
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
Master’s Program in Computer Science

Master’s Thesis

Grammar-Based Interpreter Fuzz Testing

submitted by

Christian Holler

on June 30, 2011

Supervisor: Prof. Dr.-Ing. Andreas Zeller

Advisor: Kim Herzig, M.Sc.

Reviewers: Prof. Dr.-Ing. Andreas Zeller
Prof. Dr. Wolfgang J. Paul

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit
selbstständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I
have not used any other media or materials than the ones referred to
in this thesis.

Saarbruecken, June 29, 2011

Christian Holler

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden
Versionen in die Bibliothek der Informatik aufgenommen und damit
veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) acces-
sible to the public by having them added to the library of the Computer
Science Department.

Saarbruecken, June 29, 2011

Christian Holler

Contents

Abstract 4

1 Introduction 5

2 Background 7
2.1 Related Work . 7

2.1.1 Indirectly Related . 8
2.2 Definitions . 10

2.2.1 Defect . 10
2.2.2 Language Grammar 10
2.2.3 Interpreter . 10

3 Methods 12
3.1 Random Generative Approaches 12

3.1.1 Random Walk over Grammar 12
3.1.2 Stepwise Expansion Algorithm 13

3.2 Code Mutations . 16
3.3 Constructing LangFuzz . 17

3.3.1 Code Parsing . 17
3.3.2 Code Generation . 18
3.3.3 Fragment Replacement 18
3.3.4 Test Running . 19
3.3.5 Parameters . 20

4 Evaluation 21
4.1 Comparison with State of the Art 21

4.1.1 Differences between the Programs 21
4.1.2 Questions and Goals 22
4.1.3 Experiment Setup . 22
4.1.4 Experiment Results 24

4.2 Generative vs. Mutative Approach 26
4.2.1 Questions and Goals 26
4.2.2 Experiment Setup . 26
4.2.3 Experiment Results 27

2

CONTENTS 3

4.3 Field Tests with Mozilla and Google 28
4.3.1 Example for a bug missed by jsfunfuzz 30
4.3.2 Example for detected incomplete fix 30
4.3.3 Example for defect detected through code generation

only . 30
4.3.4 Further code examples 30

4.4 Proof-of-Concept Adaptation to PHP 31
4.4.1 Steps required to run on PHP 31
4.4.2 Experiment/Results on PHP Interpreter 32

5 Threats to Validity 34
5.1 Generalization . 34

5.1.1 Language . 34
5.1.2 Tested Software . 34
5.1.3 Test Suite Quality . 34
5.1.4 Runtime and Randomness 35

5.2 Bug Duplicates . 35

6 Conclusion 36

7 Further Work 37
7.1 Differential Testing . 37
7.2 Further Languages and Island Grammars 37
7.3 Generic Semantics Support 38

Acknowledgements 39

Bibliography 40

Appendix 42

Abstract

Fuzz-Testing (Robustness Testing) is a popular automated testing method
to locate defects within software that has proven to be valuable especially
in the area of security testing. Several frameworks for typical applications
(e.g. network protocols or media files) have been written so far. However,
when it comes to interpreter testing, only a few language specific fuzzers
exist. In this thesis we will introduce a new fuzzing tool called ”LangFuzz”
which provides a language-independent approach for interpreter testing by
combining random code generation and code mutation techniques based on
syntax. For the languages JavaScript and PHP, we will evaluate the tool
and show that it is able to detect real-world defects in the popular browsers
Firefox and Chrome. So far, LangFuzz has been awarded with twelve Mozilla
Security Bug Bounty Awards and twelve Chromium Security Rewards.

4

Chapter 1

Introduction

Software security is a topic that has become more and more important with
the growing interconnectedness, not only for companies but also for individ-
uals. Security issues can be expensive1 but even without a financial aspect,
it is generally desirable to avoid security issues to protect the privacy of users
and companies. The variance of techniques to tackle such security issues is
broad. Especially since software systems tend to become more and more
complex and thus harder to overlook and secure. One of these techniques is
called “fuzz testing” or simply “fuzzing”.
Fuzz testing is the process of automatically generating (random) input data
for a software that is to be tested and observing its behavior, e.g. to find
a crash or assertion. How sophisticated the generated input can be, solely
depends on the fuzzer itself. In some cases, even very unsophisticated fuzzers
that have only little information about the target and hence lack adaptation,
can provoke serious errors. In other cases (e.g. a network protocol) the
fuzzer needs additional knowledge about the expected input format. Failing
to produce the correct input format will in many cases severely lower the
chances to find any errors because such input is usually rejected by the
target software at a very early stage. For this purpose, fuzzing frameworks
such as the Peach Framework [1] include facilities to model the structure of
the data that is to be generated.
However, none of these frameworks can perform fuzz testing based on a
grammar. Especially in web oriented software, there exist certain facilities
processing untrusted input, that can only be described with a grammar. A
typical example is the JavaScript engine found in most modern web browsers.
As JavaScript is a programming language, its syntax rules are usually de-
scribed using a context-free grammar (see also Section 2.2.2).
Without following the rules of the underlying grammar, a random input
will most likely be rejected by such an engine at the lexer level or during

1In 2008, the annual CSI Computer Crime & Security survey has calculated the average
loss to be 289,000 USD per incident amongst all survey participators

5

CHAPTER 1. INTRODUCTION 6

Mutated

Test

Mutated

Test

Mutated

Testproduce

Unit/
Regression

Test
Unit/

Regression

TestTest
Suite

learn Fragments

Unit/
Regression

Test
Unit/

Regression

TestSample
Code

Built-in Identifier List
(optional)

run
Interpreter

Language Grammar

Crashes /
Assertions

Figure 1.1: Overview on the LangFuzz workflow

further syntax check, thus not reaching high level parts of the engine code
(Section 2.2.3 gives a brief overview about interpreter stages).
This thesis aims to develop and evaluate a new approach that allows for
black-box fuzz testing (i.e. when we only possess a functional specification
of the target program and not the source code) of such an engine based
on a context-free grammar. In the following sections, we will first present
work related to the topic of grammar-based fuzz testing and to fuzz testing
in general. Furthermore, we describe how we derive and evolve our testing
techniques. We then evaluate our technique in several experiments and
practical tests (Sections 4.1 to 4.4) including a comparison with state of
the art. We then cover some treats to our approach (Section 5) and finally
conclude on the results and possible future work (Section 6).
As a result, we present our tool called LangFuzz which implements a mutation-
based approach (3.2) combined with pure code generation (3.1). Figure 1.1
provides an overview of the LangFuzz framework.

Chapter 2

Background

2.1 Related Work

Fuzz testing has a long history. One of the first publications about the
topic was by Miller et al. [7] when they tested UNIX utilities using random
program inputs in 1990. Since then, the technique has been developed into
many different directions, e.g. protocol [3][14] and file format testing [15][16]
or mutation of valid input [10][16]. Because it is often easy and cheap to
write a fuzzer that actually discovers defects, fuzz testing has become an
essential part of many software development life cycles and can often be
helpful when other testing method can hardly be applied [10]. Grammar-
based fuzz testing is not entirely new either. The following contributions are
more closely related to either the subtopic of grammar-based fuzz testing or
the approach used in this work.

Introducing jsfunfuzz, written by Rudermann [13] had a large impact
when he wrote it in 2007. The jsfunfuzz tool (itself written in JavaScript)
is a black-box fuzzing tool for the JavaScript engine which aims at cer-
tain categories of errors. It does not only search for crashes but can
also detect certain correctness errors by differential testing. Since the
tool was released, it has found over 1000 bugs in the Mozilla JavaScript
Engine1 and was quickly spread amongst browser developers 2. Our
work is inspired by this tool, being the first JavaScript fuzzer that was
publicly available (it has been withdrawn by now). Our tool however
does not specifically aim at a single language, although JavaScript is
used for evaluation and experiments. Instead, our approaches aim to
be solely based on grammar and general language assumptions.

Grammar-based White-box Fuzzing, researched by Godefroid et al. [4]
in 2008 deals with grammar-based fuzzing under the assumption that

1according to https://bugzilla.mozilla.org/show bug.cgi?id=jsfunfuzz
2http://news.cnet.com/8301-10784 3-9754201-7.html

7

CHAPTER 2. BACKGROUND 8

the source of the target is available (white-box fuzzing). Their ap-
proach combines a grammar with a constraint solver and coverage
measurement to produce inputs to a JavaScript Engine (Internet Ex-
plorer 7) that reach a certain area of code.

The work is partially related since the authors compare their approach
to a black-box approach (which ours is). Their results show that their
black-box approach is by far not as efficient as their white-box method.
Our work can be seen as an extension of this work to a certain degree:
We would like to improve grammar-based black-box fuzzing techniques
instead of focusing on a white-box approach. The benefit of the black-
box approach is that we are neither bound to a certain language used
for implementing the target program nor do we need the source code
(which is helpful when testing closed-source software).

However, we believe that simple coverage measurements (line/branch
based) are not very expressive in nowadays modern and complicated
language engines because they often make use of compilation/JIT tech-
niques and heavily contain on global state.

Finding and Understanding Bugs in C Compilers, written by Yang
et al. [18] is another very recent example for a language-specific fuzzer.
In their work, the authors explain how they constructed a fuzzer called
CSmith that automatically generates C programs for testing compil-
ers. It is based on earlier work of these authors and on the “Random
C Program Generator” written by Turner [17]. One interesting par-
allel to our work is that CSmith randomly uses productions from its
built-in C grammar to create a program. In contrast to our work, their
grammar has non-uniform probability annotations which might make
the use of a recursive approach (random walk, see Section 3.1.1) eas-
ier. Furthermore, they already introduce semantic rules during their
generation process by using filter functions which allow or disallow cer-
tain productions depending on the context. This is reasonable when
constructing a fuzzer for a specific language, but very difficult with a
language-independent approach.

2.1.1 Indirectly Related

The following work is still related to automated testing but not so closely
related as the previously discussed work. We provide these references to
show other types and applications of fuzz testing but also because some
ideas and results can typically be applied to other areas of fuzz testing as
well.

A sentence generator for testing parsers published by Purdom [12] in
1972 predates even the first named references to “fuzz testing”. It is

CHAPTER 2. BACKGROUND 9

however still relevant for us because it is one of the first attempts to
automatically test a parser using the grammar it is based on. Espe-
cially the idea of the “Shortest Terminal String Algorithm” has been
used in this work as well (see Section 3.1.2).

Random testing of C calling convention published by Lindig [5] in 2005
is another example finding compiler problems with random testing. A
program called QUEST here generates code to specifically stress the
C calling convention and check the results later. In this work, the gen-
erator also uses recursion on a small grammar combined with a fixed
test generation scheme.

Analysis of Mutation and Generation-Based Fuzzing published by
Miller and Peterson [8] in 2007 is an evaluation of the two main ap-
proaches in fuzzing: generating new input randomly or modifying ex-
isting valid inputs instead. In their work, the authors perform fuzz
testing on the PNG image format both by mutating existing PNG
files and generating new ones from scratch. Their results point out
that mutation testing alone can miss a large amount of code due to
missing variety in the original inputs. We however believe that this re-
sult can only partly be applied to our work. Although we use mutation
testing techniques, the mutated inputs we use were already defective
at some time in the past (regression test). Furthermore we combine
the mutation approach with a generative approach such that a higher
variety is more likely.

