Solving Crossword Puzzles as Probabilistic Constraint Satisfaction

Noam M. Shazeer, Michael L. Littman, Greg A. Keim

Department of Computer Science
Duke University, Durham, NC 27708-0129
{noam,mlittman,keim}@cs.duke.edu

Abstract

Crossword puzzle solving is a classic constraint satis-
faction problem, but, when solving a real puzzle, the
mapping from clues to variable domains is not perfectly
crisp. At best, clues induce a probability distribution
over viable targets, which must somehow be respected
along with the constraints of the puzzle. Motivated
by this type of problem, we describe a formal model
of constraint satisfaction with probabilistic preferences
on variable values. Two natural optimization problems
are defined for this model: maximizing the probabil-
ity of a correct solution, and maximizing the number
of correct words (variable values) in the solution. To
the latter, we apply an efficient iterative approximation
equivalent to turbo decoding and present results on a
collection of real and artificial crossword puzzles.

Introduction

Constraint satisfaction is a powerful and general for-
malism. Crossword puzzles are frequently used as ex-
amples of constraint satisfaction problems (CSPs), and
search can be used to great effect in crossword-puzzle
creation (Ginsberg et al. 1990). However, we are not
aware of any attempts to apply CSPs to the problem of
solving a crossword puzzle from a set of clues. This is
due, in part, to the fact that traditional CSPs have no
notion of “better” or “worse” solutions, making it dif-
ficult to express the fact that we prefer solutions that
fill the grid and match the clues to ones that simply fill
the grid.

To address this problem, this paper describes a prob-
abilistic extension to CSPs that induces probability dis-
tributions over solutions. We study two optimization
problems for this model. The maximum probability
solution corresponds to maximizing the probability of
a correct, solution, while the maximum expected over-
lap solution corresponds to maximizing the number of
correct variable values in the solution. The former can
be solved using standard constrained-optimization tech-
niques. The latter is closely related to belief network
inference, and we apply an efficient iterative approx-

Copyright (©1999, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

imation equivalent to Pearl’s belief propagation algo-
rithm (Pearl 1988) on a multiply connected network.

We describe how the two optimization problems and
the approximation result in different solutions on a col-
lection of artificial puzzles. We then describe an exten-
sion to our solver that has been applied to a collection
of real New York Times crossword puzzles. Our system
achieves a score of 89.5% words correct on average, up
from 51.8% for a more naive approximation.

Constraint Satisfaction Problems

We define a (Boolean) constraint satisfaction prob-
lem (Mackworth 1977), or CSP, as a set of variables and
constraints on the values of these variables. For exam-
ple, consider the crossword puzzle in Figure 1. Here,
variables, or slots, are the places words can be writ-
ten. The binary constraints on variable instantiations
are that across and down words mesh. The domain of a
variable, listed beneath the puzzles, is the set of values
the variable can take on; for example, variable 3A (3
across) can take on values FUN or TAD). A solution to
a CSP is an instantiation (assignment of values to the
variables) such that each variable is assigned a value in
its domain and no constraint is violated. The crossword
CSP in Figure 1 has four solutions, which are labeled
A through D in the figure. (The probability values in
the figure will be explained next.)

Although CSPs can be applied to many real-world
problems, some problems do not fit naturally into this
framework. The example we consider in this paper is
the problem of solving a crossword puzzle from its clues.
The slots of the puzzle are nicely captured by CSP vari-
ables, and the grid by CSP constraints, but how do
we transform the clues into domain values for the vari-
ables? A natural approach is to take a clue like “Small
amount [3]” and generate a small set of candidate an-
swers of the appropriate length to be the domain: TAD,
JOT, DAB, BIT, for example.

This approach has several shortcomings. First, be-
cause of the flexibility of natural language, almost any
word can be the answer to almost any clue; limiting
domains to small sets will likely exclude critical candi-
dates. Second, even with a direct clue, imperfections
in automated natural language processing may cause a

1 |2
T

1]2
ag |
4

=

1 2
T [

Flul'n| ['tlalol [r]alp]| [[T]AalD
IIIST o IIIEG o IIIEG o ‘G| o
A B C D
P :0.350 0.250 0.267 0.133
Q : 2.367 2.833 3.233 2.866
Q°°: 2.214 2.793 3.529 3.074
slot 1A slot 1D
v p q ¢ v p q ¢
AS b5 .250 190 IT 4 400 496
IN .3 617 .645 IF .3 350 .314
IS .2 133 .165 AT .3 250 .190
slot 3A slot 2D
v p q ¢ v op g ¢
FUN .7 .350 .314 NAG .4 267 .331
TAD .3 .650 .686 SAG .3 .383 .355

