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1. Introduction

This paper investigates the economic consequences of a differ-
ence in the planning horizon of an institutional investor pursuing
long-term investment strategies and a regulator enforcing pruden-
tial standards and practices on a repeated short-term basis. Such a
misalignment of horizons is likely to exist in most developed finan-
cial markets and affect, for example, banks, insurance companies,
and, notably, pension funds.

Consider, for example, a pension fund which typically faces
long-term pension liabilities with maturities of 15 years or more.
However, standard regulatory frameworks impose short-term
solvency constraints. A recent example can be observed in the
Netherlands where a pension regulatory regime (‘‘Financieel Toetsings
Kader’’, FTK) is effective as of January 2007. According to the Dutch
regulation, pension funds should always keep the probability of
underfunding 1 year ahead below 2.5%. Underfunding refers to
the situation where the market value of a pension fund’s assets
falls below the market value of the pension fund’s liabilities. In
the Netherlands these liabilities are, for now, taken as nominally
guaranteed pensions. This will likely change in the near future
where pensions are no longer considered to contain guaranteed
minimal payments. Other examples of such a misalignment
include Basel II regulation for banks and the newly proposed
Solvency II regulation for insurance companies.
ll rights reserved.
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The existence of such funding constraints can be understood in
light of the recent experience of a simultaneous decrease in pen-
sion assets due to a poor stock market performance and an increase
in pension liabilities due to low interest rates. For the UK, KPMG
estimated the aggregate funding deficit of the FTSE-100 companies
reaches GBP 40 billion at the end of 2008. De Nederlandsche Bank
(the Dutch regulator) reports that the average Dutch pension fund-
ing ratio dropped from 144% in 2007 to 99% in the third quarter of
2010. Of all Dutch pension funds, around 68% has a funding ratio
below 105%. The situation in the US is even more alarming. The
funding deficit in America’s corporate pension funds is estimated
to be USD 350 billion (Jørgensen, 2007).

A Value-at-Risk-type (hereafter, VaR-type) constraint aims to
limit the probability that the institutional investor generates a
portfolio wealth loss and an Expected Shortfall-type constraint
aims to control the expected loss given default. Despite the theo-
retical shortcomings (c.f., Artzner et al., 1999, concerning the
VaR-type constraint), both types of regulatory constraints are
widely adopted within the current international regulatory re-
gimes, e.g., Basel II and Solvency II.

This paper compares the optimal portfolio wealth and the eco-
nomic costs of dynamically imposed regulation when the regula-
tory horizon is as long as the investment horizon and when the
regulatory horizon is shorter than the investment horizon. In the
latter case, within the investor’s investment horizon, there are a
number of subsequent and non-overlapping regulatory checks
and the investment horizon is divided into a few equal-length
sub-periods. In general, the investor has to insure his portfolio
against the bad performance of the financial market to guarantee
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that (1) the current period’s regulatory constraint is satisfied and
(2) there is enough wealth to fulfill next periods’ regulatory con-
straints. To do so, the investor has to hold more risk-free assets
and less risky assets, thus, his ability to profit from favorable finan-
cial market performance is limited. The economic costs are mea-
sured by the equivalent amount of wealth lost due to the
regulatory constraints.

We show that, for both types of regulatory constraints, a short
regulatory horizon can prevent portfolio wealth loss very effec-
tively but at the same time also introduces a large opportunity cost
by limiting the investor’s ability to invest in risky assets and profit
from favorable stock market performance. We also reconfirm the
well-known result (see below) that, when the regulatory horizon
is as long as the investment horizon, different types of regulation
result in a very different optimal portfolio wealth and investment
strategy. However, when the regulatory horizon is actually shorter
than the investment horizon and regulation is enforced repeatedly,
both types of regulatory constraints lead to very similar portfolio
wealth distributions and economic cost due to the fact that both
types of regulation require the institutional investor to hold en-
ough wealth to satisfy future regulatory constraints. It is important
to note that, for insurance companies, regulation aims at minimiz-
ing the risk of (partial) default while obviously the induced costs
are borne by the management and/or shareholders.

The strategic asset allocation problem has been studied exten-
sively. For example, Kim and Omberg (1996) and Wachter (2002)
study the optimal portfolio allocation where the price of risk is
mean-reverting. Bajeux-Besnainou et al. (2003) and Sørensen
(1999) solve the optimal investment problem when interest rates
are stochastic. This paper is related to the literature studying the
optimal portfolio trading strategy under constraints. Grossman
and Vila (1992) provide explicit solutions to optimal portfolio
problems containing leverage and minimum portfolio return con-
straints. Basak (1995) and Grossman and Zhou (1995) focus on
the impact of a specific VaR constraint, the portfolio insurance,1

on asset price dynamics in a general equilibrium model. Van Bins-
bergen and Brandt (2009) assess the influence of ex ante (preven-
tive) and ex post (punitive) risk constraints on dynamic portfolio
trading strategies. Ex ante risk constraints include, among others,
VaR and short sell constraints. Ex post risk constraints include the
loss of the investment manager’s personal compensation and reputa-
tion when the portfolio wealth turns out to be low. They found that
ex ante risk constraints tend to decrease gains from dynamic invest-
ment while ex post risk constraints can be welfare improving.

Basak and Shapiro (2001) compare the impact of VaR-type and
Expected Shortfall-type regulation on the institutional investors’
portfolio wealth and trading strategies. Their results show that
these two types of regulatory constraints lead to different portfolio
wealth distributions. The VaR constraint keeps the portfolio value
above or at the threshold value, e.g., the value of a pension fund’s
liability, when the investment environment (state of the world) is
favorable but generates a sizeable loss in unfavorable states of the
world. The favorable (unfavorable) states are the ones in which it is
cheap (expensive) for the investor to raise his portfolio wealth to
the level of the threshold value. Thus, ironically, the loss under a
VaR constraint is even larger than the one without a VaR constraint
in unfavorable states. The unfavorable states of the world occur
with probability a. This probability is set by the regulator. The
explanation is as follows. The VaR constrained investor is only con-
cerned about the probability but neither the magnitude of the loss,
nor in which (cheap or expensive) states this loss occurs. Therefore,
it is optimal for him to incur losses in unfavorable states where it is
1 Portfolio insurance is a special case of a VaR constraint, which requires the
probability that the portfolio wealth falls below a certain threshold value to be zero.
most expensive to raise his portfolio wealth. An Expected Shortfall-
type constraint, on the contrary, limits the expected magnitude of
a loss given default, and thus, does not allow an institutional inves-
tor under regulation to incur excessive loss in all market
circumstances.

