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ABSTRACT

Authentication primitives should be simple, general, and ro-
bust against attack. We describe the authentication mecha-
nisms of Ethos, an experimental, clean-slate operating sys-
tem that has been designed for security. We reexamine and
redesign software layering for authentication, and evaluate
the resulting security properties. In Ethos, integrated net-
work security and simplified local authentication shrink ap-
plication code size and prevent application-based authenti-
cation failures, making systems more robust against attack.

1 Introduction

The abstractions used to provide Operating System (OS)
authentication are fundamental to a system’s security. De-
spite this, integrating authentication in a way which is sim-
ple, general, and robust against attack has proven elusive.

Authentication identifies the principals, representing
users, hosts, and other entities, with which a system in-
teracts. Users are the most important principals; they ex-
plicitly or implicitly direct a system to perform actions on
their behalf. In a distributed system, a user might be
represented by many principals, some identified, others
strangers (long-lived but not identified), and yet others
anonymous (used for a single connection). Systems must
authenticate both local and remote users.

Subtle vulnerabilities can arise as a consequence of au-
thentication system design. In authentication privilege
escalation [52], a process gains unintended privileges using
authentication primitives'. Here there are two possibilities:

(1) Processes po and p1 are owned by different users; po
crafts pi’s state to trick p; into doing something.

(2) A process requires elevated privileges for authentica-
tion and is attacked before it drops them.

For an example of (1), po might set an environment variable
to specify the file system location from which dynamic li-
braries are loaded and then exec a setuid-program p; [59]. In
fact, po can craft pi’s state in many ways, including environ-
ment variables, file descriptors, and command-line inputs.
A naive programmer may be unaware of such attacks, and
even sophisticated programmers make mistakes. Libraries
pose particular problems because of unavailable source code
and revisions that affect previously installed programs. In
(2), elevated privileges increase the impact of vulnerabilities.

This paper introduces new, safer-to-use authentication

! Privilege escalation from outside of the authentication sys-
tem is beyond the scope of this paper.
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mechanisms and describes their implementation in Ethos, an
experimental OS designed to make applications safer from
attack. Ethos’ authentication contributions are as follows:

e All network interaction is authenticated before any ap-
plication code runs.

e Ethos is free from authentication privilege escalation.

e Ethos has new, simple-to-use authentication system
calls.

e System administrators rely on system-level authoriza-
tion and network authentication, and thus do not need
to audit application code for these properties.

In addition, Ethos guarantees high confidentiality of au-
thentication secrets, scales to the Internet using Public-Key
Cryptography (PKC), supports multiple identities per user,
and supports anonymity.

The deep integration of authentication mechanisms into
an OS poses several challenges beyond those for user-space
implementations: First, it requires mechanisms which are
sufficiently general to broadly satisfy authentication needs.
Second, it requires a careful integration with other mecha-
nisms. For example, Ethos tightly integrates system authen-
tication with network security. Third, it places a premium
on simplicity of mechanism. Fourth, it requires compatibil-
ity. Ethos places security above flexibility, and thus has a
unique take on compatibility; we will describe the reasons,
trade offs, and especially security implications for our ap-
proach in §6.

The deep integration of authentication mechanisms also
has several benefits: First, the mechanism is inescapable,
and thus protects the entire system. Second, it can provide
richer information, enabling more accurate decisions to be
made. Third, it enables simpler mechanism since it can rely
on co-designed mechanisms in the OS. At first, it may seem
that Ethos’s design is too simple, but its power derives from
its composition with other mechanisms. We will allude to
some of these in the paper.

In the remainder of this paper, we discuss threats (§2),
an overview of Ethos (§3), the design of Ethos authentica-
tion (§4), an evaluation of Ethos’ design and implementation
(85), compatibility with the existing software base (§6), and
related work (§7). Our evaluation focuses on Ethos’ security
properties and discusses performance.

2 Threats

We describe both the threat environment (general attacker
capability and success) and the threat model (the threats



that Ethos authentication addresses).

Threat environment Attackers routinely compromise ex-
isting systems [35, 8, 28, 53]. The US National Security
Agency (NSA) assumes its networks compromised [74], and
it is estimated that 25%-35% of computers are bots, under
the control of an attacker [5, 3].

Security has become a major focus for OS suppliers, and
the major OSs have all been assured to the Common Cri-
teria (CC) assurance level of EAL3 or EAL4. Since these
systems have all been compromised, higher levels of assur-
ance are needed. But above EAL4 requires both design-for-
security and low complexity—mneither of which describe to-
day’s popular OSs [33]. Because these attributes cannot be
retrofitted, we believe existing OSs will need to be replaced.

Threat model The attacker considered by this paper has
very broad access—he can run applications on the Ethos
host; control remote hosts and other unprivileged virtual
machines; and control network mediums. He can attempt to
violate an Ethos host’s security policy by observing network
packets, defeating protocols [44, 27], deploying counterfeit
services, or making odd requests to Ethos-hosted services.
We are especially concerned with his ability to exploit in-
advertent application errors with respect to authentication
and even to develop applications with faulty authentication
which he can then exploit® [64]. The attacker might have a
local user account. However, we explicitly trust system ad-
ministrators; thus they are outside the attacker model. We
also assume the integrity of the layers below the OS.

3 Ethos overview

Ethos is an experimental, clean-slate OS prototype. Its goal
is to make it easier to write, administer, and protect ap-
plications from attack. Ethos provides safer semantics; its
system calls imply more security properties, thus amortizing
security-sensitive code over an entire system.

System semantics affect the security of the entire system.
For example, application security is affected by Program-
ming Language (PL) semantics: The problem of fixing ap-
plication buffer overflows is fixed for all applications by us-
ing a strongly typed PL. Similarly, OS semantics can have a
profound impact on application robustness. Yet while PL se-
mantics continue to evolve (e.g., Haskell, Erlang, Go, Scala),
OS semantics have been relatively unchanged for decades
[49].

Just as new PLs are inherently incompatible with existing
PLs, Ethos is incompatible with existing OSs. Although OS
provider security practices have improved markedly, they
have been overmatched by an increasing and worldwide at-
tacker capability. Thus the attackers’ success in finding
and exploiting bugs in every software stack demands a new
generation of designed-for-security OS semantics. Defend-
ers have been repeatedly humbled by the attacker, so we
take the conservative approach of reducing complexity and
including in Ethos only strong security mechanisms. Com-
patibility is provided outside of Ethos (see §6).

