
Visualizing Page Tables for Exploitation

by Alexandru Radocea and Georg Wicherski

1. Introduction

Modern processors feature the distinction between physical memory address space and virtual

address space. While the physical address space references the actual memory cells on the RAM, the

virtual address space is an alias space that is mapped to physical address space using page tables.

This allows a program that utilizes a hardcoded memory address X to be run in two instances

simultaneously by mapping the two instances’ respective addresses X to X1 and X2 in the physical

address space.

Besides fulfilling these simple mappings, modern processors’ page tables encode various memory

protections that are checked upon accessing a virtual memory address. The ARM and x86_64

processors we are covered with this research support the following noteworthy memory protections:

 Pages not present at all. Any access to these virtual memory locations results in an error.

 Read-only versus read-write protection. If a read-only location is attempted to be written, an

error is generated.

 Executable memory versus non-executable (data only) memory. It is an error if the

instruction pointer points to a virtual address within a page explicitly marked as not

executable.

 The privilege level required to access a page, allowing certain pages to be accessible only by

the running operating system kernel. While most operating systems define a virtual address

range that is reserved for the user-space (i.e. per default < 0x80000000 on Windows and <

0xc0000000 on Linux), pages outside the range can still be readable per their page

protections.

An attacker can now try to find pages with a specific selection of the aforementioned permissions

that do not represent a required set of minimal permissions well. One example might be any pages

that are marked both writable and executable, as they might allow an attacker to directly place

native code in those memory areas and divert code execution there. Another example would be a

page containing sensitive kernel information that is (at least for reading) accessible to user-space.

Besides looking for pages with permissions favorable to an attacker, specific pages that exhibit a

static virtual address repeatedly are of interest because they are indicative of weak or incomplete

ASLR implementations.

In this work, we try to motivate different visualizations of page tables for finding these flaws easily

and in a manner easy to convey. Instead of collecting our data from operating system interfaces, we

directly queried the hardware specific page tables to overcome any representation bias the kernel

might introduce (such as not providing specific driver mappings that the kernel API is unaware

about).

2. Data Collection Methodology

The page tables to visualize were all collected from real devices in various ways. On the hardware

architectures examined, reading page tables requires accessing physical memory and reading paging

configuration hardware registers–both only accessible from privileged kernel-space. This section

explains how access to this privileged information was achieved on the respective platforms and how

the data was subsequently collected.

iOS 6.x on ARMv7 (iPhone 4, A4, Cortex-A8)
The iOS operating system provides no accommodations for third-party kernel development. For

many iOS releases now, the user-land address space has been heavily constrained to maximize

security properties. With the exception of JIT pages and barring any implementation bugs,

applications cannot dynamically map code. Every page of executable code must have a matching

hash which is code signed, and the XNU operating system enforces code signing of every process.

Exploits must use return oriented programming and cannot ever introduce new code without kernel

privilege escalation.

Similarly, the XNU kernel on iOS is locked down to prevent third parties from loading modules or

kernel extensions. Even with root privileges, it is not possible to load new kernel code as the XNU

kext loading code is not compiled in. And the kernelcache, which is loaded by iBoot, is codesigned

using public key cryptography chained to Apple certificates, further preventing arbitrary kernel code

injection.

To get access to physical memory pages and paging control registers, a security weakness in a

jailbroken iOS device was leveraged to inject and run supervisor code.

Jailbreak assisted kernel programming

Jailbreaks such as evasi0n and redn0w patch the XNU kernel to re-enable debugging of the kernel

task with the task_for_pid mach routine. This routine allows for acquiring a task port that can be

used read and write arbitrary memory to the kernel task, as well as enumeration of virtual memory

data structures.

Since iOS disables kernel extension loading in XNU, no dynamic linker is available. To work around

this, driver code is written as position independent code and external functions in XNU are manually

discovered through reverse engineering of the kernel cache.

Three new system calls are introduced. Two transfer virtual and physical memory using the IOKit

subsystem in XNU. The third transfers relevant ARM paging control registers such as ttr0, ttbr1,

ttbcr, sctrl, and dacr. Driver code was also written to enumerate all running processes’ physical

mappings by walking the linked list of all processes.

Jailbreak limitations

The evasi0n jailbreak was used during testing. It was discovered that the exploit modifies page tables

to mark the entire kernel cache as writable. To acquire accurate data, the evasi0n jailbreak was

modified to run the page table dumping code before “untethered jailbreaking” completes. This

allows for collecting page table information before eavsi0n modifies the kernel mappings.

