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Abstract. The use of anonymity-based infrastructures and anonymisers is a plausible solu-
tion to mitigate privacy problems on the Internet. Tor (short for The onion router) is a popular
low-latency anonymity system that can be installed as an end-user application on a wide range
of operating systems to redirect the traffic through a seriesof anonymising proxy circuits. The
construction of these circuits determines both the latencyand the anonymity degree of the Tor
anonymity system. While some circuit construction strategies lead to delays which are toler-
ated for activities like Web browsing, they can make the system vulnerable to linking attacks.
We evaluate in this paper three classical strategies for theconstruction of Tor circuits, with re-
spect to their de-anonymisation risk and latency performance. We then develop a new circuit
selection algorithm that considerably reduces the successprobability of linking attacks while
keeping a good degree of performance. We finally conduct experiments on a real-world Tor
deployment over PlanetLab. Our experimental results confirm the validity of our strategy and
its performance increase for Web browsing.
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1 Introduction

Several anonymity designs have been proposed in the literature with the objective of achieving
anonymity on different network technologies. From simple pseudonyms [1] to complex unstruc-
tured protocols [2], anonymity solutions can offer either strong anonymity with high latency (useful
for high latency services, such as email and usenet messages) or weak anonymity with low-latency
(useful, for instance, for Web browsing). The most widely-used low-latency solution for traditional
Internet communications is based on anonymous mixes and onion routing [3]. It is distributed as
a free software implementation known as Tor (The onion router[4]). It can be installed as an end-
user application on a wide range of operating systems to redirect the traffic of low-latency services
with a very acceptable overhead. Tor’s objective is the protection of privacy of a sender as well as
the contents of its messages. To do so, it transforms cryptographically those messages and mixes
them via a circuit of routers. The circuit routes the messagein an unpredictable way. The content
of each message is encrypted for every router in the circuit,with the objective of achieving anony-
mous communication even if a set of routers are compromised by an adversary. Upon reception,
a router decrypts the message using its private key to obtainthe following hop and cryptographic
material on the path. This path is initially defined at the beginning of the process. Only the entity
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that creates the circuit knows the complete path to deliver agiven message. The last router of the
path, theexit node, decrypts the last layer and delivers an unencrypted version of the message to
its target.

Tor allows the construction of anonymous channels with latency enough to route traffic for
services like the Web [5]. However, it might still impact itsperformance depending on the spe-
cific strategy used for the establishment of the channel. In this paper, we address the influence of
circuit construction strategies on the anonymity degree ofTor. We first provide a formal defini-
tion of the selection of Tor nodes process, of the adversary model targeting the communication
anonymity of Tor users, and an analytical expression to compute the anonymity degree of the Tor
infrastructure based on the circuit construction criteria. Based on these definitions, we evaluate
three classical strategies, with respect to their de-anonymisation risk, and regarding their perfor-
mance for anonymising Internet traffic. We then present the construction of a new circuit selection
algorithm that aims at reducing the success probability of linking attacks while providing enough
performance for low-latency services. A series of experiments, conducted on a real-world Tor de-
ployment over PlanetLab [6] confirm the validity of the new strategy, and show its superiority over
the classical ones.

Paper organisation — Section 2 presents the rationale of our work. Section 3 evaluates the
anonymity degree of three traditional strategies for the construction of Tor circuits. Section 4
presents our new strategy. Section 5 evaluates the anonymity degree of our solution. Section 6
experimentally evaluates the latency performance of each strategy using PlanetLab. Section 7 sur-
veys related work. Section 8 concludes the paper.

2 Rationale

In this section, we introduce the notation, models, and coredefinitions that are necessary to under-
stand the rationale of our work.

2.1 Tor circuit

Formally, we can describe a connection using the Tor networkas follows. First, we define a client
nodes called aclient or onion proxy, and adestination servernoded which we want to inter-
connect to exchange data in an anonymous manner. LetN be the set of nodes deployed in the
Tor network, andn = |N | the cardinality of the set. Let nodee ∈ N denote a specified node,
called theentrance node, andx ∈ N the exit node. Then, aTor circuit is a sequence of nodes
C = 〈s, e, r1, r2, ..., rl, x〉, whereri ∈ N is any intermediary node. The nodese, x, and ri,
i ∈ {1, ..., l}, are also known asonion routers. We define thepath of a circuitas the set of links
(i.e., network connections)P = {a1, ..., al+2} associated to theTor circuit, wherea1 = (s, e),
a2 = (e, r1), a3 = (r1, r2), ... , al+1 = (rl−1, rl), al+2 = (rl, x). The value|P | = l + 2 is
called thelength of the circuit. A connection using the Tor networkis composed by the client and
destination nodes interconnected through a Tor circuit as follows:

s
a1−→ e

a2−→ r1
a3−→ r2

a4−→ ...
al−→ rl−1

al+1

−−−→ rl
al+2

−−−→ x
︸ ︷︷ ︸

Tor network

→ d
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2.2 Adversary model

The adversary assumed in our work relies on the threat model proposed by Syversonet al. in [7].
Such a pragmatic model considers that, regardless of the number of onion routers in a circuit,
an adversary controlling the entrance and exit nodes would have enough information in order to
compromise the communication anonymity of a Tor client. Indeed, when both nodes collude, and
given that the entry node knows the source of the circuit, andthe exit node knows the destination,
they can use traffic analysis to link communication over the same circuit [8].

Assuming the model proposed in [7], then an adversary who controls c > 1 nodes over then
nodes in the Tor network can control an entry node with probability ( c

n
), and an exit node with

probability ( c
n
). This way, the adversary may de-anonymise the traffic flowingon a controlled

circuit (i.e., a circuit whose entry and exit nodes are controlled by the adversary) with probability
( c
n
)2 if the length of the circuit is greater than two; orc(c−1)

n2 if the length of the circuit is equal to
two (cf. [7] and citations thereof). Adversaries can determine when the nodes under their control
are either entry or exit nodes for the same circuit stream by using attacks such timing-based attacks
[9], fingerprinting [10], and several other existing attacks.

Let us observe that the aforementioned probability of success assumes that the probability of a
node from being selected on a Tor circuit is randomly uniform, that is, the boundaries provided in
[7] only apply to the standard (random) selection of nodes, hereinafter denoted asrandom selection
of nodes strategy. Given that the goal of our paper is to evaluate alternative selection strategies, we
shall adapt the model. Therefore, letp1, p2, p3, . . ., pc be the corresponding selection probabilities
assigned by the circuit construction algorithm to each nodecontrolled by the adversary, then the
probability of success corresponds to the following expression:

(p1 + p2 + p3 + . . .+ pc) · (p1 + p2 + p3 + . . .+ pc)

that can be simplified as:
( c∑

i=1

pi

)2

Following is the analysis.

Theorem 1. Let c be the number of nodes controlled by the adversary. Let the Tor client use a
selection criteria which, for a certain circuit, every nodeselection is independent. Letp1, p2, p3,
. . ., pc be the corresponding selection probabilities assigned by the circuit construction algorithm
to each node controlled by the adversary. Then, the success of the adversary to compromise the
security of the circuit is bounded by the following probability:

( c∑

i=1

pi

)2

Proof. The proof is direct by using the sum and product rules of probability theory, and taking into
account that the selection of every node is an independent event. First, the probability of selecting
the entrance or exit node in the set of nodes controlled by theadversary is (sum rule):

c∑

i=1

pi
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Then, the probability of selecting, at the same time, a controlled entrance and exit node in a circuit
is (product rule):

( c∑

i=1

pi

)( c∑

i=1

pi

)

=
( c∑

i=1

pi

)2

Corollary 1. The Syverson et al. success probability boundary in [7], i.e., ( c
n
)2, is equivalent to

the boundary defined in Theorem 1 when the circuit selection criteria is a random selection of
nodes.

