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A writer identification system for on-line whiteboard data
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Abstract

In this paper we address the task of writer identification of on-line handwriting captured from a whiteboard. Different sets of features are
extracted from the recorded data and used to train a text and language independent on-line writer identification system. The system is based
on Gaussian mixture models (GMMs) which provide a powerful yet simple means of representing the distribution of the features extracted
from the handwritten text. The training data of all writers are used to train a universal background model (UBM) from which a client specific
model is obtained by adaptation. Different sets of features are described and evaluated in this work. The system is tested using text from 200
different writers. A writer identification rate of 98.56% on the paragraph and of 88.96% on the text line level is achieved.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The work described in this paper has been conducted in the
context of research on smart meeting rooms. The aim of this
research is to automate standard tasks usually performed by
humans in a meeting [1–5]. To record a meeting, smart meeting
rooms are equipped with synchronized recording interfaces to
capture audio, video, and handwritten notes.

Smart meeting rooms pose interesting pattern recognition
and classification problems. Speech [6], handwriting [7], and
video recognition systems [8] have been developed. Other tasks
include segmenting a meeting into meeting events [3,4], index-
ing the recorded data [9] or extracting non-lexical information,
such as prosody, voice quality variation, and laughter. To au-
thenticate the meeting participants and to assign utterances and
handwritten notes to their authors, identification and verifica-
tion systems are developed. They are based on speech [10] and
video interfaces [11,12] or on a combination of both [13].

An important task in a smart meeting room is to capture the
handwriting rendered on a whiteboard during a meeting. In this
paper we address the problem of identifying the author of a
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text written on a whiteboard. Solving this problem enables us
to label the handwriting with the writer’s identity. Furthermore,
it allows us to validate the identification results of a video-
or audio-based person identification system within the smart
meeting room scenario.

The text written on the whiteboard is recorded by the eBeam
interface.1 A normal pen in a special casing sends infrared
signals to a triangular receiver mounted in one of the cor-
ners of the whiteboard [14]. The acquisition interface outputs
a sequence of (x, y)-coordinates representing the location of
the pen-tip together with a time stamp for each location. The
sampling resolution varies around 30–70 samples per second
with a sampling resolution of 4 points per millimeter. Spurious
points and gaps within strokes can occur if the writer’s hand
is between the pen and the receiver, or if the pen is tilted too
much. An illustration of the data acquisition device is shown
in Fig. 1.

The input to our system are lines of handwritten text. Typical
data acquired from a whiteboard in a meeting may also include
sketches, tables or enumerated lists. However, there exists tech-
niques to extract text regions from the data collected [15,16].

1 eBeam system by Luidia, Inc.—www.e-Beam.com.
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Fig. 1. Recording session with the data acquisition device positioned in the
upper left corner of the whiteboard.

We use Gaussian mixture models (GMMs) to model a per-
son’s handwriting. GMMs provide a powerful yet simple means
of representing the distribution of the features extracted from
the text written by one person. GMMs have a mathematically
simple and well understood structure, and there exist standard
algorithms for training and testing. Formally, GMMs consist of
a weighted sum of uni-modal Gaussian densities. While GMMs
have first been used in speech recognition [17,18], to the best
of our knowledge, they have not been applied to on-line writer
identification of whiteboard data before.

For each writer in the considered population, an individual
GMM is trained using data from that writer only. Thus for n
different writers we obtain n different GMMs. Intuitively, each
GMM can be understood as an expert specialized in recognizing
the handwriting of one particular person. Given an arbitrary text
as input, each GMM outputs a recognition score. Assuming that
the recognition score of a model is higher on input from the
writer the model is trained on than on input from other writers,
we can utilize the scores produced by the different GMMs to
identify the writer of a text.

The outline of this paper is as follows. In the next section
related work is presented. Section 3 gives an overview of our
system and describes the normalization operations applied to
the acquired data. In Section 4 the feature sets extracted from
the normalized data are described. The GMMs used to model
a person’s handwriting are presented in Section 5. In Section
6 the experimental setup is described, while the results of our
experiments are presented and discussed in Section 7. Section 8
concludes the paper and proposes future work.

2. Related work

The topic of writer identification from on-line whiteboard
data has not been addressed in the literature to the best of our
knowledge. However, much research has been performed in re-
lated fields, such as identification and verification of signatures
and general handwriting.

Work in these fields can be differentiated according to the
available data. If only a scanned image of the handwriting is
available then writer classification is performed with off-line
data. Otherwise, if temporal and spatial information about the
writing is available, writer classification is performed with on-
line data. On-line handwritten data contains more information
about the writing style of a person, such as speed, angle or
pressure. This information is not available in off-line handwrit-
ten data. Thus the on-line classification task is considered to be
less difficult than off-line classification [19].

Surveys covering work in automatic writer identification and
signature verification until 1993 are given in Refs. [19,20]. Sub-
sequent works up to 2000 are summarized in Ref. [21]. Re-
cently, several additional approaches have been proposed. In
Section 2.1 work on off-line writer identification and verifica-
tion is presented. Section 2.2 summarizes papers on signature
verification. Work in the new field of on-line writer identifica-
tion and verification is presented in Section 2.3.

2.1. Off-line writer identification and verification

Said et al. [22] treat the writer identification task as a texture
analysis problem. They use global statistical features extracted
from the entire image of a text using multi-channel Gabor
filtering and gray-scale co-occurrence matrix techniques. In
Ref. [23] this approach is extended to Chinese handwriting. He
et al. [24] present a wavelet-based generalized Gaussian density
(GGD) method which decomposes the image into subbands of
different frequencies and orientations and uses its parameters
as features.

Srihari et al. [25–27] address the problem of writer verifica-
tion, i.e., the problem of determining whether two documents
are written by the same person or not. In order to identify
the writer of a given document, they model the problem as a
classification problem with two classes, authorship and non-
authorship. Given two handwriting samples, one of known and
the other of unknown identity, the distance between two docu-
ments is computed. Then the distance value is used to classify
the data as positive or negative.

Zois et al. [28] base their approach on single words by mor-
phologically processing horizontal projection profiles. The pro-
jections are partitioned into a number of segments from which
feature vectors are extracted. A Bayesian classifier and a neural
network (NN) are then applied to the feature vectors.