Android on ARMv7-A
Data for the Android operating system that is based on the Linux kernel has been collected using two

different methodologies. For the Nexus 4 device that allows flashing a custom kernel easily and has a

well-documented kernel build process, a kernel patch that provides access to the required hardware

registers has been developed. This allows not only capturing data in a legitimate way but also

capturing all page tables for all processes that are currently not scheduled and therefore not

represented with their page tables in the respective hardware registers.

Because not all Android devices are equally open, we also wrote a local kernel exploit based

collection utility. This allows collecting data from arbitrary kernels without relying on flashing any

custom kernel patches to the device.

Custom kernel patch based collection

The Nexus 4 phone runs a Linux 3.4 derived Android kernel with the source readily available at

https://android.googlesource.com/kernel/msm in the android-msm-mako-3.4-jb-

mr1.1 branch. Instructions for building and flashing the kernel are available from the Android

documentation. Physical memory is already accessible via the /dev/mem device that provides a file-

like API for reading and writing physical memory. This memory device has been extended with a

kernel patch to support an ioctl for fetching the values of the ttbcr, ttbr0, ttbr1 and sctlr hardware

registers. Additionally, the patch allows iterating over all registered processes and fetching their

respective ttbr0 values that will be set on a context switch to that process. The kernel patch against

the official Android Nexus 4 tree is included in our code release.

After booting into the patched kernel, a user-space program running with root privileges (or more

accurately with the CAP_SYS_RAWIO capability) can then open the /dev/mem device, query the

hardware registers and dump the page tables.

Local kernel exploit based collection

To obtain the CAP_SYS_RAWIO capability (required to read the page tables from /dev/mem) and to

read the configuration registers’ values, we used a modified CVE-2013-2094 exploit. We then used

the same dumping procedure as for dumping with a legitimate kernel patch, albeit limited to the

current process’ ttbr0 for reasons of portability.

XNU on x86_64

This data was collected for OS X running Mountain Lion (10.8).

A kernel extension was written that can dump paging control registers to user-land as well as transfer

physical memory. A user-land driver program uses the driver to dump control registers and

enumerate page tables in physical memory. In addition, the listing of all running processes is walked

to dump page tables to retrieve and enumerate the physical mapping for every running process.

3. Visualization Methodology

As explained in the introduction, we chose different visualization methods to visualize the following

page table entry properties:

 Permissions

o Writable and Executable

http://source.android.com/source/building-kernels.html
http://source.android.com/source/building-kernels.html
https://gist.github.com/oxff/4080053b1041001d6209

o Accessibility for user-space

 Virtual address

 Physical address

 Page size

Hierarchical Visualization
Hierarchical views show how the address space is logically divided, for example how regions such as

shared libraries are loaded and aliased, how drivers allocate DMA memory, how virtual aliases to all

of physical memory are set up.

With x86-64 ia32.e paging, there are 3 layers of indirection (four layers counting the initial PML4

entry) for a page translation. With ARMv7 in short-descriptor mode, there are just two.

While hierarchical visualization is great for educational purposes and it reflects the CPU logic

traversing different tables well, it makes it hard to get an overview about security properties.

Security properties can be inherited across hierarchical layers on some architectures but often can

also be defined at the lowest level. Drilling down to the lowest level is therefore necessary and the

purposed of the hierarchical visualization is hence nullified. Therefore, we focus on other

visualization methods in this work.

Hilbert Curves
Linear mappings of page table properties become difficult to identify visually. When graphed

linearly, the different regions can become narrow bands that are difficult to see visually. By applying

Hilbert Curves to mappings, regions are spatially translated into clearly identifiable spaces.

One challenge when visualizing page tables that way is how to deal with the lack of data, or

sparseness in the address space. For example, the IA32.e address space spans 48 bits, or 128

terabytes. This is vastly more address space than there is RAM available with today’s technology. So

when visualizing the entire possible address space, the gaps between mappings can be shrunken and

approximated over a maximum gap size to deemphasize the lack of information and provide for

visually meaningful images.

ASLR Heatmap
Heatmaps of real, observed ASLR offsets can show practical weaknesses in ASLR implementations.

These heatmaps are derived from the Hilbert Curve visualization. Since there are multiple slides and

things moving around, looking at things from the page table layer will quickly show everything that

is—or is not—well randomized for both user-land processes and kernel components.

4. Case Studies and Findings

This section explains the various security deficiencies we found applying the visualizations to the

different targets.

XNU on x86_64
The OS X operating system runs the XNU kernel. Starting with OS X 10.8, the kernel and kernel

extensions run exclusively in 64-bit mode on Intel processors. The paging mechanism is

IA32e/AMD64, and can map 48-bits of addressable memory using a four-level page table hierarchy.

