
Virtual machine introspection in a hybrid honeypot architecture

Tamas K. Lengyel
University of Connecticut

tamas.lengyel@engr.uconn.edu

Justin Neumann
University of Connecticut
neumann@cse.uconn.edu

Steve Maresca
University of Connecticut
steve.maresca@gmail.com

Bryan D. Payne
Nebula, Inc.

bdpayne@acm.org

Aggelos Kiayias
University of Connecticut
aggelos@cse.uconn.edu

Abstract

With the recent advent of effective and practical vir-
tual machine introspection tools, we revisit the use of
hybrid honeypots as a means to implement automated
malware collection and analysis. We introduce VMI-
Honeymon, a high-interaction honeypot monitor which
uses virtual machine memory introspection on Xen.
VMI-Honeymon remains transparent to the monitored
virtual machine and bypasses reliance on the untrusted
guest kernel by utilizing memory scans for state recon-
struction. VMI-Honeymon builds on open-source intro-
spection and forensics tools that provide a rich set of in-
formation about intrusion and infection processes while
enabling the automatic capture of the associated mal-
ware binaries. Our experiments show that using VMI-
Honeymon in a hybrid setup expands the range of mal-
ware captures and is effective in capturing both known
and unclassified malware samples.

1 Introduction

In recent years there have been significant research and
development efforts to move honeypots into an isolated
environment provided by virtualization technology. Vir-
tualized environments enable transparent, tamper resis-
tant virtual machine introspection (VMI); however, we
must tackle the semantic gap problem [4][9]: recon-
structing high-level state information from low-level data
sources. Many VMI based intrusion detection systems
(IDS) and Honeypots aim to bridge the semantic gap
by intercepting system calls through the virtual machine
monitor (VMM). While this approach has been proven
to be an effective method [26][13][6][14], prior works
required changes to the hypervisor [6][15][37][35][25]
and is vulnerable to in-guest detection of the monitor-
ing environment which can allow malware to disable or
modify its behavior [2][27].

In contrast to system call interception, purely

memory-based introspection requires no changes to the
hypervisor [33][10]. Analysis based upon this technique
permits an IDS tool to monitor the virtual machine (VM
or guest) without altering its execution, and thus moni-
toring becomes increasingly transparent to the VM. The
major challenge of reconstructing the state of the VM
from memory is being able to tackle the semantic gap
problem without relying on the guest OS’s kernel data-
structures. These data-structures could be tampered with
by malicious software [1], such as rootkits, and therefore
should not be exclusively relied upon [5].

We present a virtualized hybrid honeypot system that
uses low-interaction honeypots (LIH) in conjuction with
memory introspection based high-interaction honeypots
(HIH) to detect and capture malware. To assist in reli-
ably bridging the semantic gap, our system uses foren-
sics tools to bypass the guest kernel to reconstruct the
state of the VM. At the same time, inspection from this
perspective enhances the transparency of the monitoring
environment, as no modification is made to the VMM.

2 Related work

VMI based IDS was first introduced by Garfinkel et.
al. [13]. They modified a version of VMware Work-
station, a VMM intended for desktop use, to add hooks
for observing VM memory, CPU registers, and emu-
lated devices; to reconstruct the state of the VM using
the data obtained, they extended a tool more commonly
used to examine Linux kernel crash dumps. Similarly,
VMwatcher [15] implemented hooks into several VMMs
to inspect the memory and filesystem of a guest OS; this
data was exported to a separate VM where the memory
was compared to a clean state and anti-virus tools run on
the filesystem. Both approaches relied heavily upon the
guest OS kernel to reconstruct the state of the VM. As a
result, they were vulnerable to various kernel subversion
techniques: intrusions remained undetectable if they did
not modify the filesystem, lacked an anti-virus signature,

1



or altered kernel data-structures as a means of disguise
[1].

Zhang et. al. proposed a purely system call intercep-
tion based IDS using a modified Xen VMM to analyze
and detect intrusions [37]. Similarly, Ether [6], a project
developed by Dinaburg et al. is a malware analyzer
that uses hardware-assisted virtualization for guests. As
Ether utilizes Xen HVM, it executes native CPU instruc-
tions, thus does not suffer from incomplete or inaccurate
system emulation as other hardware emulators do, such
as Qemu. Nevertheless, Pek et. al. showed that Ether is
still vulnerable to timing attacks because of implementa-
tion issues that reveal the presence of Ether to the guest
OS [27].

