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Abstract

Malware programs that incorporate trigger-based be-
havior initiate malicious activities based on conditions sat-
isfied only by specific inputs. State-of-the-art malware an-
alyzers discover code guarded by triggers via multiple path
exploration, symbolic execution, or forced conditional exe-
cution, all without knowing the trigger inputs. We present
a malware obfuscation technique that automatically con-
ceals specific trigger-based behavior from these malware
analyzers. Our technique automatically transforms a pro-
gram by encrypting code that is conditionally dependent on
an input value with a key derived from the input and then
removing the key from the program. We have implemented
a compiler-level tool that takes a malware source program
and automatically generates an obfuscated binary. Exper-
iments on various existing malware samples show that our
tool can hide a significant portion of trigger based code. We
provide insight into the strengths, weaknesses, and possible
ways to strengthen current analysis approaches in order to
defeat this malware obfuscation technique.

1 Introduction

With hundreds of new malware samples appearing ev-
ery day [3], malware analysis, which attempts to under-
stand and extract the capabilities or behavior from malware
samples, is becoming increasingly important. As malware
analysis techniques evolve, malware writers continually
employ sophisticated anti-reverse engineering techniques in
an effort to defeat and evade the state-of-the-art analyzers.
Historically, encryption [44], polymorphism [31, 39], and
other obfuscation schemes [11,12,25,41,43] have been pri-
marily employed to thwart anti-virus tools and static analy-
sis [9,10,22,23] based approaches. Dynamic analysis based
approaches [2, 6, 13, 29, 40] inherently overcome all anti-

static analysis obfuscations, but they only observe a single
execution path. Malware can exploit this limitation by em-
ploying trigger-based behaviors such as time-bombs, logic-
bombs, bot-command inputs, and testing the presence of an-
alyzers, to hide its intended behavior.

Recent analyzers provide a powerful way to discover
trigger based malicious behavior in arbitrary malicious pro-
grams. Moser et al. proposed a scheme [28] that explores
multiple paths during execution of a malware. After ex-
ploring a branch, their technique resumes execution from
a previously saved state and takes the alternate branch by
inverting the condition and solving constraints to modify
related memory variables in a consistent manner. Other re-
cently proposed approaches can make informed path selec-
tion [4], discover inputs that take a specific path [5, 7, 13]
or force execution along different paths [42]. We call all
such approaches input-oblivious analyzers because they do
not utilize any source of information about inputs other than
the program being analyzed.

Our goal is to anticipate attacks against the state-of-the-
art malware analyzers in order to develop more effective
analysis techniques. We present a simple, automated and
transparent obfuscation against powerful input oblivious an-
alyzers. We show that it is possible to automatically conceal
trigger-based malicious behavior of existing malware from
any static or dynamic input-oblivious analyzer by an au-
tomatically applicable obfuscation scheme based on static
analysis.

Our scheme, which we call conditional code obfusca-
tion, relies on the principles of secure triggers [18]. First,
we identify and transform specific branch conditions that
rely on inputs by incorporating one-way hash functions in
such a way that it is hard to identify the values of variables
for which the conditions are satisfied. Second, the condi-
tional code, which is the code executed when these con-
ditions are satisfied, is identified and encrypted with a key
that is derived from the value that satisfies the condition.
As a result, input oblivious analyzers can no longer feasi-



bly determine the values that satisfy the condition and con-
sequently the key to unveil the conditional code. Our ap-
proach utilizes several static analysis techniques, including
control dependence analysis, and incorporates both source-
code and binary analysis to automate the entire process of
transforming malware source programs to their obfuscated
binary forms.

In order to show that conditional code obfuscation is
a realistic threat, we have developed a compiler-level tool
that applies the obfuscation to malware programs written
in C/C++. Our prototype implementation generates obfus-
cated compiled ELF binaries for Linux. Since the mal-
ware authors will be the ones applying this technique, the
assumption of having the source code available is realis-
tic. We have tested our system by applying it on several
real malware programs and then evaluated its effectiveness
in concealing trigger based malicious code. In our experi-
ments on 7 different malware programs containing 92 ma-
licious triggers, our tool successfully obfuscated and con-
cealed the entire code that implemented 87 of them.

We analyze the strengths and weaknesses of our obfus-
cation. Although the keys are effectively removed from the
program, the encryption is still susceptible to brute force
and dictionary attacks. We provide a method to measure the
strength of particular applications of the obfuscation against
such attacks. To understand the possible threats our pro-
posed obfuscation scheme poses, we discuss how malware
authors may manually modify their code in different ways
to take advantage of the obfuscation technique. Finally, we
provide insight into possible ways of defeating the obfus-
cation scheme, including more informed key search attacks
and the incorporation of input-domain information in exist-
ing analyzers.

We summarize our contributions below:

• We present the principles of an automated obfusca-
tion scheme that can conceal condition-dependent ma-
licious behavior from existing and future input oblivi-
ous malware analyzers.

• We have developed a prototype compiler-level obfus-
cator for Linux and performed experimental evalua-
tion on several existing real-world malware programs,
showing that a large fraction of trigger based malicious
behavior can be successfully hidden.

• We provide insight into the strengths and weaknesses
of our obfuscation. We discuss how an attacker
equipped with this knowledge can modify programs
to increase the strength of the scheme. We also dis-
cuss the possibility of brute-force attacks as a weak-
ness of our obfuscation and provide insight into how
to develop more capable malware analyzers that incor-
porate input domain knowledge.

Unlike polymorphic code, our approach does not store
encryption keys inside the program. However, this does not
limit the usage of polymorphism on our obfuscated binaries.
It can be added as a separate layer on top of our obfuscation.

