PRINCIPLES AND PRACTISE OF X-RAYING

PRINCIPLES AND PRACTISE OF
X-RAYING

Frédéric Perriot, Peter Ferrie
Symantec Security Response, 2500 Broadway
Suite 200, Santa Monica, CA 90404, USA

Email fperriot@symantec.com,
pferrie@symantec.com

ABSTRACT

X-raying designates a virus detection method relying on a
known-plaintext attack on the virus body. Far from being a
new technique, x-raying has been used since the DOS days
of yore to detect encrypted or polymorphic viruses without
having to emulate their decryption code. As Entry-Point
Obscuring viruses surfaced, another advantage of x-raying
became obvious, namely the ability to detect an infection
without the — sometimes prohibitive — cost of locating the
decryption code in the infected object.

In this paper we examine conventional approaches to
x-raying and present our own improvements and
additions to the traditional methods. We also describe
precise applications of x-raying to the detection of several
recent polymorphic Win32 viruses. Finally we discuss the
potential and limits of x-raying when faced with complex
polymorphic viruses employing multiple encryption
layers or metamorphism.

INTRODUCTION

No. of Win32 virus variants as of 1 June, 2004 almost 1074
No. of cells in a human being 10014

No. of atoms in planet Earth 10750

No. of atoms in the Sun 10757

No. of atoms in the Milky Way Galaxy 10769

No. of atoms in the Universe 10778

No. of possible W32/Efish.A encryptions 101°507

Conventions

Numbers in the text are in decimal, unless they have a Ox
prefix, in which case they are in hexadecimal. Numbers in
illustrations are in hexadecimal. Unless otherwise noted, P
designates the plaintext, C the ciphertext, and K the key.
pO...pn designate individual symbols of the plaintext,
c0...cn symbols of the ciphertext.

PRINCIPLES OF X-RAYING

What is x-raying?

Intuitively, the term ‘x-raying’ applied to computer virus
detection designates an operation analogous to the use of
x-rays in medical science. In physics x-rays are
high-frequency electromagnetic radiations. By

bombarding a human body with x-rays, and measuring the
ratio of x-rays that goes through, it is possible to obtain a
picture of bones, teeth, or internal organs, seeing through
the skin and outer tissues. This is due to the fact that
various parts of the body absorb more or less radiation.

Figure 1. Occasionally, medical x-rays pick up intruders too.

Likewise, in the detection of self-encrypted computer
viruses, x-raying is a set of techniques that provide a
‘picture’ of the virus body, seeing through the layer, or
layers, of encryption. X-raying is applicable if the
encryption algorithm used by a virus presents certain
weaknesses. The object of this paper is to expose the
common principles of x-raying, as used in computer
virology, through practical examples that the authors
applied to virus detection in the past.

A simple x-ray example

The simplest form of encryption that is amenable to
x-raying is a byte ‘exclusive or’ (XOR). In this encryption
method, each byte of the encrypted text (‘cyphertext’) is
derived from one byte of the clear text (‘plaintext’) by
XOR’ing it with a fixed byte value between 0 and 255
(the ‘key’). This method is used in countless viruses,

even today.

As an example, consider the plaintext P:

P= ed 00 00 &5d
P P p2 p3

Figure 2. Sample plaintext.

and let us choose the key to be 0x99. Then the ciphertext
Cis:

C=| 8949 00499 00499 Ed o9
c | c2 c3
= 71 a9 a9 cd

Figure 3. Sample ciphertext.

Suppose now that we are given this ciphertext C and asked
whether it could be an encryption of the plaintext P with a

PRINCIPLES AND PRACTISE OF X-RAYING

byte XOR, with any key. We can determine this in two
steps, by guessing what the value of the key k must be
according to the value of first byte of ciphertext c0. On the
assumption that cO = Oxe8 " k, we guess that k = cO * Oxe8
=0x71 ~ Oxe8 = 0x99. Then we verify that the rest of the
ciphertext decrypts correctly by applying the guessed key
k to the following bytes:

71 8% 89 cd
|
v
k=71%e8=
¥ ¥ ¥ L
D=| 71~99 99499 9999 cd* 99
i a1 d2 d3
= e8 00 0o 5d

Figure 4. Sample x-raying.

The text D, which we tentatively decrypted, matches the
plaintext P, hence we found the pattern in the ciphertext
without knowing the encryption key a priori. Note that we
really checked three bytes instead of the total four, because
we had to guess a one-byte-long key.

A short history of x-raying

X-raying has been used since the days of encrypted DOS
viruses; viruses which employed a fixed decryption loop
preceding their body, and whose body was encrypted with
a fixed key. At the time, x-raying was an alternative to
picking a detection string from the, often short, decryption
loop. Searching for a string from the longer encrypted
body reduced the risk of false-positives.

Oligomorphic and polymorphic viruses then appeared,
which mutated their decryption loop, and thus made the
detection of the decryption loop difficult. X-raying
remained possible for this class of viruses, and competed
with generic decryption based on emulation, at least for
viruses using simple enough encryption methods.

Variants of x-raying were used as early as 1991 to detect
oligomorphic viruses such as Tequila [1], and even 1988 to
repair the encrypted virus Cascade [2]. The IBMAV team
has a patent on x-raying dating from 1995, describing
some techniques that work against various encryption
methods, and how x-raying can be used systematically to
scan objects for the presence of multiple patterns,
including patterns containing wildcards [3].

X-raying made it into several AV engines; F-prot, for
instance, supports x-raying of ADD and XOR encryption
with byte, word and dword sizes (8-bit, 16-bit and 32-bit.)
However, Fridrik Skulason indicates that x-raying can
easily be defeated by using several encryption layers [4]
(we mostly agree, but in some special cases, like
WO5/Drill, multiple layers are still x-rayable). Reportedly,

Frans Veldman and Eugene Kaspersky developed similar
x-ray techniques in their scanners [2, 4].

Later on, the appearance of Entry-Point Obscuring (EPO)
viruses provided one more reason to use x-raying: in some
cases, the decryption loop (and with it, the decryption key)
is buried so deeply inside the infected objects that parsing
the objects to find the key is more costly than attacking the
body of the virus with x-raying methods. Such methods
are usually highly dependent on the specific virus at hand,
but we will try to expose some commonalities.

The existence of viruses that produce buggy decryptors is
yet another reason for using x-raying. Emulation may be
impossible if the decryptor generated by the virus runs
into infinite loops or crashes. X-raying is interesting in this
case, particularly if it permits the decryption of data
necessary to repair infected files.

X-raying techniques are periodically rediscovered [5] and
adapted to fit the peculiarities of new viruses.

Relation with cryptography

To describe x-raying in a more scientific way, we may
borrow some vocabulary from the field of cryptography,
and classify x-raying as a ‘known-plaintext attack’ — that
is, an attack where the clear text of an encrypted message
(the virus body) is known, and the goal of the attack is to
recover the encryption key.

This is somewhat misleading because the key matters little
in detecting an encrypted virus, the central question is
whether the virus is present in the object at all. Recovery
of a valid key is usually the first step in verifying the
presence of the virus: once the key is recovered, by using
information from a small part of the virus body, adjacent
blocks of data are tentatively decrypted using the key, and
then matched against patterns from the virus body.

Another subtle difference between the cryptographer’s
known plaintext attack and x-raying is that a known
plaintext attack operates on one given block of ciphertext,
whereas x-raying typically considers many possible
positions of the scanned object in succession, treating
them in turn as the putative ciphertext. We call this a
‘sliding x-ray’. Older DOS viruses with fixed-sized

X-ray gHEER
c
step 1 ---ﬁiii“llllllll---

slide - C-/®_
step 2 [T LT -
o B
step3 — [[T TTT QT[] -

Figure 5. Sliding x-ray.

PRINCIPLES AND PRACTISE OF X-RAYING

decryption loop were sometimes x-rayable at a single
position, but the introduction of polymorphism, with
variably sized decryption loops, made sliding x-ray a
necessity.