In Dynamic test generation to find integer bugs in x86 binary
Linux programs published by Molnar et al. [9] in 2009 the authors
present a tool called SmartFuzz which uses symbolic execution to trig-
gers integer related problems (overflows, wrong conversion, signedness
problems, etc.) in x86 binaries.

Announcing cross fuzz published by Zalewski [19] is another recent work
on browser fuzzing (more precisely DOM fuzzing) that revealed quite a
few problems in the most popular browsers. The author has published
even more fuzzers for specific purposes like ref fuzz, mangleme, Canvas
fuzzer or transfuzz. They all target different functionality in browsers
and have found severe vulnerabilities.

CHAPTER 2. BACKGROUND 10

2.2 Definitions

2.2.1 Defect

We consider only defects that cause abnormal program termination (e.g. a
crash due to memory violations or an abort due to an assertion being trig-
gered). Program failures that only manifest in wrong computations/output
or any other defective behaviors that do not result in abnormal termination
are not within the scope of this work. Such defects can be detected under
certain circumstances (see also 7.1). This limitation is reasonable because
fuzz-testing for other types of defects is hardly possible without making
strong assumptions about the target software. Therefore, it is common to
restrict the search to these kind of defects in security-related fuzz testing.

2.2.2 Language Grammar

When talking about language grammars we usually refer to context-free
grammars (Type-2 in the Chomsky hierarchy). Such a grammar G is defined
by the 4-tuple (N,T, P, S):

• N refers to the set of non-terminal symbols.

• T refers to the set of terminal symbols.

• P is the set of productions which are mappings from N to (N ∪ T)∗,
i.e. they describe the expansion of a single non-terminal symbol to
multiple terminal and/or non-terminal symbols.

• S is the start symbol of the grammar, it must be an element of N .

The language described by the grammar is the set of words that can be
produced from the starting symbol by repeatedly applying rules from P ,
formally defined by L(G) = {w ∈ T ∗ | ∃ p1 . . . pn ∈ P : S →p1 · · · →pn w}.

Lexer and Parser

Using a language grammar to process some input usually requires at least
the two stages of lexing and parsing. The lexer is responsible for reading the
input and separate into tokens which are usually logical groups of characters
(which usually refer to low-level symbols of the grammar). The parser then
processes the tokens further and groups them to high-level symbols of the
grammar.

2.2.3 Interpreter

We consider all programs that receive a program in source code form and
then execute it, as interpreters. This also includes so called just-in-time

CHAPTER 2. BACKGROUND 11

Interpreter Engine

Lexer

Parser

Compiler

Runtime

Process characters from
input into tokens

Group tokens to higher-
level constructs

Translate the
parsed code into executable

byte code

Execute code

print(“Hello world!”);

Hello world!

Figure 2.1: Different possible stages of an interpreter

compilers which translate the source code to byte code before or during
runtime of the program. The important properties for us are that the input
is source code and that the program is executed by our target program.
Figure 2.1 gives an exemplary overview of the different interpreter stages.
Note that this is just an exemplary model. Especially the compiler and
runtime stages are not necessarily separated. For a just-in-time compiler,
the compilation is done during runtime whenever it is necessary or advisable
for performance reasons. One important fact for fuzz testing here is that
lexer and parser stages are able to detect malformed input which causes such
input the be dropped at those (early) stages. This is of course not desirable
as we would like to find defects in later stages as well, forcing us to produce
proper input for lexer and parser.

Chapter 3

Methods

In fuzz testing, we can roughly distinguish between two techniques: Genera-
tive approaches try to create new random input, possibly using certain con-
straints or rules. Mutative approaches try to derive new testing inputs from
existing data by randomly modifying it. Both jsfunfuzz [13] and CSmith
[18] use generative approaches. Thus, we will first investigate how we can
implement a similar generative but generic approach based on the language
grammar (Section 3.1). However, as we would like to stay independent from
the language semantics, a purely generative approach is likely to fail due to
certain semantic rules not being applied (e.g. a variable must be defined
before it is used). Introducing further semantic rules to solve this problem
would tie us again to certain language semantics. The logical consequence
would be to use existing semantic context, as demonstrated in Section 3.2.

3.1 Random Generative Approaches

As previously discussed, one possible approach for fuzzing an interpreter
based on the grammar would be to randomly generate source code that
follows the structure of the grammar. In other words, we attempt to gen-
erate random strings that could be produced by a given grammar. For this
purpose, different approaches and enhancements are possible, which we will
discuss in the next sections.

3.1.1 Random Walk over Grammar

Given the definition for a language grammar in Section 2.2.2, it is natural
to perform a random walk over the tree of possible expansion series. Such
an algorithm can be defined as:

1. Set current expansion ecur to the start symbol S.

2. Loop until ecur contains only terminal symbols:

12

CHAPTER 3. METHODS 13

(a) Pick the first non-terminal symbol n from ecur.

(b) Find the set of productions Pn ⊆ P that can be applied to n.

(c) Pick one production p from Pn randomly and apply it to n, yield-
ing p(n).

(d) Replace that occurrence of n in ecur by p(n).

All possible paths from S to any word w ∈ L(G) span a graph. The given
algorithm can be seen as a random walk over this graph of possible expan-
sions.
But there is a serious problem of the approach: A random walk with uniform
probabilities is not guaranteed to terminate at all. Terminating the walk
by different criteria without completing all expansions might result in a
syntactically invalid word.
Usually, this problem can be mitigated by restructuring the grammar, adding
non-uniform probabilities to the edges and/or imposing additional semantic
restrictions during the production, as Yang et al. [18] demonstrate in their
work about CSmith.
However, in our case we would like to stay language-independent which
greatly limits our possibilities to introduce semantic restrictions. Further-
more, restructuring or annotating the grammar with probabilities is not
straightforward and requires additional work for every single language. It
is even reasonable to assume that using fixed probabilities can only yield a
coarse approximation as the real probabilities are conditional, depending on
the surrounding context. To overcome these problems, we will describe a
modified algorithm in the next section.

3.1.2 Stepwise Expansion Algorithm

The goal of this approach is to overcome the problems exposed by the ran-
dom walk approach: We’d like to be able to terminate the algorithm after
every iteration step without yielding a syntactically invalid word. To achieve
this, we rewrite the algorithm to not perform a depth-first search for every
non-terminal but to rather increase in a breadth-first manner:

1. Set current expansion ecur to the start symbol S

2. Loop num iterations:

(a) Choose a random non-terminal n in ecur:

i. Find the set of productions Pn ⊆ P that can be applied to
n.

ii. Pick one production p from Pn randomly and apply it to n,
yielding p(n).

iii. Replace that occurrence of n in ecur by p(n).

CHAPTER 3. METHODS 14

Figure 3.1: Example of a stepwise expansion on the syntax tree: Orange
(dotted) nodes are unexpanded non-terminals (can be expanded) while the
other nodes have already been expanded before.

In Figure 3.1, you can see how two steps in the algorithm might look like,
considering the expansion as a tree. Orange (dotted) nodes are unexpanded
non-terminals that can be considered for expansion while the remaining
nodes have already been expanded before.
This algorithm alone doesn’t yield a valid expansion after num iterations.
We need to replace the remaining non-terminal symbols by sequences of
terminal symbols.

Minimal expansion

One possibility is to determine the set of minimal expansions Nmin for the
grammar, i.e. for every n ∈ N we determine nmin ∈ T∗ which is the small-
est possible expansion of this non-terminal symbol into terminal symbols.
Rephrasing the problem, we’d like to find the smallest set of productions
Pmin such that N →Pmin w and w ∈ T∗. This can easily be achieved by a
breadth-first search (BFS) on all possible expansions of the respective non-
terminal symbol. Note that this causes an exponential blow-up, but the
search has to be performed once for the grammar only. Given Nmin, we can
replace every remaining non-terminal symbol by its minimal expansion in a
single step.
In practice, the minimal expansion is problematic though for two reasons:

1. It is atypical for normal programs and causes bias in the expansion
(e.g. shortest primaryExpression is always this and shortest unary-
Expression is always delete).

2. Certain fragments typically cause infinite loops in their minimal expan-
sion state (e.g. for (;;) is the smallest for-loop in many languages).

CHAPTER 3. METHODS 15

While the minimal expansion might be interesting in other applications (e.g.
syntactic test case minimization), it does not seem suitable to form the
majority of our generated code.

Learning Expansions From Code

The only alternative to generating fully expanded code fragments ourselves
is using already existing ones. One possibility to obtain such existing code
fragments is to learn them from existing code. Using a parser with the given
grammar, we can extract possible expansions from given code for every non-
terminal symbol. Given a large codebase, we can build up a fragment pool
consisting of expansions for all kinds of non-terminal symbols. These code
fragments might of course be semantically invalid or less useful without the
context that surrounds them, but they will at least allow us to complete our
code generation yielding syntactically valid code. In Section 3.2 we will see
one possibility to enhance our resulting code on a semantic level by tweaking
on the identifiers.
Using known expansions from our fragment pool, we can complete the step-
wise expansion algorithm as follows:

1. Set current expansion ecur to the start symbol S.

2. Loop num iterations:

(a) Choose a random non-terminal n in ecur:

i. Find the set of productions Pn ⊆ P that can be applied to
n.

ii. Pick one production p from Pn randomly and apply it to n,
yielding p(n).

iii. Replace that occurrence of n in ecur by p(n).

3. Loop while ecur contains non-terminal symbols:

(a) Choose the first non-terminal n in ecur:

(b) Find a known fragment expansion ne for n (syntactically equiva-
lent) in the fragment pool.

(c) Replace n by ne.

Using this algorithm, we can now generate random code that can either be
used to directly test the target program or that can be incorporated into
more complex approaches.

CHAPTER 3. METHODS 16

3.2 Code Mutations

So far, we’ve been focusing on generating new programs from scratch. As
our primary target is to trigger bugs in the target program, it is reasonable
to assume that existing test cases (especially regressions) written in the
target language should be helpful for this purpose as well. Especially for
interpreted programming languages, there often exist such test cases that
are written in the language itself. Using the same parser approach as in
the previous section for expansion learning, we can process whole tests and
learn the locations and types of all source code fragments within the tests.
We can now randomly pick some of these fragments and replace them with
other fragments of the same type (syntactically equivalent) that we’ve gen-
erated and/or learned before (3.1.2). There are many adjustments to this
method that can be made that are described in the remained of this section.

Adjust Fragments to Environment When a fragment is replaced by
a different fragment, the new fragment might not fit with respect to the
semantics of the remaining program. As LangFuzz does not aim to seman-
tically understand a specific language (because of language independence),
we can only perform corrections based on generic semantic assumptions. A
perfect example with a large impact are identifiers.
Many programming languages use identifiers to refer to variables and func-
tions, and some of them will throw an error if an identifier has not been
declared prior to using it (e.g. in JavaScript, using an identifier that has not
been declared is considered to be a runtime error).
However, we can reduce the chances to have undeclared identifiers within
the new fragment by replacing all identifiers in the fragment with identifiers
that occur somewhere in the rest of the program. Note that this can be
done purely at the syntactic level. LangFuzz only needs to know which
non-terminal in the grammar constitutes an identifier in order to be able to
statically extract known identifiers from the program and replace identifiers
in the new fragment. This way, it is still possible that identifiers are unknown
at the time of executing a certain statement (e.g. because the identifier is
declared afterwards), but the chances of identifier reuse are increased.
Some languages also contain identifiers that can be used without declaring
them (usually built-in objects/globals). The adjustment approach can be
even more effective if LangFuzz is aware of these global objects in order
to ignore them during the replacement process. The only way to identify
such global objects within LangFuzz is to require a list of these objects
as (optional) argument. Such global object lists are usually found in the
specification of the respective language and can easily be extracted there.

