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A resolution of the St Petersburg paradox is presented. In contrast to the standard
resolution, utility is not required. Instead, the time-average performance of the lottery
is computed. The final result can be phrased mathematically identically to Daniel
Bernoulli’s resolution, which uses logarithmic utility, but is derived using a conceptually
different argument. The advantage of the time resolution is the elimination of arbitrary
utility functions.
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1. Introduction

I investigate practical consequences of a radical idea built into the foundations
of probability theory. The idea is that of embedding a stochastic system in an
ensemble of systems, which all start in the same state, but develop along different
trajectories. To understand how this idea was absorbed into the theory, the
original motivation for developing the concept of probability and expectation
values is reviewed in §2. Section 3 describes the St Petersburg paradox, the
first well-documented example of a situation where the use of ensembles leads
to absurd conclusions. Daniel Bernoulli’s [1] response to the paradox is presented
in §4, followed by a reminder of the more recent concept of ergodicity in §5,
which leads to an alternative resolution in §6 with the key theorem 6.2. Section 7
explains the intriguing relation of this mathematically similar but conceptually
wholly different resolution to Bernoulli’s work and resolves difficulties with
unbounded utility functions noted by Menger [2]. Section 8 concludes that the
prominence in economics of Bernoulli’s early arguments may have contributed to
poor risk assessments of modern financial products, with consequences for market
stability through the effect of credit and leverage, as foreseen by writers as early
as Adam Smith.
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2. Origins of probability theory

Formal and concrete concepts of likelihood were first developed in the context
of gambling—notable are the works by Pacioli [3], by Cardano in the mid-
sixteenth century [4], and the work by Pascal and Fermat in the summer of 1654.
A prominent question treated by Pacioli [3] as well as by Pascal and Fermat
(B. Pascal & P. Fermat 1654, personal communication between themselves) is
the following ‘problem of the points’:1 imagine that a game of dice has to be
abandoned before it can be concluded. For instance, players may be betting
money on the highest score in rolling a dice three times, but have to leave after
two throws. In this situation, how is the ‘pot’, the total wager, to be distributed
among the players in a fair manner?

The first observation is that this is a moral question. Mathematics may aid
in answering it, but cannot resolve it without appealing to external information,
as any answer must depend on the concept of fairness. It could be perceived as
fair that the player with the most points is entitled to the total wager. Another
concept of fairness would be to call the game inconclusive and return to each
player his or her individual wager, or the pot may be split equally between the
participants. Apparently, at least until the seventeenth century, there was no
universal agreement on the relevant concept of fairness. Pacioli [3], for instance,
argued that the fair solution is to divide the pot in proportion to the points that
each player has accrued when the game is interrupted [see 5, p. 15].

A century and a half later, Pascal was approached by Chevalier de Méré to
produce a conclusive argument based on mathematics that would settle the issue.
Pascal and Fermat corresponded on the subject and agreed that the fair solution
is to give to each player the expectation value of his winnings. The expectation
value they computed is an ensemble average, where all possible outcomes of the
game are enumerated, and the products of winnings and probabilities associated
with each outcome for each player are added up. This procedure uses the then
revolutionary idea of parallel universes. Instead of considering only the state
of the universe as it is, or will be, an infinity of additional equally probable
universes is imagined. Any of these additional universes, for all we know, could
be reality (i.e. the world as it will be). The proportion of those universes
where some event occurs is the probability of that event. We will see that in
the eighteenth century Bernoulli noticed undesired properties of the ensemble
average, and in the nineteenth century Boltzmann began to specify conditions
for its applicability.

The 1654 investigation, which is generally considered the beginning of
probability theory, was concerned with a specific problem. It did not attempt to
make any predictions, for instance involving repetitions of the game, but solely
gave quantitative guidelines where individuals had incompatible moral intuitions.
Moral considerations were certainly at the heart of the early debate. Pascal
famously used expectation values to argue in favour of his religious beliefs, and
much of Cardano’s work on gambling is concerned with morals. He came very
close to defining a fair game as one where no player has an expected advantage
over others: ‘To the extent to which you depart from that equality, if it is in your
opponent’s favour, you are a fool, if in your own, you are unjust’ [4, p. 189].

1See Devlin [5] for a detailed historical account.
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Following Pascal’s and Fermat’s work, however, it did not take long for others
to recognize the potential of their investigation for making predictions. Halley
[6], writing in these pages 318 years ago, built on earlier work by Graunt [7],
and devised a method for pricing life annuities. The idea of embedding reality in
infinitely many possible alternatives was revolutionary in 1654, it was essential in
the development of statistical mechanics in the nineteenth century [8,9], and
it continues to be a fruitful means of conceptualizing complex and stochastic
systems [10]. Nonetheless, the idea itself is a dubious philosophical construct,
justified empirically by the success that, under appropriate conditions, comes
with allowing the use of mathematical rigour. Historically, it seems that the
philosophical weakness was initially ignored in applications. In §5, we will review
an alternative conceptualization of randomness.

Huygens [11] is credited with making the concept of expectation values explicit
and with first proposing an axiomatic form of probability theory. This was helpful
in developing the field mathematically, as results could now be proved to be
correct. On the other hand, by introducing an axiomatic system, correctness
becomes restricted to the context of the axioms themselves. A proven result in
probability theory follows from the axioms of probability theory, now usually
those of Kolmogorov [12]. It is related to reality only insofar as the relevant
real conditions are reflected by the axioms. Kolmogorov [12, pp. 1–2] wrote ‘The
theory of probability [. . .] should be developed from axioms in exactly the same
way as Geometry and Algebra. This means that after we have defined the elements
to be studied and their basic relations, and have stated the axioms by which these
relations are to be governed, all further exposition must be based exclusively on
these axioms, independent of the usual concrete meaning of these elements and
their relations’. He wrote that it would be a different ‘aim [. . .] to tie up as closely
as possible the mathematical theory with the empirical development of the theory
of probability’.

