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ABSTRACT

Very recently, a new software side-channel attack, called
Branch Prediction Analysis (BPA) attack, has been dis-
covered and also demonstrated to be practically feasible
on popular commodity PC platforms. While the above re-
cent attack still had the flavor of a classical timing attack
against RSA, where one uses many execution-time measure-
ments under the same key in order to statistically amplify
some small but key-dependent timing differences, we dra-
matically improve upon the former result. We prove that
a carefully written spy-process running simultaneously with
an RSA-process, is able to collect during one single RSA
signing execution almost all of the secret key bits. We call
such an attack, analyzing the CPU’s Branch Predictor states
through spying on a single quasi-parallel computation pro-
cess, a Simple Branch Prediction Analysis (SBPA) attack —
sharply differentiating it from those one relying on statisti-
cal methods and requiring many computation measurements
under the same key. The successful extraction of almost all
secret key bits by our SBPA attack against an openSSL RSA
implementation proves that the often recommended blind-
ing or so called randomization techniques to protect RSA
against side-channel attacks are, in the context of SBPA
attacks, totally useless. Additional to that very crucial se-
curity implication, targeted at such implementations which
are assumed to be at least statistically secure, our success-
ful SBPA attack also bears another equally critical security
implication. Namely, in the context of simple side-channel
attacks, it is widely believed that equally balancing the op-
erations after branches is a secure countermeasure against
such simple attacks. Unfortunately, this is not true, as even
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such “balanced branch” implementations can be completely
broken by our SBPA attacks. Moreover, despite sophisti-
cated hardware-assisted partitioning methods such as mem-
ory protection, sandboxing or even virtualization, SBPA at-
tacks empower an unprivileged process to successfully attack
other processes running in parallel on the same processor.
Thus, we conclude that SBPA attacks are much more dan-
gerous than previously anticipated, as they obviously do not
belong to the same category as pure timing attacks.

Categories and Subject Descriptors

E.3 [Data Encryption]: [Public key cryptosystems, Code
breaking]

General Terms

Security

Keywords

Branch Prediction Analysis, Modular Exponentiation, RSA,
Side Channel Analysis

1. INTRODUCTION

Deep CPU pipelines paired with the CPU’s ability to fetch
and issue multiple instructions at every machine cycle led
to the concept of superscalar processors. Superscalar pro-
cessors admit a theoretical or best-case performance of less
than 1 machine cycle per completed instructions, cf. [36].
However, the inevitably required branch instructions in the
underlying machine languages were very soon recognized as
one of the most painful performance killers of superscalar
processors. Not surprisingly, CPU architects quickly in-
vented the concept of branch predictors in order to circum-
vent those performance bottlenecks. Thus, it is not surpris-
ing that there has been a vibrant and very practical research
on more and more sophisticated branch prediction mecha-
nisms, cf. [28, 34, 36]. Unfortunately, a very recent paper,
cf. [1], identified branch prediction as a novel and unforeseen
side-channel, thus being another new security threat within
the computer security field. Let us elaborate a little bit on



this connection between side-channel attacks and modern
computer-architecture ingredients.

So far, typical targets of side-channel attacks have been
mainly Smart Cards, cf. [6, 18]. This is due to the ease of
applying such attacks to smart cards. The measurements of
side-channel information on smart cards are almost “noise-
less”, which makes such attacks very practical. On the other
side, there are many factors that affect such measurements
on real commodity computer systems based upon the most
successful one, the Intel x86-architecture, cf. [34]. These fac-
tors create noise, and therefore it is much more difficult to
develop and perform successful attacks on such “real” com-
puters within our daily life. Thus, until very recently, the
vulnerability of systems even running on servers was not “re-
ally” considered to be harmful by such side-channel attacks.
This was changed with the work of Brumley and Boneh, cf.
[3], who demonstrated a remote timing attack over a real
local network. They simply adapted the attack principle as
introduced in [33] to show that the RSA implementation of
OpenSSL [25] — the most widely used open source crypto
library — was not immune to such attacks.

Even more recently, we have seen an increased research
effort on the security analysis of the daily life PC platforms
from the side-channel point of view. Here, it has been espe-
cially shown that the cache architecture of modern CPU’s
creates a significant security risk, cf. [2, 26, 27, 30], which
comes in different forms. Although the cache itself has been
known for a long time being a crucial security risk of modern
CPU’s, cf. [37, 14], the above papers were the first proving
such vulnerabilities practically and raised large public inter-
est in such vulnerabilities.

