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ABSTRACT properties of all the program executions that follow the same con-

Mixed concrete and symbolic execution is an important technique trol TIOW path, and has b_een successfull_y appl'Ed toa W'de_ range
for finding and understanding software bugs, including security- of different applications in software engineering ?”d security [7.’
relevant ones. However, existing symbolic execution techniques 10,14,26,41,46]. However, this approach generalizes an exacutio
are limited to examining one execution path at a time, in which only to a set of executions _that follow exactly the same c_ontrol-flow
symbolic variables reflect only direct data dependencies. We in- Path. We therefore call this approasingle-path symbolic execu-
troduce loop-extended symbolic execution, a generalization that tion (SPS_E_for_short)._ . . .
broadens the coverage of symbolic results in programs with loops. Akey Ilmltgtlon of single-path symbolic exgcutlon is thatit |nter.- )
It introduces symbolic variables for the number of times each loop acts poorly with Ic_)ops, acommon programming construct. Specifi-
executes, and links these with features of a known input gram- cally, the ge_neral_lzed program executhns all f°'.'°W the same num-
mar such as variable-length or repeating fields. This allows the Per Of loop iterations for each loop as in the original concrete ex-
symbolic constraints to cover a class of paths that includes differ- ecution. For Instance when u_sed fqr bug-finding, in one fteration
ent numbers of loop iterations, expressing loop-dependent programSt,art'ng from a benign executlon,.sllngle-path .symbollc .execut.lon
values in terms of properties of the input. By performing more rea- will be unable to expose th? bug if .'t IS only_ t_nggered W'.th a d.'f'
soning symbolically, instead of by undirected exploration, applica- ferent numbe.r of loop |terat|on§ asin thg on.glnal gxecutlon. Sim-
tions of loop-extended symbolic execution can achieve better re- 11y, when single-path symbolic execution is applied to test case
sults and/or require fewer program executions. To demonstrate oyrgeneration to Increase coverage, it will ,be unable (|n_ one iteration)
technique, we apply it to the problem of discovering and diagnos- [© 9€nerate an input that forces execution down a different branch
ing buffer-overflow vulnerabilities in software given only in binary than in the erglnal execution, if tak_lng that branch is only fea?"
form. Our tool finds vulnerabilities in both a standard benchmark b,le with a different .number pf loop tterations. In other yvordg, n
suite and 3 real-world applications, after generating only a handful single-path symbolic execution, the values of a symbolic variable

of candidate inputs, and also diagnoses general vulnerability con-refIECt only the data dependencies on the symbolic inputs—control
ditions dependencies, including loop dependencies, are ignored.

In this paper we propose a new symbolic execution technique,
loop-extended symbolic executi@r LESE for short), which gen-

Categories and Subject Descriptors eralizes from a concrete execution to a set of program executions
D.4.6 [Operating System§ Security and Protection; D.2.&pft- which may contain a different number of iterations for each loop as
ware Engineering: Software/Program Verification ' in the original execution. In loop-extended symbolic execution, in

addition to the data dependencies on inputs, the value of a symbolic
variable also captures certain loop dependent effects.
General Terms At a high level, our approach works by introducing new symbolic
Security, Reliability, Verification variables to represent the number of times each loop in the program
has executed. In addition to maintaining the data dependencies of
program state variables on inputs as in SPSE, LESE performs a
1. INTRODUCTION more detailed analysis to identify loop-dependent variables, for in-
Mixed concrete and symbolic execution generalizes a single con- Stance finding variables whose value is a linear function of one or
crete execution by representing inputs as variables and perform-more loop execution counts. It also relates loop execution counts
ing operations on values dependent on them symbolically (such to features of the program input, introducing auxiliary variables to
as [13,25]). This approach enables automated tools to reason abou€apture the lengths and repetition counts of fields in a known in-
put grammar. Together, these constraints allow LESE to addition-
ally express how loop-dependent variables relate to the lengths and
counts of elements in the program input.

Loop-extended symbolic execution can be used to get better re-
sults from symbolic execution whenever it is used with programs in
which loops are important. It can make bug finding tools more ef-

. ; A fective and allow test-case generation to reach high coverage more
gm?e'\gl:r?ir(:};l)\l:vrcfr)lfr?gtﬂilrltjrlerlt?oerr;ZlcjiirstrtillraTﬁilgnéIssem'na“onoum”y quickly. Capturing more program logic in symbolic constraints al-
ISSTA'09,July 19-23, 2009, Chicago, lllinois, USA. lows LESE to reason about loop-related constraints with a decision
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$10.00.
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#define URI _DELIM TER’

procedure, rather than requiring iterative undirected search as with !
#define VERSI ON DELIM TER '\ n’

SPSE.

The power of LESE is crucial for several important applications.
As sample applications, this paper uses loop-extended symbolic
execution to discover and diagnose buffer-overflow vulnerabilities,
one of the most important classes of software errors that allow at-
tackers to subvert programs and systems. Intuitively, LESE is pow-
erful enough to express the effect of varying features of the input,

voi d process_request(char * input)

char URI[80], version[80], nsgbuf[100];
int ptr=0, uri_len=0, ver_len=0, i, j;

© O N oA ®wWN R

if (strncnp input, "CGET ", 4) !=0)
10 fatal ("Unsupported request");
11 ptr = 4;

such as number of fields or their lengths (which, in turn, affectthe |;,  while (input[ptr] !'= UR _DELIM TER) {
loop iteration counts), on program variables in a single step. This |13 if (uri_len < 80)
allows new vulnerabilities to be discovered using many fewer itera- | URI[uri_ten] =inputfptr];

k . . K . il ; t ;
tions than single-path symbolic execution. In addition, for a known i } urt tenr press

vulnerability, our techniques are useful to diagnose a set of general|17 ptr ++;

conditions under which it may be exploited. These conditions are | whi | if’f(i(cgftl[g’]( g(:)) VERSI ON_DELIM TER) {
useful for understanding the vulnerability, testing for it, fixing it, |, version[ver_len] = input[ptr]:
and blocking attacks targeting it [7, 14,15, 18, 20, 26, 45-47]. 2 ver_| en++; ptr++;

Because symbolic execution is often used in security-related ap-|22 _}f ( len <8 || fon[s] 1= 1)

. . . e . 23 I ver en version =
plications such as this one, it is important that it works well for |7} fatal (" Unsupported protocol version®);

binary programs for which source code is not available. Our al- |z
gorithms are designed with this constraint in mind, and overcome |26~ for (i=0,ptr=0; i < uri_len; i++ ptr++)
some of the challenges inherent in targeting binaries—such as re-% mgbﬁ?gflﬁ; 1= R
covering program structure like the boundaries of loops, which ap- | for (j =0: | < vér’_| en; j++ ptr++)
pear trivially in the original source. 30 megbuf [ptr] = version[j];

We have built a full implementation of this technique, using a |2 gggg;gg;{;;};g;uf;F’ ;
dynamic tool to collect program traces and an off-the-shelf deci- |5; '
sion procedure to simplify and solve constraints. Our tool discovers
and diagnoses vulnerabilities in both a standard benchmark suitefFigure 1: A simplified example from an HTTP server that han-
and three real-world programs on Windows and Linux. Our results dles requests of the form:" GET_" URI " _" Version " \n"
show that LESE is practically effective, and confirms that the be-
havior of loops in real programs is often very regular.

