
Automating Threat Modeling
through the Software Development Life-Cycle

Guifré Ruiz1, Elisa Heymann1, Eduardo César1 and Barton P. Miller2

Abstract— Fixing software security issues early in
the development life-cycle reduces its cost dramati-
cally. Companies doing software development know
this reality, and they have introduced risk assessment
methodologies in their development processes. Un-
fortunately, these methodologies require engineers
to have deep software security skills to carry out
some of the most important steps of this process,
and training them on security is expensive. In this
scenario, we propose a new automated approach
to analyze software designs to identify, risk rank
and mitigate potential threats to the system. We
designed a new data structure to detect threats in
software designs called Identification Tree. We also
defined a new one for describing countermeasures
to threats, called Mitigation Trees. Our automated
approach relies on Identification Trees and Mitigation
Trees to integrate a guided risk assessment process
through the development life-cycle. It does not
require developers to have any security training,
and was integrated in the current Threat Modeling
process of Microsoft.

Keywords— risk analysis, threat modeling, attack
patterns, identification trees, mitigation trees

I. Introduction

Companies doing software development are inter-
ested in reducing the number of vulnerabilities of
their products at the lowest cost. To accomplish this,
they perform risk assessments to identify and miti-
gate the threats to their systems. These techniques
require developers to have special security training
to carry out some of the most important tasks of the
process. They involve understanding an adversary’s
goals in attacking a system based on the system’s as-
sets of interest. Unfortunately, programmers tend to
think in terms of what a customer needs[1, p. 24], and
they are not used to thinking and acting as a profes-
sional attacker[2, p. 3], nor they have the necessary
security expertise to imagine sophisticated attacks[3,
p. 4] or to plan the best mitigation strategies. Fur-
thermore, training them on security or hiring experts
in the field is expensive.

There are several risk assessment methodologies.
The Commission of the European Communities,
Directorate-General Information Society (CORAS)
is a framework for analyzing UML diagrams and as-
sessing its risks. It can be used by both engineers and
risk managers[4]. Operationally Critical Threat As-
set and Vulnerability Evaluation (OCTAVE) uses in-
formation regarding the organization assets, security
requirements and infrastructure vulnerabilities to de-

1Computer Architecture and Operating Systems (CAOS),
Universitat Autónoma de Barcelona, SPAIN. E-mail:
{guifre.ruiz, elisa.heymann, eduardo.cesar}@uab.es

2Computer Science, University of Wisconsin, USA. E-mail:
bart@cs.wisc.edu

sign the appropriate mitigation strategies[5]. Trike
is a unified conceptual framework for security au-
diting from a risk management perspective through
the generation of threat models. A security auditing
team can use it to describe the security character-
istics of a system[6]. AS/NZS 4360 was the first
formal standard for managing risks, it contains a set
of risk tables and permits organizations to choose
their own table depending on their needs[7]. Mi-
crosoft Threat modeling is a method of assessing and
documenting the security risks associated with an
application[1]. It helps development teams to iden-
tify both the security strengths and weaknesses of
the system. All these methodologies share the lacks
explained above.

In this paper, we address the problem of the secu-
rity expertise needed to perform risk assessment. In
this area, we do the following contributions. First,
we created a new data structure to identify threats
in software designs called Identification Tree. Sec-
ond, we designed a new data structure to classify
threat countermeasures called Mitigation Trees. The
information of both of these data structures has been
taken from several relevant security sources and stan-
dards such as Common Attack Pattern Enumera-
tion and Classification (CAPEC)[8], Common Weak-
ness Enumeration (CWE)[9] and Open Web Security
Project (OWASP)[10] among others. Third, we mod-
eled and automated approach that relies on the pre-
vious data structures to identify the potential threats
to a system design, to purge the less relevant threats
according to the user’s policies, and computes the
software specifications of lowest global estimated cost
to mitigate those threats. Our automated approach
enforces security by design, where threats are mit-
igated early in the development process. It auto-
mated all security parts of the process, allowing en-
gineers with no security training to develop secure
software. In addition, it is compatible with the cur-
rent Threat Modeling process, facilitating companies
that are using it its integration.

The rest of the paper is organized as follows. In
Section II we describe the representation we expect
engineers to use to model their software designs. In
Section III we describe the methodology used by
our automated approach to identify, risk sort and
compute the countermeasures of lowest estimated
cost. In Section IV we validate our approach by ap-
plying it to a grid middleware called VOMS Admin.
Finally, in Section V we present our conclusions.