Especially in the light of ongoing Trusted Computing ef-
forts, cf. [39], which promise to turn the commodity PC
platform into a trustworthy platform, cf. also [4, 8, 10, 29,
39, 40], the formerly described side channel attacks against
PC platforms are of particular interest. This is due to the
fact that side channel attacks have been completely ignored
by the Trusted Computing community so far. Even more in-
teresting is the fact that all of the above pure software side
channel attacks also allow a totally unprivileged process to
attack other processes running in parallel on the same pro-
cessor (or even remote), despite sophisticated partitioning
methods such as memory protection, sandboxing or even
virtualization. This particularly means that side channel at-
tacks render all of the sophisticated protection mechanisms
as for e.g. described in [10, 40] as useless. The simple rea-
son for the failure of these trust mechanisms is that the new
side-channel attacks simply exploit deeper processor ingre-
dients — i.e., below the trust architecture boundary, cf. [31,
10].

Following this interesting new research vector, Aciigmez,
Kog, and Seifert, cf. [1], just recently discovered that the
branch prediction capability, common to all modern high-
end CPU’s, is another new side-channel posing a novel and
unforeseen security risk. The authors presented different
branch prediction attacks on simple RSA implementations
as a case study to describe the basics of their novel attacks
an adversary can use to compromise the security of a plat-
form. In order to do so, they gradually developed from an
obvious attack principle more and more sophisticated attack
principles, resulting in four different scenarios. To demon-
strate the applicability of their attacks they complemented
their scenarios by showing the results of selected practical
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implementations of their various attack scenarios.

Irrespectively of their achievements, it is obvious that all
of their attacks still had the flavor of a classical timing at-
tack against RSA. Indeed, careful examination of these four
attacks introduced in [1] shows that they all require many
measurements to finally reveal the secret key. In a timing
attack, the key is obtained by taking many execution time-
measurements under the same key in order to statistically
amplify some small but key-dependent timing differences, cf.
[18, 7, 33]. Thus, simply eliminating the deterministic time-
dependency of the RSA signing process of the underlying
key by very well understood and also computationally cheap
methods like message blinding or secret exponent masking,
cf. [18], such statistical attacks are easy to mitigate. There-
fore, it is quite natural that timing attacks caused no real
threat to the security of PC platforms.

Unfortunately, the present paper teaches us that this “let’s
think positive and relax” assumption is quite wrong! Namely,
we dramatically improve upon the former result of [1] in
the following sense. We prove that a carefully written spy-
process running simultaneously with an RSA-process is able
to collect during one single RSA signing execution almost
all of the secret key bits. We call such an attack, analyz-
ing the CPU’s Branch Predictor states through spying on a
single quasi-parallel computation process, a Simple Branch
Prediction Analysis (SBPA) attack. In order to clearly dif-
ferentiate those branch prediction attacks that rely on statis-
tical methods and require many computation measurements
under the same key, we will call those Differential Branch
Prediction Analysis (DBPA) attacks. However, additional
to that very crucial security implication — SBPA is able to
break even such implementations which are assumed to be at
least statistically secure — our successful SBPA attack also
bears another equally critical security implication. Namely,
in the context of simple side-channel attacks, it is widely be-
lieved that equally balancing the operations after branches
is a secure countermeasure against such simple attacks, cf.
[16]. Unfortunately, this is not true, as even such “balanced
branch” implementations can be completely broken by our
SBPA attacks.

The present paper is organized as follows. The next sec-
tion gives some background information including the struc-
ture and functionality of a general Branch Prediction Unit
and some important details to understand the rest of the
paper. Also, it gives a brief overview about RSA, a short
primer on its usual practical implementation, and some def-
initions used throughout the paper. Section 3 briefly recalls
the so called “Trace-driven Attack against the BTB” due to
Aciigmez, Kog, and Seifert, cf. [1]. Hereafter, we turn to our
enhanced analysis of a trace-driven attack against a Branch
Target Buffer (BTB). The positive results of our practical
experiments, yielding a practical SBPA attack against the
RSA implementation of OpenSSL are presented in section 5.
Finally, we summarize the results of the present paper, con-
clude with some remarks and outline some future research
in the last section.