NUT 3 .350 .314
slot 5A slot 4D
v p q ¢ v p q ¢

GO .7 .650 .686 NO .7 .350 .314
T0 3 350 314 DO 3 .650 .686

Figure 1: This crossword puzzle with probabilistic pref-
erences (p) on the candidate words (v) has four possible
solutions, varying in probability (P) and expected over-
lap (Q). Posteriors (q) and their approximations (¢(>))
are described in the text.

reasonable candidate to be excluded. To avoid these
difficulties, we might be tempted to over-generate our
candidate lists. Of course, this has the new shortcoming
that spurious solutions will result.

This is a familiar problem in the design of grammars
for natural language parsing: “Either the grammar as-
signs too many structures ... or it incorrectly predicts
that examples...have no well-formed structure” (Ab-
ney 1996). A solution in the natural language do-
main is to annotate grammar rules with probabilities,
so that uncommon rules can be included (for coverage)
but marked as less desirable than more common rules
(for correctness). Then, no grammatical structure is
deemed impossible, but better structures are assigned
higher probability.

Following this line of thought for the crossword puz-
zle CSP, we annotate the domain of each variable with
preferences in the form of probabilities. This gives a
solver a way to distinguish better and worse solutions
to the CSP with respect to goodness of fit to the clues.

Formally, we begin with a CSP specified as a set of
n variables X = {x1,... ,z,} with domain D; for each
z; € X. The variables are coupled through a constraint
relation match, defined on pairs of variables and values:
if x;,z; are variables and v, w are values, the propo-
sition match,, ., (v, w) is true if and only if the partial
instantiation {z; = v, z; = w} does not violate any con-
straints. The match relation can be represented as a set

of constraint tables, one for each pair of variables in X .
The variables, values, and constraints are jointly called
a constraint network. We then add preference informa-
tion to the constraint network in the form of probabil-
ity distributions over domains: p,, (v) is the probability
that we take v € D; to be the value of variable x;.
Since p,, is a probability distribution, we insist that for
all 1 <i <, Y cp ps;(v) =1 and for all v € Dj,
Dz, (v) > 0. This is a special case of probabilistic CSPs
(Schiex, Fargier, & Verfaillie 1995). An opportunity for
future work is to extend the algorithms described here
to general probabilistic CSPs.

In the crossword example, probabilities can be cho-
sen by a statistical analysis of the relation between the
clue and the candidate; we have adopted a particular
approach to this problem, which we sketch in a later
section. Extending the running example, we can an-
notate the domain of each variable with probabilities,
as shown in Figure 1 in the columns marked “p”. (We
have no idea what clues would produce these candidate
lists and probabilities; they are intended for illustration
only.) For example, the figure lists pop (NUT) = 0.3.

We next need to describe how preferences on values
can be used to induce preferences over complete so-
lutions. We consider the following probability model.
Imagine that solutions are “generated” by indepen-
dently selecting a value for each variable according to
its probability distribution p, then, if the resulting in-
stantiation satisfies all constraints, we “keep” it, oth-
erwise we discard it and draw again. This induces a
probability distribution over solutions to the CSP in
which the probability of a solution is proportional to
the product of the probabilities of each of the values
of the variables in the solution. The resulting solution
probabilities for our example CSP are given in Figure 1
in the row marked P.

The solution probabilities come from taking the prod-
uct of the value probabilities and then normalizing
by the total probability assigned to all valid solutions
(Pr(match)). For example, the probability assigned to
solution C is computed as:

P(C) = pia(IN) - p3a(TAD) - p5a(GO) - pin(IT)
-pap (NAG) - psp(DO)/ Pr(match)
(0.3)(0.3)(0.7)(0.4)(0.4)(0.3) / Pr(match)
= 0.00302/0.01134 = 0.26667.

In the next section, we discuss how these values can
be used to guide the selection of a solution.

Optimization Problems

We can use the probability distribution over solutions,
as defined above, to select a “best” solution to the CSP.
There are many possible notions of a best solution, each
with its own optimization algorithms. In this paper,
we consider two optimization problems on CSPs with
probabilistic preferences: maximum probability solu-
tion and maximum expected overlap solution.