Argos [28], a Honeypot system developed by Portoka-
lidis et. al. uses system emulation with a modified ver-
sion of Qemu to perform a hybrid system call intercep-
tion and memory analysis technique called taint analysis,
in which bytes originating from the network are flagged
”dirty” and are tracked in the system memory. Argos
aims to detect when dirty bytes are being passed for ex-
ecution to extract the malicious software from memory.
While effective, Slowinska et. al. [32] point out that this
technique is problematic due to the high ratio of false
positives experienced during detection.

Srivastava et. al. implemented a VMI-based firewall
[33] called VMwall using the Xen VMM. VMwall cap-
tured network flows and, using the XenAccess library
[26], correlated them with processes running within a
VM. VMwall accomplishes the correlation by extract-
ing information from data-structures of the guest’s Linux
kernel. Dolan-Gavitt et. al. [10] later noted that the
same functionality can be achieved by utilizing foren-
sics tools, such as Volatility, to inspect the guest kernel
data-structures in conjunction with XenAccess. As both
approaches rely on VM kernel data-structures, they are
vulnerable to the same kernel subversion attacks previ-
ously mentioned. Our approach is a natural extension
to the line of future work proposed by Dolan-Gavitt et.
al. and takes advantage of recent developments in the
XenAccess successor library to bypass reliance upon un-
trusted kernel data-structures to reconstruct the state of
the VM.

3 Design and Implementation

Our architecture uses open-source tools to integrate vir-
tual machine introspection into a hybrid testbed. In con-
trast to prior work, our approach minimizes the use of
the untrusted guest kernel to improve introspection re-
siliency against rootkits and other malware. This is
achieved by using memory scanning and fingerprinting
to accurately reconstruct the state of the VM. In the fol-
lowing section, we provide an in-depth description of the

system components, shown in Figure 1.

Figure 1: System overview

3.1 Xen, LibVMI and Volatility
During our implementation process we experimented
with two open-source hypervisors, Xen [36] and KVM
[18]. While our system was operational on both plat-
forms, Xen was chosen for our experiments due to
system stability issues experienced with KVM. Xen
is a bare-metal hypervisor running at the lowest and
most privileged mode of the CPU. In such a system,
Xen presides over multiple operating systems, known
as domains, with the Xen management domain (dom0)
granted privileged access.

LibVMI [24], the successor to the XenAccess library,
is an introspection library written in C that builds upon
low-level functionality provided by the hypervisor itself.
Xen allows visiblilty into many aspects of a virtual ma-
chine, including CPU state and guest memory. Lib-
VMI offers a set of functions that encapsulate hypervi-
sor features, providing convenient access to each virtual
CPU (including registers), perform page table transla-
tions, and read guest memory. Notably, unlike earlier
introspection tools, it requires no alteration of the Xen
VMM. Running in userspace within dom0, a program

2



Command Description Is scanner?

ssdt Print the Native and GDI System
Service Descriptor Tables.

No

ldrmodules Cross-reference memory mapped
files with the 3 PEB DLL lists.

No

apihooks Detect IAT, EAT, and Inline hooks
in process or kernel memory.

No

idt Dump the Interrupt Descriptor
Table and check for inline API
hooks.

No

gdt Dump the Global Descriptor Table. No
callbacks Print kernel callbacks of various

types.
No

psscan Scan memory for EPROCESS
objects.

Yes

modscan Scan memory for
LDR DATA TABLE ENTRY
objects.

Yes

driverscan Scan memory for
DRIVER OBJECT objects.

Yes

filescan Scan memory for FILE OBJECT
objects.

Yes

mutantscan Scan memory for KMUTANT
objects.

Yes

thrdscan Scan memory for ETHREAD
objects.

Yes

sockscan Scan memory for socket objects. Yes
svcscan Scan the Service Control Manager

for information on Windows
services.

Yes

Table 1: Volatility tests utilized.

utilizing LibVMI is isolated from the monitored guest
and therefore protected from tampering by the software
inside the VM. As no changes are made to the VMM,
monitoring with LibVMI dodges timing attacks that rely
upon observation of time skew introduced by additional
hooks in the VMM. Similarly, the memory introspection
makes no changes to the VM’s memory during inspec-
tion; therefore, the presence of the monitoring environ-
ment remains transparent to the guest.