In summary, this paper makes the following contributions:

of dynamic and static analysis. It starts with a fully correct and
e We introduce loop-extended symbolic execution, a new, more detailed concrete program trace, and then generalizes that trace to
powerful approach to symbolic execution that incorporates predict the behavior of software on other inputs. For instance, this
the semantics of loops. approach can be used to find bugs [13,25,41] or vulnerabilities [26]
) ) . ) in software, to understand the conditions under which a program
* We give algorithms and heuristics to implement LESE that path can occur [7], and even to automatically exploit a security
are simple enough to implement at scale, but effective in yynerapility [8]. However, the core single-path symbolic execu-
practice. tion technique corresponds to an analysis of just one control-flow
path in a program, which is a significant limitation in programs that

e \We show an application of LESE to the important security . T . o
contain loops. Next, we show this limitation with a specific exam-

challenge of buffer overflow vulnerabilities, including a real-

istic implementation that does not require source code. ple. i o .
Consider a simplified example of a function in an HTTP server,

e We evaluate the implementation, showing that it is effec- shown in Figurel, that processes HTTP GET requests. The pro-
tive at finding and diagnosing vulnerabilities in both standard gram first checks that the request’s method field has the itile
benchmarks and vulnerable real-world programs. on line 9, and then proceeds to parse the URI and version fields

into separate buffers on lines 12—-16 and 18-22 respectively. It re-

jects this request if the version number is unsupported. Finally, it

records the URI requested by the client and the version number in a

comma separated string denotechiggbuf on lines 26-30, which

it subsequently logs by invokingogRequest on line 32.

Readers may have already noticed that this code is vulnerable to

a buffer overflow, but suppose we were attempting to check for such

vulnerabilities using a single-path symbolic execution technique.

For instance, in the course of its exploration, such an iterative test

generation tool might consider the program in@aT x y. Itwill

2. OVERVIEW trace the execution of the program with this input, which causes
In this section, we first motivate our approach with an example the program to reach the error condition on line 24. In order to

showing the limitation of single-path symbolic execution, then give explore the rest of the function, the exploration tool needs to find

an overview of our technigue of loop-extended symbolic execution. a program input that passes the checks on line 23. However, a

. . single path does not contain enough information to reason about

2.1 Motivation and Challenges the length check, because ter _| en variable is not directly
Using symbolic execution to generalize over observed program dependent on any byte of the input: single-path symbolic execution

behavior is a powerful technique because it combines the strengthswould not mark it as symbolic. At this point, testing tools based on

The rest of the paper is organized as follows: Seiorotivates
loop-extended symbolic execution with an example and provides a
detailed overview. SectioBdescribes the two key algorithms used
in LESE. Sectiod introduces a primitive for condition analysis
and how to apply it to security vulnerabilities. Sect®provides
an experimental evaluation of our technique on public benchmarks
and real-world vulnerabilities. Finally, Sectighsurveys related
work, and Sectior? concludes.
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Figure 2: Overview of our loop-extended symbolic execution tool ahaccessory components. LESE, our main contribution, enhances
symbolic execution for directly input-dependent data values, as inisgle-path symbolic execution, with symbolic analysis of the affects
of loops (Section3.1) and an analysis that links loops to the input fields they process (Staon 3.2). Additional components, described
in Sections4 and 5.1, support LESE and particular applications such as detecting and dignosing security bugs.

symbolic execution will usually attempt to explore other program e Step 1: Symbolic analysis of loop dependenciesio de-

paths, but without information from the first path to guide them,
they can only choose further paths in an undirected fashion, such
as by trying to take a different direction at one of the branches that
occurred on the observed path. (Such tools treat the execution of
a loop simply as a sequence of branches, one for each time the
loop end test is executed.) For instance, a tool might determine that
changing the last character of the input from a newline teould
cause the loop at line 18 to run for one additional iteration. A series
of many such changes would be required before the version field
was long enough to pass the check.

Similarly, consider the execution of the program on the normal
program inpuGET /i ndex. ht i HTTP/ 1. 1. For this simple
function, a single input already exercises a large proportion of the
code (for instance, it executes all of the lines of non-error code in
the figure). However, examining this single path is not enough to
elucidate the relationship between the varigile and the input,
because that relationship involves control dependencies.

2.2 Technique Overview

We propose a new type of symbolic executidmgp-extended
symbolic executiolor LESE, which captures the effects of more
related program executions than just a single path (as in single-pat
symbolic execution), by modeling the effects of loops.

Broadly, the goal of loop-extended symbolic execution is to ex-
tend the symbolic expressions computed from a single execution by
incorporating additional information reflecting the effects of loops
that were executed. In single-path symbolic execution, the values
of variables are either concrete (i.e., constant, representing a value
that does not directly depend on the symbolic input) or are repre-
sented by a symbolic expression (for instance, the sum of an input
byte and a concrete value). But some of the values considered con-
crete by single-path symbolic execution are in fact indirectly de-
pendent on the input because of loops. In loop-extended symbolic
execution these values can also be represented symbolically, and
variables whose values were already symbolic because of a direct
input dependency can have a more general abstract value.

To make loop-extended symbolic execution more tractable, we
split the task into two parts by introducing a new class of symbolic
variables, which we cattip counts Each loop in the program has a
trip count variable that represents the number of times the loop has
executed at any moment. Then to obtain the relationship between
a symbolic values and the program input, we separately obtain first
the relationships between the symbolic values and one or more trip
counts (in addition to their direct relationships with the input, as
in single-path symbolic execution), and then the relationships be-
tween the program'’s trip counts and the program input:

termine dependencies on loop trip counts, we use a program
analysis that maintains the trip counts as symbolic variables
that are implicitly incremented for each new loop iteration,
and then looks for relationships between those variables and
others in the program. (This is done at the same time as the
analysis tracking direct dependencies as in SPSE, and the re-
sults combined in single symbolic expressions.) Specifically,
we have found that looking for linear functions of the trip
counts covers the most important loop dependent variables
without excessive analysis cost.