Ethos’ semantics are designed for security, and thus we fo-
cus on the effect of its design. NSA calls this the strength of
the design—the ability of a perfect implementation to with-
stand attack [7]. Strength is difficult to obtain; NSA spent
ten years designing and analyzing the strength of battlefield
radios [25]. A new generation of high-strength OSs can shift
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much of the burden of securing systems from application
developers to the OS.

The overall ability to withstand attack is robustness—
the combination of strength and assurance. Thus our focus
complements the substantial and far better understood work
on implementing reliable OSs, for example by microkernels
[4, 24, 67].

Ethos currently provides memory paging, processes, en-
crypted networking, and a filesystem. We have completed
39 system calls and related Go packages. On this, we have
built a shell, basic tools, a remote shell utility, and a net-
worked messaging system. We have ported Go and Python
to Ethos. We use C, but only to implement the OS and
support other PLs.

3.1 Ethos system calls

The most interesting part of Ethos is its system calls, which
target a higher level of abstraction than UNIX. The most
relevant to authentication are the nine system calls in three
categories shown below.

s fork create a child process

2 exec change process executable

A exit terminate a process

o authenticate authenticate a local user

B fdSend send a file descriptor

< fdReceive receive a file descriptor

. advertise offer a service

2 import accept a connection to a service
ipc connect to a service

As in POSIX, the child of an Ethos fork inherits the au-
thentication credentials of its parent. However, Ethos’ au-
thentication mechanisms are quite different from those of
POSIX: there is no setuid system call and the user associated
with a process never changes (§4.1). In addition, exec can-
not change the authentication credentials of the process—
Ethos does not have a setuid bit. Instead, Ethos provides
fdSend/fdReceive (§4.1).

Ethos networking and local Inter-Process Communica-
tion (IPC) both use the same system calls: advertise, ipc, and
import (§4.3). Network communication is encrypted and pro-
tected against tampering by cryptographic checksums. IPC
communication remains as cleartext, but Ethos protects it
against observation and tampering by memory management.
In either case, all communication is subject to authorization
on each host participating in the communication.

For local authentication, where the user is physically
present at the computer, Ethos provides an authenticate sys-
tem call to establish a user’s identity by password (§4.2).
Passwords are a relatively weak mechanism [14]. However,
local authentication requires physical proximity to the com-
puter, eliminating access by the vast number of (remote)
attackers. If stronger local authentication is required, multi-
factor authentication using a physical token or biometric can
be used [26, 60].

Remote authentication is inherently different than local
authentication. Here, direct use of smart cards or biomet-
rics is inappropriate, and passwords are unreliable, due to
spoofing, key logging, and network timing attacks [31, 62].
Furthermore, large botnets—containing upwards of a million
nodes—allow for a staggering number of password attempts,
and have been very effective [41]. Ethos’ ipc/import guar-



antee that all network connections are authenticated using
PKC (§4.3).

3.2 Implementation

Ethos is built on top of Xen, a Virtual Machine Monitor
(VMM) [9]. A VM provides a small and fixed set of devices
regardless of underlying hardware. Ethos is thus compatible
with all the x86 devices that Xen supports. This dramati-
cally reduces Ethos’ code base and decreases the vulnerabil-
ities associated with device drivers [16]. By encrypting both
networking and disk storage, neither integrity nor confiden-
tiality depend on VMM device drivers (although availability
does).

Ethos depends on its VMM'’s security. Orthogonal work
to reduce vulnerabilities in Xen [56], disaggregate Dom0 [46,
17], produce alternative hypervisor technologies (e.g., Nova
[63] and OKL4 [30]), and verify hypervisors (e.g., MinVisor
[21]) will improve the robustness of the layer below Ethos.

When Ethos’ design proves to have sufficient strength and
usability, we will re-implement Ethos to achieve high assur-
ance. This includes a microkernel implementation [4, 24, 67],
a minimalist VMM, and proof of correctness [37]. Given
that we are still working on user-space evaluation, such a
reimplementation would be premature.

4 Ethos Authentication Design

Ethos authentication is deeply integrated into the system’s
networking and process mechanisms: PKC is integrated with
networking, password-based local login is differentiated from
cryptographic-based network authentication, cryptographic
keys are managed by Ethos, and both local and network au-
thentication use a common mechanism for creating creden-
tialed processes. Ethos authenticates all local and remote
users.

An Ethos host uses two different authentication services.
A Local Authentication Service (LAS) contains the name
and User ID (UID) of each user who can physically log onto
the system, and each host maintains its own LAS. A Remote
Authentication Service (RAS) contains user names and their
public keys, server names and their public keys, and groups.
Multiple RASs form a distributed Public Key Infrastructure
(PKI) [61].

An Ethos host keystore holds the host’s own public and
private keys as well as the public key (root of trust) for the
RAS. For each local user, there is also a user keystore
that holds his public and private keys [20]. To better isolate
private keys, Ethos never shares them with applications. In-
stead, Ethos implements system calls for console login and
signing operations and encrypts/authenticates all network
traffic. All keystores are further protected by Trusted Plat-
form Module (TPM) [6, 10], and user keystores may only
be unlocked as we will describe in §4.2. Ethos weakens cold
boot attacks [29] by zeroing residual keys. Ensuring that
cryptographic implementations are resistant to side-channel
attack [11] is simplified because all these operations happen
in one place—the OS.

All users are visible to Ethos. Ethos services do not main-
tain application-level user databases, as does MySQL or
Apache with mod_authn_file. A user’s application interac-
tion in Ethos can be customized solely through authoriza-
tion (§4.5).

