
Trust Extension as a Mechanism for
Secure Code Execution

on Commodity Computers
Bryan Je�rey Parno

April 19th, 2010

School of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

�esis Committee:

Prof. Adrian Perrig (Chair) Carnegie Mellon University
Prof. David Andersen Carnegie Mellon University
Prof. Virgil GligorCarnegie Mellon University
Prof. John C. Mitchell Stanford University
Prof. Gene TsudikUniversity of California, Irvine

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2010 Bryan Je�rey Parno

2

�is research was supported by CyLab at Carnegie Mellon under grants CNS-0831440 and CCF-0424422 from
theNational Science Foundation (NSF), and by a gi� fromAdvancedMicroDevices (AMD), Inc.�e author was
also supported in part by a National Defense Science and Engineering (NDSEG) Fellowship, which is sponsored
by the Department of Defense, as well as by a National Science Foundation Graduate Research Fellowship.

�e views and conclusions contained here are those of the author and should not be interpreted as necessarily
representing the o�cial policies or endorsements, either express or implied, of AMD, Carnegie Mellon, NSF, or
the U.S. Government or any of its agencies.

Dedicated to Diana for 101 reasons

Abstract

As society rushes to digitize sensitive information and services, it is imperative to adopt
adequate security protections. However, such protections fundamentally con�ict with the
bene�ts we expect from commodity computers. In other words, consumers and businesses
value commodity computers because they provide good performance and an abundance of
features at relatively low costs. Meanwhile, attempts to build secure systems from the ground
up typically abandon such goals, and hence are seldom adopted [8, 72, 104].

In this dissertation, I argue that we can resolve the tension between security and fea-
tures by leveraging the trust a user has in one device to enable her to securely use another
commodity device or service, without sacri�cing the performance and features expected of
commodity systems. At a high level, we support this premise by developing techniques to al-
low a user to employ a small, trusted, portable device to securely learn what code is executing
on her local computer. Rather than entrusting her data to the mountain of buggy code likely
running on her computer, we construct an on-demand secure execution environment which
can perform security-sensitive tasks and handle private data in complete isolation from all
other so�ware (and most hardware) on the system. Meanwhile, non-security-sensitive so�-
ware retains the same abundance of features and performance it enjoys today.

Having established an environment for secure code execution on an individual computer,
we then show how to extend trust in this environment to network elements in a secure and
e�cient manner. �is allows us to reexamine the design of network protocols and defenses,
since we can now execute code on endhosts and trust the results within the network. Lastly,
we extend the user’s trust one more step to encompass computations performed on a remote
host (e.g., in the cloud). We design, analyze, and prove secure a protocol that allows a user
to outsource arbitrary computations to commodity computers run by an untrusted remote
party (or parties) who may subject the computers to both so�ware and hardware attacks.
Our protocol guarantees that the user can both verify that the results returned are indeed
the correct results of the speci�ed computations on the inputs provided, and protect the
secrecy of both the inputs and outputs of the computations. �ese guarantees are provided
in a non-interactive, asymptotically optimal (with respect to CPU and bandwidth) manner.

�us, extending a user’s trust, via so�ware, hardware, and cryptographic techniques,
allows us to provide strong security protections for both local and remote computations on
sensitive data, while still preserving the performance and features of commodity computers.

Acknowledgements

First, I would like to thank my adviser, Professor Adrian Perrig, for his relentless op-
timism and for his support of my varied research interests. Adrian’s dedication, creativity,
and enthusiasm are inspiring. He taught me, even as a �rst-year graduate student, to think
big and aim high. I would also like to thank Professors Dave Andersen, Lujo Bauer, David
Brumley, Virgil Gligor, and Mike Reiter for numerous discussions, extensive advice, helpful
feedback, and constant support.

I am indebted to all of my coauthors over the years for all of the great ideas, hard work,
late nights, and fun times. I would especially like to thank Jon McCune, a great collaborator
and a great friend. I am still amazed at his ability to relentlessly track down the most obscure
bugs and his talent for methodically constructing incredibly complex systems. His dedi-
cation to concrete details leavened my tendency towards abstraction and le� our research
greatly enriched. As mentors, Helen Wang, Ari Juels, and Rosario Gennaro expanded my
horizons and fostered my growth as a researcher. I also bene�ted frommy interactions with
the members of the Parallel Data Lab, especially Mike, James, Raja, and Matthew, who in-
troduced me to topics far frommy own area of expertise and who always impressed me with
the rigor of their experiments. My freedom to explore a wide range of research topics was
supported by NDSEG and NSF fellowships, for which I am grateful.