To summarize: the first systematic investigation into stochastic systems was
concerned with moral advice. The second established an axiomatic system.

3. The lottery

The St Petersburg paradox was first put forward by Nicolaus Bernoulli in 1713
[13, p. 402]. He considered lotteries of the following type:

A fair coin is tossed.

(1) On heads, the lottery pays $1, and the game ends. On tails, the coin is
tossed again.

(2) On heads, the lottery pays $2, and the game ends. On tails, the coin is
tossed again.
...

(n) On heads, the lottery pays $2n−1, and the game ends. On tails, the coin is
tossed again.
...

In other words, the random number of coin tosses, n, follows a geometric
distribution with parameter 1/2, and the payouts increase exponentially with n.
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We may call n a ‘waiting time’, although in this study it is assumed that
the lottery is performed instantaneously, i.e. a geometric random variable is
drawn and no significant physical time elapses. The expected payout from
this game is

$
∞∑

n=1

(
1
2

)n

2n−1 = $
(

1
2

+ 1
2

+ · · ·
)

, (3.1)

which is a diverging sum. A rational person, N. Bernoulli argued, should therefore
be willing to pay any price for a ticket in this lottery. In reality, however, people
are rarely willing to pay more than $10, which constitutes the paradox.

Reactions to the paradox include the following.
Even though the expected payout is infinite, there is not an infinite amount of

money or goods in the world to pay up. So the lottery is not realistic (G. Cramer
1728, personal communication with N. Bernoulli). If the payouts are limited to
some realistic value, then the lottery’s expected payout is drastically reduced.
For example, the 31st term in the sum, equation (3.1), comes from a payout of
about $109, so limiting payouts to $109 reduces the expected payout from $∞ to
$15. Similarly, one could argue that it is only too sensible to ignore events with
a probability of the order of 10−9 [2].

Another argument is that no one would offer such a lottery because it carries
an infinite expected loss for the lottery seller, which makes it irrelevant [14].

4. Bernoulli’s resolution

The quantity calculated in equation (3.1) is usually called an ‘expected’ payout.
But as it fails to capture the reality of the situation its conceptual validity must
be questioned. Bernoulli [1, p. 1] noted

Paragraph 1. Ever since mathematicians first began to study the measurement of risk there
has been general agreement on the following proposition: expected values are computed by
multiplying each possible gain by the number of possible cases where, in this theory, the
consideration of cases which are all of the same probability is insisted upon.

Indeed, Huygens [11] had postulated: ‘if any one should put 3 shillings in one
hand without telling me which, and 7 in the other, and give me choice of either of
them; I say, it is the same thing as if he should give me 5 shillings…’. This concept
of expectation is agnostic regarding fluctuations, which is harmless only if the
consequences of the fluctuations, such as associated risks, are negligible. This is
usually the case in small-stakes recreational gambling as considered in the earliest
studies of chance by Pacioli [3], Cardano [4] and Fermat and Pascal (P. Fermat
& B. Pascal 1654, personal communication between themselves), mentioned in
§2, but it is not the case in the St Petersburg paradox. Noticing that the ability
to bear risk depends not only on the risk but also on the riskbearer’s resources,
Bernoulli [1, p. 24] wrote under paragraph 3:

If I am not wrong then it seems clear that all men cannot use the same rule to evaluate the
gamble. The rule established in paragraph 1 must, therefore, be discarded.
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Bernoulli, and shortly before him Cramer (G. Cramer 1728, personal
communication with N. Bernoulli), drew attention to psychological and
behavioural issues involved in the evaluation of the proposed lottery. The
desirability or ‘utility’ associated with a financial gain, they argued, depends not
only on the gain itself but also on the wealth of the person who is making this
gain. Instead of computing the expectation value of the monetary winnings, they
proposed to compute the expectation value of the gain in utility. To this end, the
utility function u(w) was introduced, which specifies the utility of a wealth of $w.

As an extra dollar is generally worth less to a rich person than to a poor person,
u(w) is assumed to be concave, such that du(w)/dw is monotonically decreasing.
While exceptional circumstances can render this assumption invalid (Bernoulli
cites an imprisoned rich man who only needs another 2000 ducats to buy his
freedom), it is well confirmed behaviourally. Otherwise, u(w) is only loosely
constrained. Bernoulli [1] suggested the logarithmic function, uB(w) = ln(w),
whereas Cramer (G. Cramer 1728, personal communication with N. Bernoulli)
had proposed using uC(w) = √

w instead. Bernoulli’s proposition of the logarithm
was based on the intuition that the increase in wealth should correspond to an
increase in utility that is inversely proportional to the wealth a person already
has, du/dx = 1/x , whose solution is the logarithm.

Bernoulli [1] thus ‘discarded the rule’ (for calculating expected gains in wealth)
by replacing the object whose expectation value was to be calculated. Instead of
gains in wealth, he decided to focus on the expectation of gains in some function
of wealth.

In §6, we will also discard the rule established in paragraph 1 of Bernoulli [1],
but not by replacing the object whose average is to be calculated, i.e. not by
replacing plain monetary gains by a function of those gains. We will replace the
type of average, using the time average instead of the ensemble average. This
is necessary because the system under investigation (the dynamics of monetary
wealth) is not ergodic, as will be shown in §6. In doing so, we will critique the
implicit considering of multiple imagined systems, or parallel universes.