4.1 Virtual processes

Ethos’ authentication mechanisms are centered around its
virtual processes, per-user processes created on demand.
To invoke a virtual process, an application sends a tuple of
file descriptors (typically, for a network connection) to it and
specifies its user. The Application Programming Interface
(API) to send descriptors is:

1

’! fdSend(fd[], u, program) ‘

where fd[] is a tuple of file descriptors, u is the user that
will own the virtual process, and program is the file con-
taining the virtual process’s executable code. fdSend’s tuple
of file descriptors simplifies its failure semantics—sending a
sequence of file descriptors will either completely succeed
or completely fail. We call a process which calls fdSend a
distributor, as it distributes file descriptors to the proper
user’s virtual process.

fdSend invokes a virtual process (§4.6), which can receive
the sent file descriptor tuple using fdReceive:

’ fds «fdReceive()

Naturally, virtual processes require careful authorization
(§4.5). Ethos virtual processes are used in one of two ways:
(1) Typically, when sending a network file descriptor, a dis-
tributor sets u to the remote user associated with the con-
nection. We call this a remote-user virtual process.
(2) Alternatively, the distributor can specify any user using
fdSend’s explicit u parameter, called arbitrary-user vir-
tual process. The latter allows for local authentication
and mail-like messaging programs (where the owner of the
virtual process is the message recipient, rather than the mes-
sage sender/remote user). These two modes are summarized
in Table 1 and discussed below.

Ethos is free from authentication privilege escalation. Be-
cause Ethos processes never change their owner, their priv-
ileges do not change as a result of authentication. A virtual
process is not created using fork, so it has no predecessor
process. In that sense, it is like init on UNIX systems. Thus
the environment of a virtual process is defined by Ethos and
is unaffected by any process; moreover only the appropriate
distributor may invoke it with fdSend. Finally, the permis-
sion for authentication is narrowly scoped: it does not allow
extraneous actions.

4.2 Local authentication

Ethos allows authentication by password (or physical to-
ken/biometric) only when the user can physically interact
with the computer—never over the network. For obvious
reasons, we call this local authentication.

The API to authenticate a user such as Alice locally is:

1

’! authenticate() ‘

The authenticate system call establishes a trusted path [22,
73] and prompts Alice for her password. Alice must input
a password locally (not over the network), and the pass-
word is never seen by the application. Ethos notes Alice as
the owner of the calling process and then verifies her pass-
word; based on this check, authenticate returns true (authen-
ticated) or false (rejected). Ethos rate limits authentication
and logs its use, providing resistance to excessive local pass-
word attempts at the system level.



1 do forever

2 user < read (stdinFd);

3 fdSend ([stdinFd, stdoutFd, stderrFd],
user, "loginVP")

(a) Distributor distributes terminal fds to virtual processes

stdinFd <« fdReceive ()

stdoutFd <+ fdReceive ()

stderrFd + fdReceive ()

if authenticate ()

// User authenticated; exec shell.

0~ O Uk

(b) loginVP checks password and then does user startup
Figure 1: Local authentication

On a client host—one where the user would locally
authenticate—Ethos unlocks the user’s keystore when au-
thentication succeeds. On a server machine, user keystores
are always unlocked. While the protections on server key-
stores are weaker, keys are never shared across hosts. (Thus
all keys are compound keys in the sense of [40].) Server key-
stores are useful only for server farms when keys are used to
authenticate across backend services.

Authenticate does not require any privilege. It is safe for
any application to invoke, as it does not disclose passwords
to the application or change the process’s OS state (as does,
e.g., POSIX’s setuid).

Figure 1 shows the key code in Ethos’s login, made up
of two programs totaling 68 lines of Go. Alice first pro-
vides her name to the login distributor (Line 2). The dis-
tributor passes this name to fdSend, invoking the virtual
process loginVP and providing the terminal’s file descriptors
(Line 3). (stdinFd, stdoutFd, and stderrFd correspond to
POSIX’s 0/stdin, 1/stdout, and 2/stderr.) After receiving
the file descriptors with fdReceive, loginVP calls the authen-
ticate system call (Line 7). Of course, loginVP is already
running as Alice when it makes this call; the call to authen-
ticate simply means that login will not proceed without a
valid password.

4.3 Network authentication

Ethos cryptographically authenticates all network connec-
tions, so applications cannot fail to authenticate, authenti-
cate a network connection using a password, or incorrectly
authenticate. Ethos’ use of PKC means that authentica-
tion does not require the sharing of secrets, users can cre-
ate their own key pairs, and each public key is guaranteed
unique. Because of the last property, public keys are Uni-
versally Unique IDs (UUIDs) that can serve as UIDs [68,
55, 36], even if the user’s real-world identity is not known.
This enables uniform support of stranger, anonymous, and
identified principals.

An obvious problem is how to associate a name—and
therefore a real-world identity—with a UID/public key [54];
we solve this problem using a PKI. Current PKIs have the
reputation, deservedly, of being complex and having poor
performance, thus we are designing an Internet-scale PKI
[61].

Rather than attempt to describe our PKI here, we will de-
scribe a simplified version with a single authentication server
(denoted S). We note that S is fully capable of satisfying
all the authentication needs of an organization; it is struc-
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3 import 2 fdSend 2
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Figure 2: Interaction of client and server components

turally identical to an organization which maintains its own
password authentication server. We’ll assume that Alice (de-
noted A) is to be authenticated by host Bob (denoted B).
Let kx be X’s key, X — Y means X sends to Y. The
sequence is as follows:

Party Message/Action

A — B ks and an authenticator created with ka
B validates the authenticator using k4

B — S “whose key is ka?”

S — B a certificate signed by kgs: “ka is A’s key”
B verifies the certificate using ks.

Here B only needs public key ks. If S does not know key
ka, then A is either a stranger or anonymous. In either
case, host B’s access controls determine whether to accept
A’s request.

Figure 2 depicts an Ethos client making a connection
to a distributor. The distributor accepts connections and
distributes them, via fdSend, to the appropriately user-
credentialed virtual process. Ethos cryptographically au-
thenticates the remote user associated with an incoming
network request, and subjects connection requests to its au-
thorization policy (§4.5). Thus import only returns for net-
work requests from authorized (and authenticated) users.
We present pseudo code for two Ethos services and discuss
them in detail in §5.

4.4 Principals, strangers, and anonymity

An Ethos user can assume different principals when making
network connections on a per-host-and-service basis. This
supports different identities for work, entertainment, and so-
cialization. A principal can be a stranger (i.e., not present
in a RAS), and anonymous principals result from creating
a new identity on each connection to a service. Whether a
service allows anonymous or stranger users is a matter of
authorization (§4.5), independent of any application code.
Assuming strangers protect their private key, Ethos can iso-
late their persistent resources as with identified users, and
no one else can assume their identity during authentication.