In Basak and Shapiro (2001), the regulatory horizon equals the
investment horizon and interest rates are deterministic. We extend
the Basak and Shapiro (2001) setting by embedding a number of
subsequent and non-overlapping short-term regulatory con-
straints in the portfolio optimization problem and allowing for a
stochastic interest rate. We show that (1) more frequent regulation
can prevent the investor from generating losses in unfavorable
states due to the fact that there is a minimum amount of portfolio
wealth required to fulfill future regulatory constraints and (2) both
types of regulation result in a similar portfolio wealth distribution
and economic costs if the regulatory constraint is imposed
repeatedly.

Cuoco et al. (2008) consider the optimal trading strategy of
institutional investors under short-horizon VaR constraints assum-
ing that the portfolio allocation over the VaR horizon is constant
and the interest rate is deterministic. We extend Cuoco et al.
(2008) by allowing for optimal and time-varying portfolio alloca-
tions over the regulatory horizon, having a stochastic interest rate
and analyzing the impacts of imposing Expected Shortfall-type
regulatory constraints. The extensions enables us to (1) quantify
the costs and benefits of both VaR-type and Expected Shortfall-
type regulatory constraints given that institutional investors be-
have optimally, (2) study the hedge strategies of investors under
both types of constraints and (3) investigate the difference of
imposing these two types of constraints.

This paper is also related to the literature about dynamic trad-
ing strategies of pension funds. Sundaresan and Zapatero (1997)
consider an optimal asset allocation with a power utility function
in final surplus. Boulier et al. (1995) assume a constant investment
opportunity set with a risky and a risk-free asset. In their paper, the
pension plan sponsor aims to minimize the expected discounted
value of future contributions over a given horizon. Inkmann and
Blake (2011) propose a new approach to the valuation of pension
obligations taking into account the asset allocation strategy and
the underfunding risk of a pension fund. This paper focuses on
the optimal portfolio wealth of a pension fund when the regulatory
horizon is shorter than its investment horizon and evaluates the
economic costs of such a regulation. Advantages of having frequent
short-term VaR or Expected Shortfall constraints include, among
others, smaller expected portfolio wealth losses.

The rest of this paper is organized as follows. Section 2 describes
the investment environment our institutional investor operates in.
Subsequently, Section 3 introduces the various regulatory con-
straints and studies the optimal portfolio wealth and trading strat-
egies under a single-regulatory constraint and multiple regulatory
constraints respectively. Section 4 discusses the costs of imposing
15 short-term regulatory constraints. Section 5 concludes.
2. The investment environment

We consider a stochastically complete continuous-time finan-
cial market with a finite horizon [0,T]. In this market, four assets
are available: a zero-coupon bond maturing at time T, a cash ac-
count, a stock index, and a constant maturity zero-coupon bond
fund with maturity M. The stock index (with reinvested dividends)
is assumed to follow:

dSt ¼ ðrt þUSÞSt dt þ rSSt dZS;t; ð1Þ

where rt denotes the short-term interest rate, US is the stock risk
premium, rS is the instantaneous stock price volatility and ZS,t is a
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standard Brownian motion. For the short-term interest rate rt, we
impose a Vasicek process:

drt ¼ jð�r � rtÞdt � rr dZr;t ; ð2Þ

where j determines the mean-reversion speed of the interest rate
towards the long-term average value �r. Furthermore, rr is the
instantaneous volatility of the interest rate and Zr,t is a standard
Brownian motion. The two Brownian motions Zr,t and ZS,t may be
correlated and we denote their correlation coefficient by qSr. Vas-
icek (1977) derives the induced no-arbitrage price of a zero-coupon
bond at time t with T � t years to maturity and unit face value as

PT�t
t ¼ expð�AðT � tÞ � BðT � tÞrtÞ; ð3Þ

where

AðT � tÞ ¼ R1½ðT � tÞ � BðT � tÞ� þ r2
r

4j
BðT � tÞ2;

R1 ¼ �r þUr

j
� r2

r

2j2 ;

BðT � tÞ ¼ ½1� expð�jðT � tÞÞ�=j;

with Ur a free parameter capturing the interest rate risk premium.
Applying the Itô-Doeblin lemma to (3), we find for the dynamics of
the zero-coupon bond price

dPT�t
t

PT�t
t

¼ ½rt þUrBðT � tÞ�dt þ rrBðT � tÞdZr;t : ð4Þ

In this stochastic interest rate model, if the zero coupon bond
maturing at time T is the only bond available for investment, this
bond has two tasks. First, it serves to achieve the optimal interest
rate risk exposure for speculative purposes. Secondly, it can be used
to hedge interest rate risk as it is a risk-free asset over the invest-
ment horizon. To uncouple these two functions we also consider a
bond fund implementing a constant M-year to maturity (see Ba-
jeux-Besnainou et al., 2003). The price dynamics of such a fund
are given by

dPM
t

PM
t

¼ ½rt þUrBðMÞÞdt þ rrBðMÞdZr;t: ð5Þ

All our bonds are assumed to be free of default risk.
It is well-known that, following the martingale method for opti-

mal investment, the pricing kernel plays a crucial role in describing
optimal investment strategies. For the market introduced, Merton
(1992) shows that the pricing kernel can be constructed as the in-
verse of the growth-optimum portfolio. It is well-known that,
when the interest rate follows the Vasicek process, the dynamics
of ft are given by

dft

ft
¼ �rtdt � /SdZS;t þ /rdZr;t; ð6Þ

where

/s ¼
rrUS � qSrUrrS

rrrS 1� q2
Sr

� � ;

/r ¼
rrUSqSr �UrrS

rrrS 1� q2
Sr

� � :
3. Optimal portfolio wealth and trading strategies

We consider the problem of an institutional investor who starts
with an endowment W0 and must dynamically select a portfolio
p 2P so as to maximize the expected utility E[u(WT)] of the termi-
nal value of the trading portfolio. We assume that the institutional
investor has a power utility function with constant relative risk
aversion (CRRA) parameter c and an investment horizon of T years.

