A Simple Publicly Verifiable Secret Sharing
Scheme and Its Application to Electronic Voting

Berry Schoenmakers

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

berry@win.tue.nl

Abstract. A publicly verifiable secret sharing (PVSS) scheme is a ver-
ifiable secret sharing scheme with the property that the validity of the
shares distributed by the dealer can be verified by any party; hence veri-
fication is not limited to the respective participants receiving the shares.
We present a new construction for PVSS schemes, which compared to
previous solutions by Stadler and later by Fujisaki and Okamoto, achieves
improvements both in efficiency and in the type of intractability assump-
tions. The running time is O(nk), where k is a security parameter, and n
is the number of participants, hence essentially optimal. The intractabil-
ity assumptions are the standard Diffie-Hellman assumption and its de-
cisional variant. We present several applications of our PVSS scheme,
among which is a new type of universally verifiable election scheme based
on PVSS. The election scheme becomes quite practical and combines sev-
eral advantages of related electronic voting schemes, which makes it of
interest in its own right.

1 Introduction

Secret sharing and its many variations form an important primitive in cryptog-
raphy. The basic model for secret sharing distinguishes at least two protocols: (i)
a distribution protocol in which the secret is distributed by a dealer among the
participants, and (ii) a reconstruction protocol in which the secret is recovered
by pooling the shares of a qualified subset of the participants. Basic schemes
(e.g., [FRaUREZ] for threshold secret sharing) solve the problem for the case
that all players in the scheme are honest.

In verifiable secret sharing (VSS) the object is to resist malicious players,
such as

(i) a dealer sending incorrect shares to some or all of the participants, and
(ii) participants submitting incorrect shares during the reconstruction protocol,

of. [febMAXE. In publicly verifiable secret sharing (PVSS), as introduced by
Stadler [S£a84], it is an explicit goal that not just the participants can verify their
own shares, but that anybody can verify that the participants received correct
shares. Hence, it is explicitly required that (i) can be verified publicly. (As noted

Michael Wiener (Ed.): CRYPTO’99, LNCS 1666, pp. 148l 1999.
© Springer-Verlag Berlin Heidelberg 1999

A Simple Publicly Verifiable Secret Sharing Scheme 149

in [R£2394], the VSS scheme of [CENEARA] already achieved this property, but later
VSS schemes weren’t designed to be publicly verifiable.) Problem (ii) is usually
dealt with implicitly though. In the schemes of [HalXil[EedbZilSeatl[FOUN] it
suffices that the participants simply release their shares. Subsequently the re-
leased shares may be verified by anybody against the output of the distribution
protocol.

Our PVSS schemes show that such an approach is not sufficient as a general
model for PVSS. As an extension to the reconstruction protocol we will therefore
require that the participants not only release their shares but also that they
provide a proof of correctness for each share released (see Section H).

For PVSS schemes it is natural to accept that the secret is computationally
hidden. An information-theoretic hiding VSS scheme such as [RedliZs] requires
the availability of private channels from the dealer to each of the participants
individually. However, communication over the private channels is clearly not
publicly verifiable.

Given that a PVSS scheme is computationally hiding, the question is what
the exact number-theoretic assumptions are. For our new scheme, which works
for any group for which the discrete log problem is intractable, we will relate
the security to the Diffie-Hellman assumption and its decisional variant. These
assumptions are common for encryption schemes in a discrete log setting. In fact,
there is a direct connection with the security of the ElGamal cryptosystem, as,
for instance, the semantic security of ElGamal encryption is equivalent to the
Diffie-Hellman decision problem. So, in a sense, this type of assumption is the
weakest one can hope for.

In contrast, the schemes of [REaSHlELIUN] rely on special number-theoretic
settings and intractability assumptions. The discrete log scheme of [S£ald] re-
quires a special assumption involving “double discrete logarithms”. Briefly, the
idea is to consider expressions of the form y = ¢(*"), where g is a generator of a
group of order p, say, and h is a fixed element of high order in Z;. The “double
discrete logarithm” assumption states that given y it is hard to find x, which is
a non-standard assumption.

We observe that such a setting excludes the use of elliptic curves. Let us
call the group generated by g the base group, and the group generated by h the
exponent group. Now, since the notion of double logarithms relies on the fact that
h¥® can be interpreted as an integer modulo p (since h* € Z;), the exponent group
can not simply be replaced by a group based on elliptic curves. The security of
Stadler’s scheme requires that the discrete problem for the exponent group is
hard as well, hence p must be 1024 bits, say. We conclude that although the base
group can be based on elliptic curves, its order p would be rather high (normally,
elliptic curve cryptosystems attain their competitiveness by requiring the order
to be of size 160 bits, say).

The scheme of [EQU4] relies on what they call the “modified RSA assump-
tion,” which says that inverting the RSA function is still hard, even if the public
exponent e may be chosen freely. Although this assumption is not known to
be actually stronger than the RSA assumption, it potentially is. Furthermore,

150 Berry Schoenmakers

the number-theoretic setting for the primitives used (e.g., secure commitments)
are computationally expensive and require a non-trivial set-up for the system,
using zero-knowledge proofs to show that set-up is correct. Stadler [StalH] also
considers a PVSS scheme for sharing e-th roots, which at least depends on the
RSA assumption and variants of the Diffie-Hellman assumption for composite
moduli.