The mazximum probability solution is an instantiation
of the CSP that satisfies the constraints and has the
largest probability of all such instantiations (solution
A with P(A) = 0.350 from Figure 1). It can be found
by computing

argmax P(vi,...,v,)
SOln:vl,...,v"

argmax szl. (v;)/ Pr(match)

soln:vi,... ,vp i—1

argmax [pe, (vs). 1)

SOln:vh... yUn §=1

That is, we just need to search for the solution that
maximizes the product of the preferences p. This is an
NP-complete problem (Garey & Johnson 1979), but it
can be attacked by any of a number of standard search
procedures: A*, branch and bound, integer linear pro-
gramming, weighted Boolean satisfiability, etc.

Another way of viewing the maximum probability so-
lution is as follows. Imagine we are playing a game
against Nature. Nature selects a solution at random
according to the probability distribution described in
the previous section, and keeps its selection hidden. We
must now propose a solution for ourselves. If our so-
lution matches the one selected by Nature, we win one
dollar. If not, we win nothing. If we want to select
the solution that maximizes our expected winnings (the
probability of being completely correct), then clearly
the maximum probability solution is the best choice.

The mazimum expected overlap solution is a more
complicated solution concept and is specific to our prob-
abilistic interpretation of preferences. It is motivated
by the crossword puzzle scoring procedure used in the
yearly human championship known as the American
Crossword Puzzle Tournament (Shortz 1990). The idea
is that we can receive partial credit for a proposed so-
lution to a crossword puzzle by counting the number of
words it has in common with the true solution.

In a probabilistic setting, we can view the problem
as another game against Nature. Once again, Nature
selects a solution at random weighted by the P distribu-
tion and we propose a solution for ourselves. For every
word (variable-value pair) in common between the two
solutions (i.e., the overlap), we win one dollar. Again,
we wish to select the solution that maximizes our ex-
pected winnings (the number of correct words).

In practice, the maximum expected overlap solution
is often highly correlated with the maximum probability
solution. However, they are not always the same. The
expected overlap @) for each the four solutions in figure 1
is listed in the table; the maximum expected overlap
solution is C, with Q(C) = 3.233 whereas the maximum
probability solution is A. Thus, if we choose A as our
solution, we’d expect to have 2.367 out of six words
correct, whereas solution C scores almost a full word
higher, on average.

To compute the expected overlap, we use a new set

of probabilities: ¢, (v) is the probability that variable
z has value v in a solution. It is defined as the sum
of the probabilities of all solutions that assign v to .
Whereas p, (v) is a prior probability on setting variable
x to value v, ¢, (v) is a posterior probability. Note that
for some slots, like 3A, the prior p and posterior g of
the values differ substantially.

As a concrete example of where the ¢ values come
from, consider ¢go2p(SAG) = Pr(B) + Pr(D) = 0.250 +
0.133 = 0.383. For the expected overlap (), we have

Q(D) = qa(IS)+ g3a(TAD) + g54(GO) +
@10 (IT) 4+ ¢2n(SAG) + g4p(DO)

0.133 + 0.650 + 0.650 + 0.400 +
0.383 + 0.650 = 2.867

By the linearity of expectation,

argmax Q(v1,...,vVn)
SOlH:vl,... JUn

= argmax Z Qe; (1), (2)

SOh’l:vl soee s Un G=1

thus, computing the maximum expected overlap solu-
tion is a matter of finding the solution that maximizes
the sum of a set of weights, g. The weights are very hard
to compute in the worst case because they involve a sum
over all solutions. The complexity is #P-complete, like
belief network inference (Roth 1996).

In the next section, we develop a procedure for effi-
ciently approximating q. We will then give results on
the use of the resulting approximations for solving ar-
tificial and real crossword puzzles.

Estimating the Posteriors

Constraint satisfaction problems with probabilistic
preferences have elements in common with both con-
straint networks and belief networks (Pearl 1988). So,
it is not surprising that, although computing posterior
probabilities in general CSPs with probabilistic prefer-
ences is intractable, when the constraint relations form
a tree (no loops), computing posterior probabilities is
easy.

Given a constraint network N with cycles, a variable
z with domain D, and value v € D, we want to ap-
proximate the posterior probability ¢, (v) that variable
x gets value v in a complete solution. We develop a
series of approximations of N around z described next.