There are a few other specificities of x-raying where the
analogy with cryptography does not quite hold:

1. Cryptanalysis (the part of cryptography interested in
breaking ciphers) is concerned with breaking one
cipher. X-raying is concerned with breaking all
possible ciphers that a virus may generate. Even early
oligomorphic viruses like Tequila were able to pick
one of several encryption methods to encrypt their
body, like ADD or XOR. This means that the same
plaintext gets encrypted using many algorithms and
keys, and x-raying has to break all of them.

2. The more varied the encryption algorithms of a virus,
the more difficult it is to x-ray. This goes against the
cryptography principle that all the security should
reside in the key, not in the algorithm [6]. In the
case of complex polymorphic viruses employing
running keys, the randomization of the encryption
algorithm is much harder to break than the key per se.
Alternatively, one may consider that the encryption
key is split into two parts: some bits defining an
algorithm (‘code key’), some bits defining parameters
to the algorithm (‘data key’, the usual ‘key’ of

cryptography).
10-bit key

L=

2-bit code key B-hit data key

00 ADD value = ADD argument
o : XOR value = XOR argument
10 : XOR + MEG value = XOR argument
11: NEG+ ROL value = ROL argument

T | N I N N B
161110061100

<:::> ¢8I[i] = - (p8[i] * Oxcce)

Figure 6. Code key and data key.

3.In cryptography, an algorithm must perform
consistently across almost all keys and messages to
be considered strong. If half of the key-space leads to
a trivially breakable encryption, the algorithm is bad.
In encryption algorithms produced by viruses, it is
enough that some keys provide good encryption, even
if the others are trivially breakable, because the goal
of x-raying is to detect 100 per cent of the samples of
a virus, and anything less is a false-negative.

4. Cryptographic ciphers are designed with the
following goals in mind [6]: the algorithm should be
fast, and the key should be small. That is, as fast and
as small as possible without compromising the
security of the cipher. Viruses do not share these
requirements: the encryption algorithms produced by
complex polymorphic viruses can be as slow and

awkwardly implemented as needed, this is even an
advantage from the point of view of the virus. The
keys may be many hundreds of bits long, or more.

Approaches to x-raying

There is more than one way to perform x-raying of a given
virus, as the examples in this paper testify. We propose to
distinguish between three modes of x-raying: ‘key
recovery’, ‘key validation’ and ‘invariant scanning’.

Key recovery is the most natural method, and the one we
demonstrated on the simple example above, where we
x-rayed a byte-wide XOR encryption. The first step is to
guess a key using one part of the ciphertext and some
knowledge of the plaintext. Then the key is applied to the
rest of the ciphertext to recover the rest of the plaintext.

Key validation attempts to recover several keys, or pieces
of keys, for several corresponding positions of the
plaintext and the ciphertext, and then verifies that all the
keys so recovered are consistent with one another, with
respect to the encryption method considered. If they are
consistent the ciphertext can be obtained by encrypting the
plaintext, thus a match exists.

Going back to the simple XOR example, the key
validation method considers corresponding bytes of the
plaintext and the ciphertext, and XOR them together to
derive a byte key for all text positions. Next, the validation
phase compares kO, k1, k2, and k3. Since they are equal,
they are consistent with the fixed byte XOR encryption.
Therefore the encrypted pattern is present.

Invariant scanning is a very fruitful approach described in
[3]. It consists of ‘reducing’ the ciphertext in such a way
that the result of the reduction does not depend on the key
used to encrypt the ciphertext. The reduced ciphertext can
then be matched against the reduced plaintext. The result
of the reduction is an invariant of the encryption function,
hence the name of this approach.

Once again, consider the simple XOR example. Let us
pick as a reduction the XOR of a text with itself shifted

c 71 a9 a9 cd
XOR
P eB 00 00 5d
= a9 89 a9 a9
ki k1 k2 k3
I I : | |
VALIDATE

kO =k1=k2=k3 C— = match!

Figure 7. Sample x-ray using key validation.

PRINCIPLES AND PRACTISE OF X-RAYING

step 1 : reduce the cyphertext

C | 71 | 949 | 99 | cd |
XOR
C>>1 | 71 | 99 | =] | c4 |
Re | 8 | o0 | 5d |
step 2 : reduce the plaintext
P | &8 | Q0 | a0 | 5d |
XOR
P >>1 | 8 | 0o | o0 | 5d |
Rp | &8 | 0o | 5d |
step 3 : compare the reduced texts
R c = RP —> match! +——

Figure 8. Sample x-ray using invariant scanning.

one byte to the right, and apply the transformation to the
ciphertext and the plaintext. Then, compare the reduced

ciphertext and plaintext. Since they match, we found the
encrypted pattern shown in Figure 8.

For the sake of the demonstration, we included the
reduction of the plaintext as one of the steps of invariant
scanning. In practice the reduction of the plaintext can be
done only once, when the search patterns are first
compiled, and the result is then compared against several
reduced ciphertexts [3].

Of the three modes, key recovery, key validation and
invariant scanning, the most reliable, but also the most
costly and difficult to achieve, is key recovery. Key
recovery is usually necessary for the purpose of exact
variant identification and repair, since it is the only way to
access the fully decrypted virus body.

In cases where exact identification and repair are not
necessary, key validation and invariant scanning can be
comparatively easier to implement. [3] suggests a
two-phase approach, where invariant scanning is
performed first to take advantage of its speed, and if a
possible match is found, a more thorough analysis is
carried out to corroborate the match, possibly by
attempting to recover the encryption key.

Applicability of x-raying

Ciphers used by viruses are, in general, weaker than
modern cryptographic ciphers. Not much care is put into
the design of the algorithms, and virus writers are amateur
cryptographers at best. However, not all attacks that would
be considered practical for cryptanalysis are usable for
x-raying because of the time constraints imposed on virus
scanning. X-raying competes with scanning and
emulation, which run in milliseconds to seconds. Any
cryptographic attack taking more than, at most, a few
seconds to execute is out of the question.

As we shall demonstrate in the rest of this paper, the
applicability of x-raying to the detection of a virus is often
determined by the presence of mistakes or peculiarities in
the encryption of the virus. Luck is a factor, and as the
saying goes ‘your mileage may vary’. Nevertheless, the
fact that about half of the recent complex Win32 viruses
were x-rayable testifies to the usefulness of x-raying. Or
maybe we were just very lucky.

In general, x-raying is not a replacement for emulation
because it is too specific to virus encryption methods.
Emulation is applicable to a wider range of problems.
There are some classes of problems, though, to which
emulation is not well suited. Consider the class of
viruses using Random Decoding Algorithms (RDA) [7].
These viruses carry out a brute-force attack on their
own body to find which key was used to encrypt it.
Emulating the brute-force attack is very expensive,
sometimes impossible, and x-raying is a better option, if
at all possible.

PRACTICAL X-RAYING

Importance of the geometry

We call ‘geometry’ the positions and sizes of segments
that characterize infected objects, such as position of the
virus decryptor and body, minimum and maximum sizes
of the decryptor, the minimum infected file size, etc.

One point that is often overlooked while discussing
x-raying is the effect that disk I/O has on the time
required. Since disk I/O can be very slow, it must be
reduced as much as possible. Thus is it very important to
choose carefully the ranges in which an x-ray should be
applied. Unfortunately, the ranges are also very
virus-dependent: some viruses will appear at the end of the
code section, some viruses appear at the start of the data
section, some viruses appear at the end of the file, etc.

The W32/Bagif and W95/Perenast families of viruses, for
example, place their decryptor at or near the end of the
first section, and place the encrypted virus body at the end
of the last section. While simply attempting to x-ray the
end of the last section of every file is certainly a
possibility, the cost would be too great. To exclude some
files, one can use the characteristics of an infected file that
make it stand out from a non-infected file. The checking of
these characteristics is the first step in the detection
process. By filtering out all definitely non-infected files,
what remains is (ideally) a small subset of files, on which
a bit more time can be spared.

Further filtering can be performed to avoid attempting to
x-ray regions that cannot possibly contain the virus body.
The most common example of this type of filtering is to
calculate the ratio of zeroes to non-zero bytes. If the zero
count exceeds a certain threshold, then it can be decided
that the range does not contain the virus body. This idea
can be extended to checking the number of all possible
bytes to isolate the likely locations of encrypted data, since
encrypted data will usually have a fairly random byte

PRINCIPLES AND PRACTISE OF X-RAYING

distribution. The use of a frequency histogram makes it
very simple to check these counts very quickly.

