arguments and return them as results. More
specifically, I am interested in the class of lexically scoped, applicative order languages
that allow side-effects and provide procedures as first-class data. Members of this class are
Scheme [Rees+ 86], ML [Milner 85, Milner+ 90], and Common Lisp [Steele 90]. Granting
“first class” status to procedures means allowing them to be manipulated with the same
freedom as other primitive data types, e.g., passing them as arguments to procedures,
returning them as values, and storing them into data structures.

In this dissertation, I shall use Scheme as the exemplar of higher-order languages, and
only occasionally refer to other languages. Scheme is a small, simple language, which
nonetheless has the full set of features that conspire to make flow analysis so difficult:
higher-order procedures, side effects, and compound data structures. ML’s principal se-
mantic distinction from Scheme, its type system, does not fundamentally affect the task of
flow analysis. The size and complexity of Common Lisp make it difficult to work with,
but do not introduce any interesting new semantic features that change the flow analysis
problem.
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� global register allocation

� global common-subexpression elimination

� loop-invariant detection

� redundant-assignment detection

� dead-code elimination

� constant propagation

� range analysis

� code hoisting

� induction-variable elimination

� copy propagation

� live-variable analysis

� loop unrolling

� loop jamming

� type inference

Figure 1.1: Some flow-analysis optimisations.

1.3.3 The Problem

Traditional flow-analysis techniques have never successfully been applied to HOLs. These
languages are sufficiently different from the traditional imperative languages that the clas-
sical techniques developed for them are not applicable. HOLs can be contrasted with the
traditional imperative languages in the following ways:

� Binding versus assignment:
Both classes of language have the same two mechanisms for associating values with
variables: parameter binding and variable assignment. However, there are differences
in frequency of usage. The traditional imperative languages tend to encourage the
use of assignment statements; higher-order languages tend to encourage binding.

� Procedures as first-class citizens:
Procedures in higher-order languages are data that can be passed as arguments to
procedures, returned as values from procedure calls, stored into arrays, and so forth.

Traditional flow-analysis techniques concentrate on tracking assignment statements.
Thus, the HOL emphasis on variable binding changes the complexion of the problem.
Generally, however, variable binding is a simpler, weaker operation than the extremely
powerful operation of side-effecting assignments. Analysis of binding is a more tractable
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problem than analysis of assignments because the semantics of binding are simpler and
there are more invariants for program-analysis tools to invoke. In particular, the invariants
of the �-calculus are usually applicable to HOLs.

On the other hand, the higher-order, first-class nature of HOL procedures can hinder
efforts to derive even basic control-flow information. I claim that it is this aspect of higher-
order languages which is chiefly responsible for the absence of flow analysis from their
compilers to date. A brief discussion of traditional flow analysis techniques will show why
this is so.

Consider the following piece of Pascal code:

FOR i := 0 to 30 DO BEGIN

s := a[i];

IF s < 0 THEN

a[i] := (s+4)^2

ELSE

a[i] := cos(s+4);

b[i] := s+4;

END

Traditional flow analysis requires construction of a control-flow graph for the code fragment
(fig. 1.2).

�



�
	START

i:=0

i<=30?

s:=a[i]

s<0?

a[i]:=(s+4)^2

b[i]:=s+4

i:=i+1

�



�
	STOP

a[i]:=cos(s+4)
?

-

?

?

?

-

�

-

-

Figure 1.2: Control-flow graph

Every vertex in the graph represents a basic block of code: a sequence of instructions
such that the only branches into the block are branches to the beginning of the block, and the
only branches from the block occur at the end of the block. The edges in the graph represent
possible transfers of control between basic blocks. Having constructed the control-flow
graph, we can use graph algorithms to determine path invariant facts about the vertices.

In this example, for instance, we can determine that on all control paths from START to
the dashed block (b[i]:=s+4;i:=i+1), the expression s+4 is evaluated with no subsequent
assignments to s. Hence, by caching the result of s+4 in a temporary, we can eliminate the
redundant addition in b[i]:=s+4. We obtain this information through consideration of the
paths through the control-flow graph.
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The problem with HOLs is that there is no static control-flow graph at compile time.
Consider the following fragment of Scheme code:

(let ((f (foo 7 g k))

(h (aref a7 i j)))

(if (< i j) (h 30) (f h)))

Consider the control flow of the if expression. Its graph is: i<j?

f

h

?

-

After evaluating the conditional’s predicate, control can transfer either to the procedure that
is the value of h, or to the procedure that is the value of f. But what’s the value of f?
What’s the value of h? Unhappily, they are computed at run time.

If we knew all the procedures that h and f could possibly be bound to, independent
of program execution, we could build a control-flow graph for the code fragment. So, if
we wish to have a control-flow graph for a piece of Scheme code, we need to answer the
following question: for every procedure call in the program, what are the possible lambda
expressions that call could be a jump to? But this is a flow analysis question! So with
regard to flow analysis in an HOL, we are faced with the following unfortunate situation:

� In order to do flow analysis, we need a control-flow graph.

� In order to determine control-flow graphs, we need to do flow analysis.



Chapter 2

Basic Techniques: CPS and NSAS

2.1 CPS

The fox knows many things, but the hedgehog
knows one great thing.

— Archilocus

The first step towards finding a solution to this conundrum is to develop a representation
for our programs suitably adapted to the analysis we’re trying to perform.

In Scheme and ML, we must represent and deal with transfers of control caused by
procedure calls. In the interests of simplicity, then, we adopt a representation where all
transfers of control — sequencing, looping, procedure call/return, conditional branching —
are represented with the same mechanism: the tail-recursive procedure call. This type of
representation is called Continuation-Passing Style or CPS.

Our intermediate representation, CPS Scheme, stands in contrast to the intermediate
representation languages commonly chosen for traditional optimising compilers. These
languages are conventionally some form of slightly cleaned-up assembly language: quads,
three-address code, or triples. The disadvantage of such representations is their ad hoc,
machine-specific, and low-level semantics. The advantages of CPS Scheme lie in its appeal
to the formal semantics of the �-calculus and its representational simplicity.

CPS conversion can be referred to as the “hedgehog” approach, after a quotation by
Archilocus. All control and environment structures are represented in CPS by lambda
expressions and their application. After CPS conversion, the compiler need only know
“one great thing” — how to compile lambda expressions very well. This approach has an
interesting effect on the pragmatics of Scheme compilers. Basing the compiler on lambda
expressions makes lambda expressions very cheap, and encourages the programmer to use
them explicitly in his code. Since lambda is a very powerful construct, this is a considerable
boon for the programmer.

7



8 Chapter 2. Basic Techniques: CPS and NSAS

2.1.1 Definition of CPS Scheme

CPS can be summarised by stating that procedure calls in CPS are one-way transfers —
they do not return. So a procedure call can be viewed as a GOTO that passes values. If
we are interested in the value computed by a procedure f of two values, we must also
pass to f a third argument, the continuation. The continuation is a procedure; after f
computes its value v, instead of “returning” the value v, it calls the continuation on v.
Thus the continuation represents the control point to which control should transfer after the
execution of f .

For example, if we wish to print the value computed by (x+ y) � (z � w), we do not
write:

(print (* (+ x y) (- z w)))

Instead, we write:

(+ x y (� (xy)

(- z w (� (zw)

(* xy zw (� (prod) (print prod *c*)))))))

Here, the original procedures — +, -, *, and print— are all redefined to take a continuation
as an extra argument. The + procedure calls its third argument, (� (xy) . . . ), on the sum
of its first two arguments, x and y. Likewise, the - procedure calls its third argument,
(� (zw) . . .), on the difference of its first two arguments, z and w. The * procedure calls
its third argument on the product of its first two arguments, x+ y and z �w. This product
is finally passed to the print procedure, along with some top-level continuation *c*. The
print procedure prints out the value of prod and then calls the *c* continuation.

Standard non-CPS Scheme can be easily transformed into an equivalent CPS program,
so this representation carries no loss of generality. Once committed to CPS, we can make
further simplifications:

� No special syntactic forms for conditional branch
The semantics of primitive conditional branch is captured by the primitive procedure
ifwhich takes one boolean argument, and two continuation arguments: (if b c a).
If the boolean b is true, the true, or “consequent,” continuation c is called; otherwise,
the false, or “alternate,” continuation a is called.

We can also assume a class of test primitives that perform various basic conditional
tests on their first argument. For example, (test-integer x c a) branches to
continuation c if x is an integer, otherwise to continuation a.

� No side effects to variables
Side effects are allowed to data structures only. That is, the programmer is allowed to
alter the contents of data structures, with operations like rplaca and vector-set!,
but he is not allowed to alter the bindings of variables — there is no set! syntax. This
means that all side-effects are handled by primitive operations, and special syntax is
not required.
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� Lambda expressions: (� (v1 . . . vn) call)
where n � 0.

� Variable references: foo, bar, . . .

� Constants: 3, "doghen", '(a 3 elt list), . . .

� Primitive operations: +, if, rplaca, . . .

� Simple calls: ( fun arg
� )

where fun is a lambda, var, or primop, and the args are lambdas, vars, or constants.

� letrec calls: (letrec ((f1 l1). . . ) call)
where the fi are variables, and the li are lambda expressions.

Figure 2.1: CPS Scheme language grammar

Programs that use variable assignment can be automatically converted to assignment-
free programs by inserting extra mutable data structures into the program. An
expression that looks like

(� (x) . . . (set! x y) . . . x . . . )

is converted to

(� (x')

(let ((x (make-cell x')))

. . . (set-cell x y) . . . (contents x) . . . ))

This process is called “assignment conversion” [Kranz+ 86].

� No call/cc operator
Languages like Scheme and ML often have the troublesome call-with-current-
continuation or call/cc operator. CPS Scheme doesn’t need the operator. When
translating programs into their CPS Scheme representations, every occurrence of
call/cc can be replaced with its CPS definition:

(� (f k) (f (� (v k0) (k v)) k))

Scheme code violating any of these restrictions is easily mapped into equivalent Scheme
code preserving them, so they also carry no loss of generality. The details of the CPS trans-
formation are treated in a number of papers [Kelsey 89, Kranz 88, Kranz+ 86, Steele 76].
These restrictions leave us with a fairly simple language to deal with: There are only five
syntactic classes: lambdas, variables, constants, primitive operations (or primops) and calls
(fig. 2.1). Note that primops are not first-class citizens — in this grammar, they may only
be called, not used as arguments, or passed around as data. This is not a problem, since
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(� (n) (letrec ((lp (� (i sum) (if (zero? i) sum

(lp (- i 1) (+ i sum))))))

(lp n 0)))

(� (n k)

(letrec ((lp (� (i sum c)

(test-zero i

(� () (c sum))

(� ()

(- i 1 (� (i1)

(+ sum i (� (sum1)

(lp i1 sum1 c))))))))))

(lp n 0 k)))

Figure 2.2: Standard and CPS Scheme to sum 1 through n

everywhere the + primop appears as data, for instance, we can replace it with an equivalent
lambda expression: (� (a b c) (+ a b c)).

Figure 2.2 shows a procedure that sums the first n integers in both standard Scheme and
its CPS Scheme representation. It bears repeating that this extremely simple language is a
practical and useful intermediate representation for languages such as Scheme and ML. In
fact, the dialect we are using here is essentially identical to the one used by the optimising
Scheme compiler ORBIT[Kranz+ 86].

2.1.2 History

Continuation-passing style is not a new idea, dating back to at least the mid-Sixties
[Wijngaarden 66]. Reynolds [Reynolds 72] pointed out the semantically constraining fea-
tures of CPS as a language for describing language interpreters.

The central challenge of a Scheme compiler is dealing with lambda. The extreme sim-
plicity and power of Scheme comes from the power of the lambda operator. Programmers
capitalise on this power: typical Scheme programming style uses lambdas frequently, with
the assumption that they will be implemented cheaply.

CPS-based compilers raise the stakes even further. Since all control and environment
structures are represented in CPS Scheme by lambda expressions and their application, after
CPS conversion, lambdas become not merely common, but ubiquitous. The compiler lives
and dies by its ability to handle lambdas well. In short, the compiler has made an explicit
commitment to compile lambda cheaply — which further encourages the programmer to
use them explicitly in his code.

Implementing such a powerful operator efficiently, however, is quite tricky. Thus,
research in Scheme compilation has had, from the inception of the language, the theme
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of taming lambda: using compile-time analysis techniques to recognise and optimise the
lambda expressions that do not need the fully-general closure implementation.

This thesis extends a thread of research on CPS-based compilers that originates with the
work of Steele and Sussman in the mid-seventies. CPS and its merits are treated at length by
Steele and Sussman. Their 1976 paper, “Lambda: The Ultimate Declarative” [Steele 76],
first introduced the possibility of using CPS as an intermediate representation for a Scheme
compiler. Steele designed and implemented such a compiler, Rabbit, for his Master’s thesis
[Steele 78]. Rabbit demonstrated that Scheme could be compiled efficiently, and showed
the effectiveness of CPS-based compiler technology. Rabbit introduced the idea of code
analysis to aid the compiler in translating lambdas into efficient code.

The next major development in CPS-based compilation was the ORBIT Scheme compiler
[Kranz+ 86], designed and implemented by the T group [Rees+ 82] at Yale. ORBIT was
a strong demonstration of the power of CPS-based compilers: it produced code that was
competitive with non-optimising C and Pascal compilers. ORBIT, again, relied on extensive
analysis of the CPS code tree to separate the “easy” lambdas, which could be compiled into
efficient code, from the lambdas that needed general but less-efficient run-time realisations.
The most detailed explication of these analyses is found in Kranz’s dissertation [Kranz 88].
ORBIT is the most highly optimising Scheme compiler extant.

Kelsey, also a member of the T group, has designed a compiler, TC, whose middle and
back ends employ a CPS intermediate representation [Kelsey 89]. He has front ends which
translate BASIC, Scheme and Pascal into CPS.

A team at Princeton and Bell Labs, led by Andrew Appel and David MacQueen, has
applied the Orbit technology to ML with good results [Appel+ 89]. Their CPS-based
compiler is currently the standard compiler for most ML programming in the U.S.

CPS is now an accepted representation for advanced language compilers. None of
these compilers, however, has made a significant attempt to perform control- or data-flow
analysis on the CPS form. This thesis, then, is an attempt to push CPS-based compilers to
the next stage of sophistication.

2.2 Control Flow in CPS

The point of using CPS Scheme for an intermediate representation is that all transfers of
control are represented by procedure call. This gives us a uniform framework in which to
define the control-flow analysis problem. In the CPS Scheme framework, the control-flow
problem is defined as follows:

For each call site c in program P , find a set L(c) containing all the lambda
expressions that could be called at c. I.e., if there is a possible execution of P
such that lambda l is called at call site c, then l must be an element of L(c).

That is, control-flow analysis in CPS Scheme consists of determining what call sites call
which lambdas.
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This definition of the problem does not define a unique function L. The trivial solution
is the function L(c) = AllLambdas, i.e., the conclusion that all lambdas can be reached
from any call site. What we want is the tightest possible L that we can derive at compile
time with reasonable computational expense.

2.3 Non-Standard Abstract Semantic Interpretation

2.3.1 NSAS

Casting our problem into this CPS-based framework gives us a structure to work with; we
now need a technique for analysing that structure. The method of non-standard abstract
semantics (NSAS) is an elegant technique for formally describing program analyses. It
forms the tool we’ll use to solve our control-flow problem as described in the previous
section.

Suppose we have programs written in some programming language L, and we wish to
determine some property X about our programs at compile time. For example, X might be
the property “the set of variables in a program whose values may be stack-allocated instead
of heap-allocated.” There is a three-step process we can use in the NSAS framework to
construct a computable analysis for X:

1. We start with a standard denotational semantics S for our language. This gives us a
precise definition of what the programs written in our language mean.

2. Then, we develop a non-standard semanticsSX forL that precisely expresses property
X . We typically derive this non-standard semantics from our original standard
semantics S. So, whereas semantics S might say the meaning of a program is a
function mapping the program’s inputs to its results, semantics SX would say the
meaning of a program is a function mapping the program’s inputs to the property X .
The point of this semantics is that it constitutes a precise, formal definition of the
property we want to analyse.

3. SX is a precise definition of the property we wish to determine, but its precision typ-
ically implies that it cannot be computed at compile time. It might be uncomputable;
it might also depend on the run-time inputs. The final step, then, is to abstract SX
to a new semantics, bSX which trades accuracy for compile-time computability. This
sort of approximation is a typical program-analysis tradeoff — the real answers we
seek are uncomputable, so we settle for computable, conservative approximations to
them.

When we are done, we have a computable analysis bSX , and two other semantics that link
it back to the real, standard semantics for our language.

The method of abstract semantic interpretation has several benefits. Since an NSAS-
based analysis is expressed in terms of a formal semantics, it is possible to prove important
properties about it. In particular, we can prove that the non-standard semantics SX correctly
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expresses properties of the standard semantics S, and that the abstract semantics bSX is
computable and safe with respect to SX . Further, due to its formal nature, and because
of its relation to the standard semantics of a programming language, simply expressing an
analysis in terms of abstract semantic interpretations helps to clarify it.

NSAS-based analyses have been developed for an array of program optimisations.
Typical examples are strictness analysis of normal-order languages [Bloss+ 86] and static
reclamation of dynamic data-structures (“compile-time gc”) [Hudak 86b].

2.3.2 Don’t Panic

The reader who is more comfortable with computer languages than denotational semantics
equations should not despair. The semantic equations presented in this dissertation can
quite easily be regarded as interpreters in a functional disguise. The important point is that
these “interpreters” do not compute a program’s actual value, but some other property of
the program (in our case, the call graph for the program). We will compute this call graph
with a non-standard, abstract “interpreter” that abstractly executes the program, collecting
information as it goes.

2.3.3 NSAS Example

The traditional toy example [Cousot 77, Mycroft 81] of an NSAS-based analysis uses the
arithmetic rule of signs. The rule of signs is simply the property of arithmetic that tells
us the sign of simple arithmetic operations based on the sign of their operands: a positive
number times a negative number is negative, a negative number minus a positive number
is negative, and so forth.

Consider a simple language that allows us to add, subtract, and multiply integer con-
stants. A typical expression in our language might be

-3 * (3 + (-4 - 2))

Suppose we’re interested in determining the sign of an expression without having to actually
compute its full value.

� Our standard semantics S maps expressions to their arithmetic values:

S[[-3 * (3 + (-4 - 2))]] = 9:

Without going to the trouble to write out a recursive definition of S, suffice it to say
that S specifies the necessary calculations to compute the value of an expression.

� Our sign-analysis semanticsSsign maps an expression to one of the symbolsf�; 0;+g,
depending on the sign of the result. The exact semantics would perform the arithmetic
calculations, actually calculating the arithmetic value of the expression, and then
producing one of +, 0, or �, depending on the sign of the result:

Ssign [[-3 * (3 + (-4 - 2))]] = +

This precisely defines the sign of any expression written in our language.
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� Our abstract sign semantics bSsign performs the computation in an abstract domain
using the rule of signs. Instead of calculating with integer values, it only retains the
possible signs of the intermediate calculations. The required additions, subtractions
and multiplications are performed on these abstract values. So bSsign will add + to
+ and get +; multiply + by � and get �, and so forth. Unfortunately, this abstract
calculation can result in loss of information. For example, if bSsign adds a + to a�, the
result value can have any sign. In this case, bSsign must produce the value f�; 0;+g.
Thus, while Ssign computes with the integers Z , bSsign computes with sets of signs
from P(f�;0;+g). So

bSsign [[3 * (-4 - 2)]] = f+g � (f�g � f+g)

= f+g � f�g

= f�g

but

bSsign [[3 + (-4 - 2)]] = f+g+ (f�g � f+g)

= f+g+ f�g

= f�;0;+g :

In the second example, bSsign produced a result that was correct (after all, it is certainly true
that the sign of -3 is either +, 0, or �), but less precise than the exact semantics Ssign . This
is an important property: the abstract semantics must approximate the exact semantics in a
conservative way.

Because we are expressing our analysis with formal semantics, this conservative-
approximation property can be formally expressed and verified. If we were to write out
complete definitions for Ssign and bSsign , for example, we could prove fairly easily that

8exp; Ssign(exp) 2 bSsign(exp):

That is, for any given expression, bSsign returns a set containing at least the true sign of the
expression, and possibly others. This is the sort of conservative-approximation property
which is important to show in general for our abstract analyses.

This simple sign-analysis example shows how a non-standard semantics can express
the ideal analysis we want, and how we can abstract our non-standard analysis to arrive at
a computationally simpler analysis that is a safe approximation to the exact analysis.
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Control Flow I: Informal Semantics

Interesting if true — and interesting anyway.
— M. Twain

We can develop a computable control-flow analysis technique by following the NSAS
three-step construction process:

1. We start with a standard semantics for CPS Scheme.

2. From the standard semantics, we develop a non-standard semantics that precisely
expresses control-flow analysis. This semantics will be uncomputable.

3. We abstract this semantics to develop a computable approximation.

The emphasis of this chapter will be on an intuitive development of the main ideas
behind the analysis. The mathematical machinery will be kept in check, and proofs will
be avoided altogether. In fact, this initial treatment will view a denotational semantics as a
kind of Scheme interpreter written in a functional language. A reader familiar with Scheme
but not with denotational semantics should be able to follow the development without too
much trouble. In the next chapter, we will delve into the mathematical fine detail and the
proofs of correctness.

In other words, this chapter presents all the interesting ideas; in the next chapter, we’ll
prove that our intuitions about them are, in fact, true.

3.1 Notation

D� is used to indicate all vectors of finite length over the set D. Functions are updated
with brackets: e

�
a 7! b; c 7! d

�
is the function mapping a to b, c to d, and everywhere

else identical to function e. An update standing by itself is taken to be an update to the
bottom function that is everywhere undefined, so

�
a 7! b; c 7! d

�
= ?

�
a 7! b; c 7! d

�
,

and [ ] = ?. Vectors are written hx1; . . . ; xni, and are concatenated with the x operator:

15
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v1xv2. The ith element of vector v is written v#i. The power set of A is P(A). Function
application is written with juxtaposition: f x. We extend a lattice’s meet and join operations
to functions into the lattice in a pointwise fashion, e.g.: f u g = �x: (f x) u (g x). The
“predomain” operator + is used to construct the disjoint union of two sets: A + B. This
operator does not introduce a new bottom element, and so the result structure is just a set,
not a domain.

A half-arrow f :A * B indicates a partial function. The domain of a partial function
f is written Dom(f). The image of a function f is written Im(f). So if g is the partial
function

�
1 7! 2; 3 7! 4; 17 7! 0

�
, then Dom(g) = f1; 3; 17g, and Im(g) = f2;4; 0g.

In this dissertation, I use the term domain to mean a pointed, chain-complete, partially-
ordered set, or cpo. Continuous functions on cpo’s have least fixed points. The least fixed
point of such a function f is written fix f , where fix f =

F
i f

i?.

When bits of program syntax appears as constants in mathematical equations, they will
be quoted with “Quine quotes” or “semantics brackets”: [[ ]]. For example, suppose we have
some mathematical function f whose domain is Scheme expressions. To apply f to the
program text (� (x y) (g x x)), we write f [[(� (x y) (g x x))]]. Within semantics
brackets, we can “unquote” an expression with an italicised variable. So if c = [[(f x x)]],
and we write l = [[(� (x y) c)]], then we mean that l = [[(� (x y) (f x x))]].

Conditional mathematical expressions are written with a “guarded expression” notation,
e.g.:

abs x = x > 0 �! x

x < 0 �! �x

otherwise 0:

3.2 Syntax

The abstract syntax for CPS Scheme is:

PR ::= LAM
LAM ::= (� (v1 . . . vn) c) [vi 2 VAR; c 2 CALL]

CALL ::= (f a1 . . . an) [f 2 FUN; ai 2 ARG]
(letrec ((f1 l1). . .) c) [fi 2 VAR; li 2 LAM; c 2 CALL]

FUN ::= LAM + REF + PRIM
ARG ::= LAM + REF + CONST
REF ::= VAR
VAR ::= fx; z; foo; . . .g

CONST ::= f3; #f; . . .g
PRIM ::= f+; if; test-integer; . . .g
LAB ::= f`i; ri; . . .g

This abstract syntax defines the language we informally specified in the last chapter. All
the various semantic definitions we’ll be constructing will be defined over programs from
this syntax. PR is the set of programs, which are just top-level lambdas. LAM, CALL,
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FUN, ARG, REF, VAR, CONST, and PRIM are just the sets of lambdas, call expressions,
function expressions, argument expressions, variable references, variables, constants, and
primops, as discussed earlier.

The set LAB is the set of expression labels. In order to have unique tags for each
component of a program being analysed, we prefix each part of a program with a unique
label. For example,

`:(� (x) c:(r1:f r2:x k:3 r3:x))
is the fully-labelled expression for

(� (x) (f x 3 x)).

Each lambda, call, constant, and variable reference in this expression is tagged with a
unique label. Different occurrences of identical expressions receive distinct labels, so the
two references to x have the different labels r2 and r3. Labels allow us to uniquely identify
different pieces of a program. The abstract syntax just given doesn’t show the labels; to be
completely correct, the syntax description must have labels added to the right-hand sides
of the LAM, CALL, REF, CONST, and PRIM definitions. Because they visually clutter
our examples, we will suppress labels from expressions whenever convenient. We will also
play fast and loose with the distinction between expressions and their associated labels; the
meaning will always be clear.

We’ll additionally assume a couple of useful syntactic properties about programs written
in our syntax. First, we’ll assume that all programs are “alphatised,” that is, any given
variable in the program is bound by only one lambda or letrec expression. It is a simple
task to rename variables to enforce this restriction. Second, we’ll assume our programs are
closed; i.e., have no free variables. This is also a simple property to check at compile time.
Third, we’ll assume that the arity of all primop applications is syntactically enforced. For
example, we declare that (if a b c d e f) is not a legal expression, since the if primop
only takes three arguments. Primops are not first-class, so it’s easy to check this property
at compile time. Doing so will simplify our upcoming semantic equations.

A useful syntactic function is the binder function, which maps a variable to the label of
the lambda or letrec construct that binds it. In the previous expression, binder [[x]] = `.
The alphatisation assumption makes this a well-defined function — no variable is bound
by two different lambda or letrec expressions.

3.3 Standard Semantics

Figures 3.1 and 3.2 present a complete semantics for CPS Scheme. To keep things simple,
the semantics leaves out side-effects (we will return to them in a later section).

The run-time values manipulated by the semantics are given by the sets Bas, Clo, Proc,
D, and Ans:

Bas is the set of basic values. Our toy language has integers and a special boolean false
value. We’ll take any non-false value as a true value.
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Clo is the set of lambda closures. A closure is a lambda/environment pair h`; �i (we’ll
return to environments in a moment).

Proc is the set of CPS Scheme procedures. A procedure is either a closure, a primop, or the
special stop value. Primops are represented by their syntactic identifier, from PRIM.
The stop procedure is how a program halts itself: when stop is called on some value
d, the program terminates with result d.

D is the set of run-time values a program can manipulate. A run-time datum is either a
basic value or a procedure.

Ans is the domain of final answers the program can produce. If the program halts with no
error, it produces a value from D. If the program encounters a run-time error (e.g.,
divide-by-zero or trying to call a non-procedure), it halts with a special error value.
The remaining possibility is that a program can get into an infinite loop, never halting.
This is represented by the bottom value ?.

Bas = Z + ffalseg
Clo = LAM � BEnv

Proc = Clo + PRIM + fstopg

D = Bas + Proc
Ans = (D + ferrorg)?
CN Contours

BEnv = LAB * CN
VEnv = (VAR � CN) * D

PR : PR ! Ans
K : CONST ! Bas
A : ARG [ FUN ! BEnv ! VEnv * D
C : CALL ! BEnv ! VEnv * Ans
F : Proc ! D� ! VEnv * Ans

Figure 3.1: Standard Semantics Domains and Functionalities

Our interpreter factors the environment into two parts: the variable environment (ve 2
VEnv), which is essentially a global structure, and the lexical contour environment (� 2

BEnv). A contour environment � maps syntactic binding constructs — lambda and letrec
expressions — to contours or dynamic frames. Each time a lambda is called, a new contour
is allocated for its bound variables. Contours are taken from the set CN (the integers
will suffice). A variable paired with a contour is a variable binding hv; bi. The variable
environment ve , in turn, maps these variable bindings to actual values. The contour part of
the variable binding pair hv; bi is what allows multiple bindings of the same identifier to
coexist peacefully in the single variable environment.

For example, suppose we have a closure over some CPS Scheme lambda expression
`:(� (x y) . . .x. . . y. . . ) which is bound to f and called twice during program evaluation,
once with arguments (f 3 7), and once with arguments (f 22 46). The first time we
enter the lambda, we allocate a new contour (say, 1), and bind x and y to 3 and 7 in the new
contour. The second time we enter the lambda, we again allocate a new contour (this time,
2), and bind x and y to 22 and 46 in the new contour. The two different binding contexts
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are distinguished in the variable environment by the contours. We would end up with the
variable environment

ve =
�
. . . ; h[[x]]; 1i 7! 3; h[[y]]; 1i 7! 7; . . . ; h[[x]]; 2i 7! 22; h[[y]]; 2i 7! 46; . . .

�
;

and two different lexical contexts, given by the contour environments

�0 =
�
. . . ; ` 7! 1

�
;

�00 =
�
. . . ; ` 7! 2

�
:

Since contour environments determine how we look up variables in the variable envi-
ronment, we pair them up with lambdas to get Scheme’s lexical closures. This sort of
factored-environment representation is a semantic model called the “contour model of
block-structured processes” [Johnston 71]; as we’ll see, it will help us with our eventual
abstractions.

There are five semantic functions that comprise our CPS Scheme interpreter: PR, A,
K, C, and F :

� PR takes a top-level lambda, and runs the program to completion, returning the
final value the program halts with. If the program never halts, PR returns ? (we
are allowed to do this because PR is just a mathematical function — we are only
pretending that it is an interpreter).

� A evaluates function and argument expressions in a given environmental context.
Function and argument expressions overlap a good deal; A is defined on their union
ARG [ FUN = LAM + REF + PRIM + CONST.

� K evaluates constants. It maps numerals to the corresponding integer, and the false
identifier to the false value. We won’t bother to specify K in detail.

� C evaluates a call expression in a given environmental context. Since calls don’t
return in CPS, this means it runs the program forward from the call to completion,
returning the final value the program halts with.

� F applies a procedure to an argument vector, and runs the program forward from
the application, again returning the final value the program halts with. F also takes
the variable environment as an argument, so that variable lookups that occur during
program execution can be performed.

The semantic functions are defined in figure 3.2. The figure defines a complete, if
minimal, CPS Scheme interpreter.

� The PR function is simply a cover function that starts up the interpreter. PR calls
A to evaluate its lambda ` in the empty environment, and then calls F to apply the
result closure to an argument vector with one argument: the stop continuation. In
other words, the top-level lambda is closed in the empty environment, and applied
to the stop continuation. This runs the program forward until the stop continuation
is actually called, producing the final value passed as the argument to the stop

continuation.
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PR ` = F f hstopi [ ]
where f = A ` [ ] [ ]

A [[k]] � ve = K k

A [[prim]] � ve = prim

A [[v]] � ve = ve hv; �(binder v)i

A [[`]] � ve = h`; �i

C [[(f a1 . . .an)]] � ve = f 0 =2 Proc �! error
otherwise F f 0 av ve

where f 0 = A f � ve

av#i = A ai � ve

C [[c:(letrec ((f1 l1). . .) c0)]] � ve = C c0 �0
ve

0

where b = nb

�0 = �
�
c 7! b

�

ve
0 = ve

�
hfi; bi 7! A li �

0
ve

�

F h[[`:(� (v1 . . . vn) c)]]; �i av ve =
length av 6= n �! error
otherwise C c (�

�
` 7! b

�
) (ve

�
hvi; bi 7! av#i

�
)

where b = nb

F stop av ve = length av 6= 1 �! error
otherwise av#1

F [[+]] hx; y; ki ve = bad argument �! error
otherwise F k hx+ yi ve

F [[if]] hx; k0; k1i ve = fk0; k1g 6� Proc �! error
x 6= false �! F k0 hi ve

otherwise F k1 hi ve

Figure 3.2: Standard CPS Scheme Semantics
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� The A function evaluates function and argument expressions (i.e., variables, con-
stants, primops, and lambdas) given the current variable environment ve and contour
environment �. A has four cases. A constant k is evaluated by the constant specialist
K. A primop prim evaluates to itself — that is, we use the actual syntactic token
prim for the primop’s value. A variable reference v is evaluated in a two step pro-
cess. First, the contour environment is indexed with the variable’s binding lambda
or letrec expression binder v to find this variable’s current contour. The contour
and the variable are then used to index into the variable environment ve , giving the
actual value. A lambda expression ` is evaluated to a closure by pairing it up with
the current contour environment.

Note that A can’t produce a bottom or error value. This is because A only evaluates
simple expressions that are guaranteed to terminate: variables, constants, primops
and lambdas. The only possible run-time error evaluation of these expressions could
produce is an unbound variable, and we explicitly restricted our syntax to rule out
that possibility. This simplicity of evaluation is one of the pleasant features of CPS
Scheme.

� The C function evaluates call expressions in a given environment context. It has
two cases, one for simple calls (f a1 . . . an), and one for letrec’s. To evaluate a
simple call, C uses A to evaluate the function expression f and each argument ai.
The argument values are packaged up into an argument vector av . If f evaluates
to a procedure, C uses F to apply the procedure to the argument vector and the
current variable environment; F returns the final value produced by the program. If
f evaluates to a non-procedure, then the program is aborted with the error value.

To evaluate a letrec expression, C first allocates a new binding contour b. The new
contour is allocated by the function nb, which is a contour “gensym” — it is defined
to return a new, unused value each time it is called.1 The contour environment � is
augmented to create the inner contour environment � 0 = �

�
c 7! b

�
. Looking up the

contour in � 0 for any of the variables fi bound by the letrec will produce b. Then,
the letrec’s lambdas li are evaluated in the inner environment �0: A li �

0
ve . Note

that evaluation of a lambda just closes it with the contour environment — the variable
environment ve is not used byA, so it doesn’t matter what we pass A for the variable
environment.

After evaluating the letrec’s lambdas, C binds the procedures to their corresponding
variables fi using the new contour b. This creates the new variable environment ve 0.
C then evaluates the inner call expression c0 in the new environment, running the
program forward from the letrec.

� The F function takes a procedure f , an argument vector av , and the variable envi-
ronment ve; it runs the program forward from the procedure application, returning

1As defined, nb is not a proper function. This is easy to patch by adding an extra argument to the F and
C functions. This is the kind of obfuscatory detail we are avoiding in this chapter. We will return to these
issues in the next chapter.
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the final value produced by the program. F is defined by cases: one for closure
application, one for the stop continuation, and one for each primop.

When a closure is applied to an argument vector, F first checks the arity of the
closure’s lambda against the length of the argument vector. If the closure is being
applied to the wrong number of arguments, the program is aborted with the error value.
Otherwise, the lambda’s variables vi are bound to their corresponding arguments
av#i in a new contour b. The variable environment ve is augmented with the new
bindings, giving the new variable environment ve

�
hvi; bi 7! av#i

�
. The lexical

contour environment � is augmented to show that the lambda’s variables are bound
in contour b, producing an inner contour environment of �

�
` 7! b

�
. The lambda’s

inner call expression c0 is evaluated in the new environment context by C, producing
the result value for the program.

The definition of F for the terminating stop procedure is simple: if the procedure is
being applied to exactly one argument, that argument is returned as the result of the
evaluation. Otherwise, the program is aborted with a run-time error.

The primops also have simple definitions. I show F for the + and if primop cases;
other primops are similar. The + primop is applied to a three element argument vector
hx; y; ki. The addends x and y are added, and the sum packaged into a singleton
argument vector which is passed to the continuation k. If the + primop is called on a
bad argument vector, the program is aborted with the error value for result. For the
purposes of +, an argument vector is bad if its first or second element is not an integer
or if its third element is not a procedure.

The if primop takes three arguments hx; k0; k1i — a boolean value x and two
continuations. If one of the continuations isn’t a procedure, the program is aborted.
If b is a true value, the “then” continuation k0 is applied to an empty argument vector;
otherwise the “else” continuation k1 is applied to an empty argument vector.

These five functions —PR,A,K, C , andF — completely define the standard semantics
of CPS Scheme. They specify that the meaning of a program is the value it produces when
it’s run. For example, applying PR to the following factorial program

(� (k)

(letrec ((f (� (n c)

(zero? n (� (z)

(if z (� () (c 1))

(� () (- n 1 (� (n1)

(f n1 (� (a) (* a n c))))))))))))

(f 5 k)))

produces 120.
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3.4 Exact Control-Flow Semantics

We can derive a control-flow semantics from our standard semantics by “instrumenting the
interpreter.” We find every place in the semantics where a procedure is called, and we
modify the semantics to record the call in some table. When the program terminates, the
semantics discards the actual value computed, and returns the table instead. Our semantics
is now one that maps a program, not to its result value, but to a record of all the calls that
happened during the program execution.

Clearly, while this approach gives a well-defined mathematical definition of control-
flow analysis, the definition is unrealisable as a computable algorithm. If the program never
terminates, the interpreter will never halt, and never finish constructing the table. Further,
the table produced reflects only the calls that happen during one particular execution of the
program — it captures precisely the transfers of control that take place during that execution.
Suppose we had more realistically included i/o in our semantics. To get a general picture
of the program’s control-flow structure, we would have to interpret the program for each
possible input set, and join the result tables together. These issues are not a concern for
now; we’ll worry about how to make the analysis computable later. For now, it suffices
that our instrumented interpreter serves as a very precise, formal definition of control-flow
analysis.

3.4.1 Internal Call Sites

There is one fine point we must consider before proceeding to our control-flow se-
mantics: not all procedures are called from program call sites. Consider the fragment
(+ a b (� (s) (f a s))). Where is (� (s) (f a s)) called from? It is called from
the innards of the + primop; there is no corresponding call site in the program syntax to mark
this. We need to endow primops with special internal call sites to mark calls to functions
that happen internal to the primop.

For each occurrence of a primop (p:prim a1 . . . an) in a program, we associate a related
set of internal call sites ic1

p; . . . ; icjp for the primop’s use. Simple primops, e.g. +, have a
single internal call site, which marks the call to the primop’s continuation. Conditional
primops, e.g. if, have two internal call sites, one for the consequent continuation, and one
for the alternate continuation. These ic identifiers give us names for the hidden call sites
where primop continuations are called. So, we include them in the LAB set:

LAB =
n
`i; ri; ci; ic

j
p; . . .

o
:

Now our label set includes the labels of all possible call sites in the program, both visible
and hidden.

Some notational conveniences: Most ordinary primops only require a single internal
call site. When this is the case, we’ll drop the superscript index. Furthermore, when
possible we’ll include the actual primop with its label in the subscript. So if the primop
with label p happens to be [[p:+]], we’ll write its single internal call site as icp:+ instead of
ic1

p.
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3.4.2 Instrumenting the Semantics

We only need to change the standard semantics slightly to produce our exact control-flow
semantics (figure 3.3). The only domain we must change is the answer domain, Ans. Our
new semantics produces call caches. A call cache (
 2 CCache) is a partial map from
call-site/contour-environment pairs to procedures:

CCache = (LAB� BEnv) * Proc

Ans = CCache

Note that this definition of a call cache is more detailed than one that simply maps a call
site to the procedures called from that site. This definition distinguishes the multiple calls
that happen from a single call site by including the environment context (from BEnv) as
part of the input to the cache.

Figure 3.3 shows the new interpreter. Instrumenting the standard interpreter involves
two basic changes.

1. The places where procedures are called — fromPR’s top-level call, from C’s simple-
call case, and from F ’s continuation calls inside primop applications — must add
their call to the call cache being built up by the interpretation.

2. Program termination, whether by run-time error or application of the stop continu-
ation, must discard the actual result value and produce instead the empty call cache
[ ].

The PR function is similar to its previous definition: it closes the top-level lambda in
the empty environment and applies it to the stop continuation. This procedure application,
however, evaluates to the call cache produced by running the rest of the program. PR
must add to this cache the fact that the top-level procedure f was called from the top call
in the empty environment. This is represented by the cache entry

�
hctop; [ ]i 7! f

�
, where

the label ctop represents the call site for the top-level call. The updated call cache is the call
cache for the entire program execution.

The A function hasn’t changed at all, since evaluating argument expressions doesn’t
involve calling procedures.

