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Abstract. We describe GINGER, a built system for un-
conditional, general-purpose, and nearly practical verifi-
cation of outsourced computation. GINGER is based on
PEPPER, which uses the PCP theorem and cryptographic
techniques to implement an efficient argument system
(a kind of interactive protocol). GINGER slashes query
costs via protocol refinements; broadens the computa-
tional model to include (primitive) floating-point frac-
tions, inequality comparisons, logical operations, and
conditional control flow; and includes a parallel GPU-
based implementation that dramatically reduces latency.

1 Introduction
We are motivated by outsourced computing: cloud com-
puting (in which clients outsource computations to re-
mote computers), peer-to-peer computing (in which
peers outsource storage and computation to each other),
volunteer computing (in which projects outsource com-
putations to volunteers’ desktops), etc.

Our goal is to build a system that lets a client outsource
computation verifiably. The client should be able to send
a description of a computation and the input to a server,
and receive back the result together with some auxiliary
information that lets the client verify that the result is cor-
rect. For this to be sensible, the verification must be faster
than executing the computation locally.

Ideally, we would like such a system to be uncondi-
tional, general-purpose, and practical. That is, we don’t
want to make assumptions about the server (trusted hard-
ware, independent failures of replicas, etc.), we want a
setup that works for a broad range of computations, and
we want the system to be usable by real people for real
computations in the near future.

In principle, the first two properties above have
been achievable for almost thirty years, using powerful
tools from complexity theory and cryptography. Interac-
tive proofs (IPs) and probabilistically checkable proofs
(PCPs) show how one entity (usually called the veri-
fier) can be convinced by another (usually called the
prover) of a given mathematical assertion—without the
verifier having to fully inspect a proof [5, 6, 20, 32]. In
our context, the mathematical assertion is that a given
computation was carried out correctly; though the proof
is as long as the computation, the theory implies—
surprisingly—that the verifier need only inspect the
proof in a small number of randomly-chosen locations
or query the prover a relatively small number of times.

1This version revises the published paper to eliminate an incorrect theo-
retical claim. We thank Alessandro Chiesa, Yuval Ishai, Nir Bitanksy,
and Omer Paneth for noticing the error and bringing it to our attention.

The rub has been the third property: practicality. These
protocols have required expensive encoding of compu-
tations, monstrously large proofs, high error bounds,
prohibitive overhead for the prover, and intricate con-
structions that make the asymptotically efficient schemes
challenging to implement correctly.

However, a line of recent work indicates that ap-
proaches based on IPs and PCPs are closer to practicality
than previously thought [22, 47, 48, 53]. More generally,
there has been a groundswell of work that aims for poten-
tially practical verifiable outsourced computation, using
theoretical tools [11, 12, 21, 25, 26].

Nonetheless, these works have notable limitations.
Only a handful [22, 47, 48, 53] have produced work-
ing implementations, all of which impose high costs on
the verifier and prover. Moreover, their model of com-
putation is arithmetic circuits over finite fields, which
represent non-integers awkwardly, control flow ineffi-
ciently, and comparisons and logical operations only by
degenerating to verbose Boolean circuits. Arithmetic cir-
cuits are well-suited to integer computations and numeri-
cal straight line computations (e.g., multiplying matrices
and computing second moments), but the intersection of
these two domains leaves few realistic applications.

This paper describes a built system, called GINGER,
that addresses these problems, thereby taking general-
purpose proof-based verified computation several steps
closer to practicality. GINGER is an efficient argument
system [37, 38]: an interactive proof system that assumes
the prover to be computationally bounded. Its starting
point is the PEPPER protocol [48] (which is summarized
in Section 2). GINGER’s contributions are as follows.

(1) GINGER slashes query costs (§3). GINGER reduces
costs by trading off more queries that are cheap for fewer
of a more expensive type (keeping the total number of
queries roughly the same); the justification for the sound-
ness of this trade is rooted in a careful revisiting of the
PCP’s soundness and its sources of overhead. GINGER
also slashes network costs by orders of magnitude, by
compressing queries.

(2) GINGER supports a general-purpose programming
model (§4). Although the model does not handle looping
concisely, it includes primitive floating-point quantities,
inequality comparisons, logical expressions, and condi-
tional control flow. Moreover, we have a compiler (de-
rived from Fairplay [40]) that transforms computations
expressed in a general-purpose language to an executable
verifier and prover. The core technical challenge is rep-
resenting computations as additions and multiplications
over a finite field (as required by the verification proto-
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col); for instance, “not equal” and “if/else” do not obvi-
ously map to this formalism, inequalities are problematic
because finite fields are not ordered, and fractions com-
pound the difficulties. GINGER overcomes these chal-
lenges with techniques that, while not deep, require care
and detail.2 These techniques should apply to other pro-
tocols that use arithmetic constraints or circuits.

(3) GINGER exploits parallelism to slash latency (§5).
The prover can be distributed across machines, and some
of its functions are implemented in graphics hardware
(GPUs). Moreover, GINGER’s verifier can use a GPU
for its cryptographic operations. Allowing the verifier to
have a GPU models the present (many computers have
GPUs) and a plausible future in which specialized hard-
ware for cryptographic operations is common.3

We have implemented and evaluated GINGER (§6).
Compared to PEPPER [48], its base, GINGER lowers net-
work costs by 1–2 orders of magnitude (to hundreds of
KB or less in our experiments). The verifier’s costs drop
by multiples, depending on the cost of encryption; if we
model encryption as free, the verifier can gain from out-
sourcing when batch-verifying 740 computations (down
from 2800 in PEPPER). The prover’s CPU costs drop
by about a factor of 2, and our parallel implementa-
tion reduces latency with near-linear speedup. Comput-
ing with rational numbers in GINGER is roughly two
times more expensive than computing with integers, and
arithmetic constraints permit far smaller representations
than a naive use of Boolean or arithmetic circuits.

Despite all of the above, GINGER is not quite ready
for the big leagues. However, PEPPER and GINGER have
made argument systems far more practical (in some cases
improving costs by 20 or more orders of magnitude over
a naive implementation). We are thus optimistic about
ultimately achieving true practicality.

2 Problem statement and background
Problem statement. A computer V , known as the veri-
fier, has a computation Ψ and some desired input x that
it wants a computer P, known as the prover, to perform.
P returns y, the purported output of the computation, and
then V and P conduct an efficient interaction. This in-
teraction should be cheaper for V than locally comput-
ing Ψ(x). Furthermore, if P returned the correct answer,
it should be able to convince V of that fact; otherwise,
V should be able to reject the answer as incorrect, with
high probability. (The converse will not hold: rejection
does not imply that P returned incorrect output, only that
it misbehaved somehow.) Our goal is that this guarantee

2We elide some of these details for space; they are documented in a
longer version of this paper [49].

3One may wonder why, if the verifier has this hardware, it needs to
outsource. GPUs are amenable only to certain computations (which
include the cryptographic underpinnings of GINGER).

be unconditional: it should hold regardless of whether
P obeys the protocol (given standard cryptographic as-
sumptions about P’s computational power). If P deviates
from the protocol at any point (computing incorrectly,
proving incorrectly, etc.), we call it malicious.

2.1 Tools

In principle, we can meet our goal using PCPs. The PCP
theorem [5, 6] says that if a set of constraints is satisfi-
able (see below), there exists a probabilistically check-
able proof (a PCP) and a verification procedure that ac-
cepts the proof after querying it in only a small number
of locations. On the other hand, if the constraints cannot
be satisfied, then the verification procedure rejects any
purported proof, with probability at least 1− ε.

To apply the theorem, we represent the computation
as a set of quadratic constraints over a finite field. A
quadratic constraint is an equation of total degree 2 that
uses additions and multiplications (e.g., A · Z1 + Z2 −
Z3 · Z4 = 0). A set of constraints is satisfiable if the
variables can be set to make all of the equations hold
simultaneously; such an assignment is called a satisfy-
ing assignment. In our context, a set of constraints C will
have a designated input variable X and output variable
Y (this generalizes to multiple inputs and outputs), and
C(X = x, Y = y) denotes C with variable X bound to x
and Y bound to y.

We say that a set of constraints C is equivalent to a
desired computation Ψ if: for all x, y, C(X = x, Y = y) is
satisfiable if and only if y = Ψ(x). As a simple example,
increment-by-1 is equivalent to the constraint set {Y =
Z + 1, Z = X}. (For convenience, we will sometimes
refer to a given input x and purported output y implicitly
in statements such as, “If constraints C are satisfiable,
then Ψ executed correctly”.) To verify a computation y =
Ψ(x), one could in principle apply the PCP theorem to
the constraints C(X = x, Y = y).

Unfortunately, PCPs are too large to be transferred.
However, if we assume a computational bound on the
prover P, then efficient arguments apply [37, 38]: V is-
sues its PCP queries to P (so V need not receive the entire
PCP). For this to work, P must commit to the PCP be-
fore seeing V’s queries, thereby simulating a fixed proof
whose contents are independent of the queries. V thus ex-
tracts a cryptographic commitment to the PCP (e.g., with
a collision-resistant hash tree [42]) and verifies that P’s
query responses are consistent with the commitment.