In Ref. [29] a system for writer identification is described.
The system first segments a given text into individual text lines
and then extracts a set of features from each text line. The
features are subsequently used in a k-nearest-neighbor classifier
that compares the feature vector extracted from a given input
text to a number of prototype vectors coming from writers with
known identity.

Bulacu et al. [30] use edge-based directional probability
distributions as features for the writer identification task. The
authors introduce edge-hinge distribution as a new feature. The
key idea behind this feature is to consider two edge fragments
in the neighborhood of a pixel and compute the joint prob-
ability distribution of the orientations of the two fragments.
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Additionally, in Ref. [31] as a new feature the histogram
of connected-component contours (CO3) for upper-case
handwriting is introduced. This approach is extended to
mixed-style handwriting in Ref. [32], using fragmented
connected-component contours (FCO3).

Wang et al. extract directional element features (DEFs)
and then reduce the dimensionality of the feature space using
principal component analysis (PCA) and linear discriminant
analysis (LDA) [33,34]. The Euclidean distances between the
unknown script and the mean vector of the known scripts
are calculated to identify the writer. Finally, the score is nor-
malized with a measure expressing the similarity between
the determined script and script samples written by other
writers [35].

In a number of papers [36–39] graphemes are proposed as
features for describing the individual properties of handwriting.
Furthermore, it is shown that each handwriting can be charac-
terized by a set of invariant features, called the writer’s invari-
ants. These invariants are detected using an automatic grapheme
clustering procedure. In Refs. [38,39] these graphemes are used
to address the writer verification task based on text blocks as
well as on handwritten words.

Fractal analysis of handwriting has been proposed in
Refs. [40,41]. For each writer a set of invariant features is
gained by adapting techniques that have been developed for
the compression of fractals [42]. During learning the invariant
patterns are extracted and used as a reference base in order
to analyze an unknown writing by measuring the similarity
between the images modified by the compression and the de-
compression process. Among other features, fractal features
have also been extracted from text lines in Ref. [43].

Leedham et al. [44] present a set of 11 features which can be
extracted easily and used for the identification and the verifica-
tion of documents containing handwritten digits. These features
are represented as vectors, and by using the Hamming distance
measure and determining a threshold value for the intra-author
variation a high degree of accuracy in authorship detection is
achieved.

We have proposed to use hidden Markov model (HMM)-
based text recognizers [45–47] and GMMs [48,49] for off-line
writer identification and verification. For each writer, a model
is built and trained on text lines of that writer. This results
in a number of models, each of which is an expert on the
handwriting of exactly one writer. Assuming that the score of a
system is higher on input from the writer the system was trained
on than on input from other writers, the scores produced by the
models are used to decide who has written the input text line.

2.2. On-line signature verification

From Section 2.1 it can be concluded that there exists quite
a body of work on off-line writer identification and verifica-
tion. By contrast, little has been published on the on-line case
(see Section 2.3). However, a number of research articles in the
field of on-line signature verification, which is a special case
of on-line writer verification, have been reported. They will be
reviewed in this section.

Signatures differ from normal handwritten texts in the sense
that they are more graphical than text, and letters are often de-
formed or missing. Early work on on-line signature verification
is described in Refs. [19,50,51]. In recent works, various ap-
proaches based on dynamic time warping (DTW), NNs, HMMs
and GMMs have been proposed.

Lee et al. [52] use a very simple classifier that implements
a majority decision rule. If more than half of the features
are from the respective distributions describing the features
of the claimed person then the signature is classified as gen-
uine; otherwise it is assumed to be forged. A basic set and an
advanced set of features are extracted from the on-line data.
Different algorithms are studied for selecting and orthogonal-
izing the feature sets. A common feature set is defined consist-
ing of features that are good for most persons in the considered
population.

Nalwa [53] claims that the temporal characteristics of a sig-
nature are not as consistent as its shape information. Five char-
acteristic functions are derived, each describing a local feature
of the signature. The characteristic functions of a signature with
a claimed identity are simultaneously warped against their pro-
totypes and the overall alignment cost is then considered as one
global feature. The final dissimilarity measure is defined as the
weighted harmonic mean of the global features.

A DTW approach is presented in Ref. [54]. Global and local
features are extracted from the slope of the signature and stored
in a string representation. The similarity between an input sig-
nature and the reference set is then computed by string match-
ing. A new warping technique called extreme point warping,
which only warps selective points, is proposed in Ref. [55].

In Ref. [56] three different NN-based approaches for on-line
human signature verification are studied. An on-line signature
verification system that uses multi-layer perceptrons (MLPs)
trained with cepstral coefficients derived from linear predictor
coefficients of the writing trajectories is presented in Ref. [57].
In Ref. [58] a signature verification system that uses wavelets
and back-propagation NNs is proposed.

Kholmatov and Yanikoglu consider the signature verification
problem as a two-class pattern recognition problem [59]. A
test signature’s authenticity is established by first aligning it
with each reference signature for the claimed user, using DTW.
The distances of the test signature to reference signatures are
normalized to form a feature vector which is then classified into
the genuine or the forgery class. After PCA, a linear classifier
is used to classify a signature. This system performed best at
the first international signature verification competition [60].

Various HMM-based approaches have been applied to signa-
ture verification [61,62]. Yang et al. [63] incorporate dynamic
sequence information by extracting normalized angles as fea-
tures and model the generation of these sequences by HMMs.
The best performance is achieved using a left-to-right topol-
ogy for the HMMs. Kashi et al. [64] combine global features
that capture spatial and temporal characteristics of the signa-
ture with a local feature based on the signature likelihood ob-
tained from HMMs. Yoon et al. transform the signature data
into the polar space, which makes the features size and angle
invariant [65]. Muramatsu et al. [66–68] propose an on-line
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signature verification algorithm by mapping the trajectory an-
gles to HMM states in a left-to-right topology.

In recent work, Ortega-Garcia et al. [69] compute eight time
sequences and their first and second order time derivatives from
the on-line signature data. The features are normalized and
modeled by a left-to-right HMM with continuous output density
functions. In the verification phase, scores are considered as
relative values with respect to a reference population and are
normalized by best-reference score normalization. The system
performs very favorable on the signature corpus of the MCYT
bimodal biometric database [70].