The regulator imposes regulatory constraints, of either a VaR or
an Expected Shortfall type, on the institutional investor. The VaR-
type constraint aims to control the probability of having a portfolio
wealth loss and is defined as the probability that the portfolio
wealth at time t + s falls below W should not be larger than a,
where a is usually a small number in the interval [0,1]. The VaR
constraint can be formulated as

PrtðWtþs < WÞ 6 a; t 2 ½0; T�;
where s, s > 0, is the regulatory horizon, a 2 [0,1] and the ‘‘floor’’ W
is specified exogenously. For a pension fund, the ‘‘floor’’ is the value
of its liability at time t + s.

An Expected Shortfall-type constraint aims to limit the magni-
tude of portfolio wealth loss. This paper considers two Expected
Shortfall-type constraints, namely, the Expected Discounted Short-
fall constraint (EDS) and the Expected Shortfall constraint (ES). The
difference between an EDS constraint and an ES constraint lies in
whether the expected portfolio wealth shortfall is discounted with
the pricing kernel ft or not. An EDS constraint can be stated as that
the expected discounted portfolio wealth shortfall at time t cannot
be larger than �EDS, that is,

Et
1
ft

ftþsðW �WtþsÞ Wtþs6W

� �
6 �EDS: ð7Þ

The ES constraint can be stated as that the expected portfolio
wealth shortfall at time t cannot be larger than �ES, that is,

Et ½ðW �WtþsÞ Wtþs6W � 6 �ES: ð8Þ

Here both �EDS and �ES are small numbers, say, 1% of the initial
wealth.

In the single-constraint models, the horizon of the regulatory
constraint s equals the investment horizon. In the two-constraint
models, the regulatory constraint horizon s is half as long as the
investment horizon and there are two subsequent and non-over-
lapping regulatory constraints in the investment horizon. In the
more general multi-constraint models, say m constraints (m > 2),
there are m non-overlapping regulatory constraints and each of
these constraints has a horizon of T/m.

3.1. Single-constraint models

In this subsection, we will compare the optimal portfolio choice
and portfolio wealth distribution under a single-VaR constraint, a
single-EDS constraint and a single-ES constraint respectively.

3.1.1. Investment problem in the single-constraint models
The investment problem under a single-regulatory constraint is

max
WT

E0
W1�c

T

1� c
ð9Þ

s:t: E0ffT WTg 6 f0W0 ð10Þ
Pr0fWT 6Wg 6 a; ð11Þ

when a single-VaR constraint is imposed. Alternatively, when a sin-
gle-EDS constraint is imposed, the regulatory constraint (11) is
replaced by

E0
1
f0

fT W �WTð Þ WT6W

� �
6 �EDS: ð11aÞ

Finally, when a single-ES constraint is imposed, we have

E0½ðW �WTÞ WT6W � 6 �ES: ð11bÞ

Basak and Shapiro (2001) solves the optimal portfolio wealth
under a single-VaR constraint, a single-EDS constraint, and a sin-
gle-ES constraint when the interest rate is constant. In their paper,
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the optimal portfolio wealth is obtained by pointwise maximiza-
tion. Therefore, their method can be applied here even though
the interest rate in this model follows a Vasicek process. For the
single-VaR-constraint problem (indicated by 1VaR), the optimal
wealth at time T W1VaR

T is

W1VaR
T ¼

y1VaR
0 fT

� ��1=c for fT 6 f1VaR
T ;

W for f1VaR
T < fT 6

�f1VaR
T ;

y1VaR
0 fT

� ��1=c for fT P �f1VaR
T ;

8>><
>>: ð12Þ

where y1VaR
0 is the Lagrange multiplier of the budget constraint, the

lower bound f1VaR
T is defined by y1VaR

0 f1VaR
T

� ��1=c ¼W and the upper
bound �f1VaR

T by Pr0 fT P �f1VAR
T

� �
¼ a. This means that, conditional on

the information available at time 0, the probability that fT will be
larger than �f1VaR

T equals the VaR level a. When the VaR constraint
is actually not binding, we have f1VaR

T P �f1VaR
T and, obviously,

W1VaR
T ¼Wu

T , where Wu
T represents the optimal portfolio wealth

without any regulatory constraints and the superindex u indicates
that the optimization is not constrained other than through
the budget constraint. Basak and Shapiro (2001) show that W1VaR

T

equals the sum of the unconstrained portfolio wealth y1VaR
0 fT

� ��1=c

and a ‘‘corridor’’ option from which the investor will get

W � y1VaR
0 fT

� ��1=c when f1VaR
T 6 fT 6

�f1VaR
T holds and nothing

otherwise.
The optimal portfolio wealth, at time T, under a single-EDS con-

straint, W1EDS
T , is

W1EDS
T ¼

y1EDS
0 fT

� � �1
cð Þ for fT 6 f1EDS

T ;

W for f1EDS
T < fT < �f1EDS

T ;

y1EDS
0 � y1EDS

1

� �
fT

� ��1
c for fT P �f1EDS

T ;

8>>><
>>>:

ð13Þ

where the superindex 1EDS denotes a single-EDS constraint, the
lower and upper bounds, f1EDS

T and �f1EDS
T ; are defined as

f1EDS
T � W�c

y1EDS
0

;

�f1EDS
T � W�c

y1EDS
0 � y1EDS

1

;

respectively. Here y1EDS
0 and y1EDS

1 are two Lagrange multipliers
which solve the budget constraint and the EDS constraint (11a)
respectively.

The optimal portfolio wealth, at time T, under a single-ES con-
straint is

W1ES
T ¼

y1ES
0 fT

� � �1
cð Þ for fT 6 f1ES

T ;

W for f1ES
T < fT < �f1ES

T ;

y1ES
0 fT � y1ES

1

� ��1
c for fT P �f1ES

T ;

8>>><
>>>:

ð14Þ

where y1ES
0 and y1ES

1 are two Lagrange multipliers which solve the
budget constraint and the ES constraint (11b) respectively. The low-
er bound f1ES

T is defined as

f1ES
T �W�c

y1ES
0

; ð15Þ

and the upper bound �f1ES
T as

�f1ES
T �W�c þ y1ES

1

y1ES
0

: ð16Þ

Under both a single-EDS constraint and a single-ES constraint, the
unfavorable states fT P �f1EDS

T

�
or fT P �f1ES

T

�
are classified according

to, among others, the risk aversion of the investor c and the initial
wealth of the investor W0, while in a single-VaR-constraint model,
the unfavorable states fT P �f1VaR

T

� �
are classified exogenously.

