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Abstract 

This paper presents a technical description  
of a solution for the International Conference  
on Machine Learning contest in Representation 
Learning: The Black Box Challenge. The 
organizers provided a dataset including one 
thousand labeled data samples and over  
130 thousand of extra unlabeled samples. The 
task was to correctly classify examples into one 
of nine classes. The presented solution 
implements classification conducted with an 
ensemble of neural network classifiers with 
several improvements in the training method. In 
order to increase accuracy, classifier is given a 
reduced input vector preserving important 
correlations in the original input dataset. The 
approach is based on sparse filtering algorithm 
designed for deep learning problems. It was 
found that reducing  dimensionality of samples by 
sparse filtering, even without the extra data, 
resulted in a significant improvement in accuracy.  

 

1.  Introduction 

In this competition classifier had to be trained on a dataset 
that is not human readable, without knowledge of what the 
data consists of. Results were scored based on classification 
accuracy on a private test set. This challenge was designed 
to reduce the usefulness of having a human researcher 
working in the loop with the training algorithm. 

2.  Description of Data 

Each sample consisted of 1875 numbers and one of nine 
classes should be assigned to each of them.  
The distribution of classes was diverse – frequencies 
ranging from 7% up to 20%. Only 1000 samples were 
labeled, and there were over 130 thousand of unlabeled 
samples. The test dataset consisted of ten thousand 
samples, split in a half into public and private parts. 
 

3.  Evaluation 

The score was calculated as a percentage of correctly 
predicted classes. The maximum score could be 100%, 
while random choice of 1 out of 9 classes would  
give approximately 11%. The organizers provided a few 
baselines – logistic regression trained with stochastic 
gradient decent (REGR) which received result of 21.1% 
and multi layer perceptron – a feedforward neural network 
(MLP) with sigmoid units achieving score of 52.5%.  
This baseline was extraordinarily well-performing, 
because only one third of contestants outperformed this 
result. The scores of baselines, compared to our 
approaches and the winning solution are presented in the 
Figure 1. 
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Figure 1. Algorithms performance 

 



4.  Neural Networks Classifier 

4.1  Introduction 

Since our goal was to develop a high quality classifier,  
we decided to employ algorithm based on neural networks  
(n. n. classifier in the Figure 1.). The first task was  
to choose the best available neural network 
implementation. Initially, we tested several R libraries  
of neural networks implementations, but the range  
of offered customizations was very limited. Moreover, the 
results of classification were poor. Finally, we have chosen 
a Fast Artificial Neural Network Library (Nissen, 2003). It 
is a free open source library, which implements multilayer 
artificial neural networks in C with support for both fully 
connected and sparsely connected networks. It includes a 
framework for easy handling of training data sets. It is 
versatile, customizable, well documented and fast.  

4.2  Parameters and training method 

In this section we present the parameters of the neural 
network which were used in each of the presented versions 
of our solution. Firstly, activation function set to all units 
was a sigmoid function. To calculate RMSE, a tanh error 
function is used, which punishes differences stronger than 
a standard linear function. Learning rate around 0.3 was 
the best in all tested configurations of input data/number 
of neurons. The most important feature of the presented 
solution is that training method is incremental – it is based 
on a standard back propagation algorithm, where the 
weights are updated after each training pattern. This means 
that the weights are updated many times during  
a single epoch. Initially cross validation was performed by 
learning on 90%, validating on 10% of the labeled dataset.  
A function which is called every epoch during training 
was overridden – it allowed to analyze learning progress 
and save only a network which outperformed the previous 
best. This kind of training was performed on each 
validation part. For instance, assuming the results  
on validation part were as follows, the network in [] was 
saved and only the last, written in bold, was finally 
produced:  

[35], 34, 32, [45], 44, [56], [60], 58, [66], 64, 66, 63 

For a direct learning from 1875 input numbers (no features 
selection) the best results were obtained with the following 
parameterization of the network layers:  

1875 (input) – 200 (hidden) – 200 (hidden) – 9 (output) 

Each output neuron corresponds to a predictor of  

a particular class. A value of 1 referred to the correct class 

label, the rest eight were assigned a value of 0. The class 

was selected based on the maximum value of all nine 

output neurons predictions. The solution ran all trained 

neural networks and chose the most common class in  

a voting. The achieved result was around 55%, better 

when compared to 52.5% result of the neural network 

baseline.  