Let the “unwrapped network” U;d) be the breadth-
first search tree of depth d around x where revisita-
tion of variables is allowed, but immediate backtracking
is not. For example, Figure 2(a) gives the constraint
network form of the crossword puzzle from Figure 1.
Figures 2(b) (f) give a sequence of breadth-first search

trees U?EZ) of differing depths around 3A. The graph Uéd)
is acyclic for all d. The limiting case U£°°)7 is a possibly

infinite acyclic network locally similar to NV in the sense
that the labels on neighbors in the infinite tree match

Figure 2: A cyclic constraint network can be approxi-
mated by tractable tree-structured constraint networks.

those in the cyclic network. This construction parallels
the notion of a universal covering space from topology
theory (Munkres 1975).

We consider Uéd) as a constraint network. We give
each variable an independent prior distribution equal
to that of the variable in N with the same label.

Let q,(td) (v) be the posterior probability that x takes
value v in the network Uéd). As d increases, we'd expect

qg(ud) (v) to become a better estimate of ¢, (v) since the

structure of U(?) becomes more similar to N. (In fact,
there is no guarantee this will be the case, but it is true
in the examples we’ve studied.)

Computing the posteriors on unwrapped networks
has been shown equivalent to Pearl’s belief propaga-
tion algorithm (Weiss 1997), which is exact on singly
connected networks but only approximate on loopy
ones (Pear]l 1988).

We will now derive efficient iterative equations
for ¢\ (v). Consider a variable z with neighbors
Yis--- ,Ym- We define B,(Ed; as the y;-branch of UédH),
or equivalently, Ug(,f) with the z-branch removed (see
Figure 2(g)). Let béd; (w) be the posterior probabil-

ity that y; takes value w in the network B,(Ed; Note

that U,EO) and B,(??)Ji contain the single variables z and
y; respectively. Thus,

¢\ (v) = p.(v) and bY) (W) = py, (w).

For positive d, we view U;d) as a tree with root z and

Bl

branches Bg,y, According to our model, a solution

on Ugﬁ”” is generated by independently instantiating all
variables according to their priors, and discarding the
solution if constraints are violated. This is equivalent
to first instantiating all of the branches and checking
for violations, then instantiating = and checking for vi-
olations. Furthermore, since the branches are disjoint,
they can each be instantiated separately. After instan-
tiating and checking the branches, the neighbors y;
through y,,, are independent and g; has probability dis-
tribution b,(‘?;il). The posterior probability qg(gd) (v) that
x takes the value v is then proportional to the probabil-
ity p(v) that v is chosen multiplied by the probability
that = v does not violate a constraint between z and
one of its neighbors. We get

¢ w) = kPps(v)-

I >)l w,
i=1 w\matchyi L (w,v)

where k;d) is the normalization constant necessary to

make the probabilities sum to one. Since Bf,d)w is sim-

ply Ugﬁ”” with one branch removed', the equation for
b;d)z(v) is very similar to the one for ¢\ (v):

b (0) = kylapa(v) -

Yi,x Yy

H Z b;‘??jjl) (w).

Jj=1..m,j#i w\matchyj x(w,v)

Note that, as long as the constraint network N is 2-
consistent, the candidate lists are non-empty and the
normalization factors are non-zero.

The sequence {qg(cd) (v)} does not always converge.
However, it converges in all of our artificial experiments.

If it converges, we call its limit qg(uoc)(v).

In the case in which N is a tree of maximum depth &,
Ul = Ul = N for all d > k. Thus, ¢! (v) = ¢, (v),
the true posterior probability. However, in the general
case in which N contains cycles, Uéoo) is infinite. We
hope that its local similarity to N makes qg(uoo) (v) a good
estimator of g, (v).

The running time of the calculation of ¢(? is poly-
nomial. If there are n variables, each of which is con-
strained by at most u other variables, and the maximum
size of any of the constraint tables is s, then {b(#)} and
{q'D} can be computed from b1 in O(nu?s) time. In
our crossword solver, the candidate lists are very large,
so s is enormous. To reduce the value of s, we inserted

1'We reversed subscripts in B to maintain parallelism.

e B R
2l b m B ﬁ

A B C D E F

Figure 3: After symmetries have been removed, there
are six tournament-legal 5 x 5 crossword grids.