Let t stand for any prehorizon time. The portfolio wealth before
time T is the expected discounted final portfolio wealth, i.e.,
W1c

t ¼ f�1
t EtfT W1c

T , where c stands for VaR, EDS, or ES respectively.

Applying the Itô-Doeblin lemma to W1c
t , we can obtain the optimal

portfolio allocation. Let p1c
St
;p1c

PM
t

, and p1c
PT�t

t
stand for the percentages

of portfolio wealth, at time t, invested in the stock index, the con-
stant-maturity bond fund and the zero-coupon bond with maturity
T, respectively. The percentage of portfolio wealth invested in the
cash account is the remainder, 1� p1c

St
� p1c

PM
t
� p1c

PT�t
t

. The optimal

portfolio allocation under a single-VaR constraint is

p1c
St

p1c
PM

t

p1c
PT�t

t

2
664

3
775 ¼ 1

c
X1c

spec;t

/s
rS

� /r
rr BðMÞ

0

2
664

3
775þ 1� 1

c

� 	
X1c

hedge;t

0
0
1

2
64

3
75; ð17Þ

where

X1c
spec;t ¼ �

dW1c
t

dft

ft

W1VaR
t

c; ð18Þ

X1c
hedge;t ¼ �

dW1c
t

drt

1
W1c

t BðT � tÞð1� 1=cÞ
: ð19Þ

In the single-VaR constraint case and the single-EDS constraint case,
X1VaR

spec;t;X
1VaR
hedge;t ;X

1EDS
spec;t , and X1EDS

hedge;t can be derived analytically and the
exact forms are provided in Appendix A. In the single-ES constraint
case, since there are no analytical solutions to W1ES

t , neither
dW1ES

t =dft nor dW1ES
t =drt can be derived analytically. Thus, in our

numerical implementation, they are approximated as follows:

dW1ES
t

dft
�

W1ES
t;ftþDft

�W1ES
t;ft�Dft

2� Dft
;

dW1ES
t

drt
�

W1ES
t;rtþDrt

�W1ES
t;rt�Drt

2� Drt
;

where W1ES
t;ftþDft

W1ES
t;ft�Dft


 �
refers to the portfolio wealth at time t in

the single-ES-constraint model when the pricing kernel takes the
value ft + Dft (ft � Dft) while other values are keep unchanged

and W1ES
t;rtþDrt

W1ES
t;rt�Drt


 �
refers to the portfolio wealth at time t in

the single-ES-constraint model when the interest rate takes the va-
lue of rt + Drt (rt � Drt) while other parameter values are kept
constant.

The optimal portfolio allocation with a single-VaR constraint, a
single-EDS constraint, or a single-ES constraint, consists of a spec-
ulative fund and a hedge fund. The speculative fund consists of the
stock index and the constant-maturity bond fund. The hedge fund
consists only of the bond with T � t years to maturity. For an inves-
tor with log utility (c = 1), the hedge term vanishes. As the investor
becomes more and more risk-averse (c ?1), the speculative
fund’s weight tends to 0%. Note that the optimal portfolio weights
without any regulatory constraints are

pu
St

pu
PM

t

pu
PT�t

t

2
664

3
775 ¼ 1

c

1
rS

/S

� 1
rr BðMÞ/r

0

2
64

3
75þ 1� 1

c

� 	 0
0
1

2
64

3
75: ð20Þ

Therefore,

X1c
spec;t ¼

p1c
St

pu
St

¼
p1c

PM
t

pu
PM

t

; ð21Þ

represents the exposure to the risky assets (i.e., the speculative
fund) relative to the case without any regulatory constraints and
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X1c
hedge;t ¼

p1c
PT�t

t

pu
PT�t

t

; ð22Þ

represents the exposure to the riskless asset (i.e., the hedge fund)
relative to the case without any regulatory constraints. When

X1c
spec;t X1c

hedge;t


 �
takes a value of 1, the exposures to the speculative

(hedge) fund with and without a single-regulatory constraint are

the same. When X1c
spec;t X1c

hedge;t


 �
takes a value which is larger than

1, the exposure to the speculative (hedge) fund with a single-regu-
latory constraint is larger than the one without any regulatory con-

straints. When X1c
spec;t X1c

hedge;t


 �
takes a value which is smaller than 1,

the exposure to the speculative (hedge) fund with a single-regula-
tory constraint is smaller than the one without any regulatory
constraints.

3.1.2. Comparison of optimal portfolio wealth and allocation under a
single regulatory constraint

Fig. 1 shows the optimal wealth levels, subject to a single-regu-
latory-constraint at the investment horizon T, as a function of the
prevailing value of the pricing kernel. These optimal wealth levels
have been determined analytically using the results in Section
3.1.1. As these results closely follow Basak and Shapiro (2001),
we only discuss them briefly. Observe that all optimal wealth lev-
els are decreasing functions of the pricing kernel. This is a result of
the assumed state-independent utility functions. Furthermore,
note that various constraints effectively redistribute wealth across
the various states of the world.

In order to make the Value-at-Risk constraint comparable to the
Expected Shortfall and Expected Discounted Shortfall constraints,
we put eES equal to the induced Expected Shortfall of the optimal
wealth subject to the VaR constraint, that is,

eES ¼ E0 W �W1VaR
T


 �
W1VaR

T
6W

n o
: ð23Þ

Similarly, we put eEDS equal to the induced Expected Discounted
Shortfall of W1VaR

T .
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Fig. 1. This figure depicts the portfolio wealth at time T in the single-regulatory-
constraint models. The parameter values are W0 = 1.04, j = 0.15, �r ¼ 0:05;
rr ¼ 0:015, the bond Sharpe ratio kP = 0.05, the maturity of the bond fund
M = 10 years, rS = 0.25, the stock Sharpe ratio kS = 0.25, qSr = 0.2, W = 1.05, r0 = 2%,
c = 2, a = 0.025. eES is set equal to the induced Expected Shortfall of the optimal
wealth subject to the VaR constraint. eEDS is set equal to the induced Expected
Discounted Shortfall of W1VaR

T . The vertical axis on the left (right) side measures
the portfolio wealth at time T (pricing kernel density). At time 0, there is
2.5% probability that the pricing kernel value at time T, fT, will be larger than
about 1.78.
From Fig. 1 we see that the optimal wealth for the various con-
straints imposed is actually quite different. For the VaR constraint,
there is no punishment on the severity of the loss once it occurs. As
a result, it is optimal to accept large losses in bad states of the
world, that is, when fT is large. Both Expected Shortfall and Ex-
pected Discounted Shortfall constraints do weigh the size of the
loss, leading to less severe losses in bad states. As EDS puts more
weight on the very bad scenarios, the optimal wealth under the
EDS constraint, for bad states of the world, is largest.