Proof. LetN be the set of nodes deployed in a Tor network withn = |N |, and letA ⊆ N be the
subset of nodes controlled by an adversary withc = |A|. The probability of a nodeni ∈ N to be
selected ispi = 1

n
. Then, by applying it to the boundary defined in Theorem 1, we obtain:

( c∑

i=1

pi

)2

= (c · pi)
2 =

(

c
1

n

)2

=
( c

n

)2

2.3 Anonymity degree

Most work in the related literature has used the (Shannon) entropy concept to measure the anonymity
degree of anonymisers like Tor (cf. [11, 12] and citations thereof). We recall that the entropy is a
measure of the uncertainty associated with a random variable, that can efficiently be adapted to
address new networking research problems [13–15]. In this paper, the entropy concept is used
to determine how predictable is the selection of the nodes inaccordance to a given strategy or, in
other words, how easy is to violate the anonymity in relationto the adversary model defined in Sec-
tion 2.2. Formally, given a probability space(Ω,F ,P) with a sample spaceΩ = {ω1, ω2, ..., ωn}
whereωi denotes the outcome of the nodeni ∈ N (∀i ∈ {1, ..., n}), a σ-field F of subsets of
Ω, and a probability measureP on (Ω,F), we consider a random discrete variableX defined as
X : Ω → R that takes values in the countable set{x1, x2, ..., xn}, where every valuexi ∈ R

corresponds to the nodeni ∈ N . The discrete random variable X has apmf (probability mass
function)f : R → [0, 1] given byf(xi) = pi = P(X = xi). Then, we define the entropy of a
discrete random variable (i.e., the entropy of a Tor network) as:

H(X) = −

n∑

i=1

pi · log2(pi) (1)

Since the entropy is a function whose image depends on the number of nodes, with property
H(X) ≥ 0, it cannot be used to compare the level of anonymity of different systems. A way
to avoid this problem is as follows. LetHM (X) be the maximal entropy of a system, then the
entropy that the adversary may obtain after the observationof the system is characterised by
HM (X) − H(X). The maximal entropyHM (X) of the network applies when there is a uni-
form distribution of probabilities (i.e.,P(X = xi) = pi =

1
n

, ∀i ∈ {1, ..., n}), and this leads to
H(X) = HM (X) = log2(n). The anonymity degree shall be then be defined as:

d = 1−
HM (X)−H(X)

HM (X)
=

H(X)

HM (X)
(2)

Note that by dividingHM (X)−H(X) byHM (X), the resulting expression is normalised. There-
fore, it follows immediately that0 ≤ d ≤ 1.
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2.4 Selection criteria

Taking into account the aforementioned anonymity degree expression, we can now formally define
a selection of Tor nodes criteria as follows.

Definition 1. A selection of Tor nodes criteria is an algorithm executed bya Tor clients that,
from a set of nodesN with n = |N | and a length of a circuitδ, selects —using a given policy—
the entrance nodee, the exit nodex, and the intermediary nodesri, ∀i ∈ {1, ..., δ − 2}, and
outputs its corresponding circuitC = 〈s, e, r1, r2, ..., rδ−2, x〉 with a pathP = {a1, ..., aδ},
wherea1 = (s, e), a2 = (e, r1), a3 = (r1, r2), ... , aδ−1 = (rδ−3, rδ−2), aδ = (rδ−2, x). We
use the notation conventionψ(N, δ) to denote the algorithm. The policy for the selection criteria
of nodes can be modelled as a discrete random variableX that has apmf f(x), and we use the
notationψ(N, δ) ∼ f(x).

3 Anonymity degree of three classical circuit constructionstrategies

In this section, we present three existing strategies for the construction of Tor circuits, and elaborate
on the conceptual evaluation of their anonymity degree.

3.1 Random selection of nodes

The random selection of Tor nodes is an algorithmψrnd(N, δ) ∼ frnd(x) with an associated
discrete random variableXrnd. The procedure associated to this selection criteria is outlined in
Algorithm 1. The selection policy ofψrnd(N, δ) is based on uniformly choosing at random those
nodes that will be part of the resulting circuit. Thus, thepmf frnd(x) is defined as follows:

frnd(xi) = pi = P(Xrnd = xi) =
1

n

Hence, the entropy of a Tor network whose clients use a randomselection of nodes is charac-
terised by the following expression:

Hrnd(Xrnd) = −
n∑

i=1

1

n
· log2

( 1

n

)

=

−
1

n

n∑

i=1

(log2(1)− log2(n)) = log2(n)

Theorem 2. The selection of Tor nodesψrnd(N, δ) ∼ frnd(x) with an associated discrete ran-
dom variableXrnd gives the maximum degree of anonymity among all the possibleselection al-
gorithms.

Proof. The proof is direct by replacingHrnd(Xrnd) in Equation (2):

drnd =
Hrnd(Xrnd)

HM (Xrnd)
=
log2(n)

log2(n)
= 1
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3.2 Geographical selection of nodes

The geographical selection of Tor nodes is an algorithmψgeo(N, δ) ∼ fgeo(x) with an associated
discrete random variableXgeo. Its selection method is based on uniformly choosing the nodes that
belong to the same country of the clients that executesψgeo(N, δ). The aim of this strategy is to
reduce the latency of the communications using the Tor network, since the number of hops between
Tor nodes of the same country is normally smaller than the number of hops between nodes that are
located at different countries. Algorithm 2 summarises theprocedure associated with this selection
criteria.

Formally, we define a functiongc : R → N that, given a certain nodexi ∈ Xgeo, returns a
number that identifies its country. Thus, given the specific country numberKc of the client nodes,
thepmf fgeo(x) is characterised by the following expression:

fgeo(xi) = pi = P(X = xi) =

{
1
m
, if gc(xi) = Kc;

0 otherwise.

wherem = |{xi ∈ Xgeo | gc(xi) = Kc}|. Then, the entropy of a system whose client nodes use a
geographical selection for a certain countryKc is:

Hgeo(Xgeo) = −

m∑

i=1

1

m
· log2

( 1

m

)

= log2(m)

Therefore, by replacing the previous expression in Equation (2), the anonymity degree is equal to:

dgeo =
log2(m)

log2(n)

Theorem 3. The maximum anonymity degree of a Tor network whose clients use a geographical
selection of nodes is achieved iff all the nodes are in the same fixed countryKc.

Proof. (⇒) Givendgeo = log2(m)
log2(n)

for the countryKc of a particular clients, we can impose the
restriction of maximum degree of anonymity:

dgeo =
log2(m)

log2(n)
= 1

Algorithm 1 Random Selection of Nodes -ψrnd(N, δ)

Input: s,N, δ
Output: C = 〈s, e, r1, r2, ..., rδ−2, x〉, P = {a1, ..., aδ}

M ← N
C ← {s}
for i← 1 to δ do

j ←random(1, |M |)
C ← C ∪ {mj |mj ∈M}
P ← P ∪ {(ci, ci+1)}
M ←M \ {mj |mj ∈M}

end for
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Algorithm 2 Geographical Selection of Nodes -ψgeo(N, δ)

Input: s,N, δ,Kc

Output: C = 〈s, e, r1, r2, ..., rδ−2, x〉, P = {a1, ..., aδ}

M ← {ni ∈ N | gc(ni) = Kc}
C ← {s}
for i← 1 to δ do

j ←random(1, |M |)
C ← C ∪ {mj |mj ∈M}
P ← P ∪ {(ci, ci+1)}
M ←M \ {mj |mj ∈M}

end for

Hence,

log2(m) = log2(n)

2log2(m) = 2log2(n)

m = n

(⇐) If gc(xi) = Kc, ∀xi ∈ Xgeo, then we have thatm = |{xi ∈ Xgeo | gc(xi) = Kc}| = |N |.
Thus,

dgeo =
log2(m)

log2(n)
=
log2(n)

log2(n)
= 1

Theorem 4. Given a Tor network whose clients use the algorithmψgeo(N, δ) ∼ fgeo(x) for a
fixed countryKc, and with an associated discrete random variableXgeo, the anonymity degree
is increased asm approachesn (i.e.,m → n), wherem = |{xi ∈ Xgeo | gc(xi) = Kc}| and
n = |N |.

Proof. It suffices to prove thatdgeo is a monotonically increasing function. That is, we must prove
that ∂

∂m
(dgeo) > 0, ∀m > 0. Therefore, the proof is direct by deriving, since the inequality:

∂

∂m

( log2(m)

log2(n)

)

=
1

m · log(n)
> 0

is true∀m > 0 and∀n > 1. We must notice that, from the point of view of a Tor network, the
restriction of the number of nodesn > 1 makes sense, since a network withn ≤ 1 nodes becomes
useless as a way to provide an anonymous infrastructure.

Figure 1 depicts the influence of the uniformity of the numberof nodes per country on the
anonymity degree. It shows, for a fixed country, the anonymity degree of four Tor networks in
function of the nodes that are located in that country with respect to the total number of nodes of
the network. The considered Tor networks have, respectively, 10, 50, 100 and 200 nodes. Their
anonymity degrees are denoted asd10, d50, d100 andd200. We can observe that the anonymity
degree increases as the total number of nodes of the same country grows up (cf. Theorem 4). This
fact can be extended until the maximum value of anonymity is achieved, which occurs when the
number of nodes of the particular country is the same as the nodes that compose the entire network
(cf. Theorem 3).
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Fig. 1: Influence of the uniformity of the number of nodes per country in the anonymity degree for
ψgeo(N, δ)

Theorem 5. Given a clients that uses as selection algorithmψgeo(N, δ) in a Tor network with
n = |N |, such that the network nodes belong to ap ≪ n different countries, wherep is the
number of different countries in Tor network, then the best distribution of nodes that maximises the
anonymity degree of the whole system is achieved iff every country hast = ⌊n

p
⌉ nodes.