The W32/Efish family of viruses place their virus body
somewhere in the last section. The location of the body
depends on the structure of the host. Specifically, if the
relocation table is present in the last section, then Efish
will move the relocation table down, to form a gap in
which the virus will place itself. In addition to the virus
body, Efish constructs a substitution cipher table (see
below) which is placed randomly either before or after the
virus body. Efish places random data between the virus
body and the table, and on either side of the entire block.

Another kind of filtering becomes useful here: the data
directories in the Portable Executable (PE) header include
the size of the data. Two of those tables (resources and
relocations) require that the size field be correct, and
coincidentally the data often appear at the end of files,
when they are present. If either of these tables points into
the last section, then their size can be used as a starting
point (or ending point, in the case of the relocations table
in an Efish file) for the scan [8]. Several other viruses,
including W95/MTX, W32/Simile, and W95/Perenast, are
vulnerable to this kind of shortcut. Once again, the ratio of
zero bytes to non-zero bytes can be used to determine if
viral data are possibly present in that region.

The W95/Perenast family of viruses fill the end of the last
section with random data, before partially overwriting
them with the virus body at a random position. This is
similar to Efish, in the sense that there is possibly random
data before and/or after the virus body, which leads to
another point: it is not necessary to x-ray an entire
potential region for a single pattern, chosen, for example,
from either the start or the end of the virus body. Instead, a
pattern can be chosen from each of the start and the end
(and even some from the middle, if the body is large
enough). One can then search for these patterns in parallel,
starting from somewhere near to the middle of the x-ray
region. If the virus has placed itself near to the end of the
region, then the start pattern will be hit; if the virus has
placed itself near to the start of the region, then the end
pattern will be hit; if the virus is somewhere in between,
then a middle pattern will be hit. This is a way to trade I/O
for CPU time.

An x-ray example: W95/Perenast

The W95/Perenast family of viruses use a complex
polymorphic decryptor, and the variants prior to
Perenast.25239 implement a very simple decryption
algorithm. This weakness in the implementation allows
the virus body to be x-rayed without reference to the
decryptor.

The variants prior to Perenast.25239 encrypt each dword
of the virus body by XORing it with a key. On each round,
the newly encrypted value is added to the current key to
produce the next key. Perenast.15724 and later variants
follow this with a rotation of the key. Perenast.15724/
15879/16224/16254/23317 use a value of 1 as the
argument of the rotation; Perenast.25026 uses a value of 2.

An x-ray routine guesses the initial value of the key by
XORing the first two dwords of ciphertext with the first
two dwords of plaintext, and computing the difference.
Then it can proceed to decrypt the rest of the ciphertext,
checking on each step that the plaintext matches the
expected search pattern for the virus body.

Attacking the weakest layer: W32/Bagif

In viruses employing multiple layers of encryption, each
layer usually encrypts both the decryptor of the next layer
and the body. Occasionally, though, the author of a virus
overlooks the fact that encrypting the body several times
can make it harder to x-ray. Such is the case for W32/Bagit:
a careful examination reveals a chink in its armour.

The W32/Bagif family of viruses use two layers of
encryption. The first layer is a polymorphic decryptor that
builds a second layer decryptor. The second layer
decryptor decrypts the virus body. The first layer
decryptor is extremely complex and is not subject to
x-raying, however the second layer is very simple, and the
algorithm is constant. This weakness in the
implementation allows the virus body to be x-rayed
without reference to the decryptor.

The second layer decryptor uses a so-called ‘running key’
encryption, where each byte of the body is XORed with a
key that changes over time. The key is 32 bits long, and on
every round, the low eight bits are used as an argument to
the XOR operation. After each round, the key is rotated
right by one bit, then a counter is subtracted from it. The
counter decreases from the size of the virus to zero.

From the last byte of the virus body, the final eight-bit
XOR key can be recovered immediately. By x-raying
backwards, increasing the counter, and keeping track
of known key bits, one can validate one extra bit of
information on each round. Each pair of corresponding
plaintext and ciphertext bytes yields one more bit of
key, because of the key rotation. Seven bits of the
combined plaintext and ciphertext are correlated with
the currently known key bits. If they are not compatible,
the search pattern cannot be present at the starting x-ray
position.

After 24 bytes have been correlated, the entire 32-bit key
is available, allowing full decryption of the virus body, if
required. The pseudo-code for a possible x-ray routine for
Bagif looks something like this:

m = 0x8000007¢ (mask of known key bits)

k = pli] ~ c[§] (recover first eight bits of running
key, and i begins at 2, since the first byte is known)
for each byte in the plaintext pattern

k =k ror 1

k = (k & ~Oxff) + ((k & Oxff) - i)

i=1i+1 (adjust counter)
=4 -1 (going backwards in the buffer)

k' = pli] ~ c[j] (combine plaintext and ciphertext to
obtain current XOR key)

if (k/ & m) != (k & m)

PRINCIPLES AND PRACTISE OF X-RAYING

break and slide (some XOR key bits do not match
the expected running key bits)

k = (k & ~0xff) + k’(update running key bits)

m=m | Oxff (gain one more bit for the mask)
m =m ror 1
end for
unknown key bits
P
known key bits
p0 gl

pn| — validate nextround o | oy
key

r??

Figure 9. X-raying of W32/Bagif.
An example would proceed in this way:

k = 0x00000048 ~ 0xb6 = 0x0000006e (recover first eight
bits of running key)

First pass:

k = 0x0000006e ror 1 = 0x00000037

k = 0x00000000 + 37 - 2 = 0x00000035
i=2+1=3

k’ = Oxeb ~ 0x5e = 0xb5

diff = 0xb5 ~ 0x35 = 0x80

now 0x80 & 0x7f = 0x00, so continue
k = 0x00000000 + 0xb5 = 0x000000b5
m = 0x8000007f | Oxff = 0x800000ff
m = 0x800000ff ror 1 = 0xc000007f

Second pass:

k = 0x000000b5 ror 1 = 0x8000005a

k = 0x80000000 + 0x5a - 3 = 0x80000057
i=3+1=4

k' = Oxff ~ 0x28 = 0xd7

diff = 0xd7 ~ 0x57 = 0x80

now 0x80 & 0x7f = 0x00, so continue

k = 0x80000000 + 0xd7 = 0x800000d7

m = 0xc000007f | Oxff = OxcO0000ff

m = 0xc00000ff ror 1 = 0xe000007f

k = 0xb6e00041 ror 1 = 0xdb700020

k = 0xdb700000 + 0x20 - O0x0O0e = 0xdb700012
i=14 + 1 = 15

k' = 0x00 ~ 0x92 = 0x92

diff = 0x92 ~ 0x12 = 0x80

now 0x80 & 0x7f = 0x00, so continue

k = 0xdb700000 + 0x92 = 0xdb700067

m = Oxfff8007f | Oxff = Oxff£800ff

m = Oxfff800ff ror 1 = Oxfffc007f

k = 0xd59b6el0 ror 1 = 0x6acdb708

k = 0x6acdb700 + 0x08 - Oxla = Ox6acdb7ee
i 26 + 1 = 27

k’ = Oxdb ~ 0x35 = Oxee

diff = Oxee ~ Oxee = 0x00

now 0x00 & Oxff = 0x00, so continue

k = 0x6acdb700 + Oxee = Oxb6acdb7ee

m = OxfEEf££fFEFf | Oxff = OxEfffffff

m = Oxffffffff ror 1 = OxfEffffff

and so on.

Substitution ciphers

A substitution cipher works by associating to each symbol
in the plaintext alphabet one unique ciphertext symbol.
The encryption consists of replacing each plaintext symbol
with its substitute. You can think of it as a series of table
lookups where the values in the table replace the indexes.
The table is the encryption key. For instance, using ‘A’,
‘B’, ‘C’, ‘D’, ‘E’, ‘F’ as our alphabet, if we want to
encrypt the message ‘DEADBEEF’ with the key
‘BDFACE’, we proceed as depicted below towards the
result ‘ACBADCCE’.

p=|D|E|A|D|(B|E|E|F

F
@ encrypt
E

"
I—UJIbd-|—
o|m
O
— 2| O |+

— | O | m |+

l*w
A|lC|IB|A|D|C|C|E

Figure 10. Example of a simple substitution cipher.