Maximized Qty. P Q P(mIZzP) Q(mQazQ)
Px[]p 0552 3.433 1.00 943
Q=>q .0476 3.639 862 1.00

Q100 = 5 4(100) 0453 3.613 .820 993

Table 1: The solution with maximum [] p is most likely,
while the solution with maximum) ¢ has the most in
common on average with a randomly generated solu-
tion. Averages are taken over the 600 randomly gener-
ated puzzles.

an extra variable for each square of the puzzle. These
letter variables can only take on twenty-six values and
are assigned equal prior probabilities. Each of the con-
straints in the revised network relates a letter variable
and a word variable. Thus, s is only linear in the length
of the candidate lists, instead of quadratic.

Crossword Results

We applied the iterative approximation method to op-
timize the expected overlap of a set of artificial and real
crossword puzzles.

Artificial Puzzles

To explore how the expected overlap and solution prob-
ability relate, and how the iterative estimate compares
to these, we randomly generated 100 puzzles for each of
the six possible 5 x 5 crossword grids?, as shown in Fig-
ure 3. Candidates were random binary strings. Each
slot was assigned a random 50% of the possible strings
of the right length. The prior probabilities were picked
uniformly at random from the interval [0, 1], then nor-
malized to sum to 1. We discarded puzzles with no
solution; this only happened twice, both times on grid
F.

For each puzzle, we computed the complete set of
solutions and their probabilities (average number of so-
lutions are shown in Table 2), from which we derived
the exact posteriors ¢ on each slot. We also used the
iterative approximation to compute approximate poste-
riors ¢, ..., ¢1%9) We found the solutions with max-
imum probability (rmazP), maximum expected overlap
(maxz@), and maximum approximate expected over-

lap (mazQ® .. .mazQ(%9)). For each of these solu-

2By convention, all slots in American crossword puzzles
must have at least three letters, and all grid cells must par-
ticipate in an across and down slot. We fold out reflections
and rotations because candidates are randomly created and
are thus symmetric on average.

max P mazQ(1°%)

#SOIHS P(mazP) Q(mazQ) 8Emang Q(Q(maQa:Q))
A: 32846 .004 1.815 .854 .994
B: 7930.8 .014 2.595 921 991
C: 2110.2 .033 3.459 925 .992
D: 20254 .034 3.546 940 .994
E: 520.9 .079 4.567 961 .992
F: 131.1 167 5.894 .980 .993

Table 2: Different grid patterns generated different
numbers of solutions. The probability and expected
overlap of solutions varied with grid pattern. All num-
bers in the table are averages over 100 random puzzles.

Results for Artificial Puzzles

T

0.95
0.9
0.85
08 | |]
075 ||]
0.7 |/ Frac. of Optimal Expected Overlap ———
0.65 Correlation -~
06 |]
0.55 | 1
0.5

0 5 10 15 20
iteration (d)

Figure 4: Successive iterations yield better approxima-
tions of the posteriors.

tions, we calculated its probability (P), expected over-
lap (@), and the percent of optimum achieved. The re-
sults, given in Table 1, confirm the difference between
the maximum probability solution and the maximum
expected overlap solution. The solution obtained by
maximizing the approximate expected overlap (Q(109))
scored an expected overlap 5% higher than the maxi-
mum probability solution, less than 1% below optimum.
Over the six grids, the final approximation
(maz@1%9)) consistently achieved an expected overlap
of between 99.1% and 99.4% of the optimal expected
overlap Q(maz(@)) (see Table 2). The expected over-
lap of the maximum probability solution @ (maxzP) fell
from 98.0% to 85.4% of optimal expected overlap as
puzzles became less constrained (F to A). One possible
explanation is that puzzles with fewer solutions tend to
have one “best” solution, which is both most likely and
has a high expected overlap with random solutions.
The approximation tended to improve with iteration.
The lower curve of Figure 4 shows the correlation of the
approximate posterior ¢(? with the true posterior q.
The upper curve shows the expected overlap of the solu-
tion that maximizes Q4 (mazQ?) divided by that of
the maximum expected overlap solution. The approxi-

Stepsin A* by lteration
100000 :

Selected NYT Puzzles ——
Artificial Puzzles ——

10000 ¢

1000

Stepsin A*

100

10
0 5 10 15 20 25
iteraton (d)

Figure 5: Maximizing the approximate expected over-
lap with A* tended to get faster with successive itera-
tions of our approximation.

mate posteriors ¢(%) seemed to converge in all cases, and
for all of the 600 test puzzles, the maximum expected
overlap solution was constant after iteration 38.
Computing the maximum probability solution and
the maximum approximate expected overlap solution
both involve finding an instantiation that maximizes
the sum of a set of weights. In the first case, our weights

are log(p.(v)) and, in the second case, they are ¥ (v).
This is an NP-complete problem, and in both cases,
we solve it with an A* search. Our heuristic estimate
of the value of a state is the sum of the weights of
the values of all of its assigned variables and of the
maximum weight of the not-yet-considered values of the
unassigned variables.