Many friends have brightened my life in Pittsburgh and provided much needed distrac-
tion and entertainment. I would particularly like to thank Jim and Bonnie, Scott and Ginger,
Jon andKathleen, Ahren andCasey, Dan and Lori, James andAnne, andMike for welcoming
me into their homes and lives.

In college, I was fortunate to take graduate-level courses taught by Professors Margo
Seltzer andMattWelsh. �eir classes introduced me to the world of research, inspired me to
enter graduate school, and taught me many of the research skills I use to this day.

So much of who and what I am comes from my phenomenal family. I am incredibly
lucky to have grown up in such a nurturing environment. My parents, in particular, never
wavered in their love, con�dence, or support. �eir example is both humbling and inspiring.

Finally, mymost heartfelt thanks go to Diana: my biggest fan andmy best friend. I could
not and would not have made it without her constant love and encouragement. She is a
wonderful partner and a dream come true.

Contents

1 Introduction 14
1.1 Insecure Computers in a Hostile World . 14
1.2 A Vision for a Better World . 15
1.3 Overview: Building Up from a Firm Foundation 16
1.4 Bootstrapping Trust in a Commodity Computer 17
1.5 Securely Executing Code on a Commodity Computer 18
1.6 Leveraging Secure Code Execution to Improve Network Protocols 19
1.7 Secure Code Execution Despite Untrusted So�ware and Hardware 20
1.8 Summary of Contributions . 21

2 Background and RelatedWork 22
2.1 What Do We Need to Know?

Techniques for Recording Platform State 24
2.1.1 Recording Code Identity . 24
2.1.2 Recording Dynamic Properties . 29
2.1.3 Which Property is Necessary? . 30

2.2 Can We Use Platform Information Locally? 31
2.2.1 Secure Boot . 31
2.2.2 Storage Access Control Based on Code Identity 32

2.2.2.1 Tamper-Responding Protected Storage 32
2.2.2.2 TPM-Based Sealed Storage 33

2.3 Can We Use Platform Information Remotely? 35
2.3.1 Prerequisites . 35
2.3.2 Conveying Code Measurement Chains 35

2.3.2.1 General Purpose Coprocessor-Based Attestation 36
2.3.2.2 TPM-Based Attestation 37

6

CONTENTS 7

2.3.3 Privacy Concerns . 38
2.3.3.1 Identity Certi�cate Authorities 39
2.3.3.2 Direct Anonymous Attestation 40

2.4 How DoWe Make Sense of Platform State? 40
2.4.1 Coping With Information Overload 41
2.4.2 Focusing on Security-Relevant Code 41
2.4.3 Conveying Higher-Level Information 45

2.5 Roots of Trust . 46
2.5.1 General-Purpose Tamper-Resistant and

Tamper-Responding Devices . 46
2.5.1.1 Commercial Solutions 46
2.5.1.2 Research Projects . 47

2.5.2 General-Purpose Devices Without Physical Defenses 48
2.5.3 Special-Purpose Minimal Devices 49
2.5.4 Research Solutions Without Hardware Support 49
2.5.5 Cryptographic Protocols . 50

2.6 Validating the Process . 52
2.7 Applications . 52

2.7.1 Real World . 52
2.7.2 Research Proposals . 53

2.8 Human Factors & Usability . 55
2.8.1 Trustworthy Veri�er Device . 56
2.8.2 Using Your Brain to Check a Computer 56
2.8.3 Pairing Two Trustworthy Devices 57

2.9 Limitations . 57
2.9.1 Load-Time Versus Run-Time Guarantees 57
2.9.2 Hardware Attacks . 58

2.10 Additional Reading . 59
2.11 Summary . 59

3 Bootstrapping Trust in a Commodity Computer 60
3.1 Problem De�nition . 61

3.1.1 Informal Problem Description . 61
3.1.2 Formal Model . 64

3.2 Potential Solutions . 65

CONTENTS 8

3.2.1 Removing Network Access . 65
3.2.2 Eliminating Malware . 66
3.2.3 Establishing a Secure Channel . 67

3.2.3.1 Hardware-Based Secure Channels 68
3.2.3.2 Cryptographic Secure Channels 69

3.3 Preferred Solutions . 71
3.4 Summary . 71

4 On-Demand Secure Code Execution 72
4.1 Problem De�nition . 75

4.1.1 Adversary Model . 75
4.1.2 Goals . 75

4.2 Flicker Architecture . 76
4.2.1 Flicker Overview . 77
4.2.2 Isolated Execution . 77
4.2.3 Multiple Flicker Sessions . 82