Fragment Type Restrictions We could restrict the method to replace
certain fragment types only, e.g. statements or expressions. Such restrictions

CHAPTER 3. METHODS 17

make it possible to test even on different levels within the grammar itself.
Furthermore, restricting this to a few high-level fragment types will make
the whole approach much faster.

Ratio between Generated and Purely Learned Fragments For per-
formance reasons, it would be possible to reduce or completely omit the
generation of fragments and instead directly use only known fragments that
have been learned from the code base.

3.3 Constructing LangFuzz

Based on the methods described so far, we now assemble the different parts
to get a proof-of-concept fuzzer implementation that works as described in
the overview diagram (Figure 1.1) in the introduction.
The typical steps performed by our implementation start with a learning
phase where the given code base is parsed and fragments are learned (Section
3.3.1). The input here can be either the test suite itself or any other code
base in the target language. Once the learning step is complete, LangFuzz
starts to process the test suite. All tests are parsed and the result is cached
for performance reasons.
Then the tool starts the actual working phase:

1. From the next test to be mutated, several fragments (determined by
an adjustable parameter, typically 1-3) are randomly selected for re-
placement.

2. As a single fragment can be considered as multiple types (e.g. if

(true) { .. } can be seen as an if-statement but also more generally
as a statement), we randomly decide how to interpret each of those
fragments if multiple possibilities exist.

3. After test mutation is complete, the mutated test is executed and its
result is checked (Section 3.3.4).

3.3.1 Code Parsing

Both when learning code fragments (first step in the workflow) as well as in
the mutation step, we need the be able to parse the given source code. For
this purpose, LangFuzz contains a language-independent parser subsystem
such that concrete parsers for different languages can be added. We decided
to use the ANTLR parser generator framework by Parr and Quong [11]
because it is widespread and several grammars for different languages exist
in the community. The parser is first used to learn fragments from the given
code base which LangFuzz then memorizes. When producing a mutated

CHAPTER 3. METHODS 18

test, it is used again to find all fragments in the test that could be replaced
and to determine which replacements can be made without breaking syntax.

3.3.2 Code Generation

The code generation step uses the stepwise expansion (Section 3.1.2) algo-
rithm to generate a code fragment. As this algorithm works on the language
grammar, LangFuzz also includes an ANTLR parser for ANTLR grammars.
However, because LangFuzz is a proof-of-concept, this subsystem only un-
derstands a subset of the ANTLR grammar syntax and certain features
that are only required for parsing (e.g. implications) are not supported.
It is therefore necessary to simplify the language grammar slightly before
feeding it into LangFuzz. LangFuzz uses further simplifications internally to
make the algorithm easier: Rules containing quantifiers (’*’, ’+’) and option-
als (’?’) are rewritten to remove these operators by introducing additional
rules according to the following pattern

X∗ (R→ ε |XR) (zero or more)

X+ (R→ X |XR) (one or more)

X? (R→ ε |X) (zero or one)

where X can be any complex expression. Furthermore, sub-alternatives
(e.g. R → ((A|B)C|D), are split up into separate rules as well. With
these simplifications done, the grammar only consists of rules with one or
more alternatives and each alternative is only a sequence of terminals and
non-terminals. While we can now skip special handling of quantifiers and
nested alternatives, these simplifications also introduce a new problem: The
additional rules (synthesized rules) created for these simplifications have no
counterpart in the parser grammar and hence there are no code examples
available for them. In case our stepwise expansion contains one or more
synthesized rules, we replace those by their minimal expansion as described
in Section 3.1.2. All other remaining non-terminals are replaced by learned
code fragments as described earlier. In our implementation, we however
introduced a size limitation on these fragments so huge code fragments are
not put into small generated code fragments.

3.3.3 Fragment Replacement

The fragment replacement code first modifies the new fragment as described
in the first paragraph of Section 3.2. For this purpose, LangFuzz searches
the remaining test for available identifiers and maps the identifiers in the
new fragment to existing ones. The mapping is done based on the identifier
name, not its occurrence, i.e. when identifier “a” is mapped to “b”, all

CHAPTER 3. METHODS 19

occurrences of “a” are replaced by “b”. If the mapping was changed for
every identifier occurrence, then we would probably destroy some of the
semantics in the fragment. Identifiers that are on the built-in identifier list
(“Global Objects”) are not replaced. LangFuzz can also actively map an
identifier to a built-in identifier with a certain probability.

3.3.4 Test Running

In order to be able to run a mutated test, LangFuzz must be able to run
the test with its proper test harness which contain definitions required for
the test. A good example is the Mozilla test suite: The top level directory
contains a file shell.js with definitions required for all tests. Every sub
directory may contain an additional shell.js with further definitions that
might only be required for the tests in that directory. To run a test, the
JavaScript engine must execute all shell files in the correct order, followed
by the test itself. LangFuzz implements this logic in a test suite class which
can be derived and adjusted easily for different test frameworks.
The simplest method to run a mutated test now is to start the JavaScript
engine binary with the appropriate test harness files and the mutated test.
While this is relatively easy, it is also very slow because the binary has
to be started for every test and the relatively large test harness has to be
processed for every test although it remains the same. To solve this problem,
LangFuzz uses a persistent shell: A small JavaScript program called the
driver is started together with the test harness. The driver reads filenames
line by line from standard input until it receives a special signal that causes
it to run all the received files one by one. Once the driver has run all files, it
signals completion and is ready to run a new test. LangFuzz monitors each
persistent shell and records all input to it for later reproduction. Of course
the shell may not only be terminated because of a crash, but also because
of timeouts or after a certain number of tests being run.
While the original intention of the persistent shell was to increase the test
throughput, the results have shown that it also helps to find further defects:
Because multiple tests are running in a single shell instance, they can all
contribute to a single failure. In our experiments, most of the defects we
found did not boil down to a single test but required multiple tests in a
row to be triggered. This is especially the case for memory corruptions (e.g.
garbage collector problems) that require longer runs and a more complex
setup than a single test could provide.
Of course, running multiple test cases in one shell also means that we have to
determine which tests are relevant for failure reproduction. The goal would
be to provide a suitably small test case that allows reproducing the original
crash. Using the delta debugging algorithm by Zeller and Hildebrandt [20],
we filter out irrelevant test cases first. Later we apply the same algorithm
to reduce the remaining number of executed source code lines. This way, we

CHAPTER 3. METHODS 20

can provide a suitably small test case in nearly all cases. In our experiments,
we used the delta tool [6] which provides an implementation of the original
algorithm described by Zeller and Hildebrandt [20].

3.3.5 Parameters

LangFuzz contains a large amount of adjustable parameters, e.g. proba-
bilities and amounts that drive decisions during the fuzzing process. In
Table 3.1 we provide the most common/important parameters and their
default values.

Parameter Default Value

synth.prob – Probability to generate a required fragment
instead of using a known one.

0.5

synth.maxsteps – The maximal number of steps to make
during the stepwise expansion. The actual amount is 3 +
a randomly chosen number between 1 and this value.

5

fragment.max.replace – The maximal number of frag-
ments that are replaced during test mutation. The actual
amount is a randomly chosen number between 1 and this
value.

2

identifier.whitelist.active.prob – The probability
to actively introduce a built-in identifier during fragment
rewriting (i.e. a normal identifier in the fragment is re-
placed by a built-in identifier).

0.1

Table 3.1: Common parameters in LangFuzz and their default values

Please note that all default values are chosen empirically. Because the eval-
uation of a certain parameter set is very time consuming (1-3 days per set),
it was not feasible to compare all possible parameter combinations and how
they influence the results. We tried to use reasonable values but cannot
guarantee that these values deliver the best performance.

Chapter 4

Evaluation

4.1 Comparison with State of the Art

In this section, we compare LangFuzz to state of the art in interpreter fuzz
testing. Because of it’s wide application and success, we choose Mozilla’s
jsfunfuzz tool for our comparisons. jsfunfuzz is an active part of Mozilla’s
and Google’s quality assurance and regularly used in their development.

4.1.1 Differences between the Programs

jsfunfuzz is specialized on the JavaScript language. This specialization
should allow the program to test even very specific new and/or previously
untested JavaScript features intensively. Furthermore, the program has a
certain level of semantic knowledge and should be able to construct valid
programs easier than any program without such knowledge. However, for
every new feature introduced into the language or even only in the imple-
mentation, the program has to be modified to incorporate these changes into
the testing process. Also, focusing on certain semantics can exclude certain
defects from being revealed at all.

LangFuzz is not language specific. It bases its testing strategy solely on
the grammar, existing programs (e.g. test suites) and a very low amount of
additional language-dependent information. Because of this, the approach
is generic and can be easily adapted to different languages. Furthermore,
new implementation features are automatically covered if they are tested
within the respective test suites. Changes to the language do only require
program maintenance if they affect the syntax. The use of existing pro-
grams like previous regression tests should allow LangFuzz to profit from
previously detected defects. On the other hand, LangFuzz lacks a lot of
semantical background on the language which lowers the chances to obtain
sane programs and produce test cases that require a high amount of seman-
tical interaction between parts of the program.

21

CHAPTER 4. EVALUATION 22

4.1.2 Questions and Goals

There are two main questions that we will answer by the comparison:

Overlap How far do defects detected by LangFuzz and jsfunfuzz overlap?

By overlap, we refer to the number of defects that both tools are able
to locate. This can tell us how large LangFuzz’s contribution is, if a
development environment uses already jsfunfuzz. Clearly, it’s desirable
that LangFuzz’s results are not entirely a subset of jsfunfuzz’s results.
LangFuzz should be able to detect defects that jsfunfuzz missed before.

Effectiveness How does LangFuzz’s detection rate compare to jsfunfuzz?

By effectiveness, we mean how many defects each tool is able to lo-
cate in a given time. It is also possible that LangFuzz finds defects
during the experiment that can only be detected by jsfunfuzz given a
larger amount of time. Such situations should also be covered by the
effectiveness analysis.

Measuring both quantities requires a special experiment setup as we will see
in the next section.
Overall, we’d like to show that LangFuzz is a beneficial contribution to a
development process, even if it already uses a fuzzer like jsfunfuzz. We do
not want to show that LangFuzz is worse or better than jsfunfuzz or any
other specific language fuzzing tool. We believe that such comparisons do
not make sense because both programs operate on different levels and have
different strengths and weaknesses (as briefly explained in 4.1.1).