The goal of our obfuscation is to hide malicious behavior
from malware analyzers that extract behavior. For these an-
alyzers, the usual assumption is that the program being ana-
lyzed is already suspicious. Nevertheless, malware authors
wish to develop code that is not easily detected. Naı̈ve usage
of this obfuscation may actually improve malware detection
because of the particular way in which hash functions and
decryption routines are used. However, since attackers can
add existing polymorphic or metamorphic obfuscation tech-
niques on top of our technique, a detector should be able to
detect such malware at best with the same efficacy as poly-
morphic malware detection.

2 Conditional Code Obfuscation

Malware programs routinely employ various kinds of
trigger based events. The most common examples are
bots [14], which wait for commands from the botmaster
via a command and control mechanism. Some keylog-
gers [37] log keys from application windows containing
certain keywords. Timebombs [27] are malicious code ex-
ecuted at a specific time. Various anti-debugging [8] or
anti-analysis tricks detect side-effects in the executing envi-
ronment caused by analyzers and divert program execution
when present. The problem for the malware writer is that
the checks inside the program that are performed on the in-
puts give away information about what values are expected.
For example, the commands a bot supports are usually con-
tained inside the program as strings. More generally, for any
trigger based behavior, the conditions recognizing the trig-
ger reveal information about the inputs required to activate
the behavior.

The basis of our obfuscation scheme is intuitive. By re-
placing input-checking conditions with equivalent ones that
recognize the inputs without revealing information about
them, the inputs can become secrets that the input-oblivious
analyzer can no longer discover. Such secrets can then be
used as keys to encrypt code. Since the modified conditions
are satisfied only when the inputs are sent to the program,
the code blocks that are conditionally executed can be en-
crypted. In other words, our scheme encrypts conditional
code with a key that is removed from the program, but is
evident when the modified condition is satisfied. Automati-
cally carrying out this transformation as a general obfusca-
tion scheme involves several subtle challenges.

We provide a high-level overview of our obfuscation
with program examples in Section 2.1. The general mecha-
nism is defined in Section 2.2. The program analysis algo-
rithms and transformations required are described in Sec-



Figure 1. Two conditional code snippets.

tion 2.3. Section 2.4 describes the consequences of our
scheme on existing malware analysis approaches. Sec-
tion 2.5 discusses possible brute-force attacks on our ob-
fuscation technique.

2.1 Overview

Figure 1 shows snippets of two programs that have con-
ditionally executed code. The first program snippet calls
a function that starts logging keystrokes after receiving the
command “startkeylogger”. The second example starts an
attack only if the day of month is between the 11th and the
19th. In both the programs, the expected input can be easily
discovered by analyzing the code.

We use cryptographic hash functions to hide informa-
tion. For the first example, we can modify the condition
to compare the computed the hard-coded hash of the string
in cmd with the hash value of the string “startkeylogger”
(Figure 2). The command string “startkeylogger” becomes
a secret that an input oblivious analyzer cannot know. This
secret can be used as the key to encrypt the conditional code
block and the entire function log keys(). Notice that
when the expected command is received, the execution en-
ters the if block and the encrypted block is correctly de-
crypted and executed.

Figure 2. Obfuscated example snippet.

In the second example of Figure 1, cryptographic hashes
of the operands do not provide a condition equivalent to the
original. Moreover, since several values of the variable n
satisfy the condition, it is problematic to use them as keys
for encryption and decryption.

We define candidate conditions as those suitable for our
obfuscation. A candidate needs three properties. First, the
ordering relation between the pre-images of the hash func-
tion must be maintained in the images. Second, there should
be a unique key derived from the condition when it is satis-

fied. Third, the condition must contain an operand that has
a statically determinable constant value.

Given these requirements above, operators that check
equality of two data values are suitable candidates. Hence,
conditions having ‘==’, strcmp, strncmp, memcmp, and
similar operators can be obfuscated with our mechanism.

2.2 General Mechanism

We now formally define the general method of our condi-
tional code obfuscation scheme. Without loss of generality,
we assume that any candidate condition is equivalent to the
simple condition “X == c” where the operand c has a stati-
cally determinable constant value and X is a variable. Also,
suppose that a code block B is executed when this condition
is satisfied. Figure 3 shows the program transformation re-
quired for the obfuscation. The cryptographic hash function
is denoted by Hash and the symmetric encryption and de-
cryption routines are Encr and Decr, respectively.

Figure 3. General obfuscation mechanism.

The obfuscated condition is “Hash(X) == Hc” where
Hc = Hash(c). The pre-image resistance property of the
function Hash implies that it is infeasible to find c given
Hc. This ensures that it is hard to reverse the hash function.
In addition, because of the second pre-image resistance
property, it is hard to find another c′ for which Hash(c′) =
Hc. Although this property does not strengthen the obfusca-
tion, it is required to make the obfuscated condition seman-
tically equivalent to the original, ensuring the correctness of
the program.

The block B is encrypted with c as the key. Let BE

be the encrypted block where BE = Encr(B, c). Code
is inserted immediately before BE to decrypt it with the
key contained in variable X . Since Hash(X) = Hc im-
plies X = c, when the obfuscated condition is satisfied, the



original code block is found, i.e. B = Decr(BE , c) and
the program execution is equivalent to the original. How-
ever, a malware analyzer can recover the conditional code
B only by watching for the attacker to trigger this behavior,
by guessing the correct input, or by cracking the crypto-
graphic operations.

2.3 Automation using Static Analysis

In order to apply the general mechanism presented in the
previous section automatically on a program, we utilized
several known algorithms in static analysis. In this section,
we describe how these program analysis techniques were
used.