2. BACKGROUND, DEFINITIONS AND
PRELIMINARIES

2.1 Branch Prediction Unit

Superscalar processors have to execute instructions specu-



Basic Pentium 4 Processor Misprediction Pipeline
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Figure 1: 20 stage Misprediction Pipeline.
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latively to overcome control hazards, cf. [36]. The negative
effect of control hazards on the effective machine perfor-
mance increases as the depth of pipelines increases. This
fact makes the efficiency of speculation one of the key issues
in modern superscalar processor design. The solution to im-
prove their efficiency is thus simply to speculate on the most
likely execution path. The success of this approach depends
on the accuracy of branch prediction. Better branch predic-
tion techniques improve the overall performance a processor
can achieve, cf. [36].

A branch instruction is a point in the instruction stream of
a program where the next instruction is not necessarily the
next sequential one. There are two types of branch instruc-
tions: unconditional branches (e.g. jump instructions, goto
statements, etc.) and conditional branches (e.g. if-then-else
clauses, for and while loops, etc.). For conditional branches,
the decision to take the branch or not to take the branch
depends on some condition that must be evaluated in order
to make the correct decision. During this evaluation period,
the processor speculatively executes instructions from one of
the possible execution paths instead of stalling and awaiting
for the decision to come through. Thus, it is very benefi-
cial if the branch prediction algorithm tries to predict the
most likely execution path in a branch. If the prediction
is true, the execution continues without any delays. If it
is wrong, which is called a misprediction, the instructions
on the pipeline that were speculatively issued have to be
dumped and the execution starts over from the mispredicted
path. Therefore, the execution time suffers from a mispre-
diction. The misprediction penalty obviuosly increases in
terms of clock cycles as the depth of pipeline extends. The
following Figure 1 shows the so called “20 stage Mispre-
diction Pipeline” of the famous Intel Pentium 4 Processor.
Thus, in order to address such branch bottlenecks and to ex-
ecute the instructions speculatively after a branch, the CPU
needs the following information:

e The outcome of the branch. The CPU has to know
the outcome of a branch, i.e., taken or not taken,
in order to execute the correct instruction sequence.
However, this information is not available immediately
when a branch is issued. The CPU needs to execute
the branch to obtain the necessary information, which
is computed in later stages of the pipeline. Instead of
awaiting the actual outcome of the branch, the CPU
tries to predict the instruction sequence to be executed
next. This prediction is based on the history of the
same branch as well as the history of other branches
executed just before the current branch, cf. [36].

The target address of the branch. The CPU tries to
determine if a branch needs to be taken or not taken.
If the prediction turns out to be taken, the instruc-
tions in the target address have to be fetched and is-
sued. This action of fetching the instructions from the
target address requires the knowledge of this address.
Similar to the outcome of the branch, the target ad-
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Figure 2: Branch Prediction Unit Architecture.
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dress may not immediately available too. Therefore,
the CPU tries to keep records of the target addresses of
previously executed branches in a buffer, the so called
Branch Target Buffer (BTB).

Overall common to all Branch Prediction Units (BPU) is
the following rough Figure 2. As shown, the BPU consists
of mainly two “logical” parts, the BTB and the predictor.
As said already above, the BTB is the buffer where the CPU
stores the target addresses of the previous branches. Since
this buffer is limited in size, the CPU can store only some
number of such target addresses, and previously stored ad-
dresses may be evicted from the buffer if a new address needs
to be stored instead. The BTB is functional and architec-
tural very similar to an ordinary cache, and indeed used as a
cache for previously seen branch target adresses of “cached”
branch instructions at certain adresses.

The predictor is that part of the BPU that makes the pre-
diction on the outcome of the branch under question. There
are different parts of a predictor, i.e., Branch History Reg-
isters (BHR) like the global history register or local history
registers, and branch prediction tables, etc., cf. [36].