4.1.3 Experiment Setup

For our comparison, we choose the TraceMonkey, Mozilla’s JavaScript en-
gine, as the evaluation target for several reasons. First of all, Mozilla’s
development process is largely open and a lot of development information is
public. For those parts that are not public (e.g. security bug reports), we
had contact with the Mozilla security team to get access to such information
if necessary. Also, both tools are already adapted to run on TraceMonkey,
so we can especially be sure that jsfunfuzz properly functions on the target
during the comparison.
One of the major problems with TraceMonkey is that one of the tools (jsfun-
fuzz) is already part of its development process. As a result, when looking
at revision x of TraceMonkey, almost all defects that jsfunfuzz can identify
will be fixed already (except for very recent ones that have not yet been
fixed). So, it is not possible to measure effectiveness based on single revi-
sions. But Mozilla maintains a list of all defects that have been identified
through jsfunfuzz. Using this information, we can propose a different test
strategy:

CHAPTER 4. EVALUATION 23

Revisions

A B

1
Bug is

introduced

2
jsfunfuzz

detects bug

3 Bug is fixed

(last jsfunfuzz
related fix)

testing window
without jsfunfuzz

related fixes

Figure 4.1: Example of a testing window with the live cycle of a single defect

1. Start at some base revision f0 of TraceMonkey, run both tools for a
fixed amount of time. All defects detected here can solely be used to
analyze the overlap, not the effectiveness.

2. Set n = 1 and repeat several times:

(a) Find the next revision fn starting at fn−1 that fixes a defect found
in the list of jsfunfuzz defects.

(b) Run both tools on fn− 1 for a fixed amount of time. The defects
found by both tools can be used for effectiveness measurement if
and only if the defect was introduced between fn−1 and fn − 1.
For overlap measurement, all defects can be used.

(c) Increase n by 1.

The idea behind this testing strategy is to find periods of time in the re-
vision history where no defects detected by jsfunfuzz were fixed. Within
these periods, both tools will have the same chances to find defects in the
experiment. From now on, we’ll refer to these periods as testing windows.
Figure 4.1 illustrates how such a testing window could look like. The win-
dow starts at revision A. At some point, a bug is introduced and shortly
afterwards, the bug is reported by jsfunfuzz. Finally, the bug is fixed by
a developer in revision B + 1. At this point, our testing window ends and
we can use revision B for experiments and count all defects that where
introduced between A and B which is the testing window.

Repository, Base Revision and Testing Windows For all tests, we
will use the TraceMonkey development repository. Both the tested imple-
mentation and the test cases (approximately 3000 tests) are taken from that
repository. As base revision, we chose revision 46549 (03f3c7efaa5e) which
is the first revision committed in July 2010, right after Mozilla Firefox Beta
1 was released at June 30, 2010. We used the following five test windows
for our experiments:

CHAPTER 4. EVALUATION 24

Start Revision End Revision

46569:03f3c7efaa5e 47557:3b1c3f0e98d8

47557:3b1c3f0e98d8 48065:7ff4f93bddaa

48065:7ff4f93bddaa 48350:d7c7ba27b84e

48350:d7c7ba27b84e 49731:aaa87f0f1afe

49731:aaa87f0f1afe 51607:f3e58c264932

The end revision of the last testing window dates to the end of August
2010, so we covered roughly 2 months of development time using these five
windows.

Time Frame, Resources and Settings For each testing window, both
tools will be granted 24 hours of testing. Both tools will be run on 4 CPU
cores with the same specification. As jsfunfuzz does not support threading,
multiple instances will be used instead. LangFuzz’s parameters are set to
their defaults as specified in Section 3.3.5.

Defect Processing Once a defect has been found, we still need to find
the appropriate bug report and the lifetime of the bug (at least if it was
introduced in the current testing window). Usually, this can be achieved by
using the bisect command, that the Mercurial SCM provides. This command
allows automated testing through the revision history to find the revision
that introduced or fixed a certain defect.

4.1.4 Experiment Results

During the experiment, jsfunfuzz identified a total of 23 defects, of which
15 where within the respective testing window. LangFuzz identified a total
of 26 bugs, of which 8 where in the testing window. The larger number
of defects outside the testing window for LangFuzz was expected because
LangFuzz, unlike jsfunfuzz, was previously never used on the source base.
Figure 4.2 illustrates the number of defects per fuzzer, that where within
the respective testing window.

Overlap

As Figure 4.2 shows, only 3 defects where found by both fuzzers during the
experiment. Expressing the overlap as a fraction of all defects found can be
achieved by calculating

Overlap =
Number of defects found by both tools

Number of defects found in total
(4.1)

CHAPTER 4. EVALUATION 25

both
3

jsfunfuzz
12

LangFuzz
5

Figure 4.2: Number of defects found by each fuzzer within the testing win-
dow

which gives us an overlap of only 15%. This clearly shows that LangFuzz
and jsfunfuzz find different defects and hence supplement each other.

Note: During the experiment, LangFuzz found 3 defects that jsfunfuzz did
not find in the same experiment, but that were reported as jsfunfuzz defects
outside the experiment. As jsfunfuzz is part of the daily Q&A process at
Mozilla (i.e. runs 24/7 on multiple servers), it has much more time and
resources in reality than given in our experiment. To get a fair comparison,
we only count defects found during the experiment. This also applies for
LangFuzz: At least one bug was found by LangFuzz only outside the exper-
iments and within the experiment only by jsfunfuzz. Again we only counted
the findings within the experiment.

Effectiveness

In order to get an expressive effectiveness, we need to relate LangFuzz’s
absolute effectiveness to a reference effectiveness (in this case jsfunfuzz).
This can be done by taking the fraction of defects found by each tool:

Effectiveness =
Number of defects found by LangFuzz

Number of defects found by reference (jsfunfuzz)
(4.2)

With LangFuzz identifying 8 defects and jsfunfuzz 15, we see that Lang-
Fuzz’s effectiveness is around 53% of that of jsfunfuzz. In other words, js-
funfuzz is twice as effective as LangFuzz. We can conclude that the language
specific fuzzer is usually more effective (which is also intuitive) but we also

CHAPTER 4. EVALUATION 26

see that LangFuzz’s approach is nonetheless practical as our effectiveness is
still within the same order of magnitude compared to jsfunfuzz.

4.2 Generative vs. Mutative Approach

In this experiment, we analyze the impact of each of the different approaches
used in LangFuzz. Given the results from the last experiment, it is evident
that LangFuzz can locate defects that jsfunfuzz misses. It is however unclear,
what importance the generative algorithm has and what role mutations play
in these results.

4.2.1 Questions and Goals

In this experiment, we will answer the following questions:

• How important is it that LangFuzz generates new code?

• How important is the role that mutation plays in LangFuzz?

As a result, we will especially investigate if mainly one of the approaches
accounts for most of the results (and the other only slightly improves it or is
even dispensable) or if both approaches must be combined to achieve good
results.

4.2.2 Experiment Setup

To identify the influence of the different approaches, we perform several
LangFuzz runs on selected versions that we’ve been testing before in 4.1.
All runs are limited to the same amount of time and resources, however the
settings differ from run to run:

Mutation without code generation Run with code generation completely
disabled

Mutation with only code generation Mutate tests but generate every
code fragment used

Intuitively, we would like to add another run which does not perform muta-
tion at all. The results would however not be comparable to the other runs
for several reasons:

Code Size When generating new code, one usually does not aim to create
code as large as a whole regression test (because the larger the code,
the higher is the chance to introduce some error and most of the code
will most likely remain meaningless). Even jsfunfuzz aims to generate
code that is much smaller than most of the regression tests.

CHAPTER 4. EVALUATION 27

Environment Adjustment When mutating code, we can adjust the newly
introduced fragment to the environment (see also 3.2). With purely
generated code, this is not possible in the same way as there exists
no consistent environment around the location where a fragment is
inserted (in the syntax tree at the end of generation). It would be
possible to track the use of identifiers during generation but the result
would most likely not be comparable to what happens during code
mutation.

Therefore, we will try to determine the impact of code generation from
the difference between the mutation runs with and without code generation
enabled.

Versions, Time and Parameters

Because we are only comparing different settings of LangFuzz, we do not
need the testing windows that we’ve been using in the comparison with
jsfunfuzz. Hence we will not repeat the experiment on all versions used
during that comparison but restrict it to those two versions that showed most
defects in the previous experiment. This restriction allows us to increase the
time that is granted to all runs, minimizing the randomization impact on
the experiment even further. In order to keep the experiment feasible, we
grant each run 3 days on each version (yielding an experiment time of 12
days). The two selected revisions for this experiment are 03f3c7efaa5e and
f3e58c264932. Both revisions showed a high defect rate in the previous
experiment and additionally, over 5000 revisions lie between them, so we
should be able to find different defects in both. All runs will be done with
default parameters (see Section 3.3.5), except for the synth.prob parameter
being set to 0.0 for the run without code generation (respectively 1.0 for code
generation only).

4.2.3 Experiment Results

Figure 4.3 shows the results of our experiment. We can see that there is no
clear advantage of any of the settings over the other: On the first revision,
code generation only outperforms the approach running without any code
generation. In the second revision though, code generation only is slightly
worse.
As a conclusion we can say that the ideal approach should be a mixed setting
where both code generation and direct fragment replacement is done, both
with a certain probability.

CHAPTER 4. EVALUATION 28

0

6

12

18

24

30

03f3c7efaa5e f3e58c264932

2

11

5
6

17

25

22
20

N
um

be
r

of
 D

ef
ec

ts
 fo

un
d

Revision

without code generation all code generated
only found without code generation only found by code generation

Figure 4.3: Results of comparison with/without code generation

4.3 Field Tests with Mozilla and Google

To demonstrate that LangFuzz is able to find defects in large and popular
software projects, we decided to apply it both to Mozilla and Google software
during their development cycles. Table 4.1 shows the results of our field tests
while the exact target branches are described more detailed afterwards.

Mozilla TraceMonkey in Firefox 4 Development The Mozilla Trace-
Monkey trunk versions used during our tests where part of the Firefox 4
development (at that time in beta stage). Changes to TraceMonkey trunk
were regularly merged back to the main repository for direct inclusion into
Firefox 4 betas.

Mozilla Type Inference Branch The Mozilla TraceMonkey type in-
ference branch is a more experimental branch where a new type inference
technique is being developed. This branch has alpha quality and is not part
of Firefox 4 yet but will most likely be included in Firefox 5 or its successor.
Because this branch is not part of any product yet, no security assessment
is done for these bug reports.

Google V8 in Chrome 10 Development We also tested LangFuzz on
the Google V8 engine development trunk. At the time of testing, Chrome
10 (including the new V8 optimization technique “Crankshaft”) was in beta
stage and fixes for this branch where regularly merged back into the Chrome

CHAPTER 4. EVALUATION 29

Table 4.1: Results on Mozilla and Google software

Tested Software
Time
Span

Number of Defects

Mozilla TraceMonkey (Firefox 4 Beta) 4 months 51 defects
9 duplicates to others
20 security locked1

Mozilla TraceMonkey (Type Inference) 1 month 54 defects
4 duplicates to others

Google V8 (Chrome 10 Beta) 1 month 59 defects
0 duplicates to others
11 confirmed security
defects

1The security lock hides the bug report from public because it might be exploitable

Mozilla TM (FF4 Beta)

Mozilla TM (Type Inference)

Google V8 (Chrome 10 Beta)

0 12 24 36 48 60

4

9

11

20

48

54

31

Defects found

Te
st

ed
 S

of
tw

ar
e

other defects security related duplicates to others

Figure 4.4: Visualized results of Table 4.1

CHAPTER 4. EVALUATION 30

10 beta branch. For our helpful commitment on Chrome 10, Google included
included a note of thanks on our work in their official announcement 2.