The decryption works in a similar way, with the inverse
key ‘DAEBFC’.

The W32/Efish.A virus, from the W32/Chiton family, uses
a substitution cipher as its encryption method. To be
precise, Efish encrypts its body byte-by-byte, using a
256-byte substitution table as the key. The table
implements a random substitution: each byte value appears
once and only once in the table, in a random place. Figure
11 is a sample table represented in two dimensions (not all
values shown).

The W95/Fono virus used a substitution cipher before
Efish [2]. However, in Fono, the choice was limited to a
few substitutions which are their own inverse, so that the
same table could be used for encryption and decryption.

The use of a byte substitution table makes the encryption
much stronger than, say, a simple XOR. One way to see
this is to compare the key size of a typical dword XOR
(32 bits) to the equivalent size of a substitution key. Since
there are 256! (factorial of 256) possible substitution

PRINCIPLES AND PRACTISE OF X-RAYING

31|41|59|26|53|58|97 07
2718|281 b|2c|d6
Teled|cOldey
05 fd
03| 02
fa
ff
01 |08
fe
fc
fb 03
04 05
03]

Figure 11. Sample byte substitution table of W32/Efish.

tables, approximately log2(256!) bits are needed to
represent all possible values of the key. This is about 1684
bits. In other words, there are a huge number of possible
ciphertexts that an x-ray routine must detect.

However, in the case of Efish. A, there is an elegant
alternative to detecting all possible ciphertexts: detecting
the key. Studying the geometry of the virus infection
method, we see that the substitution table is stored as a
contiguous array of bytes, and embedded in infected hosts
close to the encrypted virus body. In fact the same region,
located in the last section of the host file, must be x-rayed,
whether we look for the key or the ciphertext. Here is what
an infected host could look like:

text
virus
decryptor
.data
rsre
key h L 4
X-ray region
encrypted
virus body

Figure 12. Geometry of file infected with W32/Efish.

To locate the key we use a sliding x-ray on the x-ray
region. At every position we examine the data to determine

if it can be a potential key. We do this by looking for
duplicate byte values within 256 bytes of the potential key
position. If there are duplicates, the data cannot be a
substitution table, and we proceed to the next position. If
there are no duplicates, we possibly found a key, so we use
it to decrypt the x-ray region and scan for patterns of the
virus body in the decrypted data (or better yet, to encrypt
the search patterns and look for them in the x-ray region,
which is both faster and less disruptive than decrypting
the region).

Looking for duplicate byte values in an array of 256 bytes
at every slide position is the tricky part. The routine that
does this should be fast in order for the x-ray to be
efficient. This is especially true if this routine is
implemented in an interpreted language, rather than
compiled to native code. A naive algorithm to perform
the duplicate bytes lookup in array A could be (in
pseudo-code):
seen_byte[0..255] = {false}
for (1 = 0; 1 < 256; ++1)
if (seen_byte[A[i]]
found duplicate, break and slide to
next position
else
seen_byte[A[i]] = true
end for
no duplicate, found potential key in array A

Repeating this routine at every slide position, we get a
working detection for the key. Unfortunately, it is not very
efficient because we end up looking at most bytes many
times, from different slide positions. Consider the
following data to scan:

50 51 5253 54 55

YYYY 4

[o1|ozfosloafozfoafos] [| | | | -
tayatsc mom m m X
slide —»
x-ray at s1 EEom X
slide —
X-ray at s2 mmom X
slide —»
x-ray at $3 mnmX
slide —»
x-ray at s4 X
slide —»
x-ray at s5 m X
slide —

Figure 13. Substitution key search — naive algorithm.

At slide position s0, it takes five bytes to find the duplicate
byte 0x02. At slide position s, it takes four bytes, and it is
in fact the same pair of duplicate bytes with value 0x02
that stops the scan. At position s2, it takes four bytes to
find duplicate byte 0x03, etc.

If we are scanning random data, the probability of finding
a duplicate pair after n bytes is 1 — (1 x 255/256 x 254/256
X (256-n+1)/256). It becomes greater than 0.5 after 20
bytes, which indicates that we need to look at about 20

PRINCIPLES AND PRACTISE OF X-RAYING

bytes for every slide position. In other words, we need to
look at each byte approximately 20 times. (This is an
approximation, due to the relationship between two
consecutive slides, as can be observed in the example
above.)

Wouldn’t it be nice if we could make a better use of the
duplicate pairs we find to slide ahead faster? When we
find the duplicate pair of 0x02s at slide position s0, there
is really no need to try slide position s1, because the
duplicate pair is part of the 256 bytes range scanned at
position sl too.

Better yet, if we scan the array backwards, we can take
advantage of duplicate pairs appearing late in the array to
rule out many more slide positions. This is the same idea
as the ‘bad character heuristic’ of the Boyer-Moore string
scanning algorithm [9].
The optimized algorithm to scan array A reads:

seen_byte[0..255] = {false}

for (i = 255; 1 >= 0; —1)

if (seen_bytel[A[i]])

found duplicate, break and slide
ahead by i+1 bytes

else
seen_byte[A[i1]] = true
end for

no duplicate, found potential key in array A

Figure 14 shows an example illustrating the optimized
algorithm.

Using this faster version of the duplicate byte lookup,

we avoid looking at some bytes altogether. By the same
argument as above, we find a duplicate pair after about

20 bytes, starting from the end of the buffer corresponding
to the current slide position. Then we slide ahead by about
256 — 20 = 236 bytes on average. Thus we look at about
20/236 on average per byte of scanned data. Compare

this to the 20 bytes per byte of scanned data of the naive
algorithm.

This suggests that the optimized algorithm is more
than two orders of magnitude faster than the naive one.
In practise, on Efish samples, the algorithm performs
quite well.

s0 5253

v v

Considerations on the choice and length of
signatures

The choice of signatures in an x-ray routine depends on
the kind of encryption being broken. There is some loss of
information associated with guessing a key that decrypts
the ciphertext. The length of the search patterns should
compensate this loss of information to avoid possible
false-positives.

The right length for x-ray signatures is similar to the
‘unicity distance’ of information theory, which specifies
that, for the solution of the cryptanalysis to be trusted, the
amount of broken ciphertext should equal at least the
information in the plaintext plus the entropy of the
cryptosystem [6]. The entropy of the cryptosystem is
defined as the logarithm in base 2 of the size of the
keyspace, that is a measure of the number of possible keys.
For instance it is eight bits for a byte XOR.

In general, when x-raying a virus with a maximum key
length of n bits, it is advisable to augment the normal
search patterns by n bits. For instance, if the virus uses a
combination of dword XOR (32-bit key), dword ADD
(32-bit key), and ROL (8-bit key), it is a good idea to add
nine bytes to the plaintext signatures.

Since x-raying is designed to work through encryption
layers, the risk of an x-ray routine detecting itself is
somewhat higher than for regular signatures. Don’t x-ray
yourself in the foot, organize your x-ray search patterns
so that they won’t be susceptible to false-positives — for
instance by storing them in several out-of-order pieces,
or encrypting them with a method that is not broken by
your x-ray.

Note that care must be taken when choosing patterns in
bodies that are decrypted using units larger than a byte.
For some variants of a virus, the patterns can become
misaligned with respect to the unit itself (e.g. dword
decryption of bytes that are not on a dword boundary).
This is fine for operations such as XOR, which are
translationally invariant (where the alignment of the
operation does not affect the result), but for operations
such as SUB, the carry can affect the result.

5258 505 5509

v v v

[1| || __lo7]osloslor] loaloajobfocfod] .-
x-ray at s0 xﬂ...
slide .

x-ray at s253

slide
¥-ray at s505

Figure 14. Substitution key search — optimized algorithm.