2.2 RSA and the Binary Square-and-Multiply
Exponentiation Algorithm

RSA is the most widely used public key cryptosystem
which was developed by Rivest, Shamir and Adleman, cf.
[20]. The main computation in RSA decryption (= signing)
is the modular exponentiation P = M<(modN), where M
is the message or ciphertext, d is the private key that is se-
cret, and N is the public modulus. Here, N is the product of
two large primes p and . If an adversary obtains the secret
value d, he can read all encrypted messages and imperson-
ate the owner of the key. Therefore, the usual main purpose
of using timing attacks is to reveal this secret value. If the
attacker can factorize IV, i.e., he can obtain either p or g,
from which the value of d can be easily calculated. Hence,
the attacker tries to find p, ¢, or d. Since the size of the key
is very large, e.g., 1024 bits, the exponentiation is (even on
todays very powerful PC platforms) still very expensive in
terms of the execution time. Therefore, actual implemen-
tations of RSA usually employ very efficient and optimized
algorithms to accelerate the result of this operation. How-
ever, tailored to our “proof-of-concept” purpose, we explain



S=M
for ¢ from 1 ton—1 do

S =8%S (modN)

if d; = 1 then
S =S%M (modN)
return S

Figure 3: Binary version of Square-and-Multiply
Exponentiation Algorithm

Ro=1,Ri=M
for i from 0 to n — 1 do
if d; = 0 then
Ri = Ro * R1 (mod N)
Ro = Ro*RQ (mod N)
else [if d; = 1] then
Ro = Ro*Rl (IIlOd N)
Rl Rl * Rl (mod N)
return Ry

Figure 4: Balanced Montgomery Powering Ladder

in the next subsection only the most widely and simplest
used algorithm.

2.2.1 Binary Square-and-Multiply Exponentiation
Algorithm.

The binary version of the classical Square-and-Multiply
Algorithm (SM) is the simplest way to perform an exponen-
tiation. We want to compute Md(mod N), where d is an
n-bit number, i.e., d = (do,d1,...,dn—1)2. Figure 3 shows
the steps of SM, which processes the bits of d from left to
right. The reader should note that all of the multiplications
and squarings are shown as modular operations, although
basic SM algorithm computes regular exponentiations. This
is because RSA performs modular exponentiation, and our
focus here is on RSA. In an efficient RSA implementation all
of the multiplications and squarings are then actually per-
formed using a special modular multiplication algorithm, so
called Montgomery Multiplication, cf. [20]. But contrary to
many other papers, cf. [3, 7, 33], whose target is this spe-
cial Montgomery Multipliction, we are (to keep things in
this paper as simple as possible) only interested in this SM
branch.

2.2.2 Balanced Montgomery Powering Ladder

In the context of side channel attacks, cf. [6, 18, 16], it
was quickly “agreed” that simple side-channel attacks could
be (simply) mitigated by avoiding the unbalanced and key-
dependent conditional branch in the above Figure 3, and
just insert dummy operations into the flow in order to make
the operations after the conditional branch more balanced,
cf. [16]. As this “dummy equipped” binary SM algorithm
still had some negative side-effects, cf. [16], a very active re-
search area arose around the so called Balanced Montgomery
Powering Ladder, as shown in the Figure 4.

This exponentiation is assumed to be “intrinsically se-
cure” against simple side-channel attacks, cf. [16], and also
has many compuatational advantages over the above basic
SM algorithm. Unfortunately, we will explain and see later,
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that all those “balanced branch” exponentiation algorithms
are “intrinsically insecure” in the presence of SBPA attacks.

2.3 Multi-Threading, spy and crypto pro-
cesses

With the advent of the papers from [26, 27, 30] a new
and very interesting attack paradigm was initiated. This
relies on the massive multi-threading (quasi-parallel) capa-
bilities of modern CPU’s, whether hardware-managed or
OS-managed, cf. [22]. While purely single-threaded pro-
cessors run threads/processes clearly serial, the OS man-
ages to execute several programs in a quasi parallel way,
cf. [35]. The OS basically decomposes an application into
a series of short threads that are ordered with other ap-
plication threads. On the other side, there are also cer-
tain processors, so called hardware-assisted multi-threaded
CPU’s, which enable a much finer-grained quasi-parallel ex-
ecution of threads, cf. [36, 34]. Here, some “cheap” CPU
resources are explicitly doubled (tripled, etc.), while some
others are temporarily shared. It allows them to have two
or many other processes running quasi parallel on the same
processor, as if there were two or more logical processors [36,
35]. This allows then indeed a fine-grained instruction-level
multi-threading, cf. [36].