The simple-call case of the C function changes in two respects. First, in the error case,
it aborts the program and returns the empty call cache [ ]. C is responsible for returning the
call cache for program execution from its call onwards; since the program has halted at the
call, the empty call cache is the right value to produce. Second, if it actually performs a
call, it records the fact that procedure f 0 was called from call c in context �, represented by
call cache entry

�
hc; �i 7! f 0

�
. This entry is added to the call cache produced by running

the rest of the program.
The letrec case doesn’t change, since the letrec’s local computation is simply a

binding operation, and doesn’t perform any procedure calls itself.
The F function performs calls to its primops’ continuations, and these calls must be

recorded. For example, the + primop performs a call to its continuation k from its internal
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PR ` = (F f hstopi [ ])
�
hctop; [ ]i 7! f

�
where f = A ` [ ] [ ]

A [[k]] � ve = K k

A [[prim]] � ve = prim

A [[v]] � ve = ve hv; �(binder v)i

A [[`]] � ve = h`; �i

C [[c:(f a1 . . . an)]] � ve = f 0 =2 Proc �! [ ]
otherwise (F f 0

av ve)
�
hc; �i 7! f 0

�
where f 0 = A f � ve

av#i = A ai � ve

C [[c:(letrec ((f1 l1). . .) c0)]] � ve = C c0 �0
ve

0

where b = nb

�0 = �
�
c 7! b

�
ve

0 = ve
�
hfi; bi 7! A li �

0
ve
�

F h[[`:(� (v1 . . . vn) c)]]; �i av ve =

length av 6= n �! [ ]
otherwise C c (�

�
` 7! b

�
) (ve

�
hvi; bi 7! av#i

�
)

where b = nb

F stop av ve = [ ]

F [[p:+]] hx; y; ki ve = bad argument �! [ ]
otherwise (F k hx+ yi ve)

hD
icp:+; �

E
7! k

i
where b = nb

� =
�
p 7! b

�
F [[p:if]] hx; k0; k1i ve = fk0; k1g 6� Proc �! [ ]

x 6= false �! (F k0 hi ve)
hD
ic0

p:if; �
E
7! k0

i
otherwise (F k1 hi ve)

hD
ic1

p:if; �
E
7! k1

i
where b = nb

� =
�
p 7! b

�

Figure 3.3: Exact Control-Flow Semantics
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call site icp:+. This is recorded by call cache entry
hD
icp:+; �

E
7! k

i
which is added to the

cache produced by running the rest of the program.
Note that + allocates a new contour when it is entered, even though it binds no variables.

In the course of executing a program, control could pass through this primop several times;
each time, there will be a call from icp:+ to a continuation. We need to distinguish these
multiple icp:+ calls in the call cache we are constructing. Multiple calls from the same call
site are distinguished in the call cache by an environment context �. So, even though it
binds no variables, when control enters a + primop, we allocate a new contour b = nb, and
construct a new contour environment � =

�
p 7! b

�
to make a unique index

D
icp:+; �

E
in the

call cache.
Similarly, if adds the appropriate entry to the final call cache, either recording that the

true continuation k0 was called from the internal call site ic0
p:if, or the false continuation k1

was called from ic1
p:if.

3.5 Abstract Control-Flow Semantics

Now that we’ve defined our control-flow analysis semantics, we have a formal description
of the control-flow problem. The final step is to abstract our semantics to a computable
approximate semantics that is useful and safe.

The major reason the exact semantics is uncomputable is because the domains and
ranges of the meaning functions are (uncountably) infinite. This is due to the infinite
number of distinct environments that can be created at run time.

For example, the call cache constructed by the analysis is a potentially infinite table. If
a call cache simply mapped call sites to lambdas, it would necessarily be finite, because a
finite program only has a finite number of call sites and lambdas. A call cache, however,
maps call contexts to closures. The difference is environment information. A call context
hc; �i is a call paired with a contour environment; similarly, a closure h`; �i is a lambda
paired with a contour environment. Although there are only a finite number of lambdas and
calls in a given program, execution of that program can give rise to an unbounded number
of distinct environments.

For example, consider the following Scheme loop:

(letrec ((loop (� (f) (loop (� (n) (* 2 (f n)))))))

(loop (� (m) m)))

The loop procedure calls itself with a function that is its input function doubled. What is
the set of procedures that f could be bound to during execution of this loop? It could be
bound to any of the procedures

fn 7! n; n 7! 2n; n 7! 4n; . . .g :

This example shows how a finite program can give rise to an infinite set of procedures.
There are only a finite number of lambda expressions in a given program; the infinite sets of
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procedures arise because we can close these lambdas with an infinite set of environments.
If we can collapse our infinite set of environments down to a finite approximation, then we
can successfully compute a control-flow cache function.

The source of the infinite environments are the infinite contours allocated by nb during
program interpretation. If we force nb to allocate contours from a finite set, then we’ll
only have a finite set of contour environments to deal with. This, in turn, will restrict our
analysis to a finite set of call contexts and closures, and our table construction will converge
— giving us a computable analysis. Of course, collapsing an infinite set of binding contours
down to a finite set is going to merge some variable bindings together — that is, looking
up a variable will produce a set of possibilities, instead of a single definite value. This is
the loss of precision we must accept for a computable abstraction.

To repeat the point: the key to making our analysis computable lies in restricting our
contour set to be finite. This is the central abstraction of the computable analysis.

It should now be clear why we factored the environment structure from the beginning.
The variable binding mechanism is what gave rise to the infinite environment structure;
factoring the environment exposed this mechanism to possible abstraction. Abstracting the
contours and merging bindings was the critical step that allowed us to reduce this infinite
structure to a finite, computable one.

The other major change we must make in abstracting our semantics concerns conditional
branches. Since we do not in general know at compile time which way a conditional branch
will go, we must abstract away conditional dependencies. The if primop now “branches
both ways.” That is, the caches arising from the consequent and alternate paths are both
computed; these are joined together to give the result cache returned by the if primop.
Removing this data dependency has a further consequence: because basic values (from
Bas) are no longer tested by conditional branches, the basic value set can be dispensed with.
Since our semantics concerns itself solely with control flow, the only values that need to be
considered are those representing CPS Scheme procedures. (Had we included I/O in our
original perfect control-flow semantics, this change would allow us to abstract away those
dependencies, as well.)

The domains and functionalities for the abstract control-flow semantics are shown in
figure 3.4. The abstract domains and functions are distinguished by putting “hats” on the
variable names. Closures (dClo) are still lambda/environment pairs, but the environment is
now an abstract environment (from dBEnv). The set of run-time values (bD) has changed
significantly. As discussed, the set of basic values (Bas) has been dropped entirely. Further,
an element from bD is a set of abstract procedures instead of a single procedure, reflecting
the fact that expressions now evaluate to sets of possibilities in the abstract semantics.

We’ve only specified in figure 3.4 that the abstract contour set dCN is finite — we haven’t
said anything about what particular finite set it is. We can choose different abstractions by
choosing different finite sets for dCN and different functions cnb for allocating its contours.
These different choices have varying cost/precision tradeoffs; we’ll be considering various
possibilities in following sections. However, the general model we are developing in this
section will apply to all of the possible choices. The important particular to keep in mind
is that the infinite set of exact contours has been reduced to a finite set of abstract contours.
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dClo = LAM � dBEnvdProc = dClo + PRIM + fstopgbD = P( dProc)dCCache = (LAB � dBEnv)! bDdCN = Contours (finite)dBEnv = LAB * dCNdVEnv = (VAR�dCN)! bD

dPR : PR ! dCCachebA : ARG [ FUN ! dBEnv ! dVEnv * bDbC : CALL ! dBEnv ! dVEnv ! dCCachebF : dProc ! bD� ! dVEnv ! dCCache

Figure 3.4: Abstract Semantics Domains and Functionalities

Because we are collapsing variable bindings together, evaluating a variable now yields a
set of possibilities, instead of a single value. This is reflected in the functionality of abstract
variable environments: a variable environment cve 2 dVEnv maps abstract variable bindings
to sets of abstract procedures (from bD).

If it helps you to keep in mind a particular contour abstraction when reading these
semantics, here is the simplest possible abstraction, which we’ll be discussing in the
next section: all contours are identified together to a single abstract contour. SodCN = f1g, and cnb is just the constant function that always returns 1. For a given
variable x, this abstraction puts all values bound to x into the same set.

Figure 3.4 shows the critical effect of the contour abstraction. By making dCN finite (and
assuming a finite program, so that LAB, LAM, and PRIM are also finite), all other sets
become finite.

The functionalities of our semantic functions dPR, bF , bC and bA remain essentially
unchanged from their exact counterparts — we’ve altered them only by adding hats to all
the appropriate sets.

Figure 3.5 shows the definition of the abstract semantic functions. PR, again, is just
a cover function, performing the initial call to the top-level lambda. bA now evaluates
argument expressions to sets of abstract procedures. Since a constant k can not possibly
evaluate to a procedure, bA returns the empty set for this case. Evaluating a primop prim can
only produce that primop, so bA produces the singleton set fprimg for this case. Similarly,
evaluating a lambda expression ` must result in a closure

D
`; b�E over that lambda, so bA

produces the corresponding singleton set. bA evaluates variables using exactly the same
lookup process that its exact counterpart uses — the difference being that the index into the
abstract variable environment cve produces a value set instead of a specific value.bC is very similar to its exact counterpart. The major difference for the simple-call case
lies in the fact that the function expression f now evaluates to a set of procedures F . bC must
run the program forward from the call for each possible procedure f 0 2 F that we could
potentially be branching to. The caches produced by each application are combined (by
joining the caches together, which gives a cache producing the union of all the individual
caches’ contributions: (
̂1 t 
̂2)

D
c; b�E = 
̂1

D
c; b�E [ 
̂2

D
c; b�E). To this result cache we

add bC’s local contribution
hD
c; b�E 7! F

i
, which states that from call c and context b�, we



3.5. Abstract Control-Flow Semantics 29

dPR ` =
� bF f hfstopgi [ ]

�
t
�
hctop; [ ]i 7! ffg

�
where ffg = bA ` [ ] [ ]

bA [[k]] b� cve = ;bA [[prim]] b� cve = fprimg

bA [[`]] b� cve =
nD

`; b�Eo
bA [[v]] b� cve = cve Dv; b�(binder v)E

bC [[c:(f a1 . . . an)]] b� cve =

� G
f 02F

bF f 0 cav cve� t hDc; b�E 7! F
i

where F = bA f b� cvecav#i = bA ai
b� cve

bC [[c:(letrec ((f1 l1). . .) c0)]] b� cve = bC c0 b�0 cve 0
where b̂ = cnbb�0

= b� hc 7! b̂
i

cve 0 = cve t hDfi; b̂E 7! bA li
b�0 cvei

bF D
[[`:(� (v1 . . . vn) c)]]; b�E cav cve =

length cav 6= n �! [ ]
otherwise bC c

� b� h` 7! b̂
i� �cve t hDvi; b̂E 7! cav#ii�

where b̂ = cnb
bF [[p:+]]

D
x̂; ŷ; k̂

E cve =

 G
f2^k

bF f h;i cve
!
t
hD
icp:+;

b�E 7! k̂
i

where b̂ = cnbb� =
h
p 7! b̂

i

bF [[p:if]]
D
x̂; k̂0; k̂1

E cve =

 G
f2^k0

bF f hi cve
!
t

 G
f2^k1

bF f hi cve
!

t
hD
ic0

p:if;
b�E 7! k̂0;

D
ic1

p:if;
b�E 7! k̂1

i
where b̂ = cnbb� =

h
p 7! b̂

i
bF stop cav cve = [ ]

Figure 3.5: Abstract Semantic Functions
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could have called any of the procedures in F . Because we are collapsing contours together,
we may already have a set of procedures associated with call cache entry

D
c; b�E. This is

why the cache addition is made with a join operation, so that we are in effect adding the
set of procedures F to any that we may have already recorded in the call cache under theD
c; b�E entry. By not overwriting any old information we have, only adding to it, we keep

our analysis conservative.bC in the letrec case is similar to the exact version. Because we might already have
entries in the variable environment cve for the variable bindings

D
fi; b̂

E
, we again must join

the new procedures in with the current entries to produce the new environment cve 0.bF applies an abstract procedure to a vector of value sets. If the procedure is a closureD
`; b�E, the arity of the lambda is checked. If the closure is being applied to the wrong

number of arguments, the abstract interpretation is aborted, and bF returns the empty call
cache [ ]. Otherwise, bF allocates an abstract contour (b̂ = cnb) in which to bind the
lambda’s variables. Just as in bC’s letrec case, the variable bindings

D
vi; b̂

E
might already

have entries in the variable environment cve . We add the set of values cav#i to whatever
values we already have bound to entry

D
vi; b̂

E
in the variable environment cve , producing

the new environment cve t hDvi; b̂E 7! cav#ii. The lambda’s inner call c is evaluated in the
updated environment, giving the call cache for executing the rest of the program.

If the procedure is the + primop, the argument vector passed to it contains three values:D
x̂; ŷ; k̂

E
. The argument k̂ is a set of possible continuations, and the abstract addends x̂ and

ŷ are irrelevant — they have no procedural interpretation. bF runs the interpretation forward
for each abstract continuation f 2 k̂. In the exact semantics, the continuation was applied
to the sum of the primop’s addends; in the abstract semantics, we know that whatever the
sum could be, it couldn’t possibly be a procedure, so its abstraction as a value set is ;. So
each abstract continuation f is applied to the argument vector h;i. The resulting call caches
are all joined together, and +’s local contribution

hD
icp:+;

b�E 7! k̂
i

is added, which states

that all of the continuations passed in as +’s argument k̂ could have been called from +’s
internal call site in the environment context b�.

Note that the abstract definition of the + primop does less error checking than the exact
one: it doesn’t check to ensure that the addends are integer values. For example, if the exact
control-flow semantics was applied to the expression (+ 3 #f k), it would immediately
halt the interpretation, making no further entries to the call cache. The approximate
semantics, however, would record the primop’s call to the continuation, and continue the
interpretation. This is acceptable, since including some extra calls in the final call cache is
erring on the conservative side – the abstract analysis hasn’t left out any of the actual calls,
only included a few extras. This (conservative) weakening of the run-time error checking
is a pervasive feature of the abstract analysis.

The if primop case is similar to the + case, except that we branch both ways from the
conditional.

The stop case is again quite simple: no calls are made after applying the stop procedure,
so the empty call cache is returned.
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3.6 0CFA

The abstract semantics of the last section didn’t specify which finite set to choose for the
abstract contours dCN, or what rule to use for allocating these contours on procedure entry.
In this section, we’ll look at the simplest possible abstraction, in which there is only a single
abstract contour: dCN = f1g. Thus the cnb function is just the constant function always
returning 1. In the exact semantics, all bindings of a given variable were kept distinct;
in this simple abstraction, all bindings of a given variable are merged together. Suppose
that, over the lifetime of a program some variable x is bound to seven different values:
fd1; d2; . . . ; d7g. In 0CFA, after these bindings have been made, evaluation of x in any
environmental context produces not one of the di, but the entire set. This trivial abstraction
is called “0th-order Control-Flow Analysis” (0CFA) (we’ll consider other, more detailed
abstractions in the next section).

Even though 0CFA is quite simple, it is still very useful, particularly for intra-procedural
flow analysis. For example, the implementation of induction-variable elimination discussed
in chapter 7 is based on a 0CFA analysis. Additionally, 0CFA has the attraction of being
fast.

We could write down the equations for the 0CFA semantics simply by replacing “cnb”
with “1” throughout the equations of the previous section. However, once we do this, we
can simplify the equations further (figures 3.6, 3.7). 0CFA is a very special abstraction
because it is the trivial case. Many of the structures in the general abstract semantics
collapse to degenerate cases in 0CFA. For example, once we specify that dCN = f1g, then
contour environments become degenerate: every environment � maps all its labels to 1.
So we can dispose of contour environments in the special case of 0CFA. Similarly, the
variable/contour pairs hv; bi that index variable environments become degenerate, since
the contour, again, must always be 1. So, we can simplify the variable environment domain
to be maps from variables to sets of values: VAR ! bD. The same reasoning applies to
closures and call caches: the context information � that is paired with a lambda ` to make
a closure, and paired with a call to make a call cache index is degenerate. So we can
represent an abstract procedure with just a lambda, and a call cache now maps calls to sets
of lambdas.

dProc = LAM + PRIM + fstopgbD = P( dProc)dCCache = LAB ! bDdVEnv = VAR ! bD

dPR : PR ! dCCachebA : ARG [ FUN ! dVEnv * bDbC : CALL ! dVEnv ! dCCachebF : dProc ! bD� ! dVEnv ! dCCache

Figure 3.6: 0CFA Domains and Functionalities

The 0CFA analysis is interesting because it analyses pure control-flow structure; envi-
ronment structure is ignored completely. It provides a direct answer to the question “Which
lambdas are called from which call sites?” Because it is so simple, it can be computed faster
than other, more detailed abstractions. However, the simplicity carries a price of reduced
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dPR ` =
� bF f hfstopgi [ ]

�
t
�
ctop 7! ffg

�
where ffg = bA ` [ ]

bA [[k]] cve = ;bA [[prim]] cve = fprimgbA [[`]] cve = f`gbA [[v]] cve = cve v

bC [[c:(f a1 . . . an)]] cve =

� G
f 02F

bF f 0 cav cve� t [c 7! F ]

where F = bA f cvecav#i = bA ai cve
bC [[c:(letrec ((f1 l1). . .) c0)]] cve = bC c0 cve 0

where cve 0 = cve t hfi 7! bA li cvei

bF [[`:(� (v1 . . . vn) c)]] cav cve = length cav 6= n �! [ ]
otherwise bC c (cve t �vi 7! cav#i�)

bF [[p:+]]
D
x̂; ŷ; k̂

E cve =

 G
f2^k

bF f h;i cve
!
t
h
icp:+ 7! k̂

i

bF [[p:if]]
D
x̂; k̂0; k̂1

E cve =

 G
f2^k0

bF f hi cve
!
t

 G
f2^k1

bF f hi cve
!

t
h
ic0

p:if 7! k̂0; ic
1
p:if 7! k̂1

i
bF stop cav cve = [ ]

Figure 3.7: 0CFA Semantics Functions
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precision. Collapsing call contexts together can merge together calls from the same call
site that happen in otherwise distinct environment contexts, causing distinct control paths
to merge unnecessarily. For example, consider a single subroutine f which is called from
two different places in a program:

. . . c1:(f 3 k1:(� (a1) . . . )) . . . c2:(f 4 k2:(� (a2) . . . )) . . .

`3:(� (n k) . . . c3:(k answer))
�
�
�
�
�
�*

P
P
P
P
P
P
P
P
Pi ������������9

Q
Q
Q
QQs

In 0CFA, we record that

1. we could branch to `3 from c1;

2. we could branch to `3 from c2; and

3. we could branch to either k1 or k2 from c3.

This information allows for spurious control-flow paths — it allows for the paths c1`3 . . . c3k2

and c2`3 . . . c3k1. That is, the analysis includes the possibility that the call from c1 could
return to k2, and vice versa.

A more detailed analysis might distinguish the abstract contours allocated when entering
`3, so that the two different bindings of the continuation k are kept distinct. This would
eliminate the spurious control-flow paths. We would record that

1. we could branch to `3 from c1;

2. we could branch to `3 from c2;

3. we could branch to k1 from c3 in the context created by entering `3 from c1; and

4. we could branch to k2 from c3 in the context created by entering `3 from c2.

The more detailed environment information in the call cache eliminates the spurious control-
flow paths. These sorts of considerations lead us to consider other, more detailed abstrac-
tions.

3.7 Other Abstractions

A more precise abstraction, which we won’t explore in detail in this chapter, is to distinguish
the contours allocated when a lambda is called from two distinct call sites. In this abstraction,
which we’ll call 1st-Order Control-Flow Analysis (1CFA), a contour is a call site: dCN =

CALL. We change our semantics so that whenever a call is performed, the call site’s label
is passed along as an extra argument cfrom to bF . Then, abstract contour allocation is just
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using cfrom — that is, we just replace every occurrence of “cnb” in the bF equations with
“cfrom”.

So, if a given lambda is called from five different call sites, we will bind its variables
in five different contours. All values passed to the lambda from a given call site will be
merged, but values passed from different call sites will be distinct.

Since contours are now call sites, and a finite program has only a finite number of call
sites, the analysis remains computable. The greater number of contours, however, means
that the analysis will take longer to converge than the simple 0CFA analysis. So 1CFA buys
greater precision with increased analysis time.

The idea of 1CFA is similar to some of the abstractions used in Hudak’s work on
reference counting [Hudak 86b]. It isn’t difficult to come up with other abstractions, with
different cost/precision tradeoffs. Choosing a good abstraction that is well-tuned to typical
program usage is not a topic that I have explored in depth, although it certainly merits study.
Deutsch has experimented with a number of different procedural abstractions in his work
on semantic descriptions in a normal-order �-calculus [Deutsch 90]. These abstractions
all seem adaptable to the control-flow semantics in this dissertation, and thus might be
considered.

3.8 Semantic Extensions

We restricted our language and its semantics in order to simplify the presentation of the anal-
ysis. Now that we’ve developed the basic analysis, we can extend it to handle other semantic
features: side-effects, external procedures and calls, and user-procedure/continuation par-
titioning. These extensions will be presented in less detail than the basic analysis.

3.8.1 Side Effects

Scheme and ML allow side-effects, a feature missing from the semantics in the preceding
sections. We need to extend the basic analysis to handle this feature.

To keep the mechanisms as simple as possible, we’ll use a very simple side-effects
system. We’ll add a single mutable data structure, the cell. A cell is a first-class data
structure that contains one value, called its contents. Cells can be allocated, and their
contents can be altered or fetched. We need three new primops to manipulate cells: new,
set, and contents.

� We allocate a cell with the new primop:
(new 3 (� (cell) . . . )) binds cell to a new cell with contents 3.

� We alter a cell’s contents with the set primop:
(set cell 5 (� () . . . )) changes cell’s contents to 5.

� We fetch a cell’s contents with the contents primop:
(contents cell (� (val) . . .)) binds val to the contents of cell.
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Scheme users can think of cells as one-element vectors, or cons cells with just a car slot but
no cdr slot. ML users can think of cells as ML ref’s. Cells serve to capture the basics of
a mutable data-structure. The techniques we’ll use to analyse them can be equally applied
to the full range of mutable data types in the languages we are analysing: pairs, vectors,
records, and so forth.

Note, however, that we are not considering side-effects to variables (i.e., variable
assignment). The techniques presented here could be extended to cover this semantic
feature, but it isn’t necessary to do so. For one, some higher-order languages, such as ML,
do not allow side-effects to variables. Other languages, such as Scheme, do; but this is not
a problem. Compiler front-ends that reduce Scheme programs to the CPS Scheme internal
representation can transform the programs so that all variable side-effects are converted to
operations on cells. This allows our semantics and analysis to assume that variable bindings
are immutable, a convenient assumption — it allows the compiler to invoke more of the
invariants of the lambda-calculus on the expressions in the internal representation.2 This
sort of transformation is called “assignment conversion,” and is performed by the ORBIT

Scheme compiler.
How must we alter our standard and control-flow semantics to add mutable cells? We

need to introduce the set of addresses Addr to model cells. We can represent an address
with just an integer. Addresses (cells) are first-class citizens, so we must include them into
the set of run-time values D. Our interpreter now has to pass around a store � 2 Store,
which is modelled by a table mapping allocated addresses to values:

Addr = Z

D = Bas + Proc + Addr

Store = Addr * D

New addresses are allocated by the alloc function, which is guaranteed to return a new
address each time it is called.

The C andF functions pass the store around as they interpret the program, so they must
be redefined to take an extra argument:

F : Proc ! D�
! VEnv ! Store ! Ans

C: CALL ! BEnv ! VEnv ! Store ! Ans

The only place the store is actually referenced or altered is inside the three primops new,
contents, and set:

F [[new]] hd; ki ve � = bad argument �! error
otherwise F k hai ve (�

�
a 7! d

�
)

where a = alloc

2. . . and rewards programmers who use binding instead of assignment by producing tighter code — a bit
of positive reinforcement that may appeal to compiler-writers with ideological agenda.
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F [[contents]] ha; ki ve � = bad argument �! error
otherwise F k h� ai ve �

F [[set]] ha; d; ki ve � = bad argument �! error
otherwise F k hi ve (�

�
a 7! d

�
)

We can extend the exact control-flow semantics in a similar fashion.
Now we need to choose an abstraction for the store. Just as with contours, we need an

abstraction that reduces the infinite numbers of distinct cells that could be allocated at run
time to a finite abstraction.

For the purposes of doing control-flow analysis of languages like Scheme, tracking side
effects is not of primary importance. Since Scheme makes variable binding convenient and
cheap, side effects occur relatively infrequently. (This is especially true of well-written
Scheme.) Loops, for instance, tend to update their iteration variables by rebinding them via
tail-recursive calls, instead of by assigning them.

To further editorialise, I believe that the updating of loop variables is a task best left
to loop packages such as Waters’ series package ([Waters 82, Waters 89, Waters 89b] and
[Steele 90, appendix A]) or the Yale Loop [Riesbeck], where the actual updating technique
can be left to the macro writer to implement efficiently, and ignored by the application
programmer.

For these reasons, we can afford to settle for a solution that is merely correct, without
being very informative. Therefore, the abstraction we’ll choose uses a very weak technique
to deal with side effects: all addresses are merged together into a single abstract address.
This means that once a procedure is stored into a cell during abstract interpretation, any
fetch operation on any cell could potentially produce that procedure. We can represent the
abstract store as the set of procedures that have been stashed out in the store. The new and
set primops add procedures to this set; the contents primop produces the entire set.

bD = P( dProc)dStore = bD

bF [[p:new]]
D
d̂; k̂

E cve b� =

 G
f2^k

bF f h;i cve (b� [ d̂)

!
t

hD
icp:new;

b�E 7! k̂
i

where b̂ = cnbb� =
h
p 7! b̂

i

bF [[p:contents]]
D
â; k̂

E cve b� =

 G
f2^k

bF f hb�i cve b�
!
t
hD
icp:contents;

b�E 7! k̂
i

where b̂ = cnbb� =
h
p 7! b̂

i
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bF [[p:set]]
D
â; d̂; k̂

E cve b� =

 G
f2^k

bF f hi cve (b� [ d̂)

!
t
hD
icp:set;

b�E 7! k̂
i

where b̂ = cnbb� =
h
p 7! b̂

i

We can again choose more detailed abstractions if the programs being analysed require
more a precise analysis of the store. An example is the abstraction used in Hudak’s work
on static deallocation of run-time data structures [Hudak 86b]. We have an address for each
appearance of an allocation primop in our program. So if thenew (orcons, ormake-vector)
primop appears five times in the program, we have five abstract addresses. Each occurrence
of the primop allocates a different abstract address, and the store distinguishes values
assigned to the different addresses.

If we choose a store abstraction that has multiple distinct addresses, then we must track
addresses as they are passed around during abstract interpretation as well as procedures.
This requires extending the bD set in a straightforward way.

A further extension of the simple store abstraction would be to distinguish addresses
that were allocated by a given occurrence of a primop in different abstract environment
contexts. There are many possibilities here; I have not explored them in this dissertation.

3.8.2 External Procedures and Calls

The control-flow analysis we have developed is a “closed-world” analysis — it assumes
that the entire program is presented to the analysis. However, most compilers support
separate compilation and most Scheme and ML implementations support dynamic loading
and incremental definition. This means that our analysis needs to take into account calls
and lambdas that are external to the block of code being analysed.

Our abstract analysis can handle this by defining two special tokens: the external
procedure xproc, and the external call xcall. The xproc represents unknown procedures that
are passed into our program from the outside world at run time. The xcall represents calls
to procedures that happen external to the program text. For example, suppose we have the
following fragment in our program:

(foo (� (k) (k 7)))

In our main development, we restricted our programs to have no free variables. If we relax
this restriction, and allow foo to be free over the program, then in general we have no idea
at compile time what procedures foo could be bound to at run time. The call to foo is
essentially an escape from the program to the outside world, and we must record this fact.
We do this by binding foo to xproc at analysis time. Further, since (� (k) (k 7)) is
passed out of the program to external routines, it can be called from outside the program.
We do this by recording the lambda in the set of lambdas that could be called from xcall.

Lambdas such as (� (k) (k 7)) in the above example that are passed to the external
call have escaped to program text unavailable at compile time, and so can be called in
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arbitrary, unobservable ways. They have escaped close scrutiny, and in the face of limited
information, we are forced simply to assume the worst. We maintain a set ESCAPED of
escaped procedures, which initially contains xproc and the top-level lambda of the program.
The rules for the external call, the external procedure and escaped functions are simple:

1. Any procedure passed to the external procedure escapes.

2. Any escaped procedure can be called from the external call.

3. When a procedure is called from the external call, it may be applied to any escaped
procedure.

This provides very weak information, but for external procedures whose properties are
completely unknown at compile time, it is the best we can do. (On the other hand, many
external procedures, e.g. print, or length, have well known properties. For instance,
both print and length only call their continuations. Thus, their continuations do not
properly escape. Nor are their continuations passed escaped procedures as arguments. It is
straightforward to extend the analysis presented here to utilise this stronger information.)

These rules can be easily integrated into our abstract semantics.
External procedures can potentially access the store, so these two semantic features

interact. Suppose we choose the simple store abstraction discussed in the previous section.

� Any procedure placed in the abstract store can be accessed by external procedures
that can reference the store.

� Therefore, any procedure placed in the abstract store can escape.

� Any escaping procedure can be placed in the abstract store by an external procedure.

So, given the simple store abstraction, it makes sense to identify the ESCAPED set and
the abstract store set b�, since any element that is placed in one of these sets must also be
placed in the other. (On the other hand, if we choose a more complex store abstraction, we
would want to separate these two sets, since not all abstract addresses escape, and so not
all elements of the abstract store are accessible by external procedures.)

3.8.3 Partitioning Procedures and Continuations

A worthwhile enhancement of the basic semantics is to distinguish user procedures from
continuations.

CPS Scheme is an intermediate representation for full Scheme. In full Scheme, the user
cannot write CPS-level continuations: all continuations, all variables bound to continua-
tions, and all calls to continuations (i.e., returns) are introduced by the CPS converter. This
divides the procedural world into two halves: user procedures and continuations introduced
by the CPS converter. It is easy for the CPS converter to mark these continuation lambdas,
variables and call sites as it introduces them into the program. This partition is a powerful
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constraint on the sets propagated around by the analysis: a given call site either only calls
user procedures, or only calls continuations; a given variable is either bound to only user
procedures, or bound to only continuations. This partition holds throughout all details of
the CFA semantics; exploiting it produces a much tighter analysis.

Distinguishing user procedures and continuations is useful for reasons besides improving
the data-flow analysis; both ORBIT and Kelsey’s transformational compiler do some form
of this marking [Kranz+ 86, Kelsey 89].

Note that this change doesn’t alter the meaning of either user procedures or continuations
— in CPS Scheme they both have the meaning of a continuation procedure. We are simply
able to statically partition the procedural world into two disjoint sets, with consequent
improvements in the precision and efficiency of our analysis. In this way, a CPS-based
representation lets us “have it both ways”: We can distinguish procedure calls and returns
when it is useful to do so, and still enjoy the advantages of a unified representation and
semantics, treating all lambdas identically when convenient.

The user-procedure/continuation partition interacts with the external call mechanisms.
Instead of having a value xproc to represent external procedures, we need to provide both
for external user-level procedures xproc and external continuations xcont. Similarly, we
need to have both an external call xcall for calls to user-level procedures, and an external
return xret to mark calls to continuations. The extensions to handle this are straightforward.

A criteria to separate user procedures and continuation procedures is whether or not the
procedure takes a continuation argument itself. A user procedure is always called with an
extra continuation argument to which it is to deliver its result. This implicit continuation
is made an explicit parameter by the CPS conversion process, which introduces the extra
argument into the procedure’s formal parameter list and into all the calls to the procedure.
A continuation, on the other hand, completely encapsulates the computational future of a
process, so it requires no continuation argument itself.

It is an interesting feature of this partition that source-to-source transformations on a
CPS Scheme program can convert a user procedure to a continuation and vice versa. For
example, consider the following Scheme summation loop:

(� (n)

(letrec ((lp (� (i sum)

(if (zero? i) sum (lp (- i 1) (+ sum i))))))

(lp n 0)))

If we partially CPS-convert this loop, introducing continuation variables, calls, and lambdas,
we get:

(� (n k)

(letrec ((lp (� (i sum c)

(if (zero? i) (c sum)

(lp (- i 1) (+ sum i) c)))))

(lp n 0 k)))
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Copy propagation (section 10.1) will discover that c is always bound to the value of k — it
is being passed around the loop needlessly. We can remove c from the program completely,
and replace the call to c with one to k:

(� (n k)

(letrec ((lp (� (i sum)

(if (zero? i) (k sum)

(lp (- i 1) (+ sum i))))))

(lp n 0)))

Note that the (� (i sum) . . .) lambda has shifted status from a user procedure, which
takes a continuation argument k, to a continuation itself. In other words, in the transformed
code we do not pass lp a continuation to which it should return; lp’s definition already
includes this information.

If a CPS-based compiler distinguishes user procedures from continuations, it must
remember to update the status of altered lambdas after performing this type of source
transformation.



Chapter 4

Control Flow II: Detailed Semantics

That which must be proved
cannot be worth much.

— fortune cookie,
by way of Robert Harper

The aim of the previous chapter was to develop a simple semantically-based definition of
control-flow analysis, along with safe, computable abstractions for it. The development
was kept simple for the sake of intuitive explication; the rigorous details of the necessary
mathematical machinery were intentionally glossed over in order to get the “big picture”
across.

Of course, one of the big attractions of defining an analysis with a denotational semantics
is that we can then rigorously prove properties about our analysis. In this chapter, I will
redevelop the semantics with enough precision and care to allow us to prove some important
basic properties of the analysis. The major results will be to show that

� The equations defining the exact and abstract control-flow semantics have solutions.

� The abstract semantics safely approximates the exact semantics.

� The abstract semantics is computable.

This is what we need to show to put the computable control-flow analysis on a firm
theoretical foundation. If you are uncomfortablewith or unwilling to read detailed semantics
proofs, you can simply take these three results on faith and skip to the next chapter.

The rest of the chapter follows this agenda:

1. First, we will change the simple equations given in the previous chapter to patch up
some holes in the definitions. For example, we will add side-effects and a store, and
restrict the domains of some functions to make them well-defined. (Section 4.1)

2. Next, we will show that the semantic functions (PR, A, C , F and their abstract
counterparts) exist. This requires showing that the recursive definitions are well-
defined and have solutions. (Section 4.3)

41
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Bas = Z + ffalseg

Clo = LAM� BEnv

Proc = Clo + PRIM + fstopg

Addr = Z

D = Bas + Proc + Addr

Store = Addr * D

CN = (contours)

BEnv = LAB * CN

VEnv = (VAR� CN) * D

CCtxt = LAB� BEnv

CCache1 = P(CCtxt� Proc)

CState � CALL � BEnv� VEnv� CN� Store (see figure 4.7)

FState � Proc� D�
�VEnv � CN � Store (see figure 4.7)

PR: PR ! CCache

A: ARG [ FUN ! BEnv ! VEnv * D

K: CONST ! Bas

C: CState ! CCache

F : FState ! CCache

Figure 4.1: Exact Semantics Domains and Functionalities

3. After establishing that all the mathematical structures we are dealing with actually
exist, we can prove properties about them. In particular, we can prove the two main
results of this chapter: the abstract semantics safely approximates the exact semantics,
and the abstract semantics is computable. (Section 4.4)

4.1 Patching the Equations

For purposes of proving theorems, the simple equations developed in the previous chapter
have several lapses. In this section, we will fix up the equations with enough precision and
detail to make them useful in a formal context. The domain and function equations for the
new semantics are collected together in figures 4.1–4.6.

1Later (Sec. 4.4) shown to be CCtxt* Proc
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PR ` = F hf; hstopi; [ ]; b0; [ ]i [ hhctop; [ ]i; fi
where f = A ` [ ] [ ]

A [[k]] � ve = K k

A [[prim]] � ve = prim

A [[v]] � ve = ve hv; �(binder v)i

A [[`]] � ve = h`; �i

C h[[c:(f a1 . . . an)]]; �; ve ; b; �i = f 0 =2 Proc �! [ ]
otherwise fhhc; �i; f 0ig [ F hf 0; av ; ve; b0; �i

where f 0 = A f � ve

av#i = A ai � ve

b0 = nb b c

C h[[c:(letrec ((f1 l1). . .) c0)]]; �; ve ; b; �i = C hc0; �0; ve 0; b0; �i

where b0 = nb b c

�0 = �
�
c 7! b0

�
ve

0 = ve
�
hfi; b

0i 7! A li �
0
ve
�

Figure 4.2: Exact Semantic Functions (a)

4.1.1 Contour Allocation

Whenever control enters a lambda, a new contour is allocated to bind its variables to their
arguments. In the previous chapter, we swept this contour allocation under the rug with the
nb “gensym” function that returned a new contour each time it was called. Such a function is
obviously not well-defined. In the detailed semantics, we add a “contour counter” argument
to the F and C functions. This value is a contour that is an upper bound for all the currently
allocated contours. The nb function is defined to increment this counter. Whenever a new
contour is needed, the current contour counter is used, and nb called to generate the new
bound.

Using terms like “counter” and “upper bound” means the contour set CN must be a
partial order and nb must be an increasing function. Sequentially applying nb to successive
contours is essentially moving up chains in the partial order of CN. This gives us that
if the current contour b is � all allocated contours, then nb b is > all allocated contours.
This is necessary for the exact semantics (both standard and control flow) to be a correct
specification of CPS Scheme. We’ll also assume there is designated initial contour b0 that
is used by the PR function to start the interpretation.

The C and F functions adhere to the following invariant as they pass around the contour
counter:
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F hh[[`:(� (v1 . . . vn) c)]]; �i; av ; ve ; b; �i =

lengthav 6= n �! [ ]
otherwise C hc; �

�
` 7! b

�
; ve

�
hvi; bi 7! av#i

�
; b; �i

F h[[p:+]]; hx; y; ki; ve ; b; �i =

bad argument �! [ ]
otherwise

nDD
icp:+; �

E
; k
Eo
[ F

D
k; hx+ yi; ve; nb b icp:+; �

E
where � =

�
p 7! b

�
F h[[p:if]]; hx; k0; k1i; ve ; b; �i =

fk0; k1g 6� Proc �! [ ]
x 6= false �!

nDD
ic0

p:if; �
E
; k0

Eo
[ F

D
k0; hi; ve ; nb b ic0

p:if; �
E

otherwise
nDD
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p:if; �

E
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Eo
[ F

D
k1; hi; ve ; nb b ic1

p:if; �
E

where � =
�
p 7! b

�
F hstop; av ; ve ; b; �i = ;

F h[[p:new]]; hd; ki; ve ; b; �i =

k =2 Proc �! [ ]
otherwise

nDD
icp:new; �

E
; k
Eo
[ F

D
k; hai; ve ; nb b icp:new; �

�
a 7! d

�E
where � =

�
p 7! b

�
a = alloc �

F h[[p:contents]]; ha; ki; ve; b; �i =

bad argument �! [ ]
otherwise

nDD
icp:contents; �

E
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Eo
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k; h� ai; ve ; nb b icp:contents; �

E
where � =
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�
F h[[p:set]]; ha; d; ki; ve ; b; �i =

bad argument �! [ ]
otherwise

nDD
icp:set; �

E
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Eo
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D
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�
a 7! d

�E
where � =

�
p 7! b

�

Figure 4.3: Exact Semantic Functions (b)
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dClo = LAM � dBEnvdProc = dClo + PRIM + fstopgbD = P( dProc)dStore = P( dProc)dCN = LAB (for 1CFA)

f1g (for 0CFA)dBEnv = LAB * dCNdVEnv = (VAR�dCN)! bDdCCtxt = LAB � dBEnvdCCache = (LAB � dBEnv)! bDdCState � CALL � dBEnv � dVEnv�dCN� dStore (see figure 4.8)dFState � dProc� bD�
� dVEnv�dCN� dStore (see figure 4.8)

dPR: PR ! dCCachebA: ARG [ FUN ! dBEnv ! dVEnv * bDbC: dCState ! dCCachebF : dFState ! dCCache

Figure 4.4: Abstract Semantics Domains and Functionalities

� The contour passed to C is the greatest contour that has been used to date.

� The contour passed to F is a contour that has never been used.

This particular convention is the right one for the eventual 1CFA abstraction we are going
to make.

We could definenb as a simple function mapping contours to contours, with functionality
CN ! CN. However, when we abstract the semantics, we’ll be mapping these contours to
abstract contours that can contain information about the dynamic behaviour of the program.
For example, in 1CFA, the abstract contour allocated for entering a given lambda is the call
from which we entered the lambda. It will help in establishing a connection between the
exact and abstract semantics if we build this information into the exact contour from the
beginning. We can do this by providing extra information to the nb function:

bi+1 = nb bi x:
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dPR ` = bF hf; hfstopgi; [ ]; jb0j; [ ]i t
�
hctop; [ ]i 7! ffg

�
where ffg = bA ` [ ] [ ]

bA [[k]] b� cve = ;bA [[prim]] b� cve = fprimg

bA [[`]] b� cve =
nD

`; b�Eo
bA [[v]] b� cve = cve Dv; b�(binder v)E

bC D[[c:(f a1 . . . an)]]; b�; cve ; b̂; b�E =

� G
f 02F

bF D
f 0; cav ; cve ; b̂0; b�E� t hDc; b�E 7! F

i

where F = bA f b� cvecav#i = bA ai b� cve
b̂0 = cnb b̂ c

bC D[[c:(letrec ((f1 l1). . .) c0)]]; b�; cve ; b̂; b�E = bC Dc0; b�0

; cve 0; b̂0; b�E
where b̂0 = cnb b̂ c b�0

= b� hc 7! b̂0
i

cve 0 = cve t hDfi; b̂0E 7! bA li
b�0 cvei

Figure 4.5: Abstract Semantics Functions (a)

This extra information x could be anything from the CState or FState argument that might
be useful for abstraction. In 1CFA, this extra information is the label of the current call site,
so we’ll go ahead and build this into the functionality of nb:

nb: CN ! LAB ! CN:

Remember that this issue of adding extra information is irrelevant to the correctness of
the exact semantics. The only thing that is important to guarantee correctness of the exact
semantics is that the nb function behave as a counter gensym — that is, b0 � b ) b0 <

nb bx. Adding the extra information, of whatever type, is purely to facilitate establishing a
connection between the exact semantics and useful abstractions. We’ll return to this issue
in detail in section 4.2.