Proof. (⇒) Let p be the number of different countries of a Tor network, we can consider a collec-
tion of subsetsS1, S2, ..., Sp ⊆ N such as

⋃p
i=1 Si = N and

⋂p
i=1 Si = ∅. Let ti be the number of

nodes associated to the subsetSi, i ∈ {1, ..., p}. Then, the anonymity degree of the whole system
is maximised when the sum of all the degrees of anonymity of every country equals 1:

p
∑

i=1

log2(ti)

log2(n)
= 1

log2(t1)

log2(n)
+
log2(t2)

log2(n)
+ ...+

log2(tp)

log2(n)
= 1

2log2(t1) + 2log2(t2) + ...+ 2log2(tp) = 2log2(n)

t1 + t2 + ...+ tp = n

However, to maximise the anonymity degree of the whole system implies also to have the same
uncertainty inside every subsetSi, i ∈ {1, ..., p}, or, in other words, to have the same number of
nodes in every subset. Hence, we havet1 = t2 = ... = tp = t and this leads to:

t1 + t2 + ...+ tp = n

t+ t+ ...+ t
︸ ︷︷ ︸

p times

= n

p · t = n

t =
n

p
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(⇐) Given t = ⌊n
p
⌉ be the number of nodes of a certain subsetSi, i ∈ {1, ..., p}, we have

∑p
i=1 |Si| = p · t = n. Thepmf associated toψgeo(N, δ) is thenfgeo(x) = 1

t
for each subsetSi,

i ∈ {1, ..., p}. Therefore, the entropy of each subset (i.e., country) is:

Hgeo(Xgeo) = −

t∑

i=1

1

t
· log2

(1

t

)

= log2(t)

Hence, for each subsetSi, i ∈ {1, ..., p}, the anonymity degree can be expressed as follows:

dgeo =
log2(t)

log2(n)

Suppose now, by contradiction, that there exists a uniqueSq ∈ {S1, S2, ..., Sp} for a particular

countryKq such that|Sq| 6= t, and its anonymity degree is expressed bydgeo∗ =
log2(|Sq|)
log2(n)

.
Then, taking into account thatdgeo anddgeo∗ are monotonically increasing functions (cf. proof of
Theorem 4), we have two options:

– If |Sq| < t→ dgeo∗ < dgeo
– If |Sq| > t→ dgeo∗ > dgeo

But this is not possible since:

p
∑

i=1

|Si| = n

(p− 1)t+ |Sq| = n

|Sq| = n− t(p− 1)

|Sq| = n−
n

p
(p− 1)

|Sq| =
n

p

which implies thatdgeo∗ = dgeo, contradicting the above two options.

3.3 Bandwidth selection of nodes

The bandwidth selection of nodes strategy is an algorithmψbw(N, δ) ∼ fbw(x) with an associated
discrete random variableXbw whose selection policy is based on choosing, with high probabil-
ity, the nodes with best network bandwidth. The procedure associated to this selection criteria is
outlined in Algorithm 3. The aim of this strategy is to reducethe latency of the communications
through a Tor circuit, specially when the communications imply a great rate of data exchanges. At
the same time, this mechanism provides a balanced anonymitydegree, since the selection of nodes
is not fully deterministic from the adversary point of view.

In this strategy, the entropy and the anonymity degree can bedescribed formally as follows.
First, we define a bandwidth functiongbw : R → N that, given a certain nodexi ∈ Xbw, returns
its associated bandwidth. Then, thepmf fbw(x) is defined by the expression:

fbw(xi) = pi = P(Xbw = xi) =
gbw(xi)

Tbw



10

Algorithm 3 Bandwidth Selection of Nodes -ψbw(N, δ)

Input: s,N, δ
Output: C = 〈s, e, r1, r2, ..., rδ−2, x〉, P = {a1, ..., aδ}

/* Compute a weighted well-ordered set */
M ← {ni ∈ N | gbw(ni) ≤ gbw(ni+1)}

Tbw ←
n
∑

i=1

gbw(mi), ∀mi ∈M

W ← {}
for i← 1 to n do

W ←W ∪
{(

mi,
i
∑

j=1

gbw(mj )

Tbw

)

| ∀mi,mj ∈M
}

end for

/* Compute the nodes of the circuitC */
C ← {s}
for i← 1 to δ do

rnd←random(0, 1)
Select a tuple(mj , bwj) ∈ W , where

mj /∈ C and
rnd ∈ [bwj , bwj+1)

C ← C ∪ {mj}
P ← P ∪ {(ci, ci+1)}

end for

whereTbw =
n∑

i=1

gbw(xi) is the total bandwidth of the Tor network. Hence, the entropyof a system

whose clients use a bandwidth selection of nodes strategy is:

Hbw(X) = −

n∑

i=1

gbw(xi)

Tbw
· log2

(
gbw(xi)

Tbw

)

By replacingHbw(X) in Equation (2), the anonymity degree is, then, as follows:

dbw = −
n∑

i=1

gbw(xi)

Tbw · log2(n)
· log2

(
gbw(xi)

Tbw

)

Theorem 6. Given a selection of Tor nodesψbw(N, δ) ∼ fbw(x) with an associated discrete
random variableXbw, the maximum anonymity degree is achieved iffgbw(xi) = Kbw ∀xi ∈ Xbw,
whereKbw is a constant.

Proof. (⇒) H(Xbw) = HM (Xbw) would imply that the anonymity degree gets maximum. This
is only possible whenfbw(xi) =

gbw(xi)
Tbw

= 1
n

, ∀xi ∈ Xbw. Therefore,

gbw(xi)

Tbw
=

1

n

gbw(xi) =
Tbw

n
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Fig. 2: Influence of the uniformity of the bandwidth distribution in the anonymity degree for
ψbw(N, δ)

and sinceTbw andn are constant values for a certain Tor network, we can consider thatgbw(xi) is
also a constant,∀xi ∈ Xbw.

(⇐) Given fbw(xi) = gbw(xi)
Tbw

it is easy to see that ifgbw(xi) = Kbw ∀xi ∈ Xbw thenTbw =
∑n

i=1 gbw(xi) = n ·Kbw and, as a consequence,fbw(xi) =
Kbw

n·Kbw
= 1

n
∀xi ∈ Xbw. Hence, by

replacingfbw(xi) = 1
n

in Equation (2), we getdbw = 1.

Figure 2 shows the relation between the uniformity of the bandwidth of the nodes and the
anonymity degree of the whole system. It depicts the anonymity degree of a Tor system with 100
nodes, measured under different restrictions. In particular, the bandwidth of the nodes has been
modified in a manner that a certain subset of nodes has the samebandwidth, and the bandwidth of
the remainder nodes has been fixed at random. During all the measurements the total bandwidth of
the systemTbw remains constant. As the size of the subset is increased, andmore nodes have the
same bandwidth, the uncertainty is higher from the point of view of the discrete random variable
associated toψbw(N, δ). Therefore, the anonymity degree is increased when the uniformity of the
distribution of the bandwidths grows.

4 New strategy based on latency graphs

We present in this section a new selection criteria. The new strategy relies on modelling the Tor
network as an undirected graphG(V,E), whereV = N ∪{s} denotes the set composed by the Tor
nodesN = {v1, ..., vn} and the client nodevn+1 = s, and whereE = {e12, e13, ..., eij} denotes
the set of the edges of the graph. We use the notationeij = (vi, vj) to refer to the edge between
two nodesvi andvj . The set of edgesE represents the potential connectivity between the nodes
in V , according to some partial knowledge of the network status which the strategy has. If an edge
eij = (vi, vj) is in E, then the connectivity between nodesvi andvj is potentially possible. The
set of edgesE is a dynamic set, i.e., the network connectivity (from a TCP/IP standpoint) changes
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periodically in time, while the set of verticesV is a static set. Finally, and although the network
connectivity from nodevi to vj is not necessarily the same as the connectivity fromvj to vi, we
decided to model the graph as undirected for simplicity reasons. Our decision also obeys to the
two following facts: (i) in a TCP/IP network, the presence ofnodes is more persistent than the
connectivity among them; and (ii) the connectivity is usually the same from a bidirectional routing
point of view in TCP/IP networks.

Related to the edges of the graphG(V,E), we define a functionct : E → R ∪ {∞} such that,
for every edgeeij ∈ E, the function returns the associated network latency between nodesvi and
vj at timet. If there is no connectivity between nodesvi andvj at time t, then we say that the
connectivity is undefined, and functionct returns the infinity value. Notice that functionct can be
implemented in several ways. Some previous work in the field include software tools to monitor
the network based on IP geolocation [16], modelling of networks as stochastic systems [17], and
network tomography [18]. Regardless of the strategy used toimplementct, there is an important
restriction from a security point of view: leakage of sensitive information in the measurement
process shall be contained. This mandatory constraint mustalways be fulfilled. Otherwise, an
adversary can benefit from a monitoring process in order to degrade the anonymity degree.

