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Abstract. Malware attacks necessitate extensive forensic analysis ef-
forts that are manual-labor intensive because of the analysis-resistance
techniques that malware authors employ. The most prevalent of these
techniques are code unpacking, code overwriting, and control transfer
obfuscations. We simplify the analyst’s task by analyzing the code prior
to its execution and by providing the ability to selectively monitor its
execution. We achieve pre-execution analysis by combining static and
dynamic techniques to construct control- and data-flow analyses. These
analyses form the interface by which the analyst instruments the code.
This interface simplifies the instrumentation task, allowing us to reduce
the number of instrumented program locations by a hundred-fold relative
to existing instrumentation-based methods of identifying unpacked code.
We implement our techniques in SD-Dyninst and apply them to a large
corpus of malware, performing analysis tasks such as code coverage tests
and call-stack traversals that are greatly simplified by hybrid analysis.

Key words: malware analysis, forensics, hybrid, de-obfuscation, packed
code, self-modifying code, obfuscated code

1 Introduction

Malicious software infects computer systems at an alarming rate, causing eco-
nomic damages that are estimated at more than ten billion dollars per year [1].
Immediately upon discovering a new threat, analysts begin studying its code to
determine damage done and information extracted, and ways to curtail its im-
pact; analysts also study the malware so they can recover infected systems and
construct defenses. Thus, a primary goal of malware authors is to make these
tasks as difficult and resource intensive as possible. This explains why 90% of
malware binaries employ analysis-resistance techniques [9], the most prevalent of
which are the run-time unpacking of compressed and encrypted code, run-time
modifications to existing code, and obfuscations of control transfers in the code.
Security companies detect thousands of new malware samples each day [37], yet
despite the importance and scale of this problem, analysts continue to resort to
manual-labor intensive methods.

Analysts accomplish their tasks by studying the malware’s overall structure
to identify the relevant code and then analyzing it thoroughly. Unfortunately,
analysis-resistance techniques force the analyst out of the usual mode of binary
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analysis, which involves statically analyzing the binary prior to instrumenting
regions of interest and performing a controlled execution of the program. Instead,
the analyst must execute the malicious code to analyze it, as static analysis
can fail to analyze dynamically generated, modified, and obfuscated code. The
analyst must therefore construct a virtual environment that allows the malware
to interact with other hosts and that is sufficiently convincing that the malware
will display its normal behavior while executing in isolation from the outside
world. Many analysts prefer the analyze-then-execute model and therefore resort
to expending considerable manual effort to strip analysis-resistance features from
malicious binaries [12, 41].

The goal of our research is to simplify malware analysis by enabling a return
to the traditional analyze-then-execute model, which has the benefit of bringing
the malicious code under the analyst’s control before it executes. We address
these goals by combining static and dynamic techniques to construct and main-
tain the control- and data-flow analyses that form the interface through which
the analyst understands and instruments the code. A key feature of our approach
is its ability to update these analyses to include dynamically unpacked and mod-
ified code before it executes. Our work makes the following contributions:

– Pre-execution analysis and instrumentation makes it possible for the analyst
to control the execution of malicious code. For example, our work allows
interactions with other infected hosts to be simulated through instrumenta-
tion’s ability to patch the program, removing the need for complex virtual
environments involving multiple hosts. Additionally, our work can comple-
ment a virtualization strategy by identifying and disabling the malware’s
attempts to detect its virtual-machine environment [36].

– We give the analyst the ability to instrument malware intuitively and effi-
ciently by providing data-flow analysis capabilities and a control flow graph
(CFG) as an interface to the code. For example, the CFG allows us to find
transitions to dynamically unpacked code by instrumenting the program’s
statically unresolved control transfers (see Section 5). By contrast, prior
instrumentation-based unpacking tools did not maintain a CFG and there-
fore had to monitor all of the program’s control transfers and memory writes
to detect the execution of code that is written at run-time [23, 42]. We achieve
a hundred-fold reduction in the number of monitored program locations.

– Our structural analysis allows analysts to be selective in the components
they monitor, the operations in those components that they select, and in
the granularity of data they collect. Current tools that can monitor analysis-
resistant malware do not provide flexible instrumentation mechanisms; they
trace the program’s execution at a uniform granularity, either providing fine-
grained traces at the instruction or basic-block level [17, 36], or coarse grained
traces (e.g., at interactions with the OS) [52]. These tools either bog the
analyst down with irrelevant information (a significant problem for inexpe-
rienced analysts [43]), or can only give a sketch of the program’s behavior.

– By combining static and dynamic techniques we allow the analyst to find and
analyze code that is beyond the reach of either static or dynamic analysis
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alone, thereby providing a fuller understanding of the malware’s possible
behavior. Prior combinations of static and dynamic analysis only operate on
non-defensive code, and only find and disassemble the code [34] or produce
their analysis results only after the program has fully executed [28].

Analysts have controlled and monitored malicious code either by executing
the malware in a process that they control through the debugger interface [45], or
by executing the malware in a virtual machine [36]. There are advantages to both
approaches. The debugger approach makes it easy to collect process information
and intercept events, and allows for the creation of lightweight tools that do
not have to worry about anti-emulation techniques [36]. Among the benefits of
virtual machines are that they isolate the underlying system from the malware’s
effects, they provide the ability to revert the machine to a clean state or to a
decision point, and allow for stealthy monitoring of the program’s execution [17,
36]. While in this paper we demonstrate an instrumentation and analysis tool
that executes malicious processes through the debugger interface, our techniques
are orthogonal to this choice and benefit both scenarios. For example, in the
former case, pre-execution analysis and control allows the analyst to limit the
damage done to the system, while the latter case benefits from the ability to
detect and disable anti-emulation techniques.