This approach can be taken a step further: not even
P has to materialize the entire PCP. As Ishai et al. [35]
observe, in some PCP constructions, which they call lin-
ear PCPs, the PCP itself is a linear function: the verifier
submits queries to the function, and the function’s out-
puts serve as the PCP responses. Ishai et al. thus design
a linear commitment primitive in which P can commit to
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a linear function (the PCP) and V can submit function
inputs (the PCP queries) to P, getting back outputs (the
PCP responses) as if P itself were a fixed function.

PEPPER [48] refines and implements the outline
above. In the rest of the section, we summarize the lin-
ear PCPs that PEPPER incorporates, give an overview of
PEPPER, and provide formal definitions. Additional de-
tails are in Appendix A.1.

2.2 Linear PCPs, applied to verifying computations

Imagine that V has a desired computation Ψ and desired
input x, and somehow obtains purported output y. To use
PCP machinery to check whether y = Ψ(x), V compiles
Ψ into equivalent constraints C, and then asks whether
C(X = x, Y = y) is satisfiable, by consulting an oracle
π: a fixed function (that depends on C, x, y) that V can
query. A correct oracle π is the proof (or PCP); V should
accept a correct oracle and reject an incorrect one.

A correct oracle π has three properties. First, π is a
linear function, meaning that π(a)+π(b) = π(a+b) for
all a, b in the domain of π. A linear function π : Fn → F
is determined by a vector w; i.e., π(a) = 〈a, w〉 for all
a ∈ Fn. Here, F is a finite field, and 〈a, b〉 denotes the
inner (dot) product of two vectors a and b. The parameter
n is the size of w; in general, n is quadratic in the number
of variables in C [5], but we can sometimes tailor the
encoding of w to make n smaller [48].

Second, one set of the entries in w must be a redundant
encoding of the other entries. Third, w encodes the actual
satisfying assignment to C(X = x, Y = y).

A surprising aspect of PCPs is that each of these prop-
erties can be tested by making a small number of queries
to π; if π is constructed incorrectly, the probability that
the tests pass is upper-bounded by ε > 0. For instance,
a key test—we return to it in Section 3—is the linear-
ity test [17]: V randomly selects q1 and q2 from Fn and
checks if π(q1)+π(q2) = π(q1+q2). The other two PCP
tests are the quadratic correction test and the circuit test.

The completeness and soundness properties of linear
PCPs are defined in Section 2.4. A detailed explanation
of why the mechanics above satisfy those properties is
outside our scope but can be found in [5, 13, 35, 48].

2.3 Our base: PEPPER

We now walk through the three phases of PEPPER [48],
which is depicted in Figure 1. The approach is to com-
pose a linear PCP and a linear commitment primitive that
forces the prover to act like an oracle.

Specify and compute. V transforms its desired compu-
tation, Ψ, into a set of equivalent constraints, C. V sends
Ψ (or C) to P, or P may come with them installed.

To gain from outsourcing, V must amortize the costs of
compiling Ψ to C and generating queries. Thus, V verifies
computations in batches [48] (although they need not be

  x
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Figure 1—The PEPPER protocol [48], which is GINGER’s base.
Though not depicted, many of the protocol steps happen in par-
allel, to facilitate batching.

executed in a batch). A batch (of size β) refers to a set of
computations in which Ψ is the same but the inputs are
different; a member of the batch is called an instance.
In the protocol, V has inputs x1, . . . , xβ that it sends to
P (not necessarily all at once), which returns y1, . . . , yβ ;
for each instance i, yi is supposed to equal Ψ(xi).

For each instance i, an honest P stores a proof vector
wi that encodes a satisfying assignment to C(X = xi, Y =
yi); wi is constructed as described in Section 2.2. Being a
vector, wi can also be regarded as a linear function πi—or
an oracle of the kind described above.

Extract commitment. V cannot inspect {πi} directly
(they are functions; written out, they would have an en-
try for each value in a huge domain). Instead, V extracts a
commitment to each πi. To do so, V randomly generates a
commitment vector r ∈ Fn. V then homomorphically en-
crypts each entry of r under a public key pk to get a vector
Enc(pk, r) = (Enc(pk, r1), Enc(pk, r2), . . . , Enc(pk, rn)).
We emphasize that Enc(·) need not be fully homomor-
phic encryption [28] (which remains unfeasibly expen-
sive); PEPPER uses ElGamal [24, 48].

V sends (Enc(pk, r), pk) to P. If P is honest, then πi is
linear, so P can use the homomorphism of Enc(·) to com-
pute Enc(pk,πi(r)) from Enc(pk, r), without learning
r. P replies with (Enc(pk,π1(r)), . . . , Enc(pk,πβ(r))),
which is P’s commitment to {πi}. V then decrypts to get
(π1(r), . . . ,πβ(r)).

Verify. V now generates PCP queries q1, . . . , qµ ∈ Fn,
as described in Section 2.2. V sends these queries to P,
along with a consistency query t = r+

∑µ
j=1 αj ·qj, where

each αj is randomly chosen from F (here, · represents
scalar multiplication).

For ease of exposition, we focus on a single proof πi;
however, the following steps happen β times in parallel,
using the same queries for each of the β instances. If P
is honest, it returns (πi(q1), . . . ,πi(qµ),πi(t)). V checks
that πi(t) = πi(r) +

∑µ
j=1 αj · πi(qj); this is known as
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the consistency test. If P is honest, then this test passes,
by the linearity of π. Conversely, if this test passes then,
regardless of P’s honesty, V can treat P’s responses as the
output of an oracle (this is shown in previous work [35,
48]). Thus, V can use {πi(q1), . . . ,πi(qµ)} in the PCP
tests described in Section 2.2.

2.4 PCPs and arguments defined more formally

The definitions of PCPs [5, 6] and argument systems [20,
32] below are borrowed from [35, 48].

A PCP protocol with soundness error ε includes a
probabilistic polynomial time verifier V that has access to
a constraint set C. V makes a constant number of queries
to an oracle π. This process has the following properties:

• PCP Completeness. If C is satisfiable, then there ex-
ists a linear function π such that, after V queries π,
Pr{V accepts C as satisfiable} = 1, where the proba-
bility is over V’s random choices.

• PCP Soundness. If C is not satisfiable, then
Pr{V accepts C as satisfiable} < ε for all purported
proof functions π̃.

An argument (P, V) with soundness error ε comprises P
and V , two probabilistic polynomial time (PPT) entities
that take a set of constraints C as input and provide:

• Argument Completeness. If C is satisfiable and P has
access to a satisfying assignment z, then the interac-
tion of V(C) and P(C, z) makes V(C) accept C’s satis-
fiability, regardless of V’s random choices.

• Argument Soundness. If C is not satisfiable, then for
every malicious PPT P∗, the probability over V’s ran-
dom choices that the interaction of V(C) and P∗(C)
makes V(C) accept C as satisfiable is less than ε.

3 Protocol refinements in GINGER

In principle, PEPPER solves the problem of verified com-
putation. The reality is less attractive: PEPPER’s com-
putational burden is high, its network costs are absurd,
and its applicability is limited (to straight line numeri-
cal computations). Our system, GINGER, mitigates these
issues: it lowers costs through protocol refinements (pre-
sented in this section), and it applies to a much wider
class of computations (as we discuss in Section 4).

GINGER’s protocol refinements reduce CPU costs by
changing the composition of queries in the PCP proto-
col, and reduce network costs (by orders of magnitude)
by compressing queries. Though not surprising theoreti-
cally, these refinements are important to practicality, and
are rooted in careful inspection of the theory.

Details. GINGER includes three protocol refinements.
The first calls for more linearity tests per PCP run, in re-
turn for fewer PCP runs. The trade is favorable because

linearity tests are cheaper than the other tests; the trade
is permissible because the extra linearity tests decrease
soundness error in a single run, necessitating fewer runs.

In more detail, soundness error (for example, ε in Sec-
tion 2.4) refers to the probability that a protocol or test
succeeds when the condition that it is verifying or test-
ing is actually false; the ideal is to have a small upper-
bound on soundness error. Meanwhile, the soundness
of the PCP protocol in Section 2.2 and Appendix A.1
is controlled by the soundness of linearity testing [17].
Specifically, the base analysis proves that if the prover
returns y 6= Ψ(x), then the prover survives all tests (lin-
earity, quadratic correction, circuit) with probability less
than 7/9, requiring ρ runs to make (7/9)ρ small; the 7/9
comes from the soundness of linearity testing.

To simplify slightly, the result of doing more linearity
testing per PCP run is to decrease the 7/9 to something
smaller (call it κ), at which point a lower value of ρ is re-
quired to make κρ small. The simplification here is that
we are ignoring a parameter and some of the subtleties
of the analysis; Appendix A.2 contains details. We note
that our upper-bound on soundness error is 1 in 2 mil-
lion, which is somewhat low by cryptographic standards.
However, in practice, this failure rate (when the prover is
malicious) is reasonable.