Irrespectively of single-threaded or hardware-assisted
multi-threaded, some logical elements are always shared,
which enables one process to spy on another process, as the
shared CPU elements leak some so called metadata, cf. [26,
27]. Of course, the sharing of the resources does not allow a
direct reading of the other applications data, as the memory
protection unit (MMU or Virtual Machine) stricly enforces
an application memory separation. One such example of a
shared element, which is the central point of interest for this
paper is the highly complex BPU of modern CPU’s.

The new paradigm put forward by [26, 27, 30], although
already implicitly pointed out by Hu [14], consists of quasi-
parallel processes, called spy process and crypto process. As
the name suggest, the spy process tries to infer some secret
data from the parallel executed crypto process by observing
the leaked metadata. In the most extreme and most prac-
tical scenario, both processes run completely independently
of each other, and this scenario was termed asynchronous
attack by [27].

Given the very complex process structures and their han-
dling by a modern OS, cf. [35], the following heuristic is
quite obvious.

A hardware-assisted multi-threading CPU will simplify
a successfull spy process, as:

1. Some inevitable “noise” due to the respective
thread switches will be absorbed by the CPU’s
hardware-assistance.

2. The instruction-level threading capability en-
hances the time-resolution of the spy-process.

In the other case, one needs a very sophisticated OS ex-
pertise and a deep thread scheduling expertise, cf. [22]. As
the above paradigm and all its subtle implementation de-
tails heavily depend on the underlying OS, CPU type and
frequency, etc. we will not deepen further those technical
details here, and just assume the existence of a suited spy
process and a corresponding crypto process in a hardware-
assisted multi-threading environment.



3. RECALLING ATTACK 4 FROM [ASK]:
TRACE-DRIVEN ATTACK AGAINST
THE BTB

The attack 4 from Aciigmez, Kog, and Seifert, cf. [1],
also known as “Trace-driven Attack against the BTB”, uti-
lizes the above outlined quasi-parallel paradigm of a spy and
crypto process running on the same platform. It works as
follows.

A “protected” crypto process executes the RSA signing
process by using one of the above exponentiation algorithms,
i.e. 3 or 4 or any other exponentiation algorithm involving
a branch depending on the secret key bits, and therefore
executes a sequence of conditional branches, as long as the
size of the secret key d. Also a spy process is executed
simultaneously with the cipher and it continuously does the
following:

1. continuously executes a number of branches, and
2. measures the overall execution time of all its branches

in such a way that all of these branches map to the same
BTB set which also stores the specific conditional branch
determined by the secret key bits of the crypto process.
This requires that the number of branches in the spy process
needs to be equal to the associativity of the underlying BTB,
i.e., to its number of ways. Recall that it is easy to under-
stand the properties of the BTB using simple benchmarks
as explained in [21].

Let’s analyze what’s happening if the adversary starts the
spy process before the cipher. It simply means that when
the cipher starts the encryption (= signing), the CPU cannot
find the target address of the target branch in the BTB and
the prediction must be not-taken, cf. [36]. Furthermore,
we can distinguish two cases depending on the currently
processed secret key bit:

e If the branch turns out to be taken, then a mispredic-
tion will occur and the target address of the branch
needs to be stored in BTB. Then, one of the spy
branches has to be evicted from the BTB so that the
new target address can be stored in. When the spy-
process re-executes its branches, it will encounter a
misprediction on the branch that has just been evicted.
As the spy-process also measures the execution time of
all its branches, it can simply detect whenever the ci-
pher modified the BTB, meaning that the execution
time of these spy branches takes a little longer than
usual.

If the branch turns out to be not taken, then no mispre-
diction will occur and the BTB does not need to be up-
dated. When the spy-process re-executes its branches,
measures the execution time of all its branches, it can
simply infer that the cipher had not modified the BTB,
and the target branch was not taken by the crypto pro-
cess.

Thus, the adversary can simply determine the complete
execution flow of the cipher process by continuously per-
forming the above very simple spy strategy, i.e., just exe-
cuting spy branches and measuring their overall execution
time. Therefore, the spy process will see the complete pre-
diction/misprediction trace of the target branch, and is able
to infer the secret key. Following [27], this kind of attack
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was named an asynchronous attack, as the adversary-process
needs no synchronization at all with the simultaneous crypto
process — it is just following his own paradigm: continu-
ously execute spy branches and measure their overall execu-
tion time.