4.1.2 Side Effects

Although side-effects were discussed in section 3.8.1, they were omitted from the equations
in the main development of chapter 3 to keep the presentation simple. However, if we
are going to prove theorems, we should prove them about the full-blown semantics that
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bF DD
[[`:(� (v1 . . . vn) c)]]; b�E; cav ; cve ; b̂; b�E =

length cav 6= n �! [ ]
otherwise bC Dc; b� h` 7! b̂

i
; cve t hDvi; b̂E 7! cav#ii; b̂; b�E

bF D
[[p:+]];

D
x̂; ŷ; k̂

E
; cve; b̂; b�E = G

f2k̂

bF D
f; h;i; cve; cnb b̂ icp:+; b�E

!
t
hD
icp:+;

b�E 7! k̂
i

where b� =
h
p 7! b̂

i

bF D
[[p:if]];

D
x̂; k̂0; k̂1

E
; cve ; b̂; b�E = G

f2k̂0

bF D
f; hi; cve; cnb b̂ ic0

p:if; b�E
!
t

 G
f2k̂1

bF D
f; hi; cve; cnb b̂ ic1

p:if; b�E
!

t
hD
ic0

p:if;
b�E 7! k̂0;

D
ic1

p:if;
b�E 7! k̂1

i
where b� =

h
p 7! b̂

i

bF D
stop; cav ; cve ; b̂; b�E = [ ]

bF D
[[p:new]];

D
d̂; k̂

E
; cve ; b̂; b�E = G

f2k̂

bF D
f; h;i; cve; cnb b̂ icp:new; b� t d̂

E!
t
hD
icp:new;

b�E 7! k̂
i

where b� =
h
p 7! b̂

i

bF D
[[p:contents]];

D
â; k̂

E
; cve ; b̂; b�E = G

f2k̂

bF D
f; hb�i; cve ; cnb b̂ icp:contents; b�E

!
t
hD
icp:contents;

b�E 7! k̂
i

where b� =
h
p 7! b̂

i

bF D
[[p:set]];

D
â; d̂; k̂

E
; cve; b̂; b�E = G

f2k̂

bF D
f; hi; cve; cnb b̂ icp:set; b� t d̂

E!
t
hD
icp:set;

b�E 7! k̂
i

where b� =
h
p 7! b̂

i

Figure 4.6: Abstract Semantics Functions (b)
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a real CPS-based compiler for Scheme or ML would have to deal with, and this means
side-effects.

We can bring over the machinery developed in section 3.8.1 directly. The only detail not
dealt with in section 3.8.1 is how unused addresses are allocated by the alloc function. The
alloc function can pick an unused address either by incrementing some external counter
that bounds the set of currently allocated addresses, or by simply choosing an address that
is not in the domain of the partial function which is the current store. The second choice
requires less machinery, so it is the one we’ll adopt:

alloc: Store ! Addr:

The critical property we require of alloc is that it allocate an unused address:

alloc � =2 Dom(�):

As discussed in section 3.8.1, there are several possibilities for store abstractions. The
one we’ll use is the simplest: all exact addresses are abstracted to a single abstract address;
an abstract store is just the set of values that have been placed into the store.

4.1.3 Restricting the Function Domains

The C function takes five (curried) arguments: C c� ve b�. These are the call expression, the
contour environment, the variable environment, the contour counter, and the store. How-
ever, we cannot just apply C to any five arguments chosen arbitrarily from the corresponding
sets. The five arguments are all delicately intertwined and interdependent.

For example, we cannot evaluate the call c = [[(f 3)]] in an empty environment
� = [ ] ; ve = [ ] — the variable lookup A [[f]] � ve would not be defined. In order to
successfully perform variable references while evaluating a call, the three arguments c, �,
and ve must be consistent with each other.

Definition 1 c, �, ve are consistent in program P if

� Dom(�) is c’s lexical context: for every lambda or letrec ` that is lexically superior
to c (i.e., c appears in the lexical scope of `), ` 2 Dom(�).

� ve covers �: 8` 2 Dom(�) 8v 3 binder v = ` hv; �`i 2 Dom(ve).
That is, all variable lookups that can be done through � are defined by ve.

This definition of consistent ensures that all variable lookups that could be performed
while evaluating c’s subexpressions will be handled by the environment �; ve . We can
extend the definition of consistent to closures with the following:

Definition 2 h`; �i, ve are consistent in program P if
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� Dom(�) is `’s lexical context: for every lambda or letrec `0 that is lexically superior
to `, `0 2 Dom(�).

� ve covers �: 8`0 2 Dom(�) 8v 3 binder v = l0 hv; �`0i 2 Dom(ve).

This guarantees us that free variable references occurring in the lambda’s internal call
expression must be defined by the current environment.

The idea of consistency should show that our semantic functions are only well-defined
when applied to particular combinations of arguments. Our semantic functions, as defined
in the previous chapter, have function domains that allow them to be applied to inconsistent
arguments. As such, they are not well-defined functions.

Notice that this problem is just a superficial issue of structure. When a syntactically
correct top-level program is evaluated in the initial environment, the chain of recursive
C and F applications that arise always have arguments that are consistent. This is no
accident, of course — the equations are carefully designed to do this. Environments
are always constructed before dependent variables are referenced, addresses are always
allocated before they are dereferenced, and so forth. In short, the illegal argument tuples
are ones that never occur during evaluation of a syntactically legal CPS Scheme program.
In this sense, these constraints on legal argument values to the semantic functions are a form
of invariant on the semantics — constraints that are satisfied at all times during program
evaluation.

There are a few ways to make the equations well-defined. First, we could take the
semantic functions to be partial functions rather than total functions; the illegal argument
combinations would be removed from the function domains. The problem with this ap-
proach is that we will be dealing with limits of sequences drawn from these spaces of partial
functions. The particulars of defining the ordering relations and limits on these structures
complicates the proofs unnecessarily.

Alternatively, we could add an extra “static error” value to the range of the semantic
functions. When a semantic function is applied to a bad argument tuple, it could return
the static error value. This would make the semantic functions well-defined over their
complete domains, and we could then subsequently prove that the static error value is never
returned from the top-level application of the C and F functions. Adding such a static
error value, however, complicates the definition of the Ans and CCache domains. Proving
that the resulting recursive domain equations have solutions is messy, which is unfortunate
considering that the actual value we must work so hard to add to the set is never actually
used by the equations at all. Furthermore, requiring the semantic functions to check their
arguments for correctness further complicates their definitions.

The approach we will follow here is to restrict the domains of the semantic functions.
We’ll define the domain of the semantic functions to be only those combinations of values
that are consistent. This will make the semantic functions well-defined total functions.

Consider the five arguments that C is applied to: c; �; ve ; b; �. We want to take the
domain of C to be a subset of CALL � BEnv � VEnv � CN � Store — only those values
that satisfy the consistency constraints will be included in the subset. To appeal to the
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A tuple hc; �; ve ; b; �i 2 CALL � BEnv � VEnv � CN � Store is in the set CState iff

1. All environment contexts in the system are consistent: [C-ENV]

(a) c, �, ve are consistent

(b) 8h`; �i 2 (Im(ve) [ Im(�)) \ Clo h`; �i ; ve are consistent.

2. All addresses in the system are defined by the current store: [C-ADDR]
(Im(ve) [ Im(�)) \ Addr � Dom(�):

A tuple hf; av ; ve; b; �i 2 Proc� D� � VEnv � CN � Store is in the set FState iff

1. All environment contexts in the system are consistent: [F-ENV]
8h`; �i 2 (ffg [ av [ Im(ve) [ Im(�)) \ Clo h`; �i ; ve are consistent.
(where the argument vector av is taken as a simple set).

2. All addresses in the system are defined by the current store: [F-ADDR]
(av [ Im(ve) [ Im(�)) \ Addr � Dom(�)
(where the argument vector av is taken as a simple set).

3. Primops applications have correct arity: [F-ARITY]
f 2 PRIM ) length av = arity of f:

Figure 4.7: Function domains for C and F .

notion of the semantic functions giving a functional interpreter for CPS Scheme, a 5-tuple
hc; �; ve ; b; �i can be viewed as an interpreter state. Let’s call the set of legal interpreter
states for the C function CState. Similarly, the subset of Proc� D� � VEnv � CN � Store
that are legitimate argument tuples for the F function will be called FState.

The relationships that these argument tuples must satisfy to be legitimate are given in
figure 4.7. C-ENVa requires the call context c/�/ve that C is evaluating to be consistent, so
all variable references are well-defined. C-ENVb requires all the other evaluation contexts
that exist in the system (in the environment Im(ve), or the store Im(�)) to be well-defined.
C-ADDR requires every address in the system to be defined by the store. This means that
any address dereference will be well-defined. F-ENV and F-ADDR are similar constraints
for the argument tuples in the domain of F . The third F constraint, F-ARITY, requires
primop applications to be of the correct arity, so that the semantic equations won’t have to
perform this check themselves.

We could redefine the A function by similarly restricting its domain. Since A is not
defined recursively, we do not need to invoke all the fixed-point machinery to prove its
existence and properties. So we can take the simpler approach of declaringA to be a partial
function, defined only when its arguments are consistent. Note that the domain restriction
on C implies that applications of A in C are always well-defined.

The C and F functions are defined recursively, so we need to ensure that if one of these
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functions is applied to an argument in CState or FState, that the argument tuples used in
the recursive applications are also in CState and FState. This is necessary to show that the
recursive definitions are legitimate. We’ll return to this issue when we prove the existence
of the C and F functions (section 4.3).

The domains of abstract functions bC and bF are much easier to restrict, since there are
much fewer ways to go wrong in the abstract semantics. Since the abstract variable envi-
ronment cve is a total function to power sets, the operation of looking up a variable/abstract-
contour pair

D
v; b̂

E
is always well-defined. This removes half of the C-ENV and F-ENV

constraints. Addresses have been eliminated from the abstract semantics entirely, so the
issue of which addresses are defined by the current store doesn’t arise (constraints C-ADDR
and F-ADDR). The only items that must be checked for are (1) contour lookups in b� must
be defined and (2) primop applications must have the correct arity. This is summarised in
figure 4.8.

A tuple
D
c; b�; cve ; b̂; b�

E
2 CALL � dBEnv � dVEnv � dCN � dStore is in the set dCState iff

1. All contour environment contexts in the system are consistent: [C-ENV’]

(a) Dom( b�) is c’s lexical context.

(b) 8
D
`; b�

E
2
�S

Im(cve) [ b�� \ dClo Dom( b�) is `’s lexical context.

A tuple
D
f̂ ; cav ; cve ; b̂; b�

E
2 dProc� bD� � dVEnv �dCN � dStore is in the set dFState iff

1. All environment contexts in the system are consistent: [F-ENV’]
8
D
`; b�

E
2
�n

f̂
o
[ (

S cav ) [ (
S
Im(cve)) [ b�

�
\ dClo Dom( b�) is `’s lexical context.

(where the argument vector cav is taken as a simple set).

2. Primops applications have correct arity: [F-ARITY’]
f̂ 2 PRIM ) length cav = arity of f̂ :

Figure 4.8: Function domains for bC and bF .

4.1.4 Redefining CCache

In the previous chapter, we defined an exact call cache 
 to be a partial function from a call
context (that is, a call-site/contour-environment pair) to a procedure: CCtxt * Proc. In the
old semantics, we updated the call cache with an expression of the form 


�
cc 7! f

�
.

An update of this form has the potential to delete information from the final call cache:
the update

�
cc 7! f

�
could shadow a previous entry for cc in 
. What we want is an update

that is increasing — that never shadows old information in the call cache.
In this chapter, we define a call cache to be a relation on CCtxt � Proc, that is, a set of

hcc; fi pairs. So the update now has the form 
 [fhcc; f ig, which is obviously increasing.
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With this definition, we can be confident that our semantics definition isn’t accidentally
deleting any entries after adding them to the call cache, and so the result call cache contains
every call that was made during program execution.

It is, however, notationally convenient to manipulate call caches in functional ways.
Furthermore, our chapter 3 intuitions are, in fact, correct: the call caches we construct with
the relational update have the structure of a partial function. So, the development in this
chapter will proceed as follows:

� First, we’ll define the exact semantics using the relational update, clearly establishing
correctness.

� Next, we’ll show that the semantic functions defined this way exist.

� Finally, we’ll show that the call cache produced by these functions is a partial function.
That is,

hcc; f i ; hcc; f 0i 2 
 ) f = f 0:

After we’ve done this, we can revert to treating exact call caches as partial functions
whenever it is convenient to do so.

4.1.5 Order Relations and Join Operations

Table 4.9 collects the definitions of v and t for the domains using these operations in the
semantics equations. These definitions are all the obvious ones; they are collected together
into a single table simply for reference purposes. Note that if a domain is not also a lattice,

CCache � [
dCCache pointwise � pointwise [

bD � [
dVEnv pointwise � pointwise [
dStore � [
bD� elementwise � elementwise [

CPO v t

Table 4.9: Order and join definitions

then its t operation is only defined on elements that are ordered. Consider bD� for example.
A two-element argument vector

D
d̂; ê

E
and a three-element argument vector

D
f̂ ; ĝ; ĥ

E
are

not ordered with respect to each other, and so
D
d̂; ê

E
t
D
f̂ ; ĝ; ĥ

E
is not defined.
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Proc ! dProc jprimj = prim jstopj = stop jh`; �ij = h`; j�ji

D ! bD jbj = jaj = ; jf j = fjf jProcg

D� ! bD� jhd1; . . . ; dnij = hjd1j ; . . . ; jdnji

BEnv ! dBEnv j�j = j�j � �

j�j ` = j� `j

CN ! dCN jbj = 1 (0CFA)

jc0 � � � cnj = cn (1CFA)

VEnv ! dVEnv jvej = �
D
v; b̂

E
:
G

jbj=b̂

jve hv; bij

Store ! dStore j�j =
F
jIm(�)j

CCtxt ! dCCtxt jhc; �ij = hc; j�ji

CCache ! dCCache j
j = �ccc:
G

jccj=bcc
j
 ccj

Figure 4.10: Abstraction functions

4.1.6 Result Semantics

The new, detailed semantics we get after applying the changes of the previous two sub-
sections is collected in figures 4.1–4.6. Figure 4.1 gives the semantic domains and func-
tionalities for the exact control-flow semantics; figures 4.2 and 4.3 give the definitions of
the A, C, and F functions; figure 4.4 gives the domains and functionalities for the abstract
semantics; figures 4.5 and 4.6 give the definitions of the bA, bC, and bF functions.

4.2 Abstraction Functions

The connection between an exact and an abstract semantics is specified by an abstraction
function. An abstraction function maps an exact value x to its abstract counterpart jxj. The
abstraction function for a set S is written j�jS , and has functionality j�jS:S ! Ŝ. We will
drop the subscript and just write j�j whenever convenient. An abstraction function precisely
specifies how we “throw away” information to arrive at our abstract semantics.

The abstraction functions for the control-flow semantics are given in figure 4.10.

Procedures Primops and the stop continuation are abstracted to themselves. A closure
h`; �i is abstracted by forming an abstract closure h`; j�ji, with lambda ` and abstract
contour environment j�j.

Values The abstract semantics only tracks procedural values2 — abstract values are sets of

2Certain analyses — for instance, constant propagation — might want to track non-procedural values, as
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abstract procedures from dProc. So booleans and addresses, which obviously are not
procedures, abstract to the empty set: jbj = jaj = ;. A procedure f abstracts to the
singleton set containing its abstract counterpart: fjf jProcg.

Argument Vectors An argument vector of values is simply abstracted elementwise:
jhd1; . . . ; dnij = hjd1j ; . . . ; jdnji.

Contour Environments An exact contour environment � is abstracted by composing it
with the contour abstraction function.

Contours The contour abstraction is the critical one that determines most of the other
abstractions.

0CFA In the 0CFA analysis (section 3.6), the abstract semantics has only one abstract
contour, 1. So the 0CFA abstraction is trivial: all contours abstract to 1.

In 0CFA, the exact contour set can simply be taken to be integers, CN = Z; and
the contour allocation function just increments the current contour: nb b c =
b+ 1. Note that nb ignores its extra argument c — this is because the eventual
abstraction doesn’t need any information at all, so we don’t need to build it in
to the exact contour. The initial “seed” contour b0 is 0. The abstract contour set
is the unity set: dCN = f1g. The contour allocation function always returns 1:
cnb b̂ c = 1. The abstraction function abstracts all contours to 1: jbj = 1.

If we use these definitions for CN, b0, nb, dCN, cnb, and j� jCN in the semantic
equations given in figures 4.1–4.6, we get a 0CFA interpretation.

1CFA The 1CFA contour abstraction requires a little more machinery. The abstract
contour allocated when entering a lambda is the call site from which the lambda
was called. We need to have this information present in the exact contour so
that the abstraction function can extract it. A straightforward way to do this is
to use call strings for the exact contours. A call string is just the string of call
sites through which control has passed during the execution of the program.3

Each time a call is performed, the call site is appended to the end of the call
string. Note that in CPS, calls never return, so the current call string is just a
trace of the execution path through the program, continuously growing as the
program executes. The current call string will suffice as a unique “gensym”
for the purposes of the exact semantics, since each time a new call string is
constructed, it is longer than all the previously created call strings and hence
unique.

If the current contour b = c0 . . . cn when we enter some lambda is the current
call string, then the call site we just branched from is clearly cn. So the contour
we want for the 1CFA abstraction is cn. Thus our contour abstraction function
just picks off the last call site in the call string: jc0 . . . cnj = cn.

well. This would be accomplished by specifying a new abstraction function and abstract value domain bD.
3Call strings have been used in other interprocedural analysis work [Harrison 89, Sharir+ 81]. This work

usually uses a more complex structure than the simple CPS variant we need here.
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So, in the 1CFA model the set of exact contours is just the set of finite strings of
call sites: CN = LAB�. The initial call string is the label of the top-level call:
b0 = ctop. Exact contours are allocated by tacking the current call site onto the
end of the current call string: nb b c = bxc. The abstract contour set is simply
call sites: dCN = LAB. When an abstract contour is allocated, it is just taken to
be the current call site: c

nb b̂ c = c. Using these definitions in the equations of
figures 4.1–4.6 will give us a 1CFA interpretation.

It’s easy to change the details of this abstraction to come up with variants on
a theme. For example, if we take dCN = LAB � LAB, and define c

nb b c =
hb#2; ci, then our abstract contours are the last two calls made during program
execution. This would extend 1CFA along the control dimension to a 2CFA
abstraction. Alternatively, when entering a closure we could allocate as contour
the pair of call sites (1) the call from which we just branched to the closure and
(2) the call from which we previously branched to the the closure’s lexically
superior lambda. This would extend 1CFA along the environment dimension
to a different kind of of 2CFA abstraction. There are many ways to abstract the
analysis — 0CFA and 1CFA are not intended to be the last word on this subject.

CN b0 nb b c dCN cnb b̂ c jbj

0CFA Z 0 b+ 1 f1g 1 1

1CFA LAB� ctop bxc LAB c cn; where
b = c0 . . . cn

Table 4.11: 0CFA and 1CFA Contour Machinery

The details of these two contour abstractions are summarised in table 4.11. Note that
with either of these choices, our domains, allocation policies, and abstractions obey
the following properties:

� nb functions as a gensym.
As discussed earlier (section 4.1.1), in order for the exact semantics to be correct,
the exact contour set needs to be a partially ordered, and the allocation function
nb must be an increasing function. This is also necessary to guarantee that
the exact call cache produced by the exact control-flow semantics is a partial
function (lemma 5).

In 0CFA, the partial order is just arithmetic�; in 1CFA, b � b0 if call string b is
a prefix of call string b0. The nb function is clearly increasing for each of these
contour definitions.

� Contour allocation is homomorphic under abstraction: jnb b xj = cnb jbj jxj.
This ensures that the evolution of the abstract interpretation stays linked to the
exact interpretation – as successive contours are allocated in the two interpre-
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tations, they stay related due to this property. The proofs that the abstract
semantics safely approximates the exact semantics (section 4.4) rely upon this.
In the particular contour allocation machinery we are using, x is a call label c.
If we define jcj = c, then both the 0CFA and 1CFA nb functions given above
have this property:

0CFA: jnb b cj = jb+ 1j = 1 = cnb jbj jcj

1CFA: jnb b cj = jbxcj = c = c
nb jbj c = c

nb jbj jcj

� dCN is finite.
The computability of the abstract semantics relies upon the finiteness of the
contour set (section 4.4.3).

These are the only properties we require of our contour machinery, so the proofs in
following sections go through in both the 0CFA and 1CFA cases.

Variable Environments An abstract variable environment maps a variable/abstract-con-
tour pair

D
v; b̂

E
to an abstract value. When an abstracted variable environment

jvej is applied to such a pair, it performs the lookup in the exact environment
ve for each variable/exact-contour pair that could abstract to

D
v; b̂

E
. This pro-

duces all the exact values that the corresponding exact lookup might have produced:n
ve hv; bi

��� jbj = b̂
o

. Each value in this set is then converted to an abstract value, and

all these abstract values are joined together4 to form the result value
F
jbj=b̂

jve hv; bij.

This abstraction is a specific example of a general technique for abstracting functions
whose domains and ranges have abstractions: jf j = �x̂:

F
jxj=x̂ jf xj. Note that when

f is a partial function (as in the variable environment case), it is assumed that the join
operation’s index variable x ranges over Dom(f).

Stores In the single-address abstraction introduced in section 3.8.1, an abstract store is just
the set of all values placed into the store. So an exact store abstracts to its contents:
j�j =

Fn
jdj

��� d 2 Im(�)
o
=
F
jIm(�)j.

Call Contexts A call context cc = hc; �i is abstracted by abstracting its component contour
environment: jccj = hc; j�ji.

Call Caches Call caches are abstracted following the same pattern for variable environ-
ments. When the abstracted call cache j
j is applied to a call context

D
c; b�

E
, we apply

the exact call cache 
 to all the exact call contexts that could abstract to
D
c; b�

E
. All

the result procedures are abstracted and joined together5 to produce the result value:
j
j

D
c; b�

E
=
F
jccj=hc; b�i j
 ccj =

F
j�j=b� j
 hc; �ij.

4Since abstract values are sets of abstract procedures, and the join operation for bD is set union, this just
means all the abstract procedures are collected together into one set.

5That is, collected into a set.
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4.3 Existence

In the exact semantics, the only values whose existence is non-obvious are the C and F
functions. The value sets, such as D, Proc, and VEnv, and the semantic functionsPR and
A are all defined with simple, constructive definitions, and clearly exist. C and F , on the
other hand, are defined with recursive equations, and so we must go to a little trouble to
prove these equations are well-defined and admit a solution.

We will define C and F as the least fixed point of a functional H . That is, we’ll define
a series of approximations C0; C1; . . . and F0;F1; . . . to C and F , such that hCi+1; Fi+1i =
H hCi; Fii. If we can show that H is a continuous operator, then it has a least fixed point,
which will be the limit of our approximation series:

hC; Fi = H hC; Fi =
G
i�0

hCi; Fii:

This is the standard method of constructing functions from recursive definitions in denota-
tional semantics.

We take the definition of H from the recursive definitions of C and F given in figures
4.2 and 4.3. hC 00; F 00i = H hC0; F 0i is just the value we get if we define hC 00; F 00i from the
figure 4.2 and 4.3 definitions, using the functions C 0 and F 0 for the recursive calls inside
the equations. Clearly, we are seeking a solution to the equation hC; Fi = H hC; Fi.

4.3.1 H is well-defined

First, we need to determine that H is a well-defined functional. This is guaranteed for us
by the constraints we placed on values from CState and FState. Suppose we apply H to a
pair hC 0; F 0i, getting result hC 00; F 00i.

Consider C 00 first. Suppose C 00 is being applied to an argument tuple hc; �; ve ; b; �i. If
the call expression c is a simple call [[(f a1 . . .an)]], then C 00 uses the partial function A to
evaluate the procedure f and arguments ai. The C-ENVa constraint (Figure 4.7) on c, �,
and ve guarantee that the arguments passed toA are all within the partial function’s domain.
So all evaluations with A are well-defined within C 00. We also need to show that in the
recursive call toF 0, the arguments that C 00 passes (f 0, av , ve , b, and �) satisfy the constraints
of FState so that the application is correct. C 00 does not alter the variable environment or
store, so to show the environment constraint F-ENV, we need only show that the procedure
f 0 and arguments av are all consistent with ve . If the procedure expression f or an argument
ai is a constant or primop, A will certainly evaluate it to a non-closure, so we can ignore
it. If it is a variable, A will evaluate it to some already-existing value in Im(ve), so the
constraints on C 00 guarantee us the value is consistent with ve . On the other hand, if the
expression is a lambda `, then A will evaluate it to a new closure h`; �i; we need to show
that this new closure is consistent with the variable environment. This is straightforward.
Suppose lambda ` is an argument of call c, and is being closed in environment �=ve . The
CState constraint requires Dom(�) to include c’s lexical context, that is, every lambda
lexically superior to c. This is `’s lexical context as well, so the F-ENVa half of the FState
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environment constraint is satisfied. The CState constraint C-ENVa also requires ve to
cover �, so the F-ENVb half of FState’s environment constraint is satisfied as well. We’ve
syntactically restricted primop applications to be of correct arity, so the F-ARITY constraint
is preserved if c happens to be a primop application. Clearly, since C 00 does not allocate
any new addresses or alter the store, the address constraint F-ADDR is preserved in the
arguments it passes to F 0. So C 00 is well-defined in the simple-call case.

Suppose that the call expression c that C 00 is evaluating is instead a letrec expression:
[[(letrec ((f1 l1). . .) c0)]]. In this case, C 00 recursively calls C 0 to evaluate the internal
call expression in an augmented environment �0=ve 0. To show that this application of
C0 is well-defined, we need to verify that it is applied to arguments satisfying the CState
constraints. Again, clearly the store constraint C-ADDR is preserved, since the store is
unchanged, and no new addresses are introduced into the system. Verifying the environment
constraint C-ENV means showing that the inner call expression c0 is consistent with the
environment structure that C 00 builds, and showing that each closure hli; �0i created by the
letrec is consistent with the updated variable environment ve 0.

To show that a letrec closure hli; �0i is consistent with ve 0, we need to show first that
the domain of �0 contains li’s lexical context. li’s lexical context is the lexical context of
c plus the binding introduced by the letrec itself. This is just Dom(�) [ fcg, which is
precisely the domain of �0. Similarly, ve 0 covers � 0 by construction. The new variable
environment ve 0 is the old ve plus an update

�
hfi; b

0i 7! A li �
0 ve

�
, where b0 = nb b. If a

binding construct `0 is in the domain of � 0 = �
�
c 7! b0

�
, then either it is c or it is in Dom(�).

If it is the letrec c, then the update portion of ve 0 (i.e.,
�
hfi; b

0i 7! A li �
0 ve

�
) handles all

of the letrec’s variables. If it is in Dom(�), then the old portion of ve 0 (i.e., ve ) handles
all of the variables bound by `0.

Showing that F 00 is well-defined follows similar reasoning. When F 00 is applied to a
closure h`; �i, we need to show that the internal application of C 0 has arguments satisfying
the CState constraints. This is straightforward. We know that the arguments of F 00 satisfy
the FState constraints. This means that h`; �i is consistent with the variable environment ve
(by F-ENV). After augmenting the environment structure to bind the lambda `’s variables,
the resulting environment must be consistent with the lambda’s internal call expression.
Since the store remains unaltered, its constraints remain satisfied. No new addresses or
closures are added to the system, so the other constraints remain satisfied.

The primop cases in the definition of F 00 generally involve recursive applications of
F 0 to invoke the primop continuation. So we need to show that the arguments used in the
recursive applications satisfy the FState constraints. Consider the addition operator. No
new environment contexts or addresses are introduced into the system, and the continuation,
being a first-class value, can’t be a primop, so the constraints are all trivially satisfied. The
if, contents, and set primops are similar. The new primop, however, does introduce a
new address into the system. Since this address is defined by the result store passed along
to the recursive F 0 application, however, we continue to satisfy the FState constraints.
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4.3.2 H is continuous

Now that we’ve established H is a well-defined operator, we need to show that it is a
continuous one, which will allow us to take its fixed point. Continuous operators operate
on values taken from a cpo. H operates on values taken from the space

(CState ! CCache)� (FState ! CCache):

This space is a cpo, under the pointwise ordering induced by the ordering on call caches.
Call caches are ordered by set inclusion: 
 v 
 0 iff 
 � 
 0. So the cpo upon which H acts
has bottom value ? = h�cs: ;; �fs: ;i.

H is a continuous operator if

� it preserves chains:
h hCi; Fii j i � 0 i a chain ) hH hCi; Fii j i � 0 i a chain

� it preserves limits on chains:
H

F
i�0

hCi; Fii =
F
i�0

H hCi; Fii.

Lemma 1 H is monotonic

This follows straightforwardly from the form of H .

Lemma 2 H preserves limits on chains. That is, if h hCi; Fii j i � 0 i is a chain, then
H

F
i�0 hCi; Fii =

F
i�0 H hCi; Fii.

Proof: Let hC1; F1i be the limit of the chain: hC1; F1i =
F

i�0 hCi; Fii. Let hC 0; F 0i =
H hC1; F1i and hC 00; F 00i =

F
i�0 H hCi; Fii. We want to show that hC 0; F 0i = hC 00; F 00i.

Part 1: C 0 = C 00

Let cs be some argument drawn from CState — that is, cs is a tuple hc; �; ve ; b; �i.
The call expression c is either a simple call or a letrec. Suppose it is a simple call,
and that evaluation of the call doesn’t cause an immediate run-time error. Then

C0 cs = fhcc; fig [ F1 fs;

where cc = hc; �i and F1 fs is the recursive call to F1, with fs the appropriate
argument tuple. On the other hand,

C00 cs =
[
i

�
fhcc; f ig [ Fi fs

�

= fhcc; fig [
[
i

Fi fs

= fhcc; fig [ F1 fs:

So C 0 cs = C00 cs .
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If evaluation of the call’s subforms causes a run-time error, then the situation is even
simpler, since all the functions abort and produce the empty cache:

C00 cs =
[
i

; = ; = C0 cs :

If c is not a simple call, then it is a letrec expression: [[(letrec ((f1 l1). . .) c0)]].
In this case,

C0 cs = C1 cs 0;

where cs 0 is the argument value passed on the recursive call to evaluate the letrec’s
inner call expression c0. However,

C00 cs =
[
i

Ci cs
0 = C1 cs 0:

So C 0 cs = C00 cs .

In either case, C 0 cs = C00 cs , and so C 0 = C00.

Part 2: F 0 = F 00

The main recursive case proceeds along the same lines as its C 0 = C00 counterpart. Let
fs be some argument drawn from FState — that is, fs is a tuple hf; av ; ve ; b; �i. Sup-
pose that the procedure f is a closure, and that processing the procedure application
doesn’t cause a run-time error.

F 0 fs = C1 cs ;

where cs the appropriate argument tuple for the recursive call to C1. On the other
hand,

F 00 fs =
[
i

Ci cs = C1 cs :

So F 0 fs = F 00 fs .

Suppose instead that the procedure f is a primop, and, again, that no run-time errors
are caused. We’ll only consider the f = [[p:+]] case here; the others primops are
similar. In this case,

F 0 fs =
nDD

icp:+; b
E
; k
Eo

[ F1 fs 0;

where
nDD

icp:+; b
E
; k
Eo

records the immediate call to the continuation, and F1 fs 0

is the recursive application that actually handles the continuation. Considering F 00,
we have

F 00 fs =
[
i

�nDD
icp:+; b

E
; k
Eo

[ Fi fs
0
�
=
nDD

icp:+; b
E
; k
Eo

[ F1 fs 0:

So F 0 fs = F 00 fs .

If f = stop or fs causes a run-time error, then, just as in the C error case, both F 0 and
F 00 trivially return the empty call cache ;.

In either event, F 0 fs = F 00 fs . So F 0 = F 00.
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Q.E.D.

Theorem 3 H is continuous

Proof: This follows from the two previous lemmas.

Corollary 4 H has a least fixed point: hC; Fi = fix H .

Proof: Continuous functions have least fixed points.
This suffices to show the main result of this section: the C and F functions exist. We

also need to know that the abstract functions bC and bF exist. This involves showing that
their defining functional cH is well-defined and continuous. I omit the actual proof of this
fact, as it is almost identical to the proof for C and F .

4.4 Properties of the Semantic Functions

Now that we know C, F , A, PR and their abstract counterparts exist, we can proceed to
proving properties about them. In this section we’ll work out proofs to show

� The answer returned by PR is actually a partial function.

� dPR safely approximates PR.

� dPR is computable.

The proof technique we’ll use to show most of these theorems and their supporting lemmas
is the technique of fixed-point induction.

Suppose that � is a predicate on some cpo D. � is an admissible predicate if � holds
over a chain h di j i � 0 i implies that � holds on the limit: � h di j i � 0 i ) �

F
i di: It

is a simple theorem that if � is an admissible predicate on D, H:D ! D is a continuous
function, �?, and � d) � (H d), then � (fix f). This is a standard proof technique found
in most introductory texts on denotational semantics [Brookes 89, Schmidt 86, Stoy 77].

4.4.1 Call caches are partial functions

Lemma 5 The call cache returned by C or F is always a partial function.

Informal proof: Each timeF calls C, it passes along a new contour environment � that has
never been created before. The contour environment is guaranteed to be unique because
the innermost contour was newly allocated by F . So C’s update hhc; �i; f 0i is guaranteed
unique in �. Similar reasoning applies to the cache entries made by the primops: their
cache entries always have a contour environment containing a newly allocated contour, so
the environment is guaranteed unique. No collisions among the entries means the result
cache is a partial function.
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A careful proof would use an admissible predicate formalising the above ar-
gument. The predicate would be something like: if C’s argument has (1) b
dominating all contours in the system, and (2) � does not occur in the system
then (3) the returned call cache is a partial function and (4) b lower bounds
the innermost contour of every entry in the returned call cache . . . with similar
statements about F .

Establishing that our semantic functions produce partial functions allows us to do two
useful things. First, we can now manipulate the result call cache 
 in functional ways e.g.,
we can apply it to values: 
 cc . Second, we can take the call cache updates in the defining
equations to be either a set update (
 [ fhhc; �i; f ig) or a function update (


�
hc; �i 7! f

�
)

as convenient, since the result is the same.

4.4.2 Abstract semantics is a safe approximation

In this section, we will show that our abstract control-flow analysis gives a safe approxi-
mation to the exact analysis.

First, we need to define formally what we mean by “conservatively approximates.” An
exact call-cache 
 can have an infinite domain and image — it is a table that gives infinitely
precise answers to infinitely precise queries. At compile time, however, we are restricted
to asking finitely precise queries, and receiving finitely precise answers. Thus, an abstract
call-cache 
̂ has finite domain and range.

Now, an abstract call context ccc 2 dCCtxt corresponds to a set of exact call contexts,
that is, the set of all exact call contexts that abstract to ccc:

n
cc

��� jccj = ccc
o
:

That is, the finitely precise abstract call context ccc describes a set of potential exact call
contexts.

Similarly, an abstract procedure f̂ 2 bD corresponds to a set of exact procedures, that is,
the set of all exact procedures that abstract to values contained in f̂ :

n
f
��� jf j v f̂

o
:

(In this case jf j = fjf jProcg, so jf j v f̂ means jf jProc 2 f̂ .)

So, when we query an abstract call cache 
̂ with some abstract call context ccc, we get
back an abstract procedure 
̂ ccc that describes a set of exact procedures:

n
f
��� jf j v 
̂ ccc

o
:

If we query an exact call cache 
 with the equivalent set of exact call contexts, we get

n

 cc

��� jccj = ccc
o
:
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Our abstract call cache is a safe approximation if the approximate answer to our approximate
query ccc contains the exact answer to our approximate query:

n

 cc

��� jccj = ccc o � n
f
��� jf j v 
̂ ccc o :

The left-hand side is the set of all procedures that were really called from some call context
described by the abstraction ccc . The inclusion guarantees us that all of these procedures
are included in the answer the abstract call cache produces. This inclusion is equivalent to
stating that

jccj = ccc ) j
 ccj v 
̂ ccc:
So, stating that “
̂ conservatively approximates 
” can be formally stated as “j
 ccj v

̂ jccj :” We can extend this concept to any exact/abstract pair of functions:

Definition 3

f̂ conservatively approximates (c.a.) f if f̂ jxj w jf xj (i.e., f̂ � j�j w j�j �f ).

f̂ strongly conservatively approximates (s.c.a.) f if x̂ w jxj ) f̂ x̂ w jf xj.

If f is a partial function, it is understood that x is restricted to Dom(f ) in the
above comparisons.

“Strongly conservatively approximates,” is an even stronger condition than simple “con-
servatively approximates,” and will be of use in our upcoming proofs of correctness.

Note the extra qualification in this definition for the partial function case. We glossed
over this detail in the above discussion: 
, a partial function, is not defined over all the
cc to which we might apply it in the expression

n

 cc

��� jccj = ccc o : When cc =2 Dom(
),
then there is no call recorded in the cache for that call context, so the correct expression
is
n

 cc

��� jccj = ccc ^ cc 2 Dom(cc)
o
: With this qualification, our definition correctly

expresses the notion of safe approximation in the partial function case as well as the total
function one.

In this section we will prove as lemmas that (roughly speaking) bA, bC, and bF conserva-
tively approximate A, C, and F , respectively. With these lemmas, we can show the main
result of this section:

Theorem 6 dPR ` conservatively approximates PR `.
That is, 
̂ � j�j w j�j � 
, where 
̂ = dPR `, 
 = PR `.

Proof: The theorem follows from the fact that bF conservatively approximates F .
Let 
 = PR ` and 
̂ = dPR `.


̂ = dPR ` = bF hh`; [ ]i; hfstopgi; [ ]; jb0j; [ ]i t
�
hctop; [ ]i 7! fh`; [ ]ig

�

 = dPR ` = F hh`; [ ]i; hstopi; [ ]; b0; [ ]i

�
hctop; [ ]i 7! h`; [ ]i

�

There are two cases to consider.
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� cc = hctop; [ ]i:


̂ jccj = 
̂ jhctop; [ ]ij = 
̂ hctop; [ ]i w fh`; [ ]ig ;

j
 ccj = j
 hctop; [ ]ij = jh`; [ ]ij = fh`; [ ]ig :

So, 
̂ jccj w j
 ccj.

� cc 6= hctop; [ ]i:


̂ jccj = bF hh`; [ ]i; hfstopgi; [ ]; jb0j; [ ]i jccj

j
 ccj = jF hh`; [ ]i; hstopi; [ ]; b0; [ ]i ccj

Now, jh`; [ ]ij = h`; [ ]i, jhstopij = hfstopgi, and j[ ]j = [ ], so


̂ jccj w j
 ccj

by the conservative approximation property of F and bF (lemma 9).

In either case, 
̂ jccj w j
 ccj, and the theorem is shown. Q.E.D.
Now, let’s prove the supporting lemmas of the above theorem. Because bA and A are

defined non-recursively, the proof of their approximation lemma is correspondingly direct.

Lemma 7 bA acve j�j w jA a ve �j where cve w jvej. (s.c.a. in ve and c.a. in �.)

Proof by cases:

1. a = [[k]] or a = [[prim]] (constant or primop)
Immediate.

2. a = [[`:(� (v1 . . . vn) c)]] (lambda)

bA ` ve j�j = fh`; j�jig

jA ` ve �j = jh`; �ij = fh`; j�jig

3. a = [[r:v]] (variable reference)
Let ` = binder v.

bA r cve j�j = cve hv; j�j `i w jve j hv; j�j `i

=
G

jbj=j�j `

jve hv; bij w jve hv; � `ij

= jA r ve �j

Q.E.D.
The next two lemmas use the elementwise ordering on dCState and dFState. Note that the c,b�, and b̂ components of a dCState tuple, and the f̂ , b̂ components of a dFState tuple are ordered

discretely. This means, for example, that if
D
c1;

b�1; cve 1; b̂1; b�1

E
v
D
c2;

b�2; cve2; b̂2; b�2

E
,

it must be the case that c1 = c2, b�1 = b�2, and b̂1 = b̂2.
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Lemma 8 bC bcs jccj w jC cs ccj, where bcs w jcsj. (s.c.a. in cs, and c.a. in cc)
Equivalently: Suppose cs = hc; �; ve; b; �i 2 CState and bcs = hc; j�j; cve; jbj; b�i 2dCState such that bcs w jcsj. Let 
 = C hc; �; ve; b; �i and 
̂ = bC hc; j�j; cve; jbj; b�i. Then
cc 2 Dom(
) ) 
̂ jccj w j
 ccj.

Lemma 9 bF bfs jccj w jF fs ccj, where bfs w jfsj. (s.c.a. in fs, and c.a. in cc)
Equivalently: Suppose fs = hf; av; ve; b; �i 2 FState and bfs = hjf j; cav; cve; jbj; b�i 2dFState such that bfs w jfsj. Let 
 = F hf; av; ve; b; �i and 
̂ = bF hjf j; cav; cve; jbj; b�i.
Then cc 2 Dom(
) ) 
̂ jccj w j
 ccj.