Fig. 1

Threat Modeling Tool user interface.

II. Software Design Modeling

There are several approaches to represent software
designs. As we explained in Section I, our approach
is aimed to automate the widely used Threat Mod-
eling methodology of Microsoft, which uses Data
Flow Diagrams (DFDs) to represent the system.
Thereby, it will be easy for software companies who
are using Threat Modeling to adopt our approach,
as its input is the Threat Modeling Tool file that
contains the DFDs.

To represent the system developers might use well
known elements such as external entities, data flows,
data stores, processes and trust boundaries to build
the DFDs of their system[11], as the Threat Mod-
eling methodology describes. Moreover, we require
engineers to define three additional attributes in the
DFDs.

• Asset : High, Medium or Low.
• Languages: Programming languages used.
• Frameworks: Frameworks used, if any.

The Asset attribute must be defined for all shapes
of the DFD, and the Languages and Frameworks
ones only for processes. This information will be used
to refine the results in the threat identification and
risk sorting steps. In Figure 1, we show the Threat
Modeling Tool UI[12], and how it can be used in a
natural way to define those attributes.

III. Methodology

We divide the operations of our automated ap-
proach in four steps, as shown in Figure 2. We use
two knowledge bases: C14n Table that contains the
information used to map the Labels of the DFD to
known values, and the Attack Patterns that contain
the Identification Tree, Risk attributes and Mitiga-
tion Tree for each threat. These databases contain
generic information that can be applied to any soft-
ware as long as it is modeled with the methodology
of Section II.

C14n

Table

System

Model

Software Development Process

Input Output

3. Risk

Ranking
4. Mitigation

Planning

2. Threat

Identification

1. DFDs

c14n

Requirements Design Implementation

Verification Maintenance

Attack

Patterns

Fig. 2

General Architecture Diagram of our Approach.

As explained in Section II, the input to our
approach are the DFDs of the Threat Modeling tool.
In the first step, these diagrams are canonicalized
to interpret the user-defined attributes. After this
step, the identification trees of each attack pattern
is matched with the canonical DFD, resulting in
the identification of the potential threats. Then,
the list of threats is risk sorted, and finally the
countermeasures of minimum estimated cost to
mitigate the most risky threats are calculated and
issued as a report to the corresponding activity of
the software development life-cycle. Each one of
these steps is explained in more details below.

A. Data-Flow Diagram Canonicalization

It is aimed at mapping unknown user-defined
labels to ones that our automated approach can
interpret. To accomplish this, we used a data struc-
ture called MultiMap, which allows us to map a set
of values to a single key, to build a Canonicalization
Table that we use for this aim.

To interpret string attributes, our approach
compares the developer defined value with those
values corresponding to each possible key of its DFD
element. If there is a successful map, then the label
of the element is replaced by the mapped key. Oth-
erwise, our approach shows engineers the different
possible keys for that unknown DFD element and
asks them if it corresponds to any of those. If so, the
new value is added in the Canonicalization Table,
and its mapping key is also assigned to the element
of the DFD. It there were no possible mappings, a
generic value would be assigned to the element, and
it would be treated as a non-specific element.

B. Threat Identification

This is one of the most important steps of the
analysis, as the further steps and final results will
depend on the accuracy of this process. To identify
the threats, we designed a set of trees that we call
Identification Tree.

Element = External Entity
threat agent

Element = DataFlow
trust boundary

Element = Process
Label=”Web Server”
Frameworks={¬CSRF

Guard, ¬ESPAI}

Element =

DataFlow

Label = ”HTTP”

Start

...

Element =
External Entity

asset

Element =
External Entity

Label =
”webBrowser”

asset

...

Element =

DataFlow

Element =

External Entity

asset

Element =

DataFlow

Label = ”HTTPS”

Element =
External Entity

asset

Element = Process
Frameworks={¬CSRF

Guard, ¬ESPAI}

Fig. 3

Identification graph of CSRF threats.

Each branch of the tree represents a potential
subgraph to be matched in the DFD. If matched,
it means that the threat is relevant for the given
design. Each node in the tree represents an element
of the DFD and it might be required to have
specific attributes or required not to have them
for a successful match. In Figure 3, we show the
Identification Tree of Cross Site Request Forgery
(CSRF) threats.