Step 2: Constraints linking the input grammar to loops.
Loops are often used when fields of the input are of variable
length, such as character strings and sequences of data of the
same type. Our approach takes advantage of this connection
by using a grammar that specifies the inputs to the program,
and matching loops with the parts of the input over which
they operate. In particular, the approach introdwaesliary

input variables to capture features of the grammar such as
lengths and repetition counts.

A summary of the components of our system is shown in Fig-
pure 2; the center box, LESE, represents the primary contribution of
this research.

To summarize our approach, we now return to the example of
Figure 1 and explain how loop-enhanced symbolic execution is
more helpful to our vulnerability testing application.

1. In the first step, the symbolic loop dependence analysis ex-

presses various program values in terms of four trip count
symbolic variable§’C;, one for each loop in the program.
For instance, the value of the varialpier at the end of exe-
cution is abstracted by the expressibé’s + T'C4 + 2, and
similarlyuri _|len =TC,,ver _len=TC3,i =TCs,
andj = TCy. The path predicate is also maintained (as
in single-path symbolic execution). In this example, for in-
stancej < uri _I eninside the third loop, while the nega-
tion holds after the loop has completed, and similarlyjfor
andver _| en.

. In the second step, we link the trip counts to auxiliary vari-

ables representing features of the input. In the running ex-
ample, the execution counts of the first two loops are equal
to the lengths of input fields7’C: = Length URI) and
TC5 = Length(\Version.

In the case of vulnerability checking, we would combine these
symbolic constraints describing a class of program executions with



the condition for a violation of the security policy. In this case, for (1] © [c2] — [c1 o 2] for any operatop

instance, the array access on line 30 will faipifr > 100. Then [c1 +a1-TCi]+[co+az-TC] — [(c1 +c2) + (a1 +az2) - TCh]
in the same way as in a single-path symbolic execution approach,[cl] “lez+ a2 - TC] — [(c1 - c2) + (c1 - a2) - TCH]

we can pass these conditions to a decision procedure to determine! © &£ — T Eol —T

whether an exploit is possible, and if so, determine specific values (€1 + @1 - TCi] o [c2 + a2 - TC1] — T otherwise

for input variables that will trigger it. In this case, the decision raiS&E(0)) — E(1) raise(£/(x)) — E(x+ 1)
procedure will report that an overflow is possible, specifically on [a(O)]U[(a+b)(1)] = [a+b-TC:(x)]

an input for which LengtflURI) + Length(Version) > 99. la+b-TCi(x)]U[(a+b) +b-TC1{x+1)] = [a+b-TCi(x)]
Applying the approach to binaries. Because we wish to use
these analysis techniques for security applications, it is an impor-
tant practical consideration that they work on binary programs for
which source code is not available. This adds further challenges for
our approach: for instance, purely static analysis is more difficult
on binaries because much of the structure that existed in the SOUTCe ¢ has finished, and combine dependencies on separate loops, so

code has begn IosF. (And of course, the real constraints we generatg, implement the linear relationship analysis in style of symbolic
do not contain variable names, which we added in the example for

readability.) It is in part for this reason that the symbolic execution execution. Our approach is intermediate between purely syntactic

aporoach is valuable in the first place. so we choose algorithms tOinduction variable analysis, and a general analysis for linear equal-
reptgin these benefits in our exten[;ion ’For instance ever?thou h theities among arbitrary program variables, which would be signifi-

. . . ! . ! lougn t cantly more expensive. We will first describe the abstract interpre-
technique we use to infer linear relationships between variables is

closely related to a sound static analysis approach, we do not limit tation in general terms, in which form it can aiso be applied purely
) T ) . y PP U statically, and then discuss how to modify it to produce more useful
it to finding relationships that could hold on all possible inputs. In- . . . .

. . : . . results in our mixed static/dynamic context.
stead, our goal is to combine static and dynamic analysis to produce

results that cover as large as possible a range of inputs for whichAnaIySiS algorithm. For each loop in the program, we introduce
- 9 P 9 P a symbolic trip count variabl&C};, which represents the number of
we can still produce useful results.

Use of an input grammar. Information that constrains the space times the loop (specifically, its back edge) has executed. The core

s . . of an abstract value in our analysis is a symbolic linear combina-
of valid inputs to a program, in the form of a grammar or otherwise, _. . . . .
tion whose terms are trip counts or other symbolic variables, with

is key to scalmg Input space ex_ploratlon beyond_the limits O.f brute- integer scaling factors and an integer constant term. For instance,

force exhaustive search. Previous research using symbolic-execu

tion [10, 24, 33] demonstrates the benefit of using an input gram- the abstract valug0 + 4 - T'Cy + 2 - TCz would correspond to a

mar for ihis, uroose. In the anplication domains wge tar eF: sm?itable variable initialized as 10, then incremented by 4 on each iteration
rammars aF;e gasill availabr)ep so we simolv use then91 i—|owever of the first loop and by 2 on each iteration of the second loop.

g y ' Py ) ' In order to link these abstract values with the loops and under-

for domains in which grammars are not ?"eady available, pr.ewous stand how to combine them between loop iterations, each abstract
research shows how a grammar can be inferred [11, 31, 44];asuch - - . . .
value also specifies the domain for each trip count variable it ap-

system could easily be combined with ours. plies to. We refer to the four possible domain®as, x, andx + 1.
Intuitively, 0 represents points before the loop has finished its first

Figure 3: Key rules for linear relationship analysis. Square
brackets delimit abstract values and lowercase characters rep-
resent constants.

3. ALGORITHMS iteration,1 represents later points before the end of the second iter-
In this section, we discuss the algorithmic details of the key steps ation, andx and«+1 both represent abstract values applicable to all
in loop-extended symbolic execution introduced in Sec#io8ec- iterations, before and after the trip count in question is incremented.

tion 3.1 describes the analysis that identifies relationships between We write the domains in angle brackets after an expression, in order
values of variables and numbers of loop iterations (step 1). Sec- (first T'C1, thenT'Cs, etc.); domains not listed are assumed to be
tion 3.2 outlines techniques to capture the relationships between 0. Finally, to represent values that cannot be represented as a linear
loops and the input, using auxiliary variables in the external speci- combination of trip counts, we have a distinguished elenient
fication of the input grammar (step 2). The key rules for operations on these abstract values are shown

The steps described below require accessory components to exin Figure 3. The analysis builds an abstract store that associates
tract control flow graphs from binaries, make irreducible CFGs re- an abstract value as described above with abstract variables corre-
ducible, extract sizes of allocated objects, and parse input gram-sponding to distinct variables in our machine-level trace (tempo-
mars. The details of these components, which form the preparationraries and machine registers) and memory locations. The abstract
phase for steps outlined here, are given later in Se&titn store is updated with the side effect of each assignment, including

. . . stores to memory, and propagates forward through the program.