2.3.1 Finding Conditional Code

In order to identify conditional code suitable for obfusca-
tion, we first identify candidate conditions in a program.
Let F be the set of all functions or procedures and B be
the set of all basic blocks in the program that we analyze.
For each function Fi ∈ F in the program, we construct
a control flow graph (CFG) Gi = (Vi, Ei) in the program
where Vi ⊆ B is the set of basic blocks in Fi and Ei is the
set of edges in the CFG representing control-flow between
basic blocks. We then identify basic blocks having condi-
tional branches, which have two outgoing edges. Since we
are not interested in conditions used in loops, we employ
loop analysis to identify such conditions and discard them.
From the remaining conditional branches, we select candi-
date conditions as the ones containing equality operators as
described in Section 2.1. Let Ci ⊆ Vi be the set of blocks
containing candidate conditions for each function Fi.

After candidate conditions are identified in a program,
the next step is to find corresponding conditional code
blocks. As described earlier, conditional code is the code
that gets executed when a condition is satisfied. It may in-
clude some basic blocks from the same function the condi-
tion resides in and some other functions. Since a basic block
can contain at most one conditional branch instruction, by
a condition, we refer to the basic block that contains it. We
use the mapping CCode : B → (B ∪ F)∗ to represent con-
ditional code for any condition.

In order to determine conditional code, we first use
control dependence analysis [1, 16] at the intra-procedural
level. A block Q is control dependent on another block
P if the outcome of P determines the reachability of Q.
More precisely, if one outcome of P always executes Q,
but the other outcome may not necessarily reach Q, then Q
is control dependent on P . Using the standard algorithm
for identifying control dependence, we build a control de-
pendence graph (CDG) for each function, where each con-
dition block and their outcome has edges to blocks that are

Figure 4. Duplicating conditional code.

control dependent on it. For each candidate condition, we
find the set of blocks that are control dependent on its true
outcome. Therefore, if a true outcome of a candidate con-
dition C ∈ Ci of function Fi has an edge to a block B ∈ Vi,
then B ∈ CCode(C).

Conditional code blocks may call other functions. To
take them into account, we determine reachability in the
inter-procedural CFG. If there exists a call to a function F
from a conditional code block B ∈ CCode(C) of some
candidate condition C, we consider F ∈ CCode(C) which
means that we consider all the code in the function F as
conditional code of C as well. Now, for every block in
F ∈ CCode(C), we find calls to other functions and in-
clude them in CCode(C). This step is performed repeat-
edly until all reachable functions are included. We used this
approach instead of inter-procedural control-dependence
analysis [35] because it allows us to obfuscate functions that
are not control-dependent on a candidate condition but can
be reached only from that condition.

A candidate condition may be contained in a block that
is conditional code of another candidate condition. The next
step is to eliminate these cases by making a function or
block conditional code of only the closest candidate con-
dition that can reach it. For any block B ∈ CCode(C),
if B ∈ CCode(C ′) where C 6= C ′ and C ∈ CCode(C ′)
then we remove B from CCode(C ′). We perform the same
operation for functions.

Blocks and functions can be obfuscated when they are
conditional code of candidate conditions only. If they are
reachable by non-candidate conditions, then we cannot ob-
fuscate them. When obfuscations are to be applied, they are
applied in an iterative manner, starting with the candidate
condition that have no other candidate conditions depend-
ing on it. The basic blocks and functions that are condi-
tional code of these conditions are obfuscated first. In the
next iteration, candidate conditions with no unobfuscated
candidate conditions depending on it are obfuscated. The
iterative process continues until all candidate conditions are
obfuscated.

We use a conservative approach to identify conditional
code when the CFG is incomplete. If code pointers are used
whose targets are not statically resolvable, we do not en-
crypt code blocks that are potential targets and any other
code blocks that are reachable from them. Otherwise, the



Figure 5. Compound condition simplification.

encryption can crash the program. Fortunately, type infor-
mation frequently allows us to limit the set of functions or
blocks that are probable targets of a code pointer.

2.3.2 Handling Common Conditional Code

A single block or a function may be conditional code of
more than one candidate condition that are not conditional
code of each other. For example, a bot program may con-
tain a common function that is called after receiving multi-
ple different commands. If a block B is conditional code of
two candidate conditions P and Q, where P /∈ CCode(Q)
and Q /∈ CCode(P ) then B can be reached via two differ-
ent candidate conditions and cannot be encrypted with the
same key. As shown in Figure 4, we solve this problem by
duplicating the code and encrypting it separately for each
candidate condition.

2.3.3 Simplifying Compound Constructs

Logical operators such as && or || combine more than one
simple condition. To apply our obfuscation, compound con-
ditions must be first broken into semantically equivalent but
simplified conditions. However, parts of a compound condi-
tion may or may not be candidates for obfuscation, making
the compound condition unsuitable for obfuscation.

Logical and operators (&&) can be written as nested if
statements containing the operand conditions and the con-
ditional block in the innermost block (Figure 5(a)). Since
both the simple conditions must be satisfied to execute con-
ditional code, the code can be obfuscated if at least one of
them is a candidate condition.

Logical or operators (||) can be obfuscated in two
ways. Since either of the conditions may execute condi-
tional code, the conditional code may be encrypted with a
single key and placed in two blocks that are individually
obfuscated with the simple conditions. Another simple way
is to duplicate the conditional code and use if...else
if constructs (Figure 5(b)). Note that if either one of the
two conditions is not a candidate for obfuscation, then the
conditional code will remain revealed. Concealing the other
copy does not gain protection. Although it is not possible
to determine that the concealed code is equivalent to the re-

vealed one, the revealed code gives away the behavior that
was intended to be hidden from an analyzer.