PRINCIPLES AND PRACTISE OF X-RAYING

ADVANCED X-RAYING

X-raying with wildcards

The W32/Bagif family has several members sharing very
similar search patterns. A nice generalization of the x-ray
routine we presented above successfully detects variants
by allowing the use of fixed-length wildcards in the search
patterns. On each round of running key validation and
updating, it is possible to leave out the updating phase for
positions corresponding to wildcards, and just proceed
with the correlation of the known key bits with the current
position XOR key. Thus we gain information on the
running key more slowly, but eventually the same
information on the ciphertext can be checked, simply by
using longer signatures. (We do not present the
pseudo-code for this modified x-ray, for lack of space. The
astute reader will enjoy writing it for himself. “J’ai trouvé
une merveilleuse démonstration de cette proposition, mais
je ne peux I’écrire dans cette marge car elle est trop
longue.”)

unknown key bits

known key bits
p0 | —p Vvalidate nextround o | co 7

wildcard l
N N validate;lext round 4 | cn
27 b

?27??

Figure 15. X-raying of W32/Bagif in the presence of
wildcards.

Using specificities of the plaintext

As we mentioned earlier, invariant scanning can be used as
the first step of an x-ray routine to filter out uninteresting
regions. One type of invariant scanning deserves special
mention: the search for patterns of ciphertext that do not
depend on the encryption key. These patterns are shared by
all replicants of a virus, and since most scanners have very
fast string-searching primitives, looking for them is easy
and fast.

It is puzzling that such patterns exist, given that encryption
and polymorphism were invented precisely so that no two
samples of the same virus look alike. They usually occur
as a result of a weak encryption method, in conjunction
with specificities of some spots in the plaintext, like series
of zeroes or repeated patterns.

As an example, consider the simple encryption used by
earlier variants of W95/Perenast. Each dword of ciphertext

is obtained by XORing a dword of plaintext with a
running key. The resulting dword of ciphertext is then
subtracted from the key. The pseudo-code for the
encryption reads:

k = initial random value
for each dword of plaintext p
c=p "k
k=k-c
end for
One weakness of this algorithm is that a zero dword of
plaintext will result in the running key becoming zero. If
p =0, c becomes k, and the running for the next round is
k - k = 0. After this happens, all the ciphertext is
key-independent.

Even if the body of the virus does not contain a whole zero
dword, some bits of the key will cancel themselves for
well-chosen spots of the plaintext. For instance, if the low
n bits of p are zero, the low n bits of the next round key
will be zero, leading to a fixed n-bit pattern of ciphertext
common among all virus samples.

Running keys

A common type of encryption used by polymorphic
viruses relies on so-called ‘running keys’, analogous to the
‘stream ciphers’ of cryptography. Essentially, a
Pseudo-Random Number Generator is used to provide a
series of values, which are then combined with the
plaintext on each step of the encryption process to produce
the ciphertext.

While cryptographic stream ciphers use well-known
primitives such as Linear Feedback Shift Registers
(LFSR) (see [6]), virus authors do not embarrass
themselves with theoretical considerations, and just use
any random combination of arithmetical operations to
modify the running key: XOR, ADD, rotations, MUL,
DIV, shifts, bit swapping, and possibly other assembly
instructions.

Depending on how many operations are usable to modify
the running key, it may be possible to x-ray the virus by
enumerating all combinations of operations, and trying
them all in turn. We call this method ‘brute-forcing the
code key’ because it involves a systematic enumeration of
the key bits associated with the choice of encryption
operations, which we called the ‘code key’ earlier.

The data key usually does not have to be brute-forced: for
a given set of operations, the values of the parameters of
the operations can be derived by combining the ciphertext
with the plaintext.

While the recovery of keys from multiple operations is
fairly straightforward, the size of the search pattern needs
to be sufficiently large to ensure that the recovered keys
are, in fact, correct. Let us examine an example from
W32/Magistr. The encrypted bytes and the plaintext bytes
are shown in Figure 16.

We know that this virus can produce dword XOR
decryptors involving ROL and ADD for the running key
modification, i.e.

10

PRINCIPLES AND PRACTISE OF X-RAYING

Encrypted bytes

E4 41 DB 19 49 68 62 E4 DA E7 25
01 DE E2 51 2E 66 80 31 D4 50 B2
Al CE 54 44 22 56 0OE A6 55 0C 2C
AF B8 E4 C5 92 C7 ED 79 23 2F 01
E6 13 0B F9 AF BE D2 C4 87 D6 34

Plaintext bytes

E8 38 55 00 00 E8 B3 53 00 00 85
9C B8 C3 53 00 00 85 ED 75 0D 90
8B 74 24 2C 81 E6 00 00 FF FF FC
85 C4 86 40 00 8C C9 81 E1 00 FF
F7 BF 8D B5 A8 73 40 00 8D BD E4

B9
78
DE
71
4F

co
90
E8
00
83

3A
8A
5C
B9
5A

74
90
4E
00
40

Figure 16. An example from W32/Magistr.

10 15 C3 57 9E 29 3B EA 59 20
30 4B 51 06 4B 69 Bl 19 C3 CC
D4 AA AA CB 22 7E A5 79 C4 7D
AF 00 BE 39 2E C1 A0 CB AC C8
2D DO 89 3E 80 95

08 90 90 90 90 8B 64 24 08 60
90 8B 74 24 24 EB 07 90 90 90
17 00 00 89 85 C8 86 40 00 89
E3 0A C7 85 C4 86 40 00 00 00
00 81 BD C4 86 40

for i = 0 to virus size
pli]l = c[i] ~ k1
kl = k1 + k2 (these two lines
k1l = k1 rol k3 can be swapped)
end for

Without knowing the order of the ADD and the ROL, we
must try both.

Let’s begin by assuming that the order is ADD then ROL.

We recover the original key by taking the first encrypted
dword and XOR’ing with the first dword of plaintext:

0x19DB41E4 ~ 0x005538E8 = 0x198E790C

The order of the operations, ADD then ROL, indicates that

the rotation yields the second round key. Conversely, we
need to apply an inverse rotation to the second round key
in our x-ray.

Trying all ROL arguments from 1 to 31, we take the
second encrypted dword, XOR with the second plaintext
dword, thus obtaining the second key, then rotate this
value, then subtract the first round key from this value.
This gives us the ADD value.

((cl1]

~ pl[l]) rol k3) - kil

where
c[1] is 0xE4626849
pl1] is 0x53B3E800
k3is 1..31
k1 is 0x198E790C
When the ADD and ROL values are correct, applying

the encryption algorithm to the third dword will give the
same delta.

((0xB925E7DA ~ 0xC0850000 rol 3) - (0xE4626849 ~
0x53B3E800) = O0x1535BE8BA != OxA4FD8941

Clearly, k3 = 3 is incorrect. However, trying k3 = 18

((0xE4626849 ~ 53B3E800) rol 18) - (0x19DB41E4 ~
0x005538E8) = 0xE798663A

((0xB925E7DA ~ 0xC0850000) rol 18) - (0xE4626849 ~
0x53B3E800) = 0xE798663A

A match! So our algorithm seems to be:

k1l = (k1 + 0xE798663A) rol 181

Let us decrypt some bytes and compare (see Figure 17).
All of the bytes between brackets are incorrect. How did it
happen? It’s the order of ADD and ROL that creates keys
that match until an overflow occurs in the ADD.