Our analysis and instrumentation tool is not the first to analyze code prior to
its execution (e.g., Dyninst [22], Vulcan [48]), but existing tools rely exclusively
on static analysis, which can produce incomplete information even for binaries
that are generated by standard compilers. Despite recent advances in identi-
fying functions in stripped compiler-generated binaries, on the average, 10% of
the functions generated by some compilers cannot be recognized by current tech-
niques [44], and even costly dataflow analyses such as pointer aliasing may be
insufficient to predict the targets of pointer-based control transfers [5, 21].

Most malware binaries make analysis and control harder by employing the
analysis-resistance techniques of code packing, code overwriting, and control
transfer obfuscations. Code packing techniques, wherein all or part of the bi-
nary’s malicious code is compressed (or encrypted) and packaged with code that
decompresses the malicious payload into the program’s address space at run-
time, are present in 75% of all malware binaries [8, 50]. Dealing with dynamic
code unpacking is complicated by programs that unpack code in stages, by the
application of multiple code-packing tools to a single malicious binary, and by
a recent trend away from well-known packing tools, so that most new packed
binaries use custom packing techniques [9, 10].

To further complicate matters, many packing tools and malicious programs
overwrite code at run-time. While code unpacking impacts static analysis by
making it incomplete, code overwriting makes the analysis invalid and incom-
plete. A static analysis may yield little information on a self-modifying program,
as potentially little of the code is exposed to analysis at any point in time [2].

Malware often uses control-transfer obfuscations to cause static analysis algo-
rithms to miss and incorrectly analyze large swaths of binary code. In addition to
the heavy use of indirect control transfers, obfuscated binaries commonly include
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non-conventional control transfer sequences (such as the use of the return instruc-
tion as an indirect jump), and signal- and exception-based control transfers [18].
Additionally, malicious binaries and packers often contain hand-written assem-
bly code that by its nature contains more variability than compiler-generated
code, causing problems for most existing code-identification strategies, as they
depend on the presence of compiler-generated instruction patterns [24, 44].

We analyze binaries by first building a CFG of the binary through static pars-
ing techniques. As the binary executes, we rely on dynamic instrumentation and
analysis techniques to discover code that is dynamically generated, hidden by ob-
fuscations, and dynamically modified. We then re-invoke our parsing techniques
to update our CFG of the program, identifying the new code and presenting
the updated CFG to the analyst. The structural information provided by our
analysis allows us to discover new code by instrumenting the program lightly,
only at control transfer instructions whose targets cannot be resolved through
static analysis, making our tool’s execution time comparable to that of existing
unpacking tools despite the additional cost that we incur to provide an updated
CFG. (see Section 8).

Other analysis resistance techniques that can be employed by malicious
program binaries include anti-debugging checks, anti-emulation checks, timing
checks, and anti-tampering (e.g., self-checksumming) techniques. Since our cur-
rent implementation uses the debugger interface, we have neutralized the com-
mon anti-debugging checks [18]. In practice, anti-debugging and timing checks
leave footprints that are evident in our pre-execution analysis of the code and
that the analyst can disable with the instrumentation capabilities that we pro-
vide. Our research is investigating multiple alternatives for neutralizing the effect
of anti-tampering techniques, but this work is beyond the scope of this paper.

We proceed by discussing related work in Section ?? and we give an overview
of our techniques and algorithm in Section ??. Our static code-discovery tech-
niques are described in Section 4 and our dynamic techniques are described in
Sections ??-??

Section ?? describes our techniques for protecting patch-based instrumenta-
tion from detection by malware.

In Section ?? we show the utility of our approach by applying our tool
to analysis-resistant malware, and to synthetic samples produced by the most
prevalent binary packing tools. We conclude in section 9.

2 Related Work

Our work is rooted in the research areas of program binary analysis, instrumen-
tation, and unpacking.

Analysis. Static parsing techniques can accurately identify 90% or more of
the functions in compiler-generated binaries despite the lack of symbol infor-
mation [44], but are much worse at analyzing arbitrarily obfuscated code [24,
51], and cannot analyze the packed code that exists in most malicious binaries
[9]. Thus, most malware analysis is dynamic and begins by obtaining a trace of
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the program’s executed instructions through single-step execution [17], dynamic
instrumentation [42], or the instrumentation capabilities of a whole-system em-
ulator [32]. The resulting trace is used to construct an analysis artifact such as a
visualization of the program’s unpacking behavior [43], a report of its operating
system interactions [6], or a representation that captures the evolving CFG of
a self-modifying program [4]. As these analysis artifacts are all produced after
monitoring the program’s execution, they are potential clients of our analysis-
guided instrumentation techniques rather than competitors to them.

Madou et al. [28] and Cifuentes and Emmerik [13] combine static and dy-
namic techniques to identify more code than is possible through either technique
alone. Madou et al. start from an execution trace and use control-flow traversal
parsing techniques to find additional code, whereas Cifuentes and Emmerik start
with speculative static parsing and use an instruction trace to reject incorrect
parse information. Their hybrid approaches to CFG-building are similar to ours
in spirit, but they analyze only code that is statically present in the binary as
they lack the ability to capture dynamically unpacked and overwritten code.

Instrumentation. Existing tools that provide analysis-guided binary in-
strumentation [22, 49, 48] cannot instrument code that is obfuscated, packed, or
self-modifying, as their code identification relies exclusively on static analysis.
Our tool uses Dyninst’s [22] dynamic instrumentation and analysis capabilities,
updating its analysis of the code through both static and dynamic code-capture
techniques, prior to the code’s execution.

The BIRD dynamic instrumenter [34] identifies binary code by augmenting
its static parse with a run-time analysis that finds code by instrumenting control
transfers that could lead to unknown code areas. BIRD works well on compiler-
generated programs, but does not handle self-modifying programs and performs
poorly on programs that are packed or obfuscated, as it is not optimized for ex-
tensive dynamic code discovery (it uses trap instructions to instrument all return
instructions and other forms of short indirect control transfers that it discovers
at runtime). BIRD also lacks a general-purpose interface for instrumentation
and does not produce analysis tools for the code it identifies.

