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ABSTRACT 

We present an application of back-propagation networks to hand­
written digit recognition. Minimal preprocessing of the data was 
required, but architecture of the network was highly constrained 
and specifically designed for the task. The input of the network 
consists of normalized images of isolated digits. The method has 
1 % error rate and about a 9% reject rate on zipcode digits provided 
by the U.S. Postal Service. 

1 INTRODUCTION 

The main point of this paper is to show that large back-propagation (BP) net­
works can be applied to real image-recognition problems without a large, complex 
preprocessing stage requiring detailed engineering. Unlike most previous work on 
the subject (Denker et al., 1989), the learning network is directly fed with images, 
rather than feature vectors, thus demonstrating the ability of BP networks to deal 
with large amounts of low level information. 

Previous work performed on simple digit images (Le Cun, 1989) showed that the 
architecture of the network strongly influences the network's generalization ability. 
Good generalization can only be obtained by designing a network architecture that 
contains a certain amount of a priori knowledge about the problem. The basic de­
sign principle is to minimize the number of free parameters that must be determined 
by the learning algorithm, without overly reducing the computational power of the 
network. This principle increases the probability of correct generalization because 
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Figure 1: Examples of original zip codes from the testing set. 

it results in a specialized network architecture that has a reduced entropy (Denker 
et al., 1987; Patarnello and Carnevali, 1987; Tishby, Levin and Solla, 1989; Le Cun, 
1989). On the other hand, some effort must be devoted to designing appropriate 
constraints into the architecture. 

2 ZIPCODE RECOGNITION 

The handwritten digit-recognition application was chosen because it is a relatively 
simple machine vision task: the input consists of black or white pixels, the digits 
are usually well-separated from the background, and there are only ten output 
categories. Yet the problem deals with objects in a real two-dimensional space and 
the mapping from image space to category space has both considerable regularity 
and considerable complexity. The problem has added attraction because it is of 
great practical value. 

The database used to train and test the network is a superset of the one used in 
the work reported last year (Denker et al., 1989). We emphasize that the method 
of solution reported here relies more heavily on automatic learning, and much less 
on hand-designed preprocessing. 

The database consists of 9298 segmented numerals digitized from handwritten zip­
codes that appeared on real U.S. Mail passing through the Buffalo, N.Y. post office. 
Examples of such images are shown in figure 1. The digits were written by many 
different people, using a great variety of sizes, writing styles and instruments, with 
widely varying levels of care. This was supplemented by a set of 3349 printed dig­
its coming from 35 different fonts. The training set consisted of 7291 handwritten 
digits plus 2549 printed digits. The remaining 2007 handwritten and 700 printed 
digits were used as the test set. The printed fonts in the test set were different from 
the printed fonts in the training set.One important feature of this database, which 
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Figure 2: Examples of normalized digits from the testing set. 

is a common feature to all real-world databases, is that both the training set and 
the testing set contain numerous examples that are ambiguous, unclassifiable, or 
even misclassified. 

3 PREPROCESSING 

Acquisition, binarization, location of the zip code, and preliminary segmentation 
were performed by Postal Service contractors (Wang and Srihari, 1988). Some of 
these steps constitute very hard tasks in themselves. The segmentation (separating 
each digit from its neighbors) would be a relatively simple task if we could assume 
that a character is contiguous and is disconnected from its neighbors, but neither 
of these assumptions holds in practice. Many ambiguous characters in the database 
are the result of mis-segmentation (especially broken 5's) as can be seen on figure 2. 

At this point, the size of a digit varies but is typically around 40 by 60 pixels. Since 
the input of a back-propagation network is fixed size, it is necessary to normalize 
the size of the characters. This was performed using a linear transformation to 
make the characters fit in a 16 by 16 pixel image. This transformation preserves 
the aspect ratio of the character, and is performed after extraneous marks in the 
image have been removed. Because of the linear transformation, the resulting image 
is not binary but has multiple gray levels, since a variable number of pixels in the 
original image can fall into a given pixel in the target image. The gray levels of 
each image are scaled and translated to fall within the range -1 to 1. 

4 THE NETWORK 

The remainder ofthe recognition is entirely performed by a multi-layer network. All 
of the connections in the network are adaptive, although heavily constrained, and 
are trained using back-propagation. This is in contrast with earlier work (Denker 
et al., 1989) where the first few layers of connections were hand-chosen constants. 
The input of the network is a 16 by 16 normalized image and the output is composed 
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of 10 units: one per class. When a pattern belonging to class i is presented, the 
desired output is +1 for the ith output unit, and -1 for the other output units. 

