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ABSTRACT

Recent years have witnessed incredible popularity and adoption of
smartphones and mobile devices, which is accompanied by large
amount and wide variety of feature-rich smartphone applications.
These smartphone applications (or apps), typically organized in
different application marketplaces, can be conveniently browsed
by mobile users and then simply clicked to install on a variety of
mobile devices. In practice, besides the official marketplaces from
platform vendors (e.g., Google and Apple), a number of third-party
alternative marketplaces have also been created to host thousands
of apps (e.g., to meet regional or localization needs). To maintain
and foster a hygienic smartphone app ecosystem, there is a need for
each third-party marketplace to offer quality apps to mobile users.

In this paper, we perform a systematic study on six popular
Android-based third-party marketplaces. Among them, we find
a common “in-the-wild” practice of repackaging legitimate apps
(from the official Android Market) and distributing repackaged
ones via third-party marketplaces. To better understand the extent
of such practice, we implement an app similarity measurement
system called DroidMOSS that applies a fuzzy hashing technique
to effectively localize and detect the changes from app-repackaging
behavior. The experiments with DroidMOSS show a worrisome
fact that 5% to 13% of apps hosted on these studied marketplaces
are repackaged. Further manual investigation indicates that these
repackaged apps are mainly used to replace existing in-app adver-
tisements or embed new ones to “steal” or re-route ad revenues.
We also identify a few cases with planted backdoors or malicious
payloads among repackaged apps. The results call for the need
of a rigorous vetting process for better regulation of third-party
smartphone application marketplaces.

Categories and Subject Descriptors C.4 [Per-
formance of Systems]: Measurement techniques; K.6.5 [Manage-

ment of Computing and Information Systems]: Security and
protection – Invasive software

General Terms Algorithms, Measurement, Security

Keywords Smartphones, Privacy and Security, Repackag-
ing
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1. INTRODUCTION
Smartphones have recently gained much popularity and demand.

A recent report shows that in July of 2011, the number of Android
smartphone activations reached 550, 000 each day [34]. Besides
the portability and mobility, the popularity is also possibly due
to the large amount and wide variety of feature-rich smartphone
applications (or apps) mobile users can install and experience. As
an example, there already have more than 200, 000 apps in the
official Android Market [3] (starting May 2011). These feature-rich
apps extend the capability of smartphones by empowering users
to browse, socialize, entertain, and communicate on the go with
unprecedented convenience and experiences, instead of limiting
users for basic phone calls or simple text messages.

To allow for mobile users to conveniently browse and install
these smartphone apps, platform vendors created centralized mar-
ketplaces, including Apple’s App Store [23] and Google’s Android
Market [26]. Through the centralized marketplaces, developers can
submit their apps to these marketplaces and make them available
to thousands of users. Platform owners can also better control
the quality of apps and block malicious ones to protect users.
Meanwhile, a number of third-party marketplaces were also created
for various purposes (e.g., to meet regional or localization needs).
Cydia [10] and Amazon AppStore [22] are two such examples that
host thousands of apps for iPhone and Android users, respectively.

To maintain and foster a hygienic smartphone app ecosystem,
there is a need for third-party marketplaces to offer quality apps
to mobile users. In this paper, we focus on six popular Android-
based third-party marketplaces and perform a systematic study on
the 22, 906 apps collected from them. Particularly, we observe that
the apps hosted in these third-party marketplaces can be classified
into three categories: The first category includes apps that are
also available in the official Android Market. It is possible as
app developers may choose to submit their apps to both official
and alternative marketplaces to reach more users. The second
category contains apps that are only available from the third-party
marketplaces. The reason is that developers may create apps
targeting specific customers (e.g., in their own regions, countries,
or languages). The third category, which is the main focus of
our study, consists of apps that are repackaged from the offi-
cial Android Market and re-distributed to third-party marketplaces.
Specifically, repackaged apps are based on legitimate ones, but
for whatever reasons, include some “value-added” functionality
or modification. Unfortunately, repackaged apps could lead to
a number of problems. For example, if a legitimate app is re-
packaged with additional malicious payloads or exploits, users may
find their phones compromised, phone bills increased or sensitive
information (stored on the phones) stolen. App developers are
also impacted as they find their intellectual properties violated, the



in-app revenues stolen, and their reputation impaired. From the
marketplace perspective, they are also seriously affected because
mobile users and developers are their customers, who might turn
away to other marketplaces for better-quality apps. As a result,
the entire smartphone app ecosystem could seriously suffer from
repackaged apps.

In this paper, we are motivated to systematically detect repack-
aged apps on third-party Android marketplaces. In particular, we
aim to shed some light on questions such as: How serious is
the overall app repackaging situation in our current marketplaces?
What purposes are these repackaged apps used for? Can we
systematically identify them? Note that the answers can be greatly
helpful in assuring users that a downloaded app is legitimate and
does not contain any malicious payload. Moreover, developers are
also protected since their intellectual properties are not violated.
For marketplace owners, they can also ensure that their market-
places are not populated with repackaged or trojanized apps.