Strong anonymity is difficult to achieve, and depends on
its use. Anonymous services need, in addition to anonymous
users, further protections against de-anonymizing, such as
with Dissent [19] or Tor [23]. This level of anonymity is not
included in Ethos at the OS level due to its latency, but
Ethos provides a strong foundation on which to build such
services.



Table 1: Summary of authentication components: the authorization controls show how Ethos restricts each component; and
system administrators must audit each component as indicated (see §5.3-5.5)

Authentication-related auditing requirements

Type Component Relevant authorization controls
remote-user distributor Accept network request for service
based Send fd to virtual process

virtual process Process owner = remote user
Commensurate access for user/program

client Make outgoing connection to service

arbitrary-user | distributor
based Send fd to virtual process

Accept network request for service

Confirm fdSend specifies correct recipient

virtual process Commensurate access for user/program

client Make outgoing connection to service

4.5 Awuthorization

Ethos tightly links authentication with authorization, as au-
thentication influences authorization decisions. Authoriza-
tion enables organization- or application-specific decisions,
whereas authentication is one-size-fits-all.

Like Security-Enhanced Linux (SELinux) [43, 34],
Ethos provides mandatory authorization controls. Unlike
SELinux, Ethos’ authorization system was designed along
with its system calls. The users of Ethos services are speci-
fied at the OS—mnot the application—level, and Ethos asso-
ciates a remote principal with each incoming network con-
nection. Because of this, Ethos can directly make authoriza-
tion decisions based on a remote user. A remote principal
must be authorized before Ethos will provide the connection
to a distributor, so unauthorized remote users never interact
with Ethos application code.

Each Ethos process bears an immutable user and a label.
The user is inherited from the process’s parent or set by
some call to fdSend, and Ethos reads the label from the
process’s executable in the filesystem. Objects—including
files, directories, and IPC services—bear a group, owner, and
a label. Ethos stores these attributes along with the object
in its filesystem. In general, Ethos permissions are specified
in two ways: (1) an authorization specification describes the
processes which can exercise a given permission on an object
and (2) certain directory prefixes confer certain permissions
on the objects they contain.

Directory permissions permit only administrators to cre-
ate virtual process/distributor executables, and Ethos’ au-
thorization specification restricts virtual processes to access-
ing connections bearing particular labels (i.e., certain ser-
vices) and remote users:

e Remote-user virtual processes owned by u may only
read connections owned by wu.
e Arbitrary-user virtual processes owned by u may read
connections of any u'.
In the first case it is unnecessary to audit distributor code,
and the virtual process is restricted at the system level based
on the remote user. In the second case it is necessary to audit
the distributor. This work is quite modest: almost all virtual
processes are expected to be remote-user, and distributors
are quite small (on the order of 100 lines).

Thus Ethos governs which processes may:

(1) make an outgoing connection to a service,

(2) accept a network request from a given remote user

(whether known or not) for a given service,

(3) send a file descriptor to a virtual processes running a

given program,

(4) read/write file descriptors.

4.6 Implementation

Ethos maintains a hash table of user records. It initially
populates this table with the users in its LAS. Ethos adds
on demand other users to the table when it imports their
network connections. In this case, Ethos extracts the user’s
UID (public key) from the authenticator present in its net-
work protocol [48] and extracts his name from the RAS, if it
is known. If the user is not known to the RAS, then Ethos
sets his name to the string form of his public key. User
records also contain the user’s running virtual process list.

When a process calls fdSend, Ethos first checks whether
running process is authorized to run the particular virtual
process specified by the system call (§4.5). Ethos then checks
the user record to determine if the target virtual process
is already running. If not, Ethos creates it by allocating
the process’s page tables, switching to the process’s address
space, setting the process’s UID to the appropriate public
key, loading the program image into memory, nullifying all
file descriptor table entries, and allocating a heap and stack.

Finally, Ethos adds the fdSend file descriptor tuple ar-
gument to the virtual process’s incoming fdReceive queue.
Ethos will then schedule the virtual process which can ob-
tain the file descriptors by calling fdReceive.

5 Evaluation

Our evaluation focuses on the security of Ethos’ authentica-
tion mechanisms. Ethos enhances security through (1) care-
ful design of the OS interface to reduce applications’ re-
sponsibility with respect to security and (2) unified security-
related administrative controls at the system level. The first
strategy reduces the Trusted Computing Base (TCB) by
moving critical components into the OS, minimizing repli-
cation; this is in contrast to minimizing the OS but then
requiring parts of the TCB to be implemented in applica-
tions. The second strategy aids administrators who must
tailor Ethos’ protections for their particular organization.
We apply these strategies throughout Ethos; here we evalu-
ate their effect on authentication.

We first analyze the code required for authentication in
existing systems (§5.1). Next, we analyze Ethos’ individual
authentication-related mechanisms (§5.2) and their effect on
common security holes. We present three code-based case
studies: remote-user virtual process (§5.3), arbitrary-user
virtual process (§5.4), and local authentication (§5.5). We
also analyze system administration, comparing traditional
application-by-application security properties to Ethos’ se-
curity settings, which apply to all applications (§5.6). Fi-
nally, we consider the Ethos code base (§5.7) and evaluate
performance (§5.8).



Ethos user space is coded in Go, but we compare mostly
to POSIX C code. Although this is an apples-to-oranges
comparison, two things should be kept in mind: First, in
all networking code, Ethos applications require zero lines of
code for authentication vs. thousands in POSIX. Second,
we normalize this overhead by presenting the ratio of C au-
thentication code to C application size.

5.1 POSIX attack surface

Application development on POSIX requires significant code
and care to ensure the application properly authenticates
users. For example, version 2.0 of the Dovecot mail server
contains approximately 15,000 authentication Lines of Code
(LoC), 8% of its total C codebase. Apache 2.2 provides sev-
eral authentication modules, totaling over 1,800 LoC. The
Kerberos authentication provider, mod_auth_kerb, contains
another 1,500 LoC. In these cases, bugs in application code
might cause an authentication failure. The US National Vul-
nerability Database [2] identified 699 authentication-related
flaws in the last three years, 5% of the total reports.