Fig. 2 depicts the pre-horizon exposures to the risky assets (i.e.,
the speculative fund) and the riskless asset (i.e., the hedge fund)
relative to the ones in the unconstrained model for these three reg-
ulatory constraints when the interest rate is fixed at 4%. Let us first
investigate the relative portfolio weights in a single-VaR-constraint
model X1VaR

spec;t and X1VaR
hedge;t . The larger the values of X1VaR

spec;t and X1VaR
hedge;t

deviate from 1 the larger the difference in portfolio weights with
a single-VaR constraint and without any regulatory constraints.
When the market is booming, the portfolio choices with and with-
out a VaR constraint is the same. As the market deteriorates, the
relative exposure to the risky (riskless) assets first decreases (in-
creases) and then increases (decreases). The decrease in X1VaR

spec;t is
caused by the desire to make sure that the portfolio wealth at time

T is at or above the wealth lower-bound (W). The following in-
crease (decrease) in X1VaR

spec;t is a moral hazard behavior or a ‘‘gam-
bling’’ behavior. The ‘‘gambling’’ behavior occurs when the
market condition at time T/2 is bad but it is still likely that the mar-
ket might end up in ‘‘good’’ or ‘‘intermediate’’ states at time T
where the VaR constraint is binding. The idea behind increasing

(decreasing) in X1VaR
spec;t X1VaR

hedge;t


 �
is to bring the portfolio wealth to

the level of W when the market at time T turns out to be ‘‘good’’.
However, when the market at time T turns out to be ‘‘bad’’, this
strategy will bring a large portfolio wealth loss but this is not a
concern for an investor under a single-VaR constraint since the
VaR constraint does not punish the severity of a loss. On the con-
trary, as shown in Fig. 2, an institutional investor under the Ex-
pected Discounted Shortfall constraint does not have the
incentive to ‘‘gamble’’, because the Expected Discounted Shortfall
constraint imposes a heavy punishment on a loss. Therefore, the
existence of the ‘‘gambling’’ behavior is the major difference be-
tween the optimal portfolio weights under a VaR constraint and
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Fig. 2. This figure shows the optimal portfolio allocation at time t = T/2 under
single-regulatory constraints. In this figure, the interest rate at time t is fixed at 4%.
The parameter values are W0 = 1.04, j = 0.15, �r ¼ 0:05; rr ¼ 0:015, the bond Sharpe
ratio kP = 0.05, the maturity of the bond fund M = 10 years, rS = 0.25, the stock
Sharpe ratio kS = 0.25, qSr = 0.2, W = 1.05, r0 = 2%, c = 2, a = 0.025. eES is set equal to
the induced Expected Shortfall of the optimal wealth subject to the VaR constraint.
eEDS is set equal to the induced Expected Discounted Shortfall of W1VaR
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Fig. 3. This figure shows the optimal portfolio allocation at time t = T/2 under single-regulatory constraints with different interest rates. The parameter values are W0 = 1.04,
j = 0.15, �r ¼ 0:05; rr ¼ 0:015, the bond Sharpe ratio kP = 0.05, the maturity of the bond fund M = 10 years, rS = 0.25, the stock Sharpe Ratio kS = 0.25, qSr = 0.2, W = 1.05,
r0 = 2%, c = 2, a = 0.025. eES is set equal to the induced Expected Shortfall of the optimal wealth subject to the VaR constraint. eEDS is set equal to the induced Expected
Discounted Shortfall of W1VaR
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under an Expected Discounted Shortfall constraint. An Expected
Shortfall constraint punishes a portfolio wealth loss less severe
than an Expected Discounted Shortfall constraint. Consequently,
the investor under an ES constraint still has an incentive to ‘‘gam-
ble’’. The incentive is, naturally, much weaker than the one under a
VaR-type constraint.2

Fig. 3 compares the portfolio weights for different levels of pre-
vailing interest rate at time T/2. In general, a higher interest rate is
related to a higher yield on the default-risk-free zero-coupon bond
which makes the regulatory constraints easier to be fulfilled. For
example, consider a single-VaR-constraint model, when the inter-
est rate is 2% and the value of the pricing kernel is about 1.2, the
investor considers to increase his allocation to the risky assets to
finance his portfolio wealth at time T to the level of W. However,
when the interest rate is 10% and the value of the pricing kernel
is 1.2, the investor will not consider to increase his allocation to
the risky assets since the high yield from the riskless bond is suffi-
cient to finance his portfolio wealth at time T to the level of W.

3.2. Optimal investment under multiple regulatory constraints

3.2.1. Two-VaR-constraint model
The optimal portfolio wealth under two repeated VaR con-

straints, W2VaR
T ; is the solution to the investment problem

max
WT

E0
W1�c

T

1� c
;

s:t: E0WTfT ¼ f0W0;

Pr0 WT
2
6W


 �
6 a;

PrT
2
ðWT 6WÞ 6 a:

ð24Þ
2 The relative portfolio weights under a single ES constraint, X1ES
spec;T=2 and X1ES

hedge;T=2,
converge to 1 at a very large value of fT/2. Since the chance that such a large value of
fT/2 occur is small, therefore, it is not shown in Fig. 2.
We are going to use a backward iterative solution procedure to
solve (24). First, we solve the maximization problem in the second
period, that is, [T/2,T]. This second period problem is identical to
the single-constraint model. We assume that, at time T/2, the
investor starts with wealth WT/2. Following the same solution
method as the one in the single-constraint model, we find the
optimal wealth at time T, W2VaR