As our first step, we present a system called DroidMOSS1 to
measure the similarity between two different apps and use it as the
basis to detect repackaged apps. Specifically, given each app from
a third-party Android marketplace, we measure its similarity with
those apps from the official Android Market. In order to handle a
large number of apps in the official and alternative marketplaces,
we choose to extract some distinguishing features from apps, and
generate app-specific fingerprints. Our fingerprint generation is
based on a fuzzy hashing technique to localize and detect the
modifications repackagers apply over the original apps. After that,
we calculate the edit distance to gauge how similar each app pair
is. When the similarity exceeds certain threshold, we consider one
app in the pair is repackaged.

We have implemented a DroidMOSS prototype and used it to
study six third-party Android marketplaces worldwide, including
two from United States (with 6, 296 apps), two from China (with
12, 595 apps), and two from East Europe (with 4, 015 apps). These
apps were collected in the first week of March, 2011 and are mea-
sured against the 68, 187 apps collected from the official Android
Market in the same time frame. To perform a concrete analysis, we
randomly picked up 200 apps from each of these six marketplaces,
and measured their similarity with the total 68, 187 apps in the
official Android Market. From the resulting 81, 824, 400 pair-wise
similarity scores, DroidMOSS systematically reports the repack-
aged apps. For each reported one, we perform a manual analysis
and then calculate the false positive rate. Our results show that 5%
to 13% of apps hosted in these six marketplaces are re-packaged
(with false positive rates ranging from 7.1% to 13.3%). Also, we
found that 13.5% to 30% of apps in these alternative marketplaces
are simply redistributed from the official Android Market. A
further manual investigation indicates that these repackaged apps
are mainly used to replace existing in-app advertisements or embed
new ones to “steal” or re-route ad revenues. We also identified a
few serious cases with planted backdoors or malicious payloads in
repackaged apps. These worrisome facts call for the imperative
need of a rigorous vetting process in third-party marketplaces.

The rest of this paper is organized as follows: We describe
the DroidMOSS system design for app similarity measurement in
Section 2, followed by its prototyping and evaluation results in
Section 3. After that, we discuss the limitations of our system and
suggest possible improvement in Section 4. Finally, we describe
related work in Section 5 and conclude this paper in Section 6.

1The name comes from an earlier system called MOSS [39] that
is designed to measure software similarity and has been primarily
used in detecting plagiarism in programming classes (based on
source code submissions).

2. DESIGN
To systematically detect repackaged apps in third-party mar-

ketplaces, we have three key design goals: accuracy, scalability,
and efficiency. Accuracy is a natural requirement to effectively
identify app-repackaging behavior in current marketplaces. How-
ever, challenges arise from the fact that the repackaging process
might dramatically change the function naming or code layout in
the repackaged app, which renders whole-app hashing schemes
ineffective. Also, due to the large number of apps in various
marketplaces, our approach needs to be scalable and efficient. As a
matter of fact, our current data set for app similarity measurement
has 81, 824, 400 app pairs, which makes expensive semantics-
aware full app analysis not feasible. Accordingly, in our design,
we choose to collect syntactic instruction sequences from each app
and then distill them for fingerprint generation. The generated
fingerprints need to be robust in order to accommodate possible
changes from app-repackaging behavior.

Assumption In this paper, we aim to uncover repackaged apps
in current marketplaces and understand the overall situation. We
focus on Java code inside Android apps without considering native
code. One reason is that native code is harder for repackager to
modify. Also our dataset shows that only a small number of (5%)
apps contains native code. Moreover, the apps from the official
Android Market are assumed to be trusted and not re-packaged.
There may exist exceptions to this assumption, but DroidMOSS is
still helpful in distinguishing app pairs with repackaging relation-
ship (Section 4). Finally, we assume that the signing keys from
app developers are not leaked. Therefore, it is not possible that a
repackaged app will be signed by the same author as the original
one.

2.1 Overview
Repackaged apps share two common characteristics: First, due

to the repackaging nature, the code base is similar between the
original app and the repackaged app. Second, since the developers’
signing keys are not leaked, the original app and the repackaged
app must be signed with different developer keys. DroidMOSS
capitalizes on these two insights by extracting related features from
apps and then discerning whether one app is repackaged from the
other.

Figure 1 shows an overview of our approach. In essence, Droid-
MOSS has three key steps. The first step is to extract from
each app two main features, i.e., instructions contained in the
app and its author information. These two features are used to
uniquely identify each app. After that, the second step is to
generate a fingerprint for each app. The reason is that each app
may contain hundreds of thousands of instructions. There is a
need to significantly condense it into a much shorter sequence
as its fingerprint (for similarity measurement). Finally, based on
app fingerprints, the third step discerns the source of apps, i.e.,
either from the official Android Market or from the third-party
marketplaces, and measures their pair-wise similarity scores (so
that we can detect repackaged apps). In the following, we examine
each step in more detail.