To introduce more candidate conditions in C/C++ pro-
grams, we convert switch...case constructs into sev-
eral if blocks, each containing a condition using an equal-
ity operator. Every case except the default becomes a can-
didate for obfuscation. Complications arise when a code
block under a switch case falls through to another. In such
cases, code of the block in which control-flow falls through
can be duplicated and contained in the earlier switch case
code block, and then the standard approach that we de-
scribed can be applied.

2.4 Consequences to Existing Analyzers

Our obfuscation can thwart different classes of tech-
niques used by existing malware analyzers. The analysis
refers to the notations presented in Section 2.2.

Path exploration and input discovery: Various analy-
sis techniques have been proposed that can explore paths in
a program to identify trigger based behavior. Moser et al.’s
dynamic analysis based approach [28] explores multiple
paths during execution by repeatedly restoring earlier saved
program states and solving constructed path constraints in
order to find a consistent set of values of in-memory vari-
ables that satisfy conditions leading to different paths. They
use dynamic taint analysis on inputs from system calls
to construct linear constraints representing dependencies
among memory variables. After our obfuscation is applied,
the constraint added to the system is “Hash(X) == Hc”,
which is a non-linear function. Therefore, our obfusca-
tion makes it hard for such a multi-path exploring approach
to feasibly find value assignments to variables in the pro-
grams’s memory to proceed towards the obfuscated path.

A similar effect can be seen for approaches that discover
inputs from a program that executes it along a specific path.
EXE [7] uses mixed symbolic and concrete execution to
create constraints that relate inputs to variables in memory.
It uses its own efficient constraint solver called STP, which
supports all arithmetic, logical, bitwise, and relational op-
erators found in C (including non-linear operations). Cryp-
tographic hash functions are designed to be computation-
ally infeasible to reverse. Even with a powerful solver like



Figure 6. The architecture of our automated conditional code obfuscation system.

STP, it is infeasible to generate and solve the constraints that
represent the complete set of operations required to reverse
such a function.

Forcing execution: A malware analyzer may force ex-
ecution along a specific path without finding a consistent
set of values for all variables in memory [42], hoping to
see some malicious behavior before the program crashes.
Suppose that the analyzer forces the malware program to
follow the obfuscated branch that would originally exe-
cute B without finding the key c. Assuming X has a
value c′ where c′ 6= c, the decrypted block then becomes
B′ = Decr(BE , c′) 6= B. In practical situations, subse-
quent execution of B′ should cause the program to even-
tually crash without revealing any behavior of the original
block B.

Static analysis: The utilization of hash functions alone
cannot impede approaches utilizing pure static analysis or
hybrid methods [4] because behavior can be extracted by
analyzing the code without requiring constraint solving.
However, our utilization of encryption conceals the behav-
ior in the encrypted blocks BE that can only be decrypted
by the key c, which is no longer present in the program.

2.5 Brute Force and Dictionary Attacks

Although existing input-oblivous techniques can be
thwarted by our obfuscation, analyzers that are aware of
the obfuscation may attempt brute-force attacks on the keys
used for encryption. First, the hash function Hash() being
used in the malware needs to be extracted by analyzing the
code. Then, a malware analyst may try to identify c by com-
puting Hash(X) for all suitable values of X and searching
for a value satisfying Hash(X) = Hc. The strength of the
obfuscation applied to the condition can therefore be mea-
sured by the size of the minimal set of suitable values of
X .

Let Domain(X) denote the set of all possible values
that X may take during execution. If τ is the time taken
to test a single value of X or the hash computation time,
then the brute force attempt will take |Domain(X)|τ time.
Finding the set Domain(X) is not straightforward. In most

cases, only the size of X may be known. If X is n bits
in length, then the brute force attack requires 2nτ time.
The possibility of using a pre-computed hash table to re-
duce search time can be thwarted by using a nonce with the
data before computing the hash. Moreover, different nonce
values for different conditions can be used to make the com-
puted hash for one condition not useful for another.

Existing program analysis techniques such as data-flow
analysis or symbolic execution may provide a smaller
Domain(X) in some cases, enabling a dictionary attack.
Section 5 discusses more about attacks on our obfuscation,
including automated techniques that can be incorporated in
current analyzers.

3 Implementation Approach

In this section, we present the design choices and imple-
mentation of the compiler-level tool that we developed to
demonstrate the automated conditional code obfuscation on
malware programs. Our primary design challenge was to
select the appropriate level of code on which to work on.
Performing encryption at a level higher than binary code
would cause un-executable code to be generated after de-
cryption at run-time. On the other hand, essential high-level
information such as data types require analysis at a higher
level. Our system, therefore, works at both the intermediate
code and the binary level.

We use the LLVM [24] compiler infrastructure and the
DynInst [20] binary analysis and instrumentation system.
The LLVM framework is an extensible program optimiza-
tion platform providing an API to analyze and modify its
own RISC-like intermediate code representation. It then
emits binary code for various processor families. Most of
the heavy-duty analysis and code instrumentation is done
using the help of LLVM. The DynInst tool is a C/C++ based
binary analysis and instrumentation framework, which we
use for binary rewriting.

We implemented our prototype for the x86 architecture
and the Linux OS. We targeted the Linux platform primarily
to create a working system to showcase the capability of the
proposed obfuscation scheme without making it a widely



applicable tool for malware authors. However, the architec-
ture of our obfuscation tool is general enough to be portable
to the Windows OS.