4.2.3.1 TPM Sealed Storage . 82
4.2.3.2 Replay Prevention for Sealed Storage 83

4.2.4 Interaction With a Remote Party 84
4.2.4.1 Attestation and Result Integrity 84
4.2.4.2 Establishing a Secure Channel 85

4.3 Developer’s Perspective . 87
4.3.1 Creating a PAL . 87

4.3.1.1 A “Hello, World” Example PAL 87
4.3.1.2 Building a PAL . 88

4.3.2 Automation . 90
4.4 Flicker Applications . 91

4.4.1 Stateless Applications . 91
4.4.2 Integrity-Protected State . 92
4.4.3 Secret and Integrity-Protected State 93

4.4.3.1 SSH Password Authentication 93
4.4.3.2 Certi�cate Authority . 96

4.5 Performance Evaluation . 96
4.5.1 Experimental Setup . 96
4.5.2 Microbenchmarks . 97

CONTENTS 9

4.5.2.1 Late Launch with an AMD Processor 97
4.5.2.2 Late Launch with an Intel Processor 98
4.5.2.3 Trusted Platform Module (TPM) Operations 99

4.5.3 Stateless Applications . 100
4.5.4 Integrity-Protected State . 102
4.5.5 Secret and Integrity-Protected State 104

4.5.5.1 SSH Password Authentication 104
4.5.5.2 Certi�cate Authority . 105

4.5.6 Impact on Suspended Operating System 105
4.5.7 Major Performance Problems . 106

4.6 Architectural Recommendations . 107
4.6.1 Launching a PAL . 108

4.6.1.1 Recommendation . 109
4.6.1.2 Suggested Implementation Given Existing Hardware . . . 109

4.6.2 Hardware Memory Isolation . 109
4.6.2.1 Recommendation . 110
4.6.2.2 Suggested Implementation Given Existing Hardware . . . 111

4.6.3 Hardware Context Switch . 111
4.6.3.1 Recommendation . 111
4.6.3.2 Suggested Implementation Given Existing Hardware . . . 112

4.6.4 Improved TPM Support for Flicker 113
4.6.4.1 sePCR Assignment and Communication 114
4.6.4.2 sePCR Access Control 115
4.6.4.3 sePCR States and Attestation 115
4.6.4.4 Sealing Data Under a sePCR 116
4.6.4.5 TPM Arbitration . 116

4.6.5 PAL Exit . 116
4.6.6 PAL Life Cycle . 117
4.6.7 Expected Impact . 120
4.6.8 Extensions . 121

4.7 Summary . 122

5 Using Trustworthy Host Data in the Network 123
5.1 Problem De�nition . 125

5.1.1 Architectural Goals . 125

CONTENTS 10

5.1.2 Assumptions . 125
5.2 �e Assayer Architecture . 126

5.2.1 Overview . 126
5.2.2 Assayer Components . 128

5.2.2.1 Clients . 128
5.2.2.2 Veri�ers . 130
5.2.2.3 Filters . 131
5.2.2.4 Relying Party . 132

5.2.3 Protocol Details . 132
5.2.3.1 Desirable Properties . 132
5.2.3.2 Protocol Speci�cations 133
5.2.3.3 A Symmetric Alternative 136

5.2.4 User Privacy and Client Revocation 137
5.3 Potential Attacks . 138

5.3.1 Exploited Clients . 138
5.3.2 Malicious Clients . 139
5.3.3 Rogue Veri�ers . 140
5.3.4 Rogue Filters . 140

5.4 Case Studies . 141
5.4.1 Spam Identi�cation . 141
5.4.2 Distributed Denial-of-Service (DDoS) Mitigation 142
5.4.3 Super-Spreader Worm Detection 145

5.5 Implementation . 146
5.5.1 Client Architecture . 146
5.5.2 Client Veri�cation . 147
5.5.3 Tra�c Annotation . 148
5.5.4 Filter . 149