The above code counts do not include external libraries.
In principle, libraries should consolidate code and therefore
ease system assurance. In practice, the layering of POSIX
systems results in something quite different. Consider
Transport Layer Security (TLS), which provides a funda-
mental component of network authentication on the Inter-
net: encryption and (in sensitive environments) public-key-
based client authentication. The Fedora Project’s Linux dis-
tribution contains three major TLS C libraries: OpenSSL,
GnuTLS, and Network Security Services (NSS). Fedora’s
effort to consolidate on NSS [1] and thus aid in assurance ef-
forts began in 2007 and is still ongoing, having faced many
obstacles. Furthermore, libraries must often be rewritten
for different programming languages, and they often provide
both weak and strong mechanisms.

These factors increase the amount of security-sensitive
code, increase the application attack surface, and make it
more difficult for administrators to ensure that the applica-
tions they install have the requisite protections.

5.2 Ethos Protections and the CWE/SANS Top 25

Ethos is differently layered: protections are transparently
provided by the OS, ensuring that application program-
mers cannot incorrectly invoke or bypass them. Ethos’ in-
escapable authentication-related protections include:

P1 Processes cannot change owners (§4.1).

P2 Applications do not have access to secrets (§4).
P3 All network connections are authenticated (§4.3).
P4 Authentication uses strong techniques (§4.3).

P5 Confidentiality of the authentication server database
is not essential to security (§4.3).
P6 All communication made (client-side) or received
(server-side) are authorized by user (§4.5).
Protections P1-P6 address several bug classes which result
in security holes. This represents seven error classes, or 28%
of the CWE/SANS’ Top 25 Most Dangerous Software Errors
[45]. Table 2 shows how Ethos’ protections avoid the Top
25 vulnerabilities.

5.3 Remote-user virtual process case study

Ethos is a clean-slate design, so we wrote a new remote shell
utility, resh, to evaluate Ethos’ authentication mechanisms

Table 2: Authentication vulnerabilities and protections

Vulnerability Protection
Missing authentication for critical function P3, P6
Use of hard-coded credentials P4
Unnecessary privileges pP1*
Broken/risky cryptographic algorithm P2, P3, P4
Allow excessive authentication attempts P4

Use of a one-way hash without a salt P4
Incorrecg permission assignment for critical P2, P5
resource

*in conjunction with Ethos’ authorization system
Twith respect to authentication secrets

1 netFd « ipc ("resh”, "example.com”)
2 do forever

3 command « readCommand ()

4 write (netFd, command)

5 response < read (netFd)

6 print (response)

(a) Client resh connects, issues requests, and receives responses

7 listenFd < advertise ("resh")

8 do forever

9 netFd, user < import (listenFd)
10 fdSend ([netFd], user, "reshVP")

(b) Server reshDistributor sends connections to reshVP

11 func processCommand (command)
12 // Not shown: Decode and
pipe/fork/exec.

13 fd < fdReceive ()

14 do forever

15 command < read (fd)

16 if command = "exit”

17 exit ()

18 response < processCommand (command)
19 write (fd, response)

(c) Server reshVP services shell requests
Figure 3: Remote shell application

with respect to remote-user virtual processes. We compare
this Ethos application to OpenSSH.

Like most Ethos services, resh is made up of a client, dis-
tributor, and virtual process. A user can use the client to
log in to a remote server and issue commands, similar to
OpenSSH. Though simple, this application illustrates sev-
eral of Ethos’ advantages.

We wrote resh in Go; it contains 547 LoC, with 383
of that in Go YACC. Resh and its corresponding server,
reshDistributor/reshVP, are shown as pseudo code in Fig-
ure 3. This design pattern can also be used for webserver-
style services.

Discussion If Alice is the remote user, then both resh and
reshVP run as Alice. Ethos accomplishes this without any
application authentication code (Figure 3 has none), because
network authentication and encryption are provided at the
system level (§5.2). Furthermore, no application code ever
has access to authentication secrets.

By default, Ethos’ authorization policy disallows network-



facing distributors from reading and writing a network file
descriptor. Thus this distributor has two network privileges:
it may advertise services and import connections of the ap-
propriate type. Once it imports a file descriptor, it may only
fdSend it to a virtual process. Only a process matching the
remote user can use this descriptor. If the descriptor was
sent to a virtual process running on behalf of the wrong
user, Ethos authorization would prevent the process from
reading or writing it (§4.5). Thus this distributor can only
affect availability, no matter how it is written. The result-
ing virtual process runs as the remote user who is restricted
through Ethos’ authorization policy.

OpenSSH implements its protections very carefully, re-
quiring substantial effort [52]. OpenSSH also has significant
responsibilities not required of an Ethos application: e.g.,
determining the remote user through some application-layer
authentication protocol. The former requires a substan-
tial amount of application-specific code; OpenSSH contains
nearly 12,000 lines of cryptographic- and authentication-
related code, 12% of its total.

Application-based techniques must be repeated for each
application and not all of these are as carefully implemented
as OpenSSH. Often such POSIX applications do not exe-
cute with remote user privileges. Instead, such applications
(e.g., Apache or MySQL) themselves implement authoriza-
tion controls, further adding to the application program-
mer’s load.

5.4 Arbitrary-user virtual process case study

We implemented on Ethos a networked messaging applica-
tion named eMsg to demonstrate an arbitrary-user virtual
process. Figure 4 contains a pseudo-code listing of eMsg. We
wrote eMsg in Go; it contains 698 LoC, and is patterned af-
ter such Mail Delivery Agents (MDAs) as Postfix and gmail.
eMsg consists of five programs, two of which (msgDistributor
and msgReceive) pertain especially to authentication:

msgWrite is used to compose a message and store it in the
sender’s outgoing spool.

msgSend is a virtual process that is either invoked by
msgWrite or every ten minutes. msgSend delivers out-
going messages to a remote msgDistributor.

msgDistributor accepts messages received over the net-
work, peeks at the recipient, and executes msgReceive
with the recipient’s credentials.

msgReceive runs as a virtual process with the recipient’s
credentials and writes incoming messages to the recip-
ient’s spool.

msgView displays the messages in a user’s local incoming
spool. It does not directly interact with the network,
hence its listing is not included in Figure 4.

A user runs msgWrite to create a message. msgWrite
writes the message to the user’s outgoing spool and noti-
fies msgSend of the outgoing message. msgSend reads the
user’s outgoing spool and attempts to send each message
over the network by calling ipc and write.