The “equivalent” restatements of these lemmas take advantage of the observation that

̂ w j
j iff 
̂ c.a. 
. This is due to the definition of j�jCCache (figure 4.10).

Proofs of the Inductive Case

Because of their recursive definitions, the approximation lemmas for C, bC, F and bF are
proved with a fixed-point induction. The following proofs will proceed in two distinct
steps. First, we’ll “prove” the lemmas in a recursive fashion: the proofs of the lemmas will
actually assume the lemmas already hold for the applications of the semantic functions in
the recursive expansions of the function definitions. This does not constitute a sound proof.
These “recursive proofs” do, however, establish the inductive case of the related admissible
predicate. This is the part of the proof that provides the most insight, and so we’ll handle
it separately. The extra issues of showing the base case and the limit case are uninteresting
machinery, and will be addressed in the following text.

As we discussed in section 4.2, our contour abstraction and allocation functions are
related by the identity jnb b cj = cnb jbj c. We’ll be using these two expressions inter-
changeably in the proofs of the following two lemmas.

Lemma 8 Proof of Inductive Case ( bC conservatively approximates C)
Recursion assumption: C and bC are defined in terms of C and bC functions for which lemma
8 holds, and F and bF functions for which lemma 9 holds.

Suppose the call expression being evaluated is a simple call, [[c:(f a1 . . . an)]]. Let
f̂ = bA f j�j cve , cav#i = bA ai j�j cve , and f 0 = A f � ve . If f 0 =2 Proc, then C encounters a
run-time error, and aborts with the empty cache [ ]. In this case, the lemma holds trivially.
Suppose, instead, that f 0 2 Proc.

bC hc; j�j; cve; jbj; b�i
=
h
hc; j�ji 7! f̂

i
t
G
f̂ 02f̂

bF D
f̂ 0; cav ; cve; cnb jbj c; b�E (4.1a)

w
�
hc; j�ji 7! jf 0j

�
t

G
f̂ 02jf 0j

bF
D
f̂ 0; cav ; cve ; cnb jbj c; b�

E
(4.1b)

=
�
hc; j�ji 7! jf 0j

�
t bF D

jf 0jProc; cav ; cve; cnb jbj c; b�E (4.1c)
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Equation 4.1a is the definition of bC. Equation 4.1b holds because bA approximatesA (lemma
7), so that jf 0j v f̂ . The join over f̂ 0 2 jf 0j can be discarded, because jf 0j = fjf 0jProcg is a
singleton set, giving us equation 4.1c.

a. cc = hc; �i

bC hc; j�j; cve ; jbj; b�i jccj
w
��
hc; j�ji 7! jf 0j

�
t bF D

jf 0jProc; cav ; cve ; cnb jbj c; b�E� hc; j�ji (by 4.1)

w jf 0j

jC hc; �; ve ; b; �i ccj

= j
�
F hf 0; av ; ve ; nb b c; �i

� �
hc; �i 7! f 0

�
hc; �ij = jf 0j (by def’n C)

Therefore, bC hc; j�j; cve ; jbj; b�i jccj w jC hc; �; ve ; b; �i ccj.

b. cc 6= hc; �i

bC hc; j�j; cve ; jbj; b�i jccj
w
��
hc; j�ji 7! jf 0j

�
t bF D

jf 0jProc; cav ; cve ; cnb jbj c; b�E� jccj (by 4.1)

= bF D
jf 0jProc; cav ; cve ; cnb jbj c; b�E jccj

= bF hjf 0jProc; cav ; cve ; jnb b cj; b�i jccj

jC hc; �; ve ; b; �i ccj = j
�
F hf 0; av ; ve; nb b c; �i

� �
hc; �i 7! f 0

�
ccj

= jF hf 0; av ; ve; nb b c; �i ccj

Therefore, bC hc; j�j; cve ; jbj; b�i jccj w jC hc; �; ve ; b; �i ccj by c.a. on F .

Suppose, instead, that C is evaluating a letrec form, [[c:(letrec ((f1 l1). . .) c0)]].
Let b0 = nb b c (so that jb0j = cnb jbj c), and �0 = �

�
c 7! b0

�
(so that j�0j = j�j

�
c 7! jb0j

�
).

bC hc; j�j; cve ; jbj; b�i jccj = bC
D
c0; j�0j; cve t

h
hfi; jb

0ji 7! bA li j�
0j cve

i
; jb0j; b�

E
jccj

jC hc; �; ve; b; �i ccj = jC hc0; �0; ve
�
hfi; b

0i 7! A li �
0 ve

�
; b0; �i ccj

The result follows from (1) cve t h
hfi; jb

0ji 7! bA li j�
0j cvei w jve

�
hfi; b

0i 7! A li �
0 ve

�
j

(shown below), and (2) the recursion assumption on C and bC.
To see that

cve t hhfi; jb0ji 7! bA li j�
0j cvei w jve

�
hfi; b

0i 7! A li �
0 ve

�
j ;

let ĝ be the expression on the left, and ĥ be the expression on the right.
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ĝ hfi; jb
0ji w ĥ hfi; jb

0ji

ĝ hfi; jb
0ji = bA li j�

0j cve t cve hfi; jb0ji w bA li j�
0j cve t jve j hfi; jb0ji

= bA li j�
0j cve t G

jb00j=jb0j

jve hfi; b
00ij

w bA li j�
0j cve t G

jb00j=jb0j

b00 6=b0

jve hfi; b
00ij

w jA li �
0 ve j t

G
jb00j=jb0j

b00 6=b0

jve hfi; b
00ij

ĥ hfi; jb
0ji =

G
jb00j=jb0j

jve
�
hfi; b

0i 7! A li �
0 ve

�
hfi; b

00ij

= jA li �
0 ve j t

G
jb00j=jb0j

b00 6=b0

jve hfi; b
00ij

ĝ
D
v; b̂

E
w ĥ

D
v; b̂

E
for

D
v; b̂

E
6= hfi; jb

0ji

ĝ
D
v; b̂

E
= cve D

v; b̂
E

ĥ
D
v; b̂

E
=

G
jb00j=b̂

jve
�
hfi; b

0i 7! A li �
0 ve

�
hv; b00ij

=
G

jb00j=b̂

jve hv; b00ij = jve j
D
v; b̂

E

The hv; b00i lookup skips past the
�
hfi; b

0i 7! A li �
0 ve

�
environment update because

either v 6= fi or b̂ 6= jb0j. In the first case, the lookup obviously skips the update. In
the second case, jb00j = b̂, so jb00j 6= jb0j, and therefore b00 6= b0 — also causing the
lookup to skip the update.

This completes the recursive proof that bC conservatively approximates C.
Q.E.D.

Lemma 9 Proof of Inductive Case ( bF conservatively approximates F)
Recursion assumption: F and bF are defined in terms of C and bC functions for which lemma
8 holds, and F and bF functions for which lemma 9 holds.

The argument f is either a closure, the stop continuation, or a primop. We will show
each case in turn. We may assume for all the cases that none of the run-time error checks
apply. Otherwise, F aborts with the empty cache [ ], and the lemma holds trivially.

Assume the procedure is a closure: f = h[[`:(� (v1 . . . vn) c)]]; �i.

F hh`; �i; av ; ve ; b; �i cc = C hc; �
�
` 7! b

�
; ve

�
hvi; bi 7! av#i

�
; b; �i cc

bF hh`; j�ji; cav ; cve; jbj; b�i jccj = bC hc; j�j �` 7! jbj
�
; cve t �hvi; jbji 7! cav#i�; jbj; b�i jccj
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The result follows from (1) j�
�
` 7! b

�
j = j�j

�
` 7! jbj

�
, (2) cve t �

hvi; jbji 7! cav#i� w
jve

�
hvi; bi 7! av#i

�
j (shown below), and (3) the recursion assumption on C and bC.

To see that
cve t �hvi; jbji 7! cav#i� w jve

�
hvi; bi 7! av#i

�
j ;

let ĝ be the expression on the left, and ĥ be the expression on the right.

a. ĝ hvi; jbji w ĥ hvi; jbji

ĝ hvi; jbji = cav#i t cve hvi; jbji w jav#ij t jvej hvi; jbji

= jav#ij t
G

jb0j=jbj

jve hvi; b
0ij w jav#ij t

G
jb0j=jbj

b0 6=b

jve hvi; b
0ij

ĥ hvi; jbji =
G

jb0j=jbj

jve
�
hvi; bi 7! av#i

�
hvi; b

0ij = jav#ij t
G

jb0j=jbj

b0 6=b

jve hvi; b
0ij

Therefore, ĝ hvi; jbji w ĥ hvi; jbji.

b. ĝ
D
v; b̂

E
w ĥ

D
v; b̂

E
for

D
v; b̂

E
6= hvi; jbji

ĝ
D
v; b̂

E
= (cve t �hvi; jbji 7! cav#i�) Dv; b̂E = cve D

v; b̂
E
w jvej

D
v; b̂

E

ĥ
D
v; b̂

E
=

G
jb0j=b̂

jve
�
hvi; bi 7! av#i

�
hv; b0ij =

G
jb0j=b̂

jve hv; b0ij = jvej
D
v; b̂

E

Therefore, ĝ
D
v; b̂

E
w ĥ

D
v; b̂

E
.

Alternatively, the procedure could be the stop continuation. This is a trivial case, since
F produces the empty call cache which abstracts to the empty abstract call cache that bF
returns.

Finally, the procedure could be one of the primops: +, if, new, contents, and set.
Suppose that f = [[p:+]]. Let


̂ = bF D
[[p:+]];

D
x̂; ŷ; k̂

E
; cve ; jbj; b�E

=
hD
icp:+; j�j

E
7! k̂

i
t
G
k02k̂

bF D
k0; h?i; cve; cnb jbj icp:+; b�

E

w
hD
icp:+; j�j

E
7! jkj

i
t

G
k02jkj

bF D
k0; h?i; cve ; cnb jbj icp:+; b�

E

=
hD
icp:+; j�j

E
7! jkj

i
t bF D

jkjProc; h?i; cve;
���nb b icp:+

���; b�E


 = F h[[p:+]]; hx; y; ki; ve ; b; �i

= (F
D
k; hx+ yi; ve; nb b icp:+; �

E
)
hD
icp:+; �

E
7! k

i
;

where � =
�
[[p:+]] 7! b

�
, so that j�j =

�
[[p:+]] 7! jbj

�
. We want to show that 
̂ jccj w j
 ccj.
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cc =
D
icp:+; �

E


̂ jccj w jkj and j
 ccj = jkj.

cc 6=
D
icp:+; �

E


̂ jccj w bF D
jkjProc; h?i; cve ;

���nb b icp:+

���; b�E jccj
j
 ccj =

���F
D
k; hx+ yi; ve ; nb b icp:+; �

E
cc
���

By bF c.a. F , 
̂ jccj w j
 ccj.

Showing the lemma for the rest of the primops involves minor variations on the + case.
Suppose that f = [[p:if]]. Let


̂ = bF D
[[p:if]];

D
x̂; k̂0; k̂1

E
; cve ; jbj; b�E

=

0
@ G

f2k̂0

bF D
f; hi; cve ; cnb jbj ic0

p:if; b�
E1A t

0
@ G

f2k̂1

bF D
f; hi; cve; cnb jbj ic1

p:if; b�
E1A

t
hD
ic0

p:if; j�j
E
7! k̂0;

D
ic1

p:if; j�j
E
7! k̂1

i

w

0
@ G

f2jk0j

bF D
f; hi; cve ; cnb jbj ic0

p:if; b�
E1A t

0
@ G

f2jk1j

bF D
f; hi; cve; cnb jbj ic1

p:if; b�
E1A

t
hD
ic0

p:if; j�j
E
7! jk0j;

D
ic1

p:if; j�j
E
7! jk1j

i

= bF D
jk0jProc; hi; cve;

���nb b ic0
p:if

���; b�E t bF D
jk1jProc; hi; cve ;

���nb b ic1
p:if

���; b�E

t
hD
ic0

p:if; j�j
E
7! jk0j;

D
ic1

p:if; j�j
E
7! jk1j

i


 = F h[[p:if]]; hx; k0; k1i; ve ; b; �i

= x 6= false �! F
D
k0; hi; ve ; nb b ic0

p:if; �
E hD

ic0
p:if; �

E
7! k0

i

otherwise F
D
k1; hi; ve ; nb b ic1

p:if; �
E hD

ic1
p:if; �

E
7! k1

i
;

where� =
�
[[p:if]] 7! b

�
, so that j�j =

�
[[p:if]] 7! jbj

�
. We want to show that 
̂ jccj w j
 ccj.

We have to be a little bit careful in manipulating the various subexpressions of the exact
cache returned for if. Exact caches are partial functions, and although cc is assumed to lie
within Dom(
), that does not imply that we can apply the caches for both arms of the if to
cc — it is possibly in the domain of only one of these arms. The following development is
careful to handle this small complexity.

cc =
D
ic0

p:if; �
E

In this case, we are looking up the call to the true continuation k0.


̂ jccj = 
̂
D
ic0

p:if; j�j
E
w jk0j t bF D

jk1jProc; hi; cve ;
���nb b ic0

p:if

���; b�E jccj
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Suppose that x 6= false. Then j
 ccj = jk0j, and the conservative inequality holds.
Alternatively, suppose that x = false. Then

j
 ccj =
����F D

k1; hi; ve ; nb b ic0
p:if; �

E hD
ic1

p:if; �
E
7! k1

i�
cc
���

=
���F D

k1; hi; ve ; nb b ic0
p:if; �

E
cc
��� ;

and the result follows from the recursion assumption on F and bF .

cc =
D
ic1

p:if; �
E

In this case, we are looking up the call to the false continuation k1. This case is
analagous to the previous case for the true continuation.

cc 6=
D
ic0

p:if; �
E
;
D
ic1

p:if; �
E

The final case involves looking up some call other than the two immediate potential
calls to the if primop’s continuations.


̂ jccj w bF
D
jk0jProc; hi; cve;

���nb b ic0
p:if

���; b�
E
jccj

t bF D
jk1jProc; hi; cve;

���nb b ic1
p:if

���; b�E jccj
Suppose that x 6= false. Then

j
 ccj =
���F

D
k0; hi; ve; nb b ic0

p:if; �
E
cc
��� ;

and the result follows from the recursion assumption on F and bF . Alternatively,
suppose that x = false. Then

j
 ccj =
���F D

k1; hi; ve; nb b ic1
p:if; �

E
cc
��� :

Again, the result follows from the recursion assumption on F and bF .

Suppose that f = [[p:new]]. Let


̂ = bF D
[[p:new]];

D
d̂; k̂

E
; cve; jbj; b�E =hD

icp:new; j�j
E
7! k̂

i
t
G
k02k̂

bF D
k0; h?i; cve ; cnb jbj icp:new; (b� t d̂)

E


 = F h[[p:new]]; hd; ki; ve ; b; �i =

F
D
k; hai; ve; nb b icp:new; �

�
a 7! d

�E hD
icp:new; �

E
7! k

i
;

where � =
�
[[p:new]] 7! b

�
(so that j�j =

�
[[p:new]] 7! jbj

�
) and a = alloc �. We want to

show that 
̂ jccj w j
 ccj.

cc =
D
icp:new; �

E


̂ jccj w k̂ w jkj and
���ĥ cc

��� = jkj.
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cc 6=
D
icp:new; �

E


̂ jccj w
G
k02k̂

bF D
k0; h?i; cve ; cnb jbj icp:new; (b� t d̂)

E
jccj

w bF
D
jkjProc; h?i; cve;

���nb b icp:new

���; (b� t d̂)
E
jccj

j
 ccj =
���F D

k; hai; ve; nb b icp:new; �
�
a 7! d

�E
cc
���

The result follows from bF c.a. F and b� t d̂ w j�
�
a 7! d

�
j.

To see that b� t d̂ w j�
�
a 7! d

�
j:

j�
�
a 7! d

�
j =

G
jIm(�

�
a 7! d

�
)j v

G
jIm(�) [ fdgj

=
G
jIm(�)j t jdj = j�j t jdj v b� t d̂

Suppose that f = [[p:set]]. Let


̂ = bF D
[[p:set]];

D
â; d̂; k̂

E
; cve; jbj; b�E =hD

icp:set; j�j
E
7! k̂

i
t
G
k02k̂

bF D
k0; hi; cve ; cnb jbj icp:set; (b� t d̂)

E


 = F h[[p:set]]; ha; d; ki; ve; b; �i =

(F
D
k; hi; ve; nb b icp:set; �

�
a 7! d

�E
)
hD
icp:set; �

E
7! k

i

where � =
�
[[p:set]] 7! b

�
, so that j�j =

�
[[p:set]] 7! jbj

�
. We want to show that 
̂ jccj w

j
 ccj.

cc =
D
icp:set; �

E


̂ jccj w k̂ w jkj and j
 ccj = jkj.

cc 6=
D
icp:set; �

E


̂ jccj w
G
k02k̂

bF D
k0; hi; cve ;

���nb b icp:set

���; (b� t d̂)
E
jccj

w bF D
jkjProc; hi; cve;

���nb b icp:set

���; (b� t d̂)
E
jccj

j
 ccj =
���F D

k; hi; ve; nb b icp:set; �
�
a 7! d

�E
cc
���

The result follows from bF c.a. F and (as in the case of new) b� t d̂ w j�
�
a 7! d

�
j.

Suppose that f = [[p:contents]]. Let


̂ = bF D
[[p:contents]];

D
â; k̂

E
; cve ; jbj; b�E =hD

icp:contents; j�j
E
7! k̂

i
t
G
k02k̂

bF D
k0; hb�i; cve; cnb jbj icp:contents; b�

E
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 = F h[[p:contents]]; ha; ki; ve ; b; �i =

(F
D
k; h� ai; ve; nb b icp:contents; �

E
)
hD
icp:contents; �

E
7! k

i
;

where � =
�
[[p:contents]] 7! b

�
, so that j�j =

�
[[p:contents]] 7! jbj

�
. We want to show

that 
̂ jccj w j
 ccj.

cc =
D
icp:contents; �

E


̂ jccj w k̂ w jkj and j
 ccj = jkj.

cc 6=
D
icp:contents; �

E


̂ jccj w
G
k02k̂

bF D
k0; hb�i; cve ;

���nb b icp:contents

���; b�E jccj

w
G

k02jkj

bF D
k0; hb�i; cve ;

���nb b icp:contents

���; b�E jccj

= bF
D
jkjProc; hb�i; cve;

���nb b icp:contents

���; b�
E
jccj

j
 ccj =
���F D

k; h� ai; ve; nb b icp:contents; �
E
cc
���

j� aj v j�j v b�, and the result follows from bF c.a. F .

This completes the recursive proof that bF conservatively approximates F .
Q.E.D.

Proofs of the Base and Limit Cases

Recall from section 4.3 that the C and F functions are defined as the limit of a sequence
of approximations h hCi; Fii j i � 0 i generated by the H functional, such that hCi; Fii =

H i ?. Similarly, bC and bF are the limit of an approximation sequence
D D bCi; bFi

E
j i � 0

E
,

generated by some cH functional. We prove properties of C, F , bC, and bF with the technique
of inductive predicates. With this technique, a complete proof of the two previous lemmas
involves showing the lemma holds in three cases:

� The base case.
That is, showing that the lemmas hold on

D
C0; F0; bC0; bF0

E
.

� The inductive case.
That is, showing that if the lemmas hold on

D
Ci; Fi; bCi; bFi

E
, then they hold onD

Ci+1; Fi+1; bCi+1; bFi+1

E
.

� The limit case.
That is, showing that if the lemmas hold over a chain

D D
Ci; Fi; bCi; bFi

E
j i � 0

E
,

then they hold on the limit of the chain
F
i�0

D
Ci; Fi; bCi; bFi

E
.

The recursive proofs we’ve just completed establish the inductive case. We still need to
show the lemmas hold in the base and limit cases.
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Proof of Base Case
Our quadruples of functions

D
Ci; Fi;

bCi; bFi

E
are taken from the cpo

(CState ! CCache)� (FState ! CCache)� ( dCState ! dCCache)� ( dFState ! dCCache):

The ordering on this cpo is pointwise over each element of the quadruple. So the bottom
element of the cpo is

D
C0; F0;

bC0;
bF0

E
=
D
�cs : [ ]; �fs : [ ]; �ccs : [ ]; � bfs : [ ]

E
;

where the exact empty call caches from CCache are empty partial functions (i.e., [ ] = ;),
and the approximate empty call caches from dCCache are total functions mapping all inputs
to the empty set (i.e., [ ] = �cc: ;).

To establish the base case for lemmas 8 and 9, we must show they hold for the bottom
tuple of functions

D
C0; F0; bC0; bF0

E
. This is trivial. The empty exact call cache [ ] that

C0 and F0 return in all cases is the empty partial function, with domain Dom([ ]) = ;.
The conservative approximation definitions (definition 3) restrict the comparison of the call
caches to the domain of the exact call cache, which is empty. So the lemma trivially holds.

Q.E.D.

Proof of the Limit Case
Suppose that

D D
Ci; Fi; bCi; bFi

E
j i � 0

E
is a chain from our cpo of function quadruples

such that lemmas 8 and 9 hold for each element of the chain. We need to show that the
lemmas hold on the limit

D
C1; F1;

bC1; bF1

E
=
F
i

D
Ci; Fi;

bCi; bFi

E
.

� bC1 conservatively approximates C1 (Lemma 8):
Suppose that cc 2 Dom(C1 hc; �; ve; b; �i).

bC1 hc; j�j; cve ; jbj; b�i jccj =
�G

i

bCi hc; j�j; cve ; jbj; b�i
�
jccj

w
�G

i

jCi hc; �; ve; b; �ij
�
jccj

=

�G
i

j
ij
�
jccj;

where 
i = Ci hc; �; ve; b; �i.

jC1 hc; �; ve ; b; �i ccj =

����
�G

i

Ci hc; �; ve ; b; �i
�
cc

����
=

����
�G

i


i

�
cc

����
Now, �G

i

j
ij
�
jccj w

����
�G

i


i

�
cc

���� ;
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so the lemma holds. To see the above inequality, first note that since h Ci j i � 0 i
is a chain, applying the Ci functions to a common argument produces a chain of
results. So h 
i j i � 0 i is also a chain. Now, the 
i are partial functions, ordered
by inclusion. If cc 2 Dom(C1 hc; �; ve; b; �i), and C1 hc; �; ve ; b; �i =

F
i�0 
i,

then cc 2
S
i�0 Dom(
i). Let n be the smallest integer such that cc 2 Dom(
n).

Since the 
i are a chain, 8j � n, cc 2 Dom(
j) and 
j cc = 
n cc: So 
n cc is also
the value produced by applying the chain’s limit, (

F
i�0 
i) cc. The result follows

from the chain of inequalities:
�G
i�0

j
ij
�
jccj =

G
i�0

(j
ij jccj) =
G
i�0

G
jcc 0j=jccj

j
i cc
0j

w
G
i�n

G
jcc 0j=jccj

j
i cc
0j w

G
i�n

j
i ccj =

����
�G
i�0


i

�
cc

���� :

� bF1 conservatively approximates F1 (Lemma 9):

bF1 hjf j; cav ; cve ; jbj; b�i jccj =
�G

i

bFi hjf j; cav ; cve; jbj; b�i
�
jccj

w
�G

i

jFi hf; av ; ve ; b; �ij
�
jccj

=

�G
i

j
ij
�
jccj;

where 
i = Fi hf; av ; ve ; b; �i.

jF1 hf; av ; ve ; b; �i ccj =

����
�G

i

Fi hf; av ; ve; b; �i
�
cc

����
=

����
�G

i


i

�
cc

����

With reasoning identical to the C case above,
�G

i

j
ij
�
jccj w

����
�G

i


i

�
cc

���� ;

and thus the limit case holds for lemma 9.

This completes the proofs of lemmas 8 and 9. Q.E.D.

4.4.3 Computability

The whole point of the abstract semantics is that it should be computable. In this subsection,
we’ll see that the abstract functions dPR, bC , bF , and bA are computable.

bA and dPR are no problem. bA is a function from a finite domain to a finite range; it is
defined in terms of computable primitives: a type-case conditional, a pair constructor, and
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some table lookups. It can be directly implemented as a program. dPR consists of a single
call to bF; it’s computability depends on the computability of bF .

Recursive functions bF and bC require a little more thought to show there are effective
procedures for computing them. bF and bC have similar structure that we can exploit:

� They are functions from finite domains to finite ranges.

� When called on a value, each function makes a local contribution to its result, and
recurses on some new argument for another term.

Let’s consider the simple form for this class of functions. Suppose we have a function
f :X ! A, for some finite set X and some lattice A, where f is defined by the following
recursive equation:

f x = g x t f (r x): (4:6)

That is, f ’s action on x is defined by a function g that makes a local contribution g x to the
answer, and a recursive component, which is specified by the recursion function r. If g, r,
and the join operation t are computable, then there is a simple computable algorithm for
computing fx.

The key to f ’s computability is the finiteness of its domain. Consider the set
n
x; r x; r2 x; r3 x; . . .

o
:

This is the set of all elements making a contribution to f x. Because it is a finite set (being
a subset of the finite set X ), the naive expansion of f ’s definition:

f x = g x t g (r x) t g (r2 x) t g (r3 x) t � � �

actually has only a finite set of terms:

f x =
Gn

g
�
ri x

�
j i � 0

o
:

A simple algorithm to compute these finite terms is:

f(x) =

let S = ;, /* elements already processed */

ans = ?, /* accumulated answer --
F
g(S) */

loop(y) = if y =2 S then

S := S [ fyg;
ans := ans t g(y);

loop(r(y));

in loop(x); ans

That concludes the intuitive discussion of f . Let’s formally prove our claims. We
would like to prove that the function

f x =
G
i�0

g
�
ri x

�

is a minimal solution to the recursive definition of f .
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Theorem 10 f x =
F
i�0 g

�
ri x

�
is the least solution to equation 4.6.

Proof:
First, let’s show that f satisfies the recursive definition:

f x =
Gn

g
�
ri x

�
j i � 0

o

= g x t
Gn

g
�
ri x

�
j i � 1

o
= g x t f (r x) :

Now, we want to show that f is the least solution:

h x = g x t h (r x) ) h w f:

That is, any solution to equation 4.6 must be greater than or equal to f . Suppose that h is a
solution to equation 4.6. It is an easy induction to show that for all j � 0,

h x = g (r0 x) t � � � t g (rj x) t h (rj x)

w g (rj x):

That is, h x is an upper bound for each term of f ’s expansion, and so

h x w f x:

Q.E.D.
Why do we want a least solution? By our ordering on cache functions, a least solution

is the one producing the tightest, most accurate caches, subject to the constraints of the
equations.

Now that we have a computable solution for the class of finite functions given by
equation 4.6, let’s return to the specifics of bC and bF . As given in figures 4.5, 4.6, bC
and bF don’t have quite the right form. Instead of being self-recursive, as required by
equation 4.6, they are mutually recursive: bC calls bF and vice versa. However, it is fairly
straightforward to mechanically transform a system of recursively defined functions into a
single self-recursive function. As long as the individual recursions and local contributions
are monotonic, the results go through. We’ll pass over this complexity to simplify the
presentation.

We still need to handle one final detail: the recursions in bC and bF have a branch
factor greater than one. For example, when bC is applied to a simple call [[(f a1 . . . an)]],
it performs a recursive call to bF for each f 0 in bA f b� cve . We can generalise the form of
equation 4.6 slightly to allow for this:

f x = g x t
G

f (R x); (4:7)

where R:X ! P(X) is a function mapping an input x to the set of elements on which f

recurses (here we use f (R x) as shorthand for ff y j y 2 R xg).
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Allowing for branching does not change the essence of the proofs we’ve worked out;
we simply move to the power-set relatives of f , g, and R:

g Y =
G

g Y; R Y =
[

R Y;

and
f Y = g Y t f (R Y ): (4:8)

These related power-set functions have functionality g:P(X) ! A, R:P(X) ! P(X),
and f :P(X) ! A.

The relations between g, R and g, R cause f and f to be related:

f x = f fxg ; f Y =
G

f Y: (4.9)

Furthermore, f satisfies the simple recursion of equation 4.6, which we know (theorem 10)
has the least solution

f Y =
G
i�0

g (Ri Y ):

Putting this together with f x = f fxg gives us a solution for f :

f x =
G
i

g (Ri fxg):

It only remains to prove equations 4.9.

Lemma 11 If f satisfies recursive equation 4.7, then the function f Y =
F
f Y satisfies

recursive equation 4.8.

Proof:

f Y =
G

f Y =
G
y2Y

h
g y t

G
f (R y)

i

= g Y t
G
y2Y

G
f (R y) = g Y t f (R Y )

Q.E.D.

It should be clear that g and R distribute over union: g (A [ B) = g A t g B, and
R (A [ B) = R A [ RB. This implies that powers of R also distribute over union:
Ri

(A[B) = Ri A[Ri B. This all implies, in turn, that the least solution to equation 4.8,
f Y =

F
i�0 g (R

i Y ), distributes over union.

We can now derive the least solution to equation 4.7:

Theorem 12 f x = f fxg is the least solution to recursive equation 4.7, where f is the
least solution to recursive equation 4.8, f Y =

F
i�0 g (R

i Y ).
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Proof:
(1) f satisfies 4.7:

f x = f fxg = g fxg t f (R fxg) (by eqn. 4.8)
= g x t f (R x)

= g x t
F
x02Rx f fx0g (by distributivity of f )

= g x t
F
x02Rx f x0

= g x t
F
f (R x)

(2) f is least solution to 4.7:
Suppose f 0 is a solution to 4.7. We want f v f 0. f 0 Y =

F
f 0 Y is a solution to 4.8 by

lemma 11. So f x = f fxg v f 0 fxg = f 0 x, where the inequality follows from the
leastness of f . Q.E.D.

We have just proved that the least solution for recursive functions with branching is

f x =
G
i�0

g
�
Ri fxg

�
= g

[
i�0

Ri fxg :

The finiteness of X again guarantees us a limited number of terms to join together to find
the value of the function for a given argument. This expansion can be computed with the
following algorithm:

f(x) =

let S = ;, /* elements already processed */

ans = ?, /* accumulated answer --
F
g(S) */

loop(y) = if y =2 S then

ans := ans t g(y);

S := S [ fyg;
for each z 2 R(y)

loop(z);

in loop(x); ans

For an intuitive explanation of why this procedure computes f , consider that
S
i�0 Ri fxg

is essentially a breadth-first exploration of the tree rooted at x, where R is the “sons-of”
function. Ri fxg is the set of children at depth i in the tree. The procedure f(x) is just the
equivalent depth-first search.

We will return to a detailed analysis of algorithms for computing our semantic functions
in chapter 6.
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Implementation I

That this manages to work is truly remarkable.
— Sussman & Steele

The equations of chapters 3 and 4 define mathematical functions. We need to define
algorithms to compute these functions. In this chapter, we’ll consider how to do this. I’ll
start with the basic algorithm for computing the abstract control-flow semantics, and then
discuss some tricks that can be played to increase the speed of the algorithms. I won’t
attempt to rigorously prove that the algorithms are correct; I’ll rely mostly on intuitive
appeals. Formal rigour will be deferred to the next chapter.

5.1 The Basic Algorithm

When the bC or bF function is applied to an argument, it adds some local contribution to the
final answer, and then recurses on some new arguments (actually, it’s a mutual recursion: bC
calls bF , and vice versa). The basic algorithm, then, for computing one of these functions is
to keep a set of all the arguments to which the function has been applied during the recursive
evaluation of the top-level argument. When the function recurses on an argument, it checks
to see if it has already been applied to that argument. If so, we have looped: all the
contributions arising from this argument and all its recursive successors have already been
made, so the function returns immediately. If not, the argument is added to the set of
already-seen arguments, the local contribution is made, and the function recurses.

So, ignoring the letrec case for simplicity, the bC function can be realised with the
following procedure for the 1CFA abstraction:

79
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Chat(call,benv,venv,store)

if <call,benv,venv,store> 2 S then return; /* Quit if repeat. */

S := S [ f<call,benv,venv,store>g; /* New arg. Memoise it. */

let [[c:(f . args)]] = call, /* Destructure call form. */

F = Ahat(f,benv,venv), /* Eval proc subexp. */

argv = mapAhat(args,benv,venv) /* Ahat(a,benv,venv)

in for a in args. */

ans := ans t [<c,benv> 7! F];

/* Argument c to Fhat is the 1CFA contour: */

for each f in F do Fhat(f,argv,venv,store,c);

With a similar memoising definition of bF , the dPR procedure is just:

PRhat(lam)

S := ;;
ans := [];

Fhat(Ahat(lam,[],[]),<fstopg>,[],[],topcall);
return(S)

This algorithm is similar to the “memoised pending analysis” treated by Young and
Hudak [Young+ 86].

5.2 Exploiting Monotonicity

We can optimise this procedure by taking advantage of its monotonicity to use a more
aggressive cutoff. bC’s arguments have a simple elementwise ordering:

D
c; b�; cve ; b�E v D

c0; b�0; cve 0; b�0E if c = c0, b� = b�0, cve v cve 0, and b� v b�0.
The ordering on bF ’s arguments is similar.

It’s fairly straightforward to see that given these orderings the bC, bF , and bA functions are
all monotonic. Suppose we have a call subform a, contour environment b�, and two related
variable environments cve v cve 0. It follows that bA a b� cve must be a subset of bA a b� cve 0.

Similarly, suppose that we apply bC to a pair of related arguments:
D
c; b�; cve ; b�E andD

c; b�; cve 0; b�0E, where cve v cve 0 and b� v b�0. Then it is clear, from the monotonicity

of bA, that bC’s local contribution to the final answer cache for the first, precise argument
(
hD
c; b�E 7! bA f b� cvei) is contained by its contribution for the second, approximate argu-

ment (
hD
c; b�

E
7! bA f b� cve 0

i
). Further, for each recursive call to bF made by bC in the first

case, there is a recursive call to bF in the second case, with an argument that approximates
the argument used in the first case. So all the contributions to the answer cache proceeding
from the chains of recursive calls in the first case are covered by the contributions made by
the chains of calls in the second case.
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We can take advantage of this fact to speed up the algorithm. If we call Chat on
some argument tuple <call,benv,venv,store>, and we notice that we’ve already called
Chat on some other argument tuple that approximates <call,benv,venv,store>, then
we can cut off the search immediately, since all the contributions produced by the earlier,
approximate tuple will cover all the contributions made by the current one.

We can implement this optimisation by changing the single line

if <call,benv,venv,store> 2 S then return;

to

if <call,benv,venv,store> v cs for some cs 2 S then return;

in the Chat procedure. Note that the new cutoff is strictly more aggressive than the basic
one: since <call,benv,venv,store> v <call,benv,venv,store>, the aggressive
cutoff will trigger whenever the current argument is already in S.

5.3 Time-Stamp Approximations

/* too painful to do right */
— <stdio.h>, 5.3 (Berkeley)

Even with the aggressive cutoff of the previous section, the function bC is painful to compute.
It requires us to maintain and search sets of argument tuples. Since each argument tuple
includes a complete abstract variable environment and abstract store, these tuples are
sizeable structures. So the space and time expense of computing bC is fairly high.

An alternative is to compute a related function that approximates bC but is much cheaper
to compute. This is the function that uses single-threaded variable environment and store
data structures.

Suppose we keep the variable environment and store in the global variables venv and
store. The variable environment and store are passed to the Chat, Fhat, and Ahat

procedures implicitly. For instance, Chat now only takes arguments call and benv, with
the store and variable environment taken from their global variables. Whenever a procedure
adds information to the variable environment or store, it simply alters the global variables.
When a recursive procedure has completed, it makes no effort to restore the values of venv
and store before returning to its caller. Thus, all the additions that were made to venv and
store will be visible to the procedure’s caller.

The reason we can do this is that our error is always going to be on the safe side.
Suppose Chat is evaluating some call expression (f 2 5), and f evaluates to a set of three
abstract procedures. Then Chat is going to perform three recursive calls to Fhat, one for
each of the abstract procedures to which f could possibly be bound. Let’s assume that
before the first call to Fhat, venv has the correct value. During the first call to Fhat, venv
is going to be augmented, so that when Fhat returns, venv will no longer have its original,
pre-call value. So when the second call to Fhat is made, the variable environment and
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store won’t have their correct values. Instead they’ll have values that are approximations
to their correct values, because they’ll include extra information.

Using the approximations instead of the correct values is allowable because bC and bF are
monotonic. This means that if we apply them to approximate arguments, they’ll produce
an answer cache that is a safe approximation of what we’d have gotten with the exact
arguments.

So if we proceed without restoring the venv or store values around recursive calls,
we’ll get a result that is a little weaker than the result provided by the basic algorithm of
section 5.1, but consistent with it.

What is the advantage of this approximate algorithm? By making the variable en-
vironment and store single-threaded, and only changing them monotonically, we can be
assured that the temporal sequence of venv and store values are strictly ordered during
the search procedure. This means we can use time stamps to describe the different variable
environments and stores. We can compare the variable environments that existed at two
different calls to Chat, say, simply by comparing their corresponding time stamps. The one
with the larger number approximates the one with the smaller number.

All we need to do is introduce global variables venv-ts and store-ts that are integer
counters serving as modification time stamps for venv and store. Every time venv is
altered, we increment the venv-ts counter; and similarly for store and store-ts. If an
operation on one of these tables doesn’t add any new information, we leave its time stamp
unchanged.

Now we can memoise the variable environment and store by their time stamps. The
argument tuples we store away in our memo table need only contain the time stamps for
the variable environment and store: <call,benv,venv-ts,store-ts>. This means we
don’t need to keep around large numbers of variable environments and stores in our memo
table, and we can also search the table and compare tuples much faster.

Note further that for any two memoised argument tuples

cs 1 = <call,benv,venv-ts1,store-ts1>;

cs 2 = <call,benv,venv-ts2,store-ts2>

with identical call and contour environment components, the tuples must be ordered. That
is, either

venv-ts1 � venv-ts2 ^ store-ts1 � store-ts2

or
venv-ts2 � venv-ts1 ^ store-ts2 � store-ts1

(i.e., either cs1 v cs 2 or cs 2 v cs1). This is because the tuples are generated sequentially,
and the time-stamp pairs are thus always ordered. So, for a given call and benv value, we
only need store the most recent time stamps for their corresponding venv-ts and store-ts
values in the memo table. This will still implement the aggressive cutoff of section 5.2, but
with still lower storage overhead for the memo table S.

If we put all of this together, we get the following approximate algorithm:
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Cts(call,benv)

let <venv-memo,store-memo> = fetch-memo(call,benv)

in

if venv-ts � venv-memo and store-ts � store-memo then

return;

memoise(call,benv,venv-ts,store-ts);

let [[c:(f . args)]] = call, /* Destructure call form. */

F = Ats(f,benv), /* Eval proc subexp. */

argv = mapAts(args,benv) /* Ats(a,benv)

in for a in args. */

ans := ans t [<c,benv> 7! F];

/* Argument c to Fts is the 1CFA contour: */

for each f in F do Fts(f, argv, c);

PRts(lam)

S := [];

venv := []; venv-ts := 0;

store := []; store-ts := 0;

ans := [];

Fts(Ats(lam,[]),<fstopg>,topcall);
return(S)

fetch-memo(call,benv)

if <call,benv> in table S then

return(table-entry(S,<call,benv>));

/* Never seen <call,benv> before. Initialise memo entry. */

memoise(call,benv,-1,-1);

return(<-1,-1>);

memoise(call,benv,v-ts,s-ts)

set-table-entry(S, <call,benv>, <v-ts,s-ts>);

This algorithm is the one that I have actually implemented. All of the applications
I discuss in the following chapters have been built on top of this implementation. The
running time of the package, when applied to small examples, is effectively immediate
(about a second, in the interpreter), and the loss of precision has not been noticeable for the
examples I have tried.
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5.4 Particulars of My Implementation

I have an implementation of 1CFA written in the Scheme dialect T [Rees+ 82, Rees+ 84].
It uses a modified version of the ORBIT compiler’s front end to produce CPS Scheme code
from programs written in full Scheme. The features of the particular algorithm are:

� 1CFA (section 3.7)

� simple side-effects analysis (section 3.8.1)

� external procedures and calls (section 3.8.2)

� user procedures and continuations partitioned (section 3.8.3)

� single-threaded variable environment and store with time stamps (section 5.3).

The front end and its related utilities are about 2100 lines of commented code. The
actual 1CFA code is about 450 lines of commented code.

Appendix A is a code listing of my 1CFA implementation. Appendix B gives a detailed
dump of the call cache produced by applying this code to two small Scheme procedures,
iterative factorial and the small “puzzle” example from chapter 9 (page 120).

On a DECstation 3100, running uncompiled in the T interpreter, the 1CFA analysis can
analyse an iterative factorial procedure in .58 seconds, and a delq procedure in 1.8 seconds.
I have not made a serious effort to carefully evaluate the running time of the analysis; these
running times are only given to suggest that the execution times are manageable. A detailed
study of compile-time costs would be premature at this point. The efficiency of the simple
implementation given in appendix A could be improved a great deal by tuning the code and
data structures for speed. These issues are discussed in greater detail in chapter 11.



Chapter 6

Implementation II

You wouldn’t want us to give you a Ph.D.
for a buggy optimiser, would you?

— J. Reynolds

Do the algorithms of the previous chapter correctly implement the abstract control-flow
analysis semantics functions? In this chapter, we’ll develop proofs to show:

� The basic algorithm computes the abstract CFA function.