Let us try ROL then ADD instead. This time, the rotation
operates on the first-round key. Therefore, our x-ray works
by applying an inverse rotation to the first round key. We
enumerate the possible ROL arguments, and the
corresponding rotated first round keys, then subtract them
from the second round key. We reverse the order of the
algorithm above.

delta = (c[1] ~ p[1l]) - ((c[0] ~ p[0]) rol k3)
compare deltato (c[2] "p[2]) - ((c[1] ~ p[l]) rol k3)
Trying k3 =3

(0xE4626849 ~ 0x53B3E800) - ((0x19DB41E4 ~
0x005538E8) rol 3) = OxXEBS5DB7E9

(0xB925E7DA ~ 0xC0850000) - ((0xE4626849 ~
0x53B3E800) rol 3) = OxBB14E58D != OxXEBS5DB7E9

Clearly, k3 = 3 is incorrect. However, trying k3 = 14

((0xE4626849 ~ 0x53B3E800) rol 14) - (0x19DB41E4 ~
0x005538E8) = 0x198E79E6
((0xB925E7DA ~ 0xC0850000) rol 14) - (0xE4626849 ~
0x53B3E800) = 0x198E79E6

delta = ((c[1] ~ p[1l]) rol k3) - (c[0] ~ p[0])
compare deltato ((c[2] *p[2]) rolk3) - (c[1] ~p[1]) A match! So our algorithm is:
Trying k3 = 3 kl = (k1 rol 14) + O0x198E79E6
((0XE4626849 ~ 0x53B3ES00) rol 3) - (0xL9DBALEA And applying it to the entire ciphertext yields the exact
0x005538E8) = OxA4FD8941 virus body.
E8 38 55 00 00 E8 B3 53 00 00 85 CO 74 08 90 90 90 90 8B 64 24 08 60
9C B8 €3 53 00 00 85 ED 75 0D 90 90 90 90 8B 74 24 24 EB 07 90 90 90
8B 74 24 2C 81 E6 00 00 FF FF FC E8 4E 17 00 00 89 85 C8 86 40 00 89
85 C4 86 40 00 8C C9 81 E1 00 FF[03]00 E3 0A C7[05 C5]86 40 00 00 20
F7[A7]8D B5 A8 73 40[02 OD]BD E4 83 40 00([A1]BD[3C 87140
Figure 17.

PRINCIPLES AND PRACTISE OF X-RAYING

More substitution ciphers

After using a substitution cipher as the encryption of
W32/Efish. A, the virus author wanted to try something
more complex. In Efish.C, [s]he switched from a simple
substitution cipher, where each symbol is replaced by
another unique symbol, to a ‘homophonic substitution
cipher’, where a symbol of plaintext may be represented
by more than one symbol of ciphertext.

The advantage of using a homophonic substitution cipher
is that the frequencies of symbols in the ciphertext are no
longer the same as they are in the plaintext. Two
occurrences of the same symbol in the plaintext may
become two different symbols in the ciphertext. Another
consequence is that the decryption key of the homophonic
substitution cipher no longer has to contain each symbol
only once. Symbols may be repeated in the key, to map
distinct ciphertext symbols to the same plaintext symbol
during decryption.

Going back to the ‘DEADBEEF’ example, we notice that
the ‘C’” symbol does not appear in the plaintext. Therefore,
we may ‘re-use’ the corresponding ciphertext symbol ‘F’
as the image of, say, symbol ‘E’ in the encryption key of a
homophonic substitution cipher:

p=| D|E)| A |D |B|E)|E) F
|I
i ll
A|B|IC|D|E|F
B 1D A @encrypt
— |

C=

e
Al©)|e |a|D|©F

Figure 18. Encryption process of a homophonic substitution
cipher.

Notice how the three ‘E’s in the plaintext are translated to
different ciphertext symbols.

The decryption is a simple substitution. Notice the
duplicate value in the decryption key shown in Figure 19.

In practice, for the purpose of detecting Efish.C, the use of
a homophonic cipher defeats the algorithm described
earlier, based on looking for the key as a table containing
all byte values from 0 to 255 once and only once.
Fortunately, it is also possible to x-ray the ciphertext rather
than the key, albeit at a cost in performance.

The algorithm to x-ray all possible substituted ciphertexts
works in key recovery mode. We want to determine if
ciphertext C is a substitution of plaintext P. We work our
way through C and P, building the potential decryption key
as we go along. Since pi must be obtained from ci, we
populate the decryption key index ci with the value pi.

A|lB|C|D|E|F
@ decrypt
K=(D|A|E|B|F|E

vy

P=|D|E|A|(D|B|E|E|F

Figure 19. Encryption process of a homophonic substitution
cipher.

If we hit an index that was already used, and find out that
two distinct plaintext values compete for this index, the
ciphertext cannot be a substitution of the plaintext (simple
or homophonic), since any given ciphertext symbol must
always decrypt to the same plaintext symbol.

Once we finish building the key, we proved that the
ciphertext is a substitution of the plaintext, by construction
of the decryption key. We can check the decryption key for
duplicate plaintext values to distinguish simple from
homophonic ciphers. We can also recover the full plaintext
by applying the decryption key to the rest of the ciphertext
(after we have worked out enough of the key to associate
each ciphertext symbol to a plaintext symbol).

Applying this algorithm to a byte substitution cipher, as
used by Efish, the pseudo-code reads:
decr_key[0..255] = {undefined}
for each pair of bytes (pi, ci) in (P, C) the
plaintext and ciphertext

if (decr_key[ci] is defined && decr_key[ci] != pi)

found competing plaintext symbols for the same
ciphertext symbol, exit

else
decr_key[ci] = pi

end for

successfully built decryption key, apply key to more

ciphertext
This algorithm is correct, but not very efficient, since it
requires a lengthy key recovery procedure at each position
of the sliding x-ray. We will see how to optimize it shortly,
by making use of a weakness in the Efish.C homophonic
substitution cipher.

Using the randomness, or lack thereof

Viruses often use tailor-made Pseudo-Random Number
Generators (PRNG). The strength of the PRNGs varies
considerably, from generators simply using clock ticks as
random values, to Linear Congruential Generators, like the
C runtime rand() function, to complex generators from the
literature.

On one end of the spectrum (the x-ray spectrum!) Perenast
uses the RDTSC instruction (ReaD Time-Stamp Counter)

11

12

PRINCIPLES AND PRACTISE OF X-RAYING

of Intel processors (available since the Pentium) to retrieve
the processor ticks, and fills an array of values with the
ticks. The array is used as a random-sized padding buffer,
and gets encrypted in addition to the virus body.

Because of the short time interval between consecutive
uses of RDTSC, the random buffer is in fact filled with
nearby and increasing values. Statistical properties of the
underlying plaintext can facilitate x-raying, although, in
the case of Perenast, they are ultimately unnecessary. Had
the virus been metamorphic, recourse to this trick might
have saved the day.

Besides exploiting the weakness of the PRNG algorithm,
it is sometimes possible to exploit a weakness in the
seeding of the generator. If the initial state of the generator
is one of only a few values, and if the algorithm to obtain
the sequence of random numbers is deterministic, the
possible outputs of the polymorphic engine (among other
virus characteristics) are reduced to a few, easy to check
for, values. Such is the case for W32/Marburg, which uses
the current date to seed its generator.

At the other of the spectrum, Efish uses a very complex
PRNG, dubbed the ‘Mersenne Twister’, after the kind

of prime number at its heart. Ironically, the strength of
this generator helps somewhat in detecting the virus. Here
is why.

The construction of the encryption key in the Efish.C
homophonic substitution cipher is intertwined with the
encryption itself. The virus starts with a random
substitution table. Then, for each byte to encrypt, it either
uses the current table, with 94 per cent chance or, with 6
per cent chance, it searches for an unused plaintext byte in
its body and reuses the corresponding ciphertext byte in
the substitution table as the image of the current byte. The
reused table entry is marked as such, and the ciphertext
byte cannot be used again as the image of another
plaintext byte.

Thus the encrypted byte associated with one clear byte can
change over time, but eventually, when there are no more
unused entries in the table, the key stabilizes to that of

simple substitution cipher.
/jm% '/jaa% qg:t%
I | _I_

|
6% o 6% I._ 6%
- - O
[1
S0 81 82
n unused entries n-1 unused entries
| |
@ @
_’ aEER _’ .
o @ []
[[
83 Sn
no unused entries
final table

Figure 20. Decay of the substitution table of W32/Efish.C.

The virus body uses all but six byte values, and since the
virus saves some bytes from the host into its body, this

count of unused plaintext bytes could be even smaller. At
each step, the probability is about 6 per cent that the virus
will reuse any given slot in its table. Since the PRNG is
very good, we can trust that this is statistically true.

Assuming the worst case of six unused bytes in the
plaintext, the probability of still having an unused entry in
the table after n steps of encryption is

0.94"n+0.06*0.94" (n-1) +..+0.0675%0.94 " (n-5)

which becomes very small after a few hundred bytes. After
350 bytes, it is less than one in a billion. The result is that
the homophonic substitution cipher decays into a simple
substitution cipher after n bytes, where the value of n is
small. If we pick a signature from the end of the virus, we
can assume that it was encrypted using a simple
substitution cipher, with the final table.