The LibVMI API functions are accessible via a Python
interface which is used by a Volatility extension to ac-
cess the memory of the guest VM. Volatility is the most
popular open source memory forensics tool, incorporat-
ing templates for Windows and Linux, and several plug-
ins such as seen in Table 1. While some of the Volatil-
ity plugins rely upon the guest kernel entry-points (such
as the linked list of running processes) to access data-
structures, a set of Scanner plugins are also available that
bypass the guest kernel entirely to retrieve these struc-
tures. This analysis method allows detection of hidden
or otherwise disguised kernel data.

The Scanner plugins operate by fingerprinting each
byte in the inspected memory as a candidate for the tar-
get datastructure. As currently LibVMI doesn’t provide
event-driven monitoring, in our setup the Volatility scans
are initiated by timers and by detecting network events.

3.2 Honeybrid, DNSchef and Dionaea

One of our design objectives was to provide a separa-
tion between intrusions on the HIH so that the memory
footprint we obtain can be assigned to a single intrusion
session. Another objective was to tightly control the out-
going connection attempts initiated by HIH to minimize
the security risk an infection poses to other entities. Fig-
ure 2 shows the layout of our network setup.

Honeybrid [3] is an open-source honeynet coordinator
that is designed to reduce the load on HIHs by utilizing
low-interaction honeypots (LIH) as filters on the incom-
ing traffic. Honeybrid also provides fine-grained control
over outgoing connections from the honeynet, which can
be easily extended by creating additional decision mod-
ules for Honeybrid.

In our setup, we used the open-source Dionaea hon-
eypot [7] as our LIH, and we created a Honeybrid mod-
ule to monitor Dionaea’s actions via XMPP messages to
prevent repeated captures from the same IP. The XMPP
messages are exchanged between Dionaea and Honey-
brid through a Prosody XMPP server [29]. Utilizing
these messages Honeybrid filters out IPs that have previ-
ously dropped a payload on the LIH. Another Honeybrid
module was created to restrict the use of the HIH to one
attacker at a time and to initiate the Volatility scans to
detect intrusions when a particular event occurs, such as
a connection time-out.

The control module we created for Honeybrid redi-
rects outgoing DNS queries to DNSchef [8] for logging
purposes and only allows outgoing connections back to
the attacker. All other connection attempts result in Hon-
eybrid initiatiating a final Volatility scan of the VM and
reverting the VM to the virgin state. When Honeybrid
observes no traffic to the HIH from the attacker for two
minutes, the same actions are taken: initiating Volatility
scans and reverting the VM.

To avoid a single attacker taking over our HIH for an
extended period of time, we placed an additional timer
on the attack sessions which sets an absolute allowed
timeframe of 10 minutes. After 10 minutes the attacker
is redirected to the LIH and the HIH is scanned for in-
trusions and reverted to the virgin state. We chose 10
minutes as a maximum limit because in our observation
with Dionaea infections occured within a minute of the
connection being established while others reported an
average of three minutes [17]. However, malware may
choose to wait longer as a detection avoidance technique.

3.3 The HIH

The HIH was running Windows XP SP2 with 128MB
RAM as a VM. The configuration of Windows was
slightly modified to simplify tracking of memory

3



Figure 2: Communication diagram

changes that occur upon intrusion. Automated system
processes were disabled such as automatic updates, auto-
matic defragmentation and screensavers. An alternative
approach would be to whitelist memory changes asso-
ciated with these processes. We installed no additional
software in the HIH and therefore only the default TCP
ports were open: 135, 139 and 445.

Since LibVMI and Volatility supports all versions of
Windows, VMI-Honeymon could also operate on a wide-
range of HIHs. So far we have only experimented with
Windows XP SP2 as it had been the standard platform
for other introspection based Honeypots [6][9].

3.4 VMI-Honeymon, LibVirt and qcow2

To perform anomaly detection in the output of Volatil-
ity’s various plugins, we created VMI-Honeymon
(honeypot monitor), written in Perl, to execute Volatil-
ity and parse the results in parallel. In our setup, VMI-
Honeymon resides in a separate domain from Honey-
brid, listening to commands through a TCP socket. The
anomaly detector compares the Volatility results ob-
tained from the live HIH to results that were obtained
from the virgin state of the HIH. By checking and com-
paring all elements, VMI-Honeymon flags all deviations
as an anomaly. This method has been effective in detect-
ing a wide range of changes in the HIH during intrusions
which is further discussed in Section 4.