5.6 Evaluation . 150
5.6.1 Client Veri�cation . 150

5.6.1.1 Client Latency . 150
5.6.1.2 Veri�er�roughput . 151

5.6.2 Client Annotations . 151
5.6.3 Filter�roughput . 152
5.6.4 Internet-Scale Simulation . 154

5.7 Potential Objections . 156

CONTENTS 11

5.7.1 Why Not Collect Information on the Local Router? 156
5.7.2 Is�is Really Deployable Incrementally? 156

5.8 Summary . 156

6 Secure Code Execution On Untrusted Hardware 158
6.1 Overview . 159
6.2 Cryptographic Background . 162

6.2.1 Yao’s Garbled Circuit Construction 162
6.2.2 �e Security of Yao’s Protocol . 164
6.2.3 Fully Homomorphic Encryption 165

6.3 Problem De�nition . 166
6.3.1 Basic Requirements . 166
6.3.2 Input and Output Privacy . 168
6.3.3 E�ciency . 169

6.4 An E�cient Veri�able-Computation Scheme with
Input and Output Privacy . 170
6.4.1 Protocol De�nition . 170
6.4.2 Proof of Security . 171

6.4.2.1 Proof Sketch of Yao’s Security for One Execution 172
6.4.2.2 Proof of�eorem 1 . 176

6.4.3 Proof of Input and Output Privacy 178
6.4.4 E�ciency . 178

6.5 How to Handle Cheating Workers . 178
6.6 Summary . 182

7 Conclusion 183

Bibliography 185

List of Figures

2.1 Trusted Boot vs. Secure Boot . 26
2.2 Techniques for Securely Recording Code Measurements 27
2.3 Attestation Based on Signed Hash Chains 38

3.1 �e Cuckoo Attack . 62
3.2 Trust Model for Establishing Trust in a Computer 63
3.3 Trust Model Assumptions . 63
3.4 Proof Failure Reveals Cuckoo Attack . 64

4.1 Trusted Computing Base Comparison . 73
4.2 Timeline for Executing a PAL . 77
4.3 Saved Execution State . 79
4.4 Memory Layout of the SLB . 80
4.5 Protocols for Replay Protection . 83
4.6 Establishing a Secure Channel . 86
4.7 An Example PAL . 87
4.8 Existing Flicker Modules . 88
4.9 SSH Password Checking Protocol . 94
4.10 SKINIT and SENTER Benchmarks . 97
4.11 TPMMicrobenchmarks . 100
4.12 Breakdown of Rootkit Detector Overhead 101
4.13 Impact of the Rootkit Detector . 102
4.14 Operations for Distributed Computing . 103
4.15 Flicker vs. Replication E�ciency . 103
4.16 SSH Performance Overhead . 104
4.17 Goal of Our Architectural Recommendations 107

12

LIST OF FIGURES 13

4.18 SECB Structure . 108
4.19 Memory Page States . 110
4.20 VM Entry and Exit Performance . 113
4.21 Life Cycle of a PAL . 118
4.22 SLAUNCH Pseudocode . 118

5.1 Assayer Component Overview . 127
5.2 Client Operations . 129
5.3 Protocol for Veri�er Attestation . 133
5.4 Protocol for Client Attestation . 134
5.5 Protocol for Annotating Tra�c . 134
5.6 Algorithm for Filtering Annotations . 135
5.7 Case Studies . 141
5.8 Filter Deployment Strategy . 144
5.9 Token and Annotation Layout . 148
5.10 Time Required to Generate Annotations 151
5.11 Performance of Client Annotations: Symmetric vs. Asymmetric 153
5.12 Packet Filtering Performance . 153
5.13 Internet-Scale Simulations . 155

6.1 Yao’s Garbled Circuit Construction . 163

Chapter 1

Introduction

1.1 Insecure Computers in a Hostile World

Businesses and individuals are entrusting progressively greater amounts of security-sensitive
data to computers, both their own and those of third parties. To be worthy of this trust, these
computers must ensure that the data is handled with care (e.g., as the user expects), and
protected from external threats. Unfortunately, today’s computer platforms provide little
assurance on either front. Most platforms still run code designed primarily for features,
not security. While it is di�cult to measure precisely, multiple heuristics suggest that code
quality has improved relatively little with respect to security. For example, the majority of
coding projects on SourceForge employ type-unsafe languages (e.g., C or C++) [92]. �e
National Vulnerabilities Database [150] catalogues thousands of new so�ware vulnerability
reports each year, and recent studies indicate that over 25% of US computers are infected
with some form of malicious so�ware [152].