Richiardi et al. introduce GMMs for on-line signature ver-
ification [71]. They use horizontal and vertical position, pres-
sure, trajectory tangent angle, and velocity as basic features to
train the models. A minimum description length (MDL) cost
function is introduced that balances modeling errors and model
complexity. Using the MDL criterion for each user the best per-
forming model is selected. In an extension to this work, they
propose a signature feature selection algorithm that combines
a modified Fisher ratio cost function and a sub-optimal but fast
floating search algorithm to obtain an initial set of local [72]
and global features [73].

In Ref. [74] the authentic and the forgery samples are
represented by two separate GMMs. Dissimilarity vectors are
obtained after the initial vectors have been aligned by DTW.
During training, the normalized dissimilarity vectors along
with the labels are used in a discriminative training procedure
to train the two GMMs. The two classifiers are optimized on
a discriminative objective function derived from the minimum
classification error (MCE) criterion. A two-stage statistical
system composed of a simplified GMM for global signature
features and a discrete HMM for local signature features is
presented in Ref. [75].

2.3. On-line writer identification and verification

Only recently, work on on-line writer identification and ver-
ification has started and only few papers exist. Chapran [76]
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Fig. 2. Schematic overview of the training and the testing phase.

extracts static and dynamic features especially suited for em-
bedded writer identification systems with restricted memory
and processing power. The feature set is reduced to a feature
subset using a feature selection approach based on likeness
coefficients. An optimal number of features is determined by
means of discriminant analysis and then passed through three
different classifiers, namely minimum distance classifier, Bayes
classifier and their serial combination. In other works, Chapran
et al. propose a method for dynamic writer identification which
uses the relation between static and dynamic information in a
handwritten text [77]. The correlation between the length and
the direction of the segments of handwriting between two sam-
ple points as well as pressure, altitude, and azimuth are used
to identify the writer.

Some of the features used in this work are inspired by work
on on-line handwriting recognition [78,79] and signature ver-
ification [54,73]. The features were chosen because they have
shown to adequately capture the form of a person’s handwrit-
ing. To model the distribution of the features, we have applied
GMMs, which have shown good performance in signature ver-
ification [73] and off-line writer identification [48].

We first proposed to use GMMs for writer identification of
on-line whiteboard data in Ref. [80]. The present paper is a
substantially extended version of Ref. [80]. First, three new
feature sets, leading to significantly improved writer identifica-
tion rates, are introduced. Second, different training methods to
obtain the client models are evaluated. Third, the influence of
having fewer data available for training as well as testing are
systematically studied.

3. Writer identification system for on-line whiteboard data

3.1. System overview

The distribution of the features extracted from the hand-
writing of a person is modeled by one GMM for each writer.
The models are obtained by the following two-step training
procedure (a detailed description of the training procedure is
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given in Section 5). In the first step, all training data from all
writers are used to train a single, writer independent universal
background model (UBM). In the second step, for each writer a
writer specific model is obtained by adaptation using the UBM
and training data from that writer. As a result of the training
procedure, we get a model for each writer. In the testing phase,
a text of unknown identity is presented to each model. Each
model returns a log-likelihood score, and these scores are sorted
in descending order. Based on the resulting ranking, the text is
assigned to the person whose model produces the highest log-
likelihood score. A schematic overview of the training and the
testing phase is shown in Fig. 2.

To train the models, different feature sets are extracted from
the text which are described in Section 4. Before feature ex-
traction, a series of normalization operations are applied. The
operations are designed to improve the quality of the features
extracted without removing writer specific information. For this
reason, e.g., no resampling of the data points is performed.

3.2. Preprocessing

On-line handwriting captured from a whiteboard differs from
handwriting acquired by other devices such as digitizing tablets
or Tablet PCs. While some of these devices register the pressure
and the angle of the pen during writing, this information is
not available from whiteboard data due to the way the data are
acquired. Furthermore, whiteboard data often have a wave-like
baseline and the size of the letters varies (Fig. 3 shows some
examples of handwritten texts). This writing style stems from
the fact that during writing people stand rather than sit and that
their arm does not rest on a table. In this case, approximating
the base-line of a text line by one straight line would not yield
satisfactory results.

The recorded on-line data contains noisy points and gaps
within strokes which are caused by loss of sampling data during

Fig. 3. Examples of handwritten texts acquired by the electronic acquisition
device from the whiteboard.

Fig. 4. A text paragraph before and after preprocessing.

acquisition. In Fig. 4 a paragraph before and after preprocess-
ing is shown. As can been seen in the figure, after preprocessing
the strokes constituting a single letter are connected (e.g., the
“I” of “In” or the “y” of “Anglesey”) and the spurious stroke
between the third and fourth line is removed. To recover from
noisy points and gaps within strokes, two preprocessing steps
are applied to the data. Let p1, . . . , pn be the points of a given
stroke and q1 be the first point of the succeeding stroke. Note
that a stroke starts when the pen tip touches the whiteboard
and ends when the pen tip looses contact with the whiteboard.
To identify noisy points, we check whether the distance be-
tween two consecutive points pi and pi+1 is larger than a fixed
threshold. Finding an appropriate threshold value is not criti-
cal because in case of a noisy point the distance between the
two considered points is significantly larger than between two
consecutive points. In case the distance exceeds the threshold,
one of the points is deleted. To decide which point has to be
deleted, the number of points within a small neighborhood of
pi and pi+1 is determined, and the point with a smaller num-
ber of neighbors is deleted. To recover from the second type of
artifacts, i.e., gaps within strokes, we check if the distance be-
tween the timestamps of pn and q1 is below a fixed threshold.
Again it is not critical to define this threshold. If the condition
holds the strokes are merged into one single stroke.

Next, the cleaned paragraph of text is automatically divided
into lines using a simple heuristic. If there is a pen-movement to
the left longer than 1

3 of the document’s width and downwards
greater than a predefined threshold the start of a new line is
assumed. This condition prevents divisions to be caused by
t-bar crossings or by i/j dotting.

The next step is to divide each text line into sub-parts which
then can be normalized independently of each other. A text line
is split at a gap if the gap is larger than the mean gap size and if
the size of both sub-parts is greater than a predefined threshold
(see Fig. 5). The mean gap size is defined as the mean of the
x-distances between succeeding strokes of a line.