To automate back-up and restore procedures, VMI-
Honeymon takes advantage of functionality provided by
LibVirt[20] to automatically save the entire memory of
the HIH and revert it to the virgin state when required.
By saving the entire memory and filesystem of the VM
in an initial ”snapshot” operation, VMI-Honeymon can
quickly revert the HIH to that virgin state without requir-
ing a complete reboot of VM. To stream-line the process

of filesystem restoration, we utilize the qcow2 (Qemu
copy-on-write) format through the Xen blktap2 driver.
Qcow2 works by utilizing a base-image of the filesystem
and a copy-on-write image that keeps only the changes
that were made. Since no changes are written to the base-
image during operations on the qcow2 image, the two
main advantages are its small storage requirement and
the ability to keep infections in a contained environment.

3.5 Libguestfs and VirusTotal
By utilizing Volatility’s filescan plugin, VMI-Honeymon
can quickly detect files that are likely candidates for
malware binaries. To extract these binaries, we utilize
Libguestfs [19], an open source library developed by
RedHat intended for analysis and manipulation of guest
filesystems. Libguestfs operates by launching a small
Linux appliance inside Qemu and attaches to the filesys-
tem of the running VM. In our setup Libguestfs attaches
to the guest filesystem in read-only mode to avoid creat-
ing discrepancies in the filesystem.

As filescan provides a very rich set of information,
some of the files that were flagged by the anomaly de-
tector were not actually changed but have simply been
opened by processes. To filter out these false-positives,
VMI-Honeymon compares the SHA1 checksum of the
candidate files in the running VM to the virgin state and
only extracts new files or files with changed checksums.

The extracted files are further checked by VMI-
Honeymon to determine if the file is a binary to elimi-
nate the extraction of log files which are less likely to
contain infections. During the extraction process, VMI-
Honeymon also submits the samples to VirusTotal (VT)
[34] for analysis. VirusTotal is an online resource which
provides an API for automatically scanning samples by a
set of popular antivirus software. We used VirusTotal to
estimate the number of binaries containing malware. As
VirusTotal uses 42 antivirus products to scan the submit-
ted samples, we can effectively determine whether the
sample is classified or unknown.

4 Tests and Experiments

To evaluate our system’s performance and effectiveness,
we have conducted several tests and experiments which
are discussed in the following section.

4.1 Performance
During regular operation of VMI-Honeymon, Volatility
scans and baseline comparison took an average of 30
seconds; reverting the VM to a clean state took an av-
erage of 25 seconds. We performed further benchmarks
of our system with varying VM memory sizes for which

4



Figure 3: Benchmarks of Volatility scans

the results can be seen in Figure 4. The hardware specs
of our system were as follows: second generation Intel
i7-2600 quad-core CPU with Intel VT-x and VT-d, In-
tel DQ67SW motherboard, 16GB DDR3 1333Mhz RAM
and two 1.5TB SATA 6.0Gb/s 5900RPM hard-drives us-
ing Intel Rapid Storage Technology in RAID 1.

The snapshot operation consists of creating a memory
backup, a filesystem backup and running initial Volatil-
ity scans on the VM. Libguestfs checksum creation of
the entire filesystem is a separate step in the snapshot
operation not affected by the memory size of the VM
and which takes an additional 5-6 minutes to finish (not
shown on Figure 4). From our benchmarks it is clear that
the memory scanning plugins of Volatility take longer
with growing memory size, seen in Figure 3. Neverthe-
less, even with 2GB of RAM the majority of the scans
finished in about a minute.

Figure 4: Benchmarks of VMI-Honeymon

4.2 Testing with Metasploit
To verify that our system is able to detect intrusions, we
exploited the HIH using Metasploit’s ms08 067 netapi
[31] remote code execution exploit for the SMB stack,
an exploit also used by the Conficker malware [22]. This
exploit was chosen as Conficker infections had been ob-
served on our LIH with Dionaea on multiple occasions.

The anomaly detection did indeed pick up the changes
in the memory, particularly the presence of our remote
shell, cmd.exe and the presence of a new TCP socket.
This intrusion resulted in a total of 127 changes in mem-
ory, predominantly new threads spawning according to
thrdscan, various dll’s being loaded into memory accord-
ing to ldrmodules and those dll’s being opened for read-
ing according to filescan.

