
JavaScript static security analysis

made easy with JSPrime

Nishant Das Patnaik & Sarathi Sabyasachi Sahoo
nishant.dp@gmail.com & sarathisahoo@gmail.com

JavaScript is the lingua-franca of Web 2.0 and, recently, with the advent

of mobile SDKs JavaScript seen the light of being used as a mainstream

programming language for ‘hybrid’ mobile applications which combine
web applications fluidity and with native capabilities. However as with

any other programming languages we have seen that developers are not

very cautious about writing secure applications in JavaScript, be it rich
web applications or mobile applications which leads to vulnerabilities

like DOM-based Cross-Site Scripting attacks, and the situation becomes

even more critical when the application is written on Node.JS or its
variants which may lead to arbitrary JavaScript code injection in the

context of the server.

The following section summarizes the outline of this Whitepaper:

 Introduction

 The Problem

 Introducing JSPrime

 Conclusion

 Credits

mailto:nishant.dp@gmail.com
mailto:sarathisahoo@gmail.com

Introduction
Insecure JavaScript programs in the client-side applications can easily

lead to script injections that can run with the same privileges that the

application is running. Script injection is browser-based applications due
to is often known as DOM-based Cross Site Scripting attacks. This

variant of XSS is in no way different from it’s siblings in the context of

its impact. However traditional tools that rely on pattern-match, in
HTTP request-response, do not detect these vulnerabilities. Hence, lots

of modern applications are still vulnerable to this attack. This is not just

limited to browser-based applications; this type of code injection might
also be a risk when developing Node.JS based applications. However in

those cases it impact would be more lethal: from completely taking over

servers to creating denial-of-service attacks against your application. It is
not essentially a fact that developers are not aware of this type of

vulnerability nor they are aware of its mitigations. The problem lies

when organizations become agile in releasing code to the consumers.
This is when the demand for fast shipping, leads to security issues in the

code. Hence we need better and automated tools that can help

developers to write secure code right from their IDE. This would save a
lot time and money for organizations.

The Problem
Until now it seems to be a very serious problem and the solution seems
to be very obvious. You might be thinking either of two approaches to

tackle this problem: 1. Build a dynamic scanner for Black-box testing for

the security team, or 2. Build a static code analyzer for the development
team. If you are thinking either of these two, you are on the right track.

However let us explain you the challenges in both of these approaches.

Dynamic Black-box scanner is a good option for a very limited type of
architecture of the application, and what we mean by that is today the

applications have become too much complex and it’s virtually

impossible for an automated tool to scan these applications with no
manual intervention, as each and every application is so different. And

the moment a tool depends upon manual effort it efficiency becomes

proportional to it’s user and secondly humans are meant to work on
smart problems (think of business logic flaws and similar issues);

repetitive tasks should be automated. That’s our honest thought.

Now coming to the second option of building a static security analyzer is

the option we preferred. Since we already said the problem we are
discussing is all about JavaScript, I would like to introduce you to this

beautiful and amazing language. JavaScript is a dynamic language,

which is why it is very loosely typed. It Object-based where properties
can be created on demand. It fully supports Prototype-based inheritance,

First-class functions i.e. functions can be passed as arguments to other

functions, function can return another function, function can be stored in
data structures etc. It also supports closure, which is considered to be an

advanced feature of the JavaScript language, and it’s understanding is

essential in mastering the language. Runtime type casting and coercions
are other challenges that are essential for achieving high-degree of

correctness of the analysis. So by now we hope you might realize why

manual code review of JavaScript applications can be intimidating. Also
developers are seldom writing code in pure JavaScript i.e. without using

any 3rd party JavaScript libraries like YUI or jQuery or MVC

frameworks. In such scenario it becomes difficult for a code reviewer to
learn the insecure coding practices of these libraries and keeping himself

updated up till the latest version might be really challenging at times.

Introducing JSPrime
JSPrime is a lightweight source code scanner for identifying security

issues using static analysis. It is written purely in JavaScript to analyze
JavaScript. Uses the open-source ECMAScript parser:

http://www.esprima.org JSPrime is mostly a developer centric tool. It

can aid code reviewers for identifying security issues in 1st pass. Security
professionals may find it useful during penetration testing engagements.

Following is a brief description of the working of JSPrime:

- Feed the code to Esprima, to generate the AST.
- Parse the JSON AST, to locate all sources

(including Objects, Prototype) and keeping

track of their scopes

- Parse the AST, to locate all assignment

operations related to the sources, while

keeping track of their scopes

- Parse the AST to locate sinks and sink aliases,
again keeping track of their scope.

http://www.esprima.org/

- Parse AST to locate functions (including

closures, anon functions) which are fed with

sources as arguments and while tracking down

their return values.

- Once all the sources, source aliases are

collected we check for any filter function on

them, rejected if found.

- Remaining sources, source aliases are tracked
for assignments or pass as argument operations

to the collected sinks or sink aliases.

- We repeat the same process in reverse order to
be sure that we reach the same source when we

traverse backwards, just to be sure.

- Once we confirm that, we then extract the line
numbers and their statement and put it in the

report we generate with different color-coding.

JSPrime has some really good features that appreciated by developers. It

is capable of following code execution order and handle first-class

functions. It has the ability to analyze Prototype-based inheritance and
while understanding type-casting. It has knowledge of sources and sinks

of pure JavaScript, YUI & jQuery and is also aware of context-based

filter functions which has to be manually supplied for each library,
though and can be updated at will. Variable, Objects, Functional scoping

is kept in track during the analysis to lower false-positives rate. Control-

flow analysis & data-flow analysis is a integral part of the tool. However,
it can’t detect 100% of the issues, like any other tool, though the

intelligence will only grow with time. It can’t learn sources and sinks

automatically nor handle obfuscated JavaScript. It also can’t report
issues in minified JavaScript, unless beautified. It can’t analyze

dynamically generated JavaScript using ‘eval’ or similar methods.

Having said that presently the tool handle up to 1500 lines-of-code, in a
single scan and a Node.JS port is available for server-side web service

like setup in enterprises. It’s robustness is largely dependent on Esprima

parser, can be the 1st point failure. You can find a list of the test cases
that JSPrime is able to analyze here: http://goo.gl/ju6oq You can add

your own test cases and help us improve the tool.

http://goo.gl/ju6oq

Conclusion
This is project is actively work-in-progress with a promising roadmap.

We plan to work on improving the performance and stability of the

stability of the tool for making it even more enterprise ready. Future
releases would see multiple file scanning capabilities with full Node.JS

project scanning capability. A much requested feature that is coming its

way is an IDE Plugin (Notepad++, WebStorm,??). Added support for
even more 3rd party libraries along with string manipulation function

simulation for lesser false negative rate. And of course your suggestions.

Credits
Aria Hidayat, Esprima.org

Paul Theriault, Mozilla Security Team
Bishan Singh - @b1shan

Rafay Baloch – rafayhackingarticles.com