In order to demonstrate the feasibility of the above attack
[1] had run the RSA process in the presence of a spy pro-
cess under the same secret key N times, and averaged then
the timing results taken from their spy to decrease the noise
amplitude in the measurements. Their resulting graphs are
shown for different values of N in Figure 5 — clearly visual-
izing the stabilizing effect in the cycle gap between squaring
and multiplication.

« Squarings = Multiplications 10000 measurements|

601
100 measurements|
67

570

550

100 200 300 400 500 600 700 800

Figure 5: Stabilizing square/multiply cycle gap re-
sulting from the above trace-driven attack against
the BTB

4. IMPROVING TRACE-DRIVEN AT-

TACKS AGAINST THE BTB

In this section, we present our improvement over the DBPA
attack from [1], which we outlined in the last section. How-
ever, in order to logically derive our final successful SBPA
result against some version of the binary square and multiply
exponentiation for RSA, we have to investigate the situation
a bit deeper.

If we consider the above Figure 5, we can certainly draw
the conclusion that from spy processes like this, there is no
hope for a successful SBPA. At first sight this looks quite
astonishing for the following reason. In a certain sense, the
trace-driven attack against the BTB from [1] is very similar
to the cache eviction attacks of [30, 27, 22]. In these attacks,
a spy process is also continuously testing through timing
measurements which of its private data had been evicted by
the crypto process. And especially in the RSA OpenSSL 9.7
case from [30], the measurement quality was high enough to
get lots of secret key bits by spying on one single exponen-
tiation, i.e., inferring by simple time measurements which
data the crypto process had loaded into the data cache, to
perform the RSA signing operation.

However, there is one fundamental difference, setting BPA
attacks apart from pure data cache eviction attacks. At-
tacking the BTB, although being itself acting like a simple
cache, is actually targeting the instruction flow, which is
magnitudes more complicated than the data flow within the
memory hierarchy, i.e., between the L1 data cache and the
main memory. Therefore, as already mentioned in the above
section 2.1, numerous architectural enhancements take care
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that a deeply pipelined superscalar CPU like Pentium 4 can-
not get too easily stalled by a BTB miss. When considering
just (and what is publicly known) the Front-End Instruction
Pipeline Stages between the Instruction Prefetching Unit
and the resulting feeding into the so called pop Queue, as
shown in the Figure 6 below, we recognize that only this
Front-End Instruction path is much more complicated than
the data flow path, cf. [34].

If we inspect the above Figure 6 in more depth, we can
recognize that the Pentium 4 has two different BTB’s: a
Front-End BTB and a Trace-Cache BTB. As the architec-
tural reasons for this second Trace-cache BTB are out of
interest for this paper, we refer the interested readers to
citeShen, TraceCache. However, more interesting is the in-
formation on their sizes, and especially their joint function-
ality which we can partially learn from [34, pp. 913-914]:
The travels of a conditional branch instruction. The Front-
End BTB has a size of 4096 entries, whereas the Trace-Cache
BTB has only a size of 512 entries, i.e., the Front-End BTB
is a superset of the Trace-Cache BTB.

The most interesting fact that we can draw from this dou-
bled BTB is the following. Executing a certain sequence of
branches in the spy process which evicts just the Front-End
BTB might not necessarily suffice to completely enforce the
CPU not to find the target address of the target branch in
some of the BTB’s. A certain hidden interaction between
Front-End BTB and Trace-Cache BTB might allow for some
“short-term” victim address evictions, but still store the tar-
get branch in one of the BTB’s .

Thus, we decided to let the spy process continuously do
the following. Continuously execute a certain fixed sequence
of, say t, branches to evict the target branch’s entry out of
the BTBs and measure the overall execution time of all these
branches. This is exactly what is done in the earlier attack
of Aciigmez et al. except for a single difference, which trans-
forms their trace-driven attack from a DBPA attack into an
extremely powerful SBPA attack. The optimal number of ¢
branches turns out to be significantly larger than the num-
ber of associativity, which is the exact value used in [1]. The
increased value for t guarantees the eviction of the target en-
try from all different places that can store it, e.g., from both
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Front-End BTB and Trace-Cache BTB.