Summarizing, our PVSS construction will be much simpler than the above
approaches. We only need techniques that work in any group for which the dis-
crete log problem is intractable. The protocols consist of a few steps only, relying
on simple primitives. The performance is not only asymptotically optimal, but
also good in practice. And, finally, the PVSS scheme can readily be used to
extend all kinds of applications without strengthening the security assumptions
or essentially increasing the computational cost of the resulting scheme. This is
essential in order for a primitive to be used in a modular fashion.

1.1 Overview

In Section B we will describe the characteristics of PVSS schemes. The model we
propose follows [BES5S#] with some refinements, and we consider what it means
for a PVSS scheme to be homomorphic.

In Section B we then present our main construction of a simple PVSS scheme
for sharing secrets chosen uniformly at random from a large set. The complexity
of the PVSS scheme is linear in the security parameter k& (and linear in the
number of participants), which is essentially optimal. As a result our scheme
is a factor of k more efficient than Stadler’s discrete log scheme [S£a9#], and it
achieves the same asymptotic complexity as the scheme for e-th roots of [Rtal]
and the PVSS scheme of [EXIGH]; as we will point out, however, the concrete
running time for our scheme is significantly lower than for these schemes.

In Section WM we consider extensions to the case that the secret is from a
small set. Our PVSS schemes work for any group of prime order for which the
discrete logarithm is hard. Its security relies on the standard Diffie-Hellman
assumption and its decisional variant, which makes the PVSS scheme as secure
as the ElGamal cryptosystem. We stress that, unlike [SEaS8lECIGN]) we consider
also whether a PVSS scheme leaks partial information on the secret. Similarly,
we do not only consider PVSS for uniformly random secrets from a large set,
but also for secrets from a small set, which need not be uniformly distributed
either. This is of importance to applications such as electronic voting, in which
the secret may consist of a single bit. (In Appendix B, we also show that the
construction works for any access structure, as long as it admits a linear secret
sharing scheme.)

In Section @ we present a new approach to electronic voting based on PVSS.
It turns out that the PVSS scheme exactly matches the discrete log setting and
assumptions required for the remainder of the election scheme. The resulting
scheme combines several of the advantages of previous election schemes, and
fits conceptually between the schemes of [EESYUH| and [CEESS7]. It achieves the
same set of security properties as these schemes.

A Simple Publicly Verifiable Secret Sharing Scheme 151

Finally, Section H contains several more applications of our PVSS schemes,
including a generalization of Binding ElGamal [RZES4] and other constructions
related to software key escrow, such as [¥¥93]. We show how threshold variants
for these schemes can be obtained easily.

2 Model for Non-interactive PVSS

In this section we first describe a model for non-interactive PVSS. We then
discuss some aspects of the model, where we will also address the issue of homo-
morphic secret sharing for PVSS schemes.

We note that a distinctive feature of PVSS is that no private channels between
the dealer and the participants are assumed. All communication is done over
(authenticated) public channels using public key encryption. Consequently, the
secret will only be hidden computationally.

In a PVSS scheme, a dealer D wishes to distribute shares of a secret value
s € X among n participants Py, ..., P,. A monotone access structure describes
which subsets of participants are qualified to recover the secret. For example,
the access structure may be a (¢, n)-threshold schemes, 1 < ¢ < n, which means
that any subset of ¢ or more participants will be able to recover the secret; any
smaller subset will be unable to gain any information about the secret, unless a
computational assumption is broken.

As a common structure for PVSS schemes we consider the following protocols.
Note that initialization is done without any interaction between the dealer and
the participants. In fact, participants may enter or leave the system dynamically;
the only requirement is that a participant holds a registered public key.

Initialization All system parameters are generated as part of the initializa-
tion. Furthermore, each participant P; registers a public key to be used with a
public key encryption method F;. The actual set of participants taking part in
a run of the PVSS scheme must be a subset of the registered participants. We
assume w.l.o.g. that participants P, ..., P, are the actual participants in the
run described below.

Distribution The protocol consists of two steps:

1. Distribution of the shares. The distribution of a secret s € X' is performed
by the dealer D. The dealer first generates the respective shares s; for par-
ticipant P;, for i = 1,...,n. For each participant P; the dealer publishes the
encrypted share F;(s;). The dealer also publishes a string PROOFp to show
that each FE; encrypts a share s;. Furthermore, the string PROOFp commits
the dealer to the value of secret s, and it guarantees that the reconstruction
protocol will result in the same value s.

2. Verification of the shares. Any party knowing the public keys for the en-
cryption methods F; may verify the shares. For each participant P; a non-
interactive verification algorithm can be run on PROOFp to verify that
E;(s;) is a correct encryption of a share for P;. Since anyone may verify a
share, it may be ruled out that a participant complains while it received a

152 Berry Schoenmakers

correct share. In case one or more verifications fail, we therefore say that the
dealer fails, and the protocol is aborted. (If some level of fault-tolerance is
desired one may continue and think of it as a (¢,n — ¢)-threshold scheme,
where ¢ is the number of verifications that failed.)

Reconstruction The protocol consists of two steps:

1. Decryption of the shares. The participants decrypt their shares s; from
E;(s;). It is not required that all participants succeed in doing so, as long
as a qualified set of participants is successful. These participants release s;
plus a string PROOZFp, that shows that the released share is correct.

2. Pooling the shares. The strings PROOFp, are used to exclude the partici-
pants which are dishonest or fail to reproduce their share s; correctly. Re-
construction of the secret s can be done from the shares of any qualified set
of participants.