Other dynamic instrumentation tools forgo static analysis altogether, instead
discovering code as the program executes and providing an instruction-level in-
terface to the code (e.g., PIN [27], Valgrind [7]). These tools can instrument dy-
namically unpacked and self-modifying code, but do not defend against analysis-
resistance techniques [18]. As with BIRD, the lack of a structural analysis means
that it is difficult to selectively instrument the code and that it may not be pos-
sible to perform simple-sounding tasks like hooking a function’s return values
because compiler optimizations (and obfuscations) introduce complexities like
shared code, frameless functions, and tail calls in place of return statements.

Unpacking. The prevalence of code packing techniques in malware has
driven the creation of both static and dynamic approaches for detecting packed
malicious code. Some anti-virus tools (e.g., BitDefender [8]) create static unpack-
ers for individual packer tools at significant expense, but this approach will not
scale with the explosive growth rate of new packing approaches [9, 35]. Anti-virus
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tools also employ “X-Ray” techniques that can statically extract the packed con-
tents of binaries that employ known compression schemes or weak encryption
[38]. Coogan et al. [15] use static analysis to extract the unpacking routine from
a packed binary and then use the extracted routine to unpack it. These static
approaches are unsuccessful when confronted with malware that employs multi-
ple packing layers (e.g., Rustock [12]), and Coogan et al.’s static techniques are
also unable to deal with heavily obfuscated code [33, 46].

Most dynamic unpacking tools take the approach of detecting memory loca-
tions that are written to at run-time and later executed as code. OmniUnpack
[30], Saffron [42], and Justin [20] approach the problem at a memory-page gran-
ularity by modifying the operating system to manipulate page write and execute
permissions so that both a write to a page and a subsequent execution from that
page result in an exception that the tool can intercept. This approach is efficient
enough that it can be used in an anti-virus tool [30], but it does not identify
unpacked code with much precision because of its memory-page granularity.

Other unpackers identify written-then-executed code at a byte level by trac-
ing the program’s execution at a fine granularity and monitoring all memory
writes. EtherUnpack [17] and PolyUnpack [45] employ single-step execution of
the binary, whereas Renovo [23] and “Saffron for Intel-PIN” [42] use the respec-
tive instruction-level instrumentation capabilities of the Qemu whole-system em-
ulator [7] and the PIN instrumenter [27]. By contrast, our analysis-guided instru-
mentation allows us to unpack and analyze program binaries with a hundred-fold
reduction in instrumented program locations and comparable execution times.

3 Technical Overview

Our hybrid algorithm combines the strengths of static and dynamic analysis. We
use static parsing techniques to analyze code before it executes, and dynamic
techniques to capture packed, obfuscated, and self-modifying code. Hybrid anal-
ysis allows us to provide analysis-guided dynamic instrumentation on analysis-
resistant program binaries for the first time, based on the following techniques:

Parsing. Parsing allows us to find and analyze binary code by traversing stat-
ically analyzable control flow starting from known entry points into the code. No
existing algorithm for binary code analysis achieves high accuracy on arbitrarily
obfuscated binaries, so we create a modified control-flow traversal algorithm [47]
with a low false-positive rate. Our initial analysis of the code may be incomplete,
but we can fall back on our dynamic capture techniques to find new entry points
into the code and use them to re-seed our parsing algorithm.

Dynamic Capture. Dynamic capture techniques allow us to find and ana-
lyze code that is missed by static analysis either because it is not generated until
run-time or because it is not reachable through statically analyzable control flow.
Our static analysis of the program’s control flow identifies control transfer in-
structions that may lead to un-analyzed code; we monitor these control transfers
using dynamic instrumentation, thereby detecting any transition to un-analyzed
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1. Load the program into memory, paused at its entry point

2. Remove debugging artifacts

3. Parse from known entry points

4. Instrument newly discovered code

5. Resume execution of the program

6. Handle code discovery event, adding new entry points

7. Goto 3

Fig. 1: Algorithm for binary code discovery, analysis, and instrumentation

code in time to analyze and instrument it before it executes. This approach is
similar to BIRD’s [34], but monitors a smaller set of control transfers.

Code Overwrite Monitoring. Code overwrites invalidate portions of an
existing code analysis and introduce new code that has not yet been analyzed. We
adapt DIOTA’s [29] mechanism for detecting code overwrites by write-protecting
memory pages that contain code and handling the signals that result from write
attempts. Accurately detecting when overwriting ends is important, as it allows
us to update our analysis only once when large code regions are overwritten in
small increments. We detect the end of code overwriting in a novel way by using
our structural analysis of the overwrite code to detect any loops that enclose the
write operations, allowing us to delay the analysis update until the loop exits.

Signal- and Exception-Handler Analysis. We use dynamic analysis to
resolve signal- and exception-based control transfer obfuscations [18, 39]. We
detect signal- and exception-raising instructions and find their dynamically reg-
istered handlers through standard techniques, and then add the handlers to our
analysis and instrument them to control their execution.

Figure 1 illustrates how we combine the above techniques into an iterative
algorithm that allows us to provide analysis-guided dynamic instrumentation
of analysis-resistant program binaries. The key feature of this algorithm is that
it allows all of the program’s code to be analyzed and instrumented before it
executes. Our algorithm’s incremental instrumentation of the code is similar
to Mirgorodskiy and Miller’s use of “self-propelled instrumentation” to trace a
program’s execution [31], but we also analyze and instrument analysis-resistant
code, whereas they can instrument only statically analyzable code.

4 Parsing

The purpose of our parsing algorithm is to accurately identify binary code and
analyze the program’s structure, producing an interprocedural control flow graph
of the program. Existing parsing techniques for arbitrarily obfuscated code have
attempted to identify code with good accuracy and coverage, and have come up
short on both counts [24]. Instead, we prioritize accurate code identification, as
an incorrect parse can cause incorrect program behavior by leading to the instru-
mentation of non-code bytes, and is ultimately not very useful. The competing
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goal of good coverage is relatively less important, because our dynamic tech-
niques compensate for lapses in coverage by capturing statically un-analyzable
code at run-time and triggering additional parsing.