We conducted an additional test where we used Metas-
ploit’s auxiliary smb version scan to fingerprint the HIH
and ran our anomaly detection tool to see if a simple
fingerprint operation results in detectable changes. In-
deed, running smb version resulted in a set of changes in
filescan and ldrmodules in relation to the kernel modules
”spools” and ”browser”. While the number of changes
was small, six changes in the output of filescan and a
single change in ldrmodules, this test illustrates the sen-
sitivity of our anomaly detector.

4.3 Rootkits

To further test our system we obtained recent samples
from contagioexchange [23] of the ”Sinowal Mebroot
Torpig” family and manually infected the HIH with
the trojan (md5sum 13ce4cd747e450a129d900e8423-
15328). This malware was chosen as it is known for
disabling itself when it detects a virtualized environment
[21][30]. We observed significant changes all around the
memory footprint of the VM, most notably, changes in
the Interrupt Descriptor Table (IDT) and the Global De-
scriptor Table (GDT). A total number of 78 changes were
detected, including changes with psscan, mutantscan,
filescan and ldrmodules. The only filesystem change
occurred during execution of the malicious binary we
placed in the HIH. No outgoing connection attempts
were detected during this infection. Table 2 shows a snip-
pet of the memory changes detected by VMI-Honeymon.

Similar results were obtained while infecting the
HIH with a TDL4 sample (md5sum 1ca0ca80bf70ca9-
99be809edc2606ac0). This malware was also chosen for
the known behaviour of disabling itself when a virtual-
ized environment is detected [12]. The infection trig-

5



gered detection by modifying the IDT and GDT kernel
tables and by changing the output of mutantscan, files-
can and ldrmodules.

Scan Result

gdt values ”Sel Base Limit Type DPL Gr Pr”
gdt ”0x38 0x0 0xfff Data RW Ac 3 By P” is

missing/changed!
gdt ”0x40 0x400 0xffff Data RW 3 By P” is

missing/changed!
gdt New element: ”0x38 0x7ffdf000 0xfff Data

RW Ac 3 By P”
gdt New element: ”0x40 0x400 0xffff Data RW

Ac 3 By P”
idt values ”Index Selector Function Value [Details]”
idt ”21 8 - 0x0” is missing/changed!
idt New element: ”21 C7 - 0x0”
Table 2: Sinowal Mebroot Torpig detection (snippet).

4.4 Live captures
To expose our system to malicious traffic, it was placed
on a University network with the University firewall
configured to allow all incoming and outgoing connec-
tions. Nevertheless we discovered that traffic originat-
ing from outside the University network is still being
filtered by the University’s ISP which blocks some of
the incoming malicious traffic. During our initial Metas-
ploit tests described above, our external IP was blocked
from accessing the University network for approximately
ten minutes. Nonetheless external malicious traffic still
reaches our system, where we recorded 1,158,477 TCP
and 467,173 UDP connections in two weeks.

The HIH was exposed to 6,335 connections during this
time in 1,980 sessions. VMI-Honeymon extracted a total
of 886 unique binaries out of which 236 were verified as
being malicious by VirusTotal. Dionaea in the same time
captured 1,411 binaries out of which 431 were verified
by VirusTotal.

One of the worms that has triggered the vast major-
ity of Dionaea captures on our LIH is Conficker. Simi-
larly, we have observed several Conficker infections on
our HIH, constituting 14% of the total number of unique
captures and 53% of all captures that had a detection with
VirusTotal. We observed several variants of Conficker
trying to connect to the default gateway on port 445, pos-
sibly trying to propagate on the local network (LAN),
and also trying to initiate connections to unknown web-
servers. A detection and capture snippet of Conficker
can be seen in Table 3. Another subset of samples, an
infection we have not observed previously with Dion-
aea, triggered detection only with McAfee-GW-Edition
according to VirusTotal with a detection named ”Heuris-
tic.BehavesLike.Exploit.CodeExec.L”. Figure 5 shows
details of unique binary captures with VirusTotal detec-
tion, both from the LIH and HIH.