For each sub-part the skew angle is calculated and corrected.
Linear regression through all points of a sub-part is performed
to estimate the base and the corpus lines. For this purpose, the
minima and maxima of the y-coordinates of the strokes are cal-
culated. Then two linear regressions through the minima and
maxima are computed with the constraint that the two resulting
lines have to have the same slope. After regression the least
fitting points are removed and another linear regression is per-
formed. This correction step is repeated twice, which produces
an estimated base line (minima) and a corpus line (maxima).
Fig. 6 illustrates the estimated base line and the corpus line of
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Fig. 5. Splitting a text line into its sub-parts.

Fig. 6. Baseline and corpus line of an example part of a text line.

an example word sequence. The base line is subtracted from
all y-coordinates to make it equal to the x-axis. The two lines
divide the text into three areas: the upper area, which mainly
contains the ascenders of the letters; the median area, where
the corpus of the letters is present; and the lower area with the
descenders of the letters. These three areas are normalized to
predefined heights. This means that the height of the upper area
is set to be equal to the height of the median area. The lower
area is scaled to this height if it is larger than the predefined
height. This condition avoids unnecessary scaling of the lower
area if no ascenders exist.

Finally, the width of each sub-part is normalized. First, the
number of characters is estimated as a fraction of the number of
strokes crossing the horizontal line between the base line and
the corpus line. The text is then horizontally scaled according to
this value. This preprocessing step is needed because we use the
relative x-coordinate. The relative x-coordinate is calculated by
subtracting the x-coordinate of a point from a moving average
coordinate. The moving average is the x-coordinate of a point
which moves with constant velocity from left to right.

4. Feature sets for whiteboard writer identification

Five feature sets for whiteboard writer identification are pre-
sented in this section. The first two feature sets, denoted as
point-based feature set and stroke-based feature set, have been
described previously [80]. The third set of features (extended
point-based feature set) describes an extended set of features
extracted from the on-line data. The fourth feature set (off-line
point-based feature set) is obtained by first transforming the
on-line data into an off-line representation from which the fea-
tures are extracted. The fifth feature set (all point-based feature
set) is the union of the extended point-based feature set and the
off-line point-based feature set. In the remainder of this sec-
tion, the number in round brackets behind the name of a feature
indicates the number of individual feature values.

Fig. 7. Illustration of point-based features.

4.1. Point-based feature set

The features of this feature set are similar to the ones used in
on-line handwriting recognition systems [78,79] and signature
verification systems [54,73]. For a given stroke s consisting of
points p1 to pn, the following features for each consecutive
pair of points (pi , pi+1) are computed. In our notation, angle
�i denotes the angle between the horizontal line and the line
(pi , pi+1), and angle �i represents the angle between the lines
(pi−1, pi) and (pi, pi+1) (see Fig. 7 for an illustration).

The following features are calculated for each point pi :

• Speed (1): The speed vi of the segment

vi = �(pi, pi+1)

t
,

where t equals the sampling rate of the acquisition device.
• Writing direction (2): The writing direction at pi , i.e., the

cosine and sine of �i :

cos(�i ) = �x(pi, pi+1)

li
,

sin(�i ) = �y(pi, pi+1)

li
.

• Curvature (2): The curvature, i.e., the cosine and the sine
of the angle �i . These angles are derived by the following
trigonometric formulas:

cos(�i ) = cos(�i ) ∗ cos(�i+1) + sin(�i ) ∗ sin(�i+1),

sin(�i ) = cos(�i ) ∗ sin(�i+1) − sin(�i ) ∗ cos(�i+1).

The point-based feature set thus contains five feature values.

4.2. Stroke-based feature set

In this set, the individual features are based on strokes. For
each stroke s = p1, . . . , pn we calculate the following features
(for an illustration see Fig. 8):

• Accumulated length (1): The accumulated length lacc of all
lines li :

lacc =
n−1∑
i=1

li .
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Fig. 8. Illustration of stroke-based features.

• Accumulated angle (1): The accumulated angle �acc of the
absolute values of the angles of the writing directions of all
lines:

�acc =
n−1∑
i=1

|�i |.

• Width and height (2): The width w = xmax − xmin and the
height h = ymax − ymin of the stroke.

• Duration (1): The duration t of the stroke.
• Time to previous stroke (1): The time difference �tprev to the

previous stroke.
• Time to next stroke (1): The time difference �tnext to the next

stroke.
• Number of points (1): The total number of points n.
• Number of curvature changes (1): The number of changes

nchanges in the curvature.
• Number of up strokes (1): The number of angles nl of the

writing direction larger than zero.
• Number of down strokes (1): The number of angles ns of the

writing direction smaller than zero.

The stroke-based feature set thus contains 11 feature values.

4.3. Extended point-based feature set

This feature set describes a set of point-based features found
in work on handwriting recognition [78,79] and signature veri-
fication [54,73]. It is an extended set of the feature set described
in Section 4.1.

For each point pi , we calculate the following features:

• x/y-coordinate (2): The relative x/y-position of the point
pi . The relative x-coordinate is calculated by subtracting
the x-coordinate of a point from a moving average coordi-
nate.

• Speed (1): The speed vi of the segment.
• Speed in x/y-direction (2): The speed vix /viy in x/y-direction.
• Acceleration (1): The overall acceleration ai .
• Acceleration in x/y-direction (2): The acceleration aix /aiy in

x/y-direction.
• Log curvature radius (1): The curvature radius is the length

of the circle which best approximates the curvature at the

Fig. 9. Illustration of vicinity features.

point pi . It is derived from the local velocities and the local
accelerations as follows:

r = (vix ∗ aiy − aix ∗ viy )√
(v2

ix
+ v2

iy
)
3 .

• Writing direction (2): The cosine and the sine of the angle
between the line segment of the starting point and the x-axis.

• Curvature (2): The cosine and the sine of the angle between
the lines to the previous and to the next point.

• Vicinity aspect (1): The aspect of the trajectory in the vicinity
di = {pi−n, . . . , pi, . . . , pi+n} of the point pi :

va = �ydi
− �xdi

�ydi
+ �xdi

.

The vicinity aspect characterizes the ratio of height to width
of the bounding box containing the preceding and the suc-
ceeding points [78]. Fig. 9 illustrates the computation of this
feature. The vicinity of a point is also used to define the
following three features: vicinity curliness, vicinity linearity,
and vicinity slope.

• Vicinity curliness (1): This feature describes the deviation
from a straight line in the vicinity di (see Fig. 9). It is com-
puted from the length of the trajectory in the vicinity divided
by max(�xdi

, �ydi
) [78].