But first, applying Bernoulli’s reasoning, we compute the expected change in
logarithmic utility, 〈DuB〉, owing to playing the lottery, given the initial wealth
$w and the cost of a ticket in the lottery $c,

〈DuB〉 =
∞∑

n=1

(
1
2

)n

⎛
⎜⎝

utility after the game︷ ︸︸ ︷
ln(w − c + 2n−1)− ln(w)︸ ︷︷ ︸

utility before the game

⎞
⎟⎠. (4.1)

This sum converges (as long as each individual term is finite) as is readily shown
using the ratio test. Depending on w and c, the quantity can be positive or
negative, reflecting expected gain or loss of utility. Assuming that potential lottery
players base their decisions not only on the expected monetary gain, but instead
also on the expected gain in usefulness, and that usefulness is appropriately
represented by uB, the paradox is thus resolved.

It is dissatisfying that this resolution of the paradox relies on a function
u(w) that is postulated and, in the framework of Cramer and Bernoulli,
cannot be derived from more fundamental considerations. Disagreements on
whether the assumptions (the characteristics of diminishing marginal utility of
wealth) are realistic are difficult to settle. Anticipating this objection, Bernoulli
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[1, p. 31]—Daniel being perhaps less mathematician than scientist—appealed to
observations: ‘Since all our propositions harmonize perfectly with experience
it would be wrong to neglect them as abstractions resting upon precarious
hypotheses’.

The responses to the paradox mentioned at the end of §3 are similarly
dissatisfying—they address the relevance of the problem and argue that it would
never really arise, but they do not resolve it. As the paradoxical aspect is the
behaviour of real people, however, these arguments are valid, and all means of
disposing of the paradox could be similar in character.

While Bernoulli’s observations of human risk aversion and even the functional
form he proposed for modelling these are ‘correct’ in a specific sense elaborated in
§6, these behavioural regularities have a physical reason that Bernoulli failed to
point out. In fact, it appears that he was not aware of this physical reason, which
justifies only uB(w) = ln(w). Bernoulli [1, p. 33] did not consider the logarithmic
form of utility essential and wrote of Cramer’s work, which uses uC(w) = √

w:
‘Indeed I have found his theory so similar to mine that it seems miraculous that
we independently reached such close agreement on this sort of subject’.

5. Ergodicity

The question of ergodicity in stochastic systems is concerned with a conceptual
choice in giving meaning to quantitative probabilities. It can be argued that it
is meaningless to assign a probability to a single event, and that any decision
regarding a single event must resort to intuition or morals. For mathematical
guidance, the event has to be embedded within other similar events. Fermat and
Pascal (P. Fermat & B. Pascal 1654, personal communication between themselves)
chose to embed within parallel universes, but alternatively—and often more
meaningfully—we can embed within time. The concept of a decision regarding
a single isolated event, whether probabilistic or not, seems dubious: how do we
interpret the premise of isolation? Surely, the event is part of a history. Does the
individual making the decision die immediately after the event? In general, the
consequences of the decision will unfold over time.

The origins of ergodic theory lie in the mechanics of gases [15]. One is interested
in large-scale effects of the molecular dynamics, i.e. in the thermodynamic
variables. For instance, the macroscopic pressure of a gas is a rate per area of
molecular momentum transfer to a container wall, averaged over an area that is
large compared with the typical distance between molecules and over a time that
is long compared with the typical interval between molecular impacts in the area.

As the number of particles is large and collisions are possible, however,
it is practically not possible to explicitly solve the microscopic equations of
motion. Full information about the state x (positions and momenta of all
molecules) is not available, and the time average, for instance of momentum
transfer to a container wall, cannot be computed directly. Boltzmann [16] and
Maxwell [17] independently replaced the physically required time average by
the average over an ensemble of appropriately weighted states x, making use of
Huygens’ expectation value. The weight of the different states x in the ensemble
was postulated and subsequently justified empirically by comparing predictions
with observations.
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The key rationale behind this dramatic step is that the systems considered
are in equilibrium: the macroscopic variables of interest do not change in time,
and microscopic fluctuations obey detailed balance (e.g. van Kampen [18]).
Under these strict conditions, time has little tangible effect, and we may get
away with disregarding it completely. Nonetheless, both Boltzmann and Maxwell
were concerned that for mathematical convenience they were using the a priori
irrelevant ensemble average.

Specifically, when Boltzmann [16] suggested to treat a gas as a collection of
many systems, namely subvolumes that can be thought of as a probabilistic
ensemble, he warned that using this ‘trick’ means ‘to assume that between
[…] the various […] systems no interaction ever occurs’ (quoted in [9, p. 14]).
The requirement of absolutely no interaction between a collection of systems is
equivalent, in practical terms, to the non-existence of all these systems from each
other’s perspectives—if systems A and B cannot ever interact in any way, then
to system A, for all practical purposes, system B does not exist and vice versa.
Another way of putting this is that systems A and B are parallel universes.

Assuming the validity of this procedure is known as the ergodic hypothesis. It is
permissible under strict conditions of stationarity (e.g. Grimmet & Stirzaker [19,
ch. 9.5]). These conditions were understood long after the St Petersburg paradox
had been introduced [20–23].