4.3.1 Example for a bug missed by jsfunfuzz

There are several bugs (especially garbage collector related) where we as-
sume that jsfunfuzz is not able to trigger them due to their high complexity
even after minimization. We can however give at least one example, where
jsfunfuzz was not able to trigger the bug: In bug 6263453, Jesse Ruderman
confirmed that he tweaked jsfunfuzz in response to this report: “After seeing
this bug report, I tweaked jsfunfuzz to be able to trigger it.”

4.3.2 Example for detected incomplete fix

Bug 1167 in the V8 project is a good example for both an incomplete fix
detected by LangFuzz and the benefits of mutating existing regression tests:
Initially, the bug had been reported and fixed as usual. Fixes had been
pushed to other branches and of course a new regression test based on the
LangFuzz test was added to the repository. Shortly after that happened,
LangFuzz triggered exactly the same assertion again, this time the test mu-
tated though was the new regression test, recently added. V8 developers
confirmed that the fix was indeed incomplete and issued another fix.

4.3.3 Example for defect detected through code generation
only

The following code triggered an error in the parser subsystem of Mozilla
TraceMonkey and was reported as bug 6264364:

(’false’ ? length(input + ’’):

delete(null?0:),0).watch(’x’, function f());

This test was partly produced by the code generation and is highly unlikely
to be uncovered by mutation, only. The complex and unusual syntactic
nesting here is unlikely to happen by only mutating regular code.

4.3.4 Further code examples

The appendix of this work contains lists of all bugs that we reported, includ-
ing URLs where these reports can be inspected. Each of these bug reports
usually contains the test case either attached or inlined. If you are interested
in further code examples, inspecting these bug reports is the best choice.

2http://googlechromereleases.blogspot.com/2011/03/chrome-stable-release.html
3https://bugzilla.mozilla.org/show bug.cgi?id=626345
4https://bugzilla.mozilla.org/show bug.cgi?id=626436

CHAPTER 4. EVALUATION 31

4.4 Proof-of-Concept Adaptation to PHP

In this section we show results derived from running LangFuzz on PHP as a
proof of concept adaptation to demonstrate that LangFuzz is not limited to
a single language. For this purpose, we will first explain the necessary steps
to run LangFuzz on PHP. We will then run LangFuzz with the modifications
to investigate if we can find defects also in the PHP interpreter.
The PHP language was chosen for this experiment for several reasons:

Dynamic/Weak Typing PHP is a dynamically typed language with weak
typing, similar to JavaScript.

Grammar available An ANTLR grammar is readily available from the
PHPParser project [2]

Tests available The PHP project has a large set of unit- and regression
tests available to public.

We assume that especially the typing properties of the target language
should affect the success rate of LangFuzz. The more static restrictions
the language imposes, the harder it should be for tools like LangFuzz to
randomly generate a runnable program when only working syntax-based.

4.4.1 Steps required to run on PHP

Although LangFuzz’s design is language-independent, the implementation
requires changes to adapt to a new language. These changes are related to
reading/running the respective project test suite (most projects use their
own test suite mechanisms), integrating the generated parser/lexer classes
and supplying additional language-dependent information (list of built-in
identifiers, name of the identifier non-terminal).

Integration of Parser/Lexer Classes

Using the grammar obtained from the PHPParser project [2], we first have
to generate the Parser/Lexer Java classes using ANTLR (automatic step).
LangFuzz uses so called high-level parser/lexer classes that override all
methods called when parsing non-terminals. These classes simply extract
the non-terminals during parsing (similar to a visitor pattern). These classes
can be automatically generated from the classes provided by ANTLR.
All classes obtained in this step are included into the project and combined
in a class representing the actual language.

CHAPTER 4. EVALUATION 32

Integration of Tests

LangFuzz provides a test suite class that must be derived and adjusted
depending on the target test suite. In the case of PHP, the original test
suite is quite complex because each test is made up of different sections
(not a single source code file). For our proof-of-concept experiment, we
only extracted the code portions from these tests, ignoring setup/teardown
procedures and other surrounding instructions. The resulting code files are
compatible with the standard test runner, so our runner class does not need
any new implementation.

Adding Language-dependent Information

The PHP grammar in use provides a single non-terminal in the lexer for all
identifiers used in the source code which we can add to our language class.
Furthermore, the PHP online documentation provides a list of all built-in
functions which we can add to LangFuzz through an external file.

4.4.2 Experiment/Results on PHP Interpreter

With the additions made in the last section, we performed several runs on
the PHP trunk (SVN revision 309115). After a runtime of 14 days we ended
up with the 18 issues as shown in Table 4.2. Some of the bugs affected also
the stable branch of PHP, as shown by the version column in the table.

CHAPTER 4. EVALUATION 33

Bug #
PHP
Version

Title Classification Notes

54280 5.3.5
Crash with substr replace and ar-
ray

Use after free (as-
signed CVE-2011-
1148)

Duplicate

54281 5.3.5 Crash in spl recursive it rewind ex
Memory corrup-
tion

54282 Trunk Crash in zend mm check ptr
Controlled crash,
detected memory
corruption

54283 5.3.5
Crash in
zend object store get object

Null-pointer crash

54284 5.3.5
Crash in
zend object store get object

Memory corrup-
tion

Duplicate

54285 Trunk Crash in zval ptr dtor Use after free

54291 5.3.5
Crash in
spl filesystem object get path

Null-pointer crash

54292 Trunk
Wrong parameter causes crash in
SplFileObject:: construct()

Memory corrup-
tion

54296 5.3.5
Crash in SQLite3Stmt internal ob-
ject destructor

Use after free

54304 5.3.5 Crash in php pcre replace impl
Arbitrary read-
/memory corrup-
tion

54305 Trunk
Crash in
gc remove zval from buffer

Memory corrup-
tion

54322 Trunk
Crash (null pointer) in
zif get html translation table

Null-pointer crash

54323 Trunk
Accessing unset()’ed ArrayOb-
ject’s property causes crash

Use after free

54324 5.3.6
Crash in
date object compare date

Duplicate

54332 5.3.6
Crash in zend mm check ptr Heap
corruption

Memory corrup-
tion

54348 5.3.6
Crash (Call stack overflow) in Ex-
changeArray

Call stack over-
flow

54349 Trunk Crash in zend std write property Use after free
54350 5.3.6 Memory corruption with user filter

Table 4.2: Results on the PHP Interpreter

Chapter 5

Threats to Validity

5.1 Generalization

5.1.1 Language

In our field experiment (Section 4.3), we have evaluated our approach on
two major JavaScript implementations to demonstrate that the success of
our technique is not specific to a single implementation. Furthermore, we
have shown that it is not specific for a single language by evaluating it
with a proof-of-concept on PHP (Section 4.4). Nevertheless, we cannot
generalize from these results that the approach will find issues in interpreters
for different languages or what requirements/properties the language must
satisfy for LangFuzz to be effective.

5.1.2 Tested Software

Our direct comparison with jsfunfuzz (Section 4.1) is not only limited to
a single implementation but due to time constraints also limited to certain
versions. It is therefore not clear how both tools would perform on different
targets and which tool would be more effective. It is certainly possible
that the LangFuzz approach could catch up with jsfunfuzz when used on a
different implementation, because it is less implementation-dependent and
uses tests which were made for this specific implementation.

5.1.3 Test Suite Quality

The Mozilla test suite we used contains over 3000 test cases that try to cover
the entire JavaScript specification. We assume that the size and quality of
the test suite used with LangFuzz has a major impact on its performance.
Projects with less test cases or biased tests could severely decrease the per-
formance and make the tool less helpful in such cases.

34

CHAPTER 5. THREATS TO VALIDITY 35

5.1.4 Runtime and Randomness

Both jsfunfuzz and LangFuzz make extensive use of randomness to drive
their actions. While some defects show up very quickly and frequently in
all runs, others are harder to detect. Their discovery might heavily depend
both on the time spent and the randomness involved. In our experiments,
we tried to find a time limit that is large enough to minimize such effects but
still practical for us. It is however impossible to tell if one of the tools would
have performed better in our experiments, given a larger time window.

5.2 Bug Duplicates

In both experiments (Section 4.1 and Section 4.2) as well as in the field
evaluations (Section 4.3 and Section 4.4) we give the number of bugs found as
part of our results. Some of these bugs have the same cause and are therefore
duplicates. During the field tests, developers looked at our bug reports and
flagged duplicates accordingly, which is a difficult task. However, in our
closed experiments we only have duplicate information available for known
bugs. Bugs that have been discovered by our tool on previous versions and
that have no corresponding bug report could be duplicates without us being
able to recognize them as such. Of course we compared assertion messages
and crash traces to filter duplicates but for some complicated bugs, this
method does not work. However, we believe that this subset of bugs (no
bug report, no longer present in most recent version) does not contain a high
number of duplicates, if any. The reason is that most non-trivial duplicates
(different traces/assertion message) are actually memory corruptions that
manifest in various different crashes, according to our experiences. Such
problems are usually recognized much faster because they have a larger
impact on the correctness of the program. It is therefore highly unlikely that
our set of discovered bugs contains such a bug without any corresponding
bug report being present.
Besides the problem of counting one defect as two or more (duplicate prob-
lem), the other direction is also possible. Memory corruptions are often
caught by the same assertions, so it is also possible that two distinct defects
are only seen and counted as one bug during the experiments. While the
duplicate problem could make our results look better than they are, this
problem would make the results worse.

Chapter 6

Conclusion

This work provides several contributions to state of the art fuzz testing of
language interpreters. First of all, we introduce a syntax-based testing ap-
proach that combines pure code generation with test mutation. We outline
several benefits such as genericness and low maintenance and provide an im-
plementation that compares well to state of the art: Although our approach
is generic, we reach over 50% of jsfunfuzz’s effectiveness1 while the majority
of LangFuzz-detected bugs have not been detected by jsfunfuzz.
Furthermore, we tested our tool on the two major browsers Mozilla Firefox
and Google Chrome and found over 50 defects in every product/branch
we tested. Some of these defects where highly security critical, yielding
twelve Mozilla Security Bug Bounty Awards and twelve Chromium Security
Rewards. This part of our evaluation clearly shows that our technique is
practical and can be an important utility in quality assurance. Both Mozilla
and Google have shown interest in adapting LangFuzz (or its technique) into
their own toolchains.
Finally, we demonstrate that LangFuzz works on a second language to en-
sure that our initial success is not solely caused by our initial choice of
language. With our proof-of-concept implementation for PHP support, we
quickly found several problems in the current PHP engine of which some
are clearly security-related with a high impact.

1Number of defects found per time unit

36

Chapter 7

Further Work

While LangFuzz has proven to be helpful in the development cycles of at
least two major products (Mozilla Firefox and Google Chrome), we believe
that there is still a lot more that can be achieved by extending and improving
this technique and we invite all interested researchers to work on this. The
following is a list of possible topics that we think could be useful in the
future.