The second protocol refinement in GINGER is to reuse
queries. Specifically, some of the queries generated dur-
ing linearity testing can do double-duty as required
queries elsewhere in the protocol. This refinement is de-
tailed and justified in Appendix A.2 also.

The third refinement saves network costs by compress-
ing queries; the verifier sends, in the second round, a
short seed, or key. At that point, both the verifier and the
prover derive the PCP queries from the seed, by apply-
ing a pseudorandom generator to the seed to obtain the
required “random” bits. (Note that the verifier still sends
a full consistency query to the prover.) While a proof of
security of this refinement seems difficult in the standard
model (similar issues have been noted by others [50]),
this approach admits a natural proof in the random ora-
cle model; Appendix A.3 contains details.

Savings. Figure 2 depicts the costs under PEPPER and
GINGER. Recall that a PCP run under PEPPER consists of
a linearity test, a quadratic correction test, and a circuit
test (§2.2). The queries in each of the tests are roughly
the same cost to construct (the cost scales with n, the
number of high-order terms in the PCP encoding). How-
ever, the circuit test is far more expensive to check: it
requires a linear pass over the input and output (which is
reflected in the “Process PCP responses” row).

GINGER saves costs because it does roughly the same
number of queries as PEPPER in total (376 high-order
queries for GINGER, 385 for PEPPER, for the target
soundness of 10−6) but far fewer circuit tests (8 in GIN-
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PEPPER [48] GINGER

PCP encoding size (n) s2 + s, in general s2 + s, in general

V’s per-instance CPU costs
Issue commit queries (e + 2c) · n/β (e + 2c) · n/β
Process commit responses d d
Issue PCP queries ρpepp · (Q + n · (4c + (`pepp + 1) · f ))/β ρging · (Q + n · (2ρlin · c + (`ging + 1) · f ))/β
Process PCP responses ρpepp · (2`pepp + |x|+ |y|) · f ρging · (2`ging + |x|+ |y|) · f

P’s per-instance CPU costs
Issue commit responses h · n h · n
Issue PCP responses (ρpepp · `pepp + 1) · f · n (ρging · `ging + 1) · f · n

Network cost (per instance) ((ρpepp · `pepp + 1) · |p|+ |ξ|) · n/β (|p|+ |ξ|) · n/β

Upper-bound on soundness error (7/9)ρpepp = 9.9 · 10−7 κρging = 5.8 · 10−7

|x|, |y|: # of elements in input, output β: batch size (# of instances) (§2.3)
n: # of components in linear function π (§2.2) e: cost of encrypting an element in F
s: # of variables in constraint set (§2.1) d: cost of decrypting an encrypted element
χ: # of constraints in constraint set (§2.1) f : cost of multiplying in F
K: # of additive terms in constraints for Ψ h: cost of ciphertext add plus multiply
ρlin = 15: # of linearity tests per PCP run in GINGER (§A.2) c: cost of pseudorandomly generating an element in F
`pepp = 7: # of high-order PCP queries in PEPPER (§A.1) |p|: length of an element in F
`ging = 47 (= 3 · ρlin + 2): # of high-order PCP queries in GINGER (§A.2) |ξ|: length of an encrypted element in F
ρpepp = 55: # of PCP reps. in base scheme (§A.1) Q = χ · c + K · f : circuit query setup work (§2.2)
ρging = 8: # of PCP reps. in GINGER (§A.2) κ: upper-bound on PCP soundness error in GINGER

Figure 2—High-order costs and error in GINGER, compared to its base (PEPPER [48]), for a computation represented as χ constraints
over s variables (§2.1). The soundness error depends on field size (Appendix A.2); the table assumes |F| = 2128. Many of the
cryptographic costs enter through the commitment protocol (see Section 2.3 or Figure 12); Section 6 quantifies the parameters. The
“PCP” rows include the consistency query and check. The network costs slightly underestimate by not including query responses.
Note that while GINGER does more linearity queries than PEPPER, GINGER does fewer of the more expensive PCP queries.

GER, 55 in PEPPER). As a result, GINGER has smaller
values of β∗, the minimum batch size (§2.3) at which
V gains from outsourcing. As shown in Section 6.1, the
reduction in β∗ is roughly a factor of 3. Moreover, the
lower costs allow the verifier to gain from outsourcing
even when the problem size is small. For example, un-
der PEPPER, the fixed costs of the protocol preclude the
verifier’s breaking even for m × m matrix multiplication
for m = 100 (because 55 · (|x|+ |y|) = 55 · 3m2 > m3);
GINGER, however, can break even for this computation,
with a batch size of 2300.

We note that while both protocols, PEPPER and GIN-
GER, perform hundreds of PCP queries, this cost is dom-
inated by the cost to construct a single encrypted com-
mitment query (because e is orders of magnitude larger
than the other parameters; see [49, Appendix E]). In fact,
next to that query, the main cost of many PCP queries
is in network costs. However, GINGER’s protocol refine-
ments save 1-2 orders of magnitude in network costs (if
we take |p| = 128 bits and |ξ| = 2 · 1024 bits, and hold
β constant); see Section 6.1.

4 Broadening the space of computations
GINGER extends to computations over floating-point
fractional quantities and to a restricted general-purpose

programming model that includes inequality tests, log-
ical expressions, conditional branching, etc. To do so,
GINGER maps computations to the constraint-over-finite-
field formalism (§2.1), and thus the core protocol in Sec-
tion 3 applies. In fact, our techniques4 apply to the many
protocols that use the constraint formalism or arithmetic
circuits. Moreover, we have implemented a compiler (de-
rived from Fairplay’s [40]) that transforms high-level
computations first into constraints and then into verifier
and prover executables.

The challenges of representing computations as con-
straints over finite fields include: the “true answer” to the
computation may live outside of the field; sign and or-
dering in finite fields interact in an unintuitive fashion;
and constraints are simply equations, so it is not obvi-
ous how to represent comparisons, logical expressions,
and control flow. To explain GINGER’s solutions, we first
present an abstract framework that illustrates how GIN-
GER broadens the set of computations soundly and how
one can apply the approach to further computations.

4We suspect that many of the individual techniques are known. How-
ever, when the techniques combine, the material is surprisingly hard
to get right, so we will delve into (excruciating) detail, consistent with
our focus on built systems.
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Framework to map computations to constraints. To
map a computation Ψ over some domain D (such as the
integers, Z, or the rationals, Q) to equivalent constraints
over a finite field, the programmer or compiler performs
three steps, as illustrated and described below:

Ψ over D
(C1)−−−−→ Ψ over U

(C2)−−−−→ θ(Ψ) over Fy(C3)

C over F
C1 Bound the computation. Define a set U ⊂ D and re-

strict the input to Ψ such that the output and interme-
diate values stay in U.

C2 Represent the computation faithfully in a suitable fi-
nite field. Choose a finite field, F, and a map θ : U →
F such that computing θ(Ψ) over θ(U) ⊂ F is iso-
morphic to computing Ψ over U. (By “θ(Ψ)”, we
mean Ψ with all inputs and literals mapped by θ.)

C3 Transform the finite field version of the computation
into constraints. Write a set of constraints over F that
are equivalent (in the sense of Section 2.1) to θ(Ψ).

4.1 Signed integers and floating-point rationals

We now instantiate C1 and C2 for integer and rational
number computations; the next section addresses C3.

Consider m × m matrix multiplication over N-bit
signed integers. For step C1, each term in the output,∑m

k=1 AikBkj, has m additions of 2N-bit subterms so is
contained in [−m · 22N−1, m · 22N−1); this is our set U.

For step C2, take F = Z/p (the integers mod a prime
p, to be chosen shortly) and define θ : U → Z/p as
θ(u) = u mod p. Observe that θ maps negative integers
to { p+1

2 , p+3
2 , . . . , p − 1}, analogous to how processors

represent negative numbers with a 1 in the most signifi-
cant bit (this technique is standard [18, 54]). Of course,
addition and multiplication in Z/p do not “know” when
their operands are negative. Nevertheless, the compu-
tation over Z/p is isomorphic to the computation over
U, provided that |Z/p| > |U| (as shown in Appendix
B [49]).5 Thus, for the given U, we require p > m · 22N .
Note that a larger p brings larger costs (see Figure 2), so
there is a three-way trade-off among p, m, N.

We now turn to rational numbers. For step C1, we re-
strict the inputs as follows: when written in lowest terms,
their numerators are (Na + 1)-bit signed integers, and
their denominators are in {1, 2, 22, 23, . . . , 2Nb}. Note
that such numbers are (primitive) floating-point num-
bers: they can be represented as a · 2−q, so the decimal
point floats based on q. Now, for m×m matrix multiplica-
tion, the computation does not “leave” U = {a/b : |a| <
2N′

a , b ∈ {1, 2, 22, 23, . . . , 2N′
b}}, for N′a = 2Na + 2Nb +

log2 m and N′b = 2Nb [49, Appendix B].
5For space, Appendices B–E appear only in the extended version [49].