Algorithm 4 Latency Computation Process - lat_comp(G(V,E), ∆t,m)

Input: G(V,E),∆t,m

t0 ← tq ← 0
E ← ∅

L(eij)← (∞, t0)

while TRUEdo
tq ← tq + 1
for i← 1 to m do

i, j ←random(1, |V |), i 6= j
lq ← ct(eij)

if lq =∞ then
E ← E \ {eij}

else
E ← E ∪ {eij}
GivenL(eij) = (lp, tp)
if lp 6=∞ then

α← (tp − t0)/(tq − t0)
lq ← α · lp + (1− α) · lq

end if
L(eij)← (lq, tq)

end if
end for
sleep(∆t)

end while

Given the aforementioned rationale, we propose now the construction of our new selection
strategy by means of two general processes. A first process computes and maintains the set of edges
of the graph and its latencies. The second process establishes, according to the outcomes provided
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Algorithm 5 K-paths Computation Process - kpaths(G(V,E), δ, k, x_node, cur_path, paths_list)

Input: G(V,E), δ, k, x_node, cur_path, paths_list

if len(paths_list) = k then
return

end if
if len(cur_path) > δ then

return
end if

vl ←last_vertex(cur_path)
new_len←len(cur_path)+1
adjacency_list←adjacent_vertices(G(V, E), vl)
remove_nodes(adjacency_list, cur_path)
random_shuffle(adjacency_list)

for vertex in adjacency_list do
if vertex = x_node and new_len < δ then

continue
end if
if vertex = x_node and new_len = δ then

new_sol← cur_path+ 〈vertex〉
paths_list← paths_list+ 〈new_sol〉
break

end if
cur_path← cur_path+ 〈vertex〉
kpaths(G(V, E), δ, k, x_node, cur_path, paths_list)

end for

by the first process, circuit nodes. Circuit nodes are chosenfrom those identified within graph paths
with minimum latency. These two processes are summarised, respectively, in Algorithms 4 and 6.
A more detailed explanation of the proposed strategy is given below.

The first process (cf. Algorithm 4) is executed in backgroundand keeps a set of labels related to
each edge. Every label is defined by the expressionL(eij) = (l, t), whereeij denotes its associated
edge. The label contains a tuple(l, t) composed by an estimated latencyl between the nodes of
the edge (i.e.,vi andvj ), and a time instantt which specifies when the latencyl was computed.
When the process is executed for the first time, the set of edges and all the labels are initialised as
E ← ∅ andL(eij)← (∞, 0).

At every fixed interval of time∆t, the process associated to Algorithm 4 proceeds indefi-
nitely as follows. A set ofm edges associated to the complete graphKn with the same vertices
of G(V,E) are chosen at random. The latency associated to every edge isestimated by means of
the aforementioned functionct. If the computed latency is undefined (i.e., functionct returns the
infinity value), then the edge is removed from the setE (if it was already inE) and the associated
latency labels not updated. Otherwise, the edge is added to the setE (if it was not already inE),
and the value of its corresponding labels updated. In particular, the latency member of the tuple
is modified by using a exponentially weighted moving average(EWMA) strategy [19], and the
time member is updated according to the current time instanttq. For instance, let us suppose that
we are in the time instanttq and we have chosen randomly the edgeeij with an associated label
L(eij) = (lp, tp). Let us also suppose thatlq = ctq (eij) is the new latency estimated for such an
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Algorithm 6 Graph of Latencies Selection of Nodes -ψgrp(N, δ)

Input: G(V,E), s, δ, k,max_iter,∆t
Output: C = 〈s, e, r1, r2, ..., rδ−2, x〉, P = {a1, ..., aδ}

P ← ∅

paths_list← 〈〉
iter ← 0

/* Executed in background as a process */
lat_comp(G(V, E),∆t,m)

repeat
cur_path← 〈s〉
x_node←random_vertex(V \ {s})
kpaths(G(V, E), δ, k, x_node, cur_path, paths_list)
iter ← iter + 1

until (not empty(paths_list)) or (iter = max_iter)

if not empty(paths_list) then
C ←min_weighted_path(paths_list)

else
C ←random_path(V , δ)

end if
for i← 1 to δ − 1 do

P ← P ∪ {(ci, ci+1)}
end for

edge. Thus, its corresponding label is updated according tothe following expression:

L(eij)←







(
lp, tp

)
, if lq =∞;

(
lq, tq

)
if lp =∞;

(
α · lp + (1− α) · lq, tq

)
otherwise

The first case of the previous expression corresponds to a situation of disconnection between the
nodes of the edgeeij , and that has been detected by the functionctq . As a consequence,ctq (eij)
returns infinity. In this case, the previous estimated latency lp is maintained in the tuple, and the
edgeeij is removed fromE. The second case can be associated to the first time the latency of the
edgeeij is estimated usingctq , since the previous latency was undefined and the infinity value is
the one used in the first instantiation ofL(eij). Under the two last cases of the previous expression,
the edgeeij is always added to the setE if it still does not belong to the aforementioned set. The
third scenario corresponds to the EWMA in the strict sense. In this case, the coefficientα ∈ (0, 1)
represents a smoothing factor. The valueα has an important effects in the resulting estimated
latency stored inL(eij). Notice that those values ofα that are close to zero give a greater weight
to the recent measurements of the latency through the function ctq . Contrary to this, a value ofα
closer to one gives a greater weight to the historical measurements, making the resulting latency
less responsive to recent changes.

For the definition of theα factor we must consider that the previous update of the latency —for
a certain edge— could have been performed long time ago. Thisis possible since, for every interval
of time∆t we choose randomly just onlym edges to update their latencies. Indeed, the value of
lp in the previous example could have been computed at the time instanttp, and wheretp ≪ tq.
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Therefore, if we defineα as a static value, the weight for previous measurements willalways be
the same, independently of when the measurement was taken. This is not an acceptable approach
since the older the previous measurement is, the less weightshould have in the resulting computed
latency.

To overcome this semantic problem, the coefficientα must be defined as a dynamic value that
takes into account the precise moment in which the previous latencies were estimated for every
edge. In other words,α should be inversely proportional to the size of the time interval between
the previous measurement and the current one. In order to define α as a function of this time
interval, we must keep the time instant of the previous latency estimation for a given edge. This
can be accomplished by storing the time instants in the tupleof every edge label. Hence, every
time we select at randomm edges to update their latencies, its associated time members of its
labels must be updated with the current time instanttq. It is important to remark that this update
process must be done just only when the functionct returns a value different from the infinity one.
Moreover, for a selected edgeeij in the time instanttq, itsα value is defined as:

α =
tp − t0
tq − t0

wheret0 is the first time instant when the execution of the process started. A graphical interpre-
tation of the previous expression is depicted in Figure 3. Wecan appreciate thatα ∈ (0, 1) by
associating the numerator and the denominator of the expression with its interval representation
in the figure. Thus, we can directly deduce that0 < (tp − t0) < (tq − t0) and, consequently,
α ∈ (0, 1). In this figure, we can also see the influence of the previous time instanttp on the re-
sultingα. In particular, three cases are presented: a)tp ≪ tq, b) tp ≈

tq−t0
2 , and c)tp ≈ tq. For

these cases, we can observe howα tends to, respectively,0, 0.5 and1.

tq-t0

tp-t0

t0 tqtp

(a)α→ 0

tq-t0

tp-t0

t0 tqtp

(b) α→ 0.5

tq-t0

tp-t0

t0 tqtp

(c) α→ 1

Fig. 3: Graphical interpretation of theα coefficient

The second process (cf. Algorithm 6) is used for selection ofcircuit nodes. It utilises the in-
formation maintained by the process associated to Algorithm 4. In particular, the graphG(V,E)
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and the labelsL(eij) ∀eij ∈ E are shared between both processes. When a user wants to construct
a new circuit, this process is executed and it returns the nodes of the circuit. For this purpose, an
exit nodex is chosen at random from the set of verticesV \ {s}. After that, the process computes
until k random paths of lengthδ between the nodess andx. With this aim, a recursive process,
summarised in Algorithm 5, is called. In the case that there is not any path between the vertices
s andx, another exit node is chosen and the procedure is executed again. This iteration must be
repeated until a) some paths of lengthδ between the pair of nodess andx are found, or b) until a
certain number of iterations are performed. In the first case, the path with the minimum latency is
selected as the solution among all the obtained paths. In thesecond case, a completely random path
of lengthδ is returned. To avoid this situation, i.e., to avoid that ournew strategy behaves as a ran-
dom selection of nodes strategy, the process associated to Algorithm 4 must be started some time
before the effective establishment of circuits take place.This way, the graphG(V,E) increases the
necessary level of connectivity among its vertices. We refer to Section 6 for more practical details
and discussions on this point.