2.2 Feature Extraction
Each Android app is essentially a compressed archive file, which

contains the classes.dex file and a META-INF subdirectory. The
classes.dex file contains the actual Dalvik bytecode for execution
while the META-INF subdirectory contains the author information.

To extract Dalvik bytecode from classes.dex, we leverage ex-
isting Dalvik disassemblers (i.e., baksmali [1]). Initially, we use
the Dalvik bytecode (with opcodes and operands) as the code
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Figure 1: An Overview of DroidMOSS

feature directly. It turns out that it is not robust even for simple
obfuscation that could just change some string operands (such as
string names or hard-coded URLs). Because of that, we opt to make
further abstraction by removing the operands and retaining only the
opcode. The intuition is that it might be easy for repackagers to
modify or rename the (non-critical) operands, but much harder to
change the actual instructions. In the meantime, we also observe
that apps intend to include various ad SDK libraries to fetch and
display ads. After being disassembled, these shared ad libraries
unnecessarily introduce noise to our feature extraction. Fortunately,
there are a limited number of them and our current prototype builds
a white-list to remove them from the extracted code.

For the author information, the META-INF subdirectory contains
the full developer certificate, from which we can obtain the devel-
oper name, contact and organization information, as well as the
public key fingerprints. For simplicity, we map each developer cer-
tificate into one unique 32-bit identifier (or authorID). This unique
identifier is then integrated into the signature for comparison.

2.3 Fingerprint Generation
For each app, our second step generates a fingerprint from the

extracted code. A common way of achieving that is through
hashing. Although hashing the entire code sequence of an app can
uniquely determine whether two apps are the same, they are not
helpful to determine whether two files are similar. The reason is
simply because one minor modification will dramatically change
the hashing value. From another perspective, calculating the edit
distance between two given sequences is a well-known technique
to measure their similarity. Unfortunately, it cannot be directly
applied either. Considering each instruction sequence (of an app)
could have hundreds of thousands of instructions, it will be very
expensive to calculate one single edit distance between two apps,
not to mention the large number of apps each needs to be paired
and compared with others.

In DroidMOSS, we adopt a specialized hashing technique called
fuzzy hashing [21]. Instead of directly processing or comparing the
entire (long) instruction sequences, it first condenses each sequence
into one much shorter fingerprint. The similarity between two apps
is then calculated based on the shorter fingerprints, not the original
sequences. Therefore, a natural requirement for fuzzy hashing is
that the reduction into shorter fingerprints should minimize the
change, if any, to the similarity of two sequences.

To achieve that, we first divide the instruction sequence into
smaller pieces. Each piece is considered as an independent unit

Algorithm 1 Generate the app fingerprint

Input: Instruction sequence iseq of the app
Output: Fingerprint fp
Description: wsize - sliding window size, rp - reset point value,
sw - content in sliding window, ph - the piece hash

1: set_wsize(wsize)
2: set_resetpoint(rp)
3: init_sliding_window(sw)
4: init_piece_hash(ph)
5: for all byte d from iseq do

6: update_sliding_window(sw, d)
7: rh← rolling_hash(sw)
8: update_piece_hash(ph, d)
9: if rh = rp then

10: fp← concatenate(fp, ph)
11: init_piece_hash(ph)
12: end if

13: end for

14: return fp

to contribute to the final fingerprint. Therefore, if the repackaging
process changes one piece, its impact on the final fingerprint is
effectively localized and contained within this piece. For the rest
pieces that are not changed, their contributions to the final finger-
print are still valid and persistent through the repackaging process,
thus reflecting the similarity between the original app and the
repackaged one. However, the challenge lies on the determination
of the boundary of each piece. In DroidMOSS, we use a sliding
window that starts from the very beginning of the instruction se-
quence and moves forward until its rolling hashing value equals
a pre-selected reset point, which determines the boundary of the
current piece. Specifically, if a reset point is reached, a new piece
should be started. The concrete process is presented in Algorithm 1
and visually summarized in Figure 2.

For further elaboration, suppose a repackaged app has added
a new instruction to invoke an external function. For simplicity,
we assume the new instruction is inserted in the first piece of the
instruction sequence (i.e., piece 1 in Figure 2). Since our fuzzy
hashing scheme uses a sliding window to calculate the rolling hash
to determine the piece boundary, there are two possibilities about
the placement of the new instruction in the first piece, either falling
outside or inside the last sliding window. The former affects only
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the calculated hash value in the first piece while the rest pieces are
intact. The latter changes the rolling hash value of the last sliding
window (of the original piece 1). As a result, instead of stopping at
the original boundary, we keep moving forward the sliding window
until it hits the last sliding window in the second piece. In other
words, it merges the first two pieces into one. Notice that it does
not affect the determination of boundaries of the subsequent pieces.
Therefore, for the final fingerprint generation, it only changes the
hash values of the first two consecutive pieces. In either way, our
scheme effectively localizes the changes.2

In our design, to derive the fingerprint, we need to apply tradi-
tional hash function twice. The first is to calculate the hash value
of each piece (after its boundary is determined) and the calculated
hash values of all pieces are combined into the final fingerprint.
The second is to calculate a hash value on the content of the
sliding window, which is matched against the reset point. In our
prototype, we use a prime number as the reset point to enhance
the randomization or robustness of our scheme against possible
repackaging attacks.

2.4 Similarity Scoring
Our first two steps are applied for each app regardless of its

source. In the third step, we divide the apps into two groups, one
from the official Android Market and one from alternative market-
places, and then calculate pair-wise similarity scores between the
two. The similarity is based on the derived fingerprints, not the
detailed (long) instruction sequence. Note that our fuzzy hashing
scheme is deterministic in that if two apps from two groups are
identical, the same fingerprints will be generated. In addition, it can
also effectively localize the changes possibly made in repackaged
apps.

Based on the above analysis, the similarity between the (shorter)
fingerprints represents how similar their corresponding apps are.
With that, our similarity scoring algorithm is to compute the edit
distance between these two fingerprints, which is the number of
minimum edit operations, including insertion, deletion and sub-
stitution of a single byte, needed to convert one fingerprint into
another. The algorithm DroidMOSS adopts is a dynamic pro-

2Note that more advanced techniques could possibly mitigate our
scheme. However, our prototyping experience and evaluation
shows that they are not being used. From another perspective, the
off-line nature of analyzing existing apps also makes our scheme
easy to adapt and evolve.

gramming algorithm as presented in Algorithm 2. In particular,
for two fingerprints fp1 and fp2 (with lengths of len1 and len2,
respectively), we reserve a two-dimensional matrix (each value in
the matrix is initialized to 0) to hold the edit distance between all
prefixes of the first fingerprint and all prefixes of the second, and
then compute the values in the matrix by flood filling the matrix.
The distance between the two full strings will be the final value of
the edit distance between the two fingerprints. The edit distance
of any prefix subsequences of fp1 and fp2 can be derived from the
minimum of three values: (1) matrix(i−1, j)+1, which means to
add one insertion operation in fp1; (2) matrix(i, j−1)+1, which
means to add one deletion operation in fp2; and (3) matrix(i −
1, j − 1) + cost, which means to add one substitution operation
between fp1 and fp2.

Algorithm 2 Calculate the edit distance between two apps

Input: Two fingerprints fp1 and fp2

Output: Edit distance between fp1 and fp2

1: len1← strlen(fp1)
2: len2← strlen(fp2)
3: initialize_two_dimensional_matrix(matrix, len1, len2)
4: for i = 0→ len1 do

5: for j = 0→ len2 do

6: if fp1[i] = fp[j] then
7: cost = 0
8: else

9: cost = 1
10: end if

11: matrix[i, j] = min(matrix[i−1, j]+1, matrix[i, j−
1] + 1, matrix[i− 1, j − 1] + cost)

12: end for

13: end for

14: return matrix(len1, len2)

Based on the calculated edit distance, we can derive a similarity
score between two fingerprints. The formula we are using is as
follows:

similarityScore = [1−
distance

max(len1, len2)
] ∗ 100 (1)

If the calculated similarity score between two apps exceeds
certain threshold and these two apps are signed with two different



Table 1: The Numbers of Collected Apps from Official

or Alternative Android Marketplaces (†: the number in

parenthesis shows the percentage of apps that are also hosted

in the official Android Market.)

Marketplace Total Number of Apps

US1 (slideme) 3108 (29.8%†)

US2 (freewarelovers) 3188 (13.2%†)

CN1 (eoemarket) 8261 (30%†)

CN2 (goapk) 4334 (13.5%†)

EE1 (softportal) 2305 (19.6%†)

EE2 (proandroid) 1710 (20.2%†)

Official Android Market 68187

developer keys, our system reports the one not from the official An-
droid Market as repackaged. The threshold selection affects both
false positives and false negatives of our system. Specifically, a
high threshold likely leads to low false positives but also high false
negatives while a low threshold introduces high false positives but
with low false negatives. During our experiments, we empirically
found the threshold 70 is a good balance between the two metrics
(Section 3).

3. PROTOTYPING AND EVALUATION
We have implemented a prototype of DroidMOSS in Linux. In

our prototype, the first step – feature extraction – is based on two
open-source tools. Specifically, we use baksmali [1], a popular
Dalvik disassembler to reverse classes.dex into an intermediate
representation and then map it into Dalvik bytecode. A publicly
available tool named keytool [25], which is already a part of An-
droid SDK, is used to extract the author information. To glue them
together, we created a number of perl scripts. For the next two
steps, we implement our own C programs for fingerprint generation
and similarity scoring. For efficiency reason, our rolling hash
function is based on the spamsum algorithm proposed by Andrew
[2] (originally for spam detection) and the sliding window size in
our prototype is 7. The input to fingerprint generation is essentially
those instruction sequences generated from the first step, while
the output is used for similarity scoring. As mentioned earlier,
the similarity scoring will also take into account the app author
information: If two apps has the same authorID, we exclude them
from repackaged app detection. If not, our prototype calculates the
edit distance and derive the similarity score. The larger the score,
the more similar the app pair.

To detect repackaged apps, we chose six popular third-party
Android marketplaces worldwide: two in US, two in China, and
two in Eastern Europe3. For each marketplace, we use a crawler to
collect hosted apps. Our study is based on those apps collected
in the first week of March, 2011. Meanwhile, we also collect
more than sixty thousand apps from the official Android Market in
the same time frame. The exact numbers of collected apps from
official and alternative marketplaces are shown in Table 1. For
each alternative marketplace, we also report the percentage of apps
that are hosted in it but also have an identical copy in the official
Android Market (i.e., the first category in Section 1). Table 1 shows
our results.

3One domain is registered in Ukraine, but the resolved IP is
actually located in US.

Table 2: Repackaged App Detection from Six Studied Third-

party Android Marketplaces (200 samples)

# Repackaged Apps # Repackaged
Third-party Apps from Apps from Percentage

Marketplace DroidMOSS Manual Analysis

US1 24 22 11%
US2 13 12 6%
EE1 11 10 5%
EE2 15 13 6.5%
CN1 27 25 12.5%
CN2 28 26 13%

3.1 Repackaged Apps in Alternative Market-
places

To perform a concrete study on the repackaged apps and measure
the effectiveness of our approach, we randomly choose 200 sam-
ples from each third-party marketplace and detect whether they are
repackaged from some official Android Market apps. Specifically,
for each chosen app, we measure its similarity score with each of
these 68, 817 ones inside the official Android Market. Among the
calculated 68, 817 similarity scores, we choose the highest one for
manual investigation. Among the total 1, 200 app pairs, we apply
the threshold 70 to infer whether an app is repackaged or not.

Our results are shown in Table 2. The first column lists the name
of these third-party marketplaces; the second column indicates the
number of repackaged apps detected by DroidMOSS out of the 200
samples; the third column shows the manual analysis results; and
the fourth one reports the corresponding repackaging rate. For each
marketplace shown in the table, DroidMOSS reports that 5% to
13% of apps hosted on it are repackaged. Among the reported ones,
we manually verify them and for each marketplace we only find
one or two false positives, demonstrating the effectiveness of our
approach. By further looking into the false positive cases, we notice
that one main contributing factor is that our white-list of ad SDKs
or shared libraries is incomplete. Note that by iterating the process
to complete the white-list, there is a room for our system to be
further improved.

Overall, our experiments show that the repackaging rates range
from 5% to 13% among these third-party marketplaces. This is
alarming as the repackaged apps seriously affect the entire smart-
phone app ecosystem. In the following paragraphs, we further look
into individual repackaged apps and classify them into different
categories for better understanding.

Injecting New In-App Advertisements In the first category,
we observe new ad SDKs are added into the original app. Note
that ad SDKs typically require adding a certain publisher identi-
fier in the AndroidManifest.xml file, inserting layout description
into the resource file, importing their own ad class files into the
class directory, or even modifying the app bytecode. Recall that
DroidMOSS considers ads as noise and thus filters them out for
fingerprint generation and similarity scoring. With that, our system
can easily spot them – as they share similar (or even identical) code
sequences but are signed by different authors.

One example repackages a legitimate app com.mmc.life49 by
including the admob [24] SDK in the class hierarchy and adding
a publisher identifier ADMOB_PUBLISHER_ID in AndroidMan-

ifest.xml. All the original bytecode remains intact. But some ad
SDKs (e.g., wooboo [31] and youmi [42]) do require modifying
existent class files in the original app to invoke ad-displaying code.
Merely looking into the modified manifest file (or resource files)



Table 3: The Comparison of App Manifest Files from the Original App and the Repackaged App

Original Angry Birds (in the official Android Market) Repackaged Angry Birds (in a US alternative marketplace)

<manifest android:versionCode="142" <manifest android:versionCode="142"
android:versionName="1.4.2" android:versionName="1.4.2"
android:installLocation="preferExternal" android:installLocation="preferExternal"
package="com.rovio.angrybirds" xmlns:android="......"> package="com.rovio.angrybirds" xmlns:android="......">

<application android:label=......> <application android:label=......>
...... ......
<meta-data android:name="ADMOB_PUBLISHER_ID" <meta-data android:name="ADMOB_PUBLISHER_ID"

android:value="a14c9c5b4602e23" /> android:value="a14ce0cb83321d2" />
<meta-data android:name="ADMOB_INTERSTITIAL <meta-data android:name="ADMOB_INTERSTITIAL

_PUBLISHER_ID" android:value="a14ca2471ee0891" /> _PUBLISHER_ID" android:value="a14ce0cbd3cc9a1" />
...... ......

</application> </application>

</manifest> </manifest>

and newly added class files is not enough to identify this kind of
repackaging. In general, the modification is applied on small part
of the original code. DroidMOSS can readily localize such kind of
modification and detect the repackaging.

Usurping Existing In-App Advertisements In the second
category, we also observe repackaged apps where existing ad SDKs
still remain, but the corresponding publisher identifiers have been
replaced likely with the repackagers’ identifiers. Note that each
developer can sign up various ad networks to get his own app
publisher identifier. The publisher identifier is assigned and used by
an ad network to correctly distinguish user clicks or ad traffics and
then return the resulting ad revenues. For example, Admob, one of
the most popular ad networks in Android, uses two identifiers AD-
MOB_PUBLISHER_ID and ADMOB_INTERSTITIAL_PUBLISHER

_ID, whose values are assigned by Admob to the app developers
during their enrollment. By repackaging apps with their own
publisher identifiers, repackagers can collect ad revenues from ad
networks, resulting in a financial loss for the original app develop-
ers.

In our experiments, we found that one popular repackaged target
is the Angry Birds app (com.rovio.angrybirds) [40]. The vendor
of this app (i.e., Rovio) does not charge for the download and
installation. Instead it embeds certain ad SDKs (i.e., Admob)
into this app to collect ad revenues. One repackaged Angry Birds

DroidMOSS identified in a US marketplace did not modify any
code in the original app. Instead, the only modification is on the
Admob-specific identifiers. Table 3 shows the comparison of two
corresponding manifest files.

During our evaluation, we initially thought that applying a com-
mon Unix utility program, i.e., diff [20], on these two manifest files
and their corresponding class files can easily identify such repack-
aging behavior. However, our experience indicates that repackagers
explored various unusual ways to substitute publisher identifiers
(Table 3). For instance, besides modifying the app manifest file,
they may modify the string resource file instead without changing
the bytecode at all. Fortunately, with its capability of effectively
localizing the changes from repackaging behaviors, DroidMOSS
can help detect them.

Trojanizing Legitimate Apps with Malicious Payloads In
the third category, we also observe trojanized apps with malicious
payloads. Our findings are consistent with recent reports about
discovered Android malware [7]. Specifically, the added payloads
can be used to conduct a variety of malicious activities, such as

sending text messages to premium-rated numbers [35], download-
ing additional apps from the Internet [30], rooting the phone [32],
and even registering the compromised phones as bots [28].

One example found by DroidMOSS is a repackaged app from
com.tencent.qq, a popular instant messaging app. During our
analysis, we found that the trojanized version requests more per-
missions as embodied in the first four lines of Figure 3. These
permissions are requested to facilitate its wrongdoings. But having
these added permissions is not sufficient to determine that one app
is the repackaged version of another one. (Newer versions of an
app may ask for more permissions than previous ones, and vice
versa.) As a result, we need to further look into the code to collect
additional evidences. In this particular case, the manifest file shows
that a new receiver and a new service are added to the original app,
and the receiver will be triggered when the system finished booting.
Looking into the disassembled code, we know its purpose is to
bootstrap a background service named com.android.MainService,
whose code fetches and executes instructions from a remote server,
effectively turning the compromised phones into bots. A further in-
depth investigation of the code shows that the trojan app supports a
number of commands, such as sending SMS messages to premium
numbers, modifying the bookmarks of the built-in browsers, and
downloading and installing additional apps onto the phones. All
these actions are dispatched through a member function named
execTask in com.android.MainService. The function is invoked
to check a command and control (C&C) server using a hard-
coded URL (http://xml.XXX.com:8118/push/androidxml/?[parameters])
to fetch and execute commands. In Figure 4, we show a code
snippet from this function that demonstrates how different payloads
are called according to the command it receives.

Another example found by DroidMOSS is a repackaged app
based on com.intsig.camscanner. A similar background service is
needed in this case, but it is triggered in a different way. Instead
of using a new receiver to trigger the service, the repackager
directly modifies the main activity of the original app to achieve the
same purpose. Our analysis also indicates that some obfuscation
techniques are being adopted by repackagers to evade analysis and
detection. It seems that these malicious payloads are getting more
powerful and harder to be analyzed.4

4Our study also shows that there is a fourth category of apps.
In this category, repackagers essentially decompose original apps
and re-package them by signing with their own developer keys.
One possible reason is that repackagers want to build their own



· · · · ··

<uses-permission android:name="android.permission.READ_SMS" />
<uses-permission android:name="android.permission.SEND_SMS" />
<uses-permission android:name="com.android.browser.permission.READ_HISTORY_BOOKMARKS" />
<uses-permission android:name="com.android.browser.permission.WRITE_HISTORY_BOOKMARKS" />
· · · · ··

<receiver android:name="com.android.AndroidActionReceiver">
<intent-filter>

<action android:name="android.intent.action.SIG_STR" />
<action android:name="android.intent.action.BOOT_COMPLETED" />

</intent-filter>
</receiver>
· · · · ··

<service android:name="com.android.MainService" android:process=":remote" />

Figure 3: The Manifest File of A Repackaged App com.tencent.qq (the listed receiver and service do not exist in the original app)

.method private execTask()V
.registers 14
......
const-string v10, "push" ...
invoke-direct p0, v0, v2, Lcom/android/MainService;->execPush(Ljava/lang/String;[Ljava/lang/String;)V
......
const-string v10, "soft" ...
invoke-direct p0, v0, v2, Lcom/android/MainService;->execSoft(Ljava/lang/String;[Ljava/lang/String;)V
......
const-string v10, "xbox" ...
invoke-direct p0, v0, v2, Lcom/android/MainService;->execXbox(Ljava/lang/String;[Ljava/lang/String;)V
......
const-string v10, "mark" ...
invoke-direct p0, v0, v2, Lcom/android/MainService;->execMark(Ljava/lang/String;[Ljava/lang/String;)V
......

.end method

Figure 4: The Code Snippet of execTask (this function calls different malicious payloads – execPush, execSoft or execMask – based

on the command it receives from the hard-coded C&C server – push, soft, or mask)

3.2 False Negative Measurement
While the above experiments focus on the understanding of

overall repackaged apps in current third-party app marketplaces,
they also show the effectiveness of our system in having a small
low false positives. Next, we measure the false negative rates of
our system. Because there are no public list of known repackaged
apps available for us to use, we prepare such a set by ourselves.
Specifically, we first collect those app pairs which have identical
or similar package names, but are signed by different developer
certificates. After that, we manually identify and confirm 150
repackaged apps as a test set to evaluate our system. As a result,
DroidMOSS successfully reports 134 of them as repackaged, but
misses 16 of them, implying a false negative rate of 10.7%. By
examining those missed cases, we found two main reasons. (1)
The first reason is that some repackager may add a large chunk of
code into the original app. When the ratio between the added code
and the original one is larger than certain threshold, the calculated
fingerprints may differ a lot, leading to a small similarity score and
causing a false negative. (2) The second reason is due to the fact our
white-list is incomplete, which means some shared (ad) libraries
are still contained in the sequence as noise. This added noise

reputation by providing benign, high-quality apps so that other
users will trust them more when the time arrives for them to publish
some bad or malicious apps.

could result in considerable difference in the final fingerprints, thus
leading to a miss in DroidMOSS.

To summarize, our experimental results show an alarming repack-
aging rate (ranging from 5% to 13%) among our current third-party
marketplaces. The repackaged apps are mainly used to replace
existing in-app advertisements or embed new ones to “steal” or
re-route ad revenues. We also identified a few cases with planted
backdoors or malicious payloads among repackaged apps. The
results call for the need of a rigorous vetting process for better
regulation of third-party smartphone app marketplaces.

4. DISCUSSION
Our evaluation results show that our prototype can effectively de-

tect repackaged apps. In this section, we further examine possible
limitations in our system and explore ways for future improvement.

First, our current prototype assumes that the official Android
Market contains legitimate (and original) apps. However, this may
not be the case in practice. For example, it has been reported that
even in the official Android Market, there may exist malicious apps
[29] repackaged from other legitimate apps. Also, it is possible
that an app (from a third-party marketplace) might be an original
one and the corresponding app from the official Android Market
is actually repackaged. In either case, DroidMOSS is still helpful
in distinguishing repackaged apps and answering the key questions
that motivate this work.



Second, to discern any repackaged app, DroidMOSS depends on
the existence of the corresponding original app in our data set. Due
to various reasons, our current database is far from complete. For
example, our current collection is comprised of those free apps and
do not include paid apps in the official Android Market. As a result,
we may miss some repackaged apps. Because of that, we have the
reason to believe the overall repackaging rate is higher than we
report in this paper. From another perspective, this also indicates
the need of continuously expanding our current data set with more
comprehensive samples.

Finally, our prototype still experiences difficulties due to the
use of shared libraries or ad SDKs for repackaged app detection.
Specifically, our current approach uses a white-list approach that
may not detect possible malicious changes to the ad SDKs or shared
libraries. A systematic method to automatically identify shared
libraries and detect abnormal changes could greatly improve our
prototype.

5. RELATEDWORK
Software similarity measurement The first category of related

work includes prior efforts in measuring the similarity of software
or documents in general. Among the most noted, MOSS [39]
is designed to measure software similarity (at the source level)
and has been widely used to detect plagiarism in college classes.
Our system differs from it in two key aspects: First, DroidMOSS
directly works at the Dalvik bytecode level without the source
code access, which is required by MOSS. Second, both systems
require the use of a sliding window to generate the fingerprint.
However, MOSS uses it to generate a k-gram to directly compose
the fingerprint, while DroidMOSS calculates the hash value to com-
pare against a reset point to further localize repackaged changes.
Our such design is needed and tailored to meet the scalability
requirement (Section 2).

Our fuzzy hashing is due to Andrew Tridgell for the spamsum
algorithm [2]. The original algorithm is proposed to detect spams
and has been later extended by others for different purposes. For
example, Payne et al. [21] applies it to expand the capability of his
forensic tool. Kornblum et al. [33] materializes a similar concept
for digital forensic analysis by identifying similar text documents.
Our system instead applies it for repackaged app detection. To
the best of our knowledge, we are the first to apply it for this
purpose. Meanwhile, we notice an independent work from the
App Genome project [27] that looks into the Android apps from
two alternative China-based marketplaces and reports that nearly
11% of their apps also available on the Android Market were
found to be repackaged. However, the study does not disclose
any methodology as well as technical details behind their findings.
Based on their summary-style description, we observe that the
results are only applied to those apps also available on the official
Android Market. Our work instead does not have this limitation by
investigating apps we collected from six alternative geographically-
scattered marketplaces. Moreover, our study further looks into
possible motivations behind repackaged apps and leads to unique
insights (e.g., stealing or re-routing ad revenues – Section 3), which
have not been reported by others.

Instruction sequence-based security applications As Droid-
MOSS uses instruction sequences to generate a distinguishing fea-
ture to characterize Android apps, we also consider – as the second
category of related work – recent security applications that are
based on instruction sequences. For example, software birthmarks
can be generated based on the k-gram of instructions (e.g., [36]).
SigFree [41] applies the notion to network traffic stream by at-

tempting to extract instruction sequence from incoming network
requests or packets. By applying code abstraction analysis, SigFree
can effectively test whether the packets contain executable instruc-
tions or not. Also closely related, recent work apply instruction
instructions or even system call sequences in different ways to
help detect known or unknown malware (e..g, [9]). DroidMOSS
differs from them with a different focus on the app similarity mea-
surement problem and applies instruction sequence in a different
way. Specifically, based on the instruction sequence, DroidMOSS
further applies fuzzy hashing to condense it to a shorter fingerprint
for app similarity measurement.

Smartphone platform and app security The third category
include various systems [6,8,13–16,18,19,37,38,43,44] to improve
the smartphone platform and app security. For example, TaintDroid
[13] applies dynamic taint analysis to monitor apps and detect
runtime privacy infringement behaviors in Android apps. PiOS
[12] develops a static analysis tool to spot possible information
leaks in iOS applications. ScanDroid [18] aims to automatically
extract data flow policy from the app manifest, and then check
whether data flows in the apps are consistent with the extracted
specification. Kirin [15] proposes to enhance the install process
in Android to block possibly unsafe apps that request dangerous
permission combinations. A follow-up work of Kirin [14] reports a
series of systematic findings in Android application security from
the study of 1,100 popular free Android applications. Apex [37],
MockDroid [6], and TISSA [44] enhance the Android infrastruc-
ture so that users can better control the access to specific resources
or permission at runtime themselves. Stowaway [16] studies the
over-privilege problem of a set of 940 apps and finds that about one-
third are not following the least privilege principle. DroidRanger
[43] leverages both static and dynamic analysis to detect malicious
apps in existing Android marketplaces. Woodpecker [19] statically
analyzes pre-loaded apps in smartphone firmware to uncover pos-
sible capability leaks. All these tools use either static or dynamic
analysis techniques to infer relevant security properties from indi-
vidual smartphone apps. In contrast, DroidMOSS measures the
similarity of two apps (as a pair) by distilling their instruction
sequences into corresponding fingerprints.

More recently, researchers also look into the interaction between
different Android apps. For example, Saint [38] examines the in-
terfaces one application exported to other and extends the Android
framework to enforce inter-application security policy (at install
and runtime). ComDroid [8] uncovers possible unintended conse-
quences of exposing certain app components. A relevant work [17]
goes further to study both unintentional and intentional exporting
of internal components, which can cause apps with permissions
to perform privileged task for apps without permissions. This
paper also proposes IPC Inspection to address these vulnerabilities.
Quire [11] similarly addresses the permission delegation problem
by proposing an IPC call chain tracking mechanism to identify
the provenance of these IPC requests and enforce certain policy.
Stratus [4] explores the security of multi-market app ecosystem
and proposes a new app installation model to retain the original
single-market security semantics (e.g., kill switches or developer
name consistency). Barrera et al. [5] uses a self-organization map
to analyze 1,100 Android apps and identifies related usage patterns
about android app permissions. DroidMOSS differs from them by
systematically studying the app repackaging situation in our current
third-party marketplaces by measuring the similarity of app pairs.

6. CONCLUSION
In this paper, we examine the problem of repackaged smartphone



applications in current third-party marketplaces, and have accord-
ingly developed a prototype system called DroidMOSS to detect
them. Our system adopts a fuzzy hashing technique to effectively
localize and detect possible changes from app repackaging. We
have applied our system to detect repackaged apps in six third-
party Android marketplaces and found that 5% to 13% of apps
hosted in them are repackaged. Furthermore, we manually analyze
those repackaged apps and our results show that apps are mainly
repackaged to replace existing in-app advertisements (or embed
new ones) to “steal” or re-route ad revenues, or even more seriously
plant backdoors and malicious payloads. The results call for the
need of a rigorous vetting process for better regulation of third-
party smartphone app marketplaces.
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