The architecture of our system is presented in Figure 6.
Our system takes as input a malware source program written
in C/C++ and generates an obfuscated binary in the Linux
ELF format. The transformation is done in four phases.
The phases are (1) the Frontend Code Parsing Phase, (2)
the Analysis/Transformation Phase, (3) the Code Genera-
tion Phase, and (4) the Encryption Phase.

In the first phase LLVM’s GCC-based parser converts
C/C++ source programs to LLVM’s intermediate represen-
tation. Next, in the analysis and transformation phase,
the bulk of the obfuscation except for the actual encryp-
tion process is carried out on the intermediate code. In
this phase, candidate conditions are identified and obfus-
cated, conditional code blocks are instrumented with deci-
pher and marker routines, and the key required for encryp-
tion is stored as part of the code. Section 3.1 describes these
steps in details. In the third phase, we use the static compila-
tion and linking back end of LLVM to convert the LLVM in-
termediate representation (IR) to x86 assembly from which
we generate an x86 ELF binary. In the final phase, which
is described in Section 3.2, our DynInst based binary mod-
ification tool encrypts marked code blocks to complete the
obfuscation process. We describe in Section 3.3 how the
decryption of code takes place during run-time.

3.1 Analysis and Transformation Phase

The analysis and transformation was implemented as an
LLVM plugin, which is loaded by the LLVM optimization
module. The steps taken are illustrated in Figure 7 and de-
scribed below.

3.1.1 Candidate Condition Replacement

We followed the method described in section 2.3 to identify
candidate conditions and their conditional code. As shown
in Figure 7, the transformed code calls the hash function
with the variable used in the condition as the argument. We
use SHA-256 in our implementation as the hash function.
The replaced condition compares the result with the hard
coded hash value of the constant. In other words, the con-
dition “X == c” is replaced with “Hash(X) == Hc”,
where Hc = Hash(c). Depending on the data type of X ,
calls are placed to different versions of the hash function.
For length constrained string functions, the prefixes of the
strings are taken. A special wrapper function is used for
strstr, which computes the hash of every sub-string of
X and compares with Hc.

3.1.2 Decipher Routine

In our implementation, we selected AES with 256-bit keys
as the encryption algorithm. Constants in the conditions
are not directly used as keys because of the varying type
and length. A key generation function Key(X) is used to
produce 256-bit keys. We describe the function in more
details in the next section.

We use the LLVM API to place a call immediately before
the original conditional code to a separate decipher function
that can be dynamically or statically linked to the malware
program. Figure 7 illustrates this for a basic block. For a
function, the call to the decipher routine is inserted as the
first statement in the function body. The Decipher routine
takes two arguments. The first is a dynamically computed
key Key(X), which is based on the variable X in the con-
dition. The second is the length of the code to be decrypted
by the decipher routine. When calling a function that is to
be obfuscated, these two arguments are added to the list of
arguments for that function. This allows them to be passed
not only to decipher routine called in that function body,
but also to other obfuscated functions that the function may
call. At this stage in the obfuscation scheme, this length is
not known because the final generated code size will vary
from the intermediate code. We keep a place holder so that
the actual value can be placed during binary analysis.

3.1.3 Decryption Key and Markers

The key generation function Key uses a SHA-256 crypto-
graphic hash to generate a fixed length key from varying
length data. However, the system would break if we used
the same hash function as used in the condition. The rea-
son is that if the key Key(c) = Hash(c) = Hc, then the
stored hash Hc in the condition can be used to decrypt the
code blocks. Therefore, we use Key(X) = Hash(X|N),
where N is a nonce. This ensures that the encryption key
Kc = Key(c) 6= Hc, where c is the constant in the con-
dition. At this stage, the code block to be encrypted is not
modified. Immediately following this block, we place the
encryption key Kc.

During intermediate code analysis, it is not possible to
foresee the exact location of the corresponding code in the
resulting binary file. Therefore, we place markers in the
code, which are later identified using a binary analyzer in
order to perform encryption. The function call to Decipher
works as a beginning marker and we place a dummy func-
tion call End marker() after the encryption key. We use
function calls as markers because the LLVM optimization
removes other unnecessary instructions from the instruction
stream. This type of placement of the key and markers have
no abnormal consequences on the execution of the program
because it is identified during binary analysis and removed
at the final stage of obfuscation.



Figure 7. Analysis phase (performed on IR).
Figure 8. Encryption Phase (performed on bi-
nary).

3.2 Encryption Phase

With the help of DynInst, our tool analyzes the ELF bi-
nary output by LLC. In order to improve code identification,
we ensure that symbol information is intact in the analyzed
binary.

Figure 8 illustrates the steps carried out in this phase.
At this stage, our tool identifies code blocks needing en-
cryption by searching for calls to the marker functions
Decipher() and End marker(). When such blocks are
found, it extracts the encryption key Kc from the code and
then removes the key and the call to the End marker func-
tion by replacing them with x86 NOP instructions. It then
calculates the size of the encrypted block. Since AES is a
block cipher, we make the size a multiple of 32 bytes. This
can always be done because the place for the key in the code
leaves enough NOPs at the end of the code block needing
encryption. We place the size as the argument to the call to
Decipher, and then encrypt the block with the key Kc.

The nested conditional code blocks must be managed in
a different way. We recursively search for the innermost
nested block to encrypt, and perform encryption starting
from the innermost one to the outermost one. Since our
method of encrypting the code block does not require ex-
tra space beyond what is already reserved, our tool does not
need to perform code movement in the binary.