4.1 Discussion on the adversary model

One may think that an adversary, as it was initially defined inSection 2, can try to reconstruct the
client graph and guess the corresponding latency labels of our new strategy in order to degrade
its anonymity degree. However, even if we assume the most extreme case, in which the adversary
obtains a complementary complete graphKn with the set of verticesN and corresponding latency
labels, this does not affect the anonymity degree of our new strategy. First of all, we recall that the
graph of the client is a dynamic random subgraph ofKn+1 that is evolving over time, with a set
of verticesN ∪ {s}. The adversary graph would also be a subgraph ofKn with the set of vertices
N , changing dynamically as time goes by. Therefore, the set ofvertices and edges of the adversary
and client graphs will never converge into same connectivity model of the network. Moreover,
the latencies between the client nodes and any other potential entry nodee cannot be calculated
by the adversary. Otherwise, this would mean that the anonymity has already been violated by
the adversary. Indeed, the estimated latencies will definitively differ between the client and the
adversary graph, since they are computed at different time frames and different source networks.
Finally, the adversary also ignores the exit nodes selectedby the client, as well as thek parameter
used by the client to choose the paths.

5 Analytical evaluation of the new strategy

We provide in this section the analytical expression of the anonymity degree of the new strategy.
First, we extend the list of definitions provided in Section 2.

5.1 Analytical graph ofψgrp(N, δ)

In order to provide an analytical expression of the anonymity degree it is important to notice that
this must be always done from the adversary standpoint. In this regard, the graph to be considered
for this purpose differs with respect to the one used to compute a circuit. Note that the latencies
associated to every edge which contains the client nodes cannot be estimated by the adversary —
specially if we consider that this particular node is unknown by the adversary. Hence, an adversary
aiming at violating the anonymity of client nodes could try to estimate the user graph without node
s and its associated edges. This leads us to the following definition (cf. Figure 4 as a clarifying
example):
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v1

v2

v3 v4

v5s d(1,1)

2 1

(2, 3)

(7, 2)

(∞, 0)

(∞, 0)

(2,1)

(3,1)

(3,2)

(4,1)

(4,2)

(4,3)

(5,1)

(5,2)

(5,3) (5,4)

G′(V ′, E′)

G(V,E)

Fig. 4: Example of a latency graph and its analytical graph with a selected circuitC =
〈s, v2, v3, v5〉 of lengthδ = 3

Definition 2. Given a latency graphG(V,E) associated to a selection of Tor nodesψgrp(N, δ)
strategy and the client nodes, we define the analytical graph asG′(V ′, E′) whereV ′ = V \ {s}
andE′ = E \ {(s, vi)} ∀vi ∈ V .

5.2 λ-betweenness andλ-betweenness probability

For the purpose of computing the degree of anonymity of our new strategy, a new metric in-
spired by the Freeman’sbetweenness centralitymeasure [20] is presented. This metric, called
λ-betweenness, is defined as a measurement of the frequency which a nodev is traversed by all
the possible paths of lengthλ in a graph. The formal definition is given below.

Definition 3. Consider an undirected graphG(V,E). LetKPst denote the set of paths of length
λ between a fixed source vertexs ∈ V and a fixed target vertext ∈ V . LetKPst(v) be the subset
ofKPst consisting of paths that pass through the vertexv. Then, we define theλ-betweenness of
the nodev ∈ V as follows:

KPB(v, λ) =

∑

s,t∈V

σst(v, λ)

∑

s,t∈V

σst(λ)

whereσst(λ) = |KPst| and,σst(v, λ) = |KPst(v)|.

As we can observe, theλ-betweenness provides the proportion between the number ofpaths of
lengthλ which traverses a certain nodev, and the number of the total paths of lengthλ. However,
since the degree of anonymity needs a probability distribution, the following definition is required.
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Definition 4. Consider an undirected graphG(V,E). LetKPB(v, λ) be theλ-betweenness of the
nodev ∈ V . Then, theλ-betweenness probability of the nodev is defined as:

LB(v, λ) =
KPB(v, λ)

∑

w∈V

KPB(w, λ)
=

∑

s,t∈V

σst(v, λ)

∑

w∈V

∑

s,t∈V

σst(w, λ)

It follows immediately that0 ≤ LB(v, λ) ≤ 1, ∀v ∈ V , since this expression is equivalent to the
normalisedλ-betweenness.

5.3 Entropy and anonymity degree

The graph of latencies selection of Tor nodes is defined formally as an algorithmψgrp(N, δ) ∼
fgrp(x) with an associated discrete random variableXgrp and an analytical graphG′(V ′, E′). The
pmf fgrp(x) is given by means of theλ-betweenness probability expression:

fgrp(xi) = pi = P(Xgrp = xi) =

∑

e,x∈V ′

σex(vi, λ)

∑

w∈V ′

∑

e,x∈V ′

σex(w, λ)

wheree andx denotes every potential entry and exit node respectively ina Tor circuit, andλ =
δ − 1. It is worth noting that the valueλ = δ − 1 makes sense only if we take into consideration
that the client nodes and its edges are removed in the analytical graph respect to the latency graph.

Hence, the entropy of a system whose clients use a graph of latencies selection of nodes strategy
is:

Hgrp(X) = −

n∑

i=1

LB(vi, λ) · log2
(
LB(vi, λ)

)

By replacingHgrp(X) in Equation (2), the degree of anonymity is then:

dgrp = −

n∑

i=1

LB(vi, λ)

log2(n)
· log2

(
LB(vi, λ)

)

Theorem 7. Given a selection of Tor nodesψgrp(N, δ) ∼ fgrp(x) with an associated discrete
random variableXgrp and an analytical graphG′(V ′, E′) with n = |V ′| andm = |E′|, the
anonymity degree is increased as the density of the analytical graph grows.

Proof. The density of a analytical graphG′ = (V ′, E′) measures how many edges are in the set
E′ compared to the maximum possible number of edges between vertices in the setV ′. Formally
speaking, the density is given by the formula2m

n(n−1) . According to the previous expression, and
since the number of nodes of the analytical graph remains constant, the only way to increase the
density value is through rising the valuem; that is, by adding new edges to the graph. Obviously,
this implies that the more number of edges the analytical graph has, the more its density value is
augmented.
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Moreover, if we increase the density of the analytical graphby adding new edges, then the
λ-betweenness probability of each vertex will be affected. In particular, the denominator of the
λ-betweenness probability expression will change for all the vertices in the same manner, whereas
the numerator will be increased for those vertices that lie on any new path of lengthλ which
contains some of the added edges. However, this increase is not arbitrary for a given vertex, since
it has a maximum value determined by the total amount of pathsof lengthλ which traverses such
vertex. Therefore, we can consider that each vertex has two states while we are adding new edges.
First, a transitory state where the graph does not include all the paths of lengthλ that traverse such
vertex. And second, a stationary state which implies that the graph has all the paths of lengthλ
that traverses the given vertex. Thus, if we add new edges at random, then the numerator of the
λ-betweenness probability of each vertex should be increased uniformly. Consequently, the degree
of anonymity grows when the density of the graph is augmented.

It is interesting to highlight that the numerator of theλ-betweenness probability of a certain
vertex will be increased while it is in a transitory state, and until the vertex achieves its stationary
state. After that, such value cannot be increased. It seems obvious that the degree of anonymity
associated to a particular analytical graph will be reachedwhen all the vertices are in a stationary
states; or, in other words, when it is the complete graph. Letus formalize this through the following
theorem.

Theorem 8. Given a selection of Tor nodesψgrp(N, δ) ∼ fgrp(x) with an associated discrete
random variableXgrp and an analytical graphG′(V ′, E′) withn = |V ′|, the maximum anonymity
degree is achieved iffG′(V ′, E′) is the complete graphKn.

Proof. (⇒) Let us suppose thatG′(V ′, E′) is not the complete graphKn. The maximum anonymity
degree will be achieved whenLB(vi, λ) is equiprobable for allvi ∈ V ′. That is:

∑

e,x∈V

σex(vi, λ)

∑

w∈V

∑

e,x∈V

σex(w, λ)
=

1

n
∀vi ∈ V

′

whereλ = δ − 1, and wheree andx represents every possibleentry andexit node of a circuit
respectively. The previous expression can be rewritten as follows:

∑

e,x∈V ′

σex(vi, λ) =

∑

e,x∈V ′

σex(v1, λ) + ...+
∑

e,x∈V ′

σex(vn, λ)

n

Let us now suppose that the value
∑

e,x∈V ′ σex(vi, λ) is fixed for every node of the analytical
graph in accordance to the previous expression. Then, sinceG′(V ′, E′) is not the complete graph
Kn, we can eliminate an arbitrary edge such that the number of paths of lengthλ with entry node
e and exit nodex, and which traverses a given particular nodevj ∈ V ′, is reduced. Thus, the
value of

∑

e,x∈V ′ σex(vj , λ) would be affected for that given node. However, this contradicts the
previous expression, since

∑

e,x∈V ′ σex(vi, λ) would take different values for distinct nodes, and
when such value must be the same for any node of the graph.
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(⇐) Let us suppose, by contradiction, that the maximum anonymity degree is not achieved by the
analytical graphKn associated toψgrp(N, δ). This implies that given two different nodesvj and
vk of the graphKn, they will not have the same probability of being chosen byψgrp(N, δ); that
is,LB(vj , λ) 6= LB(vk, λ). Then, sinceLB(v, λ) is defined as follows:

LB(v, λ) =

∑

e,x∈V ′

σex(v, λ)

∑

w∈V ′

∑

e,x∈V ′

σex(w, λ)

We can consider that the only factor which makes possible theprevious restrictionLB(vj , λ) 6=
LB(vk, λ) is in the numerator, because the value of the denominator remains equal for both nodes
in a fixed graph. Thus, if we want to satisfy the previous restriction, we must change the value
∑

e,x∈V ′ σex(v, λ) of either nodevj or nodevk. However, this is only possible if we eliminate
a particular edge of the graph. This contradicts the imposedpremise that the analytical graph
associated toψgrp(N, δ) was the complete graphKn.

