
A Deep Learning Approach with an Ensemble-Based Neural Network Classifier

for Black Box ICML 2013 Contest

Lukasz Romaszko LUKASZ.ROMASZKO@GMAIL.COM

University of Warsaw, Poland

Abstract

This paper presents a technical description
of a solution for the International Conference
on Machine Learning contest in Representation
Learning: The Black Box Challenge. The
organizers provided a dataset including one
thousand labeled data samples and over
130 thousand of extra unlabeled samples. The
task was to correctly classify examples into one
of nine classes. The presented solution
implements classification conducted with an
ensemble of neural network classifiers with
several improvements in the training method. In
order to increase accuracy, classifier is given a
reduced input vector preserving important
correlations in the original input dataset. The
approach is based on sparse filtering algorithm
designed for deep learning problems. It was
found that reducing dimensionality of samples by
sparse filtering, even without the extra data,
resulted in a significant improvement in accuracy.

1. Introduction

In this competition classifier had to be trained on a dataset
that is not human readable, without knowledge of what the
data consists of. Results were scored based on classification
accuracy on a private test set. This challenge was designed
to reduce the usefulness of having a human researcher
working in the loop with the training algorithm.

2. Description of Data

Each sample consisted of 1875 numbers and one of nine
classes should be assigned to each of them.
The distribution of classes was diverse – frequencies
ranging from 7% up to 20%. Only 1000 samples were
labeled, and there were over 130 thousand of unlabeled
samples. The test dataset consisted of ten thousand
samples, split in a half into public and private parts.

3. Evaluation

The score was calculated as a percentage of correctly
predicted classes. The maximum score could be 100%,
while random choice of 1 out of 9 classes would
give approximately 11%. The organizers provided a few
baselines – logistic regression trained with stochastic
gradient decent (REGR) which received result of 21.1%
and multi layer perceptron – a feedforward neural network
(MLP) with sigmoid units achieving score of 52.5%.
This baseline was extraordinarily well-performing,
because only one third of contestants outperformed this
result. The scores of baselines, compared to our
approaches and the winning solution are presented in the
Figure 1.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

REGR MLP n. n.

classif.

sparse:

main

sparse:

whole

winner

Final score on the private dataset

Figure 1. Algorithms performance

4. Neural Networks Classifier

4.1 Introduction

Since our goal was to develop a high quality classifier,
we decided to employ algorithm based on neural networks
(n. n. classifier in the Figure 1.). The first task was
to choose the best available neural network
implementation. Initially, we tested several R libraries
of neural networks implementations, but the range
of offered customizations was very limited. Moreover, the
results of classification were poor. Finally, we have chosen
a Fast Artificial Neural Network Library (Nissen, 2003). It
is a free open source library, which implements multilayer
artificial neural networks in C with support for both fully
connected and sparsely connected networks. It includes a
framework for easy handling of training data sets. It is
versatile, customizable, well documented and fast.

4.2 Parameters and training method

In this section we present the parameters of the neural
network which were used in each of the presented versions
of our solution. Firstly, activation function set to all units
was a sigmoid function. To calculate RMSE, a tanh error
function is used, which punishes differences stronger than
a standard linear function. Learning rate around 0.3 was
the best in all tested configurations of input data/number
of neurons. The most important feature of the presented
solution is that training method is incremental – it is based
on a standard back propagation algorithm, where the
weights are updated after each training pattern. This means
that the weights are updated many times during
a single epoch. Initially cross validation was performed by
learning on 90%, validating on 10% of the labeled dataset.
A function which is called every epoch during training
was overridden – it allowed to analyze learning progress
and save only a network which outperformed the previous
best. This kind of training was performed on each
validation part. For instance, assuming the results
on validation part were as follows, the network in [] was
saved and only the last, written in bold, was finally
produced:

[35], 34, 32, [45], 44, [56], [60], 58, [66], 64, 66, 63

For a direct learning from 1875 input numbers (no features
selection) the best results were obtained with the following
parameterization of the network layers:

1875 (input) – 200 (hidden) – 200 (hidden) – 9 (output)

Each output neuron corresponds to a predictor of

a particular class. A value of 1 referred to the correct class

label, the rest eight were assigned a value of 0. The class

was selected based on the maximum value of all nine

output neurons predictions. The solution ran all trained

neural networks and chose the most common class in

a voting. The achieved result was around 55%, better

when compared to 52.5% result of the neural network

baseline.