For step C2, we take F = Q/p, the quotient field of
Z/p. Take θ( a

b ) = (a mod p, b mod p). For any U ⊂ Q,
there is a choice of p such that the mapped computation
over Q/p is isomorphic to the original computation over
Q [49, Appendix B]. For our U above, p > 2m · 22Na+4Nb

suffices.

Limitations and costs. To understand the limitations
of GINGER’s floating-point representation, consider the
number a · 2−q, where |a| < 2Na and |q| ≤ Nq. To rep-
resent this number, the IEEE standard requires roughly
Na + log Nq + 1 bits [30] while GINGER requires Na +
2Nq + 1 bits [49, Appendix B]. As a result, GINGER’s
range is vastly more limited: with 64 bits, the IEEE stan-
dard can represent numbers on the order of 21023 and
2−1022 (with Na = 53 bits of precision) while 64 bits
buys GINGER only numbers on the order of 232 and 2−31

(with Na = 32). Moreover, unlike the IEEE standard,
GINGER does not support a division operation or round-
ing.

However, comparing GINGER’s floating-point repre-
sentation to its integer representation, the extra costs are
not terrible. First, the prover and verifier take an extra
pass over the input and output (for implementation rea-
sons; see Appendix B [49] for details). Second, a larger
prime p is required. For example, m × m matrix mul-
tiplication with 32-bit integer inputs requires p to have
at least log2 m + 64 bits; if the inputs are rationals with
Na = Nq = 32, then p requires log2 m + 193 bits. The
end-to-end costs are about 2× those of the integers case
(see Section 6.2). Of course, the actual numbers depend
on the computation. (Our compiler computes suitable
bounds with static analysis.)

4.2 General-purpose program constructs

Case study: branch on order comparison. We now il-
lustrate C3 with a case study of a computation, Ψ, that
includes a less-than test and a conditional branch; pseu-
docode for Ψ is in Figure 3. For clarity, we will restrict
Ψ to signed integers; handling rational numbers requires
additional mechanisms [49, Appendix C].

How can we represent the test x1 < x2 using con-
straint equations? The solution is to use special range
constraints that decompose a number into its bits to test
whether it is in a given range; in this case, C<, depicted
in Figure 3, tests whether e = θ(x1) − θ(x2) is in the
“negative” range of Z/p (see Section 4.1). Now, under
the input restriction x1 − x2 ∈ U, C< is satisfiable if and
only if x1 < x2 [49, Appendix C]. Analogously, we can
construct C>= that is satisfiable if and only if x1 ≥ x2.

Finally, we introduce a 0/1 variable M that encodes
a choice of branch, and then arrange for M to “pull in”
the constraints of that branch and “exclude” those of the
other. (Note that the prover need not execute the untaken
branch.) Figure 3 depicts the complete set of constraints,
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Ψ :

if (X1 < X2)

Y = 3

else

Y = 4

C< =



B0(1− B0) = 0,
B1(2− B1) = 0,
...

...
BN−2(2N−2 − BN−2) = 0,
θ(X1)− θ(X2)− (p− 2N−1)−

∑N−2
i=0 Bi = 0


CΨ =


M{C<},
M(Y − 3) = 0,
(1−M){C>=},
(1−M)(Y − 4) = 0



Figure 3—Pseudocode for our case study of Ψ, and corresponding constraints CΨ. Ψ’s inputs are signed integers x1, x2; per steps
C1 and C2 (§4.1), we assume x1 − x2 ∈ U ⊂ [−2N−1, 2N−1), where p > 2N . The constraints C< test x1 < x2 by testing whether the
bits of θ(x1)− θ(x2) place it in [p− 2N−1, p). M{C} means multiplying all constraints in C by M and then reducing to degree-2.

CΨ; these constraints are satisfiable if and only if the
prover correctly computes Ψ [49, Appendix C].

Logical expressions and conditionals. Besides order
comparisons and if-else, GINGER can represent ==, &&,
and || as constraints. An interesting case is !=: we can
represent Z1!=Z2 with {M · (Z1 − Z2)− 1 = 0} because
this constraint is satisfiable when (Z1 − Z2) has a multi-
plicative inverse and hence is not zero. These constructs
and others are detailed in Appendix D [49].

Limitations and costs. We compile a subset of SFDL,
the language of the Fairplay compiler [40]. Thus, our
limitations are essentially those of SFDL; notably, loop
bounds have to be known at compile time.

How efficient is our representation? The program con-
structs above mostly have concise constraint representa-
tions. Consider, for instance, comp1==comp2; the equiv-
alent constraint set C consists of the constraints that rep-
resent comp1, the constraints that represent comp2, and
an additional constraint to relate the outputs of comp1
and comp2. Thus, C is the same size as its two compo-
nents, as one would expect.

However, two classes of computations are costly. First,
inequality comparisons require variables and a con-
straint for every bit position; see Figure 3. Second, the
constraints for if-else and ||, as written, seem to be
degree-3; notice, for instance, the M{C<} in Figure 3. To
be compatible with the core protocol, these constraints
must be rewritten to be total degree 2 (§2.1), which car-
ries costs. Specifically, if C has s variables and χ con-
straints, an equivalent total degree 2 representation of
M{C} has s + χ variables and 2 · χ constraints [49, Ap-
pendix D].

5 Parallelization and implementation
Many of GINGER’s remaining costs are in the crypto-
graphic operations in the commitment protocol (see Ap-
pendix A.1). To address these costs, we distribute the
prover over multiple machines, leveraging GINGER’s in-
herent parallelism. We also implement the prover and
verifier on GPUs, which raises two questions. (1) Isn’t
this just moving the problem? Yes, and this is good:
GPUs are optimized for the types of operations that bot-
tleneck GINGER. (2) Why do we assume that the verifier

has a GPU? Desktops are more likely than servers to have
GPUs, and the prevalence of GPUs is increasing. Also,
this setup models a future in which specialized hardware
for cryptographic operations is common.

Parallelization. To distribute GINGER’s prover, we run
multiple copies of it (one per host), each copy receiving
a fraction of the batch (Section 2.3). In this configura-
tion, the provers use the Open MPI [2] message-passing
library to synchronize and exchange data.

To further reduce latency, each prover offloads work
to a GPU (see also [53] for an independent study of GPU
hardware in the context of [22]). We exploit three levels
of parallelism here. First, the prover performs a cipher-
text operation for each component in the commitment
vector (§2.3); each operation is (to first approximation)
separate. Second, each operation computes two indepen-
dent modular exponentiations (the ciphertext of an ElGa-
mal encryption has two elements). Third, modular expo-
nentiation itself admits a parallel implementation (each
input is a multiprecision number encoded in multiple ma-
chine words). Thus, in our GPU implementation, a group
of CUDA [1] threads computes each exponentiation.

We also parallelize the verifier’s encryption work dur-
ing the commitment phase (§2.3), using the approach
above plus an optimization: the verifier’s exponentiations
are fixed base, letting us memoize intermediate squares.
As another optimization, we implement simultaneous
multiple exponentiation [41, Chapter 14.4], which accel-
erates the prover.6

We implement exponentiations for the prover and ver-
ifier with the libgpucrypto library of SSLShader [36],
modified to implement the memoization.

Implementation details. Our compiler consists of two
stages, which a future publication will detail. The front-
end compiles a subset of Fairplay’s SFDL [40] to con-
straints; it is derived from Fairplay and is implemented
in 5294 lines of Java, starting from Fairplay’s 3886 lines
(per [55]). The back-end transforms constraints into C++
code that implements the verifier and prover and then in-
vokes gcc; this component is 1105 lines of Python code.

For efficiency, PEPPER [48] introduced specialized
6This last optimization is is an improvement over the originally pub-
lished version; although the technique is well-known, we were in-
spired by other works that implement it [33, 39, 45].
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GINGER’s protocol refinements reduce per-instance network costs by 20–30× (to hundreds of KBs for the computations
we study), prover CPU costs by about a factor of 2, and break-even batch size (β∗) by about 3×. §6.1

With accelerated encryption GINGER breaks even from outsourcing short computations at small batch sizes; for 400×400
matrix multiplication, the verifier gains from outsourcing at a batch size of 740.