7.1 Differential Testing

Differential Testing is another commonly used technique in fuzzing that can
be applied whenever several implementations of the same standard (e.g. ES3
JavaScript) are available. The usual problem with fuzzing beyond assertions
and crashes is to recognize faulty behavior (i.e. missing test oracle). By
using multiple implementations on the same test, different behavior can be
detected which should indicate a defect if all engines claim to implement the
same standard. Both Rudermann [13] and Yang et al. [18] make use of this
technique and LangFuzz should be able to do the same either with multiple
engines or different options with the same engine.

7.2 Further Languages and Island Grammars

LangFuzz currently only supports ES3 JavaScript and PHP. By extend-
ing the language support in LangFuzz, we can not only investigate further
which languages are most suited for our testing techniques but also provide
a helpful tool for the further development of that language. Another im-
portant aspect are mixed languages, such as HTML and ES3 or ES3 and
XML (E4X). For these combinations, the main grammar must be modified
to include the second grammar (“island grammar”). We believe that this
could be especially helpful in browser fuzzing.

37

CHAPTER 7. FURTHER WORK 38

7.3 Generic Semantics Support

During a discussion with Graydon Hoare, a language expert at Mozilla, we
came to the conclusion that it should be possible to create fuzzers also on
levels between the purely syntactic one like LangFuzz, and the language-
specific one like jsfunfuzz: Many languages share common characteristics
and semantics (control flow constructs, types, etc.). It could be worth in-
vestigating in how far these generic semantic rules that apply for many
languages can be used in a semi-generic language fuzzer.

Acknowledgements

Many people directly or indirectly helped me to get this work done and I’m
thankful for all the support I received.
First, I would like to thank the many people at Mozilla who provided me
with helpful comments, suggestions, information and tools required to get
my experiments done and to overall improve LangFuzz. Especially I would
like to thank Jesse Ruderman, Gary Kwong and Lucas Adamski for granting
me access to jsfunfuzz and providing me with a lot of helpful information
on the state-of-the-art at Mozilla. I would also like to thank the whole
JS development team at Mozilla, especially Jason Orendorff, Brian Hackett,
Jan de Mooij, Andreas Gal, Paul Biggar and all the others who were working
on the bugs I reported and that encouraged me to continue the project.
I would also like to thank Google for working together with me on V8/Chrome
testing, especially Chris Evans from Google Security for providing me help-
ful information and feedback as well as Mads Ager and the whole V8 team
for working on my bug reports.
Furthermore, I’d like to thank my advisor Kim Herzig and my supervisor
Prof. Zeller for granting me to write the thesis on this topic and providing
me with lots of helpful feedback on it. I’d also like to thank the staff and
alumni at the chair for numerous helpful suggestions, especially Stephan
Neuhaus, Gordon Fraser, Kevin Streit and Clemens Hammacher.
Special thanks go to Sascha Just, Maximilian Grothmusmann and Sebastian
Hafner for technical assistance and their overall support and friendship. Last
but not least I’d like to thank my girlfriend Mado Wohlgemuth for her never-
ending support and motivation.
Due to the large number of helpful comments, this list might be incomplete.
I apology if I inadvertently omitted any person who would have deserved to
be mentioned here.

39

Bibliography

[1] The peach fuzzing platform. Project website. http://peachfuzzer.com/.

[2] The phpparser project. Project website.
http://code.google.com/p/phpparser/.

[3] Dave Aitel. The advantages of block-based protocol analysis for security
testing. Technical report, 2002.

[4] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. SIGPLAN Not., 43(6):206–215, 2008. ISSN
0362-1340. doi: http://doi.acm.org/10.1145/1379022.1375607.

[5] Christian Lindig. Random testing of c calling conventions. Proc.
AADEBUG., pages 3–12, 2005.

[6] Scott McPeak and Daniel S. Wilkerson. The delta tool. Project website.
http://delta.tigris.org/.

[7] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study
of the reliability of unix utilities. Commun. ACM, 33:32–44, December
1990. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/96267.96279.
URL http://doi.acm.org/10.1145/96267.96279.

[8] Charlie Miller and Zachary N. J. Peterson. Analysis of Mutation
and Generation-Based Fuzzing. Technical report, Independent Secu-
rity Evaluators, March 2007. URL http://securityevaluators.com/

files/papers/analysisfuzzing.pdf.

[9] David Molnar, Xue Cong Li, and David A. Wagner. Dynamic test gen-
eration to find integer bugs in x86 binary linux programs. In Proceed-
ings of the 18th conference on USENIX security symposium, SSYM’09,
pages 67–82, Berkeley, CA, USA, 2009. USENIX Association. URL
http://portal.acm.org/citation.cfm?id=1855768.1855773.

[10] Peter Oehlert. Violating assumptions with fuzzing. IEEE Security and
Privacy, 3:58–62, March 2005. ISSN 1540-7993. doi: 10.1109/MSP.
2005.55. URL http://portal.acm.org/citation.cfm?id=1058224.

1058339.

40

http://doi.acm.org/10.1145/96267.96279
http://securityevaluators.com/files/papers/analysisfuzzing.pdf
http://securityevaluators.com/files/papers/analysisfuzzing.pdf
http://portal.acm.org/citation.cfm?id=1855768.1855773
http://portal.acm.org/citation.cfm?id=1058224.1058339
http://portal.acm.org/citation.cfm?id=1058224.1058339

BIBLIOGRAPHY 41

[11] T.J. Parr and R.W. Quong. Antlr: A predicated-ll (k) parser generator.
Software: Practice and Experience, 25(7):789–810, 1995.

[12] Paul Purdom. A sentence generator for testing parsers. BIT Numerical
Mathematics, 12:366–375, 1972. ISSN 0006-3835. URL http://dx.

doi.org/10.1007/BF01932308. 10.1007/BF01932308.

[13] Jesse Rudermann. Introducing jsfunfuzz. Blog Entry.
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/,
2007.

[14] Guoqiang Shu, Yating Hsu, and David Lee. Detecting communication
protocol security flaws by formal fuzz testing and machine learning.
In Proceedings of the 28th IFIP WG 6.1 international conference on
Formal Techniques for Networked and Distributed Systems, FORTE ’08,
pages 299–304, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-
3-540-68854-9. doi: http://dx.doi.org/10.1007/978-3-540-68855-6\ 19.
URL http://dx.doi.org/10.1007/978-3-540-68855-6_19.

[15] Michael Sutton and Adam Greene. The art of file format fuzzing. In
Blackhat USA Conference, 2005.

[16] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley Professional, 2007.
ISBN 0321446119.

[17] Brian Turner. Random c program generator. Project web-
site. http://sites.google.com/site/brturn2/randomcprogramgenerator,
2007.

[18] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
Understanding Bugs in C Compilers. In Proceedings of the 2011 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation. ACM SIGPLAN, ACM, June 2011. URL http://www.cs.

utah.edu/~{}regehr/papers/pldi11-preprint.pdf.

[19] Michal Zalewski. Announcing cross fuzz. Blog Entry.
http://lcamtuf.blogspot.com/2011/01/announcing-crossfuzz-potential-
0-day-in.html, 2011.

[20] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, pages 183–200,
2002.

http://dx.doi.org/10.1007/BF01932308
http://dx.doi.org/10.1007/BF01932308
http://dx.doi.org/10.1007/978-3-540-68855-6_19
http://www.cs.utah.edu/~{}regehr/papers/pldi11-preprint.pdf
http://www.cs.utah.edu/~{}regehr/papers/pldi11-preprint.pdf

Appendix

The following pages contain the bug numbers (IDs) of all bugs related to
LangFuzz. The bug report usually contains the (minimized) test case, either
as an attachment or inlined. Note that some bug reports are not accessible
at the time of writing because they were classified as security-critical bugs.
These will be released to public after a certain period of time. Furthermore,
keep in mind that the given lists also contain all duplicates, both with other
tools and our own. A star indicates a bug classified as security-related (we
only have this mapping available for Mozilla TraceMonkey).

42

BIBLIOGRAPHY 43

Bug IDs
https://bugzilla.mozilla.org/show bug.cgi?id=<BugID>

610223 * 612837 * 615657 *
615859 616454 616465
616491 617139 617405
617617 617745 617770
617935 * 619064 619970
620232 620348 620637
621068 621121 621123
621137 * 621202 * 621374
621432 621988 621991 *
622011 622167 * 623297 *
623301 * 623863 * 624439 *
624455 625685 626345
626436 626464 * 626521
626592 627106 629650 *
630048 630064 * 631788
633122 634593 635195
635594 635598 635599 *
636879 636889 637010
637011 637202 637205
638212 638735 642146
642151 642154 642157
642159 642161 642164
642165 642172 642177
642772 648438 648746
649017 649259 649761
650621 651129 651244
652415 652438 652439
653396 655499 661586
666701 667108 667293