� The aggressive-cutoff algorithm is equivalent to the basic algorithm.

� The time-stamp algorithm safely approximates the basic algorithm.

This will formally establish the correctness of our algorithms.

6.1 Preliminaries

First, we need to briefly summarise the framework of section 4.4.3. The functions bC and bF
have the same, simple structure. When one of these functions is applied to an argument,
it makes a local contribution to the final answer, and then recurses on some set of child
arguments. If the local contribution for argument x is g x, and the set of children to recurse
on is R x, then we have the general form1

f x = g x t
G

f (R x): (6:1)

We assume these functions map a finite set X to a lattice A, i.e. f :X ! A. (In the case
of bC, for instance, X is dCState and A is dCCache.) The functionalities of the parameterising
functions are g:X ! A and R:X ! P(X).

1Actually, bC and bF are mutually recursive — one calls the other. See section 4.4.3 for further discussion.
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It simplifies our descriptions of these functions to introduce their power-set relatives:

g Y =
G
g Y; R Y =

[
R Y;

with functionality g:P(X) ! A, and R:P(X) ! P(X). The power-set analog of
equation 6.1 is

f Y = g Y t f (R Y ); (6:2)

where f :P(X)! A. We saw in section 4.4.3 that the least solution of equation 6.2 is

f Y =
G
i�0

g (Ri Y );

and the least solution of equation 6.1 is

f x = f fxg =
G
i�0

g (Ri fxg):

6.2 The Basic Algorithm

We need to show that the basic algorithm of section 5.1 computes

f x =
G
i�0

g (Ri fxg):

For the remainder of this chapter, we will concentrate on computing the set
S

iR
i fxg

instead of its image under g. This will simplify the discussion. Let h be the function
computing R’s closure on Y :

h Y =
[
i�0

Ri Y:

It’s clear that f x = g (h fxg).
Altering the basic algorithm of section 5.1 to simply compute the closure set S gives us

h(x) =

let S = ;,
loop(y) = if y =2 S then

S := S [ fyg;

for each z 2 R(y)

loop(z);

in loop(x); S

We would like to show that h(x) correctly computes the set h x.
First, it’s clear that h(x) terminates. Each recursive call either terminates immediately

(if y 2 S), or increases the size of S, making progress towards termination.
We can prove that h computes the desired set by considering the associated loop function

L. Suppose we call the interior procedure loop on value y0, with S initially having the
value S 0. Define L S 0 y0 to be the value of S after loop(y0) returns.
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The procedure loop(y) recursively explores the subtree rooted at y in a depth-first
order, where R can be viewed as the “sons-of” function. However, loop cuts off the search
when it arrives at a node in the set S. So, we can intuitively see that L S y returns the
tree explored from y, stopping at elements in S. The h function, on the other hand, can be
viewed as a complete breadth-first search from its argument. This leads us to the following
theorem:

Theorem 13 L S y [ h S = h fyg [ h S:

Proof:

1. L S y [ hS � h fyg [ hS:
During the execution of loop(y), all elements added to S are produced by chains
of R applications, starting with y, hence each such element must be in y’s closure,
h fyg. So,

L S y � h fyg [ S � h fyg [ h S:

The inclusion follows.

2. h fyg [ hS � L S y [ hS:
Proof by negation. Suppose z 2 h fyg � (L S y [ h S). Now z 2 h fyg means
there is a sequence s0; . . . ; sn such that s0 = y, sn = z, and si+1 2 Rsi (that is, there
is a sequence of R applications leading from y to z). Since z =2 h S, we know that
none of the si are in S — if one was, then its descendant z would have to be in the
closure. Since z =2 LS y, we know sn�1 =2 LS y. However, sn�1 isn’t in the initial S
set, so if it were ever added to S, loop would recurse over its children R sn�1, which
includes z, and so z would have been added to S. In a similar fashion, we can derive

z =2 L S y ) sn�1 =2 L S y ) � � � ) s1 =2 L S y ) y =2 L S y:

But, clearly y 2 L S y. Contradiction.

Q.E.D.

We can finish off h with the following corollary:

Corollary 14 h(x) = h fxg

Proof: This follows from the previous theorem, h(x) = L ; x, and h ; = ;.

6.3 The Aggressive-Cutoff Algorithm

If we similarly abstract the basic structure of the aggressive-cutoff algorithm of section 5.2,
we get the procedure:
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h'(x) =

let S = ;,

loop'(y) = if not (y v z for some z 2 S) then

S := S [ fyg;

for each z 2 R(y)

loop'(z);

in loop'(x); S

Assume that the domain of our functions, X , is a partial order with order relation v.
This order relation induces an preorder on the power set P(X):

Y v Y 0 iff 8y 2 Y 9y0 2 Y 0 y v y0:

That is, Y v Y 0 if every element in Y is v some element in Y 0. (We will extend this
notation to scalar elements: y v Y 0 is shorthand for fyg v Y 0.) We will call two sets
equivalent if they are ordered in both senses:

Y � Y 0 iff Y v Y 0 ^ Y 0 v Y:

Let’s further assume that the functions g and R are monotonic with respect to these
orders. Then g, R, and Ri are monotonic. It follows that f x =

F
i g (R

i fxg) is monotonic.
What do theR and g functions correspond to in the control-flow semantics? Consider the

simple-call case of the bC function. R gives the recursion set
nD
f 0; cav ; cve ; b̂0; b�E j f 0 2 F

o
calculated from the input argument tuple, and g is the local contribution made by the
function towards the answer cache:

hD
c; b�E 7! F

i
(figure 4.5). All of the bC and bF cases

have definitions with similar structure, so R and g functions can be defined for them. It
should be a simple matter to convince yourself that, given the above definitions of set
ordering and monotonicity, the g and R components of bC and bF are monotone. Passing bC
more approximate arguments causes it both to make a larger contribution to the call cache
and to recurse over a larger set of argument tuples; similarly for bF . So our assumptions of
monotonicity apply to the abstract semantic functions.

Now, let’s return to the two sets h(x) and h'(x) — the former computed by the
basic algorithm, and the latter computed by the aggressive algorithm. If we know that
h(x) v h'(x), then the monotonicity of g gives us that

G
g h(x) v

G
g h'(x):

Similarly, h'(x) v h(x) implies the reverse ordering. So, if h(x) � h'(x), then the joins
of their images under g are equal:

h(x) � h'(x) )
G
g h(x) =

G
g h'(x):

Now, the left-hand side of the equality
F
g h(x) is just f x. So, if we can show the

equivalence of h and h', we can use the aggressive h' in place of the basic h to compute f .
In order to show this equivalence, we need to use the analog of the L function for h'.

Define L0 to be the corresponding function: L0 S0 y0 is the value of S after initialising it to
S0 and calling loop'(y0).
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Theorem 15 L0 S y [ h S � h fyg [ h S:

Proof:
The proof is similar to the previous proof for the basic algorithm, using v in place of 2.

1. L0 S y [ h S v h fyg [ h S:
During the execution of loop'(y), all elements added to S are of produced by chains
of R applications, starting with y, hence each such element must be in y’s closure,
h fyg. So,

L0 S y � h fyg [ S � h fyg [ h S:

Clearly, h S � h fyg [ h S as well, so

L0 S y [ h S � h fyg [ h S;

which in turn implies
L0 S y [ h S v h fyg [ h S:

2. h fyg [ h S v L0 S y [ h S:
Proof by negation. Suppose 9z 2 h fyg � h S such that z 6v L0 S y [ h S. Since
z 2 h fyg, there is a sequence s0; . . . ; sn such that s0 = y, sn = z, and si+1 2 R si
(that is, there is a sequence of R applications leading from y to z). Now, since
z 6v h S, we know that 8i si 6v S — if some si were v S, then by the monotonicity
of R, its descendant z would have to be v the closure h S.

Since z 6v L0Sy, we know sn�1 6v L0Sy. To see this, suppose that sn�1 v x 2 L0Sy,
for some x. Since sn�1 6v S, we know that x =2 S, so xmust have been added toL0Sy
during the execution of the algorithm. However, when loop' adds some element
x to S, it also recurses over x’s children R x. R is monotonic, so the recursion set
R x includes some element w w z. Since loop' is called on w, the final value is
guaranteed to be w w (either w is v some element already in S, or it is added to
S itself; either way, the result set is w w), hence w z. So z v L0 S y, which is a
contradiction. Hence sn�1 6v L0 S y.

We can apply this reasoning backwards along the si chain, giving us the series of
implications:

z 6v L0Sy ) sn�1 6v L0Sy ) � � � ) s1 6v L0Sy ) y 6v L0Sy:

But, clearly y v L0 S y. Contradiction.

Q.E.D.

This theorem allows us to show that the aggressive-cutoff algorithm is equivalent to the
basic algorithm, with the following corollary:

Corollary 16 8y; h'(y) � h fyg.
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Proof: The previous theorem gives us

L0 ; y [ h ; � h fyg [ h ;:

h ; = ;, and h'(y) = L0 ; y, and the equivalence follows. Q.E.D.
Now that we’ve established that the basic and aggressive-cutoff algorithms are equiva-

lent, we can implement the more efficient aggressive-cutoff algorithm and know that it will
compute the desired function.

6.4 The Time-Stamp Algorithm

It is fairly simple to show that the time-stamp algorithm is a conservative approximation to
the basic algorithm.

Suppose that the bC function is being applied to some simple-call tuple cs . Consider the
recursion set R cs of FState tuples on which bC recursively applies bF . This is the set

n D
f̂i; cav ; cve ; cnb b̂ c; b�E j 1 � i � n

o
;

where
n
f̂1; . . . ; f̂n

o
= bA f b� cve . Changing to an algorithm that uses a single-threaded

implementation of the variable environment and store means that between the f̂1 call and
the f̂2 call, the store and variable environment could increase. So the actual values of the
global variable environment and store present when the f̂2 call is made aren’t cve and b�, but
some values cve 2 w cve and b�2 w b�. This means we are actually calling F with the tupleD
f̂2; cav ; cve 2;

cnb b̂ c; b�2

E
w
D
f̂2; cav ; cve ; cnb b̂ c; b�E. Between the f̂2 call and the f̂3 call,

the globally modified cve and b� variables can again be increased. So the actual values of the
variable environment and store present when the f̂3 is made are some values cve 3 w cve2 and
b�3 w b�2, and so forth for the successive calls to the rest of the f̂i. So the effective recursion
set for the single-threaded implementation is

n D
f̂i; cav ; cve i;

cnb b̂ c; b�i

E
j 1 � i � n

o
:

Call this alternate recursion set R0
cs . It’s clear that the cve i are all w cve and that the b�i are

all w b�, so each tuple in R0
cs is w its counterpart in R cs . Thus we know R0 w R using

the ordering of the previous section.
This is pervasively true throughout the bC and bF functions: the only change of making

the variable environment and store be global, single-threaded data structures is to shift
to recursion sets that are w their counterparts in the basic algorithm. So, returning to
our simple f x = g x t

F
f (R x) model of the semantics functions, the single-threaded

algorithm computes the function defined by

f 0 x = g x t
G

f 0 (R0 x);

which is just
f 0 x =

G
i

g (R0i x):
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Now, the basic recursion is computing the function

f x =
G
i

g (Ri x):

As we discussed in the previous section, if R0 w R, then R0i w Ri. This plus the
monotonicity of g gives us that

f 0 w f;

or that the single-threaded recursion safely approximates the basic recursion.
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Chapter 7

Applications I

The term “collection of hacks” is not meant
to be pejorative. Some of my best friends are
collections of hacks.

— S. Fahlman

Once we’ve performed control-flow analysis on a program, we can use the information
gained to perform other data-flow analyses. Control-flow analysis by itself does not provide
enough information to solve all the data-flow problems we might desire (we’ll discuss these
limitations in the following chapter), but we can still solve some useful problems.

In this chapter, we’ll consider three applications we can perform using control-flow
information: induction-variable elimination, useless-variable elimination, and constant
propagation.

7.1 Induction-Variable Elimination

Induction-variable elimination is a technique used to transform array references within
loops into pointer incrementing operations. For example, suppose we have the following
C routine:

int a[50][30];

example() f

integer r, c;

for(r=0; r<50; r++)

for(c=0; c<30; c++)

a[r][c] = 4;

g
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The example function assigns 4 to all the elements of array a. The array refer-
ence a[r][c] on a byte addressed machine is equivalent to the address computation
a+4*(c+30*r). This calculation requires two multiplications and two additions. How-
ever, since the address value is linear in the c and r terms, we can cheaply compute the
address computation incrementally.

example() f

integer *ptr;

for(ptr=a; ptr<a+1500; ptr++)

*ptr = 4;

g

The ptrvariable tracks the dependent valuea+4*(c+30*r). Induction-variableelimination
(IVE) is a technique for automatically performing the above transformation. Classical IVE
is treated in detail in the “Dragon” book [Aho+ 86].

Classical IVE for imperative languages such as C or Pascal begins by searching for
basic induction variables (BIVs). A BIV is a variable that is only altered in a loop by
incrementing or decrementing it by constants. The r and c variables are BIVs in the above
example. In Scheme, the role of a single C BIV is played by a set of related Scheme
variables, called a basic induction variable family. We use a set of Scheme variables in the
place of a single C variable because of the different ways that loop variables are updated
in the two languages. In C, a loop variable is updated multiple times within a loop by
assigning to that single variable:

j=0;

while(test) f

j = j+1;

. . .
j = j-4;

. . .
j = j+2;

g

In Scheme or ML, an iteration variable is updated by rebinding it in a tail-recursive loop:

(letrec ((loop (� (j)

(if (not test)
(let ((j' (+ j 1)))

. . .
(let ((j% (- j' 4)))

. . .
(loop (+ j% 2))))))))

(loop 0))
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In the Scheme code, the variables fj; j'; j%g correspond to the C variable j.1 So, whereas
IVE analysis in C searches for the basic induction variable j, the Scheme variant searches
for the family fj; j'; j%g.

A basic induction variable (BIV) family is a set of variables B = fv1; . . . ; vng obeying
the following constraints:

1. Every call site that calls one of the vi’s lambda expression may only call one lambda
expression.

2. Each vi may only have definitions of the form b (constant b), and a + vj (vj 2 B,
constant a). This corresponds to stating that vi’s lambda must be one of:

� Called from a call site that simply binds vi to a constant:
((� (x vi z) . . . ) foo 3 bar).

� The continuation of a + call, with vj and a constant for addends:
(+ vj a (� (vi) . . . )).

� The continuation of a - call, with vj and a constant for subtrahend and minuend:
(- vj a (� (vi) . . . )).

� Called from a call site that simply binds vi to some vj , e.g.:
((� (x vi z) . . . ) foo vj bar) (This is a special case of a = 0).

Given the control-flow information summarised by an abstract call cache function 
̂, it is
fairly simple to compute sets of variables satisfying these constraints.

After finding BIVs, IVE analysis searches for dependent induction variables (DIVs) —
variables whose values are affine functions of some other induction variable. The com-
putations calculating these variables are then replaced with cheaper incremental updates.
Again, the Scheme variant looks for families of variables dependent on BIV families, and
the emphasis is on binding updates instead of assignment updates.

A dependent induction variable (DIV) family is a set of variables D = fwig together
with a function f(n) = a+ b � n (a,b constant) and a BIV family B = fvig such that:

� For each wi, every definition of wi is wi = f (vj) for some vj 2 B.

We call the value f(vi) the dependent value.

We can introduce three sets of new variables, fzig, fxig, and fyig. The zi and xi

track the dependent value, and the yi are introduced as temporaries to help update the basic
variable. In the following description, we use for illustration the following piece of Scheme
code:

1In fact, all three variables in the set would probably be named j by the programmer — there is no point
in distinguishing the names if they represent the same conceptual identifier at different points in the code. So
the binding operations would look more like a real update: (let ((j (- j 4))) . . . ). However, by the
time the compiler begins to analyse the code, the compiler front-end has “alphatised” the three variables to
have distinct names.



96 Chapter 7. Applications I

(+ v1 4 (� (v2) . . . (* 3 v2 (� (w1) . . . ))))

BIVs v1 & v2

6 6

DIV w1 defined
to be 3 � v2

6

with associated function f(n) = 3 � n.

We perform the following transformations on the code:

� Introduce zi into the vi lambda expression:
Modify each lambda that binds one of the vi to simultaneously bind the corresponding
value f (vi) to zi.
Binding site (� (v2) . . . ) becomes:
(� (v2 z2) . . . )

� Introduce code to compute zj = f(vj) from zi = f(vi)when vj is computed from
vi
All call sites who have continuations binding one of the vi (i.e., call sites that step the
BIV family) are modified to update the corresponding zi value. Temporary variables
xi and yi are used to serially compute the new values.
Call site (+ v1 4 k) becomes:

(+ z1 12 (� (x2)

(+ v1 4 (� (y2)

(k y2 x2)))))

� Replace computation of DIV wi from vj with simple binding:
Since zj = f (vj), we can remove the computation ofwj from vj , and simply bind wj

to zj . Dependent variable computation (* v2 3 (� (w1) . . . )) becomes:
((� (w1) . . . ) z2) and z2 can be �-substituted for w1.

Notice that fwig [ fzig [ fxig now form a new BIV family, and may trigger off new
applications.

For example, consider the loop of figure 7.1(a). It is converted to the partial CPS of (b).
Now, fng is a BIV family, and fmg is a DIV family dependent on fng, with f(n) = 3n. A
wave of IVE transformation gives us the optimised result of (c). Analysis of (c) reveals that
f3n; 3n'; 3n%g is a BIV family, and fpg is a DIV family, with f (n) = 4+n. Another wave
of IVE gives us (d). If we examine (d), we notice that 3n, 3n', and 3n% are never used,
except to compute values for each other. Another analysis using control-flow information,
useless-variable elimination, spots these useless variables; they can be removed, leaving
the optimised result of (e). (We’ll discuss useless-variable elimination in the next section.)

This example of figure 7.1 was produced by an IVE implementation that I wrote in T
using the results produced by a 0CFA analysis.
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(letrec ((f (� (n) (if (< n 50)

(if (= (aref a n) n) (f (+ n 1))

(block (print (+ 4 (* 3 n)))

(f (+ n 2))))))))

(f 0))
(a) Before

(letrec ((f (� (n)

(if (< n 50)

(if (= (aref a n) n) (+ n 1 f)

(* 3 n (� (m) (+ 4 m (� (p) (print p)

(+ n 2 f))))))))))

(f 0))
(b) Partial CPS conversion

(letrec ((f (� (n 3n)

(if (< n 50)

(if (= (aref a n) n)

(+ 3n 3 (� (3n')

(+ n 1 (� (n') (f n' 3n')))))

(+ 4 3n (� (p) (print p)

(+ 3n 6 (� (3n%)

(+ n 2 (� (n%)

(f n% 3n%))))))))))))

(f 0 0))
(c) IVE wave 1

(letrec ((f (� (n 3n 3n+4)

(if (< n 50)

(if (= (aref a n) n)

(+ 3n+4 3 (� (3n+4')

(+ 3n 3 (� (3n') (+ n 1 (� (n')

(f n' 3n' 3n+4')))))))

(block (print 3n+4)

(+ 3n+4 6 (� (3n+4%)

(+ 3n 6 (� (3n%)

(+ n 2 (� (n%)

(f n% 3n% 3n+4%)))))))))))))

(f 0 0 4))
(d) IVE wave 2

(letrec ((f (� (n 3n+4)

(if (< n 50)

(if (= (aref a n) n)

(+ 3n+4 3 (� (3n+4') (+ n 1 (� (n') (f n' 3n+4')))))

(block (print 3n+4)

(+ 3n+4 6 (� (3n+4%)

(+ n 2 (� (n%)

(f n% 3n+4%)))))))))))

(f 0 4))
(e) After

Figure 7.1: Example IVE application
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7.2 Useless-Variable Elimination

A useless variable is one whose value contributes nothing to the final outcome of the
computation. We can remove a useless variable and the computation producing its value
from our program. For example, consider the following code fragment:

(let ((sum (+ a b))

(prod (* a b)))

(f sum a))

)
(let ((sum (+ a b)))

(f sum a))

Prod is never used in the program, so we can remove it and its binding computation
(* a b). This example is fairly easy to detect; most Scheme compilers would find and
optimise it.

On the other hand, some useless variables involve circular dependencies or multiple
(join) dependencies. The simple lexical analysis that suffices for the above example won’t
spot these cases. For example, consider the factorial loop:

(letrec ((lp (� (ans j bogus)

(if (= 0 j) ans

(lp (* ans j)

(- j 1)

(sqrt bogus))))))

(lp 1 n n))

Although the variable bogus doesn’t contribute anything at all to the final result, it appears
to be used in the loop. Useless-variable elimination is used to spot these cases.

UVE is often useful to clean up after applying other code transformations, such as copy
propagation or induction-variable elimination. For example, when we introduce a new
variable to track an induction function on some basic induction variable, the basic variable
frequently becomes useless. (For an example produced by a working UVE implementation,
compare parts (d) and (e) of figure 7.1.)

7.2.1 Finding Useless Variables

Detecting these cases requires a simple backwards flow analysis on the CPS intermediate
form. We actually compute a conservative approximation to the inverse problem — finding
the set of all useful variables. We start with variables that must be assumed useful (e.g., a
variable whose value is returned as the value of the procedure being analysed). Then we
trace backwards through the control-flow structure of the program. If a variable’s value
contributes to the computation of a useful variable, then it, too, is marked useful. When
we’re done, all unmarked variables are useless. This gives us a mark-and-sweep algorithm
for a sort of “computational gc.”

To be specific, in the implementation of UVE that I have implemented, a variable is
useful if it appears
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� in the function position of a call:
(f 5 0)

� as the predicate in a conditional primop:
(if p (� () . . . ) (� () . . . ))

� as the continuation of a primop:
(+ 3 5 c)

� as an argument in a call to

– a side-effecting operation (output or store):
(print a), (set-car! x y)

– an external procedure, or a primop whose continuation
is an external procedure.

– a primop whose continuation binds a useful variable:
(+ metoo 3 (� (used) . . . ))

– a lambda whose corresponding parameter is useful:
((� (x used y) . . . ) 3 metoo 7)

The first three conditions spot variables used for control flow. The next two mark variables
whose value escapes, and must therefore be assumed useful. The final two recursive
conditions are the ones that cause the analysis to chain backwards through the control-flow
graph: if a variable is useful, then all the variables used to compute its value are useful.

7.2.2 Optimising Useless Variables

Once we have found the useless variables in a program, we can optimise the program in
two steps. In the first step, we remove all references to useless variables and eliminate all
useless computations (primop calls). In the second step, we remove useless variables from
their lambda lists where possible.

Removing useless variables from calls

In this phase, we globally remove all references to useless variables in our program. If
a useless variable appears as an argument to a primop call, we remove the entire primop
computation. For instance, suppose the useless variable x appears as an argument in
the primop call (+ x y k). By the definition of a useless variable, we know that the
continuation k must bind the result of the addition to a useless variable, as well (if it didn’t,
we’d have marked x as useful). This renders the addition operation useless, so we can
remove it, replacing (+ x y k) with (k #f). The actual value passed to the continuation
(we used #f here) is not important — remember that we are globally deleting all references
to useless variables. Since the continuation k must bind the value #f to a useless variable,
the value is guaranteed never to be referenced.
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If a reference to a useless variable appears in a non-primop call, we simply replace it
with some constant. If x is useless, we convert (f x y) to (f #f y). Similar reasoning
applies in this case: if x is useless, it must be the case that f’s corresponding parameter is
useless as well. All references to this parameter will be deleted, so we can pass any value
we like to it.

Removing useless variables from lambda lists

Suppose we have determined that x is useless in lambda ` = (� (x y) . . . ). After
applying the transformation of the previous subsection, we can be sure that ` contains no
references to x. The only remaining appearance of x is in `’s parameter list. Consider the
places this lambda is called from, e.g., (f a 7). We can delete both the formal parameter
x from its lambda list and the corresponding argument a from its call:

(� (x y) . . . )) (� (y) . . .) and (f a 7)) (f 7).

However, we can’t apply this optimisation in all cases. Suppose ` is called from two
places, the external call and (f a 7). We can’t simply delete x from `’s parameter list,
because the external call, which we have no control over, is going to pass a value to ` for
x. Or, suppose that our lambda is only called from one place, (f a 7), but that call site
calls two possible lambdas. Again, we can’t delete the argument a from the call, because
the other procedure is expecting it (unless it, as well, binds a useless variable).

We have a circular set of dependencies determining when it is safe to remove a useless
variable from its lambda list and its corresponding arguments from the lambda’s call sites:

� We can delete a variable from a lambda list only if we can delete its corresponding
argument in all the calls that could branch to that lambda.

� We can delete an argument from a call only if we can delete the corresponding formal
parameter from every lambda we could branch to from that call.

It is not hard to compute a maximal solution to these constraints given control-flow infor-
mation. We use a simple algorithm that iterates to a fixed point. We compute two sets:
the set RV of removable useless variables, and the set RA of removable call arguments.
Initialise RV to be the set of all useless variables. For each useless variable v , find all the
call sites that could branch to v’s lambda, and put the call’s corresponding argument into
RA. Then iterate over these sets until we converge:

ITERATE until no change

FOR each argument a in RA

IF a's call could branch to a lambda whose

corresponding parameter is not in RV

THEN remove a from RA

FOR each variable v in RV

IF v's lambda can be called from a call site whose

corresponding argument is not in RA

THEN remove v from RV
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For the purposes of the first loop, the external lambda counts as a disqualifying branch
target; for the purposes of the second loop, the external call counts as a disqualifying branch
source. When we’re done, we’re left with RV and RA sets that satisfy the circular criteria
above. We can safely remove all the arguments in RA from their calls and all the variables
in RV from their lambda lists.

Results

Applying these two phases of optimisation will eliminate useless variables and their asso-
ciated computations wherever possible. For example, we can remove the useless bogus

variable and its square-root calculation from the factorial loop we considered at the begin-
ning of this section, leaving only the necessary computations:

(letrec ((lp (� (ans j)

(if (= 0 j) ans

(lp (* ans j)

(- j 1))))))

(lp 1 n))

Note that as a special case of UVE, all unreferenced variables in a program are useless. The
second phase of the UVE optimisation will remove these variables when possible.

7.3 Constant Propagation

Constant propagation is another standard code improvement based on data-flow analysis.
In brief, if the only def of x that reaches sin(x) is x:=3.14, then we can replace sin(x)
with sin(3.14) (and, subsequently, -1.0).

In the Scheme and ML world, where we bind variables instead of assigning them, this
corresponds to finding variables that are always bound to constants, and replacing their
references with the constant. �-substitution spots the easy cases, e.g.:

(let ((x 3.14))

(sin x))
) (sin 3.14)

However, just as for useless-variable elimination, we need something more powerful to
spot circular and join dependencies.

A simple variant of control-flow analysis will handle constant propagation. Simple
control-flow analysis uses an abstract environment that binds variables to sets of abstract
procedures. We just augment the variable environment (and the store) to include constants
as well as procedures. When we perform a call with a constant argument a, we just pass
the singleton set fag as the corresponding value set. As the abstract interpretation runs
forward, it builds up a table of which closures and constants are bound to which variables.
When the analysis converges, we look up the data that was bound to a given variable v.
If there’s only one such datum, and it’s a constant, not a procedure, we can go ahead and
replace all references to v with the constant.



102 Chapter 7. Applications I



Chapter 8

The Environment Problem and Reflow
Analysis

In this chapter, we’ll examine the limits of simple control-flow analysis. Then we’ll develop
an extension, called reflow analysis, to move beyond these limits. In the following two
chapters, we’ll look at some optimisations that can be performed with reflow analysis.

The work discussed in these next three chapters is not supported by the kind of careful
formal development and proofs of correctness that I’ve shown for the simple control-flow
analysis in the previous chapters. This work must be taken simply as interesting ideas
that have not yet been backed up with rigorous mathematics. With reflow analysis, we’ve
arrived at my research frontier as of the writing of this dissertation.

Future work could include a better theoretical characterisation of reflow analysis, and
proofs of conservative abstraction and computability for reflow-based optimisations. I
suspect that this sort of work would be carried out in basically the same fashion as the work
on simple control-flow analysis in chapter 4.

8.1 Limits of Simple Control-Flow Analysis

At the start of this dissertation, I told the following story: Data-flow analyses require a
control-flow graph. Scheme programs don’t have static control-flow graphs. But, if we
could somehow recover a good approximation of the control-flow graph, we could use it to
perform all the classical data-flow analyses.

It turns out that this is somewhat optimistic. While control-flow analysis does enable
some classical data-flow analyses — such as the ones we just developed in the last chapter
— another class of applications cannot be handled this way.

This is the class of analyses that require detailed environment information. Classical
data-flow analyses assume a single, flat environment over the program text. Assignments
and references to global variables are the conduits through which computed values flow
through the program. Thus any two references to the same variable refer to the same binding
of that variable. This is the model provided by assembly code.

103
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The intermediate representation we are using, CPS applicative-order �-calculus, is
different. Here, we can have simultaneous multiple bindings of a single variable. For
instance, consider the following puzzle:

(let ((f (� (x h) (if (zero? x) (h) (� () x)))))

(f 0 (f 3 '#f)))

The first call to f, (f 3 '#f), returns a closure over (� () x) in environment
�
[[x]] 7! 3

�
.

This closure is then used as an argument in the second, outer call to f, where it is bound
to h. Suppose we naively picked up information from the conditional (zero? x) test, and
flowed the information x = 0 and x 6= 0 down the two arms of the if to be picked up by
references to x. This would work in the single flat environment model of assembler. In
this Scheme puzzle, however, we are undone by the power of lambda. Suppose that our
contour abstraction maps the contours allocated by the two calls to f to the same abstract
contour. After ensuring that x = 0 in the then arm of the if, we jump off to h = (� () x),
and evaluate a reference to x, which inconveniently persists in evaluating to 3, not 0. The
one variable has two simultaneous bindings. We tested one binding and then referenced
the other. Confusing the two bindings of the same variable can lead us to draw incorrect
conclusions.

This problem prevents us from using plain control-flow analysis to perform important
flow analysis optimisations for Scheme, such as type recovery. In type recovery, we would
like to perform deduction of the form:

;;; references to x in f are int refs

(if (integer? x) (f) (g))

Unfortunately, as demonstrated above, we can’t make such inferences.
The problem arises because of lambda’s ability to create multiple environments over a

given context. Analyses such as type recovery depend upon keeping these environments
distinct; computable procedural approximations depend upon folding these environments
together. This basic conundrum is what I call the “environment problem.”

Only certain data-flow analyses are affected by the environment problem. The key
property determining this is the direction in which the iterative analysis moves through the
approximation lattice. In control-flow analysis or useless-variable elimination the analysis
starts with an overly precise value and incrementally weakens it until it converges; all
motion in the approximate lattice is in the direction of more approximate values. So,
identifying two contours together simply causes further approximation, which is safe.

With an analysis like type recovery, however, our analysis moves in both directions
along the type lattice as the analysis proceeds, and this is the source of the environment
problem. In type recovery, we are passing around statements about the types of the values
bound to specific variables. When two different calls to a procedure, each passing arguments
of different types, bind a variable in the same abstract contour, the types are joined together
— moving through the type lattice in the direction of increasing approximation. However,
passing through a conditional test causes type information to be narrowed down — moving
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in the direction of increasing precision. Unfortunately, while it is legitimate to narrow down
a variable’s type in a single exact contour, it is not legitimate to narrow down its type in the
corresponding abstract contour — other bindings that are identified together in the same
abstract contour are not constrained by the type test. This is the heart of the problem with
the above puzzle.

In general, then, the simple abstraction techniques of chapters 3–7 yield correct, con-
servative, safe analyses only when the analysis moves through its answer lattice solely in
the direction of increasing approximation. Moving beyond this requires something new.

8.2 Reflow Analysis and Temporal Distinctions

Our central problem is that we are identifying together different contours over the same
variable. We are forced to this measure by our desire to reduce an infinite number of
contours down to a finite set.

For example, suppose we know that abstract procedure f =
D
[[`:(� (x) . . . )]]; b�E is

called from 3 different call sites, c1, c2 and c3. In 1CFA, all the contours allocated when
entering ` will be folded down to 3 abstract contours, one of fc1; c2; c3g. Now, suppose we
are in the middle of an abstract interpretation, and we have a call to f from c2:(g z). We
desire to track information associated with this binding of x. First, notice that the contour
abstraction already distinguishes this binding of x from all the bindings that abstract to
contour c1 or c3. We get into trouble from two sources: (1) previous bindings of x in the
same abstract contour c2, and (2) future bindings of x in the same abstract contour c2. In
other words, we won’t confuse this binding with any bindings made in abstract contours c1

or c3, but we could confuse it with any made by other calls from c2 — either calls previously
made during program execution, or calls to be made in the future.

So, if we want to track the information associated with a general abstract binding of
a variable, we need a way to distinguish it from past and future bindings made under the
same abstract contour. This is the key to an iterative technique called reflow analysis.

We will start the program up in the middle of its execution, running it forward from
the c2 call to `. We’ll call this re-interpretation of the program from some mid-point a
single “reflow.” On this particular entry to `, we’ll allocate a special contour, c02, that will
distinguish the c2 contour being tracked from the other c2 calls, past or future, that would
allocate the same abstract contour. It’s the c02 binding of x that we will track.

Now, it is quite likely that there is already a h[[x]]; c2i binding in cve when we start the
program up in mid-stride, but this abstract binding is distinct from the special c02 binding
we are uniquely allocating at the beginning of this reflow. Further, any future entries to `

from c2 during this reflow will allocate the ordinary c2 contour, merging them in with the
previously-recorded c2 binding, but remaining distinct from the special c02 binding we are
tracking during this reflow. In this manner, we are distinguishing the reflow’s initial binding
from other bindings, past and future, that would otherwise abstract to the same binding.

This allows us to track the special c02 contour’s variable bindings during the program
reflow. Suppose we are running the program forward, and we come to a reference to x,
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bound in contour c02. We know this isn’t a binding of x established by any call to ` from
either c1 or c3, else the contour would be c1 or c3. We also know that this isn’t a binding of
x caused by a call to ` from c2 that occurred either before or after the call we’re tracking,
because those calls get allocated contour c2 — the special contour c02 is allocated only once.
So we’ve managed to keep this binding of x distinct from its other bindings.

This means that as we run the program forward, whenever we test x, if the test occurs
in contour c02, we can track the information produced by the test. If the test is to some other
binding of x, we ignore it. Whenever we arrive at a reference to x, if the reference occurs
in contour c02, we can record the information. If the reference is to some other binding of x,
we ignore it. Tracking the c02 binding of x is safe, because we’ve isolated it from any of its
other possible bindings.

Since we’ve only tracked one of `’s possible contours, we must repeat the analysis for
the two other abstract contours allocated to `. So we restart the program from the call c1,
allocating special contour c01, and track the binding of x in that special contour. Finally, we
restart the analysis from the c3 call.

One detail we must handle is how to restart the analysis in mid-stream. What values
do we use for cve and b�, for example? A simple solution is to take values for cve and b� that
safely approximate any value they could have had at that point of the interpretation. We
could, for example, use the final values of cve and b� after performing a control-flow analysis
of our program using the time-stamp approximate algorithm discussed in section 5.3. These
values are guaranteed to approximate any cve or b� that could arise during interpretation of
the program. So, we can safely use them to restart the program from any call context

D
c; b�E

that appears in the domain of the call cache 
 produced by the analysis.



Chapter 9

Applications II: Type Recovery

Strong types are for weak minds.
— anon.

In this chapter we’ll examine in detail an optimisation that requires reflow analysis:
type recovery. The full-blown semantics machinery for type recovery is fairly complex,
and I recommend browsing or skipping these sections on a first reading.

9.1 Type Recovery

Scheme is a latently typed language [Rees+ 86]. This means that unlike statically typed
languages such as ML or Pascal, types are associated only with run-time values, not with
variables. A variable can potentially be bound to values of any type, and type tests can
be performed at run time to determine the execution path through a program. This gives
the programmer an extremely powerful form of polymorphism without requiring a verbose
system of type declarations.

This power and convenience is not without substantial cost, however. Since run-time
behavior can determine which values are bound to a given variable, precisely determining
the type of a given reference to a variable is undecidable at compile time. For example,
consider the following fragment of Scheme code:

(let ((x (if (oracle) 3 'three)))

(f x))

The reference to x in the subexpression (f x) could have any one of the types integer,
symbol, integer+symbol, or bottom, depending on whether the oracle always returns true,
always returns false, sometimes returns both, or never returns at all, respectively. Of course,
determining the oracle’s behavior at compile time is, in general, undecidable.

We can use data-flow analysis to recover a conservative approximation of the type
information implicit in a program’s structure. This analysis performs a kind of type
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inference. Since the term “type inference” is commonly used to refer to the generation
of static type assignments for variables, I will instead refer to the type analysis performed
by this technique as type recovery: the recovery of type information from the control and
environment structure of a program.

9.1.1 Sources of Type Information

Type information in Scheme programs can be statically recovered from three sources:
conditional branches, applications of primitive operations, and user declarations.

Conditional Branches

Consider a simple version of the Scheme equal? predicate:

(define (equal? a b)

(cond ((number? a)

(and (number? b) (= a b)))

((pair? a)

(and (pair? b)

(equal? (car a) (car b))

(equal? (cdr a) (cdr b))))

(else (eq? a b))))

There are three arms in the cond form. References to a down the first arm are guaranteed to
have type number. Furthermore, in the numeric comparison form, (= a b), an assumption
can be made that b is also a number, since the and guarantees that control reaches the
comparison only if (number? b) is true. Similarly, we can infer that references to a in
the second arm of the cond have the pair type and, less usefully, that references to a in
the third arm of the cond do not have either type pair or number. It is important to realise
from this example that Scheme type recovery assigns types not to variables, but to variable
references. The references to a in the different arms of the cond all have different types.

Type recovery of this sort can be helpful to a Scheme compiler. If the compiler can
determine that the (= a b) form is guaranteed to compare only numbers, it can compile
the comparison without a run-time type check, gaining speed without sacrificing safety.
Similarly, determining that the (car a), (car b), (cdr a), and (cdr b) forms are all
guaranteed to operate on pairs allows the compiler to safely compile the car and cdr

applications without run-time type checks.

Primop Application

An obvious source of type information is the application of primops such as + and cons.
Clearly the result of (cons a b) is a pair. In addition, we can recover information about
the type of subsequent references to primop arguments. For example, after the primop
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application (cdr p), references to p along the same control path can be assumed to have
the pair type.

As a simple example, consider the following Scheme expression:

(let* ((a (cdr b))

(q (char->integer (vector-ref a i))))

. . . (car b) . . . (+ q 2))

References to b occurring after the (cdr b) form are guaranteed to have the pair type —
otherwise, the cdr application would have rendered the effect of the computation to be
undefined. Hence, the subsequent (car b) application does not need to do a type check.
Similarly, after evaluating the second clause of the let*, references to a have type vector
and references to i and q are small integers, because vector-ref requires an integer
index, and char->integer generates an integer result. Hence the compiler can omit all
type checks in the object code for (+ q 2), and simply open-code the addition.

In recovering information about the arguments to primops, we are essentially using
information from “hidden conditional tests” inside the primop. The semantics of a (dan-
gerous) CPS car primop is:

(define (car p cont)

(if (pair? p) (cont (%car p))

($)))

where the subprimitive operation %car is only defined over cons cells, and ($) is a special
primop denoting a computation with undefined effect. Computation proceeds through the
continuation cont only in the then arm of the type test, so we may assume that p’s value is
a cons cell while executing the continuation. Recovering the type information implied by
car reduces to recovering type information from conditional branches.

Of course, the compiler does not need to emit code for a conditional test if one arm
is ($). It can simply take the undefined effect to be whatever happens when the code
compiled for the other arm is executed. This reduces the entire car application to the
machine operation %car.

A safe implementation of Scheme is one that guarantees to halt the computation as soon
as a type constraint is violated. This can be modeled by replacing the ($) form in the else
arm of the car definition with a call to the run-time error handler:

(define (car p cont)

(if (pair? p) (cont (%car p))

(error)))

Of course, type information recovered about the arguments to a particular application of
car may allow the conditional test to be determined at compile time, again allowing the
compiler to fold out the conditional test and error call, still preserving type-safety without
the run-time overhead of the type check.
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User Declarations

Type recovery can also pick up information from judiciously placed declarations inserted
by the programmer. There are essentially two types of user declarations, one requesting a
run-time type check to enforce the verity of the declaration, and one simply asserting a type
at compile time, in effect telling the compiler, “Trust me. This quantity will always have
this type. Assume it; don’t check for it.”

The first kind of declaration is just T’s enforce procedure [Rees+ 82], which can be
defined as:

(define (enforce pred val) (if (pred val) val (error)))

Enforce simply forces a run-time type check at a point the user believes might be beneficial
to the compile-time analysis, halting the program if the check is violated. For example,

(block (enforce number? x) . . . forms. . . )

allows the compiler to assume that references to x in the forms following the enforce have
the number type. Enforce allows execution to proceed into the body of

(let ((y (enforce integer? (foo 3)))) body)

only if (foo 3) returns an integer. Clearly, enforce-based type recovery is simply
conditional-branch based type recovery.