§6.1

Rational arithmetic costs roughly 2× integer arithmetic under GINGER (but much more than native floating-point). §6.2

Parallelizing results in near-linear reduction in the prover’s latency. §6.3

Figure 4—Summary of main evaluation results.

computation (Ψ) O(·) input domain (see §4.1) size of F s n default local

matrix mult. O(m3) 32-bit signed integers 128 bits 2m2 m3 m = 200 800 ms
matrix mult. (Q) O(m3) rationals (Na = 32, Nb = 32) 220 bits 2m2 m3 m = 100 5.90 ms
deg-2 poly. eval. O(m2) 32-bit signed integers 128 bits m m2 m = 100 0.40 ms
deg-3 poly. eval. O(m3) 32-bit signed integers 192 bits m m3 m = 200 160 ms
m-Hamming dist. O(m2) 32-bit unsigned 128 bits 2m2 + m 2m3 m = 100 0.90 ms
bisection method O(m2) rationals (Na = 32, Nb = 5) 220 bits 16 · (m + |C<|) 256 · (m + |C<|)2 m = 25 180 ms

Figure 5—Benchmark computations. s is the number of constraint variables; s affects n, which is the size of V’s queries and of P’s
linear function π (see Figure 2). Only high-order terms are reported for n. The latter two columns give our experimental defaults and
the cost of local computation (i.e., no outsourcing) at those defaults. In polynomial evaluation, V and P hold a polynomial; the input
is values for the m variables. The latter two computations exercise the program constructs in Section 4.2. In m-Hamming distance,
V and P hold a fixed set of strings; the input is a length m string, and the output is a vector of the Hamming distance between the
input and the set of strings. Bisection method refers to root-finding via bisection: both V and P hold a degree-2 polynomial in m
variables, the input is two m-element endpoints that bracket a root, and the output is a small interval that contains the root.

PCP protocols for certain computations. For some exper-
iments we use specialized PCPs in GINGER also; in these
cases we write the prover and verifier manually, which
typically requires a few hundred lines of C++. Automat-
ing the compilation of specialized PCPs is future work.

The verifier and prover are separate processes that ex-
change data using Open MPI [2]. GINGER uses the El-
Gamal cryptosystem [24] with 1024-bit keys. For gener-
ating pseudorandom bits, GINGER uses the amd64-xmm6
variant of the Chacha/8 stream cipher [15] in its default
configuration as a pseudorandom generator.

6 Experimental evaluation
Our evaluation answers the following questions:
• What is the effect of the protocol refinements (§3)?
• What are the costs of supporting rational numbers and

the additional program structures (§4)?
• What is GINGER’s speedup from parallelizing (§5)?

Figure 4 summarizes the results.
We use six benchmark computations, summarized in

Figure 5 (Appendix E [49] has details). For bisection
method and degree-2 polynomial evaluation, V and P
were produced by our compiler; for the other compu-
tations, we use tailored encodings (see Section 5). We
implemented and analyzed other computations (e.g., edit
distance and circle packing) but found that V gained from
outsourcing only at implausibly large batch sizes.

Method and setup. We measure latency and comput-
ing cycles used by the verifier and the prover, and the
amount of data exchanged between them. We account

for the prover’s cost in per-instance terms. Because the
verifier amortizes costs over a batch (§2.3), we focus on
the break-even batch size, β∗: the batch size at which the
verifier’s CPU cost from GINGER equals the cost of com-
puting the batch locally. We measure local computation
using implementations built on the GMP library (except
for matrix multiplication over rationals, where we use na-
tive floating-point).

For each result that we report, we run at least three ex-
periments and take the averages (the standard deviations
are always within 5% of the means). We measure CPU
time using getrusage, latency using PAPI’s real time
counter [3], and network costs by recording the number
of application-level bytes transferred.

Our experiments use a cluster at the Texas Advanced
Computing Center (TACC). Each machine is configured
identically and runs Linux on an Intel Xeon processor
E5540 2.53 GHz with 48GB of RAM. Experiments with
GPUs use machines with an NVIDIA Quadro FX 5800.
Each GPU has 240 CUDA cores and 4GB of memory.

Validating the cost model. We will sometimes predict
β∗, V’s costs, and P’s costs by using our cost model
(Figure 2), so we now validate this model. We run mi-
crobenchmarks to quantify the model’s parameters—e is
reported in this section; Appendix E [49] quantifies the
other parameters—and then compare the parameterized
model to GINGER’s measured performance. GINGER’s
empirical results are at most 2%–15% more than are pre-
dicted by the model.
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Figure 6—Per-instance network costs of GINGER and its base
(PEPPER [48]), compared to the size of the inputs and outputs.
At this batch size (β = 5000), GINGER’s refinements reduce
per-instance network costs by a factor of 20–30 compared to
PEPPER. GINGER’s network costs here are hundreds of KB or
less. The y-axis is log-scaled.

PEPPER GINGER

local 4.2 s 4.2 s

CPU

β∗ 4500 1800
verifier aggregate 5.3 hr 2.1 hr
prover aggregate 1.7 yr 140 days
prover per-instance 3.4 hr 1.8 hr

GPU

β∗ 3600 1300
verifier aggregate 4.3 hr 1.5 hr
prover aggregate 1.4 yr 97 days
prover per-instance 3.4 hr 1.8 hr

crypto
hardware

β∗ 2800 740
verifier aggregate 3.3 hr 52.3 min
prover aggregate 1.1 yr 57 days
prover per-instance 3.4 hr 1.8 hr

Figure 7—Break-even batch sizes (β∗) and estimated running
times of prover and verifier at β = β∗, for matrix multiplication
(m = 400), under three models of the encryption cost. The
verifier’s per-instance work is not depicted because it equals the
local running time, by definition of β∗. The local running time
is high in part because the local implementation uses GMP.

6.1 The effect of GINGER’s protocol refinements

We begin with m × m matrix multiplication (m =
100, 200) and degree-3 polynomial evaluation (m =
100, 200), and batch size of β = 5000. We report per-
instance network and CPU costs: the total network and
CPU costs over the batch, divided by β.

Figure 6 depicts network costs. In our experiments,
these costs for matrix multiplication are about the same
as the cost to send the inputs and receive the ouputs; for
degree-3 polynomial evaluation, the costs are about 100
times the size of the inputs and outputs (owing to a large
problem description, namely all O(m3) coefficients). Per-
instance, GINGER’s network costs are hundreds of KB or
less, a 20–30× improvement over PEPPER.

In this experiment, GINGER’s prover incurs about 2×
less CPU time compared to PEPPER (estimated using a
cost model from [48]) but still takes tens of minutes per-
instance; this is obviously a lot, but we reduce latency

mat. mult. mat. mult. (Q)

local 66.3 ms 5.90 ms
verifier per-instance 66.3 ms 146.7 ms
verifier aggregate 2.5 min 5.5 min
prover per-instance 1.7 min 2.6 min
prover aggregate 2.7 days 4.0 days

Figure 8—Estimated running times of GINGER’s verifier and
prover for matrix multiplication (m = 100), under integer and
floating-point inputs, at β = 2200 (the break-even batch size
for this computation over integers). The “local” row refers to
GMP arithmetic for Z and native floating-point for Q. Han-
dling rationals costs 1.5–2.2× (depending on the metric) more
than handling integers, but both are still far from native.

computation (Ψ) # Boolean gates (est.) # constraint vars.

m-Hamming dist. 1.3 · 106 2 · 104

bisection method 3.0 · 108 1528

Figure 9—GINGER’s constraints compared to Boolean circuits,
for m-Hamming distance (m = 100) and bisection method
(m = 25). The Boolean circuits are estimated using the un-
modified Fairplay [40] compiler. GINGER’s constraints are not
concise but are far more so than Boolean circuits.

by parallelizing (§6.3). For this computation and at this
batch size (β = 5000), GINGER’s verifier takes a few
hundreds of milliseconds per-instance, less than locally
computing using our baseline of GMP.

Amortizing the verifier’s costs. Batching is both a lim-
itation and a strength of GINGER: GINGER’s verifier must
batch to gain from outsourcing but can batch to drive per-
instance overhead arbitrarily low. Nevertheless, we want
break-even batch sizes (β∗) to be as small as possible.
But β∗ mostly depends on e, the cost of encryption (Fig-
ure 2), because after our refinements the verifier’s main
burden is creating Enc(pk, r) (see §2.3), the cost of which
amortizes over the batch.

What values of e make sense? We consider three sce-
narios: (1) the verifier uses a CPU for encryptions, (2)
the verifier offloads encryptions to a GPU, and (3) the
verifier has special-purpose hardware that can only per-
form encryptions. (See Section 5 for motivation.) Under
scenario (1), we measure e = 65µs on a 2.53 GHz CPU.
Under scenario (3), we take e = 0µs. What about sce-
nario (2)? Our cost model concerns CPU costs, so we
need an exchange rate between GPU and CPU exponen-
tations. We make a crude estimate: we measure the num-
ber of encryptions per second achievable on an NVIDIA
Tesla M2070 (which is 229,000) and on an Intel 2.55
GHz CPU (which is 15,400), normalize by the dollar cost
of the chips, and obtain that their throughput-per-dollar
ratio is 2×. We thus take e = 65/2 = 32.5µs.