To receive a message, msgDistributor listens for connec-
tions. After import returns, msgDistributor calls peek to
obtain the recipient of the message without disturbing the
stream. msgDistributor then uses fdSend to pass the net-
work file descriptor to msgReceive, a virtual process running
on behalf of the recipient which writes the message to the

do forever
waitOnNewMessageOrTimeout ()
for filename in "7 /out"
msg < readVar(filename)
netFd < ipc("msg”, msg.To.Host)
write (netFd, msg)
removeFile(filename)

N O U W N

(a) Client msgSend sends spooled mail after notification

8 listenFd < advertise (
9 do forever

10 netFd, user < import(listenFd)

11  msg < peek(netFd)

12 fdSend ([netFd], msg.To, "msgReceive”)

msg”)

(b) Server msgDistributor sends file descriptors to msgReceive

13 do forever

14 fd < FdReceive()

15 msg < read(fd)

16 writeVar(""/in /" 4+ gettime (), msg)

(c) Server msgReceive reads messages/writes incoming spool
Figure 4: eMsg network components

recipient’s incoming spool.

Discussion In contrast to remote-user authentication,
arbitrary-user authentication allows the client to be owned
by Alice and the virtual process msgReceive to be owned
by Bob. This allows msgReceive to write to Bob’s incoming
spool (and run Bob’s mail filters) even though the sender
(i.e., remote user) is Alice.

Like resh, eMsg dedicates zero LoC to network authenti-
cation. It differs from resh in that authorization must be
more permissive: the distributor can read messages (nec-
essary to determine the recipient) or route a file descrip-
tor to the wrong user. Furthermore, the msgReceive virtual
process may read from any network file descriptor from the
distributor, not just those that are owned by the virtual pro-
cess’s user; so here misrouted messages can be read. Thus
msgDistributor’s code must be audited to ensure it will not
deliver a message to the wrong recipient, but msgDistributor
is very simple—35 LoC. The audit assures that it always
calls fdSend with the proper recipient as the user argu-
ment. This is much less work than that required of a
POSIX messaging system which implements its own authen-
tication; for example, an audit of Postfix requires checking
its use of OpenSSL and Simple Authentication and Security
Layer (SASL).

5.5 Local authentication case study

As mentioned in §4.2, Ethos prevents password authentica-
tion over the network. The authenticate system call cannot
be used for networked communication since it requires that
the password be typed on a physical, local keyboard. The
local login distributor (Figure 1) is particularly restricted; it
is limited to reading from stdinFd and calling fdSend. Thus
the only file descriptors the login distributor may pass to
fdSend are the terminal file descriptors: stdinFd, stdoutFd,
and stderrFd. The distributor may prompt for a username
and pass the terminal file descriptors to the corresponding
loginVP virtual process using fdSend. A compromised dis-



tributor might fdSend to the wrong user’s loginVP, but that
would cause the authentication to fail. Furthermore, since
authenticate is a system call that does not release user se-
crets to user space, this breach could not be used by one user
to collect the password of another. The distributor can only
affect availability. This leaves loginVP which runs as the
target user—it has no special privileges. The administra-
tor needs to check that loginVP calls authenticate; however,
loginVP is unique—there is only one local login program and
it is distributed with Ethos.

5.6 System administration

Configuring POSIX The presence of authentication code
in POSIX applications also has consequences for system ad-
ministrators. Even small but nonetheless disparate configu-
ration requirements—such as disabling the use of passwords
by Secure Shell (SSH)—combine to create overall complex-
ity. Performing these tasks takes inordinate time and skill
[47], and is different for each application. As a result, config-
uration errors remain common [70]. Even the most security-
sensitive organizations are unable to adequately assure their
systems [74], and administrators routinely lose track of the
means with which users may connect to their systems [65].

Consider configuring an application that runs on top
of a web server such as Apache. An administrator
must first choose an Apache authentication provider; we
chose a simple one, mod_authn_file, as a lower bound on
the required work. Apache also requires explicit con-
figuration of TLS. The necessary authentication-related
modules—mod_ssl, mod_auth_digest, mod_authz_host, and
mod_authn_file—have 54 configuration points; one mistake
can result in missing or weak encryption or authentication.
As this work is performed at the application layer, the sys-
tem administrator must independently configure each appli-
cation (e.g., Postfix, MySQL, etc.).

Configuring Ethos For the most part, Ethos admin-
istrators can safely treat applications as black boxes—
application-specific security settings are unnecessary. Fur-
thermore, Ethos partitions general security requirements
from business logic. The former is the responsibility of ad-
ministrators; only the latter must be considered by appli-
cation programmers. Of course, good code partitioning by
application programmers will enable the system administra-
tor to be more effective. That is, programmers should split
their applications into separate processes so that they can
be subjected to the Multics principle of least privilege [18].
No configuration is needed for protections P1-P6 (§5.2);
they are transparently provided by Ethos. The security
settings Ethos does have are centralized in the LAS/RAS
and system-level authorization configuration (both are pol-
icy specifications, and so must be configurable). Authoriza-
tion is external to application code, and covers network au-
thorization by user, host, and executable. Anonymity in
Ethos allows universally accessible, but authenticated, ser-
vice without requiring application-level user accounts.
Ethos reduces code audit requirements. Network authen-
tication is expected to be the common case, and this does not
require any application source code audits for integrity and
confidentiality. Few services require local or arbitrary-user
virtual process authentication; these applications are easy to
audit, especially as distributors are quite small. Distributors
might also be audited for Denial of Service (DoS) protec-
tions, but this is only necessary for stranger- or anonymous-
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Figure 5: User transitions: fdSend vs. setuid

authorized services. (More complex DoS are associated with
Ethos’ cryptography, but that is not performed by the ap-
plication.)

5.7 Ethos code base

To ensure authentication, Ethos must be properly imple-
mented. Towards this goal, the Ethos environment is en-
gineered to remain small, even while consolidating secu-
rity services. As mentioned previously, targeting VMMs is
a major advantage in this effort. We have also carefully
chosen a small set of interfaces to export. As a result,
Ethos is presently made up of 35,378 LoC, excluding its
cryptographic library. Of this, 427 lines implement fdSend,
fdReceive, and authenticate. Another 51,733 LoC come from
NaCl, the cryptographic library used in Ethos, which has
been carefully verified [13].