Much of the literature on ergodic systems is concerned with deterministic
dynamics, but the basic question whether time averages may be replaced by
ensemble averages is equally applicable to stochastic systems, such as Langevin
equations or lotteries. The essence of ergodicity is the question whether the system
when observed for a sufficiently long time t samples all states in its sample space
in such a way that the relative frequencies f (x, t) dx with which they are observed
approach a unique (independent of initial conditions) probability, P(x) dx,

lim
t→∞ f (x, t) = P(x). (5.1)

If this distribution does not exist or is not unique, then the time average,
Ā = limT→∞(1/T )

∫T
0 A(x(t)) dt, of an observable A cannot be computed as an

ensemble average in Huygens’ sense, 〈A〉 = ∫
x A(x)P(x) dx. The generic variable

A may depend on time only through its state dependence, or it may have explicit
time dependence. If P(x) is not unique, then the time average of A generally
depends on initial conditions. If P(x) does not exist, then there may still be a
unique time average. A unique ensemble average may also still exist—although
we cannot find P(x) from equation (5.1), we may be able to determine P̃(x, t), the
proportion of systems in an ensemble that are in state x at time t, and compute
the ensemble average as 〈A〉(t) = ∫

x A(x, t)P̃(x, t) dx. In special cases, the time
dependencies of A(x, t) and P̃(x, t) can be such that 〈A〉(t) does not actually
depend on time. However, there is no guarantee in these cases that the time
average and ensemble average will be identical.

Growth factors in the St Petersburg lottery are such a special case. In §6, it will
be shown that the ensemble-average winnings (a priori irrelevant) from the lottery
diverge, whereas the time-average winnings do not. Mathematically, the result is
identical to the result obtained by Bernoulli (although see §7a). Conceptually,
however, the arbitrary utility (arbitrary in the sense that it depends on personal
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characteristics) is replaced by an argument based on the physical reality of the
passing of time and the fact that no communication or transfer of resources is
possible between the parallel universes introduced by Fermat.

(a) The economic context

To repeat, the quantity in equation (3.1) is accurately interpreted as follows:
imagine a world of parallel universes defined such that every chance event splits
our current universe into an ensemble containing member-universes for every
possible outcome of the chance event. We further require that the proportion of
members of the ensemble corresponding to a particular outcome is the probability
of that outcome. In this case, if we give the same weight to every member-universe,
then equation (3.1) is the ensemble average over all possible future states of the
universe (i.e. states after the game).

Of course, we are not a priori interested in such an average because we cannot
realize the average payout over all possible states of the universe. Following
the arguments of Boltzmann and Maxwell, this quantity is meaningful only in
two cases.

— The physical situation could be close to an ensemble of non-interacting
systems which eventually share their resources. This would be the case if
many participants took part in independent rounds of the lottery, with an
agreement to share their payouts, which would be a problem in portfolio
construction, and different from Bernoulli’s set-up.2

— The ensemble average could reflect the time-average performance of a
single participant in the lottery. Whereas time averages in statistical
mechanics are often difficult to compute (hence the ergodic hypothesis),
the simplicity of the St Petersburg lottery makes it easy to compute them
and see how they differ from ensemble averages.

Thus, neither case applies to the St Petersburg lottery, and the ensemble average
is irrelevant to the decision whether to buy a ticket.

In general, to realize an average over the ensemble, ensemble members must
exchange resources, but this is often impossible, so we must be extremely careful
when interpreting ensemble averages of the type in equation (3.1).

6. Resolution using non-ergodicity

The resolution of the St Petersburg paradox presented in this section builds on
the following alternative conceptualization:

— Rejection of parallel universes. To the individual who decides whether to
purchase a ticket in the lottery, it is irrelevant how he may fare in a parallel
universe. Huygens’ (or Fermat’s) ensemble average is thus not immediately
relevant to the problem.

2This situation is equivalent to a single person buying tickets for many parallel rounds of the
lottery. In the limit of an infinitely rich person and a finite ticket price it can be shown that it is
advisable to invest all funds in such independent lotteries.
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— Acceptance of continuation of time. The individual regularly encounters
situations similar to the St Petersburg lottery. What matters to his
financial well-being is whether he makes decisions under uncertain
conditions in such a way as to accumulate wealth over time.

Similarly, in statistical mechanics Boltzmann and Maxwell were interested in
momentum accumulated over time. Because they considered equilibrium systems,
where time is largely irrelevant, they hypothesized that time averages could
be replaced by ensemble averages. However, a person’s wealth is not usually
in equilibrium, nor even stationary: on the time scales of interest, it generally
grows or shrinks instead of fluctuating about a long-time average value. Therefore,
the ergodic hypothesis does not apply [24]. Consequently, there is no reason to
believe that the expected (ensemble-average) gain from the lottery coincides with
the time-average gain. That they are indeed different will be shown in this section
by explicitly calculating both.

The accumulation of wealth over time is well characterized by an exponential
growth rate. To compute this, we consider the factor ri by which a player’s wealth
changes in one round of the lottery,3

ri = w − c + mi

w
, (6.1)

where, as in equation (4.1), $w is the player’s wealth before the round of the
lottery, $c is the cost of a lottery ticket and $mi is the payout from that round
of the lottery. To convert this factor into an exponential growth rate g (so that
exp(gt) is the factor by which wealth changes in t rounds of the lottery), we take
the logarithm, gi = ln(ri).4

(a) Ensemble average

Theorem 6.1. The ensemble-average exponential growth rate in the St Peters-
burg lottery is 〈g〉 = ln(

∑∞
n=1(1/2)n(w − c + 2n−1)/w).