3.1 SymbOHC AnaIyS|s of Loop Dependenmes We propagate ac);oss fo?wa?dgcontrol flow graph egdges ir?agtlopo-

In order to generalize its description of computations that in- logically sorted order to reduce re-computation. Téise operator
volve loops, our tool must determine the relationship between loop- is applied to abstract values on loop back edges; the values are then
dependent variables and the loops in which they are modified. Po-joined with the abstract values representing previous iterations. It
tentially, this could be done by enhancing the basic single-path is the join operation that introduces trip count variables into a
symbolic execution approach with any data-flow-style value anal- symbolic expression; also prefers: to « + 1, which ensures that
ysis. Since linear dependencies on loop counts are very common,1 andx + 1 domain values will not be propagated. After the first
we choose to use a linear relationship analysis. (abstract) execution of a back ed@eand1 values will be joined to

Specifically, our tool searches for variables whose value is a ax value. After each subsequent abstract executions trels -+ 1
linear function oftrip countvariables representing the number of values will be joined into either avalue if they are consistent, or
times one or more loops execute. Unlike the syntactic “induction to T otherwise.
variable” analysis commonly performed in compilers [1], we wish For instance, consider the analysis of loop 3 on lines 26-27 of
to extend dependencies on loop execution counts after the loop it-Figurel. At the beginning of the loopt r has the abstract value



0(0,0,0). At the end of the first iteratiomt r is incremented, and we introduce the concept afuxiliary attributes. For instance, we
on the loop back edge the two abstract values are joined to give introducelengthattributes to represent the size of fields that might
0(0,0,0) L 1(0,0,1) = T'C3(0, 0, ). Whenpt r is incremented vary in length, anadountattributes to represent the number of times
again on the next iteration, its abstract value after the back edgeiterative fields are repeated. Auxiliary attributes are associated with
will be 1 + T'C5(0, 0, *x 4+ 1), which again joins t&"C5(0, 0, x) LI grammatical units at any level (e.g., terminals and non-terminals
14+TC5(0,0,+x+1) = T'C5(0, 0, *). The effect of the increments  in a context-free grammar), such as Ler{g#RI) for the length
on lines 28 and 31 and loop 4 on lines 30-31 are analyzed in aof a URI field in the HTTP grammar. They can also be system-
similar way, giving a final abstract value fot r of 1 + T'C5 + atically added to an existing parser as an attribute grammar (as in
TC4(0,0, *, *). yacc [29]); for instance, the length for a non-terminal in a rule can
Adapting to dynamic traces. Though as previously described, the be computed as the sum of the lengths on the right-hand side of the
linear dependence analysis could be applied in a completely staticrule. In some cases, the value of an auxiliary attribute is provided
context, some additional improvements are possible when operat-in another field of the input. Our technique can take advantage of
ing as our tool does on a single execution trace. auxiliary attributes that appear in the input in this way, but it also
An important simplification is that analysis of a trace does not uses them in ways that do not require them to appear in the input.
require a conservative alias analysis, which is often a source of The goal for the linking step is to identify loop-computed values
scalability challenges and/or imprecision in static analysis. Instead, in the program that represent auxiliary attributes; for instance, if a
our analysis can distinguish memory regions using the concrete ad-loop is used to compute the length of a field. Previous work [11]
dresses observed on the trace. When a symbolic value is used ashows that automatic inference of variables that iterate over multi-
a memory address (e.g., indexing an array), we use the concreteple variable-length fields is feasible, and more recently Caballero
address value, as is common in single-path symbolic execution. et al. show how to relate certain program variables to features of an
A second difference relates to our coverage goals. A purely static input grammar [10]. We use similar techniques based on the same
analysis attempts to give an answer that holds for the entire spaceintuition; we determine that a loop’s iteration count is the length of

of program inputs; but sometimes, no informative answer can be a field if its exit condition checks either a delimiter for the field or a
given, such as if the true relationship is too complex for the abstract value derived from a length or count auxiliary attribute of the field.
domain. Other things equal, a result that covers a larger class of ex-In more detail, we use the following steps:

ecutions is most useful, but results that represent no constraint at
all are useless. In mixed concrete and symbolic execution the par-
ticular set of executions to which our results apply can be flexible,
so we aim for the largest set of executions for which the analysis
gives an informative result.

To achieve this, we also allow our tool to lower uninformative
T abstract values back to the constant value representing the value
the variable had in the concrete trace at that point. This is simi-
lar in effect to removing from consideration all the executions on
which that variable had any other value, though less drastic because
those executions can still contribute to the generality of other ab-
stract values. Given that there is a limit to the amount of generality
our abstract values can represent, this lowering reflects a judgment
that it is more valuable for them to abstract over variation that oc-
curs close to the point where they are queried. For instance, if the
combined effect of two nested loops is nonlinear, our analysis will
retain the dependence on the inner loop’s trip count.

Theoretically, it is not clear when the best points to lower an
abstract value in this way would be: for instance, delaying a lower-
ing at one program point might remove the need to lower another
value later. However, we have had good results by performing the
lowering eagerly just before @ value would otherwise propagate.

3.2 Linking Loops to Input

After Step 1 (symbolic analysis of loop dependencies), the sym-
bolic expressions for program state variables our tool computes de-
pend on two types of symbolic variables: the symbolic variables
representing the data values of each byte in the input and the trip
count variables. Thus, to obtain the relationship between the pro-
gram state variables and the input, we need to obtain the relation-
ship between the trip count variables and the input. In general, such
relationships might be very complicated. However, we leverage the
observation that most such trip count variables relate to certain fea-
tures of the structure of the input such as the length of a variable-
length field (such as a string) or the number of records of the same
type (calledterative field3.

To precisely capture these repetitive features of program inputs,
which are missing from descriptions like context-free grammars,

1. Relate data-dependent bytes to fields in single-path sym-
bolic execution, our tool determines for each variable in the
trace which input byte(s) (identified by offset) it directly de-
pends on. Our tool also parses the input according to the
known grammar, and so determines which protocol field con-
tains each input byte. Therefore, one simple way of matching
variables with one or more input fields is to combine these
two mappings. For instance, in the example of Figlrthe
buffer URI contains the contents of the fidliRI.

2. ldentify variable length fields, counts, and delimitefBhe
input grammar also identifies which fields correspond to the
lengths or iteration counts of other fields, and our tool maps
this information through direct dependencies to determine
program variables that represent lengths and counts. Also,
we use the grammar to determine which values are used as
delimiters to signal the end of a variable-length field. For in-
stance, in the HTTP grammar, the fiédiR| is delimited by a
space character.

3. ldentify variables used in loop exit conditiorBy analyzing

loops as described in Sectiénl, our tool determines which
variables are used in the conditions that determine when to
exit a loop. For instance, the loop on lines 2627 of Fidure

is guarded by a condition on the variabieanduri _I en.