5.8 Performance

We evaluated Ethos on a computer with a 4.3 GHz AMD
FX-4170 quad-core processor and 16GB of memory, which
we used to compare the performance of Ethos to Linux.
Ethos itself uses only a single core in these experiments.
We ran all of our Linux benchmarks with nscd, to minimize
the latency of authentication database lookups.

5.8.1 Microbenchmarks

We measured the performance of setuid on Linux with two
programs, linuxSetuid and linuxSetuidExec. To these we com-
pared ethosFdSend, an Ethos program. We padded each
program to be approximately 800,000 bytes.

linuxSetuid repeatedly forks and in the child process tran-
sitions with setuid to a user known at compile time (but
resolved at run time to a UID using getpwnam) before ex-
iting. linuxSetuidExec extends linuxSetuid by calling exec af-
ter setuid. This better isolates the post-authentication logic
and allows controls—such as SELinux—to restrict the server
separately from the distributor. This trades performance for
robustness.

ethosFdSend is a program that measures the performance
of fdSend, including both sending a file descriptor and creat-
ing the virtual process. ethosFdSend loops for a set period of
time, calling fdSend with some user on each loop iteration.
Each invoked virtual process runs a loop that continuously
tries to fdReceive file descriptors.

Figure 5 displays the results of comparing linuxSetuid, lin-
uxSetuidExec, and ethosFdSend. This figure plots the per-
formance in user transitions per second across a range of
returning user percentages. From left to right, the figure
depicts performance from the case of 2,000 iterations with
no returning users (0%) to the case of a single user serviced



Table 3: Local eMsg delivery

1KB msg/s
eMsg single recipient 1,435
eMsg 50% new recipient 824
eMsg 100% new recipient 454
Postfix 250

2,000 times (100%). When ethosFdSend encounters a new
user, Ethos creates a new virtual process; loading this pro-
gram is the primary source of latency. On the other hand, if
a user returns, then the user’s virtual process already exists,
lowering latency.

In the worst case, where each user encountered is new,
ethosFdSend was able to create 3,243 virtual processes per
second. When all users are repeats (i.e., high user local-
ity), its throughput was 73,803 user transitions per second.
ethosFdSend always outperformed linuxSetuidExec, this per-
formance advantage ranged from 113% to 2,573%. At ap-
proximately 25% returning users, ethosFdSend outperformed
linuxSetuid. The relative performance of ethosFdSend to lin-
uxSetuid ranged from 77% to 1,645%.

These experiments resulted in the execution of a virtual
process per user, and this consumed both memory (due to
process duplication) and CPU (due to scheduling overhead)
resources proportional to the number of users. In Ethos, it
is possible to perform network authentication while running
the serving process as a single pseudo-user. For example a
ping service might service ping requests with a single set of
privileges, but only from authorized users. This will reduce
resource use but might also result in lower security.

5.8.2 Application benchmark

To benchmark an entire application, we replaced msgWrite
with msgBenchmark, a program that sends 2,500 messages
sequentially. We ran msgBenchmark so that it sent mail
locally instead of over the network. Thus msgBenchmark
tests eMsg’s authentication rate, along with the speed at
which Ethos can read/write message spools. We compared
eMsg to Postfix, listening on a UNIX domain socket, and
driven by smtp-source.

Our results appear in Table 3. Like the microbenchmarks,
this benchmark is sensitive to the number of running virtual
processes. Thus we ran msgBenchmark so that it sent mes-
sages under three different scenarios: to a single user, a new
user 50% of the time, and a new user 100% of the time.
In the first case, the cost of executing msgReceive is amor-
tized across the number of iterations. At the other extreme,
Ethos must execute a new virtual process for each iteration.
In each case, eMsg outperforms Postfix.

6 Compatibility

Because of the huge computing infrastructure and installed
software base, compatibility is essential. Compatibility im-
pacts several levels in a system, including: applications,
libraries, system calls, networking, and protocols. Ethos’
clean-slate design is intended to avoid semantics that have
lead to errors in the past, and thus Ethos is not source code
compatible. Another means is therefore needed for real-
world compatibility.

Ethos’ VMM-based implementation bridges the issues of
needed applications, libraries, and system calls. A computer

can run several OSs, which means that the other OSs’ ap-
plications are instantly available, as are its system calls and
libraries (albeit with different security properties). Further-
more, Ethos is directly compatible with IP and traverses
Network Address Translation (NAT) networks.

By design, Ethos speaks only a single family of RPC-
based application protocols. Other protocols can be bridged
through the use of proxies running on other OSs. Thus we
have ported Ethos’s networking stack to Linux. This allows
Ethos to service requests originating as any number of exist-
ing protocols. Of course, this is a compromise; existing OSs
will benefit only partially from Ethos’ design. But it has the
advantage that Ethos’ code is small and unified, leading to
a more analyzable and secure core.

Collectively, these techniques allow a transition to Ethos
(or another designed-for-security OS) over a period of
decades, if necessary, since using Ethos does not preclude
the use of any other OS. We believe that during that pe-
riod, many applications will need to be rewritten to be more
secure, and we hope that they will target Ethos to do so.
(We note that massive rewrites and application changes were
made to deal with the Y2K issue; security is a much broader
issue and so its solution is likely to be more expensive). This
is a large amount of work, but we believe it to be far smaller
than trying to secure critical applications on traditional OSs.

7 Related work

POSIX POSIX authentication is predominantly discre-
tionary. The setuid system call family changes a process’s
user credentials, but its rules are complex, inconsistent, and
ill defined [15]. Attacks can inflict substantial damage, as
setuid often requires the process to run as root before tran-
sitioning to the target user.

Pluggable Authentication Modules (PAM) provides con-
figurable authentication methods (e.g., password, smart
card, etc.) using various back-end databases [57]. Because
PAM modules typically execute in the application’s address
space, a compromised application may leak user secrets or
bypass authentication altogether.

Networked services often use frameworks such as GSS-
API [42] to perform an authentication handshake, but secu-
rity failures can stem from incorrectly invoking or bypassing
library-based authentication.