The “trust me” sort of user declaration is expressed in Scheme via the proclaim

procedure, which asserts that its second argument has the type specified by its first argument.
For example, (proclaim symbol? y) tells the compiler to believe that y has type symbol.
Like enforce, proclaim can also be viewed as a kind of conditional expression:

(define (proclaim pred val) (if (pred val) val ($)))

with ($) the “undefined effect” primop. Since an undefined effect means that “anything
goes,” the compiler is permitted to elide the conditional expression altogether and simply
take note of the programmer’s assertion that val has the declared type. Incorrect assertions
will still result in undefined effects.

9.1.2 Type Recovery from Multiple Sources

All three sources of type information — conditional branches, primop applications, and
user declarations — can be used together in recovering type information from programs,
thereby enabling many optimisations. Consider the delq procedure of figure 9.1. Because
ans is bound only to the constant '(), itself, and the result of a cons application, it must
always be a list. So all references to ans are completely typeable at compile time. Because
of the conditional type test (pair? rest), car and cdr are guaranteed to be applied to
legitimate pair values. Thus compile-time type recovery can guarantee the full type safety
of delq with no extra run-time type checks.

For a numerical example, consider the factorial procedure in figure 9.1. Note the
use of an explicit run-time type check, (enforce integer? n), to force the subsequent
reference to n to be of integer type. With the help of this user declaration, the analysis
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(define (delq elt lis)

(letrec ((lp (� (ans rest)

(if (pair? rest)

(let ((head (car rest)))

(lp (if (eq? head elt) ans

(cons head ans))

(cdr rest)))

(reverse! ans)))))

(lp '() lis)))

(define (fact n)

(letrec ((lp (� (ans m)

(if (= m 0) ans

(lp (* ans m) (- m 1))))))

(enforce integer? n)

(lp 1 n)))

Figure 9.1: Scheme delq and factorial

can determine that m is always bound to an integer, and therefore, that ans must also be
bound to an integer. Thus, the factorial function written with generic arithmetic operators
can have guaranteed type safety for the primop applications and also specialise the generic
arithmetic operations to integer operations, at the expense of a single run-time type check
per fact call.

If we eliminate the enforce form, then the type recovery can do less, because fact

could be called on bogus, non-integer values. However, if the equality primop (= m 0)

requires its arguments to have the same type, we can infer that references to m after the
equality test must be integer references, and so the multiplication and subtraction operations
are guaranteed to be on integer values. Hence, even in the naive, declaration-free case,
type-recovery analysis is able to pick up enough information from the code to guarantee
the type safety of fact with only a single type check per iteration, as opposed to the four
type checks required in the absence of any analysis.

The implementation of the type recovery algorithm discussed in section 9.5 can, in fact,
recover enough information from the delq and fact procedures of figure 9.1 to completely
assign precise types to all variable references, as discussed above. For these examples, at
least, compile-time type analysis can provide run-time safety with no execution penalty.
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9.2 Quantity-based Analysis

Type recovery is an example of what I call a quantity-based analysis. Consider the Scheme
expression

(if (< j 0) (- j) j)

Whatever number j names, we know that it is negative in the then-arm of the if expression,
and non-negative in the else-arm. In short, we are associating an abstract property of j’s
value (its sign) with control points in the program. It is important to realize that we are
tracking information about quantities (j’s value), not variables (j itself). For example,
consider the following expression:

(let ((i j)) (if (< j 0) (foo i)))

Clearly, the test involving j determines information about the value of i since they both
name the same quantity. In a quantity-based analysis, information is tracked for quantities,
and quantities can be named by multiple variables. This information can then be associated
with the variable references appearing in the program. For the purposes of keeping track of
this information, we need names for quantities; variables can then be bound to these quantity
names (which are called qnames), which in turn have associated abstract properties.

In principle, calls to primops such as + or cons create new qnames since these operations
involve the creation of new computational quantities. On the other hand, lambda binding
simply involves the binding of a variable to an already existing qname. In practice, extra
qnames often must be introduced since it can be difficult to determine at compile-time
which qname a variable is bound to. Consider, for example, the following procedure:

(define (foo x y) (if (integer? x) y 3))

It might be the case that all calls to foo are of the form (foo a a), in which case x and y

can refer to the same qname. But if the analysis cannot determine this fact at compile time,
x and y must be allocated two distinct qnames; hence determining information about x’s
value will not shed light on y’s value.

As another example, consider the vector reference in the expression:

(let ((y (vector-ref vec i))) . . .)

Now, y is certainly bound to an existing quantity, but it is unlikely that a compile-time
analysis will be able to determine which one. So, a new qname must be assigned to y’s
binding.

In general, then, a conservative, computable, quantity-based analysis approximates the
tracking of information on run-time values by introducing new qnames whenever it is
unable to determine to which existing qname a variable is bound. These extra qnames limit
the precision of the analysis, but force the analysis to err conservatively.

9.3 Exact Type Recovery

Following the NSAS approach, the first step towards type recovery is to define an exact
analysis that will capture the notion of type recovery. Our exact semantics, which we will



9.3. Exact Type Recovery 113

call ETREC, does not have to be computable; we will concern ourselves with a computable
approximation in section 9.4.

For the purposes of this chapter, we’ll drop back to the simpler, less formal semantics of
chapter 3. So the semantics will have no store or side-effects, run-time error checks will be
omitted, we’ll gloss over the details of the nb gensym function, and the semantic functions
will be curried over their multiple arguments instead of taking single tuples. These features
can be restored as we did going from the informal control-flow semantics of chapter 3 to
the formal semantics of chapter 4.

Exact type recovery gives us a type cache:

A type cache for a CPS Scheme programP is a function � that, for each variable
reference r and each binding contour b over r, returns �hr; bi, a type of the
value to which r could evaluate in contour b.

Once we’ve computed a type cache, we can easily find the type for any variable reference
r:v in our program:

RefType[[r:v]] =
G
b

�hr; bi:

Here we are joining in the type lattice all the various types that a reference r had in all its
various binding contexts. The least-upper bound of these types is a legitimate static type
for r.

9.3.1 Basic Structure

The ETREC semantics maps a CPS Scheme program to its type cache. Its structure,
however, is very similar to a standard semantics for CPS Scheme. Before proceeding to the
details of the type-recovery machinery, I’ll briefly sketch out this basic structure.

The sets Bas, Proc, and D are just as in the standard semantics of chapter 3. The domain
of type caches, TCache, is the cpo of partial functions from variable-reference/contour pairs
to types.

Bas = Z + ffalseg

Proc = (LAM � BEnv) + PRIM + fstopg

D = Proc + Bas

TCache = (REF � CN)! Type

The basic environment and procedure structures are identical to the standard semantics
case. Note that we’ve named the VAR�CN set of variable bindings; this will be convenient
later on.

CN Contours

VB = VAR� CN

BEnv = LAB * CN

VEnv = VB * D
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In the ETREC semantics, the procedure and argument forms of a call expression are
evaluated to values in D with the Av function, which is identical to the A function of the
standard semantics.

Av: ARG [ FUN ! BEnv ! VEnv * D

Av [[k]] � ve = K k

Av [[prim]] � ve = prim

Av [[`]] � ve = h`; �i

Av [[v]] � ve = ve hv; �(binder v)i

Procedure calls are handled by the C and F functions.

C: CALL ! BEnv ! VEnv ! QEnv ! TTab ! TCache

C [[(f a1 . . . an)]] � ve qe � =

� t F f 0 av qv ve qe � 0

where av#i = Av ai � ve

f 0 = Av f � ve

� 0 = f 2 REF �! � u >
�
Aq f � qe 7! type=proc

�
otherwise �

� =
�
hri; � (binder vi)i 7! � (Aq vi � qe)

�
8f; ai 2 REF

where ai = [[ri:vi]] and f = [[r0:v0]]

qv#i = ai 2 REF �! Aq ai � qe (quantity)
otherwiseAt ai (type)

C takes five arguments: a call expression, the lexical contour environment �, the variable
environment ve , and two others used for type recovery. C processes the first three arguments
just as in the standard semantics case; we will return to the processing of the type information
in the next subsection.

The F function applies procedures to arguments.

F: Proc ! D� ! (Quant + Type)� ! VEnv ! QEnv ! TTab ! TCache

F h[[`:(� (v1 . . . vn) c)]]; �i av qv ve qe � =

C c �0 ve 0 qe 00 � 0

where b = nb

�0 = �
�
` 7! b

�
ve 0 = ve

�
hvi; bi 7! av#i

�
qe 0 = qe

�
hvi; bi 7! qv#i

�
8i 3 qv#i 2 Quant (*)

qe 00 = qe 0
�
hvi; bi 7! hvi; bi

�
� 0 = �

�
hvi; bi 7! qv#i

�
)
8i 3 qv#i 2 Type (**)

Besides the extra arguments used for tracking type information, qv , qe , and � , and their
associated processing, F is identical to the standard semantics case.
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To fully specify F , we must also give the functional representation for each primop
and the terminal stop continuation. We will return to this after considering the mechanics
of type-tracking. We also need to specify how C handles call forms that are letrec

expressions instead of simple procedure calls. Again, ignoring for the moment the type
processing, this case is just like the standard semantics case:

C [[c:(letrec ((f1 l1). . .) c0)]] � ve qe � = C c0 �0 ve 0 qe 0 � 0

where b = nb

�0 = �
�
c 7! b

�
ve 0 = ve

�
hfi; bi 7! Av li �

0 ve
�

qe 0 = qe
�
hfi; bi 7! hfi; bi

�
� 0 = �

�
hfi; bi 7! type=proc

�

9.3.2 Quantities and Types

We can now turn to the details of tracking type information through the ETREC interpre-
tation. This will involve the quantity analysis model discussed in section 9.2. The general
type recovery strategy is straightforward:

� Whenever a new computational quantity is created, it is given a unique qname. Over
the lifetime of a given quantity, it will be bound to a series of variables as it is passed
around the program. As a quantity (from D) is bound to variables, we also bind its
qname (from Quant) with these variables.

� As execution proceeds through the program, we keep track of all currently known
information about quantities. This takes the form of a type table � that maps qnames
to type information. Program structure that determines type information about a
quantity enters the information into the type table, passing it forward.

� When a variable reference is evaluated, we determine the qname it is bound to, and
index into the type table to discover what is known at that point in the computation
about the named quantity. This tells us what we know about the variable reference in
the current context. This information is entered into the answer type cache.

This amounts to instrumenting our standard semantics to track the knowledge determined
by run-time type tests, recording relevant snapshots of this knowledge in the answer type
cache as execution proceeds through the program.

The first representational decision is how to choose qnames. A simple choice is to name
a quantity by the first variable binding hv; bi to which it is bound. Thus, the qname for the
cons cell created by

(cons 1 2 (� (x) . . .))
is h[[x]]; bi, where b is the contour created upon entering cons’s continuation. When future
variable bindings are made to this cons cell, the binding will be to the qname h[[x]]; bi. Thus,
our qname set Quant is just the set of variable bindings VB:

Quant = VB:
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Having chosen our qnames, the rest of the type-tracking machinery falls into place. A
quantity environment (qe 2 QEnv) is a mapping from variable bindings to qnames. The
qname analog of the variable environment ve , the quantity environment is a global structure
that is augmented monotonically over the course of program execution. A type table
(� 2 TTab) is a mapping from qnames to types. Our types are drawn from some standard
type lattice; our toy dialect will use the obvious lattice over the three basic types: procedure,
false, and integer.

Type = ftype=proc; type=int; type=false;?;>g

QEnv = VB * Quant

TTab = Quant ! Type

We may now consider the workings of the type-tracking machinery in the F and
C functions. Looking at F , we see that the function linkage requires three additional
arguments to be passed to a procedure: the quantity vector qv , the quantity environment
qe , and the current type table � . The quantity environment and type table are as discussed
above. The quantity vector gives quantity information about the arguments passed to the
procedure. Each element of qv is either a qname or a type. If it is a qname, it names
the quantity being passed to the procedure as its corresponding argument. However, if
a computational quantity has been created by the procedure’s caller, then it has yet to be
named — a quantity is named by the first variable binding to which it is bound, so the current
procedure is responsible for assigning a qname to the new quantity when it binds it. In this
case, the corresponding element of the quantity vector gives the initial type information
known about the new quantity. Consider the cons example given above. The cons primop
creates a new quantity — a cons cell — and calls the continuation (� (x) . . . ) on it. Since
the cons cell is a brand new quantity, it has not yet been given a qname; the continuation
binding it to x will name it. So instead of passing the continuation a qname for the cell,
the cons primop passes the type type=pair (i.e., qv = htype=pairi) giving the quantity’s
initial type information.

We can see this information being used in the F equation. The line marked with (*)
binds qnames from the quantity vector to their new bindings hvi; bi. The lines marked with
(**) handle new quantities which do not yet have qnames. A new quantity must be assigned
its qname, which for the ith argument is just its variable binding hvi; bi. We record the
initial type information (qv#i 2 Type) known about the new quantity in the type table � 0.
The new quantity environment qe 00 and type table � 0 are passed forward to the C function.

C receives as type arguments the current quantity environment qe , and the current type
table � . Before jumping off to the called procedure, C must perform three type-related
tasks:

� Record in the final answer cache the type of each variable reference in the call. If a
call argument ai is a variable reference, ai = [[ri:vi]], then it is evaluated to a qname by
the auxiliary functionAq, the qname analog to theAv function. If the procedure form
f is a variable reference, f = [[r0:v0]], it is similarly evaluated to a qname. The qname
is used to index into the type table � , giving the type information currently known
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about the quantity bound to variable vi. Call this type t. We record in the type cache
that the variable reference ri evaluated to a value of type t in contour �(binder vi).
This is the contribution � that C makes to the final answer for the current call.

� Compute the quantity vector qv to be passed to the called procedure f . If ai is
a variable reference, its corresponding element in qv is the qname it is bound to
in the current context; this is computed by the Aq auxiliary. On the other hand,
if the argument ai is a constant or a lambda, then it is considered a new, as-yet-
unnamed quantity. The auxiliaryAt determines its type; the called procedure will be
responsible for assigning this value a qname.

� Finally, note that C can do a bit of type recovery. If f does not evaluate to a procedure,
the computation becomes undefined at this call. We may thus assume that f ’s quantity
is a procedure in following code. We record this information in the outgoing type
table � 0: if f is a variable reference, we find the qname it is bound to, and intersect
type=proc with the type information recorded for the qname in � . If f is not a variable
reference, it isn’t necessary to do this. (Note that in the letrec case, C performs
similar type recovery, recording that the new quantities bound by the letrec all have
type type=proc. This is all the type manipulation C does for the letrec case.)

Aq [[v]] � qe = qe hv; � (binder v)i

At [[(� (v1 . . . vn) c)]] = type=proc

At [[n]] = type=int (numeral n)

At [[#f]] = type=false

Most of the type information is recovered by primop applications, defined by F . We’ll
use + and test-integer for representative examples.

F [[+]] hx; y; ki hqx ; qy ; qk i ve qe � = F k hx+ yi htsi ve qe � 00

where tx = QT qx �

ty = QT qy �

ts = infer+htx ; tyi
� 0 = Tu qx (tx u type=int) �

� 00 = Tu qy (ty u type=int) � 0

The + primop takes three arguments: two values to be added, x and y, and a continuation
k. Hence the argument vector and quantity vector have three components each. The primop
assigns tx and ty to be the types that execution has constrained x and y to have. These types
are computed by the auxiliary function QT:(Quant + Type)! (Quant ! Type)! Type.

QT q � = q 2 Quant �! � q

q 2 Type �! q
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QT maps an element q from a quantity vector to type information. If the element is a
qname, then QT looks up its associated type information in the type table � . If the element
is a type (because the corresponding quantity is a new, unnamed one), then it is the initial
type information for the quantity, and so QT simply returns that type. Having retrieved
the type information for its arguments x and y, + can then compute the type ts of its result
sum. This is handled by the auxiliary function infer+, whose details are not presented.
Infer+ is a straightforward type computation: if both arguments are known to be integers,
then the result is known to be an integer. If our language includes other types of numbers,
infer+ can do the related inferences. For example, it might infer that the result of adding
a floating point number to another number is a floating point number. However infer+
computes its answer, ts must be a subtype of the number type, since if control proceeds
past the addition, + is guaranteed to produce a number. Further, + can make inferences
about subsequent references to its arguments: they must be numbers (else the computation
becomes undefined at the addition). The auxiliary function Tu updates the incoming type
table with this inference; the result type table � 00 is passed forward to the continuation.

Tu q t � = q 2 Quant �! �
�
q ! t

�
q 2 Type �! �

Tu takes three arguments: an element q from a quantity vector (i.e., a qname or type), a type
t, and a type table � . If q is a qname, the type table is updated to map q 7! t. Otherwise, the
type table is returned unchanged (the corresponding quantity is ephemeral, being unnamed
by a qname; there is no utility in recording type information about it, as no further code can
reference it). With the aid of Tu, + constrains its arguments a and b to have the number type
by intersecting the incoming type information tx and ty with type=number and updating
the outgoing type table � 00 to reflect this.1 The sum x + y, its initial type information
ts , and the new type table � 00 are passed forward to the continuation, thus continuing the
computation. To simplify the equations, we omit the case of halting the computation if
there is an error in the argument values, e.g., x or y are not numbers.2

F [[test-integer]] hx; k0; k1i hqx ; qk 0; qk 1i ve qe � =

x 2 Z �! F k0 hi hi ve qe �t
otherwise F k1 hi hi ve qe �f
where tx = QT qx �

�f = Tu qx (tx � type=int) �

�t = Tu qx (tx u type=int) �

1Note that the + primop is missing an opportunity to recover some available type information: it is
not recovering type information about its continuation. For example, in code executed after the call to +’s
continuation, we can assume that the quantity called has type type=proc. As discussed in section 3.8.3, all
continuations, variables bound to continuations, and calls to continuations in a CPS Scheme program are
introduced by the CPS converter; the converter can mark these forms as it introduces them. So the types of
continuation variables can be inferred statically, and there’s no point in tracking them in our type-recovery
semantics.

2These equations will consistently omit the handling of run-time errors, e.g., applying a two-argument
procedure to three values, dividing by zero, or applying + to a non-number. This is simple to remedy: run-time
errors are defined to terminate the program immediately and return the current type cache.
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The primop test-integer performs a conditional branch based on a type test. It takes
as arguments some value x and two continuations k0 and k1. If x is an integer, control
is passed to k0, otherwise control is passed to k1. Test-integer uses QT to look up tx,
the type information recorded in the current type table � for x’s qname qx. There are two
outgoing type tables computed, one which assumes the test succeeds (�t), and one which
assumes the test fails (�f ). If the test succeeds, then qx’s type table entry is updated by
Tu to constrain it to have the integer type. Similarly, if the test fails, qx has the integer
type subtracted from its known type. The appropriate type table is passed forward to the
continuation selected by test-integer, producing the answer type cache.

Finally, we come to the definition of the terminal stop continuation, retrieved by F .
Calling the stop continuation halts the program; no more variables are referenced. So the
semantic function for stop just returns the bottom type cache ?:

F [[stop]] av qv ve qe � = ?:

The bottom type cache is the one that returns the bottom type for any reference: ?TCache =

�vb: ?Type. Note that in most cases, the bottom type cache returned by calling stop is not
the final type cache for the entire program execution. Each call executed in the course of
the program execution will add its contribution to the final type cache. This contribution is
the expression � in the C equation for simple call expressions (page 114).

Having defined all the ETREC type tracking machinery, we can invoke it to compute
the type cache � for a program by simply closing the top-level lambda ` in the empty
environment, and passing it the terminal stop continuation as its single argument:

� = F h`; [ ]i hstopi htype=proci [ ] [ ] [ ] :

9.4 Approximate Type Recovery

9.4.1 Initial Approximations

Having defined our exact type recovery semantics, we can consider the problem of abstract-
ing it to a computable approximation, while preserving some notion of correctness and as
much precision as possible.

Let’s start with the standard set of approximations that we used for simple control-flow
analysis:

� We run the interpretation forward for both continuations to a conditional branch,
joining the result type caches together.

� We fold the infinite contour set down to a finite contour set. The variable environment
maps abstract variable bindings to sets of values.
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9.4.2 Problems with the Abstraction

Because of the environment problem, this standard set of approximations breaks the cor-
rectness of our semantics. The reason is that by folding together multiple bindings of the
same variable, information can leak across quantity boundaries. We can see this by adapting
the environment puzzle of chapter 8 to the type recovery case:

(let ((f (� (x h) (if (integer? x) (h)

(� () x)))))

(f 3 (f 2.7 '#f)))

Suppose that the procedural abstraction used by our analysis identifies together the contours
created by the two calls to f. Consider the second execution of the f procedure: the variable
x is tested to see if its value (3) is an integer. It is, so we jump to the value of h, which is
simply (� () x). Now, we have established that x is bound to an integer, so we can record
that this reference to x is an integer reference — which is an error, since h = (� () x) is
closed over a different contour, binding x to a non-integer, 2.7. We tested one binding of x
and referred to a different binding of x. Our analysis got confused because we had identified
these two bindings together, so that the information gathered at the test was erroneously
applied at the reference.

This is a deep problem of the approximation. Fixing it requires going to a reflow-based
analysis.

9.4.3 Special Contours

To repeat the basic idea of the previous chapter, the problem with abstract variable bindings
is that they refer to values bound at temporally distinct points in the abstract interpretation.
We don’t want to confuse the binding that we are tracking with past or future bindings in
the abstract interpretation that will use the same abstract contour.

The fix is to define a special contour that will stand for the particular contour whose
bindings we are tracking for a single reflow. Flow analysis then tracks this special contour,
whose bindings will never be identified with any other bindings of the same variables.
Information associated with quantities bound in this special contour cannot be confounded.
The other approximate contours are used only to provide the approximate control flow
information for tracing through the program’s execution. We still have only a finite number
of contours — the finite number of approximate contours plus the one special contour —
so our analysis is still computable.

For example, suppose we know that abstract procedure f =
D
[[`:(� (x y) . . . )]]; b�E is

called from abstract call context
D
[[c:(g 3 false)]]; b�0E

. We can do a partial type recovery
for references to x and y. When we perform the initial function call of the reflow to f ,
we allocate the unique contour special . The variables we are tracking are bound in this
contour, with variable bindings h[[x]]; special i and h[[y]]; special i. We create new qnames
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dProc = (LAM � dBEnv) + PRIM + fstopg
bD = P( dProc)

dTCache = (REF � dCN) ! Type
dTCachespec = REF ! Type

dCCtxt = CALL � dBEnv
dCN = LAB + fspecialg
dVB = VAR �dCN
dBEnv = LAB ! dCN
dVEnv = dVB ! bD

dQuant = dVB?dTTab = dQuant ! Type

bC: CALL ! dBEnv ! dVEnv ! dTTab ! dTCachespecbF : dProc ! bD� ! dQuant
�
! dVEnv ! dTTab ! LAB ! dTCachespecbFspec: dProc ! bD� ! Type� ! dVEnv ! LAB ! dTCache

Figure 9.2: Abstract Domains and Functionalities

for the arguments passed on this call to f , which are just the new special variable bindings
h[[x]]; special i and h[[y]]; special i. Our initial type table

� =
�
h[[x]]; special i 7! type=int; h[[y]]; special i 7! type=false

�

is constructed from what is known about the types of the arguments in c (this may be
trivially known, if the arguments are constants, or taken from a previous iteration of this
algorithm, if the arguments are variables).

We may now run our interpretation forward, tracking the quantities bound in the special
context. Whenever we encounter a variable reference to x or y, if the reference occurs in
the contour special , then we can with certainty consult the current type table � to obtain the
type of the reference. Other contours over x and y won’t confuse the analysis. Note that
we are only tracking type information associated with the variables x and y, for a single
call to `. In order to completely type analyse the program, we must repeat our analysis for
each lambda for each call to the lambda. This brings us to the Reflow semantics.

9.4.4 The Reflow Semantics

The abstract domains and functionalities of the Reflow semantics are given in figure 9.2.
The abstract domains show the approximations discussed in subsection 9.4.1: basic values



122 Chapter 9. Applications II: Type Recovery

have been dropped, the contour set dCN is finite, and elements of bD are sets of abstract
procedures, not single values. We’ll use the 1CFA abstraction, so the contours are call site
labels plus the token special to mark the special reflow contour.

Notice that we have two different abstract variants of the F function: bF and bFspec.
The bF function is the ordinary variant which allocates abstract contours when applying
procedures. The bFspec function is the special variant which allocates the special contour
when it is applied. The bFspec function is used only once per reflow, during the initial call.

The idea of the Reflow semantics is to track only one closure’s variables at a time. This
is done by the Reflow function:

Reflow: dCCtxt ! dVEnv ! Type� ! dTCache:

For example, Reflow
D
[[(f a b)]]; b�E cve htype=int; type=proci restarts the program at

the call (f a b), in the context given by the abstract contour environment b� and variable
environment cve , assuming a has type type=int and b has type type=proc. Reflow runs the
program forward, tracking only the variables bound by the initial call to f, returning a type
cache giving information about references to these variables. This is done by allocating
a single, special contour for the initial procedure called from (f a b), and tracking the
variables bound in this contour through an abstract execution of the program.

The initial type vector given to Reflow comes from an auxiliary function, TVInit:

TVInit: dCCtxt ! dTCache ! Type�

TVInit
D
[[(f a1 . . .an)]]; b�

E
�̂ = ht1; . . . ; tni

where ti = ai 2 REF �! �̂
D
ai;

b�(binder ai)
E

otherwise At ai

TVInit takes a call context and a type cache, and returns the types of all the arguments in
the call. If the argument is a variable reference, the type cache is consulted; if the argument
is a constant or a lambda, the auxiliary functionAt gives the appropriate type.

If we wish to restart our program at an arbitrary call context
D
c; b�E with Reflow, we

need a variable environment cve that approximates all the variable environments that ever
pertained at this call context. This is easy to handle: we always use the final variable
environment that was present at the end of a control-flow analysis performed using the
single-threaded environment algorithm of section 5.3. Since the variable environment is
only augmented monotonically during the course of this analysis, the terminal environment
is a superset of every intermediate variable environment through which the interpretation
evolved. So, before performing the reflow analysis, we first perform a control-flow analysis
with the single-threaded environment algorithm. This produces two items critical for the
reflow analysis: the call cache 
̂ and terminal variable environment cve�nal . The domain of
the call cache Dom(
̂) gives us the call contexts from which we must reflow, and cve�nal
allows us to restart the interpretations in mid-stride.

Given TVInit and Reflow, we can construct a series of approximate type caches, con-
verging to a fixed point. The initial type cache �̂0 is the most precise; at each iteration, we
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redo the reflow analysis assuming type cache �̂i, computing a weaker type cache �̂i+1. The
limit �̂ is the final result. The recomputation of each successive type cache is straightfor-
ward: for every call context

D
c; b�E in the domain of call cache 
̂ (that is, every call context

recorded by the preliminary control-flow analysis), we use the old type cache to compute
the types of the arguments in the call, then reflow from the call, tracking the variables bound
by the call’s procedure, assuming the old type information. The returned type caches are
joined together, yielding the new type cache. So the new type cache is the one we get by
assuming the type assignments of the old type cache. A fixed point is a legitimate type
assignment. Since all of our abstract domains are of finite size, and our type lattice has
finite height, the least fixed point is computable.

�̂0 = �
D
r; b̂

E
: ?

�̂i+1 = �̂i t
G

hc; �i2Dom(
̂)

Reflow hc; �i cve�nal (TVInit
D
c; b�E �̂i)

�̂ =
G
i

�̂i

Before we get to the machinery of the Reflow function itself, let us examine the functions
that evaluate arguments in call expressions:

bAv [[k]]
b� cve = ; bAv [[prim]] b� cve = fprimg

bAv [[`]] b� cve =
nD

`; b�Eo bAv [[v]] b� cve = cve Dv; b�(binder v)E

bAq [[v]]
b� = b�(binder v) = special �! hv; special i

otherwise ?

The bAv function evaluates call arguments, and is the straightforward abstraction of its
counterpart in the ETREC semantics. The bAq function is a little more subtle. Since
the Reflow semantics only tracks variables bound in the special contour, bAq only returns
quantities for these bindings; approximate bindings are mapped to an undefined qname,
represented with ?. This means that we no longer need a quantity environment to map
variable bindings to qnames — the special bindings of the variables being tracked are also
the qnames of their bound values.

Now we are in a position to examine the machinery that triggers off a single wave of
special contour type tracking: the Reflow function, and its auxiliary bFspec function.

Reflow h[[c:(f a1 . . . an)]]; �i cve tv =
G

f 02F

bFspec f
0 cav tv cve c

where F = bAv f
b� cve

cav#i = bAv ai b� cve
Reflow simply reruns the interpretation from each possible procedure that could be called
from call context hc; �i. Each procedure is applied with the “special” function bFspec, which
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arranges for the initial application of the procedure to be a special one. The 1CFA contour
c passed to bFspec is the abstract contour that special will represent during this reflow. The
type caches resulting from each call are joined together into the result cache.

The special application of a procedure performed by bFspec is done only at the beginning
of the reflow. Instead of allocating the 1CFA contour b̂, bFspec allocates the special contour
in its place, designating it the one and only special contour in a given execution thread.
The incoming values are bound in the outgoing variable environment cve 0 under the special
contour. The incoming type information is used to create the initial type table �̂ passed
forward to track the values bound under the special contour. The rest of the computation is
handed off to the bC procedure. bC is similar to C with the exception that it only records the
type information of references that are bound in the special contour.

bFspec

D
[[`:(� (v1 . . . vn) c)]]; b�E cav tv cve b̂ = despec b̂

� bC c b�0 cve 0 �̂�
where �̂ =

�
hvi; special i 7! tv#i

�
b�0

= b� �` 7! special
�

cve 0 = cve t �hvi; special i 7! cav#i�

despec: CN ! dTCachespec ! dTCache

despec b̂ �̂spec = �
D
r; b̂0

E
: b̂ = b̂0 �! �̂spec r

otherwise ?

Because a single reflow tracks only the bindings of one special contour, the result type
cache has information only for variable references bound in that contour. So the type cache
returned by the bC application indexes on variable references, not reference/contour pairs
— the contour is understood to be the special contour. Now, for this particular reflow, the
special contour allocated by bFspec stands for a particular abstract contour, b̂. So the result
type cache must be converted to a type cache that replaces the simple variable reference r

entries with
D
r; b̂

E
entries. This is done with the auxiliary despec function. Let

�̂ = despec b̂ �̂spec :

Then �̂
D
r; b̂

E
just returns �̂spec r, and �̂

D
r; b̂0

E
gives bottom when b̂0 6= b̂.

bFspec must also be defined over primops. Primops do not have variables to be tracked,
so instead primops pass the buck to their continuations. The + primop uses its initial-type
vector htx ; ty; tk i to compute the initial-type vector htsi for its continuation. The + primop
then employs bFspec to perform type recovery on the variable bound by its continuation.

bFspec [[p:+]]
D
x̂; ŷ; k̂

E
htx ; ty; tk i cve b̂ =

G
k2k̂

bFspec k h;i htsi cve icp

where ts = infer+htx ; tyi

The test-integer primop is even simpler. Since its continuations do not bind variables,
there is nothing to track, so the function just immediately returns the bottom type cache.

bFspec [[test-integer]]
D
x̂; k̂0; k̂1

E
htx ; tk 0; tk 1i cve b̂ = ?
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Once the initial call to bFspec has triggered a wave of type recovery for a particular
lambda’s variables, the actual tracking of type information through the rest of the program
execution is handled by the bF and bC functions.

bC [[c:(f a1 . . . an)]] b� cve �̂ = �̂ t
� G
f 02F

bF f 0 cav cqv cve �̂ 0 c

�

where F = bAv f
b� cve

cav#i = bAv ai
b� cve

[[ri:vi]] = ai (8ai 2 REF)
[[r0:v0]] = f (if f 2 REF)
b̂i =

b�(binder vi)
q̂i =

bAq vi
b�

cqv = hq̂1=?; . . . ; q̂n=?i
�̂ =

�
ri 7! �̂ q̂i

�
8q̂i 6= ?

�̂ 0 = q̂0 6= ? �! �̂ u>
�
q̂0 7! type=proc

�
otherwise �̂

As bC evaluates its arguments, it checks to see if any are variables whose types are being
tracked. Suppose an argument ai is a variable reference [[ri:vi]]. The variable vi is being
tracked if it is bound in the special contour, that is, if b̂i = special , where b̂i =

b�(binder vi).
In this case, it will be mapped to a non-bottom qname by bAq. If an argument is being
tracked, we look up its current type �̂ q̂i, and record this in bC’s contribution �̂ to the type
cache. An outgoing type table �̂ 0 is constructed, reflecting that f must be of type type/proc
(again, note that this fact is only recorded in �̂ 0 if f is a variable currently being tracked).
The notation q̂i=? in the construction of the outgoing quantity vector cqv means “the value
of q̂i if it is defined, otherwise?.” In other words, if an argument ai is a variable reference,
then the corresponding element in cqv is q̂i. If the argument is a lambda or constant, then
it clearly isn’t one of the special qnames created by bFspec at the beginning of the reflow,
so the corresponding element in cqv is just ?. The rest of bC’s stucture is a straighforward
abstraction of the exact analysis. In keeping with the 1CFA abstraction, the call site c is
passed to bF to be used for its abstract contour.

Since multiple contours are identified together in the abstract semantics, values in the
approximate domain are sets of abstract procedures. Because of this, the call must branch
to each of the possible procedures f 0 to which the expression f could evaluate. The result
type caches are then all joined together.

An approximate, non-special contour is allocated when bF causes control to enter a
closure. Because multiple environments are thus identified together by bF applications, it
cannot track type information for the variables bound by the procedure. Hence bF has a
fairly simple definition for the closure case, just augmenting the environment structure and
passing the closure’s body c off to bC.
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bF
D
[[`:(� (v1 . . . vn) c)]]; b�

E
cav cqv cve �̂ b̂ = bC c b�0 cve 0 �̂

where b�0 = b�
h
` 7! b̂

i

cve 0 = cve t
hD
vi; b̂

E
7! cav#i

i

bF ’s definition for the terminal stop continuation is, again, trivial, ignoring its argument
v and returning the bottom type cache:

bF [[stop]] cav cqv cve �̂ b̂ = ?:

bF ’s behavior on primops is more interesting. If the argument x̂ is being tracked (i.e.,
cqx is a quantity, not bottom), then we intersect type=int with cqx ’s incoming type, passing
the result type table �̂t to the true continuation, and we subtract type=int from cqx ’s type in
�̂f the table passed to the false continuation. In other words, we do the type recovery of the
ETREC semantics, but only for the values being tracked.

bF [[p:test-integer]]
D
x̂; k̂0; k̂1

E D
cqx ; cqk 0;

cqk 1

E
cve �̂ b̂ =

� G

k2^k0

bF k hi hi cve �̂t ic
0
p

�
t

� G

k2^k1

bF k hi hi cve �̂f ic1
p

�

where �̂f = cqx 6= ? �! �̂
�cqx 7! (�̂ cqx � type=int)

�

otherwise �̂

�̂t = cqx 6= ? �! �̂
�cqx 7! (�̂ cqx u type=int)

�

otherwise �̂

The + primop is similar. If the arguments x̂ and ŷ are being tracked, then we update
the type table passed forward, otherwise we simply pass along the incoming type table
�̂ unchanged. Since the continuations k are applied by the approximate bF function, the
quantity vector is h?i — we will not be tracking the variables bound by the call to k.

bF [[p:+]]
D
x̂; ŷ; k̂

E D
cqx ; cqy ; cqk

E
cve �̂ b̂ =

G

k2^k

bF k h;i h?i cve �̂ 00 icp

where �̂ 0 = cqx 6= ? �! �̂
�cqx 7! (type=number u �̂ cqx )�

otherwise �̂

�̂ 00 = cqy 6= ? �! �̂ 0
�cqy 7! (type=number u �̂ 0 cqy)�

otherwise �̂ 0

To finish off the Reflow semantics, we must take care of letrec. Abstracting C’s
definition for letrec is simple. Evaluating the letrec’s bound expressions only involves
closing lambdas, not referencing variables. So the letrec will not “touch” any of the
variables we are currently tracking. Hence the letrecdoes not make any local contribution
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to the answer type cache, but simply augments the variable environment cve with the
procedure bindings and recursively evaluates the inner call c0.

bC [[c:(letrec ((f1 l1). . .) c0)]] b� cve �̂ = bC c0 b�0 cve 0 �̂
where b̂ = c

b�0 = b�
h
c 7! b̂

i

cve 0 = cve t
hD
fi; b̂

E
7! bAv li

b�0 cve
i

One detail of letrec that we have neglected is tracking the types of the variables
bound by letrec. There are several ways to handle this. We could add a case to the
Reflow function to handle reflowing from letrec expressions, creating a special contour
for the letrec’s binding. This is a fairly complex and expensive way to handle a simple
case. Because letrec is syntactically restricted to binding only lambda procedures to its
variables, we can statically analyse this case, and simply assign in advance the procedure
type to all references to all letrec variables. The simplest place to insert this static
assignment is in the initial type cache �̂0 used in the Reflow iteration:

�̂0 = �
D
[[r:v]]; b̂

E
: binder v 2 CALL �! type=proc (letrec)
binder v 2 LAM �! ? (lambda).

This performs the type analysis of the letrec variables in one step, leaving the rest of the
Reflow semantics free to concentrate on the variables bound by lambdas.

9.5 Implementation

I have written a prototype of the type recovery algorithm in T. This implementation uses
the same general framework as the 1CFA implementation discussed in section 5.4. The
type-recovery code is about 900 lines of heavily commented Scheme. The type lattice
includes the symbol, pair, false, procedure, fixnum, bignum, flonum, vector, list, integer,
and number types. The implementation is for the most part a straightforward transcription of
the approximate type recovery semantics, using the single-threaded time-stamp techniques
for the variable environment, store, and quantity environment.

Like the basic 1CFA implementation, I have made little effort to optimise or even
compile the implementation — response time in the interpreter is sufficiently quick for
small test cases. At this point in my experimentation, there is no reason to believe that
efficiency of the analysis will be an overriding issue in practical application of the type
recovery algorithm.

A reflow-based analysis is, however, quite a bit slower than a simple 1CFA-based
analysis. I have applied the type recovery to the little puzzle example from section 9.4.2,
and the delq and fact procedures of figure 9.1. Running interpreted T on a DECstation
3100 PMAX produced the following times:



128 Chapter 9. Applications II: Type Recovery

puzzle 5.1 sec
fact 7.8 sec
delq 5.3 sec

As an example of the algorithm’s power, it is able to completely recover the types of
all variable references in the delq and fact procedures given in section 9.1. The types
recovered for the puzzle and fact examples are shown in detail in appendix B.

The allure of type recovery, of course, is type-safe Scheme implementations with little
run-time overhead. It remains to be seen whether there is enough recoverable type infor-
mation in typical code to allow extensive optimisation. The algorithm has not been tested
extensively on a large body of real code. However, these early results are encouraging.

9.6 Discussion and Speculation

This section is a collection of small discussions and speculations on various aspects of
Scheme type recovery.

9.6.1 Limits of the Type System

From the optimising compiler’s point of view, the biggest piece of bad news in the Scheme
type system is the presence of arbitrary-precision integers, or “bignums.” Scheme’s
bignums, an elegant convenience from the programmer’s perspective, radically interfere
with the ability of type recovery to assign small integer “fixnum” types to variable refer-
ences. The unfortunate fact is that two’s complement fixnums are not closed under any
of the common arithmetic operations. Clearly adding, subtracting, and multiplying two
fixnums can overflow into a bignum. Less obvious is that simple negation can overflow:
the most negative fixnum overflows when negated. Because of this, not even fixnum di-
vision is safe: dividing the most negative fixnum by �1 negates it, causing overflow into
bignums. Thus, the basic fixnum arithmetic operations cannot be safely implemented with
their corresponding simple machine operations. This means that most integer quantities
cannot be inferred to be fixnums. So, even though type recovery can guarantee that all the
generic arithmetic operations in figure 9.1’s factorial function are integer operations, this
does not buy us a great deal.

Not being able to efficiently implement safe arithmetic operations on fixnums is terrible
news for loops, because many loops iterate over integers, particularly array-processing
loops. Taking five instructions just to increment a loop counter can drastically affect the
execution time of a tight inner loop.

There are a few approaches to this problem:

� Range analysis
Range analysis is a data-flow analysis technique that bounds the values of numeric
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variables [Harrison 77]. For example, range analysis can tell us that in the body of
the following C loop, the value of i must always lie in the range [0; 10):

for(i=9; i>=0; i--) printf("%d ", a[i]);

Range analysis can probably be applied to most integer loop counters. Consider the
strindex procedure below:

(define (strindex c str)

(let ((len (string-length str)))

(letrec ((lp (lambda (i)

(cond ((>= i len) -1) ; lose

((char= c (string-ref str i)) i) ; win

(else (loop (+ i 1))))))) ; loop

(lp 0))))

Type recovery can guarantee that len, being the result of the string-lengthprimop,
is a fixnum. Range analysis can show that i is bounded by 0 and a fixnum; this is
enough information to guarantee that i is a fixnum. Range analysis is useful in its
own right as well — in this example, it allows us to safely open-code the character
access (string-ref str i) with no bounds check.

� Abstract safe usage patterns
The poor man’s alternative to range analysis is to take the usage patterns that are
guaranteed to be fixnum specific, and package them up for the user as syntactic or
procedural abstractions. These abstractions can be carefully decorated withproclaim
declarations to force fixnum arithmetic. For example, a loop macro which has a
(for c in-string str) clause can safely declare the string’s index variable as a
fixnum. This approach can certainly pick up string and array index variables.