We plug these three values of e into the cost model
in Figure 2, set the cost under GINGER equal to the cost
of local computing, and solve for β∗. The values of β∗

are 1800 (CPU), 1300 (GPU), and 740 (crypto hard-
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Figure 10—Latency speedup observed by GINGER’s verifier when the prover is parallelized. We run with m = 100,β = 120
for matrix multiplication; m = 256,β = 1200 for degree-2 polynomial evaluation; m = 100,β = 180 for degree-3 polynomial
evaluation and m-Hamming distance; and m = 25,β = 180 for bisection method. GINGER’s prover achieves near-linear speedups .

ware). We also use the model to predict V’s and P’s
costs at β∗, under PEPPER and GINGER. Figure 7 sum-
marizes. The aggregate verifier computing time drops
significantly (2.5–3×) under all three cost models. The
prover’s per-instance work is mostly unaffected, but as
the batch size decreases, so does its aggregate work.

6.2 Evaluating GINGER’s computational model

To understand the costs of the floating-point representa-
tion (§4.1), we compare it to two baselines: GINGER’s
signed integer representation and the computation exe-
cuted locally, using the CPU’s floating point unit. Our
benchmark application is matrix multiplication (m =
100). Figure 8 details the comparison.

We also consider GINGER’s general-purpose program
constructs (§4). Our baseline is Boolean circuits (we are
unaware of efficient arithmetic representations of these
constructs). We compare the number of Boolean circuit
gates and the number of GINGER’s arithmetic constraint
variables, since these determine the proving and verify-
ing costs under the respective formalisms (see [5, 48]).
Taken individually, GINGER’s constructs (<=, &&, etc.)
are the same cost or more than those of Boolean cir-
cuits (e.g., || introduces auxiliary variables). However,
Boolean circuits are in general far more verbose: they
represent quantities by their bits (which GINGER does
only when computing inequalities). Figure 9 gives a
rough end-to-end comparison.

6.3 Scalability of the parallel implementation

To demonstrate the scalability of GINGER’s paralleliza-
tion, we run the prover using many CPU cores, many
GPUs, and many machines. We measure end-to-end la-
tency, as observed by the verifier. Figure 10 summarizes
the results for various computations. In most cases, the
speedup is near-linear.

7 Related work
A substantial body of work achieves two of our goals—
it is general-purpose and practical—but it makes strong
assumptions about the servers (e.g., trusted hardware).
There is also a large body of work on protocols for
special-purpose computation. We regard this work as

orthogonal to our efforts; for a survey of this land-
scape, see [48]. Herein, we focus on approaches that are
general-purpose and unconditional.

Homomorphic encryption and secure multi-party
protocols. Homomorphic encryption (which enables
computation over ciphertext) and secure multi-party pro-
tocols (in which participants compute over private data,
revealing only the result [34, 40, 56]) provide only pri-
vacy guarantees, but one can build on them for verifiable
computation. For instance, the Boneh-Goh-Nissim ho-
momorphic cryptosystem [19] can be adapted to evaluate
circuits, Groth uses homomorphic commitments to pro-
duce a zero-knowledge argument protocol [33], and Ap-
plebaum et al. use secure multi-party protocols for ver-
ifying computations [4]. Also, Gentry’s fully homomor-
phic encryption [28] has engendered protocols for verifi-
able non-interactive computation [21, 25, 27]. However,
despite striking improvements [29, 44, 51], the costs of
hiding inputs (among other expenses) prevent any of the
aforementioned verified computation schemes from get-
ting close to practical (even by our relaxed standards).

PCPs, argument systems, and interactive proofs. Ap-
plying proof systems to verifiable computation is stan-
dard in the theory community [5–7, 10, 16, 32, 37, 38,
43], and the asymptotics continue to improve [13, 14, 23,
46]. However, none of this work has paid much attention
to building systems.

Very recently, researchers have begun to explore using
this theory for practical verified outsourced computation.
In a recent preprint, Ben-Sasson et al. [12] investigate
when PCP protocols might be beneficial for outsourcing.
Since many of the protocols require representing compu-
tations as constraints, Ben-Sasson et al. [11] study im-
proved reductions to constraints from a RAM model of
computation. And Gennaro et al. [26] give a new charac-
terization of NP to provide asymptotically efficient argu-
ments without using PCPs.

However, as far as we know, only two research groups
have made serious efforts toward practical systems. Our
previous work [47, 48] built upon the efficient argument
system of Ishai et al. [35]. In contrast, Cormode, Mitzen-
macher, and Thaler [22] (hereafter, CMT) built upon the
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m domain component CMT-native CMT-GMP GINGER

256 Z verifier 40 ms 0.6 s 0.6 s
prover 22 min 2.5 hr 19 min
network 87 KB 0.3 MB 0.2 MB

128 Q verifier – 220 ms 270 ms
prover – 41 min 6.1 min
network – 0.9 MB 0.2 MB

Figure 11—CMT [22] compared to GINGER, in terms of amor-
tized CPU and network costs (GINGER’s total costs are divided
by a batch size of β=5000 instances), for m × m matrix mul-
tiplication. CMT-native uses native data types but is restricted
to small problem sizes and domains. CMT-GMP uses the GMP
library for multi-precision arithmetic (as does GINGER).

protocol of Goldwasser et al. [31], and a follow-up effort
studies a GPU-based parallel implementation [53].

Comparison of GINGER and CMT [22, 53]. We
compared three different implementations: CMT-native,
CMT-GMP, and GINGER. CMT-native refers to the code
and configuration released by Thaler et al. [53]; it works
over a small field and thereby exploits highly efficient
machine arithmetic but restricts the inputs to the compu-
tation unrealistically (see Section 4.1). CMT-GMP refers
to an implementation based on CMT-native but modified
by us to use the GMP library for multi-precision arith-
metic; this allows more realistic computation sizes and
inputs, as well as rational numbers.

We perform two experiments using m×m matrix mul-
tiplication. Our testbed is the same as in Section 6. In the
first one, we run with m = 256 and integer inputs. For
CMT-GMP and GINGER, the inputs are 32-bit unsigned
integers, and the prime (the field modulus) is 128 bits.
For CMT-native, the prime is 261 − 1. In the second ex-
periment, m is 128, the inputs are rational numbers (with
Na = Nb = 32; see Section 4.1), the prime is 220 bits,
and we experiment only with CMT-GMP and GINGER.

We measure total CPU time and network cost; for
CMT, we measure “network” traffic by counting bytes
(the CMT verifier and prover run in the same process
and hence the same machine). Each reported datum is an
average over 3 sample runs; there is little experimental
variation (less than 5% of the means).

Figure 11 depicts the results. CMT incurs a significant
penalty when moving from native to GMP (and hence
to realistic problem sizes). Comparing CMT-GMP and
GINGER, the network and prover costs are similar (al-
though network costs for CMT reflect high fixed over-
head for their circuit). The per-instance verifier costs
are also similar, but GINGER is batch verifying whereas
CMT does not need to do so (a significant advantage).

A qualitative comparison is as follows. On the one
hand, CMT does not require cryptography, has better
asymptotic prover and network costs, and for some com-
putations the verifier does not need batching to gain from

outsourcing [53]. On the other hand, CMT applies to a
smaller set of computations: if the computation is not ef-
ficiently parallelizable or does not naturally map to arith-
metic circuits (e.g., it has order comparisons or condi-
tionality), then CMT in its current form will be inappli-
cable or inefficient, respectively. Ultimately, GINGER and
CMT should be complementary, as one can likely ease or
eliminate some of the restrictions on CMT by incorporat-
ing the constraint formalism together with batching [52].

8 Summary and conclusion
This paper is a contribution to the emerging area of
practical PCP-based systems for unconditional verifi-
able computation. GINGER has combined protocol re-
finements (slashing query costs); a general computa-
tional model (including fractions and standard program
constructs) with a compiler; and a massively parallel im-
plementation that takes advantage of modern hardware.
Together, these changes have brought us closer to a truly
deployable system. Nevertheless, much work remains:
efficiency depends on tailored protocols, the costs for the
prover are still too high, and looping cannot yet be han-
dled concisely.
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Commit+Multidecommit
The protocol assumes an additive homomorphic encryption scheme (Gen, Enc, Dec) over a finite field, F.
Commit phase
Input: Prover holds a vector w ∈ Fn, which defines a linear function π : Fn → F, where π(q) = 〈w, q〉.
1. Verifier does the following:

• Generates public and secret keys (pk, sk)← Gen(1k), where k is a security parameter.
• Generates vector r ∈R Fn and encrypts r component-wise, so Enc(pk, r) = (Enc(pk, r1), . . . , Enc(pk, rn)).
• Sends Enc(pk, r) and pk to the prover.

2. Using the homomorphism in the encryption scheme, the prover computes e ← Enc(pk,π(r)) without learning r. The prover
sends e to the verifier.

3. The verifier computes s← Dec(sk, e), retaining s and r.

Decommit phase
Input: the verifier holds q1, . . . , qµ ∈ Fn and wants to obtain π(q1), . . . ,π(qµ).

4. The verifier picks µ secrets α1, . . . ,αµ ∈R F and sends to the prover (q1, . . . , qµ, t), where t = r + α1q1 + · · ·+ αµqµ ∈ Fn.

5. The prover returns (a1, a2, . . . , aµ, b), where ai, b ∈ F. If the prover behaved, then ai = π(qi) for all i ∈ [µ], and b = π(t).

6. The verifier checks: b ?
= s + α1a1 + · · ·+ αµaµ. If so, it outputs (a1, a2, . . . , aµ). If not, it rejects, outputting ⊥.

Figure 12—The commitment protocol of PEPPER [48], which generalizes a protocol of Ishai et al. [35]. q1, . . . , qµ are the PCP
queries, and n is the size of the proof encoding. The protocol is written in terms of an additive homomorphic encryption scheme, but
as stated elsewhere [35, 48], the protocol can be modified to work with a multiplicative homomorphic scheme, such as ElGamal [24].

A Protocol refinements in GINGER

This section describes the base protocols (A.1), states
and analyzes GINGER’s modifications (A.2), and de-
scribes how GINGER compresses queries to save network
costs (A.3).

A.1 Base protocols

GINGER uses a linear commitment protocol from PEP-
PER [48]; this protocol is depicted in Figure 12.7 As de-
scribed in Section 2.3, PEPPER composes this protocol
and a linear PCP; that PCP is depicted in Figure 13. The
purpose of {γ0, γ1, γ2} in this figure is to make a ma-
liciously constructed oracle unlikely to pass the circuit
test; to generate the {γi}, V multiplies each constraint
by a random value and collects like terms, a process de-
scribed in [5, 13, 35, 48]. The completeness and sound-
ness of this PCP are explained in those sources, and our
notation is borrowed from [48]. Here we just assert that
the soundness error of this PCP is ε = (7/9)ρ; that is,
if the proof π is incorrect, the verifier detects that fact
with probability greater than 1 − ε. To make ε ≈ 10−6,
PEPPER requires ρ = 55.

A.2 GINGER’s PCP modifications

GINGER retains the (P, V) argument system of PEP-
PER [48] but uses a modified PCP protocol (depicted in
Figure 14) that makes the following changes to the base
PCP protocol (Figure 13):

• Recycle queries [9].

7Like PEPPER, GINGER verifies in batches (§2.3), which changes the
protocols a bit; see [48, Appendix C] for details.

• Amplify linearity queries and tests.

• Make fewer PCP runs.

We analyze the soundness of these changes below. Al-
though this analysis is not a theoretical contribution (it
is an application of well-known techniques), we include
it below for two reasons. The first is completeness. The
second is that the choice of parameters (e.g., the number
of repetitions of each kind of test) requires care, so it is
worthwhile to “show our work.”

Lemma A.1 (Soundness of GINGER.). The soundness
error of GINGER is upper-bounded by

εG = κρ + 2 · µ · (2 3
√

9/2 + 1) · 3

√
1
|F|

+ εS,

where κ will be constrained below, µ is the number of
PCP queries, and εS is the error from semantic security.

Proof. We begin by bounding the soundness error of
GINGER’s PCP protocol (Figure 14). To do so, we use
the linearity testing results of Bellare et al. [8, 9] and the
terminology of [8]. Define Dist(f , g) to be the fraction of
inputs on which f and g disagree. Define Dist(f ) to be the
fraction of inputs on which f disagrees with its “closest
linear function” [8]. Define Rej(f ) to be the probability,
over uniformly random choices of x and y from the do-
main of f , that f (x) + f (y) 6= f (x + y); Rej(f ) is the prob-
ability that f fails the BLR linearity test [17]. As stated
by Bellare et al. [8]:

• If Dist(f ) = δ, then Rej(f ) ≥ 3δ − 6δ2.

• If Dist(f ) ≥ 1
4 , then Rej(f ) ≥ 2

9 .
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The linear PCP from [5]

Loop ρ times:
• Generate linearity queries: Select q1, q2 ∈R Fs and

q4, q5 ∈R Fs2
. Take q3 ← q1 + q2 and q6 ← q4 + q5.

• Generate quadratic correction queries: Select q7, q8 ∈R Fs

and q10 ∈R Fs2
. Take q9 ← (q7 ⊗ q8 + q10).

• Generate circuit queries: Select q12 ∈R Fs and q14 ∈R Fs2
.

Take q11 ← γ1 + q12 and q13 ← γ2 + q14.
• Issue queries. Send q1, . . . , q14 to oracle π, getting back
π(q1), . . . ,π(q14).

• Linearity tests: Check that π(q1) +π(q2) = π(q3) and that
π(q4) + π(q5) = π(q6). If not, reject.

• Quadratic correction test: Check that π(q7) · π(q8) =
π(q9)− π(q10). If not, reject.

• Circuit test: Check that (π(q11)− π(q12)) +
(π(q13)− π(q14)) = −γ0. If not, reject.

If V makes it here, accept.

Figure 13—The linear PCP that PEPPER uses. It is from [5].
The notation x ⊗ y refers to the outer product of two vectors x
and y (meaning the vector or matrix consisting of all pairs of
components from the two vectors). The values {γ0, γ1, γ2} are
described briefly in the text.

Claim A.2. For all δ ∈ {δ | 3δ − 6δ2 < 2
9 and 0 ≤ δ ≤

1
4}, if Rej(f ) ≤ 3δ − 6δ2, then Dist(f ) ≤ δ.

Proof. This follows directly from Bellare et al. [8].
Fix δ. Assume to the contrary that Dist(f ) > δ. Case I:
Dist(f ) < 1

4 . Then Rej(f ) ≥ 3 ·Dist(f )− 6 · (Dist(f ))2 >

3δ − 6δ2. Case II: Dist(f ) ≥ 1
4 . Then Rej(f ) ≥ 2

9 >

3δ − 6δ2. Thus, both cases lead to Rej(f ) > 3δ − 6δ2,
which contradicts the given.

We say that f is δ-close to linear, if Dist(f ) ≤ δ. Let δ∗

be the lesser root of 3δ − 6δ2 = 2/9.

Corollary A.3. Let E be the event that f passes the BLR
test. For 0 < δ < δ∗, if Pr{E} > 1− 3δ + 6δ2, then f is
δ-close to linear.

Corollary A.4. Let T refer to a test that performs
ρlin independent BLR linearity tests. For δ < δ∗, if
Pr{f passes T} > (1 − 3δ + 6δ2)ρlin , then f is δ-close
to linear.

Having considered the soundness error of linearity test-
ing, we now consider the soundness error of the PCP.

Claim A.5. Choose 0 < δ < δ∗. Choose κ > max{(1−
3δ+6δ2)ρlin , 4δ+2/|F|}. If a purported proof oracle π for
constraints C passes one iteration of the tests in Figure 14
with probability ≥ κ, then C is satisfiable.

GINGER’s PCP protocol

Loop ρ times:
• Generate linearity queries: select q4, q5 ∈R Fs and q7, q8 ∈R

Fs2
. Take q6 ← q4 + q5 and q9 ← q7 + q8. Perform ρlin − 1

more iterations of this step.
• Generate quadratic correction queries, by reusing random-

ness of linearity queries: Take q1 ← (q4 ⊗ q5 + q7).
• Generate circuit queries, again reusing randomness of lin-

earity queries: Take q2 ← γ1 + q4. Take q3 ← γ2 + q8.
• Issue queries. Send (q1, . . . , q3+6ρlin ) to oracle π, getting

back π(q1), . . . ,π(q3+6ρlin ).
• Linearity tests: Check that π(q4) + π(q5) = π(q6) and
π(q7) + π(q8) = π(q9), and likewise for the other ρlin − 1
iterations. If not, reject

• Quadratic correction test: Check that π(q4) · π(q5) =
π(q1)− π(q7). If not, reject.

• Circuit test: Check that (π(q2)− π(q4)) +
(π(q3)− π(q8)) = −γ0. If so, accept.

If V makes it here, accept.

Figure 14—GINGER’s PCP protocol, which refines PEPPER’s
protocol (Figure 13). This protocol recycles queries [9] and am-
plifies linearity testing.

Proof. (Sketch.) From Corollary A.4 and the given, π
is δ-close to linear. We can now apply the proof flow
that establishes the soundness of linear PCPs, as in [5].
(A self-contained example is in Appendix D of [48].)
Specifically, since π is δ-close to linear and the proba-
bility of passing the quadratic correction test is greater
than 4δ + 2/|F|, then π’s closest linear function is of the
right form. Since π’s closest linear function is of the right
form and since since π’s probability of passing the circuit
test is greater than 4δ + 1/|F|, then C is satisfiable.

We are able to recycle queries within a PCP run be-
cause, as Bellare et al. [9] observe, the preceding analysis
does not require that the quadratic correction and circuit
tests are independent of the linearity tests.

Claim A.6. The soundness of the PCP in Figure 14 is at
least 1− κρ.

Proof. Assume C is not satisfiable. By Claim A.5, the
probability that any π passes one iteration is less than κ.
This implies that for all π, the probability of passing ρ
iterations is less than κρ.