In our set of artificial puzzles, this A* search is much
faster when maximizing 3 ¢(*°® than when maximiz-
ing [[p. The former took an average of 47.3 steps, and
the latter 247.6 steps. Maximizing " ¢(¥ got faster for
successive iterations d as shown in Figure 5.

We believe that optimizing Zq(d) is faster because
the top candidates have already shown themselves to
fit well into a similar network (U(?), and therefore are
more likely to fit with each other in the puzzle grid.

Real Puzzles

We adapted our approach to solve published crossword
puzzles. Candidate lists are generated by a set of thirty
expert modules using a variety of databases and tech-
niques for information retrieval (Keim et al. 1999).
Each module returns a weighted list of candidates, and
these lists are combined according to a set of parameters
trained to optimize the mean log probability assigned
to the correct target.

Without returning all possible letter combinations, it
is impossible for our expert modules to always return
the correct target in their candidate lists; in fact, they

miss it about 2.1% of the time. To ensure that solu-
tions exist and that the correct solution is assigned a
positive probability, we implicitly represent the prob-
ability distribution over all letter strings according to
a letter-bigram model. The total probability assigned
to this model is learned along with the weights on the
expert modules. Because of its simple form, the sys-
tem is able to manipulate this distribution efficiently to
calculate b(® and ¢(¥ correctly on the explicit candi-
dates. The full solver includes a combination of several
of these “implicit distribution modules.”

Note that, because of the implicit bigram distribu-
tion, all possible patterns of letters have non-zero prob-
ability of being a solution. As noted in Table 2, the
maximum probability solution tends to give a poor ap-
proximation of the maximum overlap solution when
there are many solutions; thus, the iterative approxi-
mation plays an important role in this type of puzzle.

The solver itself used an implementation of A* to find
the solution that maximizes the approximate expected
overlap score Q(? for each iteration d from 0 to 25. In
a small number of instances, however, A* required too
much memory to complete, and we switched to a heuris-
tic estimate that was slightly inadmissible (admissible
plus a small amount) to ensure that some solution was
found. Maximizing Q(?) tended to be easier for greater
d. The inadmissible heuristic was required in 47 of 70
test puzzles in maximizing Q(Y) but only once in max-
imizing Q(?%). Figure 5 plots the number of steps re-
quired by A* for each iteration, averaged over the 23
puzzles where the inadmissible heuristic was unused.

Because of some of the broad-coverage expert mod-
ules, candidate lists are extremely long (often over 10°
candidates), which makes the calculation of our ap-
proximate posteriors q(d) expensive. To save time, we
compute b(? using truncated candidate lists. To begin,
these lists contain the candidates with the greatest pri-
ors: We remove all candidates with prior probability
less than 1072 of the greatest prior from the list. Doing
this usually throws out some of the correct targets, but
makes the lists shorter. To bring back a possibly correct
target once the approximation has improved, at every
iteration we “refresh” the candidate lists: We compute
¢'D for all candidates in the full list (based on (41
of only the truncated list). We discard our old abbrevi-
ated list and replace it with the list of candidates with
the greatest ¢(?) values (at least 10~ of the maximum).
The missing probability mass is distributed among can-
didates in the implicit bigram-letter model. (In a faster
version of the solver we only refresh the candidate lists
once every seven iterations. This does not appear to
affect accuracy.)

Figure 6 shows the fraction of words correct for the
solutions that maximized Q(®) through Q5. Perfor-
mance increased substantially, from 51.8% words cor-
rect at iteration zero to 89.5% before iteration 25. Fig-
ure 6 also shows the fraction of slots for which the candi-
date with the maximum ¢(¥ is the correct target. This

NYT Puzzles

1
= 09
o
o} 0.8 ¢ Constrained ——
o Unconstrained ———
2 0.7 1
=
; 0.6 1
g i
- o5t :
0.4 !