We can see it is required to have some data
crossing a trust boundary, known as attack surface.
Also, the process that handles the HTTP request
must not use specific frameworks against CSRF
threats. If so, it would mean that the threat is
mitigated and it would not be relevant to the
system. This is represented by a key value pair,
and the value has a “¬” symbol to indicate the
negation in the match. In addition, it is deter-
mined in each match the Threat Agent, which is
the component carrying out the attack, and also
the Asset, which is the component compromised.
Furthermore, it will be required in some nodes of
the graph to have specific canonical labels corre-
sponding to a web technology for a successful match.

C. Risk Ranking

In this step, it is computed the risk of each relevant
threat to the system. In addition, the risk sorted
threats are shown to the user and they are asked
to set a threshold to eliminate the less risky threats
based on their security policies. To compute the risk
we adopted the definition of risk in Equation 1.

Risk = Likelihood× Impact (1)

The Likelihood of exploitation value is taken from
the CAPEC security source, and the Impact is cal-
culated as shown in Equation 2.

Impact = Asset×ThreatAgent×CIA Impact (2)

The Asset is defined by the developers, as ex-
plained in Section I, and the ThreatAgent is the in-
verse of the Asset. If a component is a high value
asset, it will be a low value threat agent, which is
the component in the system that performs the at-
tack. For instance, if the Asset is very high such as
a database containing confidential information or an
administrator of the system, it will also mean that we
have a high trust in that component and the risk of
suffering and attack from it is low. The possible val-
ues for the Asset are High (1.2), Medium (1.0), and
Low (0.8). For the ThreatAgent there are the same
possible values. Finally, CIA Impact is computed as
shown in Equation 3.

CIA Impact = Conf Imp + Int Imp + Avai Imp
(3)

The Confidentiality, Integrity and Availability
Impact information is gathered from the attack
patterns of CAPEC. Their value can be High (0.33),
Medium (0.22) or Low (0.11). Therefore, the range
of the risk value is approximately be between 0.0
and 1.0.

D. Mitigation Planning

In this step, our approach computes the soft-
ware specifications of minimum estimated cost to
mitigate the most risky threats, and generates
a set of reports to guide engineers toward fixing
those. Three reports are generated, one for the
design activity of the development process that
contains the architecture changes to avoid the
threats, another one for the implementation phase,
where the set of implementation details to avoid
them are shown, and another for the testing step,
where a set of actions to verify the correctness of
the previous software specifications are indicated.
To compute the countermeasures, we defined a new
data structure that we called Mitigation Tree.

Attack Trees have been widely used by the
community to represent attacks in a similar way
as attack patterns do. Its root is the goal of an
attacker, and each branch contains the set of actions
that an attacker must carry out to achieve the
goal of the root. We used the same idea but in a
constructive way rather than a destructive one. The
root of our Mitigation Tree is the goal of mitigating
a determined threat, and each branch contains the
set of software specifications or features, for the
Design and Implementation activities, needed to
accomplish the goal of the root. In addition, each
feature contains an estimated cost of carrying it out.
This information is stored in our attack pattern of
the threat.

In Figure 4, we show the Mitigation Tree of CSRF
attacks. It shows us that to mitigate CSRF threats
we must first mitigate all Persistent Cross-Site
Scripting (PXSS) and Reflected Cross-Site Scripting

Mitigate PXSS

Mitigate RXSS

Double Submit

Cookies

Mitigate CSRF

Synchronize

Token Patterns

Check Referer

Header

Captcha

Challenge

1078 13

∑costs of RXSS

∑costs of PXSS

Fig. 4

Mitigation Tree of the CSRF attack pattern.

(RXSS) threats, and then we can choose among
four subbranches that represent different software
specifications. Each node or software specification
of the attack tree has an estimated cost. This
cost is calculated by using an expert judgment
approach[13], where the security expert that builds
the tree establishes a relative cost for each software
specification using past experiences as criteria.

In this process, it is first asked engineers a set of
polar questions corresponding to design decisions
that are not shown in the DFD and are relevant
from a security point of view. After this, the
countermeasures of minimal estimated cost are
computed by using the mitigation trees, and the
results are shown to the engineers.

Since we push security by default and security by
design it might be possible that these countermea-
sures degrade the usability of the system. It is also
possible not to be able to carry out a determined
specification due to business requirements. To avoid
this, we ask engineers if it is possible to imple-
ment them. If so, the final reports are generated.
Otherwise, the undesired software specification is
eliminated and the countermeasures of minimal cost
calculated again without taking into account the
unwanted one.