� Disable bignums
Another cheap alternative to range analysis is to live dangerously and provide a
compiler switch or declaration which allows the compiler to forget about bignums and
assume all integers are fixnums. Throwing out bignums allows simple type recovery
to proceed famously, and programs can be successfully optimised (successfully, that
is, until some hapless user’s program overflows a fixnum. . . ).

� Hardware support
Special tag-checking hardware, such as is provided on the SPARC, Spur and Lisp
Machine architectures [Garner+ 88, Hill+ 86, Moon 85], or fine-grained parallelism,
such as is provided by VLIW architectures [Ellis 86, Fisher+ 84], allow fixnum
arithmetic to be performed in parallel with the bignum/fixnum tag checking. In this
case, the limitations of simple type recovery are ameliorated by hardware assistance.

VLIW’s could be ideal target machines for languages that require run-time type-
checking. For example, when compiling the code for a safe car application, the
compiler can pick the trace through the type test that assumes the car’s argument
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is a legitimate pair. This will almost always be correct, the sort of frequency skew
that allows trace scheduling to pay off in VLIW’s. The actual type check operation
can percolate down in the main trace to a convenient point where ALU and branch
resources are available; the error-handling code is off the main trace.

Common cases for generic arithmetic operations are similarly amenable to trace
picking. The compiler can compile a main fixnum trace (or flonum trace, as the
common case may be), handling less frequent cases off-trace. The overhead for
bignum, rational, and complex arithmetic ops will dominate the off-trace time in
any event, whereas the lightweight fixnum or flonum case will be inlined. This idea
can also be extended to other sorts of lightweight traps that higher-order languages
typically require, such as bounds checking for inlined heap allocation.

The VLIW trace-scheduling approach to run-time type safety has an interesting
comparison to the automatic tag checking performed by Lisp Machines. Essentially,
we have taken the tag-checking ALU and branch/trap logic, promoted it to general-
purpose status, and exposed it to the compiler. These hardware resources can now be
used for non-typechecking purposes when they would otherwise lay idle, providing
opportunities for increased fine-grained parallelism.

The Lisp Machine approach is the smart hardware/fast compiler approach; the VLIW
approach is the other way ’round.

9.6.2 Declarations

The dangerous proclaim declaration is problematic. A purist who wants to provide a
guaranteed safe Scheme implementation might wish to ban proclaim on the grounds that
it allows the user to write dangerous code. A single address-space, personal computer
implementation of Scheme, for example, might rely on run-time safety to prevent threads
from damaging each other’s data. Including proclaim would allow the compilation of
code that could silently trash the system, or access and modify another thread’s data.

On the other hand, safe declarations like enforce have limits. Some useful datatypes
cannot be checked at run time. For example, while it is possible to test at run time if a datum
is a procedure, it is not possible, in general, to test at run time if a datum is a procedure that
maps floating-point numbers to floating-point numbers. Allowing the user to make such
a declaration can speed up some critical inner loops. Consider the floating-point numeric
integrator below:

(define (integ f x0 x1 n)

(enforce procedure? f) (enforce fixnum? n)

(enforce flonum? x0) (enforce flonum? x1)

(let ((delta (/ (- x1 x0) n)))

(do ((i n (- i 1))

(x x0 (+ x delta))

(sum 0.0 (+ sum (f x))))

((= i 0) (* sum delta)))))
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In some cases, an analysis might be able to find all applications of the integrator, and thus
discover that f is always bound to a floating-point function. However, if the integrator
is a top level procedure in an open system, we can’t guarantee at compile time that f
is a floating-point function, and we can’t check it at run time. This means that the sum
operation must check the return value of f each time through the loop to ensure it is a
legitimate floating-point value.

While the proclaim declaration does allow the user to write dangerous code, it is at
least a reasonably principled loophole. Proclaim red-flags dangerous assumptions. If the
user can be guaranteed that only code marked with proclaim declarations can behave in
undefined ways, debugging broken programs becomes much easier.

Finally, it might be worth considering a third declaration, probably. The declaration
(probably flonum? x) is a hint to the compiler that x is most likely a floating-point value,
but could in fact be any type. Having a probably declaration can allow trace-scheduling
compilers to pick good traces or optimistically open-code common cases.

9.6.3 Test Hoisting

Having one branch of a conditional test be the undefined effect $ or error primop opens up
interesting code motion possibilities. Let us call tests with an (error) arm “error tests,”
and tests with a ($) arm “$-tests.” These tests can be hoisted to earlier points in the code
that are guaranteed to lead to the test. For example,

(block (print (+ x 3))

(if (fixnum? x) (g x) ($)))

can be legitimately transformed to

(if (fixnum? x) (block (print (+ x 3)) (g x))

($))

because the compiler can choose any effect it likes for the undefined effect operator,
including the effect of (print (+ x 3)). This can be useful, because hoisting type tests
increases their coverage. In the example above, hoisting the fixnum? test allows the
compiler to assume that x is a fixnum in the (+ x 3) code.

Further, error and $-tests can be hoisted above code splits if the test is applied in both
arms. For example, the type tests in

(if (> x 0)

(if (pair? y) (bar) ($))

(if (pair? y) (baz) ($)))

can be hoisted to a single type test:

(if (pair? y)

(if (> x 0) (bar) (baz))

($))
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Real savings accrue if loop invariant type tests get hoisted out of loops. For example,
in a naive, declaration-free dot-product subroutine,

(define (dot-prod v w len)

(do ((i (- len 1) (- i 1))

(sum 0.0 (+ sum (* (vector-ref v i) (vector-ref w i)))))

((< i 0) sum)))

each time through the inner loop we must check that v and w have type vector. Since v

and w are loop invariants, we could hoist the run-time type checks out of the loop, which
would speed it up considerably. (In this particular example, we would have to duplicate
the termination test (< i 0), so that loop invariant code pulled out of the loop would only
execute if the loop was guaranteed at least one iteration. This is a standard optimising
compiler technique.)

Hoisting error tests requires us to broaden our semantics to allow for early detection
of run-time errors. If execution from a particular control point is guaranteed to lead to a
subsequent error test, it must be allowed to perform the error test at the control point instead.

In the general case, error and $-test hoisting is a variant of very-busy expression analysis
[Aho+ 86]. Note that hoisting$-tests gives a similar effect to the backwards type inferencing
of Kaplan and Ullman [Kaplan+ 80]. Finding algorithms to perform this hoisting is an open
research problem.

Note that the sort of “dangerous” compilation permitted by the undefined effect, and its
formal description via the ($) operator is of dubious semantic merit. However, implemen-
tors persist in making dangerous implementations, so program analyses need to support
them.

9.6.4 Other Applications

The general approach to solving quantity-based analyses presented in this chapter can be
applied to other data-flow problems in higher-order languages. The range analysis discussed
in subsection 9.6.1 is a possible candidate for this type of analysis.

One analysis very similar to type recovery is future analysis. Some parallel dialects
of Scheme [Kranz+ 89] provide futures, a mechanism for introducing parallelism into a
program. When the form (future <exp>) is evaluated, a task is spawned to evaluate the
expression <exp>. The future form itself immediately returns a special value, called a
future. This future can be passed around the program, and stored into and retrieved from
data structures until its actual value is finally required by a “strict” operator such as + or car.
If the future’s task has completed before the value is needed, the strict operation proceeds
without delay; if not, the strict operator must wait for the future’s task to run to completion
and return a value.

Futures have a heavy implementation expense on conventional hardware, because all
strict operators must check their operands. Future checking can add a 100% overhead to
the serial run time of an algorithm on conventional hardware.
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“Future analysis” is simply realising that after a variable has been used as an argument
to a strict operator, it’s value is guaranteed to be a non-future. So following references to
the variable don’t have to perform the future check. Thus, in the lambda

(� (x) (print (car x)) . . . (f (cdr x)) . . . )

the (cdr x) operation can be compiled without future checking. Clearly, this is identical
to the type-recovery analysis presented in this chapter, and the same techniques apply.

9.7 Related Work

Steenkiste’s dissertation [Steenkiste 87] gives some idea of the potential gains type recovery
can provide. For his thesis, Steenkiste ported the PSL LISP compiler to the Stanford MIPS-X
processor. He implemented two backends for the compiler. The “careful” backend did full
run-time type checking on all primitive operations, including car’s, cdr’s, vector references,
and arithmetic operations. The “reckless” backend did no run-time type checking at all.
Steenkiste compiled about 11,500 lines of LISP code with the two backends, and compared
the run times of the resulting executables. Full type checking added about 25% to the
execution time of the program.

Clearly, the code produced by a careful backend optimised with type-recovery analysis
will run somewhere between the two extremes measured by Steenkiste. This indicates that
the payoff of compile-time optimisation is bounded by the 25% that Steenkiste measured.
Steenkiste’s data, however, must be taken only as a rough indicator. In LISP systems, the tiny
details of processor architecture, compiler technology, data representations and program
application all interact in strong ways to affect final measurements. Some examples of the
particulars affecting his measurements are: his LISP system used high bits for type tags;
the MIPS-X did not allow car and cdr operations to use aligned-address exceptions to
detect type errors; his 25% measurement did not include time spent in the type dispatch
of generic arithmetic operations; his generic arithmetic was tuned for the small integer
case; none of his benchmarks were floating-point intensive applications; his measurements
assumed interprocedural register allocation, a powerful compiler technology still not yet in
common practice in LISP and Scheme implementations; and LISP requires procedural data
to be called with the funcall primop, so simple calls can be checked at link time to ensure
they are to legitimate procedures.

These particulars of language, hardware architecture, implementation, and program can
bias Steenkiste’s 25% in both directions. Steenkiste gives a careful description of most of
these issues. However, even taken as a rough measurement, Steenkiste’s data do indicate
that unoptimised type-checking is a significant component of program execution time, and
that there is room for compile-time optimisation to provide real speed-up.

The idea of type recovery for Scheme is not new. Vegdahl and Pleban [Vegdahl+ 89]
discuss the possibility of “tracking” types through conditionals, although this was never
pursued. The ORBIT compiler is able to track the information determined by conditional
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branches, thus eliminating redundant tests. ORBIT, however, can only recover this infor-
mation over trees of conditional tests; more complex control and environment structures,
such as loops, recursions, and joins block the analysis.

Curtis discusses a framework for performing static type inference in a Scheme vari-
ant [Curtis 90], along the lines of that done for statically typed polymorphic languages
such as ML [Milner 85] or LEAP [Pfenning+ 90]. However, his work assumes that most
“reasonable” Scheme programs use variables in a way that is consistent with a static typing
discipline. In essence, Curtis’ technique types variables, whereas the analysis developed
in this chapter types variable references, an important distinction for Scheme. Note that
without introducing type-conditional primitives that bind variables, and (perhaps automat-
ically) rewriting Scheme code to employ these primitives, this approach cannot recover the
information determined by conditional branches on type tests, an important source of type
information.

Traditional data-flow analysis techniques have also been used to perform type re-
covery for latently-typed variants of traditional imperative languages [Tenenbaum 74,
Kaplan+ 80][Aho+ 86, chapter 10]. These approaches differ from the technique devel-
oped in this chapter in the following ways:

� First, they focus on side-effects as the principal way values are associated with
variables. In Scheme, variable binding is the predominant mechanism for associating
values with variables, so the Scheme type recovery analysis must focus on variable
binding.

� Second, they assume a fixed control-flow graph. Higher-order languages require the
control-flow analysis technology developed in this dissertation.

� Third, they assume a single, flat environment. Scheme forces one to consider multiple
bindings of the same variable. The reflow semantics of section 9.4 correctly handles
this complexity.

� Finally, they are not semantically based. The type recovery analysis in this chapter
is based on the method of non-standard abstract semantic interpretations. This
establishes a formal connection between the analysis and the base language semantics.
Grounding the analysis in denotational semantics allows the possibility of proving
various useful properties of the analysis.

These differences are all connected by the centrality of lambda in Scheme. The prevalence
of lambda is what causes the high frequency of variable binding. Lambda allows the
construction of procedural data, which in turn prevent the straightforward construction of a
compile-time control-flow graph. Lambda allows closures to be constructed, which in turn
provide for multiple extant bindings of the same variable. And, of course, the mathematical
simplicity and power of lambda makes it much easier to construct semantically-based
program analyses.



Chapter 10

Applications III: Super-�

If our behavior is strict, we do not need fun!
— Zippy the Pinhead,

on normal-order optimisations.

10.1 Copy Propagation

Copy propagation is a standard code improvement technique based on data-flow analysis
[Aho+ 86, chapter 10]. Copy propagation essentially involves removing variables that
are redundant copies of other variables. That is, if the only definitions of x reaching the
expression x+3 are of the form x := y, then we can substitute y for its copy x: y+3. If we
can do this with all the references to x, then we can remove the assignment to x as well,
completely eliminating the variable from the program.

In Scheme, copy propagation is handled in some cases by simple �-substitution. We
can substitute y for x in:

(let ((x y))

(foo x))
) (foo y)

However, �-substitution does not handle cases involving circular or join dependencies. For
example, consider the loop which multiplies each element in vec by x:

(letrec ((lp (� (y i)

(cond ((>= i 0)

(set (vref vec i) (* (vref vec i) y))

(lp y (- i 1)))))))

(lp x 20))

Clearly, references to y can be replaced by x, although simple �-substitution will not pick
this up.

135
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Note that this sort of copy propagation can frequently and usefully be applied to the
continuation variable in the CPS expansions of loops. An example is the summation loop
from the end of chapter 3. Partially CPS-converted, that loop looks like this:

(� (n k)

(letrec ((lp (� (i sum c)

(if (zero? i) (c sum)

(lp (- i 1) (+ sum i) c)))))

(lp n 0 k)))

The loop’s continuation c is always bound to the procedure’s continuation k, and is re-
dundantly passed around the loop until it is invoked on loop termination. Applying copy
propagation (and one round of useless-variable elimination to clean up afterwards) removes
the iteration variable c entirely:

(� (n k)

(letrec ((lp (� (i sum)

(if (zero? i) (k sum)

(lp (- i 1) (+ sum i))))))

(lp n 0)))

This sort of situation crops up frequently in CPS-expanded loops.

The general form of Scheme copy propagation, then, is:

For a given variable v, find all lexically inferior variables that are always bound
to the value of v, and replace their references with references to v.

A variable is lexically inferior to v if its binding lambda occurs within the scope of v’s
binding lambda. With this definition, Scheme copy propagation acts as a sort of “super-�”
substitution rule. (If we allow side-effects to variables, this can disallow some possible
substitutions. If, on the other hand, we use an intermediate representation that has no
variable side-effects, we can substitute at will. This is one of the attractions of removing
variable assignments from the intermediate representation with assignment conversion. ML
elegantly avoids the issue by disallowing assignments to variables altogether.)

Note that the environment problemrears its head here. For example, we cannot substitute
x for y in the following code:

(let ((f (� (x h) (if (null? h) (� () x)

(let ((y (h))) . . . y . . . )))))
(f 3 (f 5 nil)))

Even though y is certainly bound to x (because h is bound to (� () x) at that point), it’s
the wrong binding of x — we need the one that is in the y reference’s context. We have
multiple bindings of the same variable around at the same time, and so we have to be careful
when we are doing copy propagation to keep these multiple environments separate.
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10.1.1 Copy Propagation and Reflow Analysis

We can use reflow analysis to handle the environment problem raised by copy propagation.

Suppose we have some lambda ` = (� (x y z) . . .), and we wish to perform copy
propagation on x. That is, we want to find the lexically inferior variables that are always
bound to the (lexically apparent) value of x so we can replace them with x. We do a reflow,
starting with each entry to `. As we enter `, we create a special contour for `’s variables.
All the lexically inferior lambdas in this scope will be closed over `’s special contour, and
so won’t get their references to x confused with other bindings of x.

In order to perform the analysis, we need an abstract value domain of two values: a
value to represent whatever is bound to the binding of x that we’re tracking, and a value to
represent everything else in the system. Call x’s value 0 and the other value 1. The initial
system state when we begin a reflow by entering ` is that

� the current binding of x has value 0

� all other bindings in the environment — including the current bindings of y and z

and other extant bindings of x — and all values in the abstract store have value 1.

As we proceed through the abstract interpretation, whenever we enter a lambda `0 that
is lexically inferior to `, we check to see if `0 is closed over the special ` contour we’re
tracking. If it is, we save away the value sets passed in as arguments to the variables of `0.

After we’ve reflowed ` from all of its call sites, we examine each lexically inferior
variable. Consider the value set accumulated for variable v. If it is ;, then v’s lambda was
never called — it’s dead code. If it is f0g, then it is always bound to the value of x in its
lexical context, and so is a candidate for copy propagation — we can legitimately replace
all references to v with x. If it is f0;1g or f1g, then it can potentially be bound to another
value, and so is not a candidate for copy propagation.

Notice the conservative nature of the analysis: the presence of 1 in a value set marks
a variable as a non-copy. This is because after setting up the initial special contour, all
the other variable bindings to value sets happen in approximate contours. This means that
different bindings can get mapped together. If our analysis arranges for this to affect the
analysis in the safe direction, this identification is OK. Ruling out a possible copy is erring
on the safe side, and that is the effect we get by unioning together the value sets and looking
for 1’s .

10.2 Lambda Propagation

In the CPS Scheme intermediate representation, a call argument can be a variable, a constant,
or a lambda. Constant propagation (from section 7.3) and copy propagation are essentially
just finding out when a variable is bound to a known variable or constant, and doing the
appropriate substitution. Clearly there’s one important case left to be done: binding a
variable to a known lambda, which we can call “lambda propagation.”
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With lambda propagation, the environment problem returns in force. Like variables,
lambda expressions are not context-independent. A procedure is a lambda plus its envi-
ronment. When we move a lambda from one control point to another, in order for it to
evaluate to the same procedure we must be sure that environment contexts at both points are
equivalent. This is reflected by the “environment consonance” condition in the following
statement of lambda propagation:

For a given lambda l, find all the places it is used in contexts that are environ-
mentally consonant with its point of closure.

By “environmentally consonant,” I mean that all the lambda’s free variables are lexically
apparent at the point of use, and are also bound to the same values as they are at the lambda’s
point of closure. That is, if we determine that lambda ` = (� (x) (+ x y)) is called
from call c = (g z), we must also determine that c appears in the scope of y, and further,
that it is the same binding of y that pertained when we closed `. In this sense, the more
free variables a lambda has, the more constraints there are on it being “environmentally
consonant” with other control points. At one extreme, combinators — lambdas with no
free variables — are environmentally consonant with any call site in the program, and can
be substituted at any point, completely unconstrained by the lexical context.

10.2.1 Simplifying the Consonance Constraint

Suppose we want to find all the places in a program we can substitute lambda expression

`:(� (x) . . . y . . . z . . . w)

The lambda expression ` is closed over three free variables: y, z, and w. Let us suppose
that y is the innermost free variable, that is, `’s lexical context looks something like this:

(� (w)

. . .
(� (z)

. . .
(� (y)

. . .
(� (a)

. . .
`:(� (x) . . . y . . . z . . . w)

. . .)
. . . )

. . . )
. . .)

We can substitute ` only within the scope of y. (Notice that since a is not free in `,
occurrences of ` can migrate outside of its scope.) The key to ensuring environment
consonance is to realise that if we ensure that ` is consonant with its innermost free variable
— y — then it is consonant with the rest of its free variables. For example, if we call `
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from a call context that binds y in the same run-time contour as ` is closed over, then we
can be sure the same goes for z and w.

Given this observation, we can see that a lambda propagation analysis really only needs
to be careful about a single contour: the one over the innermost free variable’s lambda. In
a reflow-based analysis procedure, this means we need to track only one special contour at
a time.

10.2.2 Lambda Propagation and Reflow Analysis

Given a lambda�, we will do lambda propagation for all inferior lambdas `whose innermost
free variable is bound by �. We perform a reflow from all calls to an abstract closure over�.
As we enter � beginning the reflow, we allocate a special contour for �’s variables. As we
proceed through the abstract interpretation, we will make closures, some over the special
contour that we’re tracking. Just as in copy propagation, when we enter a lambda �0 that is
lexically inferior to �, we check to see if �0 is closed over the special � contour. If it is, we
save away the value sets passed in as arguments to the variables of �0.

When we’re done with our reflows, we examine each variable v that is lexically inferior
to �. Consider the value set accumulated for v. If (1) it consists entirely of closures over
a single lambda `, (2) ` is lexically inferior to �, (3) `’s innermost free variable is bound
by �, and (4) each closure over ` has the special contour for �’s scope, then we succeed:
` can be substituted for any reference r:v to v — the reference is guaranteed to evaluate
to a closure over ` and the environment that pertains at r:v is consonant with the one over
which ` is closed.

10.2.3 Constraints on Lambda Substitution

Once we’ve found the variables for which we can substitute a given lambda, we must
decide which cases are appropriate. If a lambda can be substituted at multiple points in a
program, performing all the substitutions can lead to code blow-up. We might wish to limit
our substitutions to cases where there is only one possible target, or the lambda is below
a certain size. We might choose some subset of the references to substitute for, where
the compiler thinks there is payoff in expanding out the lambda, leaving other references
unchanged.

If our language definition requires multiple closures over identical lambdas to be non-eq,
then we have to be careful when substituting a lambda for multiple variable references. If
more than one of the references is a call argument (instead of a call procedure), substitution
will break the eqness of procedures. With such a language definition, we could not, for
example, substitute for x in

(let ((x (� () #f))) (eq? x x))

Duplicating the lambda would cause the eq? test to return false. ML avoids this problem
by disallowing eq tests on procedures; the Scheme report is less clear on this issue.
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One case definitely worth treating with caution is when a lambda is used in its own
body, e.g.:

(letrec ((fact (� (n)

(if (= n 0) 1

(* n (fact (- n 1)))))))

(fact m))

Lambda propagation tells us we can legitimately substitute the lambda definition of fact
for the variable reference fact in its own body, giving us (after one round of substitution):

(letrec ((fact (� (n)

(if (= n 0) 1

(* n ((� (n) (if (= n 0) 1

(* n (fact (- n 1)))))

(- n 1)))))))

(fact m))

Clearly, blindly performing this substitution can get us into an infinite regress. This sort of
situation can happen without letrec, in cases involving self-application

(let ((lp0 (� (lp1) (lp1 lp1)))) (lp0 lp0))

or indirection through the store:

(let* ((pair (cons #f #f))

(lp (� () ((car pair)))))

(set-car! pair lp)

(lp))

Substituting a lambda for a variable inside the lambda’s body is not necessarily a bad thing
to do. It is a generalisation of loop unrolling, which can be desirable in some contexts. But
the code optimiser must be aware of this case, and avoid it when it is undesirable.

Most of these substitution constraints also pertain to code improvers that use simple
�-substitution; detailed discussions are found in the Rabbit, Orbit and Transformational
Compiler theses [Steele 78, Kranz+ 86, Kelsey 89]. Note that with the exception of proce-
dural eqness, these caveats are all issues of implementation, not semantics (code blow-up is
not, for example, a semantic concern). This casts some suspicion on the procedural eqness
requirement.

A final note on lambda propagation. As we’ve just seen, there are many constraints
determining when we can substitute a lambda for a variable known to be bound to a closure
over that lambda: the variable’s reference context must be environmentally consonant with
the lambda’s point of closure; the variable must be referenced only once (to avoid code
blow-up); and so forth. However, even when these constraints are not satisfied, it is useful
to know that a variable reference must evaluate to a closure over a particular lambda. The
compiler can compile a procedure call as a simple branch to a known location instead of a
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jump to a run-time value which must be loaded into a register. If all calls to a lambda are
known calls, the compiler can factor the lambda out of the run-time representation of the
closure, allowing for smaller, more efficient representations. This is exactly what Orbit’s
strategy analysis does, for the simple cases it can spot.

10.3 Cleaning Up

When we substitute an expression — a variable, a constant or a lambda — for all references
to some variable v, then v becomes a useless variable. It is therefore a candidate for
being removed from its lambda’s parameter list. This transformation is the one used by
the second phase of useless-variable elimination (section 7.2). The following sequence of
transformations shows the role of UVE in post-substitution cleanup.

;;; Original loop

(letrec ((lp (� (sum n c)

(if (= 0 n) (c sum)

(lp (+ sum n) (- n 1) c)))))

(lp 0 m k))

;;; After copy propagation

(letrec ((lp (� (sum n c)

(if (= n 0) (k sum)

(lp (+ sum n) (- n 1) k)))))

(lp 0 m k))

;;; After UVE

(letrec ((lp (� (sum n)

(if (= n 0) (k sum)

(lp (+ sum n) (- n 1))))))

(lp 0 m))

10.4 A Unified View

Copy and constant propagationare classical code improvements based on data-flow analysis.
Standard imperative languages typically use side-effects to associate variables with values,
and this is what the standard formulations of copy and constant propagation focus on. In
Scheme, however, variables are typically associated with values by binding them. With
this change of emphasis, copy and constant propagation become simply special cases of
an interesting generalisation of the �-calculus �-substitution rule. This is particularly true
in the CPS Scheme internal representation, where side-effects are not allowed to interfere
with the substitution rules. This “super-�” model of code improvement gives us one more
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alternative to copy and constant propagation: “lambda propagation” — substituting lambda
expressions for variable references.

At this point, we can see that constant, copy and lambda propagation are actually three
facets of the same basic problem: substituting known expressions for the variables bound
to them in the CPS intermediate representation.

In the case of copy and lambda propagation, the context-dependence of variable ref-
erences and lambda expressions requires our analysis to be sensitive to the environment
that exists at the source and target points of the expression being substituted. This is the
environment problem introduced in chapter 8; its solution is based on the general technique
of reflow analysis.



Chapter 11

Future Work

Dissertations are not finished;
they are abandoned.

— H. Q. Bovik

The research I’ve reported on in this dissertation opens up many possible avenues for future
work. In this chapter, I will sketch what I think are some of the more interesting ones.

11.1 Theory

Classical research in optimising compilers has had little use for formal semantics. The great
allure of non-standard abstract semantic interpretation is that it can bridge these two areas. It
provides a framework for compile-time analysis that is grounded in denotational semantics.
This raises the possibility of proving that the optimising transformations implemented by
a compiler are denotationally invariant: mathematically showing they leave the meaning
of a program unchanged. Anyone who has ever been tripped up by a buggy optimising
compiler will recognise the attraction of a formally verified optimiser.

Pleban’s dissertation [Pleban 81] clearly sets forth the NSAS manifesto: to unify the
fields of language semantics and compile-time program analysis under the formalisms
of denotational semantics. Although concerned specifically with the problem of storage
analysis (“compile-time garbage collection”), Pleban calls for a comprehensive program
to express the corpus of traditional compiler optimisation techniques in terms of language
semantics. His dissertation does not, however, deliver on this vision.

Neither does mine. The mathematics in this dissertation is concerned mainly with
the foundations of control-flow analysis. I have not done any theoretical work on the
optimisations that are based on control-flow analysis. It is still an open problem to show,
for example, that the induction-variable elimination analysis and transformation of chapter
7 preserves the meaning of the program. In the applications chapters (7, 9, and 10), I have
relied on the reader’s intuition and informal arguments of correctness.
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I suspect that this sort of work needs tools easier to manipulate than Scott-Strachey
denotational semantics. The classical framework is unwieldy to use as a compiler tool, a
shortcoming that has been noticed by other researchers [Lee 89]. An approach based on
higher-level, modular semantics might be better for this kind of “denotational engineering.”
Oftentimes we wish to manipulate structures much simpler than the ones defined in my
semantics. Modular approaches to semantic description [Mosses+ 86] might provide a
way to abstract away from the complexity inherent in denotational models. Still, the firm
mathematical underpinnings provided by denotational semantics are likely to be important
in any future approac to reasoning about optimising compilers.

Another theoretical lacuna in this dissertation concerns reflow analysis. A careful, rig-
orous development of reflow analysis, complete with precise statements about its properties
and supported by proven theorems is beyond the scope of this dissertation. Although it’s
not essential to my thesis, which centers on control-flow analysis in a CPS representation, I
felt that the basic idea of reflow analysis and the class of optimisations it enables warranted
inclusion in this dissertation. In a �-calculus setting, reflow analysis is the natural extension
of control-flow analysis to handle environment information. A full exploration of reflow
analysis and its capabilities, however, lies ahead.

Finally, a complexity analysis of the control-flow algorithms should be done. Since
the complexity of the algorithms depends on which abstraction is chosen, this is probably
best deferred until more experience is gained in which abstractions are best. A complexity
analysis is not necessary to establish my thesis, which is that control-flow analysis is feasible
and useful for higher-order languages. Empirical tests show that the analyses are acceptably
quick for small procedures. I have no reason to believe that the analyses will not scale
reasonably. Even if this turned out not to be the case, these analyses are not essential for
compilation — they are for optimisation. During development, when a program is being
frequently recompiled, the programmer can compile with optimisation switched off (or,
better still for purposes of source-level debugging and rapid turnaround, avoid the compiler
entirely, and run in the interpreter). When the code has been debugged and is ready for
release, then it can be recompiled once with the optimisations enabled. So even if control-
flow analysis turns out to be computationally expensive in production compilers, it will still
be useful.

11.2 Other Optimisations

More of the classical data-flow optimisations should be mapped over to the CPS/NSAS
framework. The handful of optimisations developed in this dissertation do not even begin
to exhaust the possibilities for optimisation applications. The entire corpus of data-flow
optimisations is available for consideration. With the basic control-flow structure in hand,
the challenge is to try and bring over the entire list of optimisations from figure 1.1.

I believe that a good high-level goal for compiler research in higher-order languages
is achieving parity with good FORTRAN and C compilers in compiling scientific code.
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Scientific code is a good target because it requires the full array of data-flow optimisations
and because it is a compute-intensive domain that requires extensive optimisation.

I also believe that higher-order languages are well suited to scientific code. Sussman
and his research group at MIT have done work exploring the advantages of Scheme for
programming numerically-intensive codes [Halfant+ 88]. Berlin has demonstrated the
feasibility of compiling a restricted class of scientific applications written in Scheme to a
horizontal architecture [Berlin 89]. General applicability, however, remains open.

11.2.1 Representation Analysis

One penalty paid by higher-order languages is the cost incurred by uniform data represen-
tations. Many higher-order languages allow polymorphic procedures. For example, both
Scheme’s latent type system and ML’s static type system allow polymorphic procedures.
This means that values bound to polymorphic variables must have a representation of uni-
form size. If we don’t know whether a value will be a character or a double-precision
floating-point value, for example, we don’t know whether we should allocate one or two
32-bit registers to contain it, or how many bytes in a vector to reserve for its storage. The
solution invariably taken on standard 32-bit architectures is to mandate that all values be
represented with exactly 32 bits. Data types that need less space (e.g., characters) are
padded; data types requiring more space (e.g., double-precision floating point numbers or
cons cells) are represented by a 32-bit pointer to a block of storage in the heap containing
the actual value. The 32-bit datum can be reliably passed around in a single register, stored
into 4 bytes of memory, and so forth.

Uniformrepresentations incur significant space and time overhead. They are particularly
disastrous for floating-point numbers, since the uniform “boxed” representation requires a
memory load for every operation on a number, and a heap allocation and store for every
number produced by an arithmetic operation. So, instead of floating-point addition taking
a single instruction, it requires two loads, an addition, a heap allocation, and a store. This
is unacceptable for scientific code.

Analysis to determine when specialised, efficient representations can be used is called
“representation analysis.” The ORBIT Scheme compiler performed very simple represen-
tation analysis in cases where the user allowed it to make “dangerous” assumptions (i.e.,
disabling the normal run-time type checks). Leroy has also done work layering represen-
tation analysis on the ML type system [Leroy 89]. Better information should be produced,
however, by an approach that uses data-flow analysis of the sort that this dissertation makes
possible.

11.2.2 Register Allocation

Control-flow analysis could be used to implement an extension of the trace-scheduling
on-the-fly register allocator used in ORBIT. In rough terms, this allocator moves values
between registers and memory as the compiler processes code along an execution trace
in much the same way that virtual-memory systems move pages of data between primary
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memory and disk. However, the compiler’s register allocator has an advantage over the
operating system’s VM pager: it can “look into the future” by scanning forward through the
control-flow graph. This means we can use the optimal MIN algorithm for doing register
spills: when we have to spill a register, we can spill the one whose value will be used the
furthest away in time. ORBIT’s register allocator does not fully exploit this model, and in
any event does not have the detailed control-flow information for the MIN lookahead that
control-flow analysis provides.

Other global register allocators, such as the various techniques based on graph-coloring
[Chaitin 82, Chaitin+ 81, Chow+ 84], can also be considered for CPS-based compilers now
that control-flow information is available.

11.2.3 Compiling for VLIW Architectures

Another interesting application for control-flow analysis is trace-scheduling compilation
for superscalar and VLIW architectures [Ellis 86]. This again depends entirely on having
detailed control-flow information. For reasons I outline in section 9.6, latently-typed
languages with generic arithmetic operators, like Scheme, are prime candidates for trace-
scheduling compilation and VLIW execution.

11.3 Extensions

The basic control-flow analysis could be extended in several interesting ways.

11.3.1 Better Store Models

The analyses I have developed in this dissertation use a minimal store abstraction. In-
vestigating more detailed side-effects models in this framework is an open area. Many
vectorising supercomputer compilers, for example, expend a tremendous amount of effort
to disambiguate vector and pointer references, removing spurious data dependencies and
so allowing loops to be parallelised [Ellis 86, chapter 5]. This sort of effects or dependency
analysis is an alternative to schemes that move the effects analysis into the type system, a
technique introduced by Reynolds [Reynolds 78] and explored further by Lucassen, Gif-
ford and other designers of the FX language [Lucassen+ 88]. Effects analysis can be useful
where a type system breaks down (such as between multiple references to a single vector),
or if the notational load of an effects-based type system is cumbersome.

A second alternative to compiler analysis for disambiguating vector references is a
linguistic approach: to design a language with high-level vector operations (such as Blelloch
and Sabot’s scan-vector model [Blelloch+ 90, Blelloch 90]) that eliminate the loop and the
references to the individual elements entirely. This sort of high-level notation is better
for both the programmer and the compiler. The programmer can express himself more
succinctly and is freed of the error-prone burden of spelling out the details of the iteration.
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The compiler is saved the trouble of inferring the aggregate, parallel operation from the
serial iteration over the individual elements.

If you are considering applying control-flow analysis to effects analysis, you should
first consider the alternative schemes of an effects-based type system or a primitive vector
algebra. Research in higher-order languages does not suffer the “dusty deck” constraints
of FORTRAN compiler research — there is much less investment in code written in Scheme
or ML than in FORTRAN. So it’s much more feasible to consider approaches that alter the
actual language itself.

There are other areas where a detailed store analysis could prove fruitful. Many
analyses have been developed that attempt to determine when run-time data structures can
be allocated on the stack instead of the heap, or can be explicitly freed at certain points in
the code [Hudak 86b, Deutsch 90]. A compiler that uses a CPS intermediate representation
might want to adapt these analyses to the framework I’ve developed in this dissertation.

11.3.2 Modular Analysis

For reasons of computational expense and separate compilation, it is worth considering
how to break up the analysis of a large program into separate blocks, where a block might
be the collection of procedures that comprises a single module or library of a program, or,
at finer granularity, an individual top-level procedure. This gives us a hierarchical analysis:
analysing a block in detail produces summary information on the behavior of the block,
which is then used when analysing the other blocks that are clients of the first block.

For example, the summary information describing the control flow of a particular top-
level lambda (� (x y k) . . . ) might be that its continuation argument k never escapes,
but is always called; or that its first argument x escapes into the store; or that when control
is passed to the lambda, it subsequently branches to the external lambda. These are the sort
of actions that affect the control flow of this lambda’s clients, so they must be represented
in the summary description of the lambda.

A summary of the control-flow behavior of a program module or shared library could
vastly improve the quality of the analysis of that module’s clients. This is worth pursuing
for a serious implementation of control-flow analysis in a production compiler.

11.3.3 Tuning the Contour Abstraction

The choice of contour abstraction determines the accuracy and expense of the corresponding
control-flow analysis. Choosing a good abstraction that usefully distinguishes classes of
exact contours with minimal cost is an engineering issue that needs to be investigated.
It’s quite possible to have a mixed abstraction, where features of the program determine
whether a precise, expensive abstraction will be used for a given contour, or an approximate,
cheap one will be used instead. In fact, we could employ a kind of “iterative deepening”
strategy, where the results of a very cheap, very approximate analysis would determine the
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abstractions used at different points in a second pass, providing precise abstractions only at
the places they are required.

One source of useful abstractions to consider is Deutsch’s work on abstract semantics
for �-calculus semantic descriptions [Deutsch 90]. See also the generalisations of 1CFA
discussed on page 55.

11.3.4 Basic Blocks

A basic block is a block of code such that control can only enter at the top of the block,
and can only exit at the bottom — there are no jumps into or out from the middle of the
block. Traditional flow-analysis algorithms consider basic blocks as single vertices in their
control-flow graphs, which saves a lot of time when flowing information around the graph.

In Scheme, a piece of code like

(let* ((desc-root (sqrt (- (* b b) (* 4 a c))))

(denom (* 2 a))

(neg-b (- b))

(soln1 (/ (+ neg-b desc-root) denom))

(soln2 (/ (- neg-b desc-root) denom)))

(cons soln1 soln2))

is straight-line code, and for efficiency purposes, could be considered a basic block in
flow-analysis code. The analysis I’ve presented in this dissertation, however, separates this
block of code into its separate primitive operations, and then serially flows information
through the block.

A simple definition of a basic block in CPS is a chain of lambda expressions, such that
each lambda’s internal call is to a (non-conditional) primop, and the continuation given to
the primop is the next lambda in the chain, e.g.:

(� (k) (+ a b (� (s) (- x y (� (d) (* s d k))))))

It should be fairly straightforward to collapse these chains of lambdas into single nodes for
the purposes of flow analysis. This should speed the analysis up considerably.

In this approach, the contours allocated for the internal lambdas in a basic block will be,
in effect, dependent values on the contour allocated for the initial lambda of the block. By
eliminating the need to generate all these intermediate contours, we can use more expensive
contour abstractions for the ones that remain.

This kind of optimisation eliminates time spent on trivial control-flow paths, but still
retains the semantic, �-calculus foundation of the CPS-based analysis. In effect, what we
are doing here is applying a very cheap control-flow analysis as a pre-pass to eliminate the
trivial cases before applying the fully general analysis.
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11.3.5 Identifying Equivalent Procedures

Consider two different abstract closures
D
`; b�1

E
and

D
`; b�2

E
over a single lambda, where

b�1 =
�
`17 7! 3; `2 7! 1; `8 7! 33

�
b�2 =

�
`17 7! 3; `2 7! 5; `8 7! 33

�
:

These two contour environments differ only in the contour assigned to `2. If ` contains no
references to variables from `2, this difference is irrelevant, and the two closures can be
considered equivalent. As a limit case, all closures over a combinator — a lambda with no
references to free variables — are equivalent. Identifying these closures together leads to
faster convergence of the control-flow analysis, giving an improvement in speed.

11.4 Implementation

The implementation I have used to support my thesis is very much a toy implementation.
It has been applied to, at most, a few hundred lines of code. It has not been interfaced to a
back-end that produces machine code.

An obvious next step is to scale up the implementation and try the analyses and opti-
misations on a large body of code. If the system were interfaced to a compiler back-end,
the optimised code could be timed, which would give a way to measure the effectiveness
of the optimisations.

Scaling the system will require some work to write an efficient implementation of the
analysis algorithms. My current, research implementation uses very simple data structures
and algorithms. For example, sets are represented with linked lists instead of bit vectors,
which slows down membership tests and set operations. Contour environments are also
represented with linked lists instead of byte vectors, which slows down contour lookups.
Comparing two contour environments could be sped up as well by storing a hash value with
the environment. Similarly, the variable environment is not tuned for lookups. Besides
these sorts of efficiency considerations, one might also want to incorporate some of the
extensions discussed in the previous section.
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Chapter 12

Related Work

The fields of abstract semantic interpretation, higher-order language optimisation, and data-
flow analysis are far too large to cover comprehensively. In this chapter I will cover work
by others that is either fundamental or directly relevant to my research. I will focus on
NSAS-based analyses. Discussions of work that is relevant to the particular optimisations
I’ve presented in this dissertation are found in the associated chapters.

12.1 Early Abstract Interpretation: the Cousots and
Mycroft

The seminal work on non-standard abstract interpretation is by the Cousots [Cousot 77,
Cousot 79]. Starting with a standard semantics that maps process states to process states,
they introduce a “static semantics” (what Mycroft calls a “collecting semantics”) that
collects all possible states the process evolves through during execution of the program.
Any compile-time analysis is then an abstraction of this static semantics. These abstractions
are defined by an abstraction function (and its related inverse, called a “concretisation
function”). The Cousots define necessary conditions for abstraction functions to obey
typical compile-time properties (e.g., safely approximating the static semantics). The set
of suitable abstractions is shown to have a lattice structure.

The Cousots’ work, however, is all in terms of imperative, non-functional languages,
developed using a flowchart-based intermediate representation. Mycroft’s dissertation
[Mycroft 81] extends the idea of abstract semantics to a functional language. His main
intended application is strictness analysis for normal-order languages — spotting opportu-
nities to evaluate function arguments with call-by-value rules instead of call-by-need rules
without changing the result of the program. Mycroft’s semantics uses a complex semantic
structure called a powerdomain. His analyses are also developed for first-order, normal-
order functional languages. My thesis is concerned with higher-order, applicative-order
languages that allow side-effects.