Many network services run as a pseudo user, requiring
the application to implement authorization logic separate
from any system-wide policy. Worse, some monolithic net-
work services run with superuser privileges, where security
holes can provide an attacker unlimited access to the ma-
chine [12]. Countermeasures for attacks on over-privileged
processes burden system administrators, requiring applica-
tion code audits [52, 38].

Operating systems UNIX provides a pure form of privi-
lege escalation through the setuid bit in its filesystem. An
attacker can craft an environment and then invoke a highly-
privileged setuid-bit process. Ethos avoids authentication
privilege escalation because its processes never change own-
ers (see §4.1).

Plan 9 improves on POSIX/UNIX authentication. It pro-
vides a system service called factotum which protects users’
authentication keys/passwords and implements a suite of
authentication protocols [20, 51]. In addition, services may
invoke kernel-based network encryption. Thus applications



are isolated from authentication secrets and protocols. In-
stead of a highly privileged setuid system call, Plan 9 pro-
vides similar functionality through two device interfaces,
/dev/caphash and /dev/capuse, and a protocol by which
factotum provides a program the capability to transition to
a new user.

We were inspired by Plan 9’s careful isolation, but we
aimed to make Ethos’ protections inescapable. In doing
so, we subsume the work of configuring/auditing applica-
tions to ensure they use factotum, strong authentication
protocols, and encryption. This strategy resembles dis-
tributed firewalls [32], which also make certain protections
inescapable by adding to the semantics of their network sys-
tem calls. Plan 9’s secstore inspired Ethos’ keystore (§4).
Ethos’ LAS/RAS also resembles Active Directory, which
permits local password authentication, but can associate cer-
tificates with users for network authentication [50].

Many OSs are capability based [58]. For example, Cap-
sicum adds a capability system to FreeBSD [66]. How-
ever, applications continue to rely on traditional means
for authentication. Thus Ethos’ authentication mechanism
and Capsicum (separate from FreeBSD) are complementary;
Ethos provides system-level authentication guarantees and
more abstract system calls; Capsicum promotes least privi-
lege by easing application decomposition and sandboxing.

Ethos’ distributors drew from many existing systems in-
cluding inetd, OKWS’ okd, and gmail [39, 12]. OKWS on
UNIX provides only per-service isolation due to performance
concerns. Efstathopoulos et al. extended OKWS to run on
the Asbestos OS and provide per-user isolation, and gmail
demonstrates that per-user isolation can perform well on
UNiX. Ethos uses virtual processes to perform per-user iso-
lation; we showed in §5 that fdSend performance benefits
from locality of reference.

HiStar to provides strict information flow control [71], and
DStar extends information flow controls across the network
[72]. HiStar and Ethos are complementary: HiStar’s UNIX
layer could be replaced with Ethos’ higher abstractions, and
Ethos could adopt many of HiStar’s contributions to flow
control.

Taos implements distributed security as part of the OS
[68], and makes no distinction between local and remote
principals. A Taos process may make a request on behalf
of a set of allowed principals; the recipient can identify the
requester using GetPrin and confirm permission using Check.
Like Taos, Ethos uses global identifiers—public keys—to
identify users. Moreover, Ethos shares system-level authen-
tication with Taos. Ethos’ ipc bears some resemblance to
GetPrin, but Ethos performs mandatory authorization, so
Check is not necessary.

Singularity simplifies Taos’ authentication model some-
what [69]; its processes have a single, immutable principal
associated with them. Thus it is likely that applications
will need to spawn processes for different purposes, but Sin-
gularity’s Software Isolated Processs (SIPs) lower this cost.
Ethos’ virtual processes provide a similar benefit yet do not
require an application virtual machine (i.e., Common Lan-
guage Runtime (CLR)).

Like Singularity, an Ethos process speaks for only one
principal, but for simplicity we do not explicitly support
compound principals. Rather, we rely on public key unique-
ness and virtual processes. Thus an Ethos public key always
corresponds to user u at host h. This requires Ethos to sup-

port equivalence classes of users.

Ethos authorizes a chain of requests involving several pro-
cesses along the way, whereas Taos and Singularity consider
a compound principal at the endpoint. We believe that this
is only useful in (tightly coupled) server-to-server configura-
tions. In contrast, Ethos relies on authorization and client-
to-end-server certificates for such protections. The sophis-
tication of Taos and Singularity is more expressive, while
Ethos pursues simplicity.

8 Conclusion and further work

Typically, it takes less than a handful of system calls to im-
plement authentication. At first appearance, it may seem
that authentication is an isolated mechanism and that the
highly privileged processes required remain simple enough
to rarely contain vulnerabilities. But such an approach re-
sults in mechanisms which are subject to many abuses. As
authentication is a powerful operation—often the sole basis
for determining permissions—these abuses poses great dan-
gers to the system’s security. For this reason, authentication
has been subject to many attacks.

In reality, authentication is quite subtle, and analyzing
an application for flaws has proven extraordinarily difficult.
Thus Ethos authentication takes place at the system level.
For high integrity, it integrates network authentication and
local authentication mechanisms—ensuring strong authen-
tication, even across networks. PKC enables remote prin-
cipals to be identified by their public key, thus ensuring a
globally unique identifier for every user—even strangers or
anonymous users. Every principal is identified to Ethos,
enabling Ethos to (differentially) authorize each user. Ad-
ditionally, Ethos authorization prevents misuse of the most
common authentication case purely at the system level. This
subsumes the need to audit any application authentication
code.

Ethos eliminates thousands of lines of authentication code
in each networked application. The benefits include: (1) se-
curity critical code is moved to the system so it is unaf-
fected by application code; (2) the system guarantees strong
techniques rather than relying on application programmers;
(3) all remote users—even anonymous ones—are authenti-
cated and authorized; and (4) application-specific security
configuration is reduced. The result is fewer opportunities
to make security errors.

In addition, Ethos’ authentication system is carefully de-
signed to require user secrets to be unlocked by local au-
thentication, isolate authentication secrets within the OS,
eliminate authentication privilege escalation, and provide
support for anonymous users.

Future work on Ethos includes expanding its user-space
libraries, developing user interfaces, and developing applica-
tions. These are substantial tasks due to Ethos’ clean-slate
design. We will focus on the most security-sensitive applica-
tions, where the advantages of Ethos are most compelling.
In the long run we also plan to produce a high-assurance
implementation of Ethos.
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