3.3 Run-time Decryption Process

The Decipher function performs run-time decryption
of the encrypted blocks. Notice that the location of the
block that needs to be decrypted is not sent to this function.
When the Decipher function is called the return address
pushed onto the stack is the start of the encrypted block im-
mediately following the call-site. Using the return address
pushed on the stack, the key and the block size, the function
decrypts the encrypted block and overwrites it. Once the
block has been decrypted, the call to the Decipher func-
tion is removed by overwriting it with NOP instructions.

The decryption function uses the ability to modify code.

Therefore, write protection on the code pages is switched
off before the modification and switched back on after-
wards.

4 Experimental Evaluation

We used our obfuscation tool on several malicious pro-
grams in order to evaluate its ability to hide trigger based be-
havior. Although we had to select from a very limited num-
ber of available malicious programs written for Linux, we
chose programs that are representative of different classes
of malware for which triggers are useful.

We evaluated our system by determining how many man-
ually identified trigger-based malicious behaviors were au-
tomatically and completely obfuscated as conditional code
sections by our system. In order to evaluate the resistance
to brute force attacks on each obfuscated trigger, we de-
fined three levels of strength depending on the type of the
data used in the condition. An obfuscation was consid-
ered strong, medium, or weak if its condition incorporated
strings, integers, or boolean flags, respectively. Table 1
shows the results of our evaluation on various programs.
Notice that almost all trigger based malicious code was suc-
cessfully obfuscated using our tool. However, for a few spe-
cific instances our tool was either able to provide weak ob-
fuscation or not able to provide any obfuscation at all. We
consider both of these cases as a failure for our obfusca-
tion to provide any protection. We investigated the reasons
behind such cases and describe how the malware program
could be modified to take advantage of our obfuscation.

We first tested our tool on the Slapper worm [38]. Al-
though it is a worm, it contains a large set of trigger based
behaviors found in bots and backdoor programs. When the
worm spreads, it creates a UDP based peer-to-peer network
among the infected machines. This entire network of vic-
tims can be controlled by sending commands to carry out
Distributed Denial of Service attacks. In addition, it installs
a backdoor program on the infected machine that provides
shell access to the victim machine.

The Slapper worm has two components. The first



Malware Malicious triggers Strong Medium Weak None
Slapper worm (P2P Engine) 28 - 28 - -
Slapper worm (Backdoor) 1 1 - - -
BotNET (An IRC Botnet Server) 52 52 - - -
passwd rookit 2 2 - - -
login rootkit 3 2 - - 1
top rootkit 2 - - - 2
chsh rootkit 4 2 - 2 -

Table 1. Evaluation of our obfuscation scheme on automatically concealing malicious triggers.

(unlock.c) contains the worm infection vector and the
code necessary to maintain the peer-to-peer network and re-
ceive commands. We manually identified 28 malicious trig-
gers in the program that performs various malicious actions
depending on the received control commands. These trig-
gers were implemented using a large switch construct.
Our tool was able to completely obfuscate all malicious
actions of these triggers. However, the obfuscations had
medium-level strength because the conditions were based
on integers received in the UDP packets. The second part
of the worm is a backdoor program (update.c) that opens
a Linux shell when the correct password is provided to it.
The program contained only one malicious trigger, which
uses the strcmp function to check whether the provided
password was equal to the hard-coded string “aion1981”.
Our tool was able to successfully obfuscate the entire code
of this trigger (which included a call to execve) and re-
moved the password string from the program. In this case,
our tool provided strong obfuscation because the condition
was based on a string.

We next tested our obfuscation on a generic open source
bot program BotNET for Linux, which had minimal com-
mand and control support built into it. Since bots typically
initiate different malicious activities after receiving com-
mands, we identified the sections in that program that re-
ceive commands and considered them as malicious triggers.
We manually found 52 triggers in the program, and after our
obfuscation was applied, code conditionally executed for all
52 of them were strongly obfuscated. This result represents
what we can expect by obfuscating any typical bot program.
Usually, all IRC based bot commands send and receive text
based commands, making the triggers suitable for strong
obfuscation.

We found several rootkit programs [30] for Linux that
install user level tools similar to trojan horse programs con-
taining specific logic bombs that provide malicious advan-
tages to attackers, including privileged access to the system.
First, we tested the passwd rootkit program, which had
two manually identifiable malicious triggers inserted into
the original. The first trigger enables a user to spawn a priv-
ileged shell when a predefined magic string “satori” is in-
serted as the new password. The second trigger works in a

similar manner and activates when the old password is equal
to the magic string. Our obfuscation successfully concealed
these trigger based code with strong obfuscation.

We next tested on a rootkit version of login. The
source code login.c contained three manually identified
malicious triggers. Our obfuscation was able to conceal
two with strong obfuscation. Both of these triggers were
strcmp checks on the user name or password entered by
the user. Our obfuscator was not able to protect the third
trigger. The reason was that both of the strongly obfus-
cated code sections increase the value of an integer variable
elite that was used by the third trigger placed elsewhere
in the program. The third trigger used the operator !=, mak-
ing it unsuitable for our obfuscation.

Our next test was on the top rootkit. This program con-
tained two malicious triggers, which hide specific program
names from the list that a user can view. Although these
triggers are implemented using strcmp, the actual names
of the processes that are to be hidden are read from files.
Our obfuscator therefore could not conceal any of these ma-
licious triggers. A malware author could take a different
approach to overcome situations like this. By having a trig-
ger that checks for the file containing the process names to
start with a hard-coded value, all the other triggers can be
contained in a strongly obfuscated code section.

Finally, we tested on a rootkit that is a modified ver-
sion of the chsh shell. Two triggers were manually identi-
fied. The first, which checked for a specific username, was
strongly obfuscated by our tool. The second trigger used a
boolean flag in and therefore was only weakly obfuscated. It
is easy for one to overcome this difficulty because by manu-
ally modifying the flag to be a string or an integer, stronger
obfuscation can be obtained using our tool.