T ; and the indirect utility function
at time T=2 J2VaR

T=2 ðWT=2Þ: Second, we solve the maximization
problem in the first period, that is, [0,T/2]. One of the differences
between the maximization problem in the second and first
period is that in the second period, the objective function is
max ET=2W1�c

T =ð1� cÞ while in the first period the objective
function is the indirect utility of the problem, namely, max
E0J2VaR

T=2 WT=2


 �
: The superindex 2VaR represents two repeated

VaR constraints. The value function, or the indirect utility, is
defined as

J2VaR
T=2 WT=2;rT=2


 �
¼ max

WT :ET=2ffT WTg6fT=2WT=2 ;PrT=2ðWT6WÞ6af g
ET=2

W1�c
T

1�c
: ð25Þ

We now discuss the maximization problem for the first period
in more details. The optimal trading strategy in the period from
time 0 to time T/2 is a solution to the problem

max E0J2VaR
T
2

WT
2


 �
; ð26Þ

s:t: E0WT
2
fT

2
¼ f0W0; ð27Þ

Pr0 WT
2
6W


 �
6 a; ð28Þ

Pr0 WT
2
< W2VaR

T
2;min


 �
¼ 0; ð29Þ

where W2VaR
T=2;min is the minimal portfolio wealth required to fulfill the

next period’s VaR constraint. The minimum wealth needed at time T
to fulfill the VaR constraint in the second period is
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W2VaR
T;min ¼

W if fT < �f2VaR
T

0 if fT P �f2VaR
T

(
;

i.e., keeping the portfolio wealth at time T at the level of W in the
‘‘good’’ and ‘‘intermediate’’ states and leaves the portfolio wealth
at almost 0 in the ‘‘bad’’ states. Therefore, the minimum wealth at
time T=2;W2VaR

T=2;min; equals the present value of the minimum wealth
at time T, that is,

W2VaR
T
2;min ¼

1
fT

2

ET
2
WfT fT<�f2VaR

T
: ð30Þ

If the wealth at time T/2 is smaller than W2VaR
T=2;min; it is not possible to

fulfill the VaR constraint in the second period.
The Lagrangian for the constrained optimization problem (26) is

given by

2VaR WT
2
;fT

2
;rT

2


 �
¼E0 J2VaR

T
2

WT
2


 �
�y2VaR

0 fT
2
WT

2
þy2VaR

1 WT
2
PW �y2VaR

2 WT
2
<W2VaR

T
2;min

� �

þy2VaR
0 f0W0�y2VaR

1 ð1�aÞ;
ð31Þ

where y2VaR
0 ; y2VaR

1 and y2VaR
2 are Lagrange multipliers solving the

budget constraint (27), the VaR constraint (28) and the minimum
wealth constraint (29) respectively, with y2VaR

0 P 0; y2VaR
1 P 0 and

y2VaR
2 ¼ 1. Since the last two terms of (31) are constants, finding a

W2VaR
T=2 which maximizes the value of (31) is equivalent to finding

a portfolio wealth which maximizes the value of the function within
E0[�] in (31).

Due to the complexity of the function J2VaR
T=2 ðWT=2; rT=2Þ, it is not

possible to analytically derive the first order derivative of
J2VaR

T=2 ðWT=2Þ with respect to the wealth WT/2. Therefore, a numerical
method using a pointwise optimization is adopted to find the opti-
mal portfolio wealth at time T/2, W2VaR

T=2 . That is, for each pair of
interest rate at time T/2 and the pricing kernel value at time T/2,
the optimal portfolio wealth is the one which maximizes the func-
tion 2VaRðWT=2; fT=2; rT=2Þ.

The numerical procedures to find the optimal portfolio wealth
W2VaR

T=2 are as follows. First, we simulate N scenarios of interest rates,
rT/2,i, and pricing kernel values at time T/2, fT/2,i, with i = 1,2, . . . ,N.
Second, we create a vector with N0 different portfolio wealth in a
very broad range, WT/2,j with j = 1,2, . . . ,N0. Third, since the indirect
utility (25) depends on both the interest rate at time T/2 and the
portfolio wealth at time T/2, for each interest rate rT/2,i, we evaluate
the value of J2VaR

T=2 ðrT=2;i;WT=2;jÞ for all W 0
T=2;js.3 Fourth, for each sce-

nario of interest rate and pricing kernel value, i.e., rT/2,i and fT/2,i with
i = 1,2, . . . ,N, we evaluate the function value 2VaRðWT=2;j; fT=2;i; rT=2;iÞ,
for all W 0

T=2;js with j = 1,2, . . . ,N0. Finally, for each pair of rT/2,i and
fT/2,i, the optimal portfolio wealth is the one which maximizes the
value of 2VaRð�Þ.

At time t, 0 6 t 6 T/2, the optimal portfolio allocation is

p2VaR
St

p2VaR
PM

t

p2VaR
PT�t

t

2
6664

3
7775 ¼ 1

c
X2VaR

spec;t

/s
rS

� /r
rr BðMÞ

0

2
664

3
775þ 1� 1

c

� 	
X2VaR

hedge;t

0

0

1

2
64

3
75; ð32Þ

where the portfolio wealth at time t; W2VaR
t , is
3 To speed up the numerical process, we could first evaluate the indirect utility
function value JT/2(�) for a small sample of interest rates. For each given portfolio
wealth the value function value is almost linearly increasing with interest rates. This
relationship enable us to evaluate the function value JT/2(rT/2,i,WT/2,j) for i 2 [1,N] by
interpolation.
W2VaR
t ¼ 1

ft
Et fT

2
W2VaR

T
2


 �
; ð33Þ

X2VaR
spec;t and X2VaR

hedge;t again measure the risk exposures relative to the
ones without regulatory constraints and

X2VaR
spec;t ¼ �

dW2VaR
t

dft

ft

WVaR2
t

c; ð34Þ

X2VaR
hedge;t ¼ �

dW2VaR
t

drt

1

W2VaR
t BðT � tÞ 1� 1

c


 � : ð35Þ

Since the two first order derivatives dW2VaR
t =dft and dW2VaR

t =drt can-
not be derived analytically, X2VaR

spec;t and X2VaR
hedge;t are approximated as

before.