P=I 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
S0 1 81 1 52 1 Emm 1 Sn
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

C

Figure 21. Simple substitution ciphers applied to segments
of W32/Efish.C.

As we mentioned in the section on breaking homophonic
substitution ciphers, the key recovery algorithm is
expensive. Thanks to the decay in the Efish.C cipher, we
can correlate the frequency of bytes, as we would do in a
simple substitution cipher, before applying the key
recovery algorithm. We can check, for any pair of bytes in
the ciphertext, whether they are the same, or different,
because a simple substitution cipher conserves the
frequencies of the plaintext.

This is an example of using invariant scanning before key
recovery to speed up the x-raying.

Multi-layer x-raying

Some complex polymorphic viruses, like Zhengxi or
W32/Dislex, use multiple layers of encryption. These are
in general impossible to x-ray in reasonable time: one
would need to brute-force the number of layers, usually
variable, the encryption algorithm in each layer (the code
key), and possibly some parts of the data key. As in the
case of running keys, this is not feasible for more than a
few layers, and a few encryption operations per layer.

However, there are two special cases worth mentioning:
multiple layers of simple linear encryption operations, and
aligned layers. Both of these may be x-rayed if the data
key in each layer is fixed (as opposed to a running key.)

In the case of simple linear operations, like XOR and
rotations for instance, using constant values as an
argument, multiple layers are equivalent to one. Therefore,
the x-ray routine can proceed as it would in the case of a
single layer with one XOR and one rotation.

In the case of aligned layers of operations using fixed
keys, the cipher can be treated as a substitution cipher

PRINCIPLES AND PRACTISE OF X-RAYING

operating on symbols wider than a byte — usually a dword
for Win32 viruses. Since a given plaintext symbol is
always encrypted to the same ciphertext symbol, the
frequencies of symbols are conserved in the ciphertext. It
is usually possible to find repeated — and aligned — dwords
in virus code, for instance in repeated assembly code
snippets.

If the layers are unaligned, x-raying is much more difficult
because the ‘diffusion’ of the overall cipher is greatly
improved. In the example below, showing three layers of
dword encryption, one bit of plaintext can influence the
value of bits of ciphertext as far as nine bytes away.

plaintext bit b

P=(@ [T[T T TTTTT1]]

layer 1
alignment=0
c={p ROR 1c)*1234

layer 2

alignment=3

¢' = (c ROR 1¢)+4321

layer 3
alignment=2
c¢"={c' ROR 1cj*abed

S INNEEEEERCEER

!

ciphertext depends
on plaintext bit b

Figure 22. Diffusion effect of multiple encryption layers.

Hybrid x-raying and metamorphism

Viruses employing complex encryption methods, such as
complex running key transformations or multiple layers of
encryption, are in general impossible to x-ray using only
the ciphertext. In some cases, though, it is possible to use
information from the decryptor in an x-ray routine. Some
possibilities include: recovering the code and data keys
from the decryptor, recovering the code key from the
decryptor to facilitate x-raying the data key (this can be
done by checking for the presence of tell-tale opcodes in
the decryptor).

The code key is usually easier to recover from the
decryptor than the data key, because it only involves
determining which atomic operations are applied to the
ciphertext and/or the running key. Through instruction
parsing, the operations can be recovered or guessed.

On the other hand the data key is often spread over a
number of instructions, whose combined contributions
participate in the data key. Without some form of
emulation, and a knowledge of possible initialization
values, the data key remains hidden from casual
decryptor parsing.

Metamorphic viruses, which mutate their entire body, can
be seen as an extra layer of confusion (opcode

replacement) and diffusion (opcode swapping and routine
swapping) applied to the plaintext before encryption. The

mutation of the virus body shifts the problem of x-raying
from a known plaintext attack to a ‘partially known’
plaintext attack. Traditional cryptography handles such
problems by considering statistical properties of the
underlying plaintext, and the repercussions of these in the
ciphertext. For very simple encryption primitives, the
same could be done in x-raying. Unfortunately, at the
present time, we do not have an example of a metamorphic
virus that would fall into this category. We look forward to
receiving one in the future!

APPENDICES

W32/Bagif

W32/Bagif (see [10]) uses two layers of encryption. The
first layer is a polymorphic decryptor that builds the
second layer decryptor a dword at a time, using an entirely
unrolled loop. The build process includes long dummy
loops, and the use of transcendental functions of the
floating-point unit. Some of the FPU results are inexact,
making emulation slow and potentially unreliable. A
sample of the first decryptor snippet is:

PUSH D96651BD

POP EBP

SUB EBP, 16053599
MOV EBX, A82245C5
ROR EBX, 0D

XOR EBX, 6AA48211
CMP EAX, EDI

JPE 98481BC2

XOR EAX, 31961ADB
XOR EDX, CAC6EF8B
XOR EDX, 4EB07668
PUSH ECX

PUSH EDI

XOR ECX, EBP

PUSH EST

SHRD ECX, EBX, 10

PUSH EBP

The second layer is a constant decryptor and decrypts the
virus body using the following algorithm:

pli] = c[i] ~ (k & Oxff)
k = (k & ~0xff) + ((k + (size & Oxff)) & Oxff)
k =kroll

as can be seen here:

MOV ECX, DWORD PTR SS:[EBP + 000000CB]

MOV EBX, DWORD PTR SS:[EBP + 000000CF]
0012FF3D:

LODS BYTE PTR DS: [ESI]

XOR AL, BL

ADD BL, CL

ROL EBX, 01

STOS BYTE PTR ES: [EDI]
LOOPD 0012FF3D

W95/Drill (aka W32/Tuareg, W32/Mental)

WI5/Drill (see [11]) uses two layers of encryption. The
first layer is a polymorphic decryptor in a long loop that

13

14

PRINCIPLES AND PRACTISE OF X-RAYING

includes Windows API calls, making emulation a difficult
prospect. Its algorithm is:

~

c’[1] = c[i] op k1 (where op is or +)
A sample decryptor snippet is:

ADD CH, BYTE PTR DS:[0040FAF3]
AND CL, DH

XOR EBX, EBP

AND ECX, EDX

AND CL, 3B

XCHG CX, SI

XOR DWORD PTR DS: [EBX + 0040E000], EDI
ADD DH, CL

AND ESI, EBP

XCHG ECX, ESI

XOR EBX, EBP

CMP EBP, EDX

JLE 00401F95

PUSH 0000EESB

CALL NEAR 004020BD

The second layer is an oligomorphic decryptor in

Drill.12292, making verification more difficult. It decrypts

the virus body using the following algorithm:
pl3il = ¢’ [3] ~ k2

A sample decryptor is:

PUSH EAX
CALL NEAR 0040E006
POP EAX
INC EAX
SUB EAX, 00401007
LEA EBX, DWORD PTR [EAX + 00401028]
MOV ECX, 00000COL
MOV ESI, 0DC18220
0040E01E:
XOR DWORD PTR DS: [EBX], ESI
SUB EBX, -04
LOOPD 0040EO1E

The second layer is a polymorphic decryptor in
Drill.14896/18624/20994, making verification quite
difficult. It decrypts the virus body using the following
algorithm:

plj] = c¢’[j] op k2 (where op is ~ or +)
k2 = k2 op k3 (where op is ~ or +)
A sample decryptor is:
MOV EBX, 19DC6C42
CMC
PUSH 0041103C
POP EBP
PUSH 000011FC
POP EDT
00411012:
SUB DWORD PTR SS: [EBP + 00], EBX
AND EDX, EAX
STD
XOR EBX, DC5B45DB
NOP
LEA EBP, DWORD PTR [EBP + 04]
XOR ECX, ESP
DEC EDI
JNE 00411012

W32/Efish (aka W32/Chiton, W32/Shrug)

W32/Efish (see [12]) uses entrypoint obscuring to hide a
small (< 32 bytes) decryptor, and the decryptor is

oligomorphic (Efish.A) or polymorphic (Efish.B/Efish.C).
It decrypts the virus body using the following algorithm:

pli] = table(c[i]];

A sample decryptor is:

PUSHAD
STD
MOV ESI, 0040COE1l
LEA EBX, DWORD PTR [ESI + FFFFE2FA]
ENTER 1120, 00
MOV EDI, EBP
004017D3:
LODS BYTE PTR DS: [ESTI]
XLATB
MOV BYTE PTR DS:[EDI], AL
DEC EDI
CMP EDI, ESP
JNB 004017D3
PUSH ESP
RETD
W32/Magistr

W32/Magistr.39921 (see [13]) uses a polymorphic
decryptor in a long loop that includes Structured
Exception Handling, making emulation a difficult
prospect. Its algorithm is:

plil = cl[i] ~ k
The transformation of k is from one to three unique
operations chosen from +, *, rot, in any order.