4. Recognize loops over delimited fieldisthe exit condition of

aloop compares bytes of a field to a value that is the delimiter
of the field, then we link the iteration count of the loop to the
length of the field. For instance, in Figule the loop on
lines 12-16 compares each byte of the URI field to a space,
which is known from the grammar to be the delimiter of the
URI, so the execution count of that loop is the length of the
field (I'C: = Length(URI)). In other situations, a loop may
process several bytes on each iteration, which gives a relation
with a scale factor. For instance, if each iteration processes a
4-byte word, the field length is equal to 4 times the loop trip
count.



5. Recognize loops over counted fieldfsthe exit condition of the formula is solvable, STP returns a satisfying assignment

a loop compares a variable to a value that is identified in the to its free variables, which represent particular input bytes
grammar as the length of a field or the counter for a repeated and auxiliary attributes. A grammar-based input generation
field, then we link the iteration count of the loop to that length tool [5, 24] can then be used to produce a version of the ini-
or count field. As in the case of a delimited field, the scale tial input, modified according to the satisfying assignment,
factor between the field and the trip count may not be 1, for which is a candidate to satisfy the predicate.

instance if a loop process several items in each iteration. o
4.2 Uses for Loop-enhanced Conditions

Loop-extended condition analysis has many applications. In this
section, we describe three: improving the coverage of test genera-
tion based on mixed concrete and symbolic execution, discovering
violations of security properties, and diagnosing the exploit condi-
tions of a security flaw.

While these techniques are not enough to recognize every loop
that might be written, they represent the most common patterns,
and we have found them to be sufficient to capture the relationships
for both length and count attributes in practice.

4. APPLYING LESE

Loop-extended symbolic execution can be used to get better re- 4.2.1  Improving Test Generation
sults from mixed concrete and symbolic execution whenever itis  Test generation is the task of discovering inputs to a program
used with programs in which loops occur. In this section we de- that cause it to explore a variety of execution paths. Single-path
scribe how to apply it to test generation and in problems about se- symbolic execution can be used in an iterative search process to
curity bugs in software. First, we describe the primitive operation find such inputs [12,25,41], but it does not cope well with program
of using LESE to determine how a given predicate might be satis- branches that involve loop-dependent values; using LESE instead
fied during program execution: on a single program path, but per- allows test generation to achieve higher coverage.
haps involving different numbers of loop iterations. We then show  The basic operation in such an iterative search is to take an ex-
how to use this primitive for improving coverage in test generation, ecution path and a branch along that path, eversethe branch:
discovering previously unknown security bugs, and diagnosing the find an input that causes execution to reach that branch, but then

cause of a bug given only an execution that exercises it. take the opposite direction. Reversing a branch is just an appli-
.. . cation of the primitive of Sectiod.1, where the query predicate
4.1 Loop-extended Condition Analysis is a branch condition or its negation. The benefit of using loop-

A basic use of single-path symbolic execution is to determine extended symbolic execution instead of single-path symbolic exe-
the conditions under which a predicate at a program location can cution in test generation can be seen in two aspects: First, an LESE-
be true. For instance, the predicate might be a branch condition, abased exploration is able to reverse branches whose conditions in-
programmer-provided assertion, or an array bounds check. We sta volve loop-dependent values; in a tool based on SPSE, by contrast,
with the predicate (which we will call thguery predicaty associ- loop-dependent values are not considered symbolic. Second, an
ated with a program point, and an execution that reaches that point,iterative search performed with LESE is more directed, since the
but does not satisfy the predicate. Then the task is to determine theconditions it reasons about capture the effect on values computed
conditions on an input to the program that could cause execution in loops. For instance, if a subsequent branch depends on a loop-
to follow the same path, but cause the query predicate to be true.derived value, LESE-based search requires only one iteration to de-
Using loop-extended symbolic execution, we enhance this condi- termine a number of iterations of the loop to reverse the condition.
tion analysis by taking into account other program executions that The length check on line 23 in the example of Figlirshows this
are similar to the observed one, but might involve different num- benefit: an LESE-based generation tool can immediately construct
bers of loop executions. Once the predicate has been chosen, thian input with a long-enough version field, because the length is a
loop-extended condition analysis takes the following 3 steps: symbolic variable, while an SPSE-based tool could only stumble

) ) ] ] ) ] on such an input by trial and error.
1. Derive symbolic expressions in terms of inpu@Given the

original execution trace, our tool first performs loop-extended  4.2.2  Vulnerability Discovery
symbolic execution on the trace as described in previous sec-  \1any classes of security vulnerabilities can occur wheeeu-
tions. The result of this step gives a symbolic expression iy, predicateis violated during program execution. For instance,
for each program state variable that depends on the INPULS, given a program that writes to an array, a buffer overflow occurs
including both data dependencies and control dependenciesit he index of a write to an array is outside of the correct bounds.
introduced by loops. In a program that uses machine integers to compute the length of
a data structure, an integer overflow vulnerability occurs if a com-
putation gives the wrong result when truncated to word size. To
check whether program logic is sufficient to prevent such failures,
the problem of vulnerability discovery, or “fuzzing,” asks whether
3. Solve constraints.The query predicate can be satisfied if there is a program input that could violate the security predicate.
there exist inputs to the program that simultaneously cause Vulnerability discovery is similar to test case generation; the only
it to reach the location of the predicate, and satisfy the pred- difference is the additional checking of a security predicate at each
icate. So our tool conjoins a path condition with the query dangerous operation. Thus, like test generation, it can be performed
predicate, and passes this formula to a decision procedure tousing our loop-extended condition analysis: the query predicate is
determine if it is satisfiable. Constraints in the path condition just the negation of the security predicate.
that arise from loop exit conditions are removed, since they  Loop-extended symbolic execution is a particularly good match
are superseded by loop-dependent symbolic expressions. Ouffor discovering vulnerabilities related to input processing, because
implementation uses STP [21], an SMT solver that repre- the data structure size values that are misused in buffer overflow
sents machine values precisely as bounded bit vectors. If and integer overflow vulnerabilities are often processed using loops.

2. Instantiate query predicateOur tool instantiates the query
predicate by using the symbolic expression computed for
each variable that appears in the predicate.



The buffer overflow in Figurd. is typical in this way. Depending to memory allocation functions. For stack-based memory accesses,
on the security property, some preprocessing might be needed towe implemented an existing technique called stack analysis [40],
precisely define the security predicate describing how an operationthough more detailed techniques [2, 3] could alternatively be used.
might be unsafe: for instance, when checking for a buffer overflow Loop information extraction. Our infrastructure uses the IDA

to determine the length of the vulnerable buffer. We will discuss Pro tool [28] to disassemble binaries and we reused standard loop
some practical aspects of such preprocessing in Segtion detection analysis algorithms existing in our infrastructure [10].
There are two notable additional caveats which were useful for ob-
taining results for our case studies.