There also exists the possibility that an engineer
answers erroneously a question. As a result of this,
it could be possible not to calculate the appropriate
countermeasures. It is also possible to implement a
feature wrongly. We have taken into consideration
this human factor problem, and the actions of the
Verification step are aimed to correct this potential
problem: If the threat is not successfully mitigated
in the early steps, it will be detected when carrying
out the penetration testing actions of this step. The
resulting software specifications plus a description
of the attack, some examples and relevant references
are issued to the corresponding step of the develop-
ment cycle.

Determining whether a software specification cor-
responds to the design or implementation activities
of the software development process is not trivial as
the boundaries among them are not well-defined[9].
The criteria we used is the following one: If it can

Identified
User

https

https

VOMS
Server

VOMS
Database

Anonymous
User

VO Admin

Email
Server

Config

Logs

w
ri

te

re
ad

w

ri
te

asset: low

asset: medium

asset: high

asset: high

langs: java

asset: medium

asset: high

asset: high

asset: medium

Fig. 5

Data-Flow Diagram of VOMS Admin.

be modeled in UML it corresponds to the design
activity, otherwise to the implementation one.

IV. Experimental Results

In this section, we use VOMS Admin[14] as
example an application. VOMS Admin is a grid
middleware used to manage virtual organizations
and user certificate attributes that will later be used
by other middleware systems to take authorization
decisions.

VOMS Admin was assessed using the man-
ual First Principles Vulnerability Assessment [15]
methodology, and several Cross-Site Request
Forgery (CSRF), Persistent Cross-Site Scripting
(PXSS), and Reflected Cross-Site Scripting (RXSS)
vulnerabilities were found.

In Figure 5, we show the data-flow diagram of
VOMS Admin that we built using the methodology
described in Section II and the Threat Modeling
tool, which is the only manual phase of the assess-
ment, the security relevant operations and decisions
are made automatically by our approach. Only little
interaction with the engineers will be required to
choose the desired level of security and the willing
balance between security by default and usability.

A. VOMS Admin DFD Canonicalization

The first step of the process is to canonicalize
the labels of the DFD to ones that our approach
can interpret. There are some labels that our
approach do not know how to map, then users are
asked if they correspond to a known key. If so,
it is added to the canonicalization table and to
the DFD. Otherwise, a generic value is assigned
to those. The resulting diagram is shown in Figure 6.

Web
Browser

App.
Server

Relational
Database

Web
Browser

Web
Browser

Email
Server

generic

generic

ge
n

er
ic

ge
n

er
ic

ge

n
er

ic

asset: high

langs: java

asset: low

asset: medium

asset: high
asset: medium

asset: high

asset: high

asset: medium

https

https

Fig. 6

Canonical DFD of VOMS Admin.

B. VOMS Admin Threat Identification

In this step, the subgraphs of our attack patterns
are matched with the canonical DFD of Figure 6 to
find the potential threats to the system. For reasons
of space, we only considered CSRF threats. The re-
sulting subgraphs matched are shown in Listing IV-
B.

Listing IV-B: VOMS Admin Threat Identification�
1. [CSRF] Path:{[VO Admin]−[App. server]−[VO Admin]}
2. [CSRF] Path:{[VO Admin]−[App. server]−[Ident. User]}
3. [CSRF] Path:{[VO Admin]−[App. server]−[Anon. User]}
4. [CSRF] Path:{[Anon. User]−[App. server]−[VO Admin]}
5. [CSRF] Path:{[Anon. User]−[App. server]−[Ident. User]}
6. [CSRF] Path:{[Anon. User]−[App. server]−[Anon. User]}
7. [CSRF] Path:{[Ident. User]−[App. server]−[VO Admin]}
8. [CSRF] Path:{[Ident. User]−[App. server]−[Ident. User]}
9. [CSRF] Path:{[Ident. User]−[App. server]−[Anon. User]}� �
C. VOMS Admin Risk Ranking

In this step, the previous threats are risk sorted
and it is asked to engineers to define a threshold so
that they can choose as much security as they want
to. This is shown in Listing IV-C.