4.3 Improvements

The accuracy of neural network depends on values of
initial neuron weights used in training which are chosen
randomly. Due to this randomization a network may
sometimes converge worse than it could even with the
same layers and fixed parameters configuration. In order
to increase accuracy, our approach trained each network
several times on each of all validation parts and saved only
a network which performed the best on a validation part.
The last improvement of the network classifier was change
of learning type to 40-fold cross learning. This had two
advantages: firstly allowed to conduct a voting with a
higher number of classifiers, and secondly the training set
was larger by about 8%. The improvements mentioned
above resulted in an increase of performance of about 0.5
and 1.0 percentage point.

5. Sparse Filtering Approach

5.1 Overview

The goal of a sparse filtering approach for neural networks
classifier was to decrease the length of input to make
it easier for neural network to learn correctly, as well
to perform an enhanced feature selection. The sparse
filtering algorithm tries to find features that allow us to
distinguish examples. The sparse filtering algorithm for
MatLab was implemented by Ngiam et al. (2011) at
Stanford University.

5.2 Sparse Filtering on labeled data

The first version of a solution using a sparse filtering took
as the input only the labeled train data and the test dataset
(main dataset). The accuracy of classification depending
on the number of features used as a parameter in the sparse
filtering algorithm is presented in the Figure 2. The best

55

56

57

58

59

60

61

62

63

64

65

66

67

100 200 300 400 500 600

Score

Accuracy

Figure 2. Result depending on number of features

scores were achieved after transforming 1875 to vector
of 400 features. Only one level of feed forward was used,
and the rest of detecting dependencies were given
for a neural network classifier. Finally, the overall result
on the main data increased significantly to 65.5%.
Neural network configuration for data received form
sparse filtering algorithm was different – the best occurred
one layer of about one hundred of neurons, but nine
neurons or even no hidden layer results were close
to the best results.

5.3 Sparse Filtering on whole data

Sparse filtering on whole (test + train + unlabeled) gave

slightly worse results. The reason was that sparse filtering

algorithm normalizes each feature to be equally active

among all dataset. Since features should allow

to discriminate examples, the algorithm tried to distinct

as many as possible dependencies among the whole data

set, not only the main dataset. It tries to discriminate

features beyond the obligatory test and train dataset, which

cause lower quality of distinguishing samples in the test

dataset. A length of a vector of features should follow

a size of datasets. However, a long vector is unwanted for

neural network classifier. On the other hand, sparse

filtering on the whole dataset might find dependencies

which are invisible in the small main dataset. The idea was

to join features vector of main and whole datasets, leading

to a vector of 800 (400 + 400) features. It gave ability

to learn from both the local test set dependencies and

whole dependencies in the given domain. Eventually, for

this kind of input configuration of a one hidden layer

consisting of 9 neurons was used: 800 – 9 – 9.

The final score of the described approach was 67.18%

and was achieved by our last submission sent

to the Kaggle platform. This solution performed the best

of all our predictions.

6. Results

The solution achieved the score of 67.18% which placed it

in the top 3% of the submissions (6
th

 position on the

leader board). The best performing algorithm received

a result of 70.22%. It is worth noting that the overfit

on the final private dataset, experienced by many of the

teams, was significant. Ours approach clearly avoided

overfitting. The results on the public and private sets were

very similar: 67.26% and 67.18%.

References

Nissen, S. Implementation of a Fast Artificial Neural
Network Library FANN, Report. Department of
computer Science University of Copenhagen DIKU,
2003.

Ngiam, J., Koh, P., Chen Z., and Bhaskar S., Ng, A. Y.
Sparse filtering. NIPS’11, p. 1125-1133, 2011.