4.2.3 Vulnerability Diagnosis

If a vulnerability has already been exploited by an attacker, an-
other important application is diagnosing it: extracting a setubf
nerability conditions(general constraints on the values of inputs
that exploit the vulnerability). Diagnosis is an important problem
in security because vulnerability conditions are useful for automat-
ically generating signatures to search for or filter attacks, or to help
a security analyst understand a vulnerability.

Vulnerability diagnosis is again based on the loop-extended con-
dition analysis primitive of Sectiod.1 in fact, the combination
of a path predicate and a negated security predicate gives a vul-
nerability condition. However, symbolic execution typically gen-
erates thousands of constraints, so our tool performs several opti-
mizations to simplify them into a smaller set, as discussed in Sec-
tion 5.1 Such simplification is particularly important for applica-

1. Addition of dynamic edge3he presence of indirect call and
jump instructions hinders static CFG extraction: an analy-
sis may completely miss code blocks that are reachable only
through indirect jumps. Our static control flow graph extrac-
tion is supplemented with indirect jump targets observed in
the trace, which allow many more loops to be discovered.
For instance, such loops were critical to obtaining accurate
results in the SQL Server case study of Secd@

. Irreducible loops. Unlike in high-level languages, loops in
binaries are often irreducible. We dealt with this by em-
ploying standard transformation techniques to make loops
reducible.

Protocol Grammar. Our existing infrastructure interfaces with

tions involving manual analysis, but a compact condition is also
more efficient for use by later automated tools.

Some forms of vulnerability diagnosis could be performed us-
ing SPSE, but an SPSE-based diagnosis would be too narrow for
many applications, including most buffer overflows. For instance,
an SPSE-based diagnosis of the web server in Fiyaeuld cap-
ture some generality in the contents of the input fields, but it woul
restrict their lengths to the particular values seen in the sample ex-
ploit. A filter based on such a diagnosis could be easily bypassed
by an attack that used a different length URI. By contrast, LESE
finds more general conditions; for instance, in the example of Fig-
urel, it finds thatmsgbuf can be overflowed by inputs of arbitrary
size, as long as the sum of the lengths of two fields is at least 99.

Wireshark [43], an off-the-shelf IDS/IPS, to obtain protocol gram-
mars of network protocols we study.
Input Generation. We find that a relatively simple input genera-
tion approach works well with our LESE implementation: when a
constraint requires that a length or count be larger, we repeat ele-
d ments from the initial input until the result is long enough. In more
general examples where the field being extended is subject to more
additional constraints, one could also leverage grammar-based in-
put generation approach [5, 24].
Constraint simplification. Our tool performs live-variable anal-
ysis to remove irrelevant constraints. It then performs constant
folding on the remaining constraints, and simplifies them using the
algebraic simplification routines built-in with the STP constraint
5. EXPERIMENTAL EVALUATION solver [21]. _

We evaluated the effectiveness of loop-extended symbolic exe- 5.2 Benchmarks Comparlson
cution by implementing an infrastructure based on the proposed As benchmarks, we used a set of 14 samples extracted from
techniques and applying it to discovery and subsequent diagnosisvulnerabilities in open-source network servers (BIND, Sendmail,
of buffer overflow vulnerabilities. We selected two kinds of subject and WuUFTP) by researchers at the MIT Lincoln Laboratories [47],
programs for this evaluation. For comparison with other implemen- which range between 200 and 800 lines of code each. (These are
tations, which require source code and/or run only on Linux, we use the same benchmark programs used byeXal. [46].)
standard benchmark suites containing known overflows. To testthe Replacing SPSE with LESE would be beneficial throughout in-
practical utility of our tool, we use real-world Windows and Linux  put space exploration in vulnerability discovery, since symbolic ex-
applications with historic vulnerabilities. Our tool discovers all the pressions for loop-dependent values allow more branches to be re-
benchmark overflows, as well as those in real-world applications, versed, as discussed in Sectib2.1 However, it can be difficult
by generating just a few candidate inputs. to fairly compare symbolic execution tools on an end-to-end basis,

. because of differences in input assumptions and search heuristics.

5.1 Implementat|0n Therefore, we confine our evaluation to the last stage of vulner-

We have implemented the core loop-extended symbolic execu- ability search by starting both our tool and an SPSE tool with a
tion component described earlier in OCaml, and the protocol for- program input that reaches the line of code where a vulnerability
mat linkage in OCaml combined with C and Python code to in- occurs, but does not exploit it. These inputs are short and/or close
tegrate with off-the-shelf parsers. We utilized our existing binary to usual program inputs, so they could be found relatively easily
analysis infrastructure [4,42] for taking an execution trace and get- by either an SPSE-based or an LESE-based approach (though the
ting the semantics of x86 instructions. time required would still be highly dependent on the initial input

In this section, we outline several additional components we de- and search heuristics used). Therefore, the results on these inputs
veloped to realize our proposed primitives, and heuristics that make provide a bound on the performance of an end-to-end system: if
this approach practical when working with binaries. a tool is unable to find a vulnerability given the hint of a nearby
Memory layout extraction. To check for overflows in pointer ac-  input, it would also be unable to find it starting from a completely
cesses, we need a representation of the memory allocations madenrelated input.
by the program at different points in its execution. To deal with dy- Results and New BugsThe upper half of Tablé shows the results
namic allocation, our existing infrastructure records the arguments of our tool on the Lincoln Labs overflow benchmarks. The first



Program Input Format Initial Input Exploit Input Bug/ Time (s) | Loop-Dep.
| | Candidate| | Conditions |
BIND 1 DNS QUERY 104 bytes, RDLen=48 RDLen=16 1/5 2511 16
BIND 2 DNS QUERY 114 bytes, RDLen=46 RDLen=30 1/4 2155 12
BIND 3 DNS IQUERY 39 bytes, RDLen=4 RDLen=516 1/2 586 13
BIND 4 DOMAINNAME “web.foo.mit.edu” “web.foo.mit.edu” (64 times) 1/1 4464 52
Sendmail 1 Byte Array >>>T “<>" (89 times) 4/5 672 1
Sendmail 2 | struct passwd (Linux) (“",“root”,0,0,“root”,"”,*") (“",“root”,0,0,“rootroo”,"",“") 1/1 526 38
Sendmail 3 [String Y [“a=\n"]? [“a=\n"]%° 1/4 626 18
Sendmail 4 Byte Array “‘aaa” “a” (69 times) 1/1 633 2
Sendmail 5 Byte Array A\ “\" (148 times) 3/3 18080 6
Sendmail 6 OPTIONo’’ cARG “-d aaaaaaaaaa-2” “-d 4222222222-2" 1/1 676 11
Sendmail 7 DNS Response Fmt TXT Record : “aaa” Record : “a” (32 times) 1/1 237 16
WUFTP 1 String “‘aaa” “a” (9 times) 2/2 483 5
WUFTP 2 PATH “aaa” “a” (10 times) 1/1 197 29
WUFTP 3 PATH “aaa” “a” (47 times) 1/1 109 7
GHttpd MethodURIoVersion “GET /index.html HTTP/1.1" | “GET "+188 bytes + “HTTP/1.1" 22 1562 41
SQL Server| CommandDBName x04 x61 x61 x61 x04 x61(194 bytes) 1/3 205 1
GDI (Not required) 1014 bytes, INP[19:18]=0x0184 INP[19:18]=0x4003 1/1 353 2