Theorems 7 and 8 are exemplified in conjunction in Figure 5. Wecan observe how a density
increase of an analytical graph influences in the degree of anonymity, achieving its maximum value
when the graph is the complete one (i.e., it has a density equal to one).
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Fig. 5: Influence of the density of the analytical graph in thedegree of anonymity with|V ′| = 20
andδ = 3

Theorem 9. LetG(V,E) be a undirected graph withn = |V | and letλ be a fixed length of a path,
the value ofσst(λ) is maximised iffG(V,E) is the complete graphKn.
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Proof. (⇒) Let us suppose, by contradiction, thatG(V,E) is not the complete graphKn. Then,
we can choose an arbitrary edgeeij ∈ E that belongs to a path of lengthλ between the nodess and
t. Then, we can removeeij fromE since the graph is not complete. As a consequence, the value
KPst will be reduced. However, this contradicts the fact that thevalueσst(λ) must be maximum
sinceσst(λ) = |KPst|.

(⇐) The proof is direct, since the complete graphKn contains all the possible edges between its
nodes, and thusKPst consists of all the possible paths of lengthλ between the nodess andt.

Theorem 10. LetKn be a complete graph, the total number of paths of lengthλ between any pair
of verticess andt is given by the expression:

∑

s,t∈V

σst(λ) = ((n− 1)((n− 1)λ − (−1)λ))

Proof. The proof is given in Appendix A.

Theorem 11. Given a selection of Tor nodesψgrp(N, δ) ∼ fgrp(x) with an associated discrete
random variableXgrp and an analytical graphG′(V ′, E′), the maximum anonymity degree is
achieved iff

∑

e,x∈V ′

σex(λ) = ((n− 1)((n− 1)λ − (−1)λ))

Proof. The proof is direct by applying Theorems 8, 9 and 10.

6 Experimental results

We present in this section a practical implementation and evaluation of the series of strategies
previously exposed. Each implementation has undergone several tests, in order to evaluate latency
penalties during Web transmissions. Additionally, the degree of anonymity of every experimental
test is also estimated, for the purpose of drawing a comparison among them.

6.1 Node distribution and configuration in PlanetLab

In order to measure the performance of the strategies presented in our work, some practical exper-
iments have been conducted. In particular, we deployed a private network of Tor nodes over the
PlanetLab research network [21, 22]. Our deployed Tor network is composed of 100 nodes follow-
ing a representative distribution based on the real (public) Tor network. We distributed the nodes of
the private Tor network following the public network distribution in terms of countries and band-
widths. Table 1 summarises the distribution values per country. The estimated bandwidths of the
nodes is retrieved through the directory servers of the realTor network [23]. Then, we categorised
the nodes according to their bandwidths by means of thek-means clusteringmethodology [24, 25].
A value ofk = 100 is used as the number of clusters (i.e., number of selected nodes in Planet-
Lab). When the algorithm converges, a cluster is assigned randomly to each node of the private
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Tor network. Subsequently, the bandwidth of each node is configured with the value of its associ-
ated centroid (i.e. the mean of the cluster). For such a purpose, the directiveBandwidthRate is
used in the configuration file of every node. Let us note that the country and bandwidth values are
considered as independent in the final node distribution configuration. Indeed, there is no need to
correlate both variables, since the bandwidth of every nodecan be configured by its corresponding
administrator, while this fact does not depend on the country which the node belongs to.

6.2 Testbed environment

Every node of our Planetlab private network runs the Tor software, version 0.2.3.11-alpha-dev.
Additionally, four nodes inside the network are configured as directory servers. These four nodes
are in charge of managing the global operation of the Tor network and providing the information
related to the network nodes.

Furthermore, two additional nodes outside the PlanetLab network are used in our experiments.
One of them is based on an Intel Core2 Quad Processor at 2.66GHz with 6GB of RAM and a
Gentoo GNU/Linux Operating System with a 3.2.9 kernel. Thisone is used as theclient node who
handles the construction of Tor circuits for every evaluated strategy. For this purpose, this node
runs also our own specific software application, hereinafter denoted astorspd.py. A beta re-
lease oftorspd.py, written in Python 2.6.6, can be downloaded athttp://github.com/
sercas/torspd. Thetorspd.py application relies on the TorCtl Python bindings [26] —a
Tor controller software to support path building and various constraints on node and path selection,
as well as statistic gathering. Moreover,torspd.py also benefits from the package NetworkX
[27] for the creation, manipulation, and analysis of graphs. The client node is not only in charge

Real Tor network PlanetLab
# Nodes Country % # Nodes

815 US 26.54 27
533 DE 17.36 17
187 RU 6.09 6
181 FR 5.89 6
171 NL 5.56 6
146 GB 4.75 5
132 SE 4.30 4
80 CA 2.61 3
56 AT 1.82 2
43 AU 1.40 1
40 IT 1.30 1
40 UA 1.30 1
39 CZ 1.27 1
38 CH 1.24 1
34 FI 1.11 1
34 LU 1.11 1
33 PL 1.08 1
32 JP 1.04 1

437 Others (<1%) 14.23 15

3071 – 100 100
Table 1: Selected PlanetLab nodes per country according to the real Tor network distribution
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Fig. 6: Conceptual representation of our testbed environment

of the circuit construction given a certain strategy, but also of attaching an initiated HTTP con-
nection to an existing circuit. To accomplish this, the nodeusestorspd.py to connect to an
special port of the local Tor software called thecontrol port, and which allows to command the
operations. The client node includes an additional software —also based on Python— capable of
performing HTTP queries through our private Tor network by using a SOCKS5 connection against
the local Tor client. This software, calledwebspd.py, is also able to obtain statistics results
about the launched queries in order to evaluate the performance of the algorithms implemented
in torspd.py. Finally,webspd.py performs every HTTP query making use directly of the IP
address of the destination server; consequently, any perturbation introduced by a DNS resolution is
avoided in our measurements. The second node outside the PlanetLab network is based on an Intel
Xeon Processor at 2.00GHz with 2GB of RAM and a Debian GNU/Linux Operating System with
a 2.6.26 kernel. This node is considered as thedestination server, and includes an HTTP server
based on Apache, version 2.2.21. The conceptual infrastructure used to carry out our experiments
is illustrated in Figure 6.

With the purpose of obtaining extrapolative results, we consider in our testbed the outcomes
reported in [28]. This report, based on the analysis of more than four billion Web pages, provides
estimations of the average size of current Internet sites, as well as the average number of resources
per page and other interesting metrics. Our testbed is builtbearing in mind these premises, so
that it is close enough to a real Web environment. This way, the analysed strategies (i.e., random
selection, geographical selection, bandwidth selection,and graph of latencies selection) are eval-
uated based on three different series of experiments that vary the Web page sizes. More precisely,
the client node requests via our private PlanetLab Tor network Web pages of, respectively, 50KB,
150KB and 320KB of size —being the last one the average size ofa Web page according to the
aforementioned report. The length of the circuits is seen asanother variable in our testbed. More
precisely, the different strategies are evaluated with Torcircuits of length three, four, five and six.
Every experiment is repeated 100 times, from which we obtainthe minimum, maximum and av-
erage time needed to download the corresponding Web pages. Likewise, the standard deviation is
computed for every test. The obtained numerical results arepresented in Tables 2, 3, 4 and 5, and
also depicted graphically in Figure 7. In the sequel, we use these results to analyse the performance
of every strategy in terms of transmission times and degree of anonymity.
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Fig. 7: Experimental results
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6.3 Random selection of nodes strategy evaluation

As previously exposed in Theorem 2, the random selection of nodes strategy is the best one from
the point of view of the degree of anonymity, since it achieves the maximum possible value. Nev-
ertheless, this selection of nodes methodology suffers from an high penalty in terms of latency in
accordance with the extrapolated results of our evaluation. As it can be inferred from the analysis
of the numerical outcomes, and reflected in Figure 7, the random selection algorithm exhibits the
worst transmission times, regardless of the size of the siteor the length of the circuit used. This can
be explained by the random nature of this strategy. Indeed, by selecting the nodes at random, the
strategy can incur in some problems which affect directly tothe latency of a computed circuit, such
as a big distance between the involved nodes (in terms of countries, i.e., routers), a network con-
gestion in a part of the circuit [29], or a selection of nodes with limited computational resources,
among others. It is clear that all these drawbacks are hiddento the strategy and explain the obtained
results. Moreover, all these problems are reflected in the standard deviation of the measurements,
which is the higher one compared with the other alternatives.