We further evaluated how many infections tried es-

Figure 5: Unique binary captures with VirusTotal detec-
tion

tablishing a connection to an IP other than the attacker,
which can be seen in Figure 6. The results show us that
sessions which resulted in the HIH trying to connect out
had a higher number of binary captures with 98% of the
captures being verified by VirusTotal. On the other hand,
the majority of the sessions with no outgoing connec-
tion attempts resulted in no modification to the filesys-
tem. Furthermore, only 26% of the files extracted during
these sessions were verified by VirusTotal. As such, it is
reasonable to assert that an outgoing connection attempt
is a better indicator of a succesfull exploit but it should
not be relied upon as the sole indicator.

Action Result

sockscan values ”Offset PID Port Proto Address Create
Time”

sockscan New element: ”0x00a6e7a0 984 1039 6 TCP
0.0.0.0 2012-04-10 04:10:37”

sockscan New element: ”0x01085e98 984 1032 17
UDP 127.0.0.1 2012-04-10 04:09:48”

sockscan New element: ”0x0109ae98 984 7054 6 TCP
0.0.0.0 2012-04-10 04:10:20”

filescan values ”Phys.Addr. Obj Type #Ptr #Hnd Access
Name”

filescan New element: ”0x010c7120 0x80e94ad0 1 0
R–r-d /WINDOWS/system32/fmrmj.dll”

CAPTURE ”/WINDOWS/system32/fmrmj.dll”
Table 3: Conficker infection (snippet).

5 Lessons learned

Operating a HIH has many benefits over a LIH. Fore-
most, an attacker can quickly discover that the services
provided by the LIH are emulated [16] and thus avoid
sending a payload. The services provided by the HIH
are not emulated and as such, remote fingerprinting in
this way will be ineffective. In our setup we utilized a
hybrid-approach in which the presence of the LIH is de-
tectable. Furthermore, the presence of Honeybrid is de-
tectable through TCP timestamps when a connection is
forwarded to the HIH therefore Honeybrid has to be ex-
tended to fabricate timestamps that hide the redirection
process from the remote host.

As the HIH runs in fully-virtualized mode, it does not
suffer from incomplete or inaccurate system emulation.

6



Figure 6: Honeypot statistics. Note: A Connection Attempt is defined as any attempt made by the HIH to connect to
an IP other than the attacker’s IP. A Session is defined as all interactions with an attacker.

While it is still possible to discover that the HIH is a VM
once the attacker is inside, the extra monitoring layer uti-
lized by VMI-Honeymon will remain transparent. Possi-
ble timing-attacks to discover our monitoring environ-
ment might attempt to measure the memory bandwidth
fluctuation caused by our scans. Nevertheless, memory
bandwidth fluctuation is not a unique sign of a monitor-
ing environment as running multiple guests can cause the
same symptoms.

From the results we obtained from live captures, it is
clear that extracting binaries based on filesystem changes
can be circumvented or evaded. A malware may choose
to remain in memory for a period of time or require some
other trigger, such as connecting back to the command
and control center, before modifying the filesystem (if at
all). In accordance with our containment policy these at-
tempts are not allowed to leave our network, therefore
a more refined containment policy might be required.
As future work, we are also planning to implement the
extraction of the memory space of suspicious processes
with Volatility to overcome the limitation of filesystem-
based extraction.

While entirely bypassing our anomaly detection would
require precise knowledge of the initial state of the HIH,
it is still possible that parts of an intrusion could go unde-
tected. Memory polling on a live VM means that mem-
ory regions that are in fast-flux might not be properly
fingerprinted by Volatility. Additionally, the scanners
progress linearly from from the first byte of the inspected
memory, therefore it is possible that a malware could
move its memory structures to a region that has already
been scanned and thus avoid detection. This approach
would require the malware to completely erase or over-
write its original memory location and is also dependent
upon precise knowledge of when the tests are initiated
and how long it takes for each scan to progress through
the memory. Both shortcomings could be avoided by
pausing the HIH while the Volatity checks are running
but this approach would make the presence of VMI-
Honeymon detectable to the VM by observing the time-
dilation caused by the pause. An alternative implemen-

tation could use a shadow-copy of the VM memory that
remains static for the duration of the scans using copy-
on-write techniques as presented by Vrable et. al. [35].

Another limitation of memory scanning is that if the
malware alters the data-structures by overwriting non-
essential fields used to fingerprint the memory location,
it could avoid detection. This limitation could be mit-
igated by creating robust signitures for the kernel data-
structures, outlined in [11], which makes it significantly
harder for malware to hide from scanning.