Table 1: Discovery Results for benchmarks and real-world prograns. A circle (o) represents concatenation. InX1*, k denotes the
auxiliary count attribute specifying the number of times elementX repeats.

column identifies each benchmark, and the second column summa-priate packet. In Xwet al. [46], it was unclear which value in the
rizes the input grammar our tool uses. The third and fourth columns packet generation process was treated as the input. As shown in
give the initial input our tool started with, and the exploit input it Tablel, we considered the whole packet itself to be the input, so
found. The fifth column gives the number of candidate inputs our that only an input that is a mostly syntactically correct packet will
tool generates (after the slash), and the number of those that in factcause an overflow. We believe our choice makes for a more realis-
cause an overflow (before the slash). The sixth column gives thetic evaluation, but it implies that a direct comparison of the tools’
total runtime of our tool, starting with the initial input trace and execution times would not be meaningful.
including all the discovered overflows. (The seventh column will Our tool was able to find exploits for the two benchmarks (Send-
be discussed in Sectidn4.) All experiments were performed ona mail 1 and 5) on which Splat times out. (In the case of Sendmail 5,
3GHz Intel Core 2 Duo with 4GB of RAM. the total running time of our tool to evaluate 3 candidate inputs is
Our LESE tool discovers most of the bugs in just a few minutes, longer than the two hour timeout used with Splat, but our tool re-
requiring only a few candidate inputs each. In each case, we sup-ports its first vulnerability before two hours have elapsed.) On the
plied a small benign input, and the tool automatically found that remaining benchmarks, our tool reproduces Splat’s positive results
a longer input could cause an overflow. Our tool also discovered on the complete programs.
an apparently new bug in one of the Lincoln Labs benchmarks: in Accuracy of candidate inputs.In the fifth column, Tablé shows
addition to the known overflows (marked withk BAD */ com- the number of candidate test inputs our tool generated in the process
ments in the benchmark code) our tool finds a new overflow on line of finding each exploit. The fact that only a few tests were required
340 of the functiorpar se_dns_r epl y in Sendmail benchmark  (on averagef2.5% of the candidates our tool generates are real
7. (In the other cases where our tool reports multiple overflowing exploits) demonstrates the targeted nature of LESE-based search:
inputs, they were a set of related errors marked in the benchmark.) the tool efficiently chooses appropriate loop iteration counts and
Comparison with Splat. Xu et al. [46] suggest a different ap-  prunes buffer operations that are safe, concentrating on the most
proach to making SPSE work better for certain buffer overflows, likely vulnerability candidates. Of course, since the candidates are
by abstracting over the length of string buffers. Specifically, their concrete inputs that can be automatically tested, failed candidates
length abstraction technique requires programmer-supplied sourceare not reported: the tool gives no false positive results.
code annotation to mark a chosen prefix of the relevant buffer’s con-

tents as symbolic. In contrast, our technique automatically extractsS 3 Evaluation on Real-World Programs
memory buffers and their dependency on the input fields using a " ) )
combination of static and dynamic analysis. More importantly, _AS full-scale case studies, we took 3 real-world Windows and

LESE does not need any information about string-manipulating Linux programs which are known to have buffer overflow vulnera-
functions and uses no programmer specifications for summarizing Pilities. These include the program targeted by the infamous Slam-
common string operations—our key enhancement to handle loop M&r worm in 2003 [37], the one affected by a recent GDI vulnera-
dependencies is practically sufficient to reason about the imple- Pility in 2007 [34], and an HTTP server [22]. Tablesummarizes
mentations of the string functions for our applications. As a result, the vulnerabilities in these programs and the input grammars our
LESE can reason about vulnerabilities present in custom operations!00! used. We gave benign initial inputs to these programs that are
on array inputs that may not use any common string operations (ex-'€Presentative of normal inputs that they woulq receive in practice.
amples of these are available in our studied benchmarks). Starting Wlth a benign input, our _tool uses just one iteration of
Though the Lincoln Labs benchmarks were also studied by Xu LESE to dlscove_r buffer overflows in all 3 real world programs.
et al. [46], a head-to-head empirical comparison was not possi- The_ bugs found in the GDI and SQL cases are_the same reported
ble. Unfortunately, because of the way the original benchmarks are €a'lier in these programs, as we manually confirmed. For ghttpd,
designed to be self-contained, it was unclear which buffers (and ©Ur tool discovers two buffer overflow vulnerabilities in theg
which parts) were annotated as program inputs in their work. For fur_lctlon_lnut |_I . €. One of these is described in previous research
instance, the BIND 2 benchmark exercises code from BIND that USiNg this subject program [14]. The new overflow involves a sep-

parses a DNS packet, and also includes code to generate an apprdfgrate buffer and would need a separate fix. These results are shown
in Tablel; next we explain each vulnerability in more detail.



GHttpd vulnerability. GHttpd is a Linux web server; we use ver-
sion 1.4.3. We send an initial benign inp@ET /i ndex. ht m

Program Buffer siz Condition for overflow Constraint
(bytes) generation time (s)

- : . GHttpd (1) 220 UR . Ten > 172 420 + 23
HTTP/ 1. 1, to the running web service, and it responds normally. | GHittpd (2) 208 URI.len > 133 420 + 140
Given atrace of this execution and the HTTP grammar, our tool dis- | SQL Server| 128 DBNare. | en > 64 192
covers 2 potential buffers to overflow and generates candidate ex- L2 4096 | (2:1NP[19:18])»2 < 0 200

ploits for each. These inputs are the same as the initial input except . . .
that their URI fields have lengths of 188 and 140 bytes respectively. 'I_'ablef 2: DAagréosns f?su'tsf Or? real-world so_ftwa_re. G4eznerat|oré
Testing confirms that both candidates indeed cause overflows: the!lMme or GHitp c_onS|_sts of the pre-processing time ( O.S.) an
shorter request overflows one buffer, and the longer one ovexrflow the post-processing time (23 s and 140 s) for each condition.
both that buffer and a subsequent one.