Figure 3: Input image (left), weight vector (center), and resulting feature map 
(right). The feature map is obtained by scanning the input image with a single 
neuron that has a local receptive field, as indicated. White represents -1, black 
represents + 1. 

A fully connected network with enough discriminative power for the task would have 
far too many parameters to be able to generalize correctly. Therefore a restricted 
connection-scheme must be devised, guided by our prior knowledge about shape 
recognition. There are well-known advantages to performing shape recognition by 
detecting and combining local features. We have required our network to do this 
by constraining the connections in the first few layers to be local. In addition, if 
a feature detector is useful on one part of the image, it is likely to be useful on 
other parts of the image as well. One reason for this is that the salient features of a 
distorted character might be displaced slightly from their position in a typical char­
acter. One solution to this problem is to scan the input image with a single neuron 
that has a local receptive field, and store the states of this neuron in corresponding 
locations in a layer called a feature map (see figure 3). This operation is equivalent 
to a convolution with a small size kernel, followed by a squashing function. The 
process can be performed in parallel by implementing the feature map as a plane 
of neurons whose weight vectors are constrained to be equal. That is, units in a 
feature map are constrained to perform the same operation on different parts of the 
image. An interesting side-effect of this weight sharing technique, already described 
in (Rumelhart, Hinton and Williams, 1986), is to reduce the number of free param­
eters by a large amount, since a large number of units share the same weights. In 
addition, a certain level of shift invariance is present in the system: shifting the 
input will shift the result on the feature map, but will leave it unchanged otherwise. 
In practice, it will be necessary to have multiple feature maps, extracting different 
features from the same image. 
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1 2 3 4 5 6 7 8 9 10 11 12 
1 X X X X X 
2 X X X X X 
3 X X X X X 
4 X X X X X 

Table 1: Connections between H2 and H3. 

The idea of local, convolutional feature maps can be applied to subsequent hidden 
layers as well, to extract features of increasing complexity and abstraction. Inter­
estingly, higher level features require less precise coding of their location. Reduced 
precision is actually advantageous, since a slight distortion or translation of the in­
put will have reduced effect on the representation. Thus, each feature extraction in 
our network is followed by an additional layer which performs a local averaging and 
a subsampling, reducing the resolution of the feature map. This layer introduces 
a certain level of invariance to distortions and translations. A functional module 
of our network consists of a layer of shared-weight feature maps followed by an 
averaging/subsampling layer. This is reminiscent of the Neocognitron architecture 
(Fukushima and Miyake, 1982), with the notable difference that we use backprop 
(rather than unsupervised learning) which we feel is more appropriate to this sort 
of classification problem. 

The network architecture, represented in figure 4, is a direct extension of the ones 
described in (Le Cun, 1989; Le Cun et al., 1990a). The network has four hidden 
layers respectively named HI, H2, H3, and H4. Layers HI and H3 are shared-weights 
feature extractors, while H2 and H4 are averaging/subsampling layers. 

Although the size of the active part of the input is 16 by 16, the actual input is a 28 
by 28 plane to avoid problems when a kernel overlaps a boundary. HI is composed 
of 4 groups of 576 units arranged as 4 independent 24 by 24 feature maps. These 
four feature maps will be designated by HI.l, HI.2, HI.3 and HIA. Each unit in 
a feature map takes its input from a 5 by 5 neighborhood on the input plane. As 
described above, corresponding connections on each unit in a given feature map are 
constrained to have the same weight. In other words, all of the 576 units in H1.1 
uses the same set of 26 weights (including the bias). Of course, units in another 
map (say HI.4) share another set of 26 weights. 

Layer H2 is the averaging/subsampling layer. It is composed of 4 planes of size 12 
by 12. Each unit in one of these planes takes inputs on 4 units on the corresponding 
plane in HI. Receptive fields do not overlap. All the weights are constrained to be 
equal, even within a single unit. Therefore, H2 performs a local averaging and a 2 
to 1 sUbsampling of HI in each direction. 