Control-flow traversal parsing [47] is the basis for most accurate parsing tech-
niques, but it makes three unsafe assumptions about control flow that can re-
duce its accuracy. First, it assumes that function-call sites are always followed by
valid code sequences. Compilers violate this assumption when generating calls to
functions that they know to be non-returning, while obfuscated programs (e.g.,
Storm Worm [40]) often contain functions that return to unexpected locations
by tampering with the call stack [25]. Second, the algorithm assumes that con-
trol flow is only redirected by control transfer instructions. Obfuscated programs
often use an apparently normal instruction to raise a signal or exception, thereby
transferring control to code that is hidden in a signal or exception handler [18].
The handler can further obfuscate control flow by telling the operating system to
resume execution away from the signal- or exception-raising instruction, poten-
tially causing non-code bytes to be parsed following the instruction [39]. Third,
the algorithm assumes that both targets of conditional branch instructions can
be taken and therefore contain valid code. Program obfuscators can exploit this
assumption by creating branches with targets that are never taken, thereby di-
luting the analysis with junk code that never executes [14].

In our experience with analysis-resistant binaries, we have found that by
far the most targeted vulnerability is the assumption that code follows each
call instruction, and we have addressed this vulnerability in our current parsing
algorithm. We detect and resolve signal- and exception-based obfuscations at
run-time (see Section 7), when we analyze and instrument any hidden code
and correct our analysis to include the obfuscated control transfer. The use of
branches with targets that are never taken dilutes the analysis with junk code
but has thus far not been a problem for our hybrid analysis and instrumentation
techniques. Our ongoing work will improve upon our parser’s accuracy by adding
static detection of some fault-based control transfers and never-taken branch
targets, thereby making our instrumentation of the program safer and more
efficient. In the meantime, our current parsing algorithm achieves significant
accuracy improvements relative to existing techniques for parsing obfuscated
code, allowing us to analyze and instrument most analysis-resistant programs.

Non-returning Calls. When a called function either never returns or returns
to an unexpected location by tampering with the call stack [25], one or more junk
bytes may follow the function call site. The simplest approach to this problem
would be to adopt the assumption made by BIRD [34] and Kruegel et al.’s
obfuscated code parser [24], that function calls never return, and then rely on
run-time monitoring of return instructions to discover code that follows call sites.
This runtime-discovery approach is taken by BIRD, and while it is our technique
of last resort, our data-flow analysis of called functions can often tell us whether
the function will return, and to where, thereby increasing the code coverage
attained through parsing and avoiding unnecessary instrumentation.
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push ADDR pop ebp

... inc ebp

retn push ebp

retn

(a) (b)

Fig. 2: Code sequences that tamper with return addresses on the call stack

We take advantage of the depth-first nature of our parsing algorithm to use
the analysis of called functions in deciding whether or not to continue parsing
after call instructions. We do not resume parsing after the call site if our analysis
of the called function contains no return instructions, or if our static call stack
analysis [26] of the function detects that it tampers with the stack. Our call-stack
analysis emulates the function’s stack operations to detect whether the function
alters its return address, either by overwriting the address or by imbalancing the
call stack. Figure 2 illustrates two call-stack tampering tricks used by the ASPack
packer that are easily detected by our analysis. Figure 2a shows an instruction
sequence that transfers control to ADDR upon executing the return instruction,
while Figure 2b shows a sequence that increments the return address of a function
by a single byte. In both cases, our call-stack analysis informs the parser of the
actual return address of the called function, and the byte immediately following
the call site is not parsed as code.

5 Dynamic Capture

Having found and analyzed as much of the code as possible by traversing the
program’s statically analyzable control flow, we turn to dynamic capture tech-
niques to find code that is not statically analyzable. Statically un-analyzable
code includes code that is present in the binary but is reachable only through
pointer-based address calculations, and code that is not initially present because
it is dynamically unpacked. Our approach to both problems lies in monitoring
those control transfers whose targets are either unknown or invalid when we
originally parse them. More precisely, we use dynamic capture instrumentation
to monitor the execution of instructions that meet one of the following criteria:

– Control transfer instructions that use registers or memory values to deter-

mine their targets. Obfuscated programs often used indirect jump and call
instructions to hide code from static analysis. For example, the FSG packer
has an indirect function call for every 16 bytes of bootstrap code. We deter-
mine whether indirect control transfers leave analyzed code by resolving their
targets at run-time with dynamic instrumentation. In the case of indirect call
instructions, when our parser cannot determine the call’s target address, it
also cannot know if the call will return, so it conservatively assumes that it
does not; our instrumentation allows us to trigger parsing both at call target
and after the call site, if we can determine that the called function returns.
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– Return instructions of possibly non-returning functions. Return instructions
are designed to transfer execution from a called function to the caller at the
instruction immediately following the call site; unfortunately they can be
misused by tampering with the call stack. As detailed in Section 4, during
parsing we attempt to determine whether called functions return normally
so that we can continue parsing after call sites to those functions. If our
analysis is inconclusive we instrument the function’s return instructions.

– Control transfer instructions into invalid or uninitialized memory regions.

Control transfers to dynamically unpacked code can appear this way, as code
is often unpacked into uninitialized (e.g., UPX) or dynamically allocated
memory regions (e.g., NSPack). Our instrumentation of these control transfer
instructions executes immediately prior to the transfer into the region, when
it must contain valid code, allowing us to analyze it before it executes.

– Instructions that terminate a code sequence by reaching the end of initialized

memory. Some packer tools (e.g., UPack) and custom-packed malware (e.g.,
Rustock [12]) transition to dynamically unpacked code without executing a
control transfer instruction. These programs map code into a larger memory
region so that a code sequence runs to the end of initialized memory without
a terminating control transfer instruction. The program then unrolls the re-
mainder of the sequence into the region’s uninitialized memory so that when
it is invoked, control flow falls through into the unpacked code. We trigger
analysis of the unpacked instructions by instrumenting the last instruction
of any code sequence that ends without a final control transfer instruction.