SQL Server vulnerability. This vulnerability is a stack-based
overflow in Microsoft's SQL Server Resolution Service (SSRS),
which listens for UDP requests on port 1434. Based on its speci-
fication [35], one valid message format contains 2 fields: a header
byte of value 4, followed by a string giving a database name. We
send the SSRS service a benign request that consists of the head
byte and a stringdaa”, to which the service responds correctly.
Given the trace and the input grammar, our tool finds 3 potential
buffers to overflow and generates one candidate inputs for each.
Our automated testing reports that one candidate, which is 195
bytes long, overflows a buffer that is the same one exploited by the
SQL Slammer worm. (The other two candidate inputs are longer
than the maximum-length UDP packet, so they are discarded dur-
ing testing and not reported.) The fact that such large inputs could
be generated in a single step, rather than via a long iteration pro-
cess, shows the power of LESE.

GDI vulnerability. This vulnerability in the Microsoft Windows
Graphic Rendering Engine was patched in 2007. We created a be
nign and properly formatted WMF image file using Microsoft Pow-
erPoint, containing only the texa&”; the file is 1014 bytes long.

We attempt to open the file using a sample application and record
the program execution. Without using an input grammar, our tool
discovers a potential buffer read overflow and creates an exploit in-
put, which crashes the sample application. The only differences
between the exploit and the benign input are the values in bytes
18 and 19 (shown in Tabl#). Comparing with a grammar for the
WMF format, these bytes correspond to the size of the image field.

already being used by attackers, and it is important to understand

and defend against attacks quickly: vulnerability conditions can

accelerate or replace manual analysis of an exploit, and be used to
enerate filters to detect or block attacks. But to be useful, such
onditions must be broad enough to cover a large class of attacks.

We used our tool to perform diagnosis on the same real-world
programs described in Secti&n3. Either a publicly available ex-
ploit, or the exploits generated by our discovery tool, could be used
and produce the same results.

Our tool’s diagnoses, summarized in TaBleare more accurate
and usable than those given in previous work [18]. For instance,
for the Microsoft SQL Server vulnerability, the condition our tool
generates states that the vulnerable field’s length must be greater
than 64 bytes, whereas the buffer overrun vulnerability condition
generated in previous work states that the length must be at least 97
bytes [18]. This difference turns out to be significant. Because we
"have no access to source code, we validated our results experimen-
tally by supplying inputs of various sizes to the server. We found
that when the vulnerable field has a size larger than 64 bytes, the
overflow overwrites pointers with invalid values, causing an excep-
tion when these values are dereferenced.

Also note that most diagnoses of buffer overflows, including the
GHttpd and SQL Server examples shown in Tahleould not be
produced by a standard SPSE tool, which lacks even a notation to
refer to the length of an input field.

5.4 Further Applications 6. RELATED WORK

Improving test coverage. Though our evaluation does not focus This section discusses two classes of related research: first, other
on the exploration phase of vulnerability detection, our experiments Work on analysis approaches similar to our loop-extended symbolic
do demonstrate a feature of loop-extended symbolic execution thateéxecution; then, work that also addresses the problem of discover-
makes it more effective in obtaining input space coverage. As de- ing and/or diagnosing buffer-overflow attacks.

scribed in Sectiod.2.1, LESE improves on SPSE by finding sym- .

bolic expressions for more branch conditions that depend on the -1 Analysis Approaches

number of times loops execute, making it possible for a coverage Single-path symbolic execution.The technique we refer to as
tool to reverse them. To measure this effect, we give in the last col- single-path symbolic execution has been proposed by a number of
umn of Tablel the number of branches for which our tool found researchers, though the same core idea has been given several dif
a loop-dependent condition but no directly input-dependent condi- ferent names. It is also called “directed testing” [25], “execution-
tion, so that an LESE-based tool would be able to reverse them butgenerated test cases” [12], “concolic testing” [41], and “whitebox
an SPSE-based tool would not. The count is a number of unique fuzzing” [26]. It was first proposed as a test-generation technique to
program-counter locations (i.e., static and context-insensitive), and produce program inputs that cover new program paths, and there-
excludes loop exit conditions. For instance, one of the 29 loop- fore uncover bugs, including security vulnerabilities. In addition
dependent conditions in WUFTP 2 is a length check (on line 464) to generating new inputs, the symbolic conditions derived from an
intended to prevent the buffer overflow. Because the check is faulty, execution path also have a number of other applications, such as
it is false on both our benign and exploit inputs, but exploring both building signatures to filter network attacks [7] or searching for
sides would be critical for an exploration task, such as verifying the differences between implementations [6].

lack of overflows in a fixed version. The condition is immediately Extensions to single-path symbolic executionSeveral previ-
apparent to our tool, but would not be considered symbolic under ous approaches have extended single-path symbolic execution with
standard SPSE. additional information about the program or its possible inputs.
Vulnerability diagnosis. Our tool can also be used for vulnera-  Previous grammar-based approaches [10, 23,24, 33] haveddken
bility diagnosis: to find a general set of conditions under which an vantage of knowledge of which program inputs are legal to reduce
exploit occurs. Diagnosis is most useful when a vulnerability is the size of the search space when generating new inputs. By com-



parison, our use of an input grammar in Sectbois focusedon 7. CONCLUSION

extracting more information from a single execution. The Splat e propose loop-extended symbolic execution, a new type of
tool of Xu et al. [46] also targets the problem of buffer-overflow  sympolic execution that gains power by modeling the effects of
diagnosis, but they do not explicitly model loop constructs as in oops. It introduces trip count variables with a symbolic analysis
loop-extended symbolic execution. An empirical and analytical of |inear loop dependencies, and links them to features in a known
comparison to their approach is presented in Sedi@nPre-and  input grammar. We apply this approach to the problem of detect-
post-conditions can summarize the behavior of a function so that jng and diagnosing buffer overflow vulnerabilities, in a tool that
it need not be reanalyzed [23], similar to how our approach avoids gperates on unmodified Windows and Linux binaries. Rather than
the need to reanalyze with different numbers of loop iterations. If tying a large number of inputs in an undirected way, our approach
repeated constraints are generated, they can also be later removegften discovers an overflow on the first candidate it tries. Our tool
by optimizations such as constraint subsumption [26]. finds all the vulnerabilities in the Lincoln Labs benchmark suite and
Static analysis. Determining linear (technically, “affine”) rela-  gives accurate symbolic conditions describing real vulnerabilities.
tionships among the values of variables, as our analysis in Sec-These results suggest that loop-extended symbolic execution has
tion 3.1 does, is a classic problem of static program analysis, pi- the potential to make many kinds of program analysis, including

oneered by Karr [30]. Like many properties that involve multiple  important security applications, faster and more effective.
variables, it can potentially become expensive. For instance the
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