Proof. First, we consider the ensemble-average growth factor, and begin by
averaging over a finite sample of N players, playing the lottery in parallel
universes, i.e. in general players will experience different sequences of coin tosses,

〈r〉N = 1
N

N∑
i=1

ri , (6.2)

which defines the finite-sample average 〈·〉N . We change the summation in
equation (6.2) to run over the geometrically distributed number of coin tosses
in one round, n,

〈r〉N = 1
N

nmax
N∑

n=1

knrn , (6.3)

3One ‘round’ of the lottery is used here to mean one sequence of coin tosses until a tails-event
occurs. Throughout, an index i refers to such rounds, whereas n indicates waiting times—the
number of times a coin is tossed in a given round.
4The logarithm is taken to facilitate comparison with Bernoulli’s analysis. As long as it acts on
the average, as opposed to being averaged over, it does not change the convergence properties.
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where kn is the frequency with which a given n, i.e. the first tails-event on the
nth toss, occurs in the sample of N parallel universes, and nmax

N is the highest n
observed in the sample. Letting N grow, kn/N approaches the probability of n,
and we obtain a simple number, the ensemble-average growth factor 〈r〉, rather
than a stochastic variable 〈r〉N

〈r〉 = lim
N→∞

〈r〉N = lim
N→∞

nmax
N∑

n=1

kn

N
rn

=
∞∑

n=1

pnrn . (6.4)

The logarithm of 〈r〉 expresses this as the ensemble-average exponential growth
rate. Using equation (6.1) and writing the probabilities explicitly, we obtain

〈g〉 = ln

( ∞∑
n=1

(
1
2

)n w − c + 2n−1

w

)
. (6.5)

�
As the ensemble-average payout from one round in the lottery diverges,

equation (3.1), so does this corresponding ensemble-average exponential growth
rate equation (6.5).

(b) Time average

Theorem 6.2. The time-average exponential growth rate in the St Petersburg
lottery is ḡ = ∑∞

n=1(1/2)n ln(w − c + 2n−1) − ln(w).

Proof. The time average is computed in close analogy to the way the ensemble
average was computed. After a finite number T of rounds of the game, a player’s
wealth reaches5

w(T ) = w
T∏

i=1

ri . (6.6)

The T th root of the total fractional change,

r̄T =
(

T∏
i=1

ri

)1/T

, (6.7)

which defines the finite-time average r̄T , is the factor by which wealth has grown
on average in one round of the lottery over the time span T . We change the
product to run over n,

r̄T =
⎛
⎝nmax

T∏
n=1

rkn
n

⎞
⎠1/T

, (6.8)

where kn is the frequency with which a given n occurred in the sequence of T
rounds, and nmax

T is the highest n observed in the sequence. Letting T grow, kn/T
5A possible objection to this statement is discussed below, starting on the next page.

Phil. Trans. R. Soc. A (2011)



Time resolution of St Petersburg paradox 4923

approaches the probability of n, and we obtain a simple number, the time-average
growth factor r̄ , rather than a stochastic variable r̄T

r̄ = lim
T→∞

r̄T = lim
T→∞

nmax
T∏

n=1

rkn/T
n

=
∞∏

n=1

rpn
n . (6.9)

The logarithm of r̄ expresses this as the time-average exponential growth rate.
Using equation (6.1) and writing the probabilities explicitly, we obtain

ḡ = ln

( ∞∏
n=1

rpn
n

)

=
∞∑

n=1

pn ln rn

=
∞∑

n=1

(
1
2

)n

(ln(w − c + 2n−1) − ln(w)). (6.10)

�
Equation (6.10)3 is identical to the right-hand side of equation (4.1).
Again the quantity can be positive or negative, but, instead of the ensemble

average of the change in utility, we have calculated the time-average exponential
growth rate of a player’s wealth without any assumptions about risk preferences
and personal characteristics. If the player can expect his wealth to grow over time,
and he has no other constraints, then he should play the game; if he expects to
lose money over time, then he should not play. The loci of the transition between
growth and decay, where ḡ = 0, define a line in the c versus w plane, which is
shown in figure 1. Equation (6.10) depends on the player’s wealth—keeping c > 1
fixed, ḡ initially increases with w; see inset of figure 1 for the example of c = 2.
This is because the wealthy player keeps most of his money safe, and a loss
does not seriously affect his future ability to invest. For the very wealthy player,
neither a win nor a loss is significant, and the time-average exponential growth
rate asymptotes to zero as w → ∞. At the other extreme, a player whose wealth
w ≤ c − 1 risks bankruptcy, which in a sense means the end to his economic life,
and limw→(c−1)+ ḡ = −∞.

So equation (6.10) can also be considered a criterion for how much risk a person
should take. The cost of the ticket, c, is the exposure to the lottery. For fixed
(positive) w ‘buying’, a ticket is always advisable if c = 0; see §7a. As c increases,
ḡ will eventually become negative as the exposure, or risk, becomes too large.
The time resolution discourages entering into any gamble where bankruptcy, i.e.
zero or negative wealth after the game, occurs with non-zero probability. In these
cases, individual terms in the sum in equation (6.10) are undefined.