0 5 10 15 20 25
iteraton (d)

Figure 6: Average number of words correct on a sam-

ple of 70 New York Times puzzles increases with the

number of iterations. This graph shows two measures,

one for solutions constrained to fit the grid, and one
unconstrained.

would be our score if our solution did not need to satisfy
the constraints. Note that the same candidate lists are
used throughout—the improvement in performance is
due to better grid filling and not to improved clue solv-
ing. We have also run the solver on puzzles less chal-
lenging than those published in the New York Times
and achieved even better results; the average score on
50 LA Times puzzles, was 98.0% words correct.

Relationship to Turbo Codes

To perform our approximate inference, we use Pearl’s
belief propagation algorithm on loopy networks. This
approximation is best known for its success in decod-
ing turbo codes (McEliece, MacKay, & Cheng 1998),
achieving error correcting code performance near the
theoretical limit. In retrospect it is not surprising that
the same approximation should yield such positive re-
sults in both cases. Both problems involve reconstruct-
ing data based on multiple noisy encodings. Both net-
works contain many cycles, and both are bipartite, so
all cycles have length at least four.

Conclusions

Faced with the problem of solving real crossword puz-
zles, we applied an extension of CSPs that includes
probabilistic preferences on variable values. The prob-
lem of maximizing the number of correct words in a
puzzle was formalized as the problem of finding the
maximum expected overlap in the CSP. We applied an
iterative approximation algorithm for this problem and
showed that it is accurate on a collection of artificial
puzzles. As a happy side effect, the proposed iterative
approximation algorithm speeds optimization. After
extending the resulting algorithm to handle real puz-
zles with implicitly defined candidate lists, the solver

scored 89.5% words correct on a sample of challenging
New York Times crossword puzzles.

Having identified the importance of maximum over-
lap score in the crossword domain, we believe that this
measure could be useful in other problems. For ex-
ample, in machine vision, we might be interested in a
consistent interpretation for a scene that is expected to
have as much in common with the true scene as possi-
ble; this could be formalized in a manner similar to our
crossword puzzle problem.

All in all, this work suggests that combinations
of probability theory and constraint satisfaction hold
promise for attacking a wide array of problems.

Acknowledgments. Thanks to Rina Dechter, Moi-
ses Goldszmidt, Martin Mundhenk, Mark Peot, Will
Shortz, and Yair Weiss for feedback and suggestions.

References

Abney, S. 1996. Statistical methods and linguistics. In
Klavans, J., and Resnik, P., eds., The Balancing Act.
Cambridge, MA: The MIT Press. chapter 1, 2-26.

Garey, M. R., and Johnson, D. S. 1979. Comput-
ers and Intractability: A Guide to the Theory of NP-
completeness. San Francisco, CA: Freeman.

Ginsberg, M. L.; Frank, M.; Halpin, M. P.; and Tor-
rance, M. C. 1990. Search lessons learned from cross-
word puzzles. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 210 215.

Keim, G. A.; Shazeer, N.; Littman, M. L.; Agarwal, S.;
Cheves, C. M.; Fitzgerald, J.; Grosland, J.; Jiang, F.;
Pollard, S.; and Weinmeister, K. 1999. Proverb: The
probabilistic cruciverbalist. In Proceedings of the Siz-
teenth National Conference on Artificial Intelligence.

Mackworth, A. K. 1977. Consistency in networks of
relations. Artificial Intelligence 8(1):99-118.

McEliece, R.; MacKay, D.; and Cheng, J. 1998. Turbo
decoding as an instance of Pearl’s ‘belief propagation’
algorithm. IEFEFE Journal on Selected Areas in Com-
munication 16(2):140 152.

Munkres, J. R. 1975. Topology, A First Course. En-
glewood Cliffs, New Jersey: Prentice-Hall, Inc.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems. San Mateo, CA: Morgan Kaufmann, 2nd
edition.

Roth, D. 1996. On the hardness of approximate rea-
soning. Artificial Intelligence 82(1-2):273-302.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued
constraint satisfaction problems: Hard and easy prob-
lems. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI-95), 631
637.

Shortz, W., ed. 1990. American Championship Cross-
words. Fawcett Columbine.
Weiss, Y. 1997. Belief propagation and revision in net-

works with loops. Technical Report Technical Report
1616, MIT AT lab.