3.2.2. Two-EDS-constraint and two-ES-constraint models
The optimization problems under two repeated EDS constraints

and ES constraints can also be solved with a similar backward
induction procedure, except at time T/2 the minimum wealth is
W2EDS

T=2;min if two repeated EDS constraints are imposed, where

W2EDS
T=2;min ¼ E

1
fT=2

fT WIfT6
�f2EDS

T
þ E

� 1
fT=2

fT y2EDS
0;T=2 � y2EDS

1;T=2


 �
fT

h i�1
c

fT>�f2EDS
T

¼We
lf;T=2;T;rT=2

þ1
2r

2
f;T=2;T � �EDS; ð36Þ

and W2ES
T=2;min if two repeated ES constraints are imposed, where

W2ES
T=2;min ¼ E

1
fT=2

fT WIfT6
�f2ES

T
þ E

� 1
fT=2

fT y2ES
0;T=2fT � y2ES

1;T=2


 ��1
c

fT>
�f2ES

T
: ð37Þ

In both equations above, y2EDS
0;T=2 and y2ES

0;T=2 solve the second period’s
budget constraints in the EDS model and the ES model respectively
and y2EDS

1;T=2 and y2ES
1;T=2 solves the second period’s EDS constraint and ES

constraint respectively. The superindices 2EDS and 2ES stand for
two repeated EDS constraints and ES constraints respectively.

The method to derive optimal portfolio choices under EDS or ES
constraints is the same as the one under VaR constraints. At time t,
0 6 t 6 T/2, the optimal portfolio allocation is

p2c
St

p2c
PM

t

p2c
PT�t

t

2
664

3
775 ¼ 1

c
X2c

spec;t

/s
rS

� /r
rr BðMÞ

0

2
664

3
775þ 1� 1

c

� 	
X2c

hedge;t

0
0
1

2
64

3
75; ð38Þ

where c stands for the EDS, or ES constraint. The relative risk expo-
sures X2c

spec;t and X2c
hedge;t are given as

X2c
spec;t ¼ �

dW2c
t

dft

ft

W2c
t

c; ð39Þ

X2c
hedge;t ¼ �

dW2c
t

drt

1

W2c
t BðT � tÞ 1� 1

c


 � : ð40Þ

Finally, W2c
t is the portfolio wealth at time T/2, and again

W2c
t ¼

1
ft

Et fT
2
W2c

T
2


 �
:

3.2.3. Comparison of optimal portfolio wealth distributions and
allocations under two-repeated-constraint models

When the regulatory constraint is as long as the investment
horizon (i.e., the single-constraint models), Fig. 1 shows that the
three regulatory constraints lead to significantly different final
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wealth levels. However, when these regulatory constraints are im-
posed repeatedly and when the regulatory horizon is significantly
shorter than the investment horizon, the differences in portfolio
wealth disappears. Fig. 4 compares the portfolio wealth at time
T/2 under two repeated VaR constraints, EDS constraints and ES
constraints when the interest rate is 4%. Observe that all three
types of regulatory constraints are able to prevent large portfolio
wealth losses when the financial market is unfavorable. These re-
sults stem from the necessity to hold the portfolio wealth above
the minimum portfolio wealth level to fulfill the second period’s
regulatory constraint. Only in the ‘‘intermediate’’ states, the portfo-
lio wealth under two repeated VaR constraints is different from
others because of the requirement to keep the portfolio wealth at
or above W in 1 � a percent of cases.

Fig. 5 compares the portfolio wealth at time T/2 when the inter-
est rates are 2% and 10% respectively. We can conclude that (1) in
‘‘good’’ states, the optimal portfolio wealth decreases as interest
rates increase, and (2) the minimum wealth at time

T=2 W2VaR
T=2;min;W

2EDS
T=2;min;W

2ES
T=2;min


 �
decreases as the interest rate in-

creases. The latter occurs as a high interest rate leads to a high
zero-coupon bond yield and thus reduces the minimum amount
of wealth necessary to fulfill the next period’s regulatory
constraint.

With respect to VaR-type constraints, the states in which the

investor keeps his portfolio wealth at W no longer depends only
on the pricing kernel values. For example, in Fig. 5, the investor un-
der two repeated VaR constraints chooses to keep his portfolio

wealth at W in the state where ft = f1 and rt = 2% while leave the
portfolio wealth at WVaR

T=2;min in the state where ft = f2 and rt = 10%

even though f1 is larger than �f2VaR
T=2 and f2 is smaller than �f2VaR

T=2 .
The investor decides in which states he keeps his portfolio wealth

at W not only on the value of the pricing kernel but also on the
interest rates. For each state at time t, t 2 [0,T], the cost of raising
the portfolio wealth from the unconstrained portfolio wealth Wu

t

to W equals ft W �Wu
t

� �
. At time T, as shown in Fig. 1, the uncon-

strained portfolio wealth Wu
T monotonically decreases as fT in-

creases. Therefore, at time T, it is always cheaper to raise the

wealth level to W in states where fT < �f2VaR
T : While at time T/2,

the unconstraint portfolio wealth depends on both the pricing ker-
nel value and the interest rate. For any given value of fT/2, the
unconstrained portfolio wealth Wu

T=2 decreases when the interest
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Fig. 4. This figure compares the optimal portfolio wealth in the two-constraint
models at time T/2. The interest rate rT/2 is 0.04. The parameter values are W0 = 1.04,
j = 0.15, �r ¼ 0:05; rr ¼ 0:015, the bond Sharpe ratio kP = 0.05, the maturity of the
bond fund M = 10 years, rS = 0.25, the stock Sharpe ratio kS = 0.25, qSr = 0.2,
W = 1.05, r0 = 2%, c = 2, a = 0.025, eES = 0.008 and eEDS = 0.017.
rate increases. Thus, the cost of raising the portfolio wealth to W
in states with large pricing kernel value, i.e., fT=2 > �f2VaR

T=2 and low
interest rates might be cheaper than the one in states with small
pricing kernel values, i.e., fT=2 6

�f2VaR
T=2 ; and high interest rates.