The value of ¢ also affects the cycle gap between squaring
and multiplication in the following way. As mentioned in
the previous section, when the target branch is evicted from
the BTB and the branch turns out to be taken, then a mis-
prediction will occur and the target address of the branch
needs to be stored in BTB. Then, one of the spy branches
has to be evicted from the BTB, so that the new target ad-
dress can be stored in. When the spy-process re-executes its
branches, it will encounter a misprediction on the branch
that has just been evicted.

A fact that was not mentioned above is that this mis-
prediction will also trigger further mispredictions since the
entry of the evicted spy branch needs to be re-stored and an-
other not-yet-reexecuted spy branch entry has to be evicted,
which will also cause other mispredictions. At the end, the
execution time of this spy step is expected to suffer from
many misprediction delays resulting in a very high gap be-
tween squaring and multiplication. However, this scenario
only works out if the entries are completely evicted from all
possible locations. As can be seen in Figure 5, the gap here
is only 20 cycles, which indicates that the above scenario is
not valid for this particular attack, i.e., for this value of t.
Increasing ¢ to its optimal value also enforces our scenario
and guarantees a very large gap composed of several mispre-
diction delays. This fact is clear, when considering the gap
around 1000 cycles in our SBPA attack, i.e., our improved
trace-driven attack.

The optimal value of ¢ is eventually machine dependent
and (most likely) also depends on the particular set of soft-
ware, i.e., the OS running on the machine. Therefore, an
adversary needs to carefully tune, e.g., empirically deter-
mine the optimal value for ¢, the spy process on the attacked
machine.

5. PRACTICAL RESULTS

To validate our aforementioned enhanced “BTB eviction
strategy”, we performed some practical experiments. As
usual in this context, we have chosen to carry out our ex-
perimental attacks in a popular simultaneous multithread-
ing environment, cf. [34], as this CPU type simplifies the
context switching between the spy and the crypto process.
In our above outlined setting, the adversary can apply this
asynchronous attack without any knowledge on the details
of the used branch prediction algorithm or any deeper BTB
structure knowledge.

As in [1], we performed this attack on a very simple RSA
implementation that employed a square-and-multiply expo-
nentiation and also Montgomery multiplication with dummy
reduction. We used the RSA implementation from OpenSSL
version 0.9.7e as a template and made some modifications
to convert this implementation into the simple one as stated
above. To be more precise, we changed the window size
from 5 to 1, removed the CRT mode, and added the dummy
reduction step. We used random plaintexts generated by
the rand() and srand() functions, as available in the stan-
dard C library, and measured the execution time in terms of
clock cycles using the cycle counter instruction RDTSC, which
is available in user-level.

Our experimental results of this enhanced “BTB eviction
strategy” for RSA-sign with a 512 bit key-length are shown
in the following Figure 7.
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Figure 7: Results of SBPA with an improved reso-
lution.

5.1 A simple heuristic to enhance the measure-
ment resolution

As recognizable from the above Figure 7, our repeated
spy-execution of a certain fixed sequence of branches cer-
tainly enhanced the resolution for one single RSA-sign mea-
surement. Indeed, comparing Figure 7 with Figure 5 one
could say that this simple trick “saved” an averaging of
about 1000 to 10000 different measurements.

Although this is already a clear dramatic resolution en-
hancement, we weren’t able to directly amplify this SBPA
resolution anymore. Being stuck with this resolution, and
getting not enough secret key bits, we employed another
more heuristic, but very powerful argument based on the
following fact.

On an average PC (client or server) running Windows,
Linux, etc. there are many quasi-parallel processes running,
whether system-processes or user-initiated processes. The
time when such processes are running can be assumed to
be random and it heavily influences the timing-behavior of
every other process, for e.g., our spy and crypto process.

Therefore, there is a statistical chance to perform some of
our measurements during a timeframe when such influences
are minimal, which leads us to our following heuristic:

there must exist among all those measurements also
some quite “clear” measurements.

We call this argument the time-dependent random self-
improvement heuristic.  Applying this heuristic simply
means that we just have to do some SBPA measurements,
say at several independent times, and we can be sure that
among those there will be at least “one unusually good”
individual measurement, which will be our final SBPA. To
validate this heuristic, we performed then ten different “ran-
dom SBPA attacks on the same 512 bit key, from which we
show in Figure 8 only 4 very different ones. Without doubt,
they are all quite different although they process the same
key, thus supporting our heuristic quite well.