Our dynamic capture instrumentation supplies our parser with entry points into
un-analyzed code. Before extending our analysis by parsing from these new entry
points, we determine whether the entry points represent un-analyzed functions
or if they are extensions to the body of previously analyzed functions. We treat
call targets as new functions, and treat branch targets as extensions to existing
functions (unless the branch instruction and its target are in different memory
regions). The target of a non-obfuscated return instruction is always immediately
preceded by an analyzed call instruction, in which case we parse the return
instruction’s target as an extension of the calling function. When a return target
is not immediately preceded by a call instruction, we conclude that the call stack
has been tampered with and parse the target as a new function.

Cost issues arise from our use of the Dyninst instrumentation library [22]
because it monitors programs from a separate process that contains the analy-
sis and instrumentation engine. The problem is that our code-discovery instru-
mentation requires context switching between the two processes to determine
whether monitored control transfers lead to new or analyzed code. We reduce
this overhead by caching the targets of these instructions in the address space of
the monitored program, and context switching to Dyninst only for cache misses.
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(a) The monitored program over-

writes an instruction. We have re-
moved write permissions from code

pages to cause code overwrites to
raise access rights violations.

(b) A correct but inefficient approach

that updates the CFG in response to
each code write, triggering major pro-

cessing.

(c) Our optimized handler instru-

ments the loop’s exit points with call-
backs to our CFG updater and re-

stores write permissions to the over-
written page.

(d) When writing completes, the in-

strumentation at a loop exit triggers
a callback to our CFG updater.

Fig. 3: Our approach to detecting code writes is shown in Figure 3a, alternative
methods for responding to code writes are shown in Figures 3b and 3c-3d.

6 Response to Overwritten Code

Code overwrites cause significant problems for binary analysis. Most analysis
tools cannot analyze overwritten code because they rely on static CFG represen-
tations of the code. Code overwrites cause problems for CFGs by simultaneously
invalidating portions of the CFG and introducing new code that has yet to be
analyzed. We have developed techniques to address this problem by updating
the program’s CFG and analyzing overwritten code before it executes.

To analyze overwritten code before it executes, we can either detect the
modified instructions immediately prior to their execution, by checking whether
the bytes of each executed instruction have changed [45], or detect writes to
code as soon as they occur, by monitoring write operations to analyzed code
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regions. Monitoring each instruction for changes is expensive because it requires
single-step execution of the program. Fortunately, we can efficiently detect write
operations that modify code by adapting DIOTA’s techniques for intercepting
writes to executable code regions [29]. DIOTA monitors writes to all memory
pages that are writable and executable by removing write permissions from those
pages, thereby causing writes that might modify code to raise an access-rights
violation that DIOTA intercepts. As illustrated in Figure 3a, we have adapted
this mechanism for packed binaries, which typically mark most of their memory
as writable and executable, by removing write permissions only from memory
pages that contain analyzed code.

A näıve approach based on monitoring writes to code pages might respond to
write attempts by emulating each write and immediately updating the analysis,
as shown in Figure 3b. Doing so is undesirable for efficiency reasons. Large code
regions are often overwritten in small increments, and updating the CFG in
response to every code write is unnecessarily expensive, as the analysis does not
need to be updated until the overwritten code is about to execute. Instead, we
catch the first write to a code page but allow subsequent writes, delaying the
update to the window between the end of code overwriting and the beginning of
modified code execution. This delayed-update approach divides our response to
code overwrites into two components that we now describe in detail: a handler
for the access-rights violation resulting from the first write attempt, and a CFG
update routine that we trigger before the modified code executes.

6.1 Response to the Initial Access-Rights Violation

When a write to a code page results in an access-rights violation, our first task is
to handle the exception. We disambiguate between real access-rights violations
and protected-code violations by looking at the write’s target address. Protected-
code violations are artificially introduced by our code-protection mechanism and
we handle them ourselves to hide them from the monitored program. For real
access-rights violations we apply the techniques of Section 7 to analyze the reg-
istered handler and pass the signal or exception back to the program.

Our handler also decides when to update the CFG, attempting to trigger
the update after the program has stopped overwriting its code, but before the
modified code executes. A straightforward approach would be to restore write
permissions for the overwritten page and remove execute permissions from the
page, thereby causing a signal to be raised when the program attempts to execute
code from the overwritten page (similar to the approach taken by OmniUnpack
[30], Justin [20], and Saffron [42]). Unfortunately, this approach fails in the com-
mon case that the write instruction writes repeatedly to its own page, when this
approach effectively devolves into single-step execution. Instead, we apply the
techniques shown in Figures 3c and 3d to detect the end of overwriting, and delay
updating the CFG until then. We perform inter-procedural loop analysis on the
execution context of the faulting write instruction to see if the write is contained
in a loop, in which case we instrument the loop’s exit edges with callbacks to
our CFG update routine. We allow subsequent writes to the write-target’s code
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page to proceed unimpeded, by restoring the page’s write permissions. When the
write loop terminates, one of the loop’s instrumented exit edges causes the CFG
update routine to be invoked. We take extra precautions if the write loop’s code
pages intersect with the overwritten pages to ensure that the write loop does not
modify its own code. We safeguard against this case by adding bounds-check in-
strumentation to all of the loop’s write operations so that any modification of
the loop’s code will immediately trigger our CFG update routine.

Our handler’s final task is to save a pre-write copy of the overwritten memory
page, so that when writing completes, the CFG update routine can identify the
page’s modified instructions by comparing the overwritten page to the pre-write
copy of the page. If the loop writes to multiple code pages, the first write to each
code page results in a separate invocation of our protected-code handler, which
triggers the generation of a pre-write copy of the page, and associates it with
the write loop by detecting that the write instruction lies within it. Our handler
then restores write permissions to the new write-target page and resumes the
program’s execution. When the write loop finally exits, instrumentation at one
of its exit edges triggers a callback to our CFG update routine.