Equation (6.10) may seem an unnatural criterion for the following reason: the
lottery is played only once with wealth w. By the next round, wealth has changed
by mi − c, and the situation has to be re-evaluated. So in reality, although we may
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Figure 1. Equation (6.10) (or equation (4.1)) defines a relationship between w and c, where
ḡ(w, c) = 0, i.e. the player breaks even over time (or his ensemble-average logarithmic utility
change is zero) if he pays $c given his wealth $w. Inset: time-average exponential growth rate (or
ensemble-average logarithmic utility change), ḡ(w, c = 2) = 〈DuB〉(w, c = 2), for the St Petersburg
lottery as a function of wealth, $w, with a ticket price of $c = $2. If the player risks bankruptcy by
purchasing a ticket, then ḡ(w, c) → −∞. To the infinitely wealthy player, a gain or loss is irrelevant
and ḡ(w, c) → 0. (Online version in colour.)

buy tickets at the same price repeatedly, a combination of different ḡ (resulting
from different ‘initial’ wealths w) will be realized. However, over a sufficiently long
time, we must assume that we will face equivalent decisions again, and thus play
equivalent lotteries again. Let us consider the result of playing many rounds in
different lotteries,

∏T
i ri . Because of commutativity, we can rearrange the factors

in the product so that the first T ′ factors correspond to the rounds in which we
face equivalent lotteries (for instance, we have the same wealth, and the tickets
are offered at the same price), and the remaining T − T ′ factors refer to different
situations,

T∏
i=1

ri =
T ′∏
j=1

rj

T∏
m=T ′+1

rm . (6.11)

Whatever
∏T

m=T ′+1 rm may be, the steps in equation (6.9) apply to the first
product, and the sign of the quantity in equation (6.10), which determines
whether the first product is greater or smaller than 1, is a good criterion for
deciding whether to buy a ticket.

It is instructive to calculate the time-average exponential growth rate in
another way. Equation (6.10)2 looks like an ensemble-average exponential growth
rate obtained by computing exponential growth rates for individual systems and
then averaging those over the ensemble,

lim
N→∞

1
N

N∑
i=1

ln(ri). (6.12)
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The reason why this quantity is not the ensemble average but the time average
is subtle. There is no limit T → ∞, so how can this be a time average?

Averages extract deterministic parameters from stochastic processes. The
ensemble average does this by considering an infinity of parallel universes, and
the time average does it by considering infinitely many time steps. But to find the
time average, it is not necessary for time itself to approach infinity. Instead, the
unit of time can be rescaled. It is only necessary that all possible scenarios occur
exactly with the appropriate frequencies during the sampling time. As long as
the effect of time—of events happening sequentially—is accounted for, this will
lead to the time average.

We have used one round of the lottery as one time unit. Thus, the return
from one time unit will be one of the possible returns rn . If we observe only one
time unit, then the best estimate for the time-average return would be the return
that happened to be realized in that time step. An approximate estimate for the
time-average exponential growth rate is thus ḡest

1 ≈ r1 − 1.6
To improve this estimate, we pick q returns rj at random and in agreement

with the probabilities pn , and let each return act for 1/q time units.7 The total
time that passes during the experiment is kept fixed but we separate it into q
subintervals of time. The result will be

ḡest
q =

q∑
j=1

(r1/q
j − 1). (6.13)

The proportion of subintervals during which return rn is realized will approach
pn as q → ∞. In this limit, we can therefore replace the sum over time steps
by a sum over n as follows:

ḡest
∞ = lim

q→∞

q∑
j=1

(r1/q
j − 1)

=
∞∑

n=1

lim
q→∞ kn(r1/q

n − 1)

=
∞∑

n=1

pn lim
q→∞ q(r1/q

n − 1), (6.14)

where kn once again is the frequency with which a given n occurs, now in
the sample of q subintervals. Using the definition of the logarithm, ln(rn) ≡
limq→∞ q(r1/q

n − 1) yields

lim
q→∞

q∑
j=1

(r1/q
j − 1) =

∞∑
n=1

pn ln rn , (6.15)

6The approximation ln(r1) ≈ r1 − 1 is permissible here because we will consider infinitesimal time
steps such that exp(ḡ dt) = 1 + ḡ dt will be exact.
7The subscript j is used here instead of i because it refers not to one round but to subintervals of
one round.
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meaning that the time-average exponential growth rate, derived by splitting
a time unit into infinitely many subintervals and playing through all possible
scenarios in these subintervals, can be written as the expectation value of the
logarithm of returns. A limit which is equivalent to the apparently missing limit
T → ∞ is implied by the logarithm and evaluated before the explicit limit in
equation (6.12). Thus, equation (6.12) is an ensemble average of a time average,
which is nothing but a time average.

7. Relation to Bernoulli’s resolution

Equation (6.10) is mathematically equivalent to Bernoulli’s use of logarithmic
utility. Bernoulli argued behaviourally that, instead of the expectation value of
monetary gain, the expectation value of the gain in a loosely constrained function
(the utility) of wealth should be considered. One of the allowed functions is the
logarithm, which has the special property of encoding the multiplicative nature
common to gambling and investing in a linear additive object, the expectation
value

∞∑
n=1

pn ln rn = ln

⎛
⎝ lim

T→∞

(
T∏

i=1

ri

)1/T
⎞
⎠. (7.1)

Inadvertently, by postulating logarithmic utility (left-hand side of equation (7.1)),
Bernoulli replaced the ensemble-average winnings with the time-average
exponential growth rate in a multiplicative non-ergodic stochastic process
(right-hand side of equation (7.1)).

Bernoulli did not make the time argument, as is evident from his acceptance of
Cramer’s square-root utility, which does not have the property of equation (7.1):∑∞

i p(ri)
√

ri cannot be written as a similar product. This is problematic because
the arbitrariness of utility can be abused to justify reckless behaviour, and it
ignores the fundamental physical limits, given by time irreversibility, to what
can be considered reasonable. But because Bernoulli’s early work postulated the
logarithm, many consequences of equation (6.10) have already been discussed in
the literature under the heading of ‘logarithmic utility’.

