
Towards a Specification Prototype for Hierarchy-Driven Attack Patterns

Joshua J. Pauli
College of Business and Information Systems

Dakota State University
Madison, SD, 57042, USA

josh.pauli@dsu.edu

Patrick H. Engebretson
 College of Business and Information Systems

Dakota State University
Madison, SD, 57042, USA
pat.engebretson@dsu.edu

Abstract

We propose the characteristics of a software tool that

leverages specifying attack pattern details in
understandable hierarchies. These hierarchies are
currently manually populated from the vast CAPEC
dictionary which consume an excessive amount of human
resources and are wrought with the possibility of user
error. Such a software tool will not only automate the
population of these attack pattern hierarchies, but also
provide system prerequisite information and suggested
mitigation strategies for the system under design. The
combination of system prerequisites, possible attack
patterns, and necessary mitigation strategies gives system
designers and developers a checklist-like artifact to
consider as development moves from the design phase to
the implementation phase.

Keywords: Attack Trees, Attack Patterns, Refinement,
Hierarchy.

1. Introduction

Within the past five years, the fields of network,
computer, and software security has begun to shift its
focus away from perimeter defensive models, such as
border routers, firewalls, and intrusion detection systems,
to more proactive defensive models [2]. Our prototype
tool takes the proactive mindset and attempts to automate
the populating of attack trees for the benefit of security-
centric design decisions. Because security strategies vary
greatly after design decisions are made, our prototype
includes built-in mappings for many well established
design configurations as well as the ability to add custom
design configurations. The mappings within our tool are
derived from the CAPEC dictionary of attack pattern
information. Attack Patterns are relatively new, having
been introduced within the past decade [3]. It is the goal
of this paper to leverage this vast repository.

2. Tool Prototype Characteristics

Our prototype tool is based on the CAPEC dictionary

to ensure that the input, processing, and output are
derived from an accepted source [1]. Each attack pattern
contains all the relevant information to populate our
prototype tool’s data store for later retrieval. This
information is then organized and extracted to be useful
for the design and implementation teams as the
development process moves forward. The goal of the
prototype tool is to provide a checklist-like artifact to
ensure security is considered as part of design and long
before the implementation phase.

The input for our prototype tool is the prerequisites
from the CAPEC dictionary; these are design decisions
that are made for the system under design. Our prototype
accepts prerequisites such as hardware selections,
operating system, server configurations, and
programming language used for initial input. As a user
selects a system prerequisite, related attack patterns and
necessary mitigation strategies are populated to be
reviewed.

The processing of our prototype tool is comprised of
extracting, organizing, and editing data mappings that are
made up of system prerequisites, related attack patterns,
and necessary mitigation strategies. The data mappings
are stored in a database and are leveraged by extracting
and presenting them at a system-specific level. The user
of the prototype tool can edit any mapping between
prerequisite and attack pattern or between attack pattern
and mitigation strategy to best satisfy their system’s
requirements and configurations.

The output of our prototype tool is twofold. First, there
is organized output as part of the normal usage of the tool
that displays the system-specific prerequisites, related
attack patterns, and necessary mitigation strategies in a
hierarchical format. This output is available graphically,
which is most applicable for small systems. Second, these
mappings can also be viewed in tabular format and
managerial reports, which is most applicable for larger
systems.

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.23

1169

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.23

1169

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.23

1168

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.23

1168

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.23

1168

Our prototype tool is driven by stored data mappings
of system prerequisite, related attack patterns, and
necessary mitigation strategies for a specific system. Data
mappings can be added, edited, and/or deleted from the
system’s specifications. Because every system has its own
set of data mappings, the master set of attack pattern-
driven data mappings are left unchanged. This allows for
the implementation teams to truly customize the system’s
security components to best match the system. A system’s
information is stored in a separate set of tables that are
derived directly from the master data mappings. We call
this a “system profile”. The prototype tool extracts and
lists the master data mappings per the selected system
prerequisites. They are listed in a tree structure as
introduced in Figure 1.

Figure 1. Abstract Tree Structure for Displaying
System Prerequisite-Driven Data Mappings

Each node is expandable to show all of the related

“downstream” entities. The prerequisite is expandable to
show all of the attack patterns that threaten it, while the
attack pattern is expandable to show all the necessary
mitigation strategies. One issue with systems of any size
is that the tree structure quickly becomes unreadable
because of the number of links. Because of this issue, the
mappings for a specific system may be best viewed in a
tabular format as introduced in Table 1 with a partially
populated hierarchy for “Apache Webserver” prerequisite
where applicable attack patterns are “Server Side Include
Injection” and “HTTP Request Smuggling”. Mitigations
are presented in column three.

Table 1. Partial Hierarchy for the “Apache
Webserver” System Prerequisite

PREREQ ATTACK MITIGATION
Apache
Webserver

Server Side
Include (SSI)
Injection

Set the OPTIONS
IncludesNOEXEC in
the global
access.conf file or
local .htaccess
(Apache) file to deny
SSI execution in
directories that do
not need them
All user controllable
input must be
appropriately
sanitized before use
in the application
Server Side Includes
must be enabled only
if there is a strong
business reason to do
so.

HTTP
Request
Smuggling

Careful analysis of
the entities must
occur during system
design prior to
deployment. If there
are known
differences in the
way the entities
parse HTTP
requests, the choice
of entities needs
consideration.
Employ an
application firewall

 These mappings can be edited at the discretion of the

development team to best reflect the exact
implementation of the system.

References

[1] S. Barnum and S. Amit. Further Information on

Attack Patterns. Build Security In Setting a Higher
Standard for Software Assurance 2006.

[2] G. Hoglund and G. McGraw, Exploiting Software:
How to Break Code. 2004: Pearson Higher
Education.

[3] A. Moore, R.J. Ellison, and R.C. Linger, Attack
Modeling for Information Security and Survivability.
2001: Carnegie Mellon University, Software
Engineering Institute.

11701170116911691169