5 Discussion

In this section, we discuss our obfuscation technique
to help defenders better understand the possible threats it
poses. We discuss how malware authors (attackers) may
utilize this technique, and analyze its weaknesses to provide
insight into how such a threat can be defeated.



5.1 Strengths

We have discussed earlier in Section 2.4 how our ob-
fuscation impedes state-of-the-art malware analyzers. If the
the variable used in the condition has a larger set of possible
reasonable values, the obfuscation is stronger against brute
force attacks. Since data type information is hard to deter-
mine at the binary level, brute-force attacks may have to
search larger sets of values than necessary, providing more
advantage to the attackers. Equipped with this knowledge,
a malware author may modify his programs to take advan-
tage of the strengths rather than naively applying it to the
existing programs.

First, a malware author can modify different parts of a
program to introduce more candidate conditions. Rather
than passing names of resources to system calls, he can
query for resources and compare with the names. In ad-
dition, certain conditions that use other relational operators
such as <, > or 6= that are unsuitable for obfuscation may
be replaced by ==. For example, time based triggers that
use ranges of days in a month can be replaced with several
equality checks on individual days. As another example, a
program that exits if a certain resource is not found by using
the != operator, can be modified to continue operation if the
resource is found using the == operator.

Second, a malware author can increase the size of the
concealed code in the malware programs by incorporating
more portions of the code under candidate conditions for
obfuscation. Bot authors can have an initial handshaking
command that encapsulates the bulk of the rest of its activ-
ity.

Third, the malware authors can increase the length of
inputs to make brute force attacks harder. In our imple-
mentation, we use AES encryption with 256-bit keys. If
any variable used to generate the key is less than 256-bits
in size, then the effective key-length is reduced. Attack-
ers may also avoid low entropy inputs for a given length
because that may reduce the search space for dictionary-
based attacks. For example, a bot command that uses lower
case characters only in a buffer of 10 bytes needs the search
space of size 2610, whereas using both upper, lower, and
numeric values would increase search space to 6210.

Unlike strings, numeric values usually have a fixed size
and may not be increased in length. Checking the hashes of
all possible 32-bit integer values may not be a formidable
task, but it is time-consuming, especially if a different nonce
is used in each condition to make pre-computed hashes not
useful. An attacker can utilize some proprietary function
F (x) in the code to map a 32-bit integer x to a longer in-
teger value. However, such an approach does not funda-
mentally increase the search space. It may just increase the
difficulty for the defenders in automatically computing the
hashes because the equivalent computation of F has to be

extracted from the code and applied for each possible 32-bit
value before applying the hash function.

5.2 Weaknesses

In its current form, one of the main weaknesses of our
obfuscation is the limited types of conditions on which it
can be applied to. Although triggers found in the programs
that we experimented with were mostly equality tests, there
can be many trigger conditions in a malware that checks
ranges of values. If the range is large, it may not be possi-
ble to represent them as several equality checks as we have
mentioned earlier, making the obfuscation inapplicable.

The encryption strength depends on the variable that is
used. The full strength of having 2256 possible keys for AES
is not utilized particularly in the case of numeric data, which
are 32-bit or 64-bit integers in current systems. Obfusca-
tions involving string inputs are likely to be more resistant
to analysis. Therefore, a subclass of malware, especially
bots or backdoors, are likely to be the most beneficial from
this approach because the inputs required for the malicious
triggers can be selected by the malware authors.

Another weakness is that trigger-based behavior may not
just depend on data that are input using system calls, but
also status results returned from the calls. Most system calls
have a small set of possible return values, usually indicating
a success or some form of error. As a result, the number of
values to check by a brute force attack may be reduced even
further for such conditions.

Possible ways to defeat: If the proposed obfuscation is
successfully applied, existing malware analysis techniques
may not be able to extract the behavior that is concealed
unless the conditions in the triggers are satisfied. Yet, we
suggest several techniques to defeat our obfuscation.

First, analyzers may be equipped with decryptors that
reduce the search space of keys by taking the input domain
into account. Once an obfuscated condition is detected, the
variable used in it may be traced back to its source using
existing methods. If it is the result or an argument receiv-
ing data from a system call, the corresponding specifica-
tion may be used to find the reasonable set of values that
it may take. For example, if the source is set by a call-
ing system call that returns the current system date (such
as gettimeofday), the set of all possible values repre-
senting valid dates may be used, significantly reducing the
search space. If, however, the source is input data that can-
not be characterized, brute forcing may become infeasible.

Another approach can be to move more towards input-
aware analysis. Rather than capturing binaries only, col-
lection mechanisms should capture interaction of the binary
with its environment if possible. In case of bots, having
related network traces can provide information about the
inputs required to break the obfuscation. Existing honey-



pots already have the capability to capture network activity.
Recording system interaction can provide more information
about the inputs required by the binary.

Malware detection: Although the obfuscation may
prove powerful against malware analyzers, its use may have
an upside in malware detection. The existence of hash func-
tions and encryption routines together with a noticeable
number of conditions utilizing them may indicate that an
unknown binary is a malware. However, our proposed ob-
fuscation allows more layers of other general obfuscation
schemes to be applied on top of it. For example, the binary
resulting from our system may be packed with executable
protectors [34], which a large fraction of malware already
do today. The use of protector tools alone are not usually
an indication that the program is a malware because these
tools are usually created for protecting legitimate programs.
Removing such obfuscation layers require unpacking tech-
niques [21,33] that are mostly used prior to analysis of sus-
picious code because of their run-time cost. The end result
is that detecting such obfuscated malware is not any easier
than detecting existing ones.