Visualization yields a number of interesting characteristics: kernel ASLR (randomized per-boot), W^X

kernel code, a fixed shared cache across userspace processes (per-boot), randomized dyld and

preemption-free zone (per-execution), as well as randomized executable text (per-execution when

linked with ASLR support), and some writable regions of code still in the kernel mappings:

OS X 10.8 kernel and user space

Kernel ASLR

The kernel stack and heap as well as the kernel code are randomized (kernel cache including the

kernel and extensions as well as additional kernel extensions). These are randomized separately.

Physical mappings are also randomized, so that consecutive boots will have kernel data and code

located on unpredictable, distinct physical memory pages.

W^X kernel memory protections

Predictable, writeable, executable pages would make KASLR ineffecitve.

Visualization shows two randomized (non-predictable) regions mapped as writeable and executable.

The first of these regions maps device memory, and corresponds to video memory. It is not actually

possible to fetch and execute code from these pages. The second region, however, corresponds to

EFI data and it is possible to execute code from this region after writing to it.

Both of these regions are randomized (in both virtual and physical space), and independently from

other data in the address space, making them difficult to leverage in a kernel memory trespass

exploit.

To inject code an attacker should load a kernel extension or leverage a gadget to turn off permission

checking in paging control registers to write and execute injected code.

SMEP

Mountain Lion can use the Intel SMEP feature to prevent branching into user pages for kernel code

execution.

Shared Cache

 iOS 6.x on ARMv7-A
Starting with iOS 6.0, a number of important security improvements were introduced by Apple to

create serious obstacles to kernel exploitation. Three are relevant to address space protection and

pagetable layouts and discussed under findings.

i. The kernel address space is tightened to make all kernel code as well as data structures, such

as the system call table, read-only. Previously, the entire kernel cache region was marked

writable meaning an exploit could easily patch code. Similarly, all data is now marked non

executable, meaning a kernel exploit likely must use kernel return oriented programming to

execute code.

ii. Kernel Address Space Layout Randomization (KASLR) was introduced to make memory

trespass errors harder to exploit. Two offsets are used: one arranged by iBoot to shift the

location of the entire kernel cache, and a second by XNU to shift where the heap and stacks

will be located. KASLR, combined with tightened address space permissions, makes kernel

return oriented programming much more unreliable without a good information leak.

iii. User-space dereferences are blocked from kernel mode to prevent exploits from leveraging

shared address space data and code. This was implemented by swapping paging base

registers upon a context switch. More specifically, ttbr0 is swapped to point from the

current process user-land address space to the kernel map (matching ttbr1). This prevents

address space sharing until a copyin or copyout routine temporarily swaps ttbr0 back to

reopen the user-land context’s virtual address space for efficient data copying. With this

security mechanism, kernel exploits are forced to also inject their ROP chains and other

metadata into kernel space.

Sample programs: MobileSafari, MobileSlideshow

Annotated MobileSlideshow

MobileSafari JIT

 MobileSafari employs a ~1.2 MB RWX memory region for Just In Time compilation of javascript code.

`

Fixed physical memory translations

Physical memory mappings are not randomized. If a vulnerability leads to direct physical memory

writes, or the kernel to virtual mapping can be leaked, a kernel exploit could reliably attack page

table entries in physical memory to inject payloads.

Android on ARMv7-A
This section discusses the findings we made on different kernels running the latest Android 4.2.2 on

various devices (including Nexus 4, Nexus 7, Galaxy Nexus and Galaxy S4). All findings in this section

have been reported responsibly to Google, ARM, the Linux kernel security team, the Linaro security

team and Qualcomm. Patches are anticipated for Linux 3.11.

Writable and Executable Kernel .text

The immediately obvious finding on Linux on ARM is that for all inspected devices running any kernel

but the Qualcomm MSM kernel, the entire kernel .text section is both writable and executable.

Since the kernel’s .text section is located at a predictable virtual and physical address, an attacker

can use any writing primitive to directly replace kernel code with his native code. See below for an

information leak of the system call handler function’s address.

Executable and Writable Kernel .text on Nexus 7, Android 4.2.2

Looking at the kernel configuration, this is not unexpected behavior: CONFIG_DEBUG_RODATA is not

activated on any of the kernel device configurations. The fact that making the kernel .text non-

writable is a debug setting in the Kernel Hacking section speaks well for the state of security in Linux

on ARM. It is questionable that vendors do not simply activate this setting by default, considering

that at least the Nexus 4 stock kernel runs fine with this setting is enabled.

The MSM kernel mitigates this by another configuration setting that has been added to that specific

source tree: CONFIG_STRICT_MEMORY_RWX makes most of the kernel code non-writable. Most data

memory is marked non-executable just like in the mainline kernel.