Optimal portfolio allocation under two repeated regulatory con-
straints is significantly different from the one under a single-regu-
latory constraint. Figs. 6–8 depict the pre-horizon relative portfolio
allocation under two repeated VaR, EDS and ES constraints respec-
tively when the interest rate rT/3 is 4%. The pre-horizon relative
portfolio allocations under a single-VaR, a single-EDS, and a sin-
gle-ES constraint are also shown as a comparison. Generally speak-
ing, all two types of regulatory constraints force the investor to put
more weight on the hedge fund as the financial market perfor-
mance deteriorates. The difference between VaR-type constraints
and Expected Shortfall-type constraints still lies in the existence
of the incentive to gamble. At the time when the weight of the
speculative fund is increasing, however, unlike the investor under
a single-VaR constraint who decreases his holdings in the hedge
fund, the investor under two VaR constraints increases his holdings
in the hedge fund to compensate for the possible loss generated by
the speculative fund. By doing so, the investor under two VaR con-
straints guarantees that his portfolio wealth is large enough to ful-
fill next period’s VaR constraint in all circumstances.

3.2.4. Multi-constraint models
The analysis above can easily be extended to more than three

constraints. For example, if there are m subsequent and non-over-
lapping VaR constraints within the investment horizon, we start by
solving the optimal portfolio wealth in the last period and then
proceed backwards by repeating the numerical procedures devel-
oped for finding the first period’s optimal portfolio wealth in the
two-constraint model. As is to be expected from the previous re-
sults, the optimal portfolio wealth under the two types of regula-
tory constraints, when implemented dynamically, are very similar.

4. Certainty equivalent loss

In this section, we consider a pension fund with 15-year invest-
ment horizon as an example to analyze the cost and the benefit of
both the VaR-type and the Expected Shortfall-type prudential reg-
ulation. The regulatory horizon considered here is 1 year, meaning
that in the 15-year investment horizon, there are 15 non-overlap-
ping regulatory constraints.

To avoid agency conflicts between a pension fund’s participants
and the pension fund’s managers, regulatory constraints are
needed to protect the liabilities of participants. But in a country
like the Netherlands where Defined Benefit pension benefits are
linked to the pension fund’s portfolio returns, the costs of regula-
tion are, therefore, borne by all participants, with some more than
others.

The economic cost is measured by the certainty equivalent loss
ce relative to the unconstrained portfolio allocation problem. The
certainty equivalent loss ce is defined as the equivalent amount
of wealth lost due to the regulation, i.e.,

Ju
0ðW0 � ceÞ ¼ Jcm

0 ðW0Þ;

where Ju
0ð�Þ stands for the indirect utility at time 0 without any reg-

ulatory constraints, and Jcm
0 ðW0Þ is the indirect utility at time 0 with

m regulatory constraints. The economic benefit is measured by a
reduction in the Expected Shortfall at time 0. The Expected Short-
fall, SFcm

0 ; is defined as

SFcm
0 ¼ E0 maxðW �WT ;0Þ:

We assume that j ¼ 1:5%; �r ¼ 5%; rr ¼ 1:5%, the bond Sharpe Ra-
tio kP = 5%, M = 10 years, rS = 25%, qSr = 20%, W = 1.05, and the stock
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Sharpe ratio ks = 25%. These set of parameters are close to those ob-
tained by empirical studies, for example, Chan et al. (1992). In par-
ticular, qSr is chosen to be positive so that the correlation between
interest rate and stock price is negative which is suggested by
Campbell (1987). The short-term interest rate at time 0, r0, is 4%
which is close to the average US 3-month T-Bill rate from 1985 to
2010. For a pension fund, the natural choice of the ‘‘floor’’ W is its
liability. In this paper, we assumed that the value of the pension
fund’s liability is constant over time but it can be easily extended
to the case when the liability value is stochastic as long as the lia-
bility value is exogenously determined.

Fig. 9 shows the certainty equivalent loss and the expected
portfolio wealth shortfall of a pension fund with c = 2 and
a = 2.5%.�EDS and �ES are about 0.017 and 0.008 respectively.

We find that the 15 regulatory constraints can significantly re-
duce the portfolio wealth shortfall. It is almost guaranteed that at
the end of the investment horizon the pension fund’s portfolio
wealth will be above W. For example, when the initial portfolio



Fig. 8. This figure shows the relative portfolio allocation at time T/3 in two-ES-
constraint model. The parameter values are W0 = 1.04, j = 0.15, �r ¼ 0:05; rr ¼
0:015, the bond Sharpe ratio kP = 0.05, the maturity of the bond fund M = 10 years,
rS = 0.25, the stock Sharpe ratio kS = 0.25, qSr = 0.2, W = 1.05, r0 = 2%, c = 2, a = 0.025,
eES = 0.008 and eEDS = 0.017.
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wealth is about 1.01, which corresponds to a funding ratio of about
0.96, the Expected Shortfall is about 0.3% when no regulatory
constraints are imposed. The Expected Shortfall decreases to al-
most 0 as the regulatory frequency increases. However, the cer-
tainty equivalent loss is about 3.8% when there are 15 VaR
constraints and about 2.5% (2.8%) when there are 15 EDS (ES) con-
straints. It shows that the economic costs of imposing VaR-type
constraints or Expected Shortfall-type constraints are very similar
when these constraints are imposed repeatedly.

5. Conclusions

Value-at-Risk and Expected Shortfall constraints are often
adopted by regulators to limit the portfolio risk of institutional
investors. However, the regulatory horizon is usually much
shorter than the institutional investors’ investment horizon. In
this paper, we compare the optimal portfolio wealth, optimal
portfolio allocation and the overall economic costs when VaR
and Expected Shortfall constraints are imposed repeatedly over
an institutional investor’s investment horizon. We find, e.g., that
a constrained investor, as expected, invests more in the risk-free
asset than unconstrained investors. However, unintendedly, VaR
constraints may under certain market conditions also lead to
gambling behavior in order to be able to meet future regulatory
constraints. When adopting multiple repeated constraints, we
observe that the differences in portfolio allocation and wealth
under VaR-type and Expected Shortfall-type constraints disap-
pears. The theoretical shortcomings of VaR, as not being a
coherent risk measure (see Artzner et al., 1999), may thus be
less severe in a dynamic setting. We also find that the costs
of imposing the constraints, in terms of certainty equivalent
wealth, can be sizeable.
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Appendix A. The optimal portfolio allocation in the single-
constraint model

A.1. The single-VaR-constraint model

The optimal portfolio allocation under a single-VaR constraint is
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A.2. The single-EDS-constraint model

The optimal portfolio choices under a single-EDS constraint is
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