Table 7.1: Bug IDs for bugs found in Mozilla TraceMonkey

https://bugzilla.mozilla.org/show_bug.cgi?id=610223
https://bugzilla.mozilla.org/show_bug.cgi?id=612837
https://bugzilla.mozilla.org/show_bug.cgi?id=615657
https://bugzilla.mozilla.org/show_bug.cgi?id=615859
https://bugzilla.mozilla.org/show_bug.cgi?id=616454
https://bugzilla.mozilla.org/show_bug.cgi?id=616465
https://bugzilla.mozilla.org/show_bug.cgi?id=616491
https://bugzilla.mozilla.org/show_bug.cgi?id=617139
https://bugzilla.mozilla.org/show_bug.cgi?id=617405
https://bugzilla.mozilla.org/show_bug.cgi?id=617617
https://bugzilla.mozilla.org/show_bug.cgi?id=617745
https://bugzilla.mozilla.org/show_bug.cgi?id=617770
https://bugzilla.mozilla.org/show_bug.cgi?id=617935
https://bugzilla.mozilla.org/show_bug.cgi?id=619064
https://bugzilla.mozilla.org/show_bug.cgi?id=619970
https://bugzilla.mozilla.org/show_bug.cgi?id=620232
https://bugzilla.mozilla.org/show_bug.cgi?id=620348
https://bugzilla.mozilla.org/show_bug.cgi?id=620637
https://bugzilla.mozilla.org/show_bug.cgi?id=621068
https://bugzilla.mozilla.org/show_bug.cgi?id=621121
https://bugzilla.mozilla.org/show_bug.cgi?id=621123
https://bugzilla.mozilla.org/show_bug.cgi?id=621137
https://bugzilla.mozilla.org/show_bug.cgi?id=621202
https://bugzilla.mozilla.org/show_bug.cgi?id=621374
https://bugzilla.mozilla.org/show_bug.cgi?id=621432
https://bugzilla.mozilla.org/show_bug.cgi?id=621988
https://bugzilla.mozilla.org/show_bug.cgi?id=621991
https://bugzilla.mozilla.org/show_bug.cgi?id=622011
https://bugzilla.mozilla.org/show_bug.cgi?id=622167
https://bugzilla.mozilla.org/show_bug.cgi?id=623297
https://bugzilla.mozilla.org/show_bug.cgi?id=623301
https://bugzilla.mozilla.org/show_bug.cgi?id=623863
https://bugzilla.mozilla.org/show_bug.cgi?id=624439
https://bugzilla.mozilla.org/show_bug.cgi?id=624455
https://bugzilla.mozilla.org/show_bug.cgi?id=625685
https://bugzilla.mozilla.org/show_bug.cgi?id=626345
https://bugzilla.mozilla.org/show_bug.cgi?id=626436
https://bugzilla.mozilla.org/show_bug.cgi?id=626464
https://bugzilla.mozilla.org/show_bug.cgi?id=626521
https://bugzilla.mozilla.org/show_bug.cgi?id=626592
https://bugzilla.mozilla.org/show_bug.cgi?id=627106
https://bugzilla.mozilla.org/show_bug.cgi?id=629650
https://bugzilla.mozilla.org/show_bug.cgi?id=630048
https://bugzilla.mozilla.org/show_bug.cgi?id=630064
https://bugzilla.mozilla.org/show_bug.cgi?id=631788
https://bugzilla.mozilla.org/show_bug.cgi?id=633122
https://bugzilla.mozilla.org/show_bug.cgi?id=634593
https://bugzilla.mozilla.org/show_bug.cgi?id=635195
https://bugzilla.mozilla.org/show_bug.cgi?id=635594
https://bugzilla.mozilla.org/show_bug.cgi?id=635598
https://bugzilla.mozilla.org/show_bug.cgi?id=635599
https://bugzilla.mozilla.org/show_bug.cgi?id=636879
https://bugzilla.mozilla.org/show_bug.cgi?id=636889
https://bugzilla.mozilla.org/show_bug.cgi?id=637010
https://bugzilla.mozilla.org/show_bug.cgi?id=637011
https://bugzilla.mozilla.org/show_bug.cgi?id=637202
https://bugzilla.mozilla.org/show_bug.cgi?id=637205
https://bugzilla.mozilla.org/show_bug.cgi?id=638212
https://bugzilla.mozilla.org/show_bug.cgi?id=638735
https://bugzilla.mozilla.org/show_bug.cgi?id=642146
https://bugzilla.mozilla.org/show_bug.cgi?id=642151
https://bugzilla.mozilla.org/show_bug.cgi?id=642154
https://bugzilla.mozilla.org/show_bug.cgi?id=642157
https://bugzilla.mozilla.org/show_bug.cgi?id=642159
https://bugzilla.mozilla.org/show_bug.cgi?id=642161
https://bugzilla.mozilla.org/show_bug.cgi?id=642164
https://bugzilla.mozilla.org/show_bug.cgi?id=642165
https://bugzilla.mozilla.org/show_bug.cgi?id=642172
https://bugzilla.mozilla.org/show_bug.cgi?id=642177
https://bugzilla.mozilla.org/show_bug.cgi?id=642772
https://bugzilla.mozilla.org/show_bug.cgi?id=648438
https://bugzilla.mozilla.org/show_bug.cgi?id=648746
https://bugzilla.mozilla.org/show_bug.cgi?id=649017
https://bugzilla.mozilla.org/show_bug.cgi?id=649259
https://bugzilla.mozilla.org/show_bug.cgi?id=649761
https://bugzilla.mozilla.org/show_bug.cgi?id=650621
https://bugzilla.mozilla.org/show_bug.cgi?id=651129
https://bugzilla.mozilla.org/show_bug.cgi?id=651244
https://bugzilla.mozilla.org/show_bug.cgi?id=652415
https://bugzilla.mozilla.org/show_bug.cgi?id=652438
https://bugzilla.mozilla.org/show_bug.cgi?id=652439
https://bugzilla.mozilla.org/show_bug.cgi?id=653396
https://bugzilla.mozilla.org/show_bug.cgi?id=655499
https://bugzilla.mozilla.org/show_bug.cgi?id=661586
https://bugzilla.mozilla.org/show_bug.cgi?id=666701
https://bugzilla.mozilla.org/show_bug.cgi?id=667108
https://bugzilla.mozilla.org/show_bug.cgi?id=667293

BIBLIOGRAPHY 44

Bug IDs
https://bugzilla.mozilla.org/show bug.cgi?id=<BugID>

642198 642206 642209 642222
642247 642248 642254 642285
642307 642319 642326 642405
642422 642592 642758 642760
642979 642985 642988 643113
643266 643272 643277 643279
643281 643284 643285 643299
643376 643543 643552 643693
644970 645044 645293 645301
645493 645991 646001 646004
646006 646012 646026 646060
646215 646393 646411 646429
646498 646587 646594 647167
647183 647199 647424 647428
647537 647547 647559 648747
648757 648839 648843 648849
648852 648999 649005 649011
649013 649152 649261 649263
649272 649273 649278 649775
649824 649936 649937 650148
650658 650662 650663 650673
651147 651155 651199 651209
651218 651232 652422 653243
653249 653262 653395 653397
653399 653400 653467 654001
654392 654393 654665 654668
654710 655504 655507 655769
655954 655963 655990 655991
656132 656259 656753 656914
657225 657245 657247 657287
657288 657304 657587 657624
657633 657881 658016 658211
658212 658215 658217 658287
658290 658293 658294 658561
658777 659448 659450 659452
659456 659639 659766 659779
659965 660202 660203 660204
660597 661859 662044 662047
662338 663628 663910 664422

Table 7.2: Bug IDs for bugs found in Mozilla TypeInference Branch

https://bugzilla.mozilla.org/show_bug.cgi?id=642198
https://bugzilla.mozilla.org/show_bug.cgi?id=642206
https://bugzilla.mozilla.org/show_bug.cgi?id=642209
https://bugzilla.mozilla.org/show_bug.cgi?id=642222
https://bugzilla.mozilla.org/show_bug.cgi?id=642247
https://bugzilla.mozilla.org/show_bug.cgi?id=642248
https://bugzilla.mozilla.org/show_bug.cgi?id=642254
https://bugzilla.mozilla.org/show_bug.cgi?id=642285
https://bugzilla.mozilla.org/show_bug.cgi?id=642307
https://bugzilla.mozilla.org/show_bug.cgi?id=642319
https://bugzilla.mozilla.org/show_bug.cgi?id=642326
https://bugzilla.mozilla.org/show_bug.cgi?id=642405
https://bugzilla.mozilla.org/show_bug.cgi?id=642422
https://bugzilla.mozilla.org/show_bug.cgi?id=642592
https://bugzilla.mozilla.org/show_bug.cgi?id=642758
https://bugzilla.mozilla.org/show_bug.cgi?id=642760
https://bugzilla.mozilla.org/show_bug.cgi?id=642979
https://bugzilla.mozilla.org/show_bug.cgi?id=642985
https://bugzilla.mozilla.org/show_bug.cgi?id=642988
https://bugzilla.mozilla.org/show_bug.cgi?id=643113
https://bugzilla.mozilla.org/show_bug.cgi?id=643266
https://bugzilla.mozilla.org/show_bug.cgi?id=643272
https://bugzilla.mozilla.org/show_bug.cgi?id=643277
https://bugzilla.mozilla.org/show_bug.cgi?id=643279
https://bugzilla.mozilla.org/show_bug.cgi?id=643281
https://bugzilla.mozilla.org/show_bug.cgi?id=643284
https://bugzilla.mozilla.org/show_bug.cgi?id=643285
https://bugzilla.mozilla.org/show_bug.cgi?id=643299
https://bugzilla.mozilla.org/show_bug.cgi?id=643376
https://bugzilla.mozilla.org/show_bug.cgi?id=643543
https://bugzilla.mozilla.org/show_bug.cgi?id=643552
https://bugzilla.mozilla.org/show_bug.cgi?id=643693
https://bugzilla.mozilla.org/show_bug.cgi?id=644970
https://bugzilla.mozilla.org/show_bug.cgi?id=645044
https://bugzilla.mozilla.org/show_bug.cgi?id=645293
https://bugzilla.mozilla.org/show_bug.cgi?id=645301
https://bugzilla.mozilla.org/show_bug.cgi?id=645493
https://bugzilla.mozilla.org/show_bug.cgi?id=645991
https://bugzilla.mozilla.org/show_bug.cgi?id=646001
https://bugzilla.mozilla.org/show_bug.cgi?id=646004
https://bugzilla.mozilla.org/show_bug.cgi?id=646006
https://bugzilla.mozilla.org/show_bug.cgi?id=646012
https://bugzilla.mozilla.org/show_bug.cgi?id=646026
https://bugzilla.mozilla.org/show_bug.cgi?id=646060
https://bugzilla.mozilla.org/show_bug.cgi?id=646215
https://bugzilla.mozilla.org/show_bug.cgi?id=646393
https://bugzilla.mozilla.org/show_bug.cgi?id=646411
https://bugzilla.mozilla.org/show_bug.cgi?id=646429
https://bugzilla.mozilla.org/show_bug.cgi?id=646498
https://bugzilla.mozilla.org/show_bug.cgi?id=646587
https://bugzilla.mozilla.org/show_bug.cgi?id=646594
https://bugzilla.mozilla.org/show_bug.cgi?id=647167
https://bugzilla.mozilla.org/show_bug.cgi?id=647183
https://bugzilla.mozilla.org/show_bug.cgi?id=647199
https://bugzilla.mozilla.org/show_bug.cgi?id=647424
https://bugzilla.mozilla.org/show_bug.cgi?id=647428
https://bugzilla.mozilla.org/show_bug.cgi?id=647537
https://bugzilla.mozilla.org/show_bug.cgi?id=647547
https://bugzilla.mozilla.org/show_bug.cgi?id=647559
https://bugzilla.mozilla.org/show_bug.cgi?id=648747
https://bugzilla.mozilla.org/show_bug.cgi?id=648757
https://bugzilla.mozilla.org/show_bug.cgi?id=648839
https://bugzilla.mozilla.org/show_bug.cgi?id=648843
https://bugzilla.mozilla.org/show_bug.cgi?id=648849
https://bugzilla.mozilla.org/show_bug.cgi?id=648852
https://bugzilla.mozilla.org/show_bug.cgi?id=648999
https://bugzilla.mozilla.org/show_bug.cgi?id=649005
https://bugzilla.mozilla.org/show_bug.cgi?id=649011
https://bugzilla.mozilla.org/show_bug.cgi?id=649013
https://bugzilla.mozilla.org/show_bug.cgi?id=649152
https://bugzilla.mozilla.org/show_bug.cgi?id=649261
https://bugzilla.mozilla.org/show_bug.cgi?id=649263
https://bugzilla.mozilla.org/show_bug.cgi?id=649272
https://bugzilla.mozilla.org/show_bug.cgi?id=649273
https://bugzilla.mozilla.org/show_bug.cgi?id=649278
https://bugzilla.mozilla.org/show_bug.cgi?id=649775
https://bugzilla.mozilla.org/show_bug.cgi?id=649824
https://bugzilla.mozilla.org/show_bug.cgi?id=649936
https://bugzilla.mozilla.org/show_bug.cgi?id=649937
https://bugzilla.mozilla.org/show_bug.cgi?id=650148
https://bugzilla.mozilla.org/show_bug.cgi?id=650658
https://bugzilla.mozilla.org/show_bug.cgi?id=650662
https://bugzilla.mozilla.org/show_bug.cgi?id=650663
https://bugzilla.mozilla.org/show_bug.cgi?id=650673
https://bugzilla.mozilla.org/show_bug.cgi?id=651147
https://bugzilla.mozilla.org/show_bug.cgi?id=651155
https://bugzilla.mozilla.org/show_bug.cgi?id=651199
https://bugzilla.mozilla.org/show_bug.cgi?id=651209
https://bugzilla.mozilla.org/show_bug.cgi?id=651218
https://bugzilla.mozilla.org/show_bug.cgi?id=651232
https://bugzilla.mozilla.org/show_bug.cgi?id=652422
https://bugzilla.mozilla.org/show_bug.cgi?id=653243
https://bugzilla.mozilla.org/show_bug.cgi?id=653249
https://bugzilla.mozilla.org/show_bug.cgi?id=653262
https://bugzilla.mozilla.org/show_bug.cgi?id=653395
https://bugzilla.mozilla.org/show_bug.cgi?id=653397
https://bugzilla.mozilla.org/show_bug.cgi?id=653399
https://bugzilla.mozilla.org/show_bug.cgi?id=653400
https://bugzilla.mozilla.org/show_bug.cgi?id=653467
https://bugzilla.mozilla.org/show_bug.cgi?id=654001
https://bugzilla.mozilla.org/show_bug.cgi?id=654392
https://bugzilla.mozilla.org/show_bug.cgi?id=654393
https://bugzilla.mozilla.org/show_bug.cgi?id=654665
https://bugzilla.mozilla.org/show_bug.cgi?id=654668
https://bugzilla.mozilla.org/show_bug.cgi?id=654710
https://bugzilla.mozilla.org/show_bug.cgi?id=655504
https://bugzilla.mozilla.org/show_bug.cgi?id=655507
https://bugzilla.mozilla.org/show_bug.cgi?id=655769
https://bugzilla.mozilla.org/show_bug.cgi?id=655954
https://bugzilla.mozilla.org/show_bug.cgi?id=655963
https://bugzilla.mozilla.org/show_bug.cgi?id=655990
https://bugzilla.mozilla.org/show_bug.cgi?id=655991
https://bugzilla.mozilla.org/show_bug.cgi?id=656132
https://bugzilla.mozilla.org/show_bug.cgi?id=656259
https://bugzilla.mozilla.org/show_bug.cgi?id=656753
https://bugzilla.mozilla.org/show_bug.cgi?id=656914
https://bugzilla.mozilla.org/show_bug.cgi?id=657225
https://bugzilla.mozilla.org/show_bug.cgi?id=657245
https://bugzilla.mozilla.org/show_bug.cgi?id=657247
https://bugzilla.mozilla.org/show_bug.cgi?id=657287
https://bugzilla.mozilla.org/show_bug.cgi?id=657288
https://bugzilla.mozilla.org/show_bug.cgi?id=657304
https://bugzilla.mozilla.org/show_bug.cgi?id=657587
https://bugzilla.mozilla.org/show_bug.cgi?id=657624
https://bugzilla.mozilla.org/show_bug.cgi?id=657633
https://bugzilla.mozilla.org/show_bug.cgi?id=657881
https://bugzilla.mozilla.org/show_bug.cgi?id=658016
https://bugzilla.mozilla.org/show_bug.cgi?id=658211
https://bugzilla.mozilla.org/show_bug.cgi?id=658212
https://bugzilla.mozilla.org/show_bug.cgi?id=658215
https://bugzilla.mozilla.org/show_bug.cgi?id=658217
https://bugzilla.mozilla.org/show_bug.cgi?id=658287
https://bugzilla.mozilla.org/show_bug.cgi?id=658290
https://bugzilla.mozilla.org/show_bug.cgi?id=658293
https://bugzilla.mozilla.org/show_bug.cgi?id=658294
https://bugzilla.mozilla.org/show_bug.cgi?id=658561
https://bugzilla.mozilla.org/show_bug.cgi?id=658777
https://bugzilla.mozilla.org/show_bug.cgi?id=659448
https://bugzilla.mozilla.org/show_bug.cgi?id=659450
https://bugzilla.mozilla.org/show_bug.cgi?id=659452
https://bugzilla.mozilla.org/show_bug.cgi?id=659456
https://bugzilla.mozilla.org/show_bug.cgi?id=659639
https://bugzilla.mozilla.org/show_bug.cgi?id=659766
https://bugzilla.mozilla.org/show_bug.cgi?id=659779
https://bugzilla.mozilla.org/show_bug.cgi?id=659965
https://bugzilla.mozilla.org/show_bug.cgi?id=660202
https://bugzilla.mozilla.org/show_bug.cgi?id=660203
https://bugzilla.mozilla.org/show_bug.cgi?id=660204
https://bugzilla.mozilla.org/show_bug.cgi?id=660597
https://bugzilla.mozilla.org/show_bug.cgi?id=661859
https://bugzilla.mozilla.org/show_bug.cgi?id=662044
https://bugzilla.mozilla.org/show_bug.cgi?id=662047
https://bugzilla.mozilla.org/show_bug.cgi?id=662338
https://bugzilla.mozilla.org/show_bug.cgi?id=663628
https://bugzilla.mozilla.org/show_bug.cgi?id=663910
https://bugzilla.mozilla.org/show_bug.cgi?id=664422