�ese vulnerabilities are particularly troubling when coupled with the increasingly hos-
tile environment to which computers (and users) are exposed. Indeed, the lucrative and
di�cult-to-prosecute crimes that computers facilitate have given rise to a burgeoning crimi-
nal underground inwhich sophisticated, �nancially-motivated attackers collaborate tomon-
etize exploited computers and stolen user data [62]. �ese ne’er-do-wells can employ auto-
mated, turn-key packages to attack thousands of potential victims every second [187]. �e
victim computers are then o�en formed into coordinated “botnets” of tens or hundreds
of thousands of machines and used to send spam or launch Distributed Denial of Service
(DDoS) attacks [91, 139].

14

CHAPTER 1. INTRODUCTION 15

As a result, from the moment a user digitizes her data, it is under constant assault from
all sides. Malicious so�ware on the user’s computer may snatch up the user’s private data and
ship it o� to foreign lands. If the user entrusts her data or computations to a remote service,
then the remote computers may be subject to all manner of physical attacks, as surveyed
in Section 2.9.2. Furthermore, experience demonstrates that remote workers will attempt
to return forged results even when the only payo� is an improvement of their standings in
an online ranking [145]; when there is a potential to pro�t from such skulduggery, workers’
temptations can only increase.

Sadly, these attacks on user data succeed all too o�en. �ey contribute to the over 3.6
million U.S. households that were victims of identity the� in the year 2004 alone [49]. �ey
also undermine users’ trust in electronic systems, and hence inhibit both current and future
systems. For example, a 2005 Consumer Reports survey found that 29% of consumers had
cut back on – and 25% had stopped – shopping online due to fears of fraud and identity
the� [159]. Digitizing medical records could potentially reduce skyrocketing costs (studies
estimate that savings fromanationwide program in theU.S. could amount to $162-346 billion
annually [7]) and help save the lives of the 44,000 to 98,000 Americans killed every year as
a result of medical errors [7], for example, by automatically �agging potentially dangerous
prescription interactions. Nonetheless, such e�orts have been hampered by legitimate fears
that such digital medical records will be insecure.

1.2 A Vision for a Better World

I envision a future in which average computer users can easily and securely use their com-
puters to perform sensitive tasks (e.g., paying bills, shopping online, or accessing medical
records), while still retaining the �exibility and performance expected of modern comput-
ers. Users will regard a computer attack not as a disaster that empties bank accounts or
destroys documents, but as a minor annoyance; like a blown electrical fuse, it will be easy
to detect and simple to remedy. Providing security as a largely invisible default will allow
the information age to �nally reach its true potential: users will submit their personal infor-
mation to online sites, not blindly or with trepidation, but with con�dence that it cannot be
stolen or misused; businesses and consumers will feel perfectly secure outsourcing work to
computational services; and remote, web-based applications will provide the same level of
privacy, security, and availability that native applications do.

Achieving this goal will require advances on many fronts: better programming lan-
guages, better operating systems, better network protocols, and better de�nitions of security.

CHAPTER 1. INTRODUCTION 16

More fundamentally, however, we must enable both computers and users to make accurate,
informed trust decisions. A�er all, even if so�ware does improve, we must be able to deter-
mine which systems employ the new and improved so�ware! �is applies both to users and
to network components. In other words, it is critical that a user be able to judge whether a
system (either local or remote) should be trusted before she hands over her sensitive data.
Similarly, if a network element (e.g., a router) can trust information from an endhost, then
numerous protocol optimizations become possible.

In this work, we focus on a de�nition of trust similar to the de�nition of a Nash Equi-
librium; for example, to trust an entity X with her private data (or with a security-sensitive
task), a user Alice must believe that at no point in the future will she have cause to regret
having given her data (or entrusted her task) to X . As a result, this dissertation examines
techniques that provide �rm evidence on which to base such a belief. As an additional con-
straint, we concentrate on average users and commodity systems, rather than on advanced
users, special-purpose computers, or highly constrained environments (such as those found
within the military).

Alas, previous e�orts to construct trustworthy systems “from the groundup” have proven
di�cult, time-consuming, and unable to keep pace with the changing demands of the mar-
ketplace [8, 72, 104, 113]. For example, the VAX VMM security kernel was developed over
the course of eight years of considerable e�ort, but in the end, the project failed, and the
kernel was never deployed. �is failure was due, in part, to the absence of support for Ether-
net – an emerging and highly popular feature considered critical by the time the kernel was
completed, but not anticipated when it was initially designed [104]. �us, such e�orts have
typically been doomed, and their methods have not been adopted into the mainstream of
so�ware development.