• Vicinity linearity (1): The average square distance between
every point in the vicinity and the straight line linking the
first and the last point in the vicinity [78].

• Vicinity slope (2): The cosine and the sine of the angle �di
of

the straight line from the first to the last point in the vicinity
(see Fig. 9) [78].

The extended point-based feature set thus contains 18 feature
values.

4.4. Point-based offline feature set

These features are computed using a two-dimensional
matrix representing an off-line version of the data [78]. The
matrix is obtained by projecting the on-line strokes on the two-
dimensional plane. Therefore all consecutive points within the
same stroke are connected. This results in one connected line
per stroke. See Fig. 10 for an illustration where the strokes are
widened for ease of visualisation.
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ascenders

descenders

Fig. 10. Illustration of off-line features.

From the two-dimensional representation, the following fea-
tures are computed:

• Ascenders/descenders (2): The number of points above/below
the corpus/base line whose x-coordinates are in the vicinity
of the point and which have a minimal distance to the cor-
pus/base line (denoted by the two dashed lines in Fig. 10).
The distance is set to a predefined fraction of the corpus
height.

• Context map (9): The two-dimensional vicinity of the point
is divided into three regions for each dimension (illustrated
by the 3 × 3 matrix in Fig. 10). The number of black points
in each region is taken as a feature value.

The off-line point-based feature set thus contains 11 feature
values.

4.5. All point-based feature set

This feature set is the union of both the extended point-based
feature set and the off-line point-based feature set. In total 29
feature values are extracted.

5. Gaussian mixture models

We use GMMs to model the handwriting of each person
of the underlying population. The distribution of the feature
vectors extracted from a person’s handwriting is modeled by a
Gaussian mixture density. For a D-dimensional feature vector
x the mixture density for a specific writer is defined as

p(x|�) =
M∑
i=1

wipi(x), (1)

where the mixture weights wi sum up to one. The mixture den-
sity is a weighted linear combination of M uni-modal Gaussian
densities pi(x), each parametrized by a D × 1 mean vector �i

and a D × D covariance matrix Ci :

pi(x) = 1

(2�)D/2|Ci |1/2

× exp

{
−1

2
(x − �i )

′(Ci)
−1(x − �i )

}
. (2)

The parameters of a writer’s density model are denoted as
� = {wi, �i , Ci} for all i = 1, . . . , M . This set of parameters

Fig. 11. A two-dimensional GMM consisting of a weighted sum of six
uni-modal Gaussian densities.

completely describes the model and enables to concisely model
a person’s writing on the whiteboard.

While the general model supports full covariance matrices,
often only diagonal covariance matrices are used. An exam-
ple for the two-dimensional case is shown in Fig. 11. This
simplification is motivated by the following observations: first,
theoretically the density modeling of an M-dimensional full
covariance matrix can equally well be achieved using a larger
order diagonal covariance matrix. Second, diagonal covariance
matrices are computationally more efficient than full covariance
matrices, and third, diagonal matrix GMMs have outperformed
full matrix GMMs in various experiments [18].

The models of the writers are obtained from a universal back-
ground model (UBM). The basic idea is to derive the writer’s
model by updating the well-trained parameters from the UBM.
In a first step, all data from all writers are used to train a single,
writer independent UBM. In the second step, for each writer a
writer dependent writer model is built by updating the param-
eters in the UBM via adaptation using all training data from
this writer.

The UBM is trained using the expectation–maximization
(EM) algorithm [81]. The EM algorithm follows the maximum
likelihood (ML) principle by iteratively refining the parameters
of the GMM to monotonically increase the likelihood of the es-
timated model for the observed feature vectors. The algorithm
starts with a data set X of T feature vectors xt , an initial set of
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M uni-modal Gaussian densities, Ni=̂N(μi , Ci ), and M mix-
ture weights wi . Then, in the first step, for each training data
point xt the responsibility P(i|xt ) of each component Ni is de-
termined. In the second step, the component densities, i.e., the
mean vector μi and the variance matrix Ci for each compo-
nent, and the weights wi are re-estimated based on the training
data. The model’s parameters are updated as follows [82]:

μi =
∑T

t=1P(i|xt ) ∗ xt∑T
t=1P(i|xt )

, (3)

�2
i = 1

d

∑T
t=1P(i|xt ) ∗ ‖xt − μi‖2

∑T
t=1P(i|xt )

, (4)

wi = 1

T

T∑
t=1

P(i|xt ), (5)

where �i is the diagonal standard deviation (	i (j)= Ci (j, j)).
The two steps are repeated until the likelihood score of the

entire data set does not change substantially or a limit on the
number of iterations is reached.

The Gaussian component densities of the UBM can either be
initialized randomly or by using vector quantization techniques
such as k-means clustering [83]. Furthermore, variance flooring
is employed to avoid an overfitting of the variance parameter
[84]. The idea of variance flooring is to impose a lower bound on
the variance parameters as a variance estimated from only few
data points can be very small and might not be representative
of the underlying distribution of the data [84]. The minimal
variance value is defined by

min 	2 = 
 ∗ 	2
global , (6)

where 
 denotes the variance flooring factor and the global
variance 	2

global is calculated on the complete training set. The

minimal variance, min 	2, is used to initialize the variance
parameters of the model. During the EM update step, if a calcu-
lated variance parameter is smaller than min 	2, then the vari-
ance parameter is set to this value.

The writer models are obtained from the UBM by a modified
version of the EM algorithm based on the maximum a poste-
riori (MAP) principle. The MAP approach provides a way of
incorporating prior information in the training process which is
particularly useful for dealing with problems posed by sparse
training data for which the ML approach gives inaccurate esti-
mates [85].

Similarly to the EM algorithm, the MAP adaptation algo-
rithm consists of two steps. The first step is identical to the
expectation step of the EM algorithm, where estimates of the
statistics of the writer’s training data are computed for each
mixture component in the UBM. Unlike the second step of
the EM algorithm, however, for adaptation these new statisti-
cal estimates are then combined with the old statistics from the
UBM mixture parameters using a data-dependent mixture co-
efficient. This adaptation coefficient � (called MAP adaptation
factor) controls the adaptation process by emphasizing either
on the well-trained data of the UBM or on the new data when
estimating the parameters [18].