ψrnd(N, δ), drnd = 1.0, Web size 50KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 0.950942039493.380778074261.849566781520.58107725003
δ = 4 1.147924900057.469923019412.567350230221.03927644851
δ = 5 1.1316177845012.72523903853.131875727181.69722167190
δ = 6 1.5714590549514.69013094903.569730656152.06960596616

ψrnd(N, δ), drnd = 1.0, Web size 150KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 0.9709920883185.704513072972.460162696840.901269612931
δ = 4 1.08104586601012.03260707863.345453674791.478886535440
δ = 5 1.62402701378016.05510902403.784371263981.918732505410
δ = 6 2.27926301956011.58059906964.713521411022.544477101520

ψrnd(N, δ), drnd = 1.0, Web size 320KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 1.4915380477913.20332193373.799213056562.45165379541
δ = 4 1.8427100181615.26163387304.980110797882.67792560196
δ = 5 1.7361900806417.19694995885.376267290123.01781647919
δ = 6 2.1673758029917.84025406846.374201133253.27889183837

Table 2: Random selection of nodes strategy (ψrnd) results

6.4 Geographical selection of nodes strategy evaluation

The evaluation of the geographical selection of nodes strategy has been performed by fixing the
country and taking into consideration the node distribution detailed in Table 1. United States was
selected in accordance to the country where the client node resides. Therefore, we can calculate
the anonymity degree for this strategy by recalling its related expression introduced in Section 3.2:

dgeo =
log2(m)

log2(n)
=

log2(27)

log2(100)
≈ 0.7157
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ψgeo(N, δ), dgeo ≈ 0.7157, Web size 50KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 0.9138720035552.367480993271.316940875050.219359721740
δ = 4 1.0837399959602.037392139431.491653599740.189194613865
δ = 5 1.1574819088002.171842813491.569936335090.220167861127
δ = 6 1.2004928588902.639585018161.713680150510.234977785757

ψgeo(N, δ), dgeo ≈ 0.7157, Web size 150KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 1.381686925892.687863111501.794671659470.260276001481
δ = 4 1.279391050342.925364971161.874638903140.281488220772
δ = 5 1.338438987733.710590839391.981306037900.318113252410
δ = 6 1.409225940703.280391931532.054828393460.261217096578

ψgeo(N, δ), dgeo ≈ 0.7157, Web size 320KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 1.417999029162.934659957892.204324700830.310828573513
δ = 4 1.541563987733.336066007612.370359973910.329438846284
δ = 5 1.880316019064.104315042502.514304237370.370494801277
δ = 6 1.645709991463.893234968192.702629628180.376313686885

Table 3: Geographical selection strategy (ψgeo) results

ψbw(N, δ), dbw ≈ 0.9009, Web size 50KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 0.9642610549935.123181104661.867093060020.789060168081
δ = 4 1.0783100128205.414746999742.364074165820.859666129425
δ = 5 1.0604579448706.923804998402.634189457891.128347022810
δ = 6 1.27829289436012.75364089013.032724511621.882337407440

ψbw(N, δ), dbw ≈ 0.9009, Web size 150KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 1.264758110057.090914011002.282342553140.765374484505
δ = 4 1.237977981576.808704137802.910895001890.947719280103
δ = 5 1.4563271999412.64436101912.974454643731.431690789930
δ = 6 1.2780988216412.72460985183.198754298691.666334473980

ψbw(N, δ), dbw ≈ 0.9009, Web size 320KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 1.4993281364412.92504596713.295004513261.79104222251
δ = 4 1.5293109417013.72274804123.706031737331.90767488259
δ = 5 1.6629660129517.38286900524.077383010392.18405609668
δ = 6 2.0406558513620.17618894584.320700471402.68160673888

Table 4: Bandwidth selection strategy (ψbw) results
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ψgrp(N, δ), dgrp (c.f. Section 6.6), Web size 50KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 0.9350218772893.612962007521.594882237910.545028374794
δ = 4 0.9985048770903.748970031741.772250459190.548956074123
δ = 5 1.1951341629004.217746973042.029312117100.576776679346
δ = 6 1.2678089141803.359241962432.182451744080.502899662482

ψgrp(N, δ), dgrp (c.f. Section 6.6). Web size 150KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 1.1121070385005.534295082092.042276215310.790901626275
δ = 4 1.2905528545405.682158946992.666749589440.944641197284
δ = 5 1.1635868549307.413878917692.689371738430.917799034111
δ = 6 1.5504531860405.407076835633.002999873160.935654846647

ψgrp(N, δ), dgrp (c.f. Section 6.6), Web size 320KB
Circ. length Min. Max. Avg. Std. dev.
δ = 3 1.5029568672207.290339946752.518472316261.009688576850
δ = 4 1.4984822273306.522347927093.223300273421.061893260420
δ = 5 1.7347970008906.732471942903.310472950940.940285391625
δ = 6 1.6896669864707.899330139163.460636150841.094579395080

Table 5: Graph of latencies selection strategy (ψgrp) results

As we can observe, the degree of anonymity has dropped significantly when we compare it with the
results of the other strategies. However, sacrificing a certain level of anonymity incurs in a drastic
fall of the latency needed to download a Web page, as it can be noticed if we compare Figures 7a, 7b
and 7c. In fact, this selection of nodes methodology provides the best performance in terms of the
time required to download a Web page among the other alternatives. It is also interesting to remark
the fact that the standard deviation of the time measured in this method remains nearly constant
regardless of the circuit length and the size of the Web page.This seems reasonable since the more
geographically near are the nodes, the less random interferences affect to the whole latency. We
can understand this if we think in terms of the number of networks elements (i.e., routers, switches,
etc.) involved in the TCP/IP routing process between every pair of nodes. Thus, a pair of nodes
which belong to the same country will be interconnected through less network elements compared
to two nodes which belong to different countries and, as a consequence, the latency will be more
stable along time. This can be an interesting fact, since thepenalty introduced by the use of Tor
affects less to the psychological perception of the user when browsing the Web [5]. Nevertheless,
the anonymity degree of this strategy is strongly tied to thefixed country, since —as we pointed
out in Theorem 4— the less nodes belonging to the country, theless anonymity degree is provided.

6.5 Bandwidth selection of nodes strategy evaluation

The anonymity degree of the bandwidth selection of nodes strategy has been computed empirically
according to its associated formula (cf. Section 3.3 for details). In particular, thetorspd.py
application was in charge of obtaining the bandwidth of every node of our private Tor network
and of calculating the anonymity degree. Thus, the anonymity degree when the evaluation of this
strategy was performed was approximately 0.9009. It is important to highlight that, in spite of the
fixed bandwidth specified in the configuration, the bandwidthof every onion router is estimated
periodically by the Tor software running at every node, and provided later totorspd.py through
the directory servers. Indeed, if we think that the established bandwidth of a node through its
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configuration does not necessarily correspond to the real value, then the anonymity degree can
change in time in comparison to the previous strategies.

From the viewpoint of the latency results, we can observe howthe bandwidth selection of
nodes strategy improves the values respect to the random strategy by sacrificing some degree of
anonymity. However, it does not achieve the transmission times of the geographical methodology.
The reason for that is because this strategy does not take into account important networking as-
pects, such as network congestion, number of routers, etc.,that also impact the transmission times.
Therefore, it is fairly reasonable that this methodology ismore susceptible to networking prob-
lems, resulting in an increase of the eventual transmissiontime results. This is also corroborated
by the standard deviation results, noting the lack of stability of the results. In fact, the transmission
times increase as the size of the Web page or the length of the circuit also increase.

6.6 Graph of latencies strategy evaluation

The experimental evaluation of our proposal has been performed after the establishment of the
parameters of its related algorithms. In particular, they were∆t = 5, m = 3, k = 300 and
max_iter = 5. Furthermore, theLatency Computation Processwas launched two hours before
the execution ofwebspd.py, leading to an analytical graph with a set of more than 3,000 edges,
and which represents a density value of, approximately, 0.67. At this moment, thetorspd.py
estimated the degree of anonymity in accordance to the formula presented in Section 5.3. Since
such equation depends on the length of the circuit, the anonymity degree was estimated for lengths
3, 4, 5 and 6, giving the results of 0.9987, 0.9984, 0.9982 and0.9981, respectively. As occurs with
the previous strategy, the degree of anonymity is dynamic over time, and in this case depends on
the connectivity of the analytical graph. Nevertheless, the anonymity degree was not estimated
again during the evaluation tests.