A different heading for these results is the ‘Kelly criterion’ [25–27]. In contrast
to ensemble-average exponential growth rates, which often diverge (for instance
with leverage), time-average exponential growth rates can be optimized [24,28].
Kelly [25] used this fact to optimize wager sizes in a hypothetical horse race
using private information. While he refrained from using utilities because he
deemed them ‘too general to shed any light on the specific problems’ he considered
[25, p. 918], he did not point out the fundamental difference in perspective his
treatment implies: in essence, arbitrary utility functions are replaced by the
physical truth that time cannot be reversed. My aim here is to emphasize this
difference in perspective. It is crucial that logarithmic utility from this point of
view is not a utility at all. Rather, the logarithm accounts for the multiplicative
nature of the process: the ensemble average of the logarithm of growth factors
equals the logarithm of the time average of growth factors.

Comparing equation (6.10) and equation (4.1), it is tempting to say
that the time average justifies logarithmic utility. I advise against this
interpretation because it conflates physical concepts of time with behavioural
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concepts of usefulness. Any utility function other than the logarithm leads to
recommendations that do not agree with the time perspective.

(a) Menger’s objection to unbounded utility

Bernoulli [1] did not actually write down equation (4.1), although it is often
assumed that that was his intention. Instead of using the criterion equation (4.1),
he argued in two steps ‘how large a stake an individual should be willing to
venture’ [25, pp. 26–27].

— The expected gain in utility is calculated without explicitly taking the
ticket price into account

∞∑
n=1

(
1
2

)n

ln(w + 2n−1) − ln(w). (7.2)

— This is followed by the statement that ‘the stake more than which persons
[…] should not venture’ is that ticket price, $c, which satisfies

expected utility gain with c = 0︷ ︸︸ ︷
∞∑

n=1

(
1
2

)n (
ln(w + 2n−1) − ln(w)

)− [ln(w) − ln(w − c)]︸ ︷︷ ︸
utility loss at purchase

= 0. (7.3)

This is not the condition that defines the line in the main panel of figure 1 as
it does not imply that the expected net change in utility, equation (4.1), is zero.
In this sense, equation (4.1) is an inaccurate, although generally accepted and
sensible, representation of Bernoulli’s work. The difference between equation (4.1)
and equation (7.3) and the conflicting interpretations of these equations are
consequences of the aforementioned arbitrariness of the utility framework.

Menger [2] claimed that using logarithmic utility as Bernoulli did,
equation (7.2) and equation (7.3), does not resolve modified versions of the
paradox, where payouts $f (n) as a function of waiting time n increase faster than
according to Bernoulli’s original fB(n) ≡ 2n−1. Specifically, Menger considered
fM(n) ≡ w exp(2n) − w. Note that this function is curiously defined in terms
of the initial wealth. His first step closely mirrors Bernoulli’s first step, but then
he jumps to an untenable conclusion:

— Menger [2] pointed out that, by replacing 2n−1 in equation (7.2) by fM(n),
the expected gain in logarithmic utility at zero ticket price diverges.

— He argued that the paradox remains unresolved because ‘it is clear that
also in the modified St. Petersburg game no normal person will risk a
large amount or even his fortune as a wager’ ([2, p. 468], my translation),
and generalized to conclude that this formally prohibits the use of any
unbounded utility function.

The meaning of the second statement is unclear. A player who pays ‘his fortune’
for a ticket in Menger’s lottery and then experiences a heads-event on the first coin
toss, i.e. the worst possible outcome, will still gain since the worst-case payout,
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$fM(1) = $w exp(2) − $w, is more than the initial wealth, $w. For a person to risk
losing anything at all, the ticket price has to be $c > $fM(1), far greater than the
person’s wealth. For a person to risk losing his entire wealth, the ticket price has
to be greater still, $c ≥ $fM(1) + $w = $w exp(2). But at such prices equation (7.3)
is undefined.

Perhaps Menger meant that Bernoulli’s condition, equation (7.3), cannot be
satisfied, and the price one should be willing to pay is infinite. In that case,
the second part of Menger’s argument implicitly assumes that the positive
divergence in the first part cannot be offset by anything else. But as the ticket
price approaches the player’s wealth, c → w, the utility loss at purchase in
equation (7.3) represents another divergence, implying that this argument is
inconclusive. It will now be shown to be invalid.

Menger’s objection to Bernoulli could hold in the following sense: the left-hand
side of equation (7.3), using Menger’s payout function, diverges positively if c < w
and is undefined otherwise. But it is never zero (or negative)—when does it warn
against the gamble? To understand what the undefined regime signifies, one has
to study the process of divergence and compare the two infinities as they unfold.

For any finite nmax, a finite value c < w does exist, which renders the
corresponding partial sum zero,

∀nmax < ∞ ∃ c < w :
nmax∑
n=1

(
1
2

)n

2n − [ln(w) − ln(w − c)] = 0. (7.4)

To ensure positivity up to exactly c = w, where the expression becomes undefined,
events of zero probability have to be taken into account. For any non-zero lower
bound on probability, Bernoulli’s condition can be satisfied. In this sense, in the
literal original Bernoulli set-up, values of c ≥ w, where equation (7.4) is undefined,
correspond to the recommendation not to buy a ticket, and the paradox
is resolved.

Menger’s conclusion is incorrect. Bernoulli’s logarithmic utility recommends
to purchase tickets as long as they cost less than the player’s wealth, implying a
significant minimum gain—a course many a ‘normal person’ may wish to pursue.
The criterion could be criticized for the opposite reason: it rejects prices that
guarantee a win, even in the worst case.