To adapt the mean values of the diagonal covariance matrix
the new mean μiClient

of Gaussian i of the client model is ob-
tained as follows:

μiClient
= � ∗ μiUBM

+ (1 − �) ∗
∑T

t=1P(i|xt ) ∗ xt∑T
t=1P(i|xt )

, (7)

where �iUBM
is the corresponding mean in the UBM and P(i|xt )

is the posterior probability of Gaussian i. The weights wiClient

of Gaussian i of the client model are updated from wiUBM as
follows:

wiClient
= � ∗ wiUBM + (1 − �) ∗

∑T
t=1P(i|xt )∑N

i=1
∑T

t=1P(i|xt )
. (8)

The adaptation of the variance value 	 of the diagonal co-
variance matrix is calculated similarly; for details see Ref. [18].

During decoding, the feature vectors X = {x1, . . . , xT } ex-
tracted from a text line are assumed to be independent. The log-
likelihood score of a model � for a sequence of feature vectors
X is defined as

log p(X|�) =
T∑

t=1

log p(xt |�), (9)

where p(xt |�) is computed according to Eq. (1).
Diagonal covariance matrices are used and initialized by

k-means clustering in our system. The number of clusters equals
the number of Gaussian mixture components. The GMMs are
implemented using the Torch library [86].

6. Experimental setup

In our experiments we use data from the IAM On-line En-
glish Handwritten Text Database (IAM-OnDB)2 [87]. The
IAM-OnDB consists of on-line data acquired from a white-
board. All texts are taken from the Lancaster–Oslo/Bergen cor-
pus (LOB) which is a large electronic corpus of text [88]. The
texts are of diverse nature, ranging from press and popular liter-
ature to scientific and religious writing. The resulting database
consists of more than 1700 handwritten forms from over 220
writers. It contains over 86,000 word instances with around
11,000 distinct words extracted from more than 13,000 text
lines.

The task in our experiments is to identify which person out
of 200 individuals has written a given text. It can be argued
that even in large organizations there will rarely be more than
200 potential participants to a meeting held in a smart meeting
room.

For each writer, there are eight paragraphs of text. A para-
graph of text consists of eight text lines in average. Thus there
are in total 1600 paragraphs of text consisting of 11,170 text
lines. A text line contains 627 points and 24 strokes in average.

2 The IAM-OnDB is publicly available at the following address: www.
iam.unibe.ch/∼fki/iamondb.

http://www.iam.unibe.ch/~fki/iamondb
http://www.iam.unibe.ch/~fki/iamondb
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6.1. Evaluation of feature sets

In the first set of experiments, the five feature sets presented
in Section 4 are evaluated on the paragraph as well as on the
text line level. In the former case all text lines of a paragraph
are used for writer identification, while in the latter case the
writer identification is based on the individual text lines. Four
fold cross validation is performed which enables us to use all
text lines for training without committing the error of training
or of optimizing meta parameters on the test set [89].

The experiments on the paragraph level use four paragraphs
of text for training, two paragraphs to validate the meta pa-
rameters of the GMMs and the remaining two paragraphs form
the independent test set. Training, validation and test set are
iteratively rotated. All training data from all writers are used
to train the UBM. The model of each writer is then obtained
by adapting the UBM with writer-specific training data. In this
case the mean values of the diagonal covariance matrix of the
client model are adapted.

The following two meta-parameters are systematically var-
ied: The number of Gaussian mixture components is increased
from 50 to 300 by steps of 50 and the variance flooring factor
is increased from 0.001 to 0.031 in steps of 0.002. As there is
a high amount of training data available, full adaptation is per-
formed, i.e., the MAP factor is set to 0.0. The other meta pa-
rameters are set to standard values [86]. The optimal number of
Gaussian mixture components and the optimal variance floor-
ing factor are determined by averaging the writer identification
rates achieved on the four validation sets. The final writer iden-
tification rate is the average of the writer identification rates on
the four test sets.

In order to measure the performance of the identification sys-
tem if fewer data are available during recognition, we split each
paragraph into its individual text lines for the experiments on
the line level. The training set, the validation set, and the test
set thus consist no longer of the full paragraphs, but of the in-
dividual text lines of the paragraphs. While the amount of data
available for training is identical to the first experimental setup,
the models are optimized and tested on the text line level. The
rest of the experimental setup is equal to the first experimen-
tal setup, i.e., the number of Gaussian mixture components is
varied from 50 to 300 by steps of 50 and the variance floor-
ing factor from 0.001 to 0.031 in steps of 0.002. Both meta-
parameters are optimized on the validation sets and the final
writer identification rate is calculated on the test sets.

6.2. Evaluation of training methods

In our approach, the client models are obtained from the
UBM by adapting the mean values of the diagonal covari-
ance matrix. The variance as well as the weight values are not
adapted. The set of experiments described in this section com-
pares the writer identification rates achieved by this approach
to two alternative approaches to obtain the client models.

In the first alternative approach, the client models are ob-
tained from the UBM by adapting the weights of the diagonal

covariance matrix. The mean and the variance values of the co-
variance matrix are not adapted. The number of Gaussian mix-
ture components is varied from 50 to 300 in steps of 50 and the
variance flooring factor from 0.001 to 0.031 in steps of 0.002
which is identical to the first series of experiments.

The second alternative approach does not use any UBM at
all. Instead, for every writer the client models are trained from
scratch using the EM algorithm (see Section 5). Again the num-
ber of Gaussian mixture components is increased from 50 to
300 in steps of 50 and the variance flooring factor is varied
from 0.001 to 0.031 in steps of 0.002.

Only the all point-based feature set on the text line level
is considered in this series of experiments, as it shows the
best performance in the first set of experiments. The training,
the validation, and the test set are identical to the first set of
experiments and four-fold cross validation is performed in the
same manner.

6.3. Evaluation of reducing training data

The third set of experiments measures the influence of using
less data to train the GMMs. In the previous two sets of exper-
iments text from four paragraphs are used for training. In this
experimental setup, we reduce the amount of data available for
training from four paragraphs to one paragraph in steps of one.
The meta parameters considered in this setup are the number of
Gaussian mixture components (varied from 50 to 300 by steps
of 50) and the MAP adaptation factor (varied from 0.0 to 0.4 in
steps of 0.1). In this setup the MAP parameter is varied in order
to measure the influence of the UBM on the system’s perfor-
mance which increases when fewer training data are available.
The variance flooring factor is set to 0.001.