1.3 Overview: Building Up from a Firm Foundation

Rather than starting over, the thesis of this work is that we can design techniques that allow
users to leverage the trust they have in one device to securely use another device or service.

As we describe in more detail below, we start from the assumption that the user has
some small, portable, canonically trusted device, such as a special-purpose USB device [203]
or cellphone. �e question of how this initial trust is established is outside the scope of this
work, though McCune et al. explore some of the related issues [136]. Given this canonically
trusted device, we analyze the di�culties that arise when attempting to use it to establish
trust in an ordinary computer, particularly one equipped with the latest security hardware

CHAPTER 1. INTRODUCTION 17

enhancements. However, solving this problem merely reveals that the user’s computer is
likely running millions of lines of potentially buggy (and hence untrustworthy) code. To
enable secure functionality on such a platform, we design and implement the Flicker archi-
tecture, which provides strong security protections on demand, while still allowing users to
enjoy the features and performance they have come to expect from general-purpose com-
puters. Given this more secure architecture for an individual computer, we next examine
the question of how we can extend that trust into the network. In other words, how can we
improve the security and/or performance of network protocols if we can verify that at least
some portion of the code on an endhost can be trusted? Finally, we consider the protections
we can o�er to outsourced computations. In other words, if the user trusts her own ma-
chine, how can she extend that trust to computations done by a remote entity (for example,
as part of a cloud computing service)? In particular, what guarantees can we provide with
regards to the secrecy and integrity of the computations if we trust neither the so�ware nor
the hardware of the remote party?

1.4 Bootstrapping Trust in a Commodity Computer

Initially, we focus on the problem of allowing a user to bootstrap trust in her own personal
computer. �is problem is fundamental, common, and should be easier than other potential
scenarios. In other words, if we cannot establish trust in the user’s computer, we are unlikely
to be able to establish trust in a remote computer. Whenworkingwith her own computer, the
user can at least be reasonably certain that the computer is physically secure; i.e., an attacker
has not tampered with the computer’s hardware con�guration. Such an assumption aligns
quite naturally with standard human intuition about security: a resource (e.g., a physical
key) that an individual physically controls is typically more secure than a resource she gives
to someone else. Fortunately, the physical protection of valuable items has been amajor focus
of human ingenuity over the past several millennia.

If the user’s computer is physically secure, thenwe canmake use of special-purpose hard-
ware to support the user’s security decisions. While a full-blown secure coprocessor, such
as the IBM 4758 [186], might be appealing, cost and performance considerations make de-
ployment di�cult. However, for the last few years, many commodity computers have come
equipped with a Trusted Platform Module (TPM) [200] that can be used for a variety of
security-related purposes, as we discuss in Chapter 2.

Unfortunately, at present, no standard mechanism exists for establishing trust in the
TPM on a local machine. Indeed, any straightforward approach falls victim to a cuckoo

CHAPTER 1. INTRODUCTION 18

attack [154]. In this attack, the adversary extracts the private keys from a TPM under his
physical control. �ese keys can be given to malicious so�ware present on the user’s local
computer, in order to fool the user into accepting reassurances from the adversary’s TPM,
rather than her own.

�us, in Chapter 3, we propose a formal model for establishing trust in a platform. �e
model reveals the cuckoo attack problem and suggests potential solutions. We survey the
usability challenges entailed by each solution, and suggest preferred approaches to enable a
user to bootstrap trust in the secure hardware on her personal computer.

1.5 Securely Executing Code on a Commodity Computer

Unfortunately, merely establishing a secure connection between the user and the security
hardware on her computer does not su�ce to provide a full-featured, trustworthy execu-
tion environment. As mentioned earlier, security hardware tends to be either resource-
impoverished or special-purpose (or both). Hence, we desire mechanisms to leverage the
user’s trust in the security hardware into trust in the user’s entire computer. Previous tech-
niques [63, 66, 170] tended to overwhelm the user with extraneous information, so we focus
on techniques to provide �ne-grained, meaningful, and trustworthy reports (or attestations)
of only the security-relevant code.

However, establishing truly secure functionality on a general-purpose computer raises
a fundamental question: How can secure code execution coexist with the untrustworthy
mountain of buggy yet feature-rich so�ware that is common on modern computers? For
example, how can we keep a user’s keystrokes private if the operating system, the most priv-
ileged so�ware on the computