
MoP-2-MoP – Mobile private microblogging

Marius Senftleben1,2, Mihai Bucicoiu1,2, Erik Tews1, Frederik Armknecht3,
Stefan Katzenbeisser1,2, and Ahmad-Reza Sadeghi1,2

1 CASED/Technische Universität Darmstadt, Germany
2 Intel ICRI-SC at TU Darmstadt, Germany

3 Universität Mannheim, Germany

Abstract. Microblogging services have become popular, especially since
smartphones made them easily accessible for common users. However,
current services like Twitter rely on a centralized infrastructure, which
has serious drawbacks from privacy and reliability perspectives. In this
paper, we present a decentralized privacy-preserving microblogging in-
frastructure based on a distributed peer-to-peer network of mobile users.
It is resistant to censorship and provides high availability. Our solution
allows secure distribution of encrypted messages over local radio links
to physically close peers. When redistributing messages, each peer re-
randomizes encryptions to achieve unlinkability. Moreover, we show the
feasibility of our solution using different synchronization strategies.

Keywords: Microblogging, privacy, anonymity, censorship-resistance,
mobility, peer-to-peer, delay-tolerant networking

1 Introduction

Exchanging small text messages in a publish-subscribe manner from one pub-
lisher to many subscribers — also known as microblogging — has become a
popular form of Online Social Networking (OSN) activity. Microblogging services
allow users to send out clear, succinct and informative messages. The commu-
nication is in plaintext, and all widely adopted services (such as Twitter) follow
the client-server model. Unfortunately, these design decisions imply numerous
privacy and security problems, particularly in oppressive political environments.

Current microblogging services are prone to censorship. Due to the central-
ized nature of the services and the messages in plain text, acts of censorship
can easily be performed either by the service providers themselves or external
parties. Furthermore, once a central server becomes unavailable, e.g., due to re-
gional Internet shut-downs, messages can no longer be sent or received, which
again provides censorship potential. Moreover, all user interactions are known to
the provider, among them all messages sent, all existing subscriptions, the entire
query-patterns of users, etc. Complete data retention facilitates traffic analysis
as well as data mining on the unencrypted messages.

These problems create a demand for privacy friendly microblogging services.
In this paper, we propose a private mobile microblogging architecture that re-
spects the users’ privacy and is resilient to censorship. We rely on the fact

that smartphones are becoming ubiquitous communication devices, which are
equipped with local communication facilities (such as NFC links and ad-hoc Wifi
networks), while having Internet connectivity. Instead of relying on a centralized
infrastructure to exchange messages, our solution is based on a peer-to-peer ar-
chitecture, involving mobile peers who exchange messages with each other using
local radio links and a best-effort message synchronization strategy.

Our architecture allows peers to microblog short messages privately using
their smartphones while on-the-go. Messages are transmitted to a group in en-
crypted form, so that only peers who are authorized group members can access
them; messages that cannot be read by a peer will nevertheless be forwarded
to guarantee message spread. Multiple replications of messages stored at peers
due to the decentralized message dissemination over point-to-point links increase
censorship-resistence. The use of re-randomizable encryption provides message
unlinkability as well as sender anonymity, because messages get re-randomized
each time before being forwarded.

In the present paper we first introduce our new microblogging architecture,
which uses universal re-encryption to facilitate the unlinkability of exchanged
messages. Subsequently, we argue through simulations that microblog messages
are sufficiently spread within the network of peers and that our architecture
achieves the desired security and privacy goals.

The rest of this paper is structured as follows: In Section 2 we describe the
proposed architecture with its functionality, state its privacy and security goals
and outline the adversary’s capabilities. In Section 3 we discuss our simula-
tion results. Section 4 elaborates on the fulfillment of privacy, anonymity and
censorship-resistance. Section 5 deals with related work and Section 6 concludes.

2 Mobile private microblogging

Our proposed microblogging solution Mobile Peer to Mobile Peer (MoP-2-MoP)
builds upon mobile peers that interact with their smartphones using point-to-
point communication links once they are physically close (technically they form
an unstructured peer-to-peer overlay network). We first give an overview of the
architecture, then state the privacy goals along with the adversary model, fol-
lowed by descriptions of the functional components.

2.1 Infrastructure overview

In our scenario, we consider mobile peers that form a dynamically changing
peer-to-peer network, where the movement patterns correspond to the natural
movements of the smartphone owners. All peers maintain a local buffer of en-
crypted messages. Whenever two peers are physically close to each other they
exchange messages based on a fixed strategy (described in Section 2.6). By this
local message exchange, the system aims at propagating new messages through
the entire network. We refer to this process as peer synchronization. In case net-
work segmentation occurs, peers can — as a backup solution — also download

messages from servers using a wide-area communication network (called server
synchronization); note that there can be multiple servers, as they only serve as
additional channel to transfer messages.

In order to guarantee confidentiality and unlinkability of messages, they are
encrypted using a variant of the ElGamal encryption scheme that offers the
possibility of re-randomizing ciphertexts without knowledge of the public key
[9]. The sender of a message can designate the message to a certain group by
encrypting it with an appropriate group key; the exchange of group keys is
based on social trust and outlined in Section 2.5. Whenever a peer receives
messages, it checks whether he can decrypt them using any available group keys.
By default messages get re-randomized before being sent to other peers during
peer synchronizations.

Figure 1 shows a schematic overview of the architecture. Peers are depicted

Crowd A

Internet

movement

Crowd B

Node

ui

uj

uk

ul

un

uk
uo

um

Fig. 1. Schematic overview of the MoP-2-MoP architecture.

by a smartphone-like shape, where uindex represent different peers. The dotted
ellipses named Crowd A and Crowd B represent clusters of peers which are
physically close to each other so that peer message synchronization is possible.
Consider the following example: User ui acts as originator of a message; as soon
as ui and uj are close, they initiate a synchronization of their message buffers;
this results in the new messages being spread. This way, the message finally
reaches all other physically close peers in Crowd A (i.e., ul and uk) through peer
synchronizations, depicted as dashed lines. The original encrypted message gets
re-randomized at each hop so that a global adversary cannot link exchanged
messages. A physically distant Crowd B can get the messages via two different
mechanisms. Firstly, peer uk can physically move close to a peer in Crowd B
and initiate a peer synchronization there. Secondly, one member of Crowd A (ul)
can upload his local messages to a server, which offers the possibility of a server
synchronization with any member um of Crowd B. In summary, we assume peer-
based intra-crowd message dispersal, where encrypted messages are spread in
an opportunistic manner using peer synchronization, supplemented by optional
inter-crowd dissemination using server synchronization.

2.2 Privacy goals and adversary model

This section details the goals of the architecture and states the adversary model
assumed. The privacy and security goals of the microblogging architecture are:

Anonymity. Sender anonymity is required. An attacker should have no infor-
mation on the originator of a message. Unlinkability of encrypted messages
and opportunistic synchronization achieve this goal.

Privacy. Group memberships of a peer and all messages should be kept confi-
dential. This amounts to some form of receiver anonymity.

Censorship-resistance. No central entity should have the power to censor
messages based on their content, and the message propagation should not
be fully subverted by technical means.

In a basic adversary model we distinguish between wide-area network (WAN)
communication for the server synchronizations, and local point-to-point commu-
nication deployed in the peer-to-peer (P2P) network. We assume that the adver-
sary is not able to break cryptographic primitives. The considered capabilities
in our adversary model are:

– All WANs are under full passive control of the respective operators. The
adversary can monitor and log all such communication channels used.

– Shut-downs of WAN infrastructures (“kill-switches”) occur.
– Limited local jamming, monitoring or logging of P2P links is possible.
– P2P peers are not compromised.

In an extended adversary model we assume the existence of a limited number of
malicious peers that control their own communication link and have access to
all local keys. For example, such devices could be compromised by malware.

2.3 Universal re-encryptable ElGamal

Peers who are not members of a group should not be able to decrypt messages
sent in that group; furthermore, a peer should not be able to learn anything from
messages he cannot decrypt, in particular the used public key. Nevertheless, re-
randomizations of all encrypted messages are needed to achieve unlinkability.
In order to achieve all these requirements, we use a variant of the ElGamal
encryption scheme introduced in [9], which is summarized below.

In a cyclic, multiplicative group of prime order p with neutral element 1,
the ciphertext of a message m encrypted under an ElGamal public key pk =
(g, h) is composed of two parts: (i) an ordinary ElGamal encryption of m and
(ii) a random encryption of the neutral element 1. More precisely, two integers
r1, r2 ∈ Zp are chosen uniformly at random and the ciphertext is computed
as c = (c1, c2, c3, c4) := (gr1 , hr1 ·m, gr2 , hr2). The first component (c1, c2) is a
textbook ElGamal encryption of m, while (c3, c4) is a random encryption of the
neutral element 1. To compute a re-randomized ciphertext c′ one chooses two
new random integers t1, t2 ∈ Zp and computes c′ = (c′1, c

′
2, c
′
3, c
′
4) := (c1 · ct13 , c2 ·

ct14 , c
t2
3 , c

t2
4). Due to the homomorphic properties of ElGamal the tuple (c′1, c

′
2) is

again an ElGamal encryption of m and (c′3, c
′
4) is another encryption of 1 (both

under the same pk). Thus, re-randomization is possible using the two ciphertext
tuples, while no knowledge of pk is required. During decryption one can test
whether the ciphertext c′ was encrypted under a certain key pk by decrypting
the tuple (c′3, c

′
4) and checking if the decrypted value equals one.

2.4 Message format and storage

The message format follows the hash-and-encrypt concept to achieve integrity.
A Message Authentication Code (HMAC) is used to achieve authenticity within
the set of group members. A message m consists of a timestamp t concatenated
with the message text msg and their HMAC, i.e., m = t ||msg || HMAC(t ||msg).

Subsequently, the message is cut into blocks so that each one fits in the mes-
sage space of the cipher introduced in Section 2.3; all blocks are then encrypted
independently. (Note that due to the required properties of ElGamal, any kind
of hybrid encryption is not possible here; due to the randomized chiphertext
ECB mode is sufficient.)

Each peer maintains a message buffer filled with incoming messages. Upon
receipt of any new message, the peer checks whether it belongs to a group the
peer is a member of. This is done by brute-forcing: the peer tries to decrypt
the message with all private group keys it possesses; if decryption works, the
message belongs to a group the peer is a member of. This brute-force decryption
step is necessary because we refrain from tagging messages with any sort of group
identifier, which would open the possibility of message linking attacks.

2.5 Group and key management

We assume that the global system parameters of the encryption scheme are
already present in the implementation of any client. Whenever a new message
group is formed, the responsible peer creates an asymmetric ElGamal key pair,
which identifies the new group. All members of a group are given both the public
key and the secret key of the ElGamal key plus a group-specific secret required
to compute the HMAC for their group messages.

We propose a key propagation mechanism that is based on social trust that
uses existing real world trust relationships between people. Whenever two nodes
are close to each other, one node can “introduce” the other one to a group by
initiating the exchange of the group ElGamal key pair. This key can be sent from
one device to another one using NFC transmission or an optical channel (such as
a barcode that is scanned by the other device). Key revocation is done by forming
new group keys and discarding the old ones. Nevertheless, key management in
our approach is treated as a replaceable black box; more advanced group key
agreement schemes can be implemented in the future. For example, approaches
such as LoKI [3] can be added to the infrastructure, where a key exchange app
in the background automatizes the collection of shared secrets between mobile
devices, and users can post-hoc establish group keys based on Online Social
Networking friends whom they physically met before.

2.6 Synchronization of messages

Our architecture supports two synchronization methods, peer syncs and server
syncs, both of which are described subsequently.

Peer synchronization (or peer sync) is the bidirectional exchange of multi-
ple encrypted messages over a point-to-point communication link between two
nodes. Nodes in our scenario do not manage any routing information for peer-
sync operations, but use local communication only for peers within range. A
send buffer is a subset of all messages of a node containing the messages to be
transmitted upon the next peer sync event. We stress that this buffer does not
only contain messages the peer can decrypt to ensure an appropriate spread of all
messages. Four strategies to prioritize messages during peer syncs are proposed:

Best Effort A fraction p of the send buffer is allocated to messages of groups
the sending peer is a member of; the fraction 1 − p of slots holds other
messages. Both fractions are filled randomly.

Random The send buffer is filled uniformly at random.
Round Robin The send buffer is sequentially and block-wise filled with new

messages each time.
Latest Only Only the latest messages received are put into the send buffer and

sent at the next sync operation.

The used technology for the point-to-point communication allows peers to
initiate a peer sync either manually, automatically, or semi-automatically. A
manual peer sync would require peers to consciously connect their smartphones
with other peers, e.g., by a short-ranged optical link, based on existing social
trust relationships. In automatic mode the peer sync runs in the background on
discovery mode and syncs whenever another peer is available and in reach. In
semi-automatic mode a user maintains either a white-list or black-list of other
peers. Users are thus able to synchronize messages more or less restrictively,
based on how risk-averse they are.

Server synchronization (or server sync) is the option of downloading en-
crypted messages from servers to provide an alternative means of message trans-
portation, since different crowds of nodes are likely to get separated if they are
not geographically close or socially connected. During a server synchronization a
node uploads its send buffer to the server and downloads new messages from it.
Servers are only data sinks that can neither decrypt the messages, nor determine
group memberships of messages.

3 Simulation

For an assessment of the message propagation in our architecture we imple-
mented a discrete, event-based simulation excluding central servers. If servers
were included, nodes would obtain messages whenever they server-sync. In our
simulations peers only synchronize their messages amongst themselves using lo-
cal point-to-point communication links established when close to each other. We
briefly give an overview of the simulation and discuss its results.

3.1 Simulation overview

The nodes move on a plane according to generated mobility traces. Their message
group assignments, message synchronizations and message creation events are

simulated based on empiric data. Results are presented for 300 nodes moving
with 1.4m/s on an area of 0.16 km2 over a duration of 7 days. The simulation
runs over 2016 rounds, each representing a time frame of 5 minutes.
Network initialization. Node mobility traces are computed with the Bonn-
Motion package [1], using its ManhattanGrid mobility pattern, which creates
movements on a regular grid, resembling a street map.4 A square sized 400m×
400m is used to restrict the mobility. It is populated by 300 nodes, which results
in 530m2 per node, a value in between the population density of a small (253m2,
e.g., Darmstadt) and a larger (820m2, e.g., Berlin) city.
Group assignment. The group memberships of each node are drawn out of
a discrete power-law distribution with exponent α = 2.276 and xmin = 2. The
same applies to the number of groups a node is a member of – values which have
empirically been computed in [10]. They remain fixed once they got initialized.
Peer syncs and local storage. Based on the mobility patterns, the node con-
nectivity is derived, i.e., we determine whether a given pair of nodes is eligible
for a peer sync. We set the maximum distance over which a peer sync can take
place to 25 meters (similar to the Bluetooth standard). We limit the number of
peer syncs per node to 2 for each round in order not to exceed the Bluetooth
transmission rate. When peer-syncing, nodes exchange a send buffer of 100 mes-
sages drawn according to a fixed synchronization strategy of Section 2.6. For
the best effort strategy the probability p was varied and then fixed as p = 0.4
to obtain most expressive results. Each node’s local storage saves up to 10,000
messages. The latest incoming messages from a peer sync shift out the oldest
messages received by a node.
Message creation. For the actual simulation runs we sample the message
creation events based on Twitter microblogging data [19]. Each group creates
messages according to the Poisson-distribution with λGroup = 0.21 · |Group|,
|Group| being the number of peers in that group. The sampled values for each
group are distributed uniformly at random across the group members.

3.2 Simulation results

Group message spread is our main metric, which we define for one group as
σ = msgr

msgc·|Group| , where msgr is the number of group messages received across

the group (including senders), and msgc is the sum of all messages created in
the group. (Thus, if all group members receive all messages, we have msgc ·
|Group| = msgr and σ = 1.) Figures 2 and 3 present the average group message
spread for all messages created in a six hour window between rounds 72 and 144,
monitored over 300 rounds, together with error bars for selected points in time.5

We averaged over all groups and ran 10 independent simulations. Thereby, we
distinguish large and small groups. The large group class contains two groups
of 190 and 291 members, while the small group class contains the average over

4 We used the package’s mobility patterns RandomWaypoint and GaussianMarkov as
well, but due to similar results we only show the results for ManhattanGrid here.

5 In this period the network is in its operational window, having most buffers filled.

21 groups with 4–6 members. The figures also show different synchronization
strategies.

Overall, both the large and the small groups have a peak message spread
of close to 100%, although the propagation is significantly slower for the small
groups across all but the Latest Only synchronization strategy.

The Best Effort strategy favors large groups, as expected. An increase of
p to values higher than 0.4 yields extreme degradations in the performance of
the smaller and smallest group, whereas the largest groups profit from a highly
selfish selection of their messages. The Random and the Round Robin strategy
are similar (both of them implement a form of uniform drawing). Interestingly,
however, the Round Robin outperforms the Random strategy most of the time.
The Latest Only strategy has similar propagation dynamics across the small
and the large groups. In summary, the simulations show the feasibility of the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

M
es

sa
ge

 s
pr

ea
d

Rounds

Best Effort
Random

Round Robin
Latest Only

Fig. 2. Large group message spread.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

M
es

sa
ge

 s
pr

ea
d

Rounds

Best Effort
Random

Round Robin
Latest Only

Fig. 3. Small group message spread.

MoP-2-MoP architecture. Different synchronization strategies impact the mes-
sage spread across groups of different sizes. The Best Effort strategy favors large
groups and disrupts the message propagation for small groups. The Latest Only
strategy achieves fast propagation of the messages but might have a detrimental
effect due to the last-in-first-out principle and fixed local storage size.

3.3 Computation complexity

A major concern is the computational complexity needed for the cryptographic
operations. To test the ElGamal encryption’s computation needs, we have devel-
oped an Android application that decrypts 100 messages, using spongycastle6, a
repackage for Android of the BouncyCastle Java crypto-library. (Note that only
the second part of the ciphertext needs to be decrypted in order to determine
if the message belongs to a specific group.) The power consumption of the app
was measured using LittleEye7. During our test runs on a Samsung S3 smart-
phone, the decryption used around 1200 mW and up to 40% of the CPU. The
decryption time was 1.55 seconds. Depending on the transfer technology used to
establish pairing between peers, the total amount of energy drained will increase
by 750 mW for Bluetooth and by 2500 mW for WiFi [13].

6 https://github.com/rtyley/spongycastle
7 www.littleeye.co

4 Privacy, anonymity and censorship-resistance

In this section we discuss the extent to which the stated privacy goals are met
for our basic adversary model of Section 2.2. Furthermore, we comment on the
extended model. We focus on local communication during peer synchronizations,
since the anonymity of server synchronizations can be achieved through classical
means such as the use of Tor.

Privacy. Privacy refers to the confidentiality of group messages and the group
memberships of a node. Peer syncs guarantee these properties, since the ex-
changed messages look completely random and no group memberships can be
derived from the encrypted messages themselves. Moreover, due to the unlinka-
bility and re-randomization of the transmitted ciphertexts, messages can not be
identified, linked or traced by the adversary. This achieves receiver anonymity.

Yet, local monitoring and communication logging could create a communi-
cation graph of who is performing syncs with whom. Community detection then
reveals communication patterns by showing the connectedness of the nodes and
the frequency of their peer syncs, thus possibly yielding a side-channel for group
affiliations. We leave this for future research.

Sender anonymity. Peer synchronizations are beneficial for sender anonymity.
The original sender as the creator of a new message achieves k-anonymity for a
significant value of k only after a small amount of time. We analyzed the sender
anonymity set sizes obtained in our simulation by retrospectively calculating
the number of nodes from which a receiver could potentially have obtained a
message, assuming a global passive adversary. Figure 4 depicts the development
of the sender anonymity set size over time, averaged over our simulation runs.
The anonymity set size develops according to logistic growth, asymptotically
reaching 100%, that is the totality of all nodes in the network – and it reaches
about 95% of the full crowd size after 9 rounds.

Censorship-resistance. The distributed and decentralized peer-to-peer ar-
chitecture and redundant message stores are key to make the infrastructure
censorship-resistant. Filtering on a semantic content level is not possible, be-
cause of the indistinguishability of all ciphertexts. A censor is thus required to
block the communication of a node independently of the messages it sends. For

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

S
en

de
r

an
on

ym
ity

 s
et

 fr
ac

tio
n

Rounds

Mobility pattern:
ManhattanGrid

Fig. 4. Sender set fraction of total number of nodes over time.

example, the adversary can deploy local jammers to render peer synchronizations
over local radio links in its sphere of influence impossible.

We conducted simulations that emulated local jamming. By pcensor we denote
the fraction of the nodes disabled in each round by jamming. For pcensor =
0.50 the group message spread over time is shown in Figures 5 and 6, again
averaged over 10 simulation runs. The results show that the architecture remains
functional with half the nodes disabled per round, albeit with a slower message
spread.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

M
es

sa
ge

 s
pr

ea
d

Rounds

Best Effort
Random

Round Robin
Latest Only

Fig. 5. Large group with pcensor = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300
M

es
sa

ge
 s

pr
ea

d
Rounds

Best Effort
Random

Round Robin
Latest Only

Fig. 6. Small group with pcensor = 0.5

Extended adversary model. An attacker able to compromise devices via
malware (such as a trojan with keylogger and root-access) or via social engineer-
ing (e.g., a government bribing group members or introducing its own agents into
a group) leaks the compromised nodes’ group memberships and the content of
messages encrypted under all compromised keys. Group infiltrations thus al-
low adversaries to read all the messages in the affected groups. These messages
can subsequently be traced during peer syncs. Note that this also affects the
k-anonymity of the uncompromised groups in case messages of affected and un-
affected groups are simultaneously exchanged in a peer sync. Infiltrated groups
need to be re-keyed; that is, a new group key needs to be set up and the old
keys need to be discarded.

Finally, spam messages can have detrimental effects by flooding the send
buffer of nodes by spam messages. A possible countermeasure for in-group spam-
ming is the use of special spam filters (such as [11]) locally at each node; nodes
would then not forward messages marked as spam. Junk ciphertexts injected
into the network that cannot be decrypted under any group’s key are a denial-
of-service attack that ultimately affects all nodes and cannot be prevented easily.
Devices performing DoS attacks might be blacklisted; the blacklists could be dis-
tributed as special messages in our system.

5 Related work

Approaches facilitating anonymity in Internet communication include Tor8, us-
ing the concept of onion routing, and Crowds [14], which follows a peer-to-peer

8 https://www.torproject.org

approach. In the latter, peers are used to create a cascade over which web trans-
actions are routed in order to achieve sender anonymity; transport encryption
is established between each pair of nodes. However, they both are developed for
unicast fixed-line communication only. In a client-server setting, the Humming-
bird server [5] provides a private microblogging service by obliviously matching
messages to subscribers without learning about plaintext messages. In contrast,
we aim at building a decentralized and peer-to-peer based microblogging infras-
tructure.

Solutions that address anonymity in mobile ad hoc networks (MANETs),
where routing between mobile devices is done in a self-configured manner, in-
clude ALARM [6], a secure-link state based routing protocol which achieves
anonymity and untraceability together with security properties by leveraging
group signatures, and MASK [20], an anonymous on-demand routing proto-
col with unlocatability and untrackability. In the context of vehicular ad hoc
networks (VANETs), where revocable anonymity is needed for liability issues,
pseudonymity schemes are typically used to provide anonymity during normal
operation [8].

In delay-tolerant networks (DTNs), which maintain no explicit routing in-
formation, human mobility and its characteristics (cf. [15]) are leveraged for
message propagation. Su et al. [18] argue based on collected mobility data that
effective routing decisions can be made by only knowing the pair-wise contacts
that took place between nodes, irrespective of mobility models or location in-
formation. Chaintreau et al. [4] empirically show, that the distribution of the
intercontact time between devices carried by humans can be approximated by a
power law distribution for durations of up to a day. In Humanets [2], smartphone-
to-smartphone communication is used to more efficiently propagate messages,
while at the same time avoiding the use of mobile telephony networks. In our
approach, we leverage these observations both in our microblogging architecture
and in the simulation.

A number of solutions for content distribution in DTNs have been proposed
(cf. [12], [17]). However, propositions focusing on anonymity in such scenarios
are scarce: Fanti et al. [7] propose a mobile microblogging solution with trusted
message propagation by the use of social-graphs and private-set intersection
protocols, but do not focus on unlinkability. Rogers et al. [16] focus on secure
communication over diverse networks achieving forward security, but do not
specifically address anonymity. In contrast to these approaches, our architecture
targets strong privacy and anonymity properties.

6 Conclusion

We presented a novel approach for mobile private microblogging, combining mo-
bility, the peer-to-peer paradigm and local point-to-point communication links
over a delay-tolerant opportunistic network. Our architecture achieves sender
and receiver anonymity and is censorship-resistant. At the same time it ensures
a sufficient message spread. Future work will address scalability and performance

issues, both in terms of networking load and on-device computation. Efficient
re-keying of groups is an issue that will be addressed by incorporating broad-
cast encryption schemes. Furthermore, we will investigate means to enhance the
robustness of the scheme against malicious nodes.

Acknowledgments. We thank the anonymous reviewers and our shepherd
Urs Hengartner for their valuable comments. Mihai Bucicoiu was funded by the
Romanian Ministry of Labour through grant POSDRU 76903.

References

1. Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., Schwamborn, M.: Bonnmotion:
a mobility scenario generation and analysis tool. In: ICST’10. pp. 51:1–51:10

2. Aviv, A.J., Sherr, M., Blaze, M., Smith, J.M.: Evading cellular data monitoring
with human movement networks. In: HotSec’10. pp. 1–9

3. Baden, R.: LoKI: Location-based PKI for social networks. SIGCOMM Comput.
Commun. Rev. 41(4), 394–395 (Aug 2011)

4. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of hu-
man mobility on opportunistic forwarding algorithms. IEEE Trans. Mob. Comput.
6(6), 606–620 (2007)

5. De Cristofaro, E., Soriente, C., Tsudik, G., Williams, A.: Hummingbird: Privacy
at the time of twitter. In: S&P’12. pp. 285–299

6. El Defrawy, K., Tsudik, G.: Alarm: Anonymous location-aided routing in suspicious
manets. IEEE Trans. Mobile Comput. 10(9), 1345–1358 (2011)

7. Fanti, G., Ben David, Y., Benthall, S., Brewer, E., Shenker, S.: Rangzen: Circum-
venting government-imposed communication blackouts. In: UCB/EECS-2013-128

8. Fonseca, E., Festag, A., Baldessari, R., Aguiar, R.L.: Support of anonymity in
vanets - putting pseudonymity into practice. In: WCNC’07. pp. 3400–3405

9. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: CT-RSA’04. pp. 163–178

10. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: WWW’10. pp. 591–600

11. McCord, M., Chuah, M.: Spam detection on twitter using traditional classifiers.
In: ATC’11, pp. 175–186

12. McNamara, L., Mascolo, C., Capra, L.: Media sharing based on colocation predic-
tion in urban transport. In: MobiCom’08. pp. 58–69

13. Perrucci, G.P., Fitzek, F.H.P., Widmer, J.: Survey on Energy Consumption Entities
on the Smartphone Platform, pp. 1–6 (May 2011)

14. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (Nov 1998)

15. Rhee, I., Shin, M., Lee, K., Hong, S., Chong, S.: Human mobility patterns and
their impact on delay tolerant networks. In: HotNets’07

16. Rogers, M., Saitta, E.: Secure communication over diverse transports: [short paper].
In: WPES’12. pp. 75–80

17. Stanford MobiSocial project: http://mobisocial.stanford.edu
18. Su, J., Chin, A., Popivanova, A., Goel, A., de Lara, E.: User mobility for oppor-

tunistic ad-hoc networking. In: WMCSA’04. pp. 41–50
19. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influ-

ential twitterers. In: WSDM’10. pp. 261–270
20. Zhang, Y., Liu, W., Lou, W., Fang, Y.: Mask: anonymous on-demand routing in

mobile ad hoc networks. IEEE Trans. Wireless Commun. 5(9), 2376–2385 (2006)