W^X MSM kernel .text with two remaining writable and executable sections on Nexus 4 on Android 4.2.2

Even for newer kernels, such as the 3.4.x MSM kernel on the Nexus 4 and Galaxy S4 examined, there

are two read-write executable sections (1 megabyte super-pages). Namely, the start of physical

memory at virtual address 0xc000000 is mapped both read-writable and executable. On these

newer kernels, it is not possible to directly manipulate the .text section and thereby kernel code

executed during normal operation. However, it is trivial to write native code directly to the

executable pages mentioned above. If control flow can later be diverted to an arbitrary kernel

address, this allows code execution, even if a specific process’ user-space range was not mapped

(e.g. when exploiting filesystem flaws using malicious SD cards).

User-land ASLR Bypass

The second interesting observation is more subtle. Upon close inspection, all processes contain a

read-only but executable mapping that is accessible from user-land, yet located above the virtual

kernel start 0xc0000000. The page in question is located at 0xffff0000 and it is the ARM

interrupt vector page. The ARMv7-A and earlier architectures only support two fixed locations for the

interrupt vectors, at virtual addresses 0 or 0xffff0000. However, the interrupt vector page need

not be readable for user-land and for example on iOS on ARMv7-A is not mapped in a way. Because

the actual interrupt vectors only occupy the first 64 bytes of the page, the Linux kernel abuses for

also placing some user-land helper gadgets in this page. This allows for example accessing the current

base address of the Thread Local Storage by simply jumping to a helper at a fixed address within the

0xffff0000 page; that helper gadget then returns this address in r0.

init on Nexus 4 with Android 4.2.2 with user executable vectors in the very lower left of the image

Interestingly, the existence of this page is not provided in /proc/$pid/maps on older kernels and

its accessibility can only be found by parsing the page tables (or reading various ARM kernel or libc

sources).

Unfortunately, this executable code at a fixed location can be abused in remote exploitation to

bypass ASLR under specific circumstances without requiring an info-leak. There are is one gadget that

stands out in the context of exploitation, but there is more code that can be useful depending on the

specific target kernel and exploit scenario.

One of the most useful gadgets is the following gem, which is implemented in assembly in the kernel

(and therefore stable across compiler versions and settings) and at the fixed offset +fc0 into the

vectors page:

 fa0: f57ff05f dmb sy

 fa4: e12fff1e bx lr

 fa8: e320f000 nop {0}

 ...

 fc0: f57ff05f dmb sy

 fc4: e1923f9f ldrex r3, [r2]

 fc8: e0533000 subs r3, r3, r0

 fcc: 01823f91 strexeq r3, r1, [r2]

 fd0: 03330001 teqeq r3, #1 ; 0x1

 fd4: 0afffffa beq 0xfc4

 fd8: e2730000 rsbs r0, r3, #0 ; 0x0

 fdc: eaffffef b 0xfa0

This code implements an atomic compare-and-exchange operation for one word. In pseudo-code, it

performs the following operation atomically:

iff *r2 == r0: *r2 := r1

Since it returns normally through the link-register, this gadget can be perfectly used when

overwriting a function pointer to a function expecting three parameters. This is especially useful,

when another program location needs to be overwritten with a specific value only if the existing

value has a certain value.

Consider a scenario, where a function pointer can be overwritten with the address of this gadget and

r0 is user controlled while r1 and r2 are program defined pointers. By repeatedly invoking this

gadget with different values for r0 and observing if the pointer pointed to by r2 is replaced with r1,

ASLR can be brute-forced safely.

Another simple use of this gadget is writing arbitrary values by directly jumping to +fcc, which will

store the content of r1 at the memory location r2 unconditionally, ignoring r0 and returning

gracefully. This represents a very useful gadget for many C++ Use-after-Free scenarios, where a C++

virtual function table pointer can be hijacked but an arbitrary write to arbitrary memory locations is

not directly available.

Local Kernel Information Leak

Since the vectors page contains code to handle software interrupts, it must contain the location of

the software interrupt handler. Since this page is user-land readable, the address of the system call

handling function is effectively leaked to user-land. The ARM architecture defines the third entry in

the vectors page to be a branch to the software interrupt handler and this is indeed the case for the

Linux vectors page:

 8: e59ff430 ldr pc, [pc, #1072] ; 0x440

Therefore, the address 0xffff0440 contains the kernel virtual address of the system call handler.

This address is 0xffff0420 on older kernels, but this can be determined reliably by disassembling

the instruction at 0xffff0008.

In conjunction with the writable kernel .text section introduced earlier, this makes local kernel

exploitation trivial. An attacker can simply determine the address of the system call handler and

introduce a temporary branch instruction to his own code, triggering execution by a software

interrupt. Interestingly, the vector page is read-only for the kernel on all examined versions and

cannot directly be tampered with.