Functionct was implemented by means of the construction of random circuits of lengthm.
Such circuits are not used as anonymous channels for Web transmissions, but to estimate the laten-
cies of the edges. This is possible since during the construction of a circuit, every time a new node
is added to the circuit, theLatency Computation Processis notified. Hence, it is easy to determine
the latency of an edge by subtracting the time instants of twonodes added consecutively to a cer-
tain circuit. Regarding thismodus operandiof measuring the latencies, it is interesting to highlight
two aspects. The first one is that it meets the restriction of estimating the latencies secretly; and
the second one is that it not only measures the latencies in relation the network solely, but also
takes into consideration delays motivated by the status of the nodes or its resources limitations.
This way, our proposal models indirectly some negative issues which the other strategies do not
reflect, leading to an improvement of the transmission timesas the obtained results evidence.

By comparing the results of the previous strategies with thecurrent one, we can observe how
our new proposal exhibits a better trade-off between degreeof anonymity and transmission latency.
Particularly, from the perspective of the transmission times, our proposal is quite close to those
from the geographical selection strategy, while it provides a higher degree of anonymity. Indeed, if
we compare our strategy from the anonymity point of view, we can observe that only the random
selection of nodes criteria overcomes our new strategy, but, as already mentioned, by sacrificing
considerably the transmission time performance.

7 Related Work

The use of entropy-based metrics to measure the anonymity degree of infrastructures like Tor
was simultaneously established by Diazet al. [11] and Serjantov and Danezis [12]. Since then,
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several other authors have proposed alternative measures [30]. Examples include the use of the min
entropy by Shmatikov and Wang in [31], and the Renyi entropy by Clauß and Schiffner in [32].
Other examples include the use of combinatorial measures byEdmanet al. [33], later improved
by Troncosoet al. in [34]. Snader and Borisov proposed in [35] the use of the Gini coefficient, as
a way to measure inequalities in the circuit selection process of Tor. Murdoch and Watson propose
in [36] to asses the bandwidth available to the adversary, and its effects to degrade the security of
several path selection techniques.

With regard to literature on selection algorithms, as a way to improve the anonymity degree
while also increasing performance, several strategies have been reported. Examples include the use
of reputation-based strategies [37], opportunistic weighted network heuristics [35, 38], game the-
ory [39], and system awareness [40]. Compared to those previous efforts, whose goal mainly aim
at reducing overhead via bandwidth measurements while addressing the classical threat model of
Tor [7], our approach takes advantage of latency measurements, in order to best balance anonymity
and performance. Indeed, given that bandwidth is simply self-reported on Tor, regular nodes may
be mislead and their security compromised if we allow nodes from using fraudulent bandwidth
reports during the construction of Tor circuits [37, 41].

The use of latency-based measurements for path selection onanonymous infrastructures has
been previously reported in the literature. In [42], Sherret al. propose a link-based path selec-
tion strategy for onion routing, whose main criterion relies, in addition to bandwidth measures,
on network link characteristics such as latency, jitter, and loss rates. This way, false perception of
nodes with high bandwidth capacities is avoided, given thatlow-latency nodes are now discovered
rather than self-advertised. Similarly, Panchenko and Renner [43] propose in their work to comple-
ment bandwidth measurements with round trip time during theconstruction of Tor circuits. Their
work is complemented by practical evaluations over the realTor network and demonstrate the im-
provement of performance that such latency-based strategies achieve. Finally, Wanget al. [44, 45]
propose the use of latency in order to detect and prevent congested nodes, so that nodes using the
Tor infrastructure avoid routing their traffic over congested paths. In contrast to these proposals,
our work aims at providing a defence mechanism. Our latency-based approach is considered from
a node-centred perspective, rather than a network-based property used to balance transmission de-
lays. This way, adversarial nodes are prevented from increasing their chances of relying traffic by
simply presenting themselves as low-latency nodes, while guaranteeing an optimal propagation
rate by the remainder nodes of the system.

8 Conclusion

We addressed in this paper the influence of circuit construction strategies on the anonymity degree
of the Tor (The onion router) anonymity infrastructure. We evaluated three classical strategies, with
respect to their de-anonymisation risk and latency, and regarding its performance for anonymising
Internet traffic. We then presented the construction of a newcircuit selection algorithm that con-
siderably reduces the success probability of linking attacks while providing enough performance
for low-latency services. Our experimental results, conducted on a real-world Tor deployment over
PlanetLab confirm the validity of the new strategy, and showsthat it overperforms the classical
ones.
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A Number of walks of lengthλ between any two distinct vertices of aKn

graph

Let Kn be a complete graph withn vertices andn(n−1)
2 edges, such that every pair of distinct

vertices is connected by a unique edge. Then, a walk inKn of lengthλ from vertexv1 to vertex
vλ+1 corresponds to the following sequence:

v1
e1−→ v2

e2−→ v3
e3−→ v4

e4−→ ...
eλ−1

−−−→ vλ
eλ−→ vλ+1

︸ ︷︷ ︸

walk in G of lengthλ

such that eachvi is a vertex ofKn, eachej is an edge ofKn, and the vertices connected byei are
vi andvi+1.

LetA be the adjacency matrix ofKn, such thatA is ann-square binary matrix in which each
entry is either zero or one, i.e., every(i, j)-entry inA is equal to the number of edges incident tovi
andvj . Moreover,A is symmetric and circulant [46]. It has always zeros on the leading diagonal
and ones off the leading diagonal. For example, the adjacency matrix of a complete graphK4 is
always equal to:

A =







0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0







The total number of possible walks of lengthλ from vertexvi to vertexvj is the(i, j)-entry ofAλ,
i.e., the matrix product, denoted by (·), of λ copies ofA [47]. Following the above example, the
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number of walks of length2 between any two distinct vertices can be obtained directly fromA2,
such that

A2 = A · A =







(n− 1) (n− 2) (n− 2) (n− 2)
(n− 2) (n− 1) (n− 2) (n− 2)
(n− 2) (n− 2) (n− 1) (n− 2)
(n− 2) (n− 2) (n− 2) (n− 1)







which leads to

A2 = A · A =







3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3







Note that any(i, j)-entry ofA2 (wherei 6= j) gives the same number of walks of length2 from
any two distinct vertexvi to vertexvj . The total number of walks of length2 between any two
distinct vertices can, thus, be obtained by consecutively adding the values of every(i, j)-entry off
the leading diagonal of matrixA2. In the above example, it suffices to sum(4(4 − 1)) times (i.e.,
twice the number of edges inK4) the value2 that any(i, j)-entry (wherei 6= j) has inA2. This
amounts to having exactly24 possible walks on anyK4 graph.

Therefore, the problem of finding the number of walks of length λ between any two distinct
vertices of aKn graph reduces to finding the(i, j)-entry ofAλ, wherei 6= j. Indeed, letaλi,j be
the(i, j)-entry ofAλ. Then, the recurrence relation between the original adjacency matrixA, and
the matrix product of up toλ− 1 copies ofA, i.e.,

Aλ = Aλ−1 · A (3)

with initial conditions:

a2i,j =

{
(n− 2) if i 6= j

(n− 1) if i = j
, a1i,j =

{
1 if i 6= j

0 if i = j

is sufficient to solve the problem. Notice, moreover, that the result does not depend on any precise
value of eitheri or j. Indeed, it is proved in [47] that there is a constant relationship between the
(i, j)-entries off the leading diagonal ofAλ and the(i, j)-entries on the leading diagonal ofAλ.
More precisely, lettλ be any(i, j)-entry off the leading diagonal ofAλ (i.e., tλ = aλi,j such that
i 6= j). Let dλ be any(i, i)-entry on the leading diagonal ofAλ (i.e., tλ = aλi,i). Then, if we
subtracttλ from dλ, the results is always equal to(−1)λ. In other words, if we expressAλ as
follows:

Aλ = [aλi,j ] =

{
tλ if i 6= j

dλ if i = j

thentλ = dλ + (−1)λ. We can now use the recurrence relation shown in Equation (3)to derive
the following two results:

tλ = (n− 2)tλ−1 + dλ−1 (4)

dλ = (n− 1)tλ−1 (5)

with the initial conditionst1 = 1 andd1 = 0.
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Cumbersome, but elementary, transformations shown in both[46] and [47] lead us to unfold
the two recurrence relations in both Equation (4) and (5) to the following two self-contained ex-
pressions:

tλ =
(n− 1)λ − (−1)λ

n
(6)

dλ =
(n− 1)λ + (n− 1)(−1)λ

n
(7)

To conclude, we can now use Equations (6) and (7) to express the total number of closed and
non-closed walks in the complete graphKn by simply adding to them twice the number of edges
in the graph, i.e.,n(n − 1). From Equation (6) we have now the value of any(i, j)-entry inAλ

such thati 6= j. As we did previously in the example of the complete graphK4, the total number
of walks of lengthλ between any two distinct vertices can be obtained by consecutively adding
n(n − 1) times the values of any of the(i, j)-entries off the leading diagonal of matrixAλ. This
amounts to having exactlyn(n− 1) · tλ which simplifying leads to:

((n− 1)((n− 1)λ − (−1)λ)) (8)

possible walks of lengthλ on anyKn graph.