Compared to [afalt], we have added the requirement for the reconstruction
protocol that the participants must provide a proof of correct decryption of their
shares. The proof is also non-interactive so that any party is able to sort out the
correct shares and pool them together.

We have limited the description to non-interactive PVSS schemes by requir-
ing that all PROOF's can be verified non-interactively. In fact, it is natural to
reduce the amount of interaction between the players even more than for VSS
schemes. Non-interactive VSS schemes, such as [EelXABaduzd]; still include a
stage in which participants file complaints if they received an incorrect share.
Subsequently these complaints must be resolved to decide whether the distribu-
tion of the secret was successful. In non-interactive PVSS we have eliminated
even this round of interaction: since any party can verify the output of the dealer,
there is no need for the individual participants to check their own shares!

Homomorphic Secret Sharing The notion of homomorphic secret sharing
is due to Benaloh [REnXZH|, where its relevance to several applications of secret
sharing is described, in particular electronic voting. Informally, homomorphic
secret sharing is about combining shares of independent secrets in such a way
that reconstruction from the combined shares results in a combined secret. In
case of PVSS, there is an operation @ on the shares, and an operation ® on the
encrypted shares such that for all participants

Thus by decrypting the ®-combined encrypted shares, the recovered secret will
be equal to s @ s, assuming that the underlying secret sharing scheme is @-
homomorphic. In Section B we will present an electronic voting scheme that
relies on a homomorphic PVSS scheme.

A Simple Publicly Verifiable Secret Sharing Scheme 153
3 Special PVSS Scheme

We describe the construction for a (¢, n)-threshold access structure, but it can
be applied to any monotone access structure for which a linear secret sharing
scheme exists (see Appendix El).

Let G4 denote a group of prime order g, such that computing discrete loga-
rithms in this group is infeasible. Let g, G denote independently selected gener-
ators of G4, hence no party knows the discrete log of g with respect to G. We
solve the problem of efliciently sharing a random value from G,. The dealer will
achieve this by first selecting s €g Z, and then distributing shares of the secret
S = G*. This approach allows us to keep the required proofs simple and efficient.

3.1 Protocols

We will use the protocol by Chaum and Pedersen [EE53] as a subprotocol to
prove that logg1 h1 = logg2 ha, for generators g1, h1, g2, ho € G4. We denote this
protocol by DLEQ(g1, h1, g2, h2), and it consists of the following steps, where
the prover knows a such that hy = ¢{ and he = g5

1. The prover sends a; = gi’ and az = g3’ to the verifier, with w €g Z,,.
2. The verifier sends a random challenge ¢ €g Z, to the prover.

3. The prover responds with r = w — ac (mod gq).

4. The verifier checks that a; = g{h{ and az = g3hs.

Initialization The group G, and the generators g, G are selected using an
appropriate public procedure. Participant P; generates a private key x; €gr Z;
and registers y; = G*¢ as its public key.

Distribution The protocol consists of two steps:

1. Distribution of the shares. Suppose w.l.o.g. that the dealer wishes to dis-
tribute a secret among participants P, ..., P,. The dealer picks a random
polynomial p of degree at most ¢ — 1 with coefficients in Z,:

t—1
pla) =Y ajad,
=0

and sets s = ag. The dealer keeps this polynomial secret but publishes the
related commitments C; = g%/, for 0 < j < t. The dealer also publishes
the encrypted shares V; = ¢/ (Z), for 1 < ¢ < n, using the public keys of
the participants. Finally, let X; = Hz;g) C’;]. The dealer shows that the
encrypted shares are consistent by producing a proof of knowledge of the
unique p(7), 1 <i < n, satisfying:

Xi=g"®, V=g,

154 Berry Schoenmakers

The non-interactive proof is the n-fold parallel composition of the protocols

for DLEQ(g, X;,vi, Y:). Applying Fiat-Shamir’s technique, the challenge ¢

for the protocol is computed as a cryptographic hash of X;,Y; a1, a2, 1 <

1 < n. The proof consists of the common challenge ¢ and the n responses r;.

2. Verification of the shares. The verifier computes X; = Hz;g) C’;] from the C}

values. Using vy;, X;, Y, r;, 1 < i < n and c as input, the verifier computes
a1, A2; aS

ay; = g" X7, azi = y;'YS,

K2

and checks that the hash of X;,Y;, a4, a0;, 1 <7 < n, matches c.

Reconstruction The protocol consists of two steps:

1. Decryption of the shares. Using its private key x;, each participant finds the
share S; = GP() from Y; by computing S; = Yil/mi. They publish S; plus a
proof that the value S; is a correct decryption of Y;. To this end it suffices
to prove knowledge of an a such that y; = G* and Y; = S, which is accom-
plished by the non-interactive version of the protocol DLEQ(G,y;, S;, Y:).

2. Pooling the shares. Suppose w.l.o.g. that participants P; produce correct

values for S;, for ¢ = 1,...,t. The secret G° is obtained by Lagrange inter-
polation:
t t)_ .
i=1 i=1
where \; = Hﬁéi jiz is a Lagrange coefficient.

Note that the participants do not need nor learn the values of the exponents
p(7). Only the related values S; = GP() are required to complete the reconstruc-
tion of the secret value S = G°. Also, note that participant P; does not expose
its private key x;; consequently participant P; can use its key pair in several
runs of the PVSS scheme. The type of encryption used for the shares has been
optimized for performance; however, if desired, it is also possible to use standard
ElGamal encryption instead.