A sample decryptor snippet is:

SHL EAX, 71
JMP NEAR 01018359
XOR DWORD PTR DS:[ECX], EDI
SALC
RCR EAX, 1E
RETD
AND EAX, 07557C1D
01018359:
CMP EAX, +24
XOR DWORD PTR DS: [EBX], EDI
MOV EAX, EBX
ADD EAX, 00000004
XCHG EBX, EAX
CLC
ROL EDI, 50

W95/Perenast (aka W32/Stepan,
W32/Stepar, W32/Stepaik, W32/Perelett)
WOS5/Perenast.14903/15349/15350/15383/15694 (see

[14]) uses entrypoint obscuring to hide a polymorphic
decryptor. Its algorithm is:

pli] = cl[i] ~ k
k =k - cli]

A sample decryptor is:

0040285C:
MOV ESI, DWORD PTR DS: [EDI]
XCHG EAX, EAX
XOR DWORD PTR DS: [EDI], EDX
XCHG ESP, ESP
SUB EDX, ESI
MOV EDI, EDI

PRINCIPLES AND PRACTISE OF X-RAYING

ADD EDI, +04
MOV EDI, EDI
DEC ECX

JNE 0040285C
JMP NEAR PTR EAX

WO5/Perenast.15724/15879/16224/16254/23317 uses
entrypoint obscuring to hide a polymorphic decryptor. Its
algorithm is:

pli]l = cli] ~ k

k = k - cli]

k =k ror 1

A sample decryptor is:

MOV EDX, F50B5638
00402503:
MOV ESI, DWORD PTR DS: [EDI]
XOR DWORD PTR DS: [EDI], EDX
SUB EDX, ESI
ROR EDX, 01
ADD EDI, +04
LOOPD 00402503
JMP NEAR PTR EAX

WO5/Perenast.25026 uses entrypoint obscuring to hide a
polymorphic decryptor. Its algorithm is:

pli] = cl[i] "~ k
k =k - cl[i]
k = k ror 2

A sample decryptor is:

00406538:
MOV ESI, DWORD PTR DS: [EDI]
JMP SHORT 0040653F
PUSH SS
ouT DX, EAX
PUSH EST
0040653F:
MOV ESI, ESI
XOR DWORD PTR DS:[EDI], EDX
JMP SHORT 00406545
00406545:
JMP SHORT 00406549
CMP DWORD PTR DS:[EDI], EBP
00406549
XCHG EBX, EBX
SUB EDX, ESI
MOV ECX, ECX
ROR EDX, 02
JMP SHORT 00406555
WAIT
00406555:
MOV EBP, EBP
ADD EDI, +04
MOV EDX, EDX
DEC ECX
JNE 00406538
JMP NEAR PTR EAX

WO5/Perenast.25239 uses entrypoint obscuring to hide a
polymorphic decryptor. The decryptor uses transcendental
functions of the floating-point unit to calculate the index
sequence, resulting in some indexes being repeated and
thus some entries being encrypted more than others.

Its algorithm is:
plil = c[i] ~ k1
kl = k1 » pli]

k1 = k1 rol 3
k1l = k1 op k2 (where op is ~ or +)
(next (i) is a complex fpu transformation)

A sample decryptor snippet is:

0100BC80:
XOR DWORD PTR DS:[EDI*4 + ESI], EDX
MOV EBP, EBP
XOR EDX, DWORD PTR DS: [EDI*4 + ESI]
MOV EDX, EDX
ROL EDX, 03
XCHG ESP, ESP
ADD EDX, 24173F0A
MOV ESP, ESP
CALL NEAR 0100BDO3
DEC ECX
JNE 0100BC80
Tequila

Tequila uses a simple oligomorphic decryptor. It is
included for completeness, from the days before emulators
were common. Its algorithm is:

~

pli] = c[i] op k[j] (where op is - or *, and j
indexes the buffer containing the decryptor itself)

A sample decryptor is:
0968:
MOV BX, CS
MOV DI, AX
MOV DS, BX
NOP
MOV BX, 0008
NOP
MOV SI, 0968
CMP BP, SI
TEST DL, BL
MOV CX, 0960
CMP BL, BH
CLD
0980:
MOV DL, BYTE PTR DS: [SI]
NOP
SUB BYTE PTR DS:[BX], DL
INC ST
INC BX
CLD
cmp SI, 09A8
JB 0993
CMP BL, CH
0993:
MOV SI, 0968
CMP BP, AX
MOV DI, AX
LOOPW 0980
Zhengxi

Zhengxi (see [15]) uses a polymorphic decryptor in a long
loop that includes dummy DOS and CP/M calls, making
emulation a difficult prospect. Its algorithm is:

pli] =c[i] op k (where op is a collection of + and %)

A sample decryptor snippet is:

2550:
CMP SI, 41BO
JBE 2561

15

PRINCIPLES AND PRACTISE OF X-RAYING

SBB ST, 455F
ADC CL, BYTE PTR DS: [BX]
CMP CL, BYTE PTR CS:[BP + A48D]
2561:
ADD BX, 0096
CLI
ADC CL, 1D
AND CcX, SI
CALL NEAR 24F7
XOR CX, 4994
MOV CL, B3
XCHG WORD PTR CS:[BX + 006D], DI
CALL NEAR 24F7
ADC CL, 26
ROL cx, 01
SUB DI, DX
INL 258C
XOR CX, 3253
CALL NEAR 24F7
258C:
ADD AX, 2161
CALL NEAR 24F7
JCXZ, 2599
XOR CL, BYTE PTR CS:[BP + A622]
2599:
REFERENCES

[1] Tequila analysis, Richard Jacobs, ‘Cocktail of Viral
Tricks’, Virus Bulletin, June 1991.

[2] Péter Szor, personal communications.

[3] IBM US patent 5,442,699 by Arnold, Chess,
Kephart, Sorkin, White, ‘Searching for patterns in
encrypted data’, from 15 August 1995.

[4] ‘The evolution of polymorphic viruses’, 1995.

[5] Mircea Ciubotariu, ‘Virus Cryptoanalysis’, Virus
Bulletin, November 2003.

[6] Bruce Schneier, Applied Cryptography, 2nd edition,
John Wiley & Sons, Inc.

[7] Igor Daniloff, RDA Fighter analysis, ‘Fighting
Talk’, Virus Bulletin, December 1997.

[8] Atli Gudmundsson, personal communications.

[9] Cormen, Leiserson, Rivest, Introduction to
Algorithms, 2nd edition, McGraw-Hill.

[10] Peter Ferrie & Frédéric Perriot, Bagif analysis,
‘Looking a Bagift Horse in the Mouth’, Virus
Bulletin, March 2003.

[11] Péter Szor, Drill analysis, ‘Drill Seeker’, Virus
Bulletin, January 2001.

[12] Efish analysis, Peter Ferrie & Frédéric Perriot, Virus
Bulletin, October 2004.

[13] Peter Ferrie, Magistr analysis, ‘Magisterium
Abraxas, Virus Bulletin, May 2001.

[14] Adrian Marinescu, Perenast analysis, ‘Russian
Doll’, Virus Bulletin, August 2003.

[15] Eugene Kaspersky, Zhengxi analysis, ‘Saucerful of

Secrets’, Virus Bulletin, April 1996.

PRINCIPLES AND PRACTISE OF X-RAYING PERRIOT & FERRIE

VIRUS BULLETIN CONFERENCE SEPTEMBER 2004 17