In this series of experiments no cross validation is performed
to reduce the computational complexity. The initial training set
consists of four paragraphs, and the validation and the test set
each consists of two paragraphs. The all point-based feature
set is used in this set of experiments. The experiments are per-
formed on the text line level. Only the mean values are updated
during adaptation. The rest of the experimental setup is identi-
cal to the ones of the previous two sets of experiments.

7. Results and discussion

7.1. Evaluation of feature set—results and discussion

In Tables 1 and 2 the writer identification rates of the dif-
ferent feature sets on the paragraph level are given on the
validation and the test sets, respectively. The results for the
validation and the test sets on the text line level are given in
Tables 3 and 4. In all four tables, the numbers in brackets in the
feature set column denotes the number of features in a feature
vector. The meta parameters, i.e., the number of Gaussian mix-
ture components and the variance flooring factor that achieved
the highest writer identification rate on the validation set are
given in the second column. The last two columns describe the
average writer identification rate and the standard deviation on
the validation and on the test set, respectively.
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Table 1
Writer identification rates for different feature sets on the paragraph level measured on the validation sets

Feature set Parameters Average (%) Std. dev. (%)

Point-based feature set (5) 50G, 0.001VF 88.19 4.75
Stroke-based feature set (11) 100G, 0.015VF 92.31 4.87
Extended point-based feature set (18) 200G, 0.011VF 95.81 3.03
Off-line point-based feature set (11) 250G, 0.017VF 95.88 2.95
All point-based feature set (29) 300G, 0.007VF 98.31 1.77

Table 2
Writer identification rates for different feature sets on the paragraph level measured on the test sets

Feature set Parameters Average (%) Std. dev. (%)

Point-based feature set (5) 50G, 0.001VF 88.56 3.90
Stroke-based feature set (11) 100G, 0.015VF 92.56 3.01
Extended point-based feature set (18) 200G, 0.011VF 95.75 2.70
Off-line point-based feature set (11) 250G, 0.017VF 96.44 1.60
All point-based feature set (29) 300G, 0.007VF 98.56 1.13

Table 3
Writer identification rates for different feature sets on the text line level measured on the validation sets

Feature set Parameters Average (%) Std. dev. (%)

Point-based feature set (5) 50G, 0.001VF 49.24 2.27
Stroke-based feature set (11) 100G, 0.001VF 61.80 4.29
Extended point-based feature set (18) 300G, 0.029VF 69.77 4.71
Off-line point-based feature set (11) 300G, 0.029VF 68.60 4.15
All point-based feature set (29) 300G, 0.027VF 86.45 4.19

Table 4
Writer identification rates for different feature sets on the text line level measured on the test sets

Feature set Parameters Average (%) Std. dev. (%)

Point-based feature set (5) 50G, 0.001VF 48.67 3.88
Stroke-based feature set (11) 100G, 0.001VF 62.55 3.29
Extended point-based feature set (18) 300G, 0.029VF 71.84 2.62
Off-line point-based feature set (11) 300G, 0.029VF 71.64 3.35
All point-based feature set (29) 300G, 0.027VF 88.96 2.64
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Fig. 12. n-Best list for the all point-based feature set on the paragraph level.

In Tables 1 and 2 we observe that the results on the validation
and on the test set are very similar. Therefore only the results
on the test set are discussed in detail. Using the point-based

feature set and the stroke-based feature set writer identification
rates below 93.00% are obtained. The off-line point-based fea-
ture set performs slightly better than the extended point-based
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Fig. 13. n-Best list for the all point-based feature set on the text line level.

Table 5
Evaluation of three different trainings methods to obtain the client models measured on the validation sets

Training method Parameters Average (%) Std. dev. (%)

UBM, learn means 300G, 0.027VF 86.45 4.19
UBM, learn weights 300G, 0.031VF 74.62 4.10
No UBM 300G, 0.001VF 65.75 0.66

Table 6
Evaluation of three different trainings methods to obtain the client models measured on the test sets

Training method Parameters Average (%) Std. dev. (%)

UBM, learn means 300G, 0.027VF 86.96 2.64
UBM, learn weights 300G, 0.031VF 74.43 3.06
No UBM 300G, 0.001VF 66.32 2.41

Table 7
Influence of the amount of data available for training on the writer identification rate, using the all point-based feature set

Number of paragraphs Parameters Validation set (%) Test set (%)

One paragraph 150G, 0.2MAP 70.50 69.23
Two paragraphs 300G, 0.2MAP 81.57 80.75
Three paragraphs 300G, 0.1MAP 87.62 86.18
Four paragraphs 250G, 0.0MAP 90.36 87.68

feature set. The highest writer identification rate of 98.56% is
obtained using the all point-based feature set.

An n-best list measures the identification rate not only based
on the first rank, but based on the first n ranks. As can been
seen in Fig. 12, for the all point-based feature set the error rate
drops below 0.2% if the first seven ranks are considered and
all paragraphs are identified correctly if the first twelve ranks
are considered.

The writer identification rates calculated on the text line level
are shown in Tables 3 and 4 on the validation and on the test
sets. Again the results on the validation and on the test sets are
very similarly, subsequently only the results on the test sets are
discussed. The point-based feature set and the stroke-based fea-
ture set produce rather low writer identification rates. The ex-
tended point-based feature set yields a statistically significantly

higher result, with a writer identification rate above 71%. The
off-line point-based feature set and the extended point-based
feature set show almost the same performance. The highest
writer identification rate of 88.96% is again obtained by the all
point-based feature set.

In Fig. 13, the n-best list for the all point-based feature set on
the text line level is shown. The error rate drops below 4% if
the first five ranks are considered, and below 1% if the first 27
ranks are taken into account.

In both experimental setups, the off-line point-based fea-
ture set consisting of 11 feature values performs similar if
not better than the extended point-based feature set with a
higher number of 18 feature values. This result is surpris-
ing in light of the facts that no temporal information is
explicitly encoded and that the off-line point-based feature
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Fig. 14. Writer identification rate as a function of the number of Gaussian mixture components and the MAP adaptation factor for different amounts of training
data. The results are reported on the validation set.

set contains fewer feature values than the extended point-based
feature set.