Listing IV-C: Risk Sorting and Purging Threats�
4. Risk Value:[0.7128]
5. Risk Value:[0.6534]
7. Risk Value:[0.6534]
8. Risk Value:[0.5989]
6. Risk Value:[0.3564]
1. Risk Value:[0.3564]
9. Risk Value:[0.3267]
2. Risk Value:[0.3267]
3. Risk Value:[0.1782]

What threshold do you want?[0.0−1.0] 0.5

4. [CSRF] Path:{[Anon. User]−[App. server]−[VO Admin]}
5. [CSRF] Path:{[Anon. User]−[App. server]−[Ident. User]}
7. [CSRF] Path:{[Ident. User]−[App. server]−[VO Admin]}
8. [CSRF] Path:{[Ident. User]−[App. server]−[Ident. User]}� �

The two most risky threats correspond to an
anonymous user attacking administrators and iden-
tified users respectively, the third one to an identi-
fied user attacking the administrator. On the other

Listing IV-D: VOMS Admin Mitigation Planning�
1 4.1 To refine results I will ask you a set of polar

questions that I couldn’t figure it out by reading
the DFDs:

2 ∗Are you Checking Refer Header in the requests of all
HTML form actions to determine if it comes from
a trusted domain?[y/n]n

3 ∗Are you Synchronizing a Secret token pattern in all
HTML form requests?[y/n]n

4
5 4.2 Pushed security by default, Refining to give the

desired usability
6 Answer [y/n] if it is OK to perform the following

actions:
7 ∗Is it OK to Synchronizing a Secret token pattern in

all HTML form requests?[y/n]y
8
9 ∗Is it OK to Allowing only alphanumeric characters in

all fields of this payload?[y/n]n
10
11 Computing best options....
12
13 ∗Is it OK to HTML Encode all user supplied data

before displaying it back to the web interface?[y/n]
y

14
15
16 FINAL COUNTERMEASURES COMPUTED
17 1. Checking Refer Header in the requests of all HTML

form actions to determine if it comes from a
trusted domain

18 2. HTML Encode all user supplied data before
displaying it back to the web interface

19
20 # Reports available in out/report desig.pdf, out/

report impl.pdf and out/report verif.pdf� �
hand, the less risky threats are administrators at-
tacking anonymous and identified users. By choosing
a threshold of 0.5 we will ignore those.

D. VOMS Admin Mitigation Planning

As explained in Section III-D, the first step of
this operation is to ask engineers polar questions
regarding the design of their system to refine the
results. This is shown in lines 1 to 4 of Listing IV-D.
After this, the countermeasures of lowest estimated
cost are computed, and it is asked engineers if
it is possible to perform a determined software
specification. If not, they are computed again until
the willing balance between security and usability
is reached. This is shown in lines 5 to 15 of Listing
IV-D. Finally, the reports are generated in lines 16
to 20 of Listing IV-D.

It is interesting to notice that our approach
has detected that to mitigate a CSRF threat is
it first required to mitigate all PXSS and RXSS
threats. For this reason, it asked in line 9 of Listing
IV-D if it was possible to only allow alphanumeric
characters in the HTML forms. Engineers answered
“n” because special characters are required in some
fields. Therefore, our approach re-computed the
features again, resulting in a more permissive but
also more expensive one, which is to HTML Encode
user supplied data before showing it in the web
interface.

V. Conclusions

In this paper, we addressed the problem of secu-
rity expertise needed to perform risk assessments
with the following contributions: We modeled a new
data structure called Identification Tree that can
be used to identify threats in software designs. We
designed a new model to describe countermeasures
of threats called Mitigation Tree, which classifies
the set of software specifications that are required
to mitigate a specific threat.

In addition, we designed a new approach that re-
lies on the previous data structures to automate the
security relevant operations of the software design
risk assessment process. It uses the Identification
Trees to find the potential threats of a given software
model. It purges the less risky threats according to
the desired policies. Finally, it uses the Mitigation
Trees to compute the software specifications of
minimum global estimated cost needed to mitigate
the previous threats during the different activities
of the development life cycle.

The resulting lowest cost features will be directly
related to security by design but also to security by
default. We allow companies to reach the willing
balance between usability and security by default
by asking engineers if the computed features are in
good standing with their requirements. If not, they
are re-computed again without taking into account
the undesired ones.