6 Conclusion

The system we presented is a proof-of-concept integra-
tion of a virtualized, hybrid honeypot architecture with
memory introspection and forensics tools. We were able
to capture and analyze 2,297 malware samples in a pe-
riod of two weeks, of which 71% were unclassified by
antivirus vendors at the time of capture. By melding
forensics tools with live memory introspection to imple-
ment an automated high-interaction honeypot, we were
able to expand the range of malware binary captures by
25% compared to operating only a LIH, as shown on
Figure 5. While calculating the number of unique bina-
ries captured based on md5 sums is standard, it is worth
noting that these numbers are adversely effected by mal-
ware packing and do not necessarily mean a unique or
new malware. Future work will establish more accurate
classification of the samples by clustering the observed
memory changes to identify malware families.

While our implementation is an effective and practi-
cal solution to achieve automated malware capture, many
opportunities remain for future enhancements. The se-
mantic gap problem remains an open research issue,
while advancements in introspection libraries continue
to narrow the divide. Expanding the scope of our
methodology to monitor other operating systems as high-
interaction honeypots, while completely supported, also
remains unexplored.

7



References
[1] BAHRAM, S., JIANG, X., WANG, Z., GRACE, M., LI, J.,

SRINIVASAN, D., RHEE, J., AND XU, D. Dksm: Subverting
virtual machine introspection for fun and profit. In Proceedings
of the 2010 29th IEEE Symposium on Reliable Distributed Sys-
tems (Washington, DC, USA, 2010), SRDS ’10, IEEE Computer
Society, pp. 82–91.

[2] BALZAROTTI, D., COVA, M., KARLBERGER, C., KIRDA, E.,
KRUEGEL, C., AND VIGNA, G. Efficient detection of split per-
sonalities in malware. In NDSS (2010), The Internet Society.

[3] BERTHIER, R. G. Advanced honeypot architecture for network
threats quantification. PhD thesis, University of Maryland, Col-
lege Park, MD, USA, 2009. AAI3359256.

[4] CHEN, P. M., AND NOBLE, B. D. When virtual is better than
real. In Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems (Washington, DC, USA, 2001), HOTOS ’01,
IEEE Computer Society, pp. 133–.

[5] CHRISTODORESCU, M., SAILER, R., SCHALES, D. L., SGAN-
DURRA, D., AND ZAMBONI, D. Cloud security is not (just)
virtualization security: a short paper. In Proceedings of the 2009
ACM workshop on Cloud computing security (New York, NY,
USA, 2009), CCSW ’09, ACM, pp. 97–102.

[6] DINABURG, A., ROYAL, P., SHARIF, M. I., AND LEE, W.
Ether: malware analysis via hardware virtualization extensions.
In ACM Conference on Computer and Communications Security
(2008), P. Ning, P. F. Syverson, and S. Jha, Eds., ACM, pp. 51–
62.

[7] DIONAEA. catches bugs. http://dionaea.carnivore.it,
March 16 2012.

[8] DNSCHEF. http://thesprawl.org/projects/dnschef,
March 16 2012.

[9] DOLAN-GAVITT, B., LEEK, T., ZHIVICH, M., GIFFIN, J. T.,
AND LEE, W. Virtuoso: Narrowing the semantic gap in virtual
machine introspection. In IEEE Symposium on Security and Pri-
vacy (2011), IEEE Computer Society, pp. 297–312.

[10] DOLAN-GAVITT, B., PAYNE, B., AND LEE, W. Leveraging
forensic tools for virtual machine introspection. Gt-cs-11-05,
Georgia Institute of Technology, 2011.

[11] DOLAN-GAVITT, B., SRIVASTAVA, A., TRAYNOR, P., AND
GIFFIN, J. Robust signatures for kernel data structures. In Pro-
ceedings of the 16th ACM conference on Computer and commu-
nications security (New York, NY, USA, 2009), CCS ’09, ACM,
pp. 566–577.

[12] ESET. http://blog.eset.com/2011/10/18/

tdl4-rebooted, June 9 2012.

[13] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine in-
trospection based architecture for intrusion detection. In NDSS
(2003), The Internet Society.

[14] HOFMEYR, S. A., SOMAYAJI, A., AND FORREST., S. Intrusion
detection using sequences of system calls. Journal of Computer
Security 6 (1998), 151–180.