A useful collection of work on abstract semantic interpretation is Abstract Interpretation
of Declarative Languages [Abramsky 87].
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12.2 Hudak

Closer to my thesis, and in fact a direct influence on my work, is the work of Hudak
and his students. Hudak’s paper, “Collecting Interpretations of Expressions” [Hudak 86],
defines the problem of a collecting semantics for several variants of functional language —
including the higher-order case. Hudak states the critical question of abstract analysis in a
functional setting: “what are all possible values to which the expression exp might evaluate
during program execution?” To answer this question, Hudak introduces the idea of a cache
function that collects this information. This is related to the cache function 
 that my
control-flow semantics computes, with two distinctions. First, my semantics only collects
procedural values, ignoring other data. This distinction is merely one of focus; it is trivial
to modify my semantics to collect abstractions of other datatypes, as well (as in the case
of performing constant propagation — see section 7.3). Secondly, my cache functions are
finer-grained than Hudak’s because they don’t lump all evaluations of a single expression
together. That is, where Hudak’s caches have functionality Exp ! Val, my caches have
functionality Exp� Env ! Val.

Hudak abandons Mycroft’s powerdomains for a simpler powerset construction, which I
have also used in my semantics. Hudak’s constructions are distinguished from the Cousots’
in that his semantics are not presented as the closure of a state!state function. Instead,
his semantics functions directly compute the cache produced by evaluating an expression.
Interestingly, in the CPS representation I use, these two approaches converge. Although
the structure and intent is similar to Hudak’s, the CPS representation forces a kind of linear
state-to-state transition as evaluation proceeds. This is reflected in the names of the FState
and CState sets, implying that they represent the process states that the interpreter evolves
through during program execution. I find this dual view to be one of the attractions of the
CPS representation: it provides the functional elegance and power of a representation based
on the �-calculus, while simultaneously allowing for a low-level, serialised, operational
interpretation.

While Hudak does not provide for computable abstractions for the higher-order case,
“Collecting Interpretation of Expressions” provides the general framework for the research
that I’ve done to support my thesis.

Other Hudak papers apply his framework to particular analyses. For example, Hudak
and Young have developed a strictness analysis for higher-order languages [Hudak+ 86b].
Hudak has also designed an analysis for determining when functional array updates can
be done destructively [Hudak 86b]. However, the higher-order strictness analysis is not
guaranteed to terminate, and the update analysis is restricted to first-order languages.

In general, Hudak’s work has focussed on purely functional, side-effectless, normal-
order languages. The languages I am interested in — Scheme and ML — are applicative
and allow side-effects. Further, the set of optimisations I have considered for applications
are the classical data-flow analysis optimisations. These optimisations have largely been
ignored by the functional-language community. (This is not to say that these optimisations
could not be adapted to functional, normal-order languages. But compiler technology for
these sorts of languages has not yet progressed to the stage where this is a pressing need.)
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12.3 Higher-Order Analyses: Deutsch and Harrison

As I have mentioned above, most work on abstract semantic interpretation has not dealt with
the full set of features that languages like Scheme or ML provide. Higher-order languages
are rarely treated, and when they are, side-effects are ignored. Two other recent research
efforts carried out independently and simultaneously with my own, however, address all of
these issues, and so deserve special mention.

Deutsch has developed an analysis for determining the lifetimes of dynamically allocated
data at compile time [Deutsch 90]. This allows explicit deallocation of data structures that
would otherwise have to be garbage collected, and the functional updating of aggregate data
structures by destructively modifying them. Deutsch’s intended application is optimising
semantic specifications of programming languages. Since he deals with a higher-order
language that allows side-effects, however, his techniques apply to Scheme and ML as
well.

Deutsch’s analysis is defined in terms of an intermediate representation that is somewhat
like assembler for a stack machine or Landin’s SECD machine [Landin 64]. I believe
this representation is not well suited for program transformation and optimisation. An
intermediate representation based on a stack machine isn’t a high-level representation that
permits interesting source-to-source transformations; neither is it a low-level representation
that exposes interesting properties of the program in terms of the actual target architecture.
In contrast, CPS has the ability to span both ends of this representation spectrum simply
by choosing an appropriate set of primops. Steele made this claim for CPS as a general
framework for expressing different levels of representation [Steele 78]; Kelsey exploits this
property in his transformational compiler [Kelsey 89]. Further, since Deutsch’s semantics is
a direct, stack-oriented semantics, it requires separate domains and equations for procedures
and continuations, whereas a CPS-based representation is much simplified by unifying all
control structures as procedures.

One of the most interesting technical aspects of Deutsch’s work is the “structured
abstraction” approach he takes to developing his abstract semantics. The idea is to define
abstractions for composite domains in terms of the domain’s structure and abstractions for
its component subdomains. For example, if we have a cross-product domain A� B, then
we can develop a “generic” abstraction function �� for cross-products, expressed in terms
of abstraction functions �A and �B for the A and B components of the domain.

The advantage of this approach is twofold. First, we can develop a “toolbox” of ab-
stractions for the basic mathematical constructs, such as sets, vectors, series, and functions.
After proving that these abstractions satisfy some basic properties in isolation, we can
easily verify the correctness of abstractions built with these building blocks. Factoring the
correctness proofs in this way simplifies the math in an elegant way.

Further, if we have several abstractions for, say, cross-products, then we can swap
between these abstractions in a given application. While the different cross-product ab-
stractions will have different cost/precision properties, they will be interchangeable with
respect to correctness considerations. This sort of modularity allows for easy experimenta-
tion with different abstractions for a given analysis.
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Structure abstractions are first mentioned in a paper by the Cousots’ [Cousot 79].
Deutsch’s work, however, gives a strong example of this technique in application.1

Harrison has also developed semantically-based analyses for Scheme, with the intention
of parallelising Scheme programs [Harrison 89]. For example, he performs analysis to
disambiguate structure aliasing in order to eliminate spurious edges in the graph of read/write
dependencies that limits available parallelism.

Harrison handles full Scheme. His intermediate abstraction, again, is an imperative,
non-CPS intermediate representation. Harrison’s work takes a coarse-grained view of
procedures. His semantics is tuned to handle procedures that have roughly the same
size and functionality of FORTRAN or C procedures. His intermediate representation does
not use lambdas for “intraprocedural” control structures: goto’s, conditional branches,
loops and so forth. Instead, there are special, assembler-like syntactic constructs for each
of these structures. This increases the complexity of his semantics. Like Deutsch, his
non-CPS semantics requires a separate (and complex) domain for continuations, and his
semantics equations must have separate cases to handle call/cc, procedure call, return, and
continuation invocation, which greatly increases the size and complexity of his semantics.

Harrison’s semantics is also non-tail-recursive, which fits together with his focus on
procedures-as-subroutines. His semantics has the general structure of the Cousot-style
state-to-state functions, as opposed to the Hudak-style direct semantics.

An interesting technical aspect of Harrison’s work is his contour abstraction, which
is based on finite regular expressions over relative procedure call/return sequences. This
is an abstraction that is well matched to his focus on subroutine boundaries. Note that
this abstraction could be adapted to my framework. Suitably modified to account for tail-
recursive procedure calls, Harrison’s abstraction might work well for the coarse-grained
procedural boundaries for which it was designed. (Whereas other abstractions could be
used for the finer-grained lambdas, giving a sort of hybrid abstraction. See section 11.3.3.)

In contrast to Harrison’s, my work takes a fine-grained view of procedures. My in-
termediate representation represents all transfers of control with a tail-recursive procedure
call. This provides a uniform representation for control flow that simplifies the analysis
machinery. While Harrison focusses on inter-procedural control and data flow, I am more
interested in intra-procedural applications — the classical data-flow optimisations, in a
functional, higher-order setting.

Harrison’s work does not delve into as much detail on his analysis as I have in this
dissertation. Harrison skips many of the more tedious correctness proofs that I’ve presented
in chapter 4. He also doesn’t present details of his algorithms or prove their correctness.
This is almost certainly due to time and space restrictions: Harrison’s semantic analysis is
only one part of his research on interprocedural analysis and parallelisation.

Finally, neither Harrison, Deutsch, nor any of the other researchers I’ve discussed in
this chapter have dealt with the environment problem. The solution I present in chapter 8
is a unique contribution, to the best of my knowledge.

1Deutsch’s research report describes more of the structured abstractions than the conference publication.
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Conclusions

My research makes the following contributions:

� A solution to the control-flow problem for higher-order languages, where the allowed
language features includes side-effects and call/cc.

� A theoretical foundation for this analysis, complete with correctness proofs.

� Algorithms to compute the analysis, again, complete with correctness proofs.

� Example applications using the analysis.

� Reflow analysis: a powerful extension for solving the environment problem.

� Example applications using this extension.

This all adds up to a general framework for performing data-flow analysis for higher-order
languages.

As I stated at the beginning of this dissertation, my thesis is that control-flow analysis
is feasible and useful for higher-order languages. The analysis, algorithms, and associ-
ated correctness proofs should establish its feasibility. The example optimisations should
establish its utility.

A secondary thesis of this work might be called the “CPS representation thesis.” I
hope I have strengthened the case for CPS-based compiler intermediate representations –
their simplicity, theoretical underpinnings, and power support the transition of compilers for
higher-order languages into the highly-optimising niche. With CPS, we arrive at a new view
of traditional data-flow optimisations in a functional, higher-order setting: one that empha-
sises variable binding over variable assignment, and where the basic control/environment
construct is lambda/procedure-call.

A closing thought: As we’ve seen, control-flow analysis in higher-order languages is
really data-flow analysis in the higher-order procedure case. As procedural data flows to
points in the control-flow graph, new paths become possible, opening up new routes for
data flow, and so the loop is closed. Thus the title of this dissertation is perhaps a bit
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misleading. In order to solve the control-flow problem, we must also solve the data-flow
problem, and our analysis must further involve considerations of environment structure.

This is a fundamental property of having the lambda operator in our language. Lambda
is an operator that simultaneously establishes data, control, and environment structure:

� Evaluating a lambda creates a closure, which is a first-class data structure.

� A lambda is a control point to which control can be transferred by procedure call; in
a CPS representation, lambda is the fundamental control structure.

� Entering a lambda causes environment structure to be established by the binding
of the lambda’s parameters; again, in higher-order languages lambda binding is the
fundamental environment structure.

In the lambda operator, all three fundamental program structures — data, control, and
environment — meet and intertwine. Thus, any analysis technique for a higher-order
language must be prepared to handle the three facets of lambda. In essence, the work in
this dissertation has been the application of classical data-flow analysis in the presence of
lambda.



Appendix A

1CFA Code Listing

Dear Mr. Shivers,
Your code horrified me . . . patches to failures
. . . not principled

— mob 9/22/90

. . . the techniques described in your . . . lisp
posting are quite frankly horrid . . . isn’t even
legal . . . it breaks enormously . . . ??? bogus!!

— ted 9/22/90

This appendix contains a code listing for my 1CFA implementation. Before running this
analysis, a modified copy of the ORBIT compiler’s front end is used to CPS-convert the
code and produce a syntax tree. This tree is the input to the 1CFA analysis listed here.

A.1 Preliminaries

A.1.1 Details of the dialect

The program is written in T, a dialect of Scheme with additional extensions from several
macro packages. Here is a brief description of the various macro packages that are used in
this code.

The UCI LISP for macro is syntactic sugar for map-type loops. The expression

(for (x in <list1>)

(y in <list2>)

(save (f (- y x))))

expands into

(map (� (x y) (f (- y x))) <list1> <list2>)
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If the do keyword is used instead of the save keyword, then the macro expands into a
for-each (in T, a walk) instead of a map.

A more powerful iteration construct is the Yale loop macro. Without giving a detailed
description of the entire macro, the following example should give the general structure:

(loop (initial (m 0 (max m x)))

(for x in l)

(incr i .in 0 to (vector-length v))

(do (set (vref v i) x))

(result m))

This expression iterates over a list l and a vector v, storing the elements of l into v. The
loop terminates when it runs off the end of either l or v. The .in keyword means the range
of the i variable includes 0 but not (vector-length v) (in. is the other way around;
.in. includes both endpoints; in includes neither). The variable m is initialised to 0; each
time through the loop, it is updated to be the largest element scanned. This maximum value
is returned as the result of the loop.

The def-structmacro is macro support for T’s record structures. The structure

(def-struct ship

x

y

(size 1000))

defines a ship record with three fields. The sizefield is initialised by default to 1000. This
instance of def-structdefines three accessor functions: ship:x, ship:yand ship:size.
These slots can be assigned with the T set form:

(set (ship:x shipa) 100)

There is also a predicate ship? that returns true only when applied to ship structures.
Finally, the constructor macro ship:new is used to create new structures, with record slots
optionally specified by name. For example,

(ship:new x 7 size 4)

creates a new ship structure, with the x field initialised to 7, the size field initialised to 4,
and the y field unspecified.

I use ? as an abbreviation for cond. The T cond form has a useful extension. If a clause
is of the form

(test => fn)
then if test is true, fn is applied to the value it produces. T also defines the else constant
to be a true value. So the expression

(? ((assq var alist) => cdr)

(else (error "unbound variable ~s" var)))
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looks up a variable binding in an alist, signalling an error if the variable is unbound.

Finally, this code uses a small package for manipulating lists as sets. The function
set:new is identical to the list function, so (set:new 2 3 5) constructs a set (list) of
the first three primes. The procedure

(union elt= seta setb)

returns the union of seta and setb, where the elements of the list are compared with the
elt= function. The macro

(difference-and-union elt= s1 s2 (d u) . body)

computes the difference and union of sets s1 and s2. The body forms are then executed in
an environment with d bound to the difference and u bound to the union.

A.1.2 The syntax tree

The syntax tree produced by the ORBIT front end is built with the nodes shown in figure
A.1. I’ll only describe here the parts of the node data structures that are useful to the 1CFA
analysis. The node data structures are not defined by the def-structmacro, and the field
syntax is different. The procedure that accesses the field component of node type node is
named node-field, not node:field. For example, reference node r’s variable field is
accessed with (reference-variable r).

Reference A variable reference node has a single field, the variable node it references.

Primop Every occurence of a primop in the code tree is a distinct primop node. A primop
node has one field, its value. This is a separate primop def-struct, defined as:

(def-struct primop

id ; Name of this primop

ic ; Single ic or a vector of ic's

1cfa-propagator) ; Defines action of F

(In fact, there are a few other fields in the primop def-struct, but they are not used by
the 1CFA analysis.) The primop:ic field holds either a single call node (for simple
primops), or a two-element vector of call nodes (for conditional primops). These call
nodes are the ic markers for the primop. Note that all occurrences of a primop share a
single primop def-struct, so they all share the same ic nodes. This is acceptable in the
1CFA abstraction, since the continuation calls from the different occurrences of the
primop will be distinguished in the call cache by the the contour environment part of
the

D
ic; b�E call context. The primop:1cfa-propagatorfield holds a procedure that

defines b
F for this primop — see the functionalise procedure in the code listing.

Literal A literal node has no fields that are useful for control-flow analysis.



160 Appendix A. 1CFA Code Listing

reference

variable

primop

value

literal

value

lambda

body ; call or labels node

variables ; bound variables

call

proc+args ; list of subforms

labels

variables ; bound variables

lambdas ; label functions

body ; call or labels node

variable

binder ; call or labels node

Figure A.1: Code tree data structures

Lambda A lambda node has two fields: one for the lambda’s body (a call or labels node),
and one for the lambda’s variables list (a list of variable nodes). The predicate
body-node? is defined to return true on both call and labels nodes.

Call A call node has a single field, the list of its subexpressions: proc+args.

Labels Labels is an old name for letrec; a labels node is a letrec form. The variables
field is a list of the variable nodes bound by the labels node. The lambdas field is a
list of the lambdas evaluated by the labels node and bound to its variables. The body
field is the body of the labels node, and is a call or labels node.

Variable A variable has a binder field that is the lambda or labels node that binds it. A
variable node has other fields as well, such as the list of all its reference nodes, its
name, and so forth, but these are not used by the 1CFA analysis.

Continuations come first in a call node’s argument list and a lambda node’s bound-variable
list.
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(herald 1cfa (env t (tutil for)

(tutil loop)

(tutil def-struct)

(tutil hacks)))

(require def-struct (tutil def-struct))

;(import t-implementation-env hash)

;;; This file contains code for doing 1st-order control flow analysis

;;; with 1st-order functional results.

(define (1clo-analyse node)

(clear-store)

(clear-venv)

(clear-xconts)

(clear-ans-cache)

(clear-call-memos)

(xfun-fun (list (set:new xcont) (A node (empty-benv))) xcall))

;;; 1st-order closure def

;;; ===========================================================================

;;; A "1st-order closure" (1clo) is a <code,env> pair, where the env is a

;;; 1st-order env. A "1st-order function" (1fun) is a 1clo or a primop.

(define-constant make-1clo cons) ; 1clo = (lambda . benv)

(define-constant 1clo:lam car)

(define-constant 1clo:benv cdr)

(define (1clo? x) (and (pair? x) (lambda-node? (car x)))) ; Not precise

(define (1fun= a b)

(if (primop? a) (eq? a b)

(and (1clo? b)

(eq? (1clo:lam a) (1clo:lam b))

(benv= (1clo:benv a) (1clo:benv b)))))

;;; Call contexts

;;; ===========================================================================

;;; A call context is a <call,benv> pair.

(define-constant make-cctxt cons) ; call context = (call . benv)

(define-constant cctxt:call car)

(define-constant cctxt:benv cdr)

(define-constant cctxt? pair?)

(define-constant cctxt= (lambda (a b) (and (eq? (car a) (car b))

(benv= (cdr a) (cdr b)))))

(define (hash-cctxt cc)

(fixnum-logxor (descriptor-hash (car cc))

(benv-hash (cdr cc))))
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;;; Answer cache code

;;; ===========================================================================

;;; Ans cache maps a call context (a <call,benv> pair) to a set of 1funs

;;; that could have been called from CALL in context BENV.

(lset *ans-cache* nil)

(define (clear-ans-cache)

(set *ans-cache* (make-hash-table cctxt? hash-cctxt cctxt= t 'ans-cache)))

;;; Record in the ans cache that we called FUNS from call context <CALL,BENV>

(define (record-call call benv funs)

(modify (table-entry *ans-cache* (make-cctxt call benv))

(lambda (entry) (union 1fun= entry funs))))

;;; Global variable environment code

;;; ===========================================================================

;;; The VEnv maps a contour (a lambda or labels node) and a var to a

;;; set of 1clo's. (but not primops)

(lset *venv* nil)

(lset *venv-stamp* 0) ; When we alter the venv, bump this guy.

(define (clear-venv)

(set *venv* (make-hash-table pair?

(lambda (x)

(fixnum-logxor (descriptor-hash (car x))

(descriptor-hash (cdr x))))

(lambda (k1 k2)

(and (eq? (car k1) (car k2))

(eq? (cdr k1) (cdr k2))))

t

'venv-table))

(set *venv-stamp* 0))

(define (venv-lookup contour var)

(table-entry *venv* (cons contour var)))

(define (venv-augment contour vars arglis)

(for (v in vars)

(argset in arglis)

(do (let* ((index (cons contour v))

(entry (table-entry *venv* index)))

(difference-and-union 1fun= argset entry (d u)

(? (d

(set (table-entry *venv* index) u)

(set *venv-stamp* (fx+ *venv-stamp* 1)))))))))
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;;; Contour env code

;;; ===========================================================================

(define-integrable (empty-benv) '())

(define (benv-lookup benv binder)

(? ((assq binder benv) => cdr)

(else (error "benv-lookup: couldn't find ~a in ~a" binder benv))))

(define-integrable (benv-augment benv binder contour); benv[binder |-> contour]

(cons (cons binder contour) benv))

(define (benv= a b) ; Assumes the benv's are over the same code, as it were.

(assert (every? (lambda (a b) (eq? (car a) (car b))) a b)) ; paranoia

(every? (lambda (a-entry b-entry) (eq? (cdr a-entry) (cdr b-entry)))

a b))

(define-constant (benv-hash benv)

(loop (for elt in benv)

(initial (val 42 (fixnum-logxor (descriptor-hash (cdr elt)) val)))

(result val)))
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;;; Call memoising

;;; ===========================================================================

;;; For every C application, we remember the Benvs and (implicit args) Venv

;;; timestamp, store timestamp and xconts timestamp indexed by the call.

;;; This information is stored as a hash table mapping <call,benv> pairs

;;; to cmemo structs that track the time stamps for the venv, store, and

;;; xconts. Note that this hash table keys on <call,benv> pairs,

;;; just like the answer cache, so we can snarf the basic structure

;;; of the a.c. table for the call memo table.

(def-struct cmemo

(venv-ts 0)

(store-ts 0)

(xconts-ts 0))

;;; The *CALL-MEMOS* table maps call contexts to cmemo structs.

(lset *call-memos* nil)

(define (clear-call-memos)

(set *call-memos* (make-hash-table cctxt? hash-cctxt cctxt= t 'call-memos)))

(define (fetch-call-memo call benv)

(let ((key (make-cctxt call benv)))

(or (table-entry *call-memos* key)

(let ((entry (cmemo:new))) ; 1st time thru CALL

(set (table-entry *call-memos* key) entry)

entry))))

(define (call-memoised? call benv)

(let ((cm (fetch-call-memo call benv)))

(and (fx>= (cmemo:venv-ts cm) *venv-stamp*)

(fx>= (cmemo:store-ts cm) *store-stamp*)

(fx>= (cmemo:xconts-ts cm) *xconts-stamp*))))

(define (memoise-call call benv)

(let ((entry (fetch-call-memo call benv)))

(set (cmemo:venv-ts entry) *venv-stamp*)

(set (cmemo:store-ts entry) *store-stamp*)

(set (cmemo:xconts-ts entry) *xconts-stamp*)))
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;;; A & C

;;; ===========================================================================

(define (A form benv)

(? ((reference-node? form)

(let ((var (reference-variable form)))

(venv-lookup (benv-lookup benv (variable-binder var)) var)))

((primop-node? form) (set:new (primop-value form)))

((literal-node? form) (empty-set))

((lambda-node? form) (set:new (make-1clo form benv)))

(else (error "type error"))))

(define (C form benv)

(assert (body-node? form))

(? ((not (call-memoised? form benv))

(memoise-call form benv)

(if (call-node? form) (C-call form benv)

(C-labels form benv)))))

(define (C-call call benv)

(assert (call-node? call))

(destructure (( (fun . args) (call-proc+args call) ))

(let ((funset (A fun benv))

(arglis (for (arg in args) (save (A arg benv)))))

(record-call call benv funset)

(for (f in funset)

(do ((functionalise f) arglis call))))))

(define (functionalise funspec)

(? ((primop? funspec) (P funspec))

((eq? funspec xfun) xfun-fun) ; Calling the external function

((eq? funspec xcont) xcont-fun) ; Calling the external continuation.

(else

(let* ((lam (1clo:lam funspec))

(body (lambda-body lam))

(formals (lambda-variables lam))

(nformals (length formals))

(benv (1clo:benv funspec)))

(lambda (arglis b)

(? ((fx= nformals (length arglis))

(venv-augment b formals arglis)

(C body (benv-augment benv lam b)))))))))

(define (C-labels lab benv)

(let ((benv (benv-augment benv lab lab)))

(venv-augment lab

(labels-variables lab)

(for (f in (labels-lambdas lab))

(save (A f benv))))

(C (labels-body lab) benv)))
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;;; Primop definitions

;;; ===========================================================================

;;; Since primops aren't 1st-class, we can statically check their

;;; argspectrum, so no need to check at runtime.

(define-integrable (P prim) (primop:1cfa-propagator prim))

(define-syntax (define-p prim fun)

(let ((name (concatenate-symbol 'p/ prim))

(syn-name (concatenate-symbol 'primop/ prim)))

`(block (define ,name ,fun)

(set (primop:1cfa-propagator ,syn-name) ,name))))

(define-syntax (define-simple-p prim)

(let ((syn-name (concatenate-symbol 'primop/ prim)))

`(define-p ,prim

(lambda (arglis contour)

(destructure (( (c a b) arglis ))

(let ((ic (primop:ic ,syn-name))

(benv (primop-env ,syn-name contour)))

;; record a call to the conts from ctxt <ic, [prim -> contour]>

(record-call ic benv c)

(for (f in c)

(do ((functionalise f) <@> ic)))))))))

(define-simple-p +)

(define-simple-p *)

(define-simple-p -)

(define-p test

(lambda (arglis contour)

(destructure (( (c a p . v) arglis ))

(let* ((benv (primop-env primop/test contour))

(ic-vec (primop:ic primop/test))

(ic0 (vref ic-vec 0))

(ic1 (vref ic-vec 1)))

;; record a call to C conts from context <ic0test, [test -> contour]>

(record-call ic0 benv c)

(for (f in c)

(do ((functionalise f) <> ic0)))

;; record a call to A conts from context <ic1test [test -> contour]>

(record-call ic1 benv a)

(for (f in a)

(do ((functionalise f) <> ic1)))))))

(define (primop-env primop contour)

(benv-augment (empty-benv) primop contour))

(define-constant <@> (list (empty-set))) ; arglis of 1 empty set.

(define-constant <> '()) ; arglis of 0 length
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;;; The approximate store

;;; ===========================================================================

(lset *store* nil)

(lset *store-stamp* 0)

(define (clear-store)

(set *store* (set:new xfun)) ; initial store contains the xfun.

(set *store-stamp* 1)) ; Must use the xfun...

(define (update-store new)

(difference-and-union 1fun= new *store* (d u)

(? (d

(set *store* u)

(set *store-stamp* (fx+ *store-stamp* 1))))))
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;;; (DEFINE-STORE-P prim args stashers ic-call-argv)

;;; ===========================================================================

;;; This is for defining primops that access or modify the store. This

;;; form defines a primop PRIM with arguments ARGS. The first element of

;;; ARGS is the continuation. STASHERS is a subset of the args. When this

;;; primop is invoked

;;; - A call from the primop's i.c. site to the continuations is recorded.

;;; - The stasher arguments are placed in the store.

;;; - The primop's continuations are called with the argument

;;; vector IC-CALL-ARGV, which is typically <@> or (LIST *STORE*).

;;;

;;; For example,

;;; (DEFINE-STORE-P NEW (C V) (V) <@>)

;;; define the NEW primop, which takes two arguments: a continuation C

;;; and a value V. The values passed in for V should be put in the store.

;;; NEW produces no procedures, so the continuation should be applied

;;; to the empty set @ -- that is, the arg vector <@>.

(define-syntax (define-store-p prim args stashers ic-call-argv)

(let ((syn-name (concatenate-symbol 'primop/ prim)))

`(define-p ,prim

(lambda (arglis contour)

(destructure (( ,args arglis ))

(let ((ic (primop:ic ,syn-name))

(benv (primop-env ,syn-name contour)))

;; record a call to the conts from ctxt <ic, [prim -> contour]>

(record-call ic benv c)

;; All stashed args -> store:

,@(for (s in stashers) (save `(update-store ,s)))

;; Do the ic call:

(for (f in ,(car args)) ; continuations

(do ((functionalise f) ,ic-call-argv ic)))))))))

(define-store-p new (c v) (v) <@>)

(define-store-p contents (c a) () (list *store*))

(define-store-p set (c a v) (v) <@>)

;;; The simple-minded CPS-converter assumes all expressions evaluate

;;; to exactly one value (so their continuations have one formal parameter).

;;; However, SET is not defined to produce a value. We hack this by assuming

;;; SET returns a constant (e.g., #f). So the abstract arg vec for the

;;; continuation call is <@>, not <>.

(define-store-p cons (c a d) (a d) <@>)

(define-store-p car (c a) () (list *store*))

(define-store-p cdr (c a) () (list *store*))
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;;; XFUN and XCONT

;;; ===========================================================================

(define xlam (create-lambda-node '(#f #f) '#f))

(define xcall (create-call-node 3 1)) ;(proc cont arg) or something.

(define xret (create-call-node 2 0)) ;(cont arg) or something.

(define xfun (make-1clo xlam (empty-benv)))

(define xcont-lam (create-lambda-node '(#f) '#t))

(define xcont (make-1clo xcont-lam (empty-benv)))

;;; One benv will do; splitting it out based on where the xfun and xcont

;;; are called from doesn't do any good, since we mix all the args together

;;; anyway.

(define x-benv (benv-augment (empty-benv) xlam '#f)) ; Bogus contour

(define xfun-fun

(lambda (arglis contour)

(update-xconts (car arglis)) ; First arg is continuation.

(for (a in (cdr arglis)) (do (update-store a))) ; rest are non-conts

;; This memo check does double duty for the xcall & the xret.

(? ((not (call-memoised? xcall x-benv))

(memoise-call xcall x-benv)

(bind-xarg-hackery (lambda () ; Reset the arglist hackery

;; Do the xret: (*xconts* *store* *store* ...)

(record-call xret x-benv *xconts*)

(for (f in *xconts*)

(do ((functionalise f) (xret-arglis-rep (arity f)) xret)))

;; Do the xcall: (*store* *xconts* *store* *store* ...)

(record-call xcall x-benv *store*)

(for (f in *store*)

(do ((functionalise f) (xcall-arglis-rep (arity f)) xcall)))

))))))

(define (arity fun)

(if (primop? fun)

(error "Why are you calling ARITY on a primop (~a)?" fun)

(length (lambda-variables (1clo:lam fun)))))
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;;; Almost identical to XFUN-FUN, except that all args are non-continuations.

(define xcont-fun

(lambda (arglis contour)

(for (a in arglis) (do (update-store a))) ; all args are non-conts

;; This memo check does double duty for the xcall & the xret.

(? ((not (call-memoised? xcall x-benv))

(memoise-call xcall x-benv)

(bind-xarg-hackery (lambda () ; Reset the arglist hackery

;; Do the xret: (*xconts* *store* *store* ...)

(record-call xret x-benv *xconts*)

(for (f in *xconts*)

(do ((functionalise f) (xret-arglis-rep (arity f)) xret)))

;; Do the xcall: (*store* *xconts* *store* *store* ...)

(record-call xcall x-benv *store*)

(for (f in *store*)

(do ((functionalise f) (xcall-arglis-rep (arity f)) xcall)))

))))))

;;; Make arg lists of repeated sets for calls from XRET and XCALL.

;;; ===========================================================================

;;; XRV[i] is a i elt list, each elt of which is *STORE*.

(lset xcall-rep-vec nil)

(lset xret-rep-vec nil)

(lset *xret-rep-index* 0) ; Max slot in xr-r-v we have lazily installed.

(lset *xcall-rep-index* 0) ; Max slot in xc-r-v we have lazily installed.

(define rep-vec-pool

(make-pool 'rep-vec-pool (lambda () (vector-fill (make-vector 20) '#f))

5 vector?))

(define-integrable (bind-xarg-hackery cont)

(bind ((xcall-rep-vec (obtain-from-pool rep-vec-pool))

(xret-rep-vec (obtain-from-pool rep-vec-pool))

(*xret-rep-index* 0)

(*xcall-rep-index* 0))

(cont)

(return-to-pool rep-vec-pool xcall-rep-vec)

(return-to-pool rep-vec-pool xret-rep-vec)))
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;;; (*store* *store* ...)

(define (xret-arglis-rep nargs)

(if (fx>= nargs 20) (error "arglis-rep: nargs too big (~a)" nargs))

(if (fx<= nargs *xret-rep-index*)

(vref xret-rep-vec nargs)

(loop (initial (arglis (vref xret-rep-vec *xret-rep-index*)))

(incr i in. *xret-rep-index* to nargs)

(next (arglis (cons *store* arglis)))

(do (set (vref xret-rep-vec i) arglis))

(after (set *xret-rep-index* nargs))

(result arglis))))

;;; (*xconts* *store* *store* ...)

(define (xcall-arglis-rep nargs)

(? ((fx>= nargs 20)

(error "arglis-rep: nargs too big (~a)" nargs))

((fx<= nargs *xcall-rep-index*) ; Already computed?

(vref xcall-rep-vec nargs))

(else

(loop (initial (arglis (xret-arglis-rep (fx- nargs 1)) (cdr arglis)))

(decr i .in nargs to *xcall-rep-index*)

(do (set (vref xcall-rep-vec i)

(cons *xconts* arglis)))

(after (set *xcall-rep-index* nargs))

(result (vref xcall-rep-vec nargs))))))

;;; Escaped continuations

;;; ===========================================================================

(lset *xconts* nil)

(lset *xconts-stamp* 0)

(define (clear-xconts)

(set *xconts* (set:new xcont)) ; initial xconts set contains the xcont.

(set *xconts-stamp* 1)) ; Must use the xcont...

(define (update-xconts new)

(difference-and-union 1fun= new *xconts* (d u)

(? (d

(set *xconts* u)

(set *xconts-stamp* (fx+ *xconts-stamp* 1))))))
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Appendix B

Analysis Examples

B.1 Puzzle example

The first example is the little environment puzzle from page 120. The program is shown
in figure B.1, both in Scheme and its CPS intermediate representation. In the CPS form,
lambda and call expressions are subscripted with numeric labels (the particular labels used
are just those chosen by the T run-time system when printing out this example). As a special
case, the CPS test primop requires its first argument to be a type or comparison predicate
(e.g., integer? or eq?). This syntactic extension, inherited from the ORBIT front end, is
equivalent to defining separate primops test-integer, test-eq?, and so forth.

CPS conversion introduces continuations into parameter lists and call expressions.
ORBIT’s front-end and the analysis code listed in appendix A place these continuation
arguments first in calls and parameter lists, e.g., (+ k 3 4). This has some programming
benefits, but makes the code unreadable. So, I have edited the CPS code shown in this
appendix to use the continuation-last convention, e.g., (+ 3 4 k).

Applying the 1CFA program of appendix A to the puzzle example takes .67 seconds of
CPU time, running interpreted T on a DECstation 3100 PMAX. Applying the type-recovery
algorithm of chapter 9 takes 5.1 seconds under the same configuration.

The information produced by the type-recovery algorithm is given in table B.2. If
a variable is qualified with a call site, e.g. x(c51), then the type applies to the reference
occuring in that call expression. Otherwise, the type applies to all references to that variable.
So type recovery is able to correctly distinguish the two bindings of x, and determine from
the type test (test fixnum? . . .) and the control-flow information that the x closed over
in lambda l36 is a floating-point number.

The call cache produced by the 1CFA program is listed in figure B.3. It is simply a
dump of the *ans-cache* table constructed by the program. The output has been lightly
edited to improve its legibility. Each entry in the table maps a call context cc to a list of
abstract procedures called from that call context:

cc -> (proc1 proc2 . . .)
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(� () (let ((f (� (x h)

(test (fixnum? x) (h) (� () x)))))

(f 3 (f 2.7 '#f))))

Scheme

(�
34
(k) (

41
(�

42
(f) (

43
f 2.7 '#f (�

49
(v) (

40
f 3 v k))))

(�
39
(x h k1)

(
44
test fixnum? x

(�
47
() (

50
h k1))

(�
37
() (

48
k1 (�

36
(k2) (

51
k2 x))))))))

Annotated CPS

Figure B.1: Puzzle example

f, v, k, k1, k2 proc
x(c44) fixnum|float
x(c51) float
h false|proc

Table B.2: Recovered type information

An abstract closure is a list whose head is a lambda and whose tail is an abstract contour
environment. So

(l47 (l39 . c40) (l34 . xcall))

is the closure over lambda l47 with contour environment
�
l39 7! c40; l34 7! xcall

�
.

This is the environment made in the 1CFA abstraction by entering lambda l34 from the
external call, and subsequently entering lambda l39 from call c40. Most of the binding
contours are given mnemonic names such as [top] or [if] that are listed in the initial
comment lines of the figure. The special symbols xcall, xret, xlam, xcont, ictest0, and
ictest1 represent the external call, external return, external lambda, external continuation,
and internal call sites for the test primop, respectively.

Note that the

(xcall (xlam)) -> (l36 [else] [f2] [topcall])

edge in the call graph could be refined away by a post-type-recovery pass. In call context
([f2] [topcall]), x is known to be bound to an integer, so the else branch is not taken.
Removing this control-flow arc would also prune the extra arc

(c51 (l36 . xcall) [else] [f2] [topcall]) -> (xcont)
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;;; [top] (l34 . xcall)

;;; [let] (l42 . c41)

;;; [f1] (l39 . c43)

;;; [f1-ret] (l49 . c48)

;;; [f2] (l39 . c40)

;;; [if] (test . c44)

;;; [then] (l47 . ictest0)

;;; [else] (l37 . ictest1)

(xret (xlam)) -> (xcont)

(xcall (xlam)) -> ((l36 [else] [f2] [topcall])

(l34)

(xlam))

(c41 [topcall]) -> ((l42 [topcall]))

(c43 [let] [topcall]) -> ((l39 [topcall]))

(c44 [f1] [topcall]) -> (test)

(ictest0 [if]) -> ((l47 [f2] [topcall])

(l47 [f1] [topcall]))

(ictest1 [if]) -> ((l37 [f2] [topcall])

(l37 [f1] [topcall]))

(c48 [else] [f1] [topcall]) -> ((l49 [let] [topcall]))

(c40 [f1-ret] [let] [topcall]) -> ((l39 [topcall]))

(c44 [f2] [topcall]) -> (test)

(c50 [then] [f2] [topcall]) -> ((l36 [else] [f1] [topcall]))

(c51 (l36 . c50) [else] [f1] [topcall]) -> (xcont)

(c48 [else] [f2] [topcall]) -> (xcont)

(c51 (l36 . xcall) [else] [f2] [topcall]) -> (xcont)

Figure B.3: 1CFA call cache for puzzle example
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B.2 Factorial example

The second example is an iterative factorial procedure, shown in figure B.4. Note the
initial type-check performed before entering the loop. Type recovery is able to deduce
from this test that all variable references inside the loop are integers (table B.5). The type
table doesn’t list an entry for fact. As discussed in chapter 9, variables bound by letrec

expressions are not typed by the analysis, since they are known to be have type proc. The
1CFA analysis takes .59 seconds to compute and the type recovery takes 7.8 seconds, under
the same conditions as the puzzle measurements. The call cache produced by the 1CFA
analysis is shown in figure B.6.

(� (n) (letrec ((fac (� (a m) (test (= 0 m) a

(fac (* a m) (- m 1))))))

(test (integer? n) (fac 1 n)

-1))) ; error value

Scheme

(�
34
(n k)

(letrec
37

((fac (�
42
(a m c)

(
43
test = 0 m

(�
44
() (

46
c a))

(�
50
() (

51
* a m (�

54
(v1)

(
55
- m 1 (�

58
(v0)

(
45
fac v1 v0 c))))))))))

(
43
test integer? n (�

48
() (

49
k -1))

(�
40
() (

41
fac 1 n k)))))

Annotated CPS

Figure B.4: fact example

n(c36) top
v0, v1, m, a, n(c41) int
k, c proc

Table B.5: Recovered type information
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;;; [letrec] (lab37 . lab37)

;;; [topcall] (l34 . xcall)

;;; [if1] (test1 . c36)

;;; [then1] (l40 . icif0)

;;; [else1] (l48 . icif1)

;;; [if2] (test2 . c43)

;;; [enter] (l42 . c41)

;;; [loop] (l42 . c45)

;;; [then2] (l44 . icif0)

;;; [else2] (l50 . icif1)

;;; [ic*] (* . c51)

;;; [ic-] (- . c55)

;;; [*ret] (l54 . c53)

;;; [-ret] (l58 . c57)

(xret (xlam)) -> (xcont)

(xcall (xlam)) -> ((l34) (xlam))

(c36 [letrec] [topcall]) -> (test1)

(icif0 [if1]) -> ((l40 [letrec] [topcall]))

(c41 [then1] [letrec] [topcall]) -> ((l42 [letrec] [topcall]))

(c43 [enter] [letrec] [topcall]) -> (test1)

(icif0 [if2]) -> ((l44 [loop] [letrec] [topcall])

(l44 [enter] [letrec] [topcall]))

(c46 [then2] [enter] [letrec] [topcall]) -> (xcont)

(icif1 [if1]) -> ((l48 [letrec] [topcall]))

(c49 [else1] [letrec] [topcall]) -> (xcont)

(icif1 [if2]) -> ((l50 [loop] [letrec] [topcall])

(l50 [enter] [letrec] [topcall]))

(c51 [else2] [enter] [letrec] [topcall]) -> (*)

(c53 [ic*]) -> ((l54 [else2] [loop] [letrec] [topcall])

(l54 [else2] [enter] [letrec] [topcall]))

(c55 [*ret] [else2] [enter] [letrec] [topcall]) -> (-)

(c57 [ic-]) -> ((l58 [*ret] [else2] [loop] [letrec] [topcall])

(l58 [*ret] [else2] [enter] [letrec] [topcall]))

(c45 [-ret] [*ret] [else2] [enter] [letrec] [topcall]) ->

((l42 [letrec] [topcall]))

(c43 [loop] [letrec] [topcall]) -> (test1)

(c46 [then2] [loop] [letrec] [topcall]) -> (xcont)

(c51 [else2] [loop] [letrec] [topcall]) -> (*)

(c55 [*ret] [else2] [loop] [letrec] [topcall]) -> (-)

(c45 [-ret] [*ret] [else2] [loop] [letrec] [topcall]) ->

((l42 [letrec] [topcall]))

Figure B.6: 1CFA call cache for fact example
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