6.2 Updating the Control Flow Graph

We begin updating our analysis by determining the extent to which the code has
been overwritten. We identify overwritten bytes by comparing the overwritten
code pages with our saved pre-write copies of those pages, and then detemine
which of the overwritten bytes belong to analyzed instructions. If code was over-
written, we clean up the CFG by purging it of overwritten basic blocks and of
blocks that are only reachable from overwritten blocks. We analyze the modified
code by seeding our parser with entry points into the modified code regions. We
then inform the analyst of the changes to the program’s CFG so that the new
and modified functions can be instrumented. After adding our own dynamic cap-
ture instrumentation to the new code, we again remove write permissions from
the overwritten pages and resume the monitored program’s execution.

7 Signal- and Exception-Handler Analysis

Analysis-resistant programs are often obfuscated by signal- and exception-based
control flow. Static analyses cannot reliably determine which instructions will
raise signals or exceptions, and have difficulty finding signal and exception han-
dlers, as they are usually registered (and often unpacked) at run-time. Current
dynamic instrumentation tools do not analyze signal and exception handlers [27,
29], whereas we analyze them and provide analysis-based instrumentation on
them. This ability to analyze and control the handlers is important on analysis-
resistant binaries because the handlers may perform tasks that are unrelated to
signal and exception handling (e.g., PECompact overwrites existing code).

Signal and exception handlers can further obfuscate the program by redirect-
ing control flow [39]. When a signal or exception is raised, the operating system



14 Kevin A. Roundy and Barton P. Miller

1:A store to address 0 causes an access vio-

lation and the OS saves the fault’s PC on
the call stack.

1a: The OS informs the attached SD-

Dyninst process of the exception.

1b: SD-Dyninst analyzes the registered

exception handler, instruments its

exit points, and returns to the OS.

2:The OS calls the program’s exception
handler.

3:The handler overwrites the saved PC with
the address of the program’s original en-
try point.

3a: Instrumentation at the handler’s exit

point invokes SD-Dyninst.

3b: SD-Dyninst detects the modified PC

value, analyzes the code at that ad-

dress, and resumes the handler’s ex-

ecution.

4:The handler returns to the OS.

5:The OS resumes the program’s execution
at the modified PC value, which is the

program’s original entry point.

Fig. 4: The normal behavior of an exception-based control transfer used by Yoda’s
Protector is illustrated in steps 1-5. Steps 1a-1b and 3a-3b illustrate SD-Dyninst’s
analysis of the control transfer through its attached debugger process.

gives the handler context information about the fault, including the program
counter value. The handler can modify this saved PC value to cause the OS to
resume the program’s execution at a different address. As shown in step 3 of
Figure 4, this technique is used by the “Yoda’s Protector” packer to obfuscate
its control transfer to the program’s original entry point (OEP) [16]. Yoda’s Pro-
tector raises an exception, causing the OS to invoke Yoda’s exception handler.
The handler overwrites the saved PC value with the address of the program’s
OEP, causing the OS to resume the program’s execution at its OEP.

Analyzing Signal- and Exception-Based Control Flow. We find and ana-
lyze handlers by intercepting signals and exceptions at run-time. Signal and ex-
ception interception is possible whether we observe the malware’s execution from
a debugger process or virtual machine monitor (VMM). In our current implemen-
tation, SD-Dyninst is apprised of raised signals and exceptions through standard
use of the debugger interface. A VMM-based implementation would automat-
ically be apprised of signals and exceptions, and would use VM-introspection
techniques to detect which of them originate from malicious processes [19].

As shown in Figure 4, upon notification of the signal or exception, we analyze
and instrument the program’s registered handlers. We find handlers in Windows
programs by traversing the linked list of structured exception handlers that is
on the call stack of the faulting thread. Finding handlers is even easier in Unix-
based systems because only one handler can be registered to each signal type.
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We analyze the handler as we would any other function, and mark the faulting
instruction as an invocation of the handler.

We guard against the possibility that the handler will redirect control flow
by instrumenting it at its exit points. After analyzing the handler, but before
it executes, we insert our exit-point instrumentation (step 1b of Figure 4). We
inform the analyst’s tool of the signal or exception and of the newly discovered
handler code so that it can add its own instrumentation. We then return control
to the OS, which invokes the program’s exception handler. When the handler is
done executing, our exit-point instrumentation triggers a callback to our anal-
ysis engine (steps 3a-3b of Figure 4), where we check for modifications to the
saved PC value. If we detect a change, we analyze the code at the new address,
instrument it, and allow the analyst to insert additional instrumentation.

8 Experimental Results

We evaluated our techniques by implementing them in SD-Dyninst and applying
it to real and synthetic malware samples. We show that we can efficiently ana-
lyze obfuscated, packed, and self-modifying code by applying our techniques to
the binary packer tools that are most heavily used by malware authors, compar-
ing these results to two of the most efficient existing tools. We demonstrate the
usefulness of our techniques by using SD-Dyninst to create a malware analysis

factory that we apply to a large batch of recent malware samples. Our analy-
sis factory uses instrumentation to construct annotated program CFG’s and a
stackwalk at the program’s first socket communication.

8.1 Analysis of Packer Tools

Packed binaries begin their execution in highly obfuscated metacode that is often
self-modifying and usually unpacks itself in stages. The metacode decompresses
or decrypts the original program’s payload into memory and transfers control to
the payload code at the original program’s entry point.

Table 1 shows the results of applying our techniques to the packer tools that
are most often used to obfuscate malicious binaries, as determined by Panda
Research for the months of March and April 2008, the latest dates for which
such packer statistics were available [10]. We do not report results on some of
these packers because they incorporate anti-tampering techniques such as self-
checksumming, and SD-Dyninst does not yet incorporate techniques for hiding
its use of dynamic instrumentation from anti-tampering. We excluded NullSoft’s
installer tool (with 3.58% market share) from this list because it can be used to
create binaries with custom code-unpacking algorithms; though we can handle
the analysis-resistance techniques contained in most NullSoft-based packers, we
cannot claim success on all of them based on successful analysis of particular
packer instances. We also excluded the teLock (0.63% market share) and the
Petite (0.25% market share) packer tools, with which we were unable to produce
working binaries. The total market share of the packer tools listed by Panda
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Table 1: Our analysis techniques applied to the most prevalent packer tools used
to obfuscate malware. We analyzed all of the packed binaries that do not employ
anti-tampering techniques.