[15] JIANG, X., WANG, X., AND XU, D. Stealthy malware detection
and monitoring through VMM-based ”out-of-the-box” semantic
view reconstruction. ACM Trans. Inf. Syst. Secur 13, 2 (2010).

[16] KERI, M. Detecting dionaea honeypot using
nmap. http://blog.prowling.nu/2012/04/

detecting-dionaea-honeypot-using-nmap.html, April 3
2012.

[17] KREIBICH, C., WEAVER, N., KANICH, C., CUI, W., AND
PAXSON, V. Gq: practical containment for measuring modern
malware systems. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference (New York, NY,
USA, 2011), IMC ’11, ACM, pp. 397–412.

[18] KVM. Kernel based virtual machine. http://www.

linux-kvm.org, April 7 2012.

[19] LIBGUESTFS. Library for accessing and modifying vm disk im-
ages. http://libguestfs.org, April 10 2012.

[20] LIBVIRT. The virtualization api. http://libvirt.org, April
10 2012.

[21] LIGH, M. Torpig vmm/idt signatures. http://www.mnin.org/
write/2006_torpigsigs.pdf, 2006.

[22] MCAFEE. http://blogs.mcafee.com/mcafee-labs/

conficker-worm-using-metasploit-payload-to-spread,
June 9 2012.

[23] PARKOUR, M. Contagio exchange. http://

contagioexchange.blogspot.com, April 4 2012.

[24] PAYNE, B. D. http://google.code.com/p/vmitools,
April 25 2012.

[25] PAYNE, B. D., CARBONE, M., SHARIF, M., AND LEE, W.
Lares: An architecture for secure active monitoring using virtu-
alization. Security and Privacy, IEEE Symposium on 0 (2008),
233–247.

[26] PAYNE, B. D., AND LEE, W. Secure and flexible monitoring
of virtual machines. In ACSAC (2007), IEEE Computer Society,
pp. 385–397.

[27] PÉK, G., BENCSÁTH, B., AND BUTTYÁN, L. nether: in-guest
detection of out-of-the-guest malware analyzers. In Proceedings
of the Fourth European Workshop on System Security (New York,
NY, USA, 2011), EUROSEC ’11, ACM, pp. 3:1–3:6.

[28] PORTOKALIDIS, G., SLOWINSKA, A., AND BOS, H. Argos: an
emulator for fingerprinting zero-day attacks for advertised hon-
eypots with automatic signature generation. In EuroSys (2006),
Y. Berbers and W. Zwaenepoel, Eds., ACM, pp. 15–27.

[29] PROSODY. http://prosody.im, April 10 2012.

[30] QUIST, D. A. Visualizing compiled executables for malware
analysis. Architecture (2009), 27–32.

[31] RAPID7. Metasploit penetration testing software. http://www.
metasploit.com, April 12 2012.

[32] SLOWINSKA, A., AND BOS, H. Pointless tainting?: evaluat-
ing the practicality of pointer tainting. In Proceedings of the 4th
ACM European conference on Computer systems (New York, NY,
USA, 2009), EuroSys ’09, ACM, pp. 61–74.

[33] SRIVASTAVA, A., AND GIFFIN, J. T. Tamper-resistant,
application-aware blocking of malicious network connections.
In RAID (2008), R. Lippmann, E. Kirda, and A. Trachtenberg,
Eds., vol. 5230 of Lecture Notes in Computer Science, Springer,
pp. 39–58.

[34] VIRUSTOTAL. Free online virus, malware and url scanner. http:
//virustotal.com, April 16 2012.

[35] VRABLE, M., MA, J., CHEN, J., MOORE, D., VANDEKIEFT,
E., SNOEREN, A. C., VOELKER, G. M., AND SAVAGE, S. Scal-
ability, fidelity, and containment in the potemkin virtual honey-
farm. In Proceedings of the twentieth ACM symposium on Oper-
ating systems principles (New York, NY, USA, 2005), SOSP ’05,
ACM, pp. 148–162.

[36] XEN. http://www.xen.org, April 16 2012.

[37] ZHANG, X., LI, Q., QING, S., AND ZHANG, H. VNIDA:
Building an IDS architecture using VMM-based non-intrusive
approach. In WKDD (2008), IEEE Computer Society, pp. 594–
600.

8