 

4.3  Improvements 

The accuracy of neural network depends on values of 
initial neuron weights used in training which are chosen 
randomly.  Due to this randomization a network may 
sometimes converge worse than it could even with the 
same layers and fixed parameters configuration. In order 
to increase accuracy, our approach trained each network 
several times on each of all validation parts and saved only 
a network which performed the best on a validation part. 
The last improvement of the network classifier was change 
of learning type to 40-fold cross learning. This had two 
advantages: firstly allowed to conduct a voting with a 
higher number of classifiers, and secondly the training set 
was larger by about 8%. The improvements mentioned 
above resulted in an increase of performance of about 0.5 
and 1.0 percentage point. 

5.  Sparse Filtering Approach 

5.1  Overview 

The goal of a sparse filtering approach for neural networks 
classifier was to decrease the length of input to make  
it easier for neural network to learn correctly, as well  
to perform an enhanced feature selection. The sparse 
filtering algorithm tries to find features that allow us to 
distinguish examples. The sparse filtering algorithm for 
MatLab was implemented by Ngiam et al. (2011) at 
Stanford University. 

5.2  Sparse Filtering on labeled data 

The first version of a solution using a sparse filtering took 
as the input only the labeled train data and the test dataset 
(main dataset). The accuracy of classification depending 
on the number of features used as a parameter in the sparse 
filtering algorithm is presented in the Figure 2. The best 
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Figure 2. Result depending on number of features 

 



scores were achieved after transforming 1875 to vector  
of 400 features. Only one level of feed forward was used, 
and the rest of detecting dependencies were given  
for a neural network classifier. Finally, the overall result 
on the main data increased significantly to 65.5%.  
Neural network configuration for data received form 
sparse filtering algorithm was different – the best occurred 
one layer of about one hundred of neurons, but nine 
neurons or even no hidden layer results were close  
to the best results.  

5.3  Sparse Filtering on whole data 

Sparse filtering on whole (test + train + unlabeled) gave 

slightly worse results. The reason was that sparse filtering 

algorithm normalizes each feature to be equally active 

among all dataset. Since features should allow  

to discriminate examples, the algorithm tried to distinct  

as many as possible dependencies among the whole data 

set, not only the main dataset. It tries to discriminate 

features beyond the obligatory test and train dataset, which 

cause lower quality of distinguishing samples in the test 

dataset. A length of a vector of features should follow  

a size of datasets. However, a long vector is unwanted for 

neural network classifier. On the other hand, sparse 

filtering on the whole dataset might find dependencies 

which are invisible in the small main dataset. The idea was 

to join features vector of main and whole datasets, leading 

to a vector of 800 (400 + 400) features. It gave ability  

to learn from both the local test set dependencies and 

whole dependencies in the given domain. Eventually, for 

this kind of input configuration of a one hidden layer 

consisting of 9 neurons was used: 800 – 9 – 9.  

The final score of the described approach was  67.18%  

and was achieved by our last submission sent  

to the Kaggle platform. This solution performed the best  

of all our predictions.  

6.  Results 

The solution achieved the score of 67.18% which placed it 

in the top 3% of the submissions (6
th

 position on the 

leader board). The best performing algorithm received  

a result of 70.22%. It is worth noting that the overfit  

on the final private dataset, experienced by many of the 

teams, was significant. Ours approach clearly avoided 

overfitting. The results on the public and private sets were 

very similar: 67.26% and 67.18%.  
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