Malware Over- Anti Time (seconds)
market writes tamper- Pre- Pre-payload Post-payload

Packer share code ing exec’n instr. uninstr. instr. uninstr.

UPX 9.45% 23.44 0.50 0.02 2.80 0.02

PolyEnE 6.21% 22.55 1.24 0.02 2.81 0.02

EXECryptor 4.06% yes yes

Themida 2.95% yes yes

PECompact 2.59% yes yes 22.81 3.16 0.02 2.81 0.02

UPack 2.08% yes 22.56 23.50 0.03 4.08 0.02

nPack 1.74% 23.21 1.54 0.02 2.80 0.02

ASPack 1.29% yes 22.58 4.42 0.02 2.81 0.02

FSG 1.26% 22.53 1.38 0.03 2.78 0.02

Nspack 0.89% 22.52 2.69 0.03 2.78 0.02

ASProtect 0.43% yes yes

Armadillo 0.37% yes yes

Yoda’s Protector 0.33% yes yes

WinUPack 0.17% yes 22.44 23.60 0.03 4.10 0.02

MEW 0.13% 22.56 3.87 0.03 2.80 0.02

Research is less than 40% of all malware, while at least 75% of malware uses some
packing method [8, 50]. This discrepancy is a reflection both of the increasing
prevalence of custom packing methods and a limitation of the study, which relied
on a signature-based tool to recognize packer metacode [11]; most custom packers
are derivatives of existing packer tools, which are often modified with the express
purpose of breaking signature-based detection.

In Table 1 we divide the execution time of the program into pre- and post-
payload execution times, representing the time it takes to execute the binaries’
metacode and payload code, respectively. In the uninstrumented case, we deter-
mine the proper time split by using a priori knowledge of the packed program to
breakpoint its execution at the moment that control transfers from its metacode
to its payload code. In the instrumented case, our code-discovery instrumenta-
tion automatically identifies this transition by capturing the control transfer to
the payload code. We report on SD-Dyninst’s pre-execution cost separately, as
one of the major benefits of incorporating static analysis techniques into our
approach is that we are able to frontload much of the analysis of the program
so that it does not affect the program’s execution time.

The most striking differences in Table 1 are in the pre-payload cost incurred
by SD-Dyninst from one packer to the next. These differences are proportional
to the number of occasions in which we discover and analyze new code in the
metacode of these binaries. Our instrumentation of the UPX, PolyEnE, nPack,
and Nspack packers caused little slowdown in their execution, as their meta-
code is static and not obfuscated in ways that substantially limit our ability to
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Table 2: A comparison of pre-payload execution times and instrumented program
locations in SD-Dyninst, Renovo, Saffron, and EtherUnpack on packed executables.

Pre-payload time Instrumented locations
Packer SD-D. Ren. Saff. Ether SD-D. Ren. Saff.

UPX 0.5 5 2.7 7.6 6 2,278 4,526

ASPack 4.4 5 fail 18.7 34 2,045 4,141

FSG 1.6 8 1.4 31.1 14 18,822 31,854

WinUpack 23.6 8 23.5 67.8 23 18,826 32,945

MEW 4.0 6 fail 150.5 22 21,186 35,466

parse them prior to their execution, while the FSG, MEW, ASPack, UPack, and
WinUpack packers are more heavily obfuscated and unpack in stages, requiring
that we analyze their code incrementally. The largest contributor to the incre-
mental analysis cost is SD-Dyninst’s current inability to resolve the targets of
indirect control transfers at parse time, coupled with a simplifying implementa-
tion decision to instrument whole functions at a time, meaning that discovery
of a new basic block currently causes its entire function to be re-instrumented.
SD-Dyninst’s performance will improve significantly in the near future through
the addition of code-slicing capabilities to Dyninst, which will allow SD-Dyninst
to resolve many indirect control transfers at parse time.

In Table 2 we compare the overall expense of our techniques to the most
efficient tools for identifying dynamically unpacked and modified code, Renovo
[23], “Saffron for Intel PIN” [42], and EtherUnpack [17]. We executed Saffron
and EtherUnpack on our own hardware, but the Renovo tool is not yet publicly
available, so we compared against Renovo’s self-reported execution times for
packed notepad.exe executables, limiting this comparison to the top packer tools
that they also analyzed in their study. We ran SD-Dyninst and Saffron on an Intel
Core 2 Duo T2350 1.6GHz CPU with 2.5GB of memory, while Renovo’s study
was conducted on an Intel Core 2 Duo E6660 2.4GHz CPU with 4GB memory
and EtherUnpack executed on an Intel Xeon E5520 2.27GHz CPU with 6GB of
memory. These numbers reflect the post-startup time it took for SD-Dyninst,
Renovo, Saffron, and EtherUnpack to execute the instrumented metacode of the
various packer tools.

As seen in Table 2, except in the case of our unoptimized analysis of the
WinUpack executable, our pre-payload execution times are comparable to those
of Renovo, Saffron, and EtherUnpack despite the fact that our tool also analyzes
the code while the other tools only identify its dynamically unpacked portions.
The Saffron unpacker only partially unpacked the ASPack and MEW executa-
bles, as it quits at the first occurrence of written-then-executed code.

The savings afforded by our use of analysis-guided instrumentation help to
amortize our analysis costs. Saffron instruments the program at every instruc-
tion, while Renovo instruments at all control transfers and at all write instruc-
tions (EtherUnpack’s single-step mechanism does not rely on instrumentation).
We estimated Saffron’s use of instrumentation by modifying its source code to
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maintain a count of unique instrumented instructions, and estimated Renovo’s
use of instrumentation based on their algorithm description, by instrumenting
the packed programs to maintain a count of unique control transfer and write
instructions. Table 2 shows that our structural analysis allows us to instrument
the program at fewer than a 100th of the locations instrumented by Saffron and
Renovo, because our structural analysis allows us to limit our use of instrumen-
tation to instructions whose targets are statically unresolved.