And indeed, the following experimental result, also being
among those ten measurements, clearly shows that there is
one exceptionally clear one, which directly reveals 508 out
of 512 secret key bits.

Armed with this final experimental result, we safely can
claim that we have lifted the work of [1] to the much more
powerful SBPA area.
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Figure 9: Best result of our SBPA against openSSL
RSA, yielding 508 out of 512 secret key bits.

6. CONCLUSIONS

Branch Prediction Analysis (BPA), which recently led to
a new software side-channel attack, still had the flavor of
classical timing attacks against RSA. Timing attacks use
many execution-time measurements under the same key in
order to statistically amplify some small but key-dependent
timing differences. In this paper, we have dramatically im-
proved the former results of [1] and showed that a carefully
written spy-process running simultaneously with an RSA-
process, is able to collect during one single RSA signing ex-
ecution almost all of the secret key bits. We call this attack,
analyzing the CPU’s Branch Predictor states through spy-
ing on a single quasi-parallel computation process, a Sim-
ple Branch Prediction Analysis (SBPA) attack — sharply
differentiating it from those one relying on statistical meth-
ods and requiring many computation measurements under
the same key. The successful extraction of almost all se-
cret key bits by our SBPA attack against an openSSL RSA
implementation proves that the often recommended blind-
ing or so called randomization techniques to protect RSA
against side-channel attacks are, in the context of SBPA
attacks, totally useless. Additional to that very crucial se-
curity implication, targeted at such implementations which
are assumed to be at least statistically secure, our success-
ful SBPA attack also bears another equally critical security
implication. Namely, in the context of simple side-channel
attacks, it is widely believed that equally balancing the op-
erations after branches is a secure countermeasure against
such simple attacks. Unfortunately, this is not true, as even
such “balanced branch” implementations can be completely
broken by our SBPA attacks. Moreover, despite sophisti-
cated hardware-assisted partitioning methods such as mem-
ory protection, sandboxing or even virtualization, SBPA at-
tacks empower an unprivileged process to successfully attack
other processes running in parallel on the same processor.
Thus, we conclude that SBPA attacks are much more dan-
gerous than previously anticipated, as they obviously do not
belong to the same category as pure timing attacks.

More importantly, since our new attack requires only one
single execution observation, and thus significantly differs
from the earlier timing attacks, the SBPA discovery opens
new and very interesting application areas. It especially
endangers those crptographic/algorithmic primitives, whose
nature is an intrinsic and input dependent branching pro-
cess. Here, we especially target the modular reduction and
the modular inversion part. In practical implementations
of popular cryptosystems they are often used in such cases,
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Figure 8: Enhancing a bad resolution via independent repetition.

where one parameter of the respective algorithm (i.e., mod-
ular reduction or modular inversion) is an important secret
parameter of the underlying cryptosystem. Let us briefly
mention a few but important situations for reduction and
inversion, where a successfull SBPA attack could lead to a
serious security compromise.

e Modular reduction (mod p and mod ¢) is used in the
initial normalization process of RSA when using the
Chinese Remainder Theorem, cf. [20]. And indeed, [15,
17] already pointed out that the classical pencil and
paper division algorithm could leak through certain
side channels the secret knowledge of p and q.

e Inversion is also very often used as a statistical side
channel atttack countermeasure to blind messages dur-
ing RSA signature computations, cf. [18, 33], thus ef-
fectively combating classical timing attacks, cf. [3].

e Inversion is the main ingredient during the RSA key
generation set-up to compute the secret exponent from
the public exponent and the totient function of the
respective RSA modulus.

e Inversion is also used in the (EC)DSA, cf. [20], and
just the leakage of a few secret bits of the respective
ephemeral keys, cf. [11, 23, 24], leads to a total break
of the (EC)DSA.

Classical timing attacks cannot compromise such oper-
ations solely because they rely on capturing many mea-
surements and statistical analysis with the same input
paramters, whereas the above situations execute the reduc-
tion or inversion part only once for a specific input set. We
feel that our findings will eventually result in a serious revi-
sion of current software for various public-key cryptosystem
implementations, and that there will arise a new research
vector along our results.
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