To complete the proof of the lemma, we consider the
soundness error of the PCP and the soundness error of
the commitment protocol. The analysis is very similar to
that of [35, 48]. Lemma B.2 in [48] implies that, in a run
of the commitment protocol with µ queries, the GINGER
verifier can regard all answers as being given by a fixed

14



oracle, π, except with probability εC = µ · 2 · (2 3
√

9/2 +
1) · 3
√
εB, where εB is 1/|F|+ εS.8

Claim A.6 implies that if the constraints in question
(C) are not satisfiable, then the GINGER verifier passes
the PCP checks on π (the fixed function implied by
Lemma B.2 in [48]) with probability upper-bounded by
κρ. Thus, the total soundness error is upper-bounded by
εG, as claimed.

We now compute GINGER’s soundness for suitable pa-
rameter choices. For a given target soundness error, the
total number of queries ρ · (3 + 6ρlin) is roughly constant
(this is an empirical claim, not a mathematical one), even
as ρlin and ρ vary. Our approach is to use our cost model
(Figure 2) to choose a value of δ that (through its influ-
ence on ρlin and ρ) results in the lowest break-even batch
sizes. We obtain low values of ρ and high values of ρlin;
the reason is that linearity queries are much less expen-
sive for the verifier than the other PCP queries (as noted
in Section 3), so the optimization favors them.

In more detail, our target upper bound on soundness
error is 10−6, and we take |F| = 2128. The cost model
leads us to δ = 0.041, which yields ρlin = 15, and
hence κ = 0.166 suffices. For our target soundness,
ρ = 8 suffices, and we get κρ < 5.8 · 10−7 and
µ = 744. (Note that although there are hundreds of PCP
queries, the high-order cost comes from the encrypted
query; see Section 3 and [49, Appendix E].) Follow-
ing [48], we neglect εS. Applying Lemma A.1, we get
εG < (5.8 · 10−7 + 9.2 · 10−10) ≈ 5.8 · 10−7.

A.3 Compressing queries

As stated in Section 3, our protocol compresses queries
to save network costs. Specifically, V sends to P a short
seed that is used as a key to a pseudorandom generator to
generate shared pseudorandomness, and then both par-
ties derive the PCP queries (Figure 14). Intuitively, the
fact that the key to generate the randomness is shared is
reasonable, since the key is revealed after the prover has
been bound to a function.

This section establishes the soundness of this proto-
col in the random oracle model. Our starting point is the
idealized version of the protocol that is presented in Sec-
tions A.1 and A.2. We call this protocol GINGER-PURE
and give it below, after establishing some preliminaries.

We can think of the PCP queries (Figure 14) as be-
ing generated by randomness together with an efficient
function G that “structures the randomness” to produce
the material for the PCP queries and checks. Specifically,
let M be the number of random field elements that are
required by GINGER’s PCP protocol, let µ = 3 + 6ρlin

8We run the commitment protocol twice, for functions π(1) and π(2),
but the number of queries presented to each is, say, µ/2. So a union
bound on the commitment error of each oracle again yields εC .

be the number of PCP queries, and let N be the number
of field elements in {γ0, γ1, γ2, q1, . . . , qµ} (from Fig-
ure 14). Then G : FM → FN takes as input M field el-
ements h1, . . . , hM (which are random “coin flips”) and
returns the PCP query and checking material (the qi and
γi). As notation, let Gi(h1, . . . , hM) be the ith query (qi).

Definition A.7 (GINGER-PURE protocol). Let
h : {0, 1}log M → {0, 1}log |F| be a random function
(this models the “coin flips”). Then the GINGER-PURE
protocol is as follows:

• V and P have the same input as, and run steps 1–3 of,
Commit+Multidecommit (Figure 12).

• V generates random field elements h1, . . . , hM as
h(1), . . . , h(M). Using these values as input to G
(which captures the logic in the first part of Figure 14),
V derives {q1, . . . , qµ} and the {γi}.

• V and P follow steps 4–6 of Commit+Multidecommit.

• If V makes it to here, it uses (a1, . . . , aµ) from Com-
mit+Multidecommit as inputs to the PCP checks (sec-
ond part of Figure 14).

The rest of this section focuses on the soundness of
our implemented protocol, defined immediately below.9

Definition A.8 (GINGER-IMPL protocol). Let
H : {0, 1}log |F| → {0, 1}M·log |F| be a hash func-
tion (this generates M field elements, from a seed).
GINGER-IMPL proceeds as follows:

• V and P have the same input as, and run steps 1–3 of,
Commit+Multidecommit (Figure 12).

• V randomly chooses a seed k and breaks H(k) into
M values, H(k)1, . . . , H(k)M . Using G (which cap-
tures the logic in the first part of Figure 14), V derives
{q1, . . . , qµ} and the {γi}.

• V picks µ secrets α1, . . . ,αµ ∈R F and computes the
consistency query t = r +

∑µ
i=1 αiqi ∈ Fn. V sends to

the prover the seed k and the consistency query t.

• P uses k to obtain H(k)1, . . . , H(k)M and then de-
rives the PCP queries via G. P responds to the
queries, returning (a1, . . . , aµ, b) as in step 5 in Com-
mit+Multidecommit.

• V follows step 6 of Commit+Multidecommit.

• If V makes it to here, it uses (a1, . . . , aµ) as inputs to
the PCP checks (second part of Figure 14).

9Our implemented protocol actually differs slightly from GINGER-
IMPL: in the encryption step and consistency query construction, the
protocol uses pseudorandomness (with a seed different from the re-
vealed one) in place of randomness. However, this use of pseudoran-
domness is standard, so we ignore it.
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Below, we will argue the soundness, in turn, of GIN-
GER-RAW (GINGER-PURE modified to send the random
choices themselves, instead of the queries, from V to P)
and the idealized variant GINGER-RO (in which V sends
a short key, and we work in the random oracle model).
GINGER-IMPL is then an instantiation of GINGER-RO.

Soundness of GINGER-RAW

Definition A.9 (GINGER-RAW protocol). The GINGER-
RAW protocol is the same as GINGER-PURE, except that
steps 4 and 5 in Figure 12 are different. V derives
q1, . . . , qµ just as before, and obtains t just as before, ex-
cept now V sends (h1, . . . , hM , t) to P, versus sending
(q1, . . . , qµ, t). P uses the hi to derive the qi (via G), and
then responds to the queries.

We will show that GINGER-RAW is an argument system.

Definition A.10 (CFMD-raw). This is the same as
the CFMD (commitment to function with multiple de-
commitments) in Definition B.1 in PEPPER [48], ex-
cept that E generates h1, . . . , hM , not Q. There is also
a query generation function G(q) : FM → Fn×µ where
G(q)(h1, . . . , hM) = (q1, . . . , qµ)

def
= Q. The other

change is that in the setup of the εB-binding property,
the environment produces two M-tuples (h1, . . . , hM) and
(ĥ1, . . . , ĥM) that generate two queries Q and Q̂ (rather
than R sending Q and Q̂).

We can instantiate the above definition with
Commit+Multidecommit-raw, which modifies Com-
mit+Multidecommit as follows: V’s input in the decommit
phase is an M-tuple (h1, . . . , hM) ∈ FM; in step 4, V
sends this M-tuple and the consistency query t; and in
step 5, P uses these values to derive the {qi}, which it
responds to as usual.

Lemma A.11. Commit+Multidecommit-raw is a CFMD-
raw protocol with εB = 1/|F| + εS, where εS comes
from the semantic security of the homomorphic encryp-
tion scheme.

The proof is nearly the same as the proof of Lemma
B.1 in [48], and is omitted.

Claim A.12. GINGER-RAW is an argument system with
soundness error upper-bounded by εG.

Proof. (Sketch.) Commit+Multidecommit-raw works with
G(q), which is the the “query part” of the output of G. The
binding property of Commit+Multidecommit-raw implies
that, after commitment, the prover is bound to a function,
f̃v(·), from queries to outputs. (The proof is nearly identi-
cal to the proof of Lemma B.2 in [48], replacing CFMD
with CFMD-raw.) Moreover, we have not altered the
PCP from Figure 14. Thus, we can rerun Lemma A.1, ap-
plying it to GINGER-RAW instead of GINGER-PURE.

Soundness of GINGER-RO

Definition A.13 (GINGER-RO protocol). GINGER-RO
is nearly the same as GINGER-IMPL. The differences
are twofold. First, GINGER-RO includes a random oracle
R, and after the commit phase V chooses a key k uni-
formly at random from {0, 1}log |F|. Second, where GIN-
GER-IMPL uses H(k)1, . . . , H(k)M , GINGER-RO uses val-
ues h1, . . . , hM that are generated by the random oracle,
as the expansion ofR(k).

We can define a protocol very similar to CFMD-raw
and Commit+Multidecommit-raw to obtain versions of
Lemma A.11 and Claim A.12. The claim would need to
add some soundness error to bound the probability that
the prover guesses k.

GINGER-IMPL is then an instantiation of GINGER-RO.
Specifically, we implement the random oracle using a
stream cipher as a pseudorandom generator. We note
that this kind of query compression (and security proofs
in the random oracle model) have been proposed be-
fore [50].
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