8.2 Malware Analysis

Accomplishing an analysis task using SD-Dyninst requires no more skill from the
analyst than performing the same task with Dyninst on a conventional binary.
We wrote a malware analysis factory that uses SD-Dyninst to perform code-
coverage of malicious program executions by instrumenting every basic block
in the program, (both statically present and dynamically unpacked blocks) and
removing the instrumentation once it has executed. This instrumentation code
consists of only fifty lines. Our factory halts the malware at the point that it
attempts its first network communication, exits, or reaches a 30-minute timeout.
At this time, the factory prints out a traversal of the program’s call stacks and
outputs a CFG of the binary that identifies calls to Windows DLL functions and
is annotated to distinguish between blocks that have executed and those that
have not. If the malware fails to send a network packet, we verify our analysis by
comparing against a trace of the malware’s execution to ensure that our analysis
reaches the same point.

We set up our malware analysis factory on an air-gapped system with a
32-bit Intel-x86 processor running Windows XP with Service Pack 2 inside of
VMWare Server. We then analyzed 200 malware samples that were collected by
Offensive Computing [3] in December 2009. Our tool detected code unpacking
in 27% of the samples, code overwrites in 16%, and signal-based control flow in
10%. 33% of the malicious code analyzed by our hybrid techniques was not part
of the dynamic execution trace and would not have been identified by dynamic
analysis. For the malware samples that attempted to communicate with the
network, our analysis factory walked their call-stacks to identify the code in the
malicious executable that triggered the network communication.

As an example of the kinds of results produced by our factory, in Figures 5
and 6 we show two of its analysis products for the Conficker A malware binary.
Our factory created similar analysis products for all the other malware binaries
that we analyzed, and these can be viewed online at http://www.paradyn.org/
SD_Dyninst/. In Figure 5a we show the annotated CFG of the Conficker A binary
in its entirety, while Figure 5b shows an excerpt of that graph, highlighting the
fact that SD-Dyninst has captured static and dynamic code, both code in the
executable and code in Windows DLL’s, and both code that has executed and
code that has not executed but that may be of interest to the analyst. Figure 6
shows our traversal of Conficker’s call stacks at its first call to the select routine.
As seen in this stack trace, we are able to identify the stack frames of functions
that lack symbol information, an important benefit of our analysis capabilities.
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(a) The entire CFG. (b) CFG excerpt showing Conficker’s basic blocks and its calls
to system libraries. Basic blocks that have executed are shown
in red blocks, non-executed blocks are in light-grey, and API

functions are shown as white rectangles.

Fig. 5: Two views of Conficker A’s control flow graph. The CFG in part (a) can be
explored in an interactive viewer, as shown in the excerpt from part (b).

top pc=0x7c901231 DbgBreakPoint 0x7c901230 in ntdll.dll [Win DLL]
pc=0x10003c83 DYNbreakPoint 0x10003c70 in dyn RT.dll [Instrument.]
pc=0x100016f7 DYNstopThread 0x10001670 in dyn RT.dll [Instrument.]
pc=0x71ab2dc0 select 0x71ab2dc0 in WS2 32.dll [Win DLL]

base pc=0x401f34 func=nosym1f058 0x41f058 in cf.exe [Conficker]

Fig. 6: An SD-Dyninst stack walk taken when the Conficker A binary executes
Winsock’s select routine. The stack walk includes frames from our instrumen-
tation, select, and Conficker.

While existing stackwalking techniques are accurate only for statically analyzable
code [26], our hybrid analysis enables accurate stackwalking by virtue of having
analyzed all of the code that could be executing at any given time.

9 Conclusion

We create a hybrid analysis algorithm that makes it possible to analyze and
control the execution of malicious program binaries in a way that is both more
intuitive and more efficient than existing methods. Our combination of static
and dynamic analysis allows us to provide analysis-guided instrumentation on
obfuscated, packed, and self-modifying program binaries for the first time. We
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implemented these ideas in SD-Dyninst, and demonstrated that they can be
applied to most of the packing tools that are popular with current malware.
We demonstrated the usefulness of our techniques by applying SD-Dyninst to
produce analysis artifacts for the Conficker A binary that would have required
substantial manual effort to produce through alternative methods.

Ongoing research in the Dyninst project promises to address the two primary
limitations of this work. First, our instrumentation’s changes to the program’s
address space can be detected through anti-tampering techniques such as self-
checksumming. The second problem is that our parsing techniques assume that
the targets of conditional control transfers always represent real code, meaning
that the obfuscation proposed by Collberg et al. [14] could be used to pollute
our parse with non-code bytes, potentially causing us to instrument data and
causing the program to malfunction. Both of these problems are being addressed
by a piece of ongoing research in Dyninst that will ensure that the presence of
instrumentation will not impact a program’s data accesses.

Two additional analysis-resistance techniques that merit discussion are anti-
debugging and timing checks. Several Windows API and system calls can be
used to detect the presence of a debugger. Invocations of such functions are
easily detected by SD-Dyninst instrumentation and we have disabled those we
have come across, but from the literature [18] we know there are additional anti-
debugging methods that our current implementation does not disable. Timing
checks similarly depend on Windows API calls, system calls, and special-purpose
instructions that are easily detected by SD-Dyninst. However, we have not had to
disable timing checks, as most existing checks are tuned to detect the significant
slowdowns incurred by single-step debugging techniques and are not triggered
by our more efficient instrumentation-based techniques. It is possible that fu-
ture timing checks could detect the slowdown caused by our algorithm’s online
analysis, in which case we could adapt Ether’s [17] clock emulation techniques
to hide the slowdown from the program.
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