Clearly, the scheme is homomorphic. For example, given the dealer’s output
for secrets G*! and G'*2, the combined secret G152 can be obtained by applying
the reconstruction protocol to the combined encrypted shares Y;1Y;2. We will use
this to construct an election scheme in Section B

3.2 Performance

The dealer only needs to post t+n elements of G4 (the numbers C; and Y;) plus
n + 1 number of size |g| (the responses r; and the challenge ¢). The number of
exponentiations throughout the protocol is correspondingly low, and all of these
exponentiations are with relatively small exponents from Z, (|g| = 160 bits in
practice).

A Simple Publicly Verifiable Secret Sharing Scheme 155

Compared to Stadler’s O(k?*n) discrete log scheme, where k is a security
parameter, we have reduced the work to O(kn), which is asymptotically optimal.
Compared to the e-th root scheme of Stadler [Sfa¥f] and the scheme of [ELIGH],
which achieve the same asymptotic complexity as our construction, our scheme
is much simpler. The construction of JECSA] uses a rather complicated proof to
show that a share is correctly encrypted. For example, in its simplest form, that
is, using RSA with public exponent 3, the scheme requires at least 17 secure
commitments per participant, where each commitment requires a two-way or
three-way exponentiation. Moreover, the exponents are of full-length (1024 bits
in practice). Therefore, we estimate our scheme to be faster by a factor of 25 to
50. Similarly, but to a lesser extent, the primitive operations for Stadler’s e-th
root scheme, are more costly than for our scheme.

3.3 Security

We first consider the security of the share-encryptions. We observe that directly
breaking the encryptions used in our PVSS scheme implies breaking the Diffie-
Hellman assumption. This can be seen as follows. Breaking the encryption of the
shares amounts to finding GP() given ¢, G, X;, i, Y;, for the group G4. Writing
G = g% X; = ¢°, yi = g7, breaking the encryption of the shares is equivalent to
computing ¢®?, given ¢%, ¢°, g7, and ¢°7, for a, 3,7 €g Z,. Recalling that the
Diffie-Hellman assumption states that it is infeasible to compute g, given g*
and ¢?, we have the following lemma.

Lemma 1. Under the Diffie-Hellman assumption, it it infeasible to break the
encryption of the shares.

Proof. Given z = ¢® and y = ¢°, we want to obtain z = g% by using an
algorithm A that breaks the encryption of the shares. Pick random o/, 8’, v, and
feed xa/, yﬁ/ 97, yﬁ/“Y to A. Since the input to A is uniformly distributed, we then
obtain 2/ = ¢ %" with some success probability e. By taking 2/1/(¢'8) = goB,
we are thus able to compute z with the same success probability e. a

A stronger result is that the secret is protected unless ¢ or more participants
cooperate. This is expressed by the following lemma.

Lemma 2. Suppose that t—1 participants pool their shares and obtain the secret.
Then we can break the Diffie-Hellman assumption.

Proof. Let g* and ¢g? be given, so we want to obtain g®?. We assume that o and
(B are random; if not, it is trivial to adapt the proof, as in the previous lemma.
Suppose w.l.o.g. that participants P, ..., P,_1 are able to break the scheme. We
will show how to set up the system such that this fact enables us to compute
g°v.

We put G = g* and Cy = g%, which implicitly defines p(0) as it is required
that Cop = gP(9). The points p(1),...,p(t — 1) are chosen at random from Z,,
which fixes polynomial p. This allows us to directly compute X; = ¢?(9) and

156 Berry Schoenmakers

Y; = yf(z), for i = 1,...,¢t — 1. Since p(0) is only given implicitly, we cannot
compute the points p(t),...,p(n). It suffices, however, that we can compute
X; = g?() by Lagrange interpolation, which also yields the remaining C;’s. We
now deviate from the protocol by computing the public keys y; of participants
P,i=t,...,n,as y; = g* for random w; € Z,, and we set ¥; = X" such that
Y, = yf(z), as required.

The complete view for the system is now defined. It is consistent with the
private view of participants P, ..., P;,_1, and comes from the right distribution.
Now, suppose that they are able to compute the secret GP(?). Since G = ¢* and
p(0) = B3, we are thus able to compute ¢®?. This contradicts the Diffie-Hellman
assumption. a

Note that we are assuming a static adversary. The above argument may be
extended to the case where the static adversary is allowed to take part in the
PVSS protocol K times, say, before breaking it. In that case we follow the
protocol (hence we know the polynomials p) for the first K runs except that for
participants P, ..., P, we will set S; = GP() directly instead of decrypting Y;.

So far we have ignored the proofs that are required at several points in
the protocol. However, in the random oracle model these proofs can easily be
simulated. This leads to the following summary.

Theorem 1. Under the Diffie-Hellman assumption, the special PVSS scheme
is secure in the random oracle model. That is, (i) the reconstruction protocol
results in the secret distributed by the dealer for any qualified set of participants,
(ii) any non-qualified set of participants is not able to recover the secret.

Proof. It follows from the soundness of the Chaum-Pedersen proof and the fact
that the X;’s are obtained from the C;’s as X; = Hﬁ;é C’;J that the shares of the
participants are consistent with the secret. It follows from Lemma B and the fact
that the Chaum-Pedersen proof is honest-verifier zero-knowledge (hence the non-
interactive version releases no information under the random oracle assumption)

that no set of less than ¢ participants can recover the secret. a

Theorem W does not claim that the participants cannot get any partial infor-
mation on the secret G°. This stronger result holds under the assumption that
ElGamal encryption is semantically secure, which is known to be equivalent to
the Decision DH assumption. The latter assumption states that it is infeasible
to determine whether a given triple is of the form (g%, g%, g*?) or (¢%, ¢%, ¢°),
for random «, (3, 9.