BIBLIOGRAPHY 45

Bug IDs
https://code.google.com/p/v8/issues/detail?id=<BugID>

1103 1104 1105
1106 1107 1108
1109 1110 1111
1112 1113 1118
1119 1122 1123
1124 1125 1126
1128 1129 1130
1131 1132 1134
1135 1136 1137
1138 1145 1146
1147 1148 1149
1151 1152 1160
1165 1166 1167
1170 1172 1173
1174 1175 1176
1177 1182 1184
1200 1206 1207
1208 1209 1210
1213 1227 1229
1230 1231 1232
1234 1235 1236
1237 1238 1337
1351 1362 1363
1404 1500 1501

Table 7.3: Bug IDs for bugs found in the Google V8 engine

https://code.google.com/p/v8/issues/detail?id=1103
https://code.google.com/p/v8/issues/detail?id=1104
https://code.google.com/p/v8/issues/detail?id=1105
https://code.google.com/p/v8/issues/detail?id=1106
https://code.google.com/p/v8/issues/detail?id=1107
https://code.google.com/p/v8/issues/detail?id=1108
https://code.google.com/p/v8/issues/detail?id=1109
https://code.google.com/p/v8/issues/detail?id=1110
https://code.google.com/p/v8/issues/detail?id=1111
https://code.google.com/p/v8/issues/detail?id=1112
https://code.google.com/p/v8/issues/detail?id=1113
https://code.google.com/p/v8/issues/detail?id=1118
https://code.google.com/p/v8/issues/detail?id=1119
https://code.google.com/p/v8/issues/detail?id=1122
https://code.google.com/p/v8/issues/detail?id=1123
https://code.google.com/p/v8/issues/detail?id=1124
https://code.google.com/p/v8/issues/detail?id=1125
https://code.google.com/p/v8/issues/detail?id=1126
https://code.google.com/p/v8/issues/detail?id=1128
https://code.google.com/p/v8/issues/detail?id=1129
https://code.google.com/p/v8/issues/detail?id=1130
https://code.google.com/p/v8/issues/detail?id=1131
https://code.google.com/p/v8/issues/detail?id=1132
https://code.google.com/p/v8/issues/detail?id=1134
https://code.google.com/p/v8/issues/detail?id=1135
https://code.google.com/p/v8/issues/detail?id=1136
https://code.google.com/p/v8/issues/detail?id=1137
https://code.google.com/p/v8/issues/detail?id=1138
https://code.google.com/p/v8/issues/detail?id=1145
https://code.google.com/p/v8/issues/detail?id=1146
https://code.google.com/p/v8/issues/detail?id=1147
https://code.google.com/p/v8/issues/detail?id=1148
https://code.google.com/p/v8/issues/detail?id=1149
https://code.google.com/p/v8/issues/detail?id=1151
https://code.google.com/p/v8/issues/detail?id=1152
https://code.google.com/p/v8/issues/detail?id=1160
https://code.google.com/p/v8/issues/detail?id=1165
https://code.google.com/p/v8/issues/detail?id=1166
https://code.google.com/p/v8/issues/detail?id=1167
https://code.google.com/p/v8/issues/detail?id=1170
https://code.google.com/p/v8/issues/detail?id=1172
https://code.google.com/p/v8/issues/detail?id=1173
https://code.google.com/p/v8/issues/detail?id=1174
https://code.google.com/p/v8/issues/detail?id=1175
https://code.google.com/p/v8/issues/detail?id=1176
https://code.google.com/p/v8/issues/detail?id=1177
https://code.google.com/p/v8/issues/detail?id=1182
https://code.google.com/p/v8/issues/detail?id=1184
https://code.google.com/p/v8/issues/detail?id=1200
https://code.google.com/p/v8/issues/detail?id=1206
https://code.google.com/p/v8/issues/detail?id=1207
https://code.google.com/p/v8/issues/detail?id=1208
https://code.google.com/p/v8/issues/detail?id=1209
https://code.google.com/p/v8/issues/detail?id=1210
https://code.google.com/p/v8/issues/detail?id=1213
https://code.google.com/p/v8/issues/detail?id=1227
https://code.google.com/p/v8/issues/detail?id=1229
https://code.google.com/p/v8/issues/detail?id=1230
https://code.google.com/p/v8/issues/detail?id=1231
https://code.google.com/p/v8/issues/detail?id=1232
https://code.google.com/p/v8/issues/detail?id=1234
https://code.google.com/p/v8/issues/detail?id=1235
https://code.google.com/p/v8/issues/detail?id=1236
https://code.google.com/p/v8/issues/detail?id=1237
https://code.google.com/p/v8/issues/detail?id=1238
https://code.google.com/p/v8/issues/detail?id=1337
https://code.google.com/p/v8/issues/detail?id=1351
https://code.google.com/p/v8/issues/detail?id=1362
https://code.google.com/p/v8/issues/detail?id=1363
https://code.google.com/p/v8/issues/detail?id=1404
https://code.google.com/p/v8/issues/detail?id=1500
https://code.google.com/p/v8/issues/detail?id=1501

	Abstract
	Introduction
	Background
	Related Work
	Indirectly Related

	Definitions
	Defect
	Language Grammar
	Interpreter

	Methods
	Random Generative Approaches
	Random Walk over Grammar
	Stepwise Expansion Algorithm

	Code Mutations
	Constructing LangFuzz
	Code Parsing
	Code Generation
	Fragment Replacement
	Test Running
	Parameters

	Evaluation
	Comparison with State of the Art
	Differences between the Programs
	Questions and Goals
	Experiment Setup
	Experiment Results

	Generative vs. Mutative Approach
	Questions and Goals
	Experiment Setup
	Experiment Results

	Field Tests with Mozilla and Google
	Example for a bug missed by jsfunfuzz
	Example for detected incomplete fix
	Example for defect detected through code generation only
	Further code examples

	Proof-of-Concept Adaptation to PHP
	Steps required to run on PHP
	Experiment/Results on PHP Interpreter

	Threats to Validity
	Generalization
	Language
	Tested Software
	Test Suite Quality
	Runtime and Randomness

	Bug Duplicates

	Conclusion
	Further Work
	Differential Testing
	Further Languages and Island Grammars
	Generic Semantics Support

	Acknowledgements
	Bibliography
	Appendix