Layer H3 is composed of 12 feature maps. Each feature map contains 64 units 
arranged in a 8 by 8 plane. As before, these feature maps will be designated as 
H2.1, H2.2 ... H2.12. The connection scheme between H2 and H3 is quite similar 
to the one between the input and HI, but slightly more complicated because H3 
has multiple 2-D maps. Each unit receptive field is composed of one or two 5 by 
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Figure 4: Network Architecture with 5 layers of fully-adaptive connections. 
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5 neighborhoods centered around units that are at identical positions within each 
H2 maps. Of course, all units in a given map are constrained to have identical 
weight vectors. The maps in H2 on which a map in H3 takes its inputs are chosen 
according to a scheme described on table 1. According to this scheme, the network 
is composed of two almost independent modules. Layer H4 plays the same role as 
layer H2, it is composed of 12 groups of 16 units arranged in 4 by 4 planes. 

The output layer has 10 units and is fully connected to H4. In summary, the 
network has 4635 units, 98442 connections, and 2578 independent parameters. This 
architecture was derived using the Optimal Brain Damage technique (Le Cun et al., 
1990b) starting from a previous architecture (Le Cun et al., 1990a) that had 4 times 
more free parameters. 

5 RESULTS 

After 30 training passes the error rate on training set (7291 handwritten plus 2549 
printed digits) was 1.1% and the MSE was .017. On the whole test set (2007 
handwritten plus 700 printed characters) the error rate was 3.4% and the MSE was 
0.024. All the classification errors occurred on handwritten characters. 

In a realistic application, the user is not so much interested in the raw error rate 
as in the number of rejections necessary to reach a given level of accuracy. In our 
case, we measured the percentage of test patterns that must be rejected in order 
to get 1% error rate. Our rejection criterion was based on three conditions: the 
activity level of the most-active output unit should by larger than a given threshold 
t 1 , the activity level of the second most-active unit should be smaller than a given 
threshold t2, and finally, the difference between the activity levels of these two units 
should be larger than a given threshold td. The best percentage of rejections on 
the complete test set was 5.7% for 1% error. On the handwritten set only, the 
result was 9% rejections for 1 % error. It should be emphasized that the rejection 
thresholds were obtained using performance measures on the test set. About half 
the substitution errors in the testing set were due to faulty segmentation, and an 
additional quarter were due to erroneous assignment of the desired category. Some 
of the remaining images were ambiguous even to humans, and in a few cases the 
network misclassified the image for no discernible reason. 

Even though a second-order version of back-propagation was used, it is interesting 
to note that the learning takes only 30 passes through the training set. We think 
this can be attributed to the large amount of redundancy present in real data. A 
complete training session (30 passes through the training set plus test) takes about 
3 days on a SUN SP ARCstation 1 using the SN2 connectionist simulator (Bottou 
and Le Cun, 1989). 

After successful training, the network was implemented on a commercial Digital 
Signal Processor board containing an AT&T DSP-32C general purpose DSP chip 
with a peak performance of 12.5 million multiply-add operations per second on 32 bit 
floating point numbers. The DSP operates as a coprocessor in a PC connected to 
a video camera. The PC performs the digitization, binarization and segmentation 
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Figure 5: Atypical data. The network classifies these correctly, even though they 
are quite unlike anything in the training set. 

of the image, while the DSP performs the size-normalization and the classification. 
The overall throughput of the digit recognizer including image acquisition is 10 to 
12 classifications per second and is limited mainly by the normalization step. On 
normalized digits, the DSP performs more than 30 classifications per second. 

6 CONCLUSION 

Back-propagation learning was successfully applied to a large, real-world task. Our 
results appear to be at the state of the art in handwritten digit recognition. The 
network had many connections but relatively few free parameters. The network 
architecture and the constraints on the weights were designed to incorporate geo­
metric knowledge about the task into the system. Because of its architecture, the 
network could be trained on a low-level representation of data that had minimal 
preprocessing (as opposed to elaborate feature extraction). Because of the redun­
dant nature of the data and because of the constraints imposed on the network, the 
learning time was relatively short considering the size of the training set. Scaling 
properties were far better than one would expect just from extrapolating results of 
back-propagation on smaller, artificial problems. Preliminary results on alphanu­
meric characters show that the method can be directly extended to larger tasks. 

The final network of connections and weights obtained by back-propagation learn­
ing was readily implementable on commercial digital signal processing hard ware. 
Throughput rates, from camera to classified image, of more than ten digits per 
second were obtained. 
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