6 Related Work

The problem of discovering trigger-based malicious be-
haviors has been addressed by recent research. Some tech-
niques have used symbolic execution to derive predicates
leading to specific execution paths. In order to identify
time-bombs in code, [13] varies time in a virtual machine
and uses symbolic execution to identify predicates or con-
ditions in a program that depend on time. Another sym-
bolic execution based method of detecting trigger based be-
havior is presented in [5]. Brumley et al.’s Bitscope [4]
uses static analysis and symbolic execution to understand
behavior of malware binaries and is capable of identifying
trigger-based behavior as well. Our obfuscation makes it
hard for symbolic constraints containing cryptographic one-
way hash functions to be solved.

Approaches have been proposed that identify trigger-
based behavior by exploring paths during execution. Moser
et al.’s multi-path exploration approach [28] was the first
such approach. The technique can comprehensively dis-
cover almost all conditional code in a malware with suffi-
cient execution time. The system uses QEMU and dynamic
tainting to identify conditions and construct path constraints
that depend on inputs coming from interesting system calls.
Once a conditional branch is reached, the approach at-
tempts execution on both of the branches after consistently
changing memory variables by solving the constraints. An-
other approach is presented in [42] that forces execution
along different paths disregarding consistent memory up-
dates. The approach has been shown to be useful for rootk-
its written as Windows kernel drivers.

Techniques that can impede analyzers capable of identi-
fying trigger-based behavior need to conceal conditions and
the code blocks that are used to implement these behaviors.
An example of obfuscated conditional branches in malware
was seen in the early 90s in the Cheeba [19] virus, which
searched for a specific file by comparing the hash of the
name of each file with a hard-coded hash of the file name
being searched. In the literature, the idea of using environ-
ment generated keys for encryption was introduced in [32].
The work on secure triggers [18] considers a whitehat sce-
nario and presents the principles of constructing protocols
for software developers to have inputs coming into a pro-
gram to decrypt parts of the code. In the malware scenario,
the research idea of using environment generated keys for
encryption was presented as the Bradley virus [17]. How-
ever, such techniques have not become a practical threat be-
cause identification of such keys and incorporation of the
encryption technique requires a malware to be manually de-
signed and implemented around this obfuscation. Our work
shows that encrypting parts of the malware code using keys
generated from inputs can be automatically applied on ex-
isting malware without any human effort, showing its effi-
cacy as a wide-spread threat.

The use of polymorphic engines in viruses is one of
the earliest [36] obfuscation techniques used in malware to
evade detection. Over the years, various methods of poly-
morphic and metamorphic techniques have appeared in the
wild [39]. In order to detect polymorphic malware, an-
tivirus software use emulation or create signatures to detect
the polymorphic decryptors. In [9], obfuscation techniques
such as garbage insertion, code transposition, register reas-
signment, and instruction substitution were shown to suc-
cessfully disrupt detection of several commercial antivirus
tools.

Besides malware detection approaches [10, 22, 23], re-
cent research has focused on creating techniques that auto-
mate malware analysis. These systems automatically pro-
vide comprehensive information about the behavior, run-
time actions, capabilities, and controlling mechanisms of
malware samples with little human effort. A variety of ob-
fuscation techniques [11,12,25,43] have been presented that
can impede such analyzers that are based on static analy-
sis approach. Executable protectors and packers [34] are
widely used by malware authors to make reverse engineer-
ing or analysis of their code very hard. As with polymorphic
code, packers obfuscate the code by encrypting or com-
pressing the binary and adding an unpacking routine, which
reverses the operation during execution. Tools [21, 26, 33]
have been presented that are able to unpack a large fraction
of such programs to aid static analysis. However, by uti-
lizing our obfuscation before packing, malware authors are
capable of concealing code implementing triggered behav-
ior from static analyzers even after unpacking is performed.



Dynamic analysis approach has been more attractive for
automated malware behavior analyzers. This is because
performing analysis of code that is executing overcomes
obfuscations that impede static analysis, including packed
code. Since most dynamic analysis of malware involves
debuggers [15], safe virtual machine execution environ-
ments or emulators, malware programs use various anti-
debugging [8] and anti-analysis techniques to detect side-
effects in the execution environment and evade analysis.
There has been research on stealth analysis frameworks
such as Cobra [40], which places stealth hooks in the code
to aid analysis while remaining hidden from the executing
malware. In order to automate analysis, dynamic tools such
as CWSandbox [6], TTAnalyze [2] or the Norman Sand-
box [29] automatically record the actions performed by an
executing malware. However, since such tools can only
view a single execution path, trigger-based behavior may
be missed. These tools have been superseded by the recent
approaches that can identify and extract trigger-based be-
havior, which we have presented earlier in this section.

7 Conclusion

We have designed an obfuscation scheme that can be au-
tomatically applied on malware programs in order to con-
ceal trigger based malicious behavior from state-of-the-art
malware analyzers. We have shown that if a malware au-
thor uses our approach, various existing malware analysis
approaches can be defeated. Furthermore, if properly used,
this obfuscation can provide strong concealment of mali-
cious activity from any possible analysis approach that is
oblivious of inputs. We have implemented a Linux based
compiler level tool that takes a source program and auto-
matically produces an obfuscated binary. Using this tool
we have experimentally shown that our obfuscation scheme
is capable of concealing a large fraction of malicious trig-
gers that are found in several unmodified malware source
programs representing various classes of malware. Finally,
we have provided insight into the strengths and weaknesses
of our obfuscation technique and possible ways to defeat it.
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