At the end of this process, our approach issues
three reports: one for the design activity, which
contains the architectural modifications needed to
be carried out in the system. Another one for the
implementation phase, which contains implemen-
tation details to avoid the threats. In addition,
a final one for the testing activity is issued, and
it contains a set of actions that are needed to be
carried out to verify the correctness of the previous
features. The actions of the reports can be carried
out by any developer, without having any security
expertise, and the software design model used in the
automatic analysis is compatible with the current
Threat Modeling tool and methodology of Microsoft.

The experimental results of applying our auto-
mated approach to VOMS Admin show that it is
affected by several RXSS, PXSS and CSRF threats.
This software was manually assessed by security ex-
perts and several vulnerabilities of these types were
found. Therefore, if our approach had been used
during its development activities, these vulnerabili-
ties would have been fixed early in its development
at a lower cost, without requiring engineers to have
security skills, and the grid infrastructure would not
have been exposed to attacks.

Acknowledgment

This research has been supported by the MICINN
Spain under contract TIN2007-64974 and the
MINECO (MICINN) Spain under contract TIN2011-
24384.

References

[1] F. Swiderski and W. Snyder, Threat modeling, Profes-
sional Series. Microsoft Press, 2004.

[2] Scott Swigart and Sean Campbell, “Sdl series, article 4:
Threat modeling at microsoft,” 2008, Microsoft Press.

[3] Scott Swigart and Sean Campbell, “Sdl series article 7:
Evolution of the microsoft security development lifecy-
cle,” 2009, MSDN Magazine.

[4] Rune Fredriksen, Monica Kristiansen, BjÃ¸rn Gran,

Ketil StÃ ļen, Tom Opperud, and Theo Dimitrakos,
“The coras framework for a model-based risk manage-
ment process,” in Computer Safety, Reliability and Se-
curity, Stuart Anderson, Massimo Felici, and Sandro
Bologna, Eds., vol. 2434 of Lecture Notes in Computer
Science, pp. 39–53. Springer Berlin / Heidelberg, 2002.

[5] Christopher Alberts, Audrey Dorofee, James Stevens,

and Carol Woody, “Introduction to the octave Â R© ap-
proach,” Networked Systems Survivability Program, vol.
5, no. August, 2003.

[6] Brenda Larcom Pail Saitta and Michael Eddington,
“Trike v.1 methodology document [draft],” July 13th,
2005.

[7] M. J. A. Parkinson, Robert. Brennand, Andrew.
Macleod, and Institute of Internal Auditors (Australia),
A guide to the use of AS/NZS 4360, risk management
within the internal audit process / Michael J.A. Parkin-
son, robert Brennand, Andrew MacLeod, SAI Global Ltd,
Sydney :, 2004.

[8] “Common attack pattern enumeration and classification
(capec) 1.6,” http://capec.mitre.org/data/slices/
2000.html.

[9] Robert A. Martin and Sean Barnum, “Common weak-
ness enumeration (cwe) status update,” Ada Lett., vol.
XXVIII, no. 1, pp. 88–91, Apr. 2008.

[10] The Open Web Application Security Project, ,” http:
//www.owasp.org, 2005.

[11] Michael Howard and Steve Lipner, The Security Devel-
opment Lifecycle, Microsoft Press, Redmond, WA, USA,
2006.

[12] Adam Shostack Frank Swiderski, SDL Threat Modeling
Tool, Microsoft, Redmond, WA, USA, 2011.

[13] M. Jorgensen, “Practical guidelines for expert-judgment-
based software effort estimation,” Software, IEEE, vol.
22, no. 3, pp. 57 – 63, may-june 2005.

[14] VOMS Admin, European Middleware Initiative.
[15] James A. Kupsch, Barton P. Miller, Elisa Heymann,

and Eduardo César, “First principles vulnerability as-
sessment,” in Proceedings of the 2010 ACM workshop
on Cloud computing security workshop, New York, NY,
USA, 2010, CCSW ’10, pp. 87–92, ACM.

http://capec.mitre.org/data/slices/2000.html
http://capec.mitre.org/data/slices/2000.html
http://www.owasp.org
http://www.owasp.org

	Introduction
	Software Design Modeling
	Methodology
	Data-Flow Diagram Canonicalization
	Threat Identification
	Risk Ranking
	Mitigation Planning

	Experimental Results
	VOMS Admin DFD Canonicalization
	VOMS Admin Threat Identification
	VOMS Admin Risk Ranking
	VOMS Admin Mitigation Planning

	Conclusions