The time resolution produces the criterion in theorem 6.2, which is equivalent
to equation (4.1) and not to Bernoulli’s literal original criterion equation (7.3).
Consequently, it yields a different recommendation, which may at first appear
surprising but turns out also to correspond to reasonable behaviour given the
assumptions on which it is based: it recommends to purchase a ticket at any
price that cannot lead to bankruptcy. The player could be left with an arbitrarily
small positive wealth after one round. The recommendation may be followed
by a ‘normal person’ because of the assumption that equivalent lotteries can be
played in sequence as often as desired. Under these conditions, irrespective of how
close a player gets to bankruptcy, losses will be recovered over time. Of course,
if these conditions are violated, the time resolution does not apply. This last
statement is another warning against the naive use of mathematics, whose truth
is always restricted to the context of axioms or assumptions. Applicability reflects
the degree to which assumptions are representative of real conditions in a given
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situation. While ensemble averages are meaningless in the absence of samples
(here parallel rounds), time averages are meaningless in the absence of time (here
sequences of equivalent rounds).

8. Discussion

Excessive risk is to be avoided primarily because we cannot go back in time.
Behavioural aspects and personal circumstances are relevant on a different level—
they can change and do not immediately follow from the laws of physics.

The perspective described here has consequences far beyond the St Petersburg
paradox, including investment decisions [24,28] as well as macro-economic
processes. For example, it is sensible for a nation striving for growth to encourage
risks that lead to occasional bankruptcies of companies and individuals. How
large a risk is macroeconomically sensible? What are the moral implications?
Does gross domestic product—a linear sum, similar to a sample average—
measure what one should be interested in? While the St Petersburg lottery is
an extreme case, equation (6.10) and figure 1 carry a more general message:
if net losses are possible, the negative time-average exponential growth rate
for small wealth, w, turns positive as w increases, implying higher exponential
growth rates for larger entities. In a collection of such entities, inequality has
a tendency to increase, letting large entities dominate and monopolies arise.
This can cause markets to cease functioning, as competition is compromised or
corporations become ‘too big to fail’. There is anecdotal evidence that assets
in stock markets have become more correlated in recent decades, and effective
diversification (which mimics ensembles) harder to achieve. This would make the
time perspective even more important, and the consequences of ignoring it more
dramatic.

Utility functions are externally provided to represent risk preferences, but are
unable by construction to recommend appropriate levels of risk. The framework
is self-referential in that it can only translate a given utility function into actions
that are optimal with respect to that same utility function. This can have
unwanted consequences. For example, leverage or credit represents a level of
risk that needs to be optimized, but current incentive structures in the financial
industry can encourage exceeding the optimal risk. Adam Smith [29], cited in
Foley [30], warned that excessive lending—in his case based on bills of exchange
for goods in transit—can lead to a collapse of the credit system, followed by
bankruptcies and unemployment; on the other hand, insufficient lending can lead
to economic stagnation, two stages that often follow one another in a boom–bust
cycle. To avoid both, good criteria for appropriate levels of risk are needed, which
the utility framework cannot deliver. The time arguments presented here provide
an objective null-hypothesis concept of optimality and can be used to optimize
leverage under a given set of conditions [24]. In the present case, optimality based
on such considerations is a good approximation to practically optimal behaviour.
This is evident from Bernoulli’s work, whose justification of the almost identical
result was practical validity.

The proposed conceptual re-orientation may help reconcile economic theory
with empirical regularities, such as risk aversion, known from behavioural
economics.
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It is easy to construct examples where less risk should be taken than
recommended by the criterion in equation (6.10). For example, some fraction of $w
may already be earmarked for other vital use. It is very difficult, however, to think
of an example where greater risk is beneficial. For this reason, the time perspective
is a useful tool for finding upper limits on risk to be implemented in regulation,
for instance as margin requirements, minimum capital requirements or maximum
loan-to-value ratios. Of course, such regulation must take into account further
arguments, but its least complex form can be based on the time perspective.

The epistemological situation is typical of the process of concept formation [31].
As the conceptual context changed, in this case from moral to predictive,
the original definition of the term ‘expectation’ began to lead to paradoxical
conclusions. From today’s conceptually later perspective, it appears that
N. Bernoulli made a hidden assumption, namely the assumption, explicitly stated
by Huygens [11], that ‘it is the same thing’ to receive five shillings as it is to have
an equal chance of receiving either three or seven shillings. Lakatos [31] points
out that it can be hard to imagine in retrospect that an eminent mathematician
made a hidden assumption, which is often perceived as an error. He writes on
p. 46, ‘while they [the hidden assumptions] were in your subconscious, they were
listed as trivially true—the ... [paradox] however made them somersault into your
conscious list as trivially false’. Similarly, it seems trivially true at first that the
expected gain from playing the lottery should be the criterion for participating—
taking time into account makes this assumption somersault into being trivially
false.

Thus, the St Petersburg paradox relies for its existence on the assumption that
the expected gain (or growth factor or exponential growth rate) is the relevant
quantity for an individual deciding whether to take part in the lottery. This
assumption can be shown to be implausible by carefully analysing the physical
meaning of the ensemble average. A quantity that is more directly relevant to
the financial well-being of an individual is the growth of an investment over
time. Utility, which can obscure risks, is not necessary to evaluate the situation
and resolve the paradox. It is the actual wealth, in $, of a player, not the
utility, that grows with ḡ (equation (6.10)). It is manifestly not true that the
commonly used ensemble-average performance of the lottery equals the time-
average performance. In this sense, the system is not ergodic, and statements
based on anything other than measures of the actual time-average performance
must be interpreted carefully.
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