A stroke consists of 24 points in average. The stroke-based
feature set thus contains around 24 times fewer feature vectors
than the other point-based feature sets. While this leads to fast
training and testing times, it only outperforms the point-based
feature set with a much smaller number of feature values per
feature vector.

7.2. Evaluation of training methods—results and discussion

In Tables 5 and 6 the identification rates achieved using three
different training methods are shown on the validation sets and
the test sets, respectively. As the results on the two sets are very
similarly, only the results on the test sets are discussed in the
rest of this section.

The first row in Tables 5 and 6 shows the results that are
achieved if the client models are obtained by only updating

the weights in the adaptation process (denoted by UBM, learn
means). An average identification rate of 88.96% is achieved
on the four folds of the training set. This result is achieved by
using 300 Gaussian mixture components and a variance flooring
factor of 0.027 which was optimized on the validation set. The
second row presents the results that are achieved if the client
models are obtained by adapting the weights (denoted as UBM,
learn weights). An average identification rate of 74.43% was
obtained with 300 Gaussian mixture components and a variance
flooring factor of 0.031. In the third row, the identification rate
for the case where each client model was trained without the
use of an UBM is given (denoted as No UBM). An identification
rate of 66.32% was obtained on the test set with 300 Gaussian
mixture components and a variance flooring factor of 0.001.

The results in Table 6 show that significantly higher writer
identification rates are achieved if the client models are ob-
tained by adaptation from an UBM compared to an approach
where every client model is trained from scratch. Furthermore,
it shows that significantly higher writer identification rates are
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achieved if the mean values instead of the weights are updated
in the UBM adaptation process. This finding is consistent with
the results presented in Ref. [18].

7.3. Evaluation of reducing training data—results and
discussion

In Table 7 the results of reducing the number of training
data from four paragraphs to one paragraph is shown using
the all point-based feature set. The parameters in the second
row indicate the number of Gaussian mixture components and
the MAP adaptation factor which produced the highest writer
identification rates on the validation set. The third row presents
the results on the validation and the fourth row the results on
the test set.

The results show that reducing the number of paragraphs for
training from four to three paragraphs does not significantly re-
duce the writer identification rate. The influence of the UBM
on the system’s performance is shown in Fig. 14. For each val-
idation experiment, the writer identification rate as a function
of the number of Gaussian mixture components and the MAP
adaptation factor is plotted with one to four paragraphs of train-
ing data. If only one or two paragraphs of text are used for
training then the highest writer identification rates are achieved
with a MAP adaptation factor of 0.2. If three paragraphs of text
are available for training the best result is achieved with a MAP
adaptation factor of 0.1. For four paragraphs full adaptation to
the writer specific data, i.e., a MAP adaptation factor of 0.0,
produces the best writer identification rate.

8. Conclusions and future work

In this paper we present a language and text independent
system to identify the writer of on-line handwriting captured
from a whiteboard. The task is to determine which person out
of a population of 200 individuals has written the text. It can
be argued that even in large organizations, there will rarely be
more than 200 potential participants to a meeting held in a
smart meeting room.

A set of features is extracted from the acquired data and used
to train Gaussian mixture models (GMMs). GMMs provide a
powerful yet simple means of representing the distribution of
the features extracted from handwritten text lines. We use all
data to train a universal background model (UBM) and then
adapt a specific client model for each writer. During recogni-
tion, a text line of unknown origin is presented to each of the
models. Each model returns a log-likelihood score for the given
input and the text line is assigned to the model which produces
the highest score.

Five different feature sets are presented. These sets are either
calculated from the single points or the strokes of the writing.
The highest writer identification rate is achieved by a point-
based feature set consisting of 29 features of which 11 are
extracted from an off-line representation of the on-line data.
A writer identification rate of 98.56% on the paragraph and of
88.96% on the text line level is achieved.

An experimental evaluation of different training methods to
obtain the client models shows that significantly higher writer
identification rates are achieved if the client models are ob-
tained by adaptation from an UBM as it is proposed in this
paper compared to an approach where every client model is
trained from scratch. Furthermore, the results show that sig-
nificantly higher writer identification rates are achieved if the
mean values instead of the weights are updated in the UBM
adaptation process.

A third set of experiments measures the influence of having
fewer training data available to train the client models. If all
training data, i.e., four paragraphs of text, are available, the
highest writer identification rates are achieved if full adaptation
to the writer specific data is performed, i.e., a MAP adaptation
factor of 0.0 is employed. If the amount of training data are
reduced, a MAP adaptation factor higher than 0.0 achieves the
highest writer identification rates. These results show that the
importance of the UBM increases if fewer data are available.

The main motivation of our work is writer identification in
a smart meeting room scenario [1–5]. However, there are other
potential applications, for example, in text-dependent writer
verification [90]. The verification process in this application
would work as follows. A writer sends his or her identifica-
tion to the system. Based on this input, the system generates
a random text and presents it to the user. The writer then pro-
duces a handwritten version of the transmitted text. The system
recognizes the characters of the text and compares the texts.
Only if the transcription of the texts is identical writer verifica-
tion is performed by comparing the submitted characters with
the characters of the claimed identification. As different text
is presented in every session and recognized before verifica-
tion the system efficiently prevents copy-based forgery attempts
where any text from the claimed writer is used to trick the
system.

While our system has been developed for handwriting data
acquired by the eBeam whiteboard system, our approach should
be easily adaptable to a wide variety of other data by simply
modifying or changing the feature set. For example, other on-
line handwriting data, e.g., acquired by a digitizing tablet or
a Tablet PC can be used [91]. Furthermore, instead of on-line
data, off-line data can be applied. The system should also show
good performance on signature data, as some of the feature sets
are partially inspired by work on signature verification.

The performance of our system can potentially be improved
by using feature selection or extraction methods such as SBFS
or FDA [92]. Furthermore, in order to reject a handwritten text
in case of an uncertain recognition, confidence measures as
presented in Ref. [49] can be used. Another interesting topic
is to fuse the different feature sets extracted from the on-line
whiteboard data [93]. The point-based and the stroke-based
feature set contain an unequal number of vectors extracted
from the same text. This means that the vectors of the dif-
ferent sets cannot be fused by simply concatenating them to
form one vector. Development of suitable feature fusion meth-
ods and comparison of their performance with fusion on other
levels, such as score or decision level fusion, is left for future
work.
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