The above results are easily adapted to this case. For the equivalent of
Lemma W we reason as follows. Suppose that an adversary is able to deter-
mine whether an encrypted share is equal to a given value ¢° or not. We
then obtain a contradiction with the Decision DH assumption, closely follow-
ing Lemma W by setting G = ¢®, X; = ¢, and for random -, setting y; = ¢”
and Y; = (X;)? = ¢”7. Since the share is equal to G® = ¢g*? it follows that we
are able to distinguish ¢®? from ¢°, if the adversary is able to distinguish the
share from ¢°. The equivalent of Lemma [l can be proved in a similar way. This
leads to the following conclusion.

A Simple Publicly Verifiable Secret Sharing Scheme 157

Theorem 2. Under the DDH assumption and the random oracle assumption,
the special PVSS scheme is secure. That is, (i) the reconstruction protocol results
in the secret distributed by the dealer for any qualified set of participants, (ii) any
non-qualified set of participants is not able to recover any (partial) information
on the secret.

4 General PVSS Schemes

The special PVSS scheme solves the basic problem of sharing a random secret
from G4. In this section we show how to extend this to any type of given secret
o € X, where 2 < |X| < q. Hence, a small set |X| = 2 is allowed, and it is not
required that o is uniformly distributed over Y. We describe two methods.

For the first method, the general procedure is to let the dealer first run the dis-
tribution protocol for a random value s € Z,, and then publish U = o0 & H(G?),
where H is an appropriate cryptographic hash function. The reconstruction pro-
tocol will yield G*, from which we obtain ¢ = U & H(G?). See Section Bl for a
similar technique. More generally, U may be viewed as an encryption of o under
the key G*.

A second, more specific, method for the case that X C G, works as follows.
The dealer runs the distribution protocol for s and also publishes U = oG”.
Upon reconstruction of G*, this will yield ¢ = U/G*. Extending Theorem H
security is maintained under the Decision DH assumption, even if Y is a small
set. (Recall that Cy = ¢° is part of the output of the distribution protocol of
our special PVSS scheme. Hence together with U this constitutes an ElGamal
encryption of the form (¢°, G°0).) This method also allows us to share bit strings
without using a hash function as in the first method, e.g., if ¥ = {1,..., G271}
we may share u bits at once, as long as log, o can be computed efficiently for
oel.

For the above methods, it does not necessarily follow that for a given value
of U the reconstructed o will be an element of 2. However, it does follow for the
first method in the common case that X' = {0,1}* and the range of H is also
equal to {0,1}", and also for the second method in case X' = G,. In other cases,
an additional proof of knowledge may be required to show that indeed o € X
(e.g., see the next section), or, depending on the application, it may be sufficient
to discard o’s outside X' (or replace it by a default value in X).

5 Electronic Voting

In this section we briefly show how to construct a universally verifiable secret-
ballot election scheme using PVSS as a basic tool. We show that by using our
PVSS scheme we get a simple and efficient election scheme. This is not the case
for the PVSS schemes of [Sfabil] and [ECSH].

We follow the model for universally verifiable elections as introduced by Be-
naloh et al. [EERHRYRARenXZH], which assumes the availability of a so-called

158 Berry Schoenmakers

bulletin board, to which all of the players in the scheme will post their mes-
sages. The players comprise a set of tallying authorities (talliers) Ay,..., A,, a
set of voters Vi,...,V,,, and a set of passive observers. These sets need not be
disjoint. For example, in small-scale elections (e.g., board-room elections), each
player may be both a voter and a tallier.

An election proceeds in two phases. In the first phase, the voters post their
ballots, which contain the votes in encrypted form, to the bulletin board. Since
the voters need not be anonymous in this scheme it is trivial to prevent double
voting. Only well-formed (valid) ballots will be accepted. In the second phase, the
talliers use their private keys to collectively compute the final tally corresponding
with the accumulation of all valid ballots.

The protocols are as follows. Technically, each voter will act as a dealer in
the PVSS scheme, where the talliers act as the participants. The initialization
of the PVSS scheme is run, and we assume that each tallier A; has registered a
public key ;.

Ballot casting A voter V casts a vote v € {0, 1} by running the distribution
protocol for the PVSS scheme from Section B, using a random secret value s €p
Z,, and computing the value U = G**?. In addition, the voter constructs a proof
PROOFy showing that indeed v € {0, 1}, without revealing any information on
v. PROOFy refers to the value of Cy = ¢g° which is published as part of the
PVSS distribution protocol, and shows that:

log U =log, Cy VvV logaU =1+log,Co

Such a proof can be efficiently constructed using the technique of [EESS|, see
Appendix Bl The ballot for voter V' consists of the output of the PVSS distri-
bution protocol, the value U, and PROOFy.

Due to the public verifiability of the PVSS scheme and of PROOFy, the
ballots can be checked by the bulletin board when the voters submit their ballots.
No involvement from the talliers is required in this stage.

Tallying Suppose voters V;, j = 1,...,m have all cast valid ballots. The
tallying protocol uses the reconstruction protocol of the special PVSS scheme,
except that we will first exploit its homomorphic property. We first accumulate
all the respective encrypted shares, that is, we compute the values Y;*, where
the index j ranges over all voters:

j=1

Next, each tallier A; applies the reconstruction protocol to the value Y;*, which
will produce GZTZI Pi(0) _ GZTZI *due to the homomorphic property. Com-
bining with H;nzl U; = GZ;R:l Sjﬂj, we obtain GZ;R:l “ from which the tally
T = Z;nzl vj, 0 < T < m, can be computed efficiently.

A Simple Publicly Verifiable Secret Sharing Scheme 159

Conceptually, the above election scheme fits between the schemes of [EESYGH]
and [EESSA]. Tt achieves the same level of security with regard to universal ver-
ifiability, privacy, and robustness. Voter independence can also be achieved in
the same way as in those papers. The main difference with [CGSST] is that our
scheme does not require a shared-key generation protocol for a threshold decryp-
tion scheme. Such a key generation protocol needs to be executed between the
talliers, and requires several rounds of interaction. An example is Pedersen’s key
generation protocol &GS, or rather the improvement by [EEiESd].

For large-scale elections, such a key generation protocol is affordable, as it
reduces the work for the election itself. For elections on a smaller scale, though,
the cost of shared-key generation may dominate the cost of the entire election.
In particular, when the group of talliers varies from election to election, the
shared-key generation phase is better avoided. Further, in small-scale elections
(e.g., board-room elections), it is realistic to let each voter play the role of tallier
as well. Using our new election scheme, the election consists of just the two
phases described above, without relying on any interaction between the voters
or between the talliers.

It is possible to instantiate the scheme of [CESSIH] to get the same type
of scheme. Recall that [EESSSH] requires a private channel from each of the
voters to each of the talliers. By replacing the private channels by public key
encryption, the information-theoretic privacy for the voters is lost, but a scheme
is obtained that also avoids the use of a shared-key generation protocol. This
approach has two major shortcomings:

— The shares for the talliers are not publicly verifiable, hence we have to allow
for an additional stage in the election in which the talliers may file their
complaints, which must then be checked by the others, and so on, to sort
out which ballots and which talliers will be part of the tallying phase. In our
scheme, the talliers are not involved at all during the voting stage.

— Each tallier must decrypt its shares one by one, since there is no homo-
morphic property. This means that all of the encrypted shares have to be
communicated to the talliers, and that the talliers have to use their private
keys to decrypt each of them individually, instead of decrypting just a single
accumulated share.

Given that we settle for computational privacy, we thus conclude that a
PVSS-based scheme can be used for elections on a smaller scale, while [E=S97]
is to be used for large-scale elections.

6 Other Applications

We present a few more examples of situations in which our PVSS scheme can be
applied. We expect that PVSS offers an efficient alternative in many protocols
which use VSS as a subroutine.

160 Berry Schoenmakers

6.1 Threshold Binding ElGamal

In BZL87] Verheul and van Tilborg present a scheme called Binding ElGamal
that may be used to enhance the strength of a public-key infrastructure de-
pending on software key escrow. The basic scheme provides a mechanism to
copy a session-key not only to the intended receiver but also to n trustees. In
other words, the trustees share the session-key according to a (1, n)-threshold
structure. Extensions to (¢, n)-threshold scenarios are also described in [RZESE].
However, in these extensions it is required that the participants first engage in
a shared-key generation protocol (as in the previous section). In principle, key
generation needs to be done anew each time trustees are added or removed.

Using our new PVSS scheme, we obtain a dynamic version of threshold Bind-
ing Elgamal. The sender of the message acts as the dealer in the PVSS scheme.
Let y denote the public key of the intended receiver. Next to the output of the
distribution protocol, the sender also publishes the value Y = y® plus a proof
that log, Co = log, Y, where Cp = ¢* is part of the output of the distribution
protocol in Sectionll. This guarantees that the intended receiver and the partici-
pants will reconstruct the same value G*. For use as a session-key in a symmetric
encryption scheme, this value may be compressed to H(G?). Clearly, this variant
of Binding Elgamal is open to the same kind of criticism as the basic scheme
(see, o.g., [E0TN]).

The advantage of this approach is that, depending on the type of message,
the sender may select a group of participants that will be able to reconstruct
the session-key; these participants need not engage in a prior key generation
protocol. Note that we are in fact combining a (1, 1)-threshold structure with a
(t,n)-threshold structure (see also Appendix [H).

6.2 Threshold Revocable Electronic Cash

Recent techniques to make privacy-protected cash revocable, are described in
[0 and B8], As a concrete example, in [ERESSH] the customer must
provide the bank with a value d = ¢, where o €g Z,,, as part of the withdrawal
protocol. Here yr denotes the public key of the trustee. We can use our PVSS
scheme to share the value d among a dynamically chosen set of trustees. Note
that, as above, one can use threshold decryption with yr representing the public
key of the group as an alternative.

6.3 Threshold Software Key Escrow

Recently, Young and Yung B3] presented a scenario and solution for software
key escrow. In their approach each user generates its own key pair, and registers
it with a certification authority. The user must also encrypt shares of the secret
key for a specified group of trustees. The key pair is only accepted, if the user also
provides a (non-interactive) proof that the encrypted shares indeed correspond
to the registered public key.

A Simple Publicly Verifiable Secret Sharing Scheme 161

Following the model of [FX83] a possible alternative to their key escrow so-
lution for threshold scenarios is as follows. The user generates a random private
key S = G*, and shares this value among the trustees using our PVSS scheme.
Furthermore, the user publishes its public key H = f(¢°), where f is an appro-
priate generator (as in [B£294)). Finally, to show that the trustees indeed receive
shares of the private key S = G®, the user proves knowledge of a witness s
satisfying

H=f) A Co=g
where Cj is the value published in the distribution protocol in Section B The
protocol used by Stadler in his PVSS scheme exactly matches this problem (see
[BE558, Section 3.3]). So, although we have to resort to the use of double discrete
logarithms for this application, we only have to do this once (and not once per
trustee!).

Decryption of an ElGamal ciphertext (z,y) = (f*, H*m) is accomplished
by raising x to the power G°. We assume w.l.o.g. that the first ¢ trustees take
part in the decryption of the ciphertext. Using the fact that G° = HGp(i)Ai,
decryption works by setting zp = x, and letting the ¢-th trustee transform z; to

(GP(i)Ai) (SAl) . :
Zig1 = 2, =z; * '. If desired, each trustee also produces a proof that its

decryption step is correct. Again, Stadler’s proof can be used for this purpose,
this time to show that:

yri/@i)

i

i
Zitl = %; AN gt =y)

where y; is the i-th trustee’s public key and Y; is its encrypted share of G°.

7 Conclusion

We presented a new scheme for PVSS including several interesting applications.
We stressed the virtues of the new approach, among which are its improved
performance and its simplicity. Our construction hinges on the observation that
it is advantageous to distribute and reconstruct a secret of the form G* for fixed
G and known random s instead of trying to reconstruct s itself. We hope to find
applications of this idea in other settings too.

We have shown that many aspects play a role when selecting a secret sharing
scheme for a particular application. It turns out that often we find a trade-off
between the use of PVSS and the use of a threshold decryption scheme. As an
example, we have considered the choice between a new PVSS based election
scheme and an election scheme based on threshold decryption ([E&ESS]) for
large-scale elections. For elections on a smaller scale the costly key generation
protocol, which is part of a threshold decryption scheme, can be avoided by using
a more dynamic PVSS based approach.

Acknowledgments

Ronald Cramer, Markus Stadler, Martijn Stam, Moti Yung and the anonymous
referees are gratefully acknowledged for their constructive comments.

162 Berry Schoenmakers

References

Beng&7a.

Ben&7b.

BlaT79.

Brig&9.

BYS86.

CDM99.

CDS94.

CF85.

CFSY96.

CGMASS.

CGS97.

CMS96.

CP93.

Fel87.

FO98.

J. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret
secret. In Advances in Cryptology—CRYPTO 86, volume 263 of Lecture
Notes in Computer Science, pages 251-260, Berlin, 1987. Springer-Verlag.
J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University,
Department of Computer Science Department, New Haven, CT, September
1987.

G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the Na-
tional Computer Conference 1979, volume 48 of AFIPS Conference Pro-
ceedings, pages 313-317, 1979.

E. F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial
Mathematics and Combinatorial Computing, 9:105-113, 1989.

J. Benaloh and M. Yung. Distributing the power of a government to en-
hance the privacy of voters. In Proc. 5th ACM Symposium on Principles of
Distributed Computing (PODC ’86), pages 52-62, New York, 1986. A.C.M.
R. Cramer, I. Damgard, and U. Maurer. General secure multi-party com-
putation from any linear secret sharing scheme, 1999. Manuscript.

R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Advances in
Cryptology—CRYPTO ’9}, volume 839 of Lecture Notes in Computer Sci-
ence, pages 174-187, Berlin, 1994. Springer-Verlag.

J. Cohen and M. Fischer. A robust and verifiable cryptographically se-
cure election scheme. In Proc. 26th IEEE Symposium on Foundations of
Computer Science (FOCS ’85), pages 372-382. IEEE Computer Society,
1985.

R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority
secret ballot elections with linear work. In Advances in Cryptology—
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 72-83, Berlin, 1996. Springer-Verlag.

B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In Proc. 26th
IEEE Symposium on Foundations of Computer Science (FOCS ’85), pages
383-395. IEEE Computer Society, 1985.

R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally
efficient multi-authority election scheme. In Advances in Cryptology—
EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science,
pages 103-118, Berlin, 1997. Springer-Verlag.

J. Camenisch, U. Maurer, and M. Stadler. Digital payment systems with
passive anonymity-revoking trustees. In Computer Security — ESORICS 96,
volume 1146 of Lecture Notes in Computer Science, pages 33-43, Berlin,
1996. Springer-Verlag.

D. Chaum and T. P. Pedersen. Transferred cash grows in size. In Ad-
vances in Cryptology—EUROCRYPT ’92, volume 658 of Lecture Notes in
Computer Science, pages 390-407, Berlin, 1993. Springer-Verlag.

P. Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In Proc. 28th IEEE Symposium on Foundations of Computer Science
(FOCS ’87), pages 427-437. IEEE Computer Society, 1987.

E. Fujisaki and T. Okamoto. A practical and provably secure scheme
for publicly verifiable secret sharing and its applications. In Advances in

A Simple Publicly Verifiable Secret Sharing Scheme 163

Cryptology—EUROCRYPT 98, volume 1403 of Lecture Notes in Computer
Science, pages 32-46, Berlin, 1998. Springer-Verlag.

FTY96. Y. Frankel, Y. Tsiounis, and M. Yung. “Indirect discourse proofs”: Achiev-
ing efficient fair off-line e-cash. In Advances in Cryptology—ASIACRYPT
’96, volume 1163 of Lecture Notes in Computer Science, pages 286-300,
Berlin, 1996. Springer-Verlag.

GJKR99. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. In Advances in
Cryptology—EUROCRYPT 99, volume 1592 of Lecture Notes in Computer
Science, pages 295-310, Berlin, 1999. Springer-Verlag.

KW93. M. Karchmer and A. Wigderson. On span programs. In Proceedings of the
Eighth Annual Structure in Complezity Theory Conference, pages 102-111.
IEEE Computer Society Press, 1993.

Ped91. T. Pedersen. A threshold cryptosystem without a trusted party. In Ad-
vances in Cryptology—EUROCRYPT ’91, volume 547 of Lecture Notes in
Computer Science, pages 522-526, Berlin, 1991. Springer-Verlag.

Ped92a. T. P. Pedersen. Distributed Provers and Verifiable Secret Sharing Based on
the Discrete Logarithm Problem. PhD thesis, Aarhus University, Computer
Science Department, Aarhus, Denmark, March 1992.

Ped92b. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology—CRYPTO 91, volume 576 of
Lecture Notes in Computer Science, pages 129-140, Berlin, 1992. Springer-
Verlag.

PW98. B. Pfitzmann and M. Waidner. How to break fraud-detectable key recovery.
Operating Systems Review, 32(1):23-28, 1998.

Sha79. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612—
613, 1979.

Sta96. M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology—
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 190-199, Berlin, 1996. Springer-Verlag.

VT97. E. Verheul and H. van Tilborg. Binding ElGamal: A fraud-detectable alter-
native to key-escrow proposals. In Advances in Cryptology—EUROCRYPT
’97, volume 1233 of Lecture Notes in Computer Science, pages 119-133,
Berlin, 1997. Springer-Verlag.

YYO8. A. Young and M. Yung. Auto-recoverable auto-certifiable cryptosystems. In
Advances in Cryptology—EUROCRYPT ’98, volume 1403 of Lecture Notes
in Computer Science, pages 17-31, Berlin, 1998. Springer-Verlag.

A Extension to any Linear Secret Sharing Scheme

In Section M we have described a PVSS scheme based on Shamir’s secret sharing
scheme. However, the construction readily extends to any linear secret sharing
scheme. A secret sharing scheme is linear if the dealer and the participants only
use linear operations to compute with the shares and the secret. Below, we
present a PVSS scheme based on Brickell’s vector space construction [Raxyl.
A more general class of linear secret sharing schemes is formed by the class of
monotone span programs [KIAZGH], which turns out to play an important role in
the general context of secure multi-party computation (see [ELNIGY]).

164 Berry Schoenmakers

Let I" be a monotone access structure on {1, ..., n} and consider the following
secret sharing scheme with secrets and shares in Z,, where ¢ is prime. Suppose we
have constructed an n x d matrix M, for some d, satisfying for all B C {1,...,n}:

Bel = e €{cMpl|cezP}, (1)

where e; = (1,0,...,0), and Mp denotes the submatrix consisting of all rows
indexed by B. Hence, a set B of participants is qualified just when e; is contained
in the span of the rows of Mp.

To distribute a random secret s, the dealer picks a random column vector
a € Zq, sets s = a1, and computes the share for participant P; as s; = M;a.
As before, the dealer publishes the commitments C; = g%, for 0 < j < ¢, and
the encrypted shares ¥; = y;, for 1 < ¢ < n. To prove the consistency of the
encrypted shares, the dealer proves that log, X; = log,, Y;, where X; = g% can
be computed by anyone (due to the linearity):

d d
H Mas = g& g Mt — gou

As before, for reconstruction the participants decrypt their shares to obtain
{G*}iecB, for some B € I'. Using a vector ¢ for which e; = ¢ Mp, which exists
on account of (), we then have (again due to the linearity):

H(Gsi)c GZzGB (Mia)e; _ =G ZiEB iMi) = G2 = G°.
i€B
Clearly, the resulting schemes are both simple and efficient. In general, only
a single commitment C; is required per random value chosen by the dealer, and
one encryption Y; per share s; plus a response r; for the consistency proof. Note
that the construction also works for secret sharing schemes in which participants
may receive multiple shares.

B Description of PROOFy

See Section [l In order to prove that U is well-formed the prover must convince
the verifier that there exists an s such that Cy = ¢* and U = G*** with v €
{0,1}. The protocol runs as follows:

1. The prover sets a, = g* and b, = G for random w €r Z,. The prover
also sets a1_, = g“*”C’gl’” and by_, = G-+ (U/G'~?)% -+ for random
T1—v,d1—v €R Z4. The prover sends ag, bg, a1, by in this order to the verifier.

2. The verifier sends a random challenge ¢ €g Z, to the prover.

3. The prover sets d, = ¢—d1—, (mod ¢) and r, = w—sd, (mod q), and sends
do, To,d1, 71 in this order to the verifier.

4. The verifier checks that ¢ = dy + d; (mod ¢) and that ag = g™ C’d0 by =
GroU%, qy = g O, and by = G™(U/G)™.

Clearly, the proof is honest verifier zero-knowledge, hence its non-interactive
version releases no information on v in the random oracle model.

	Introduction
	Overview

	Model for Non-interactive PVSS
	Special PVSS Scheme
	Protocols
	Performance
	Security

	General PVSS Schemes
	Electronic Voting
	Other Applications
	Threshold Binding ElGamal
	Threshold Revocable Electronic Cash
	Threshold Software Key Escrow

	Conclusion
	Extension to any Linear Secret Sharing Scheme
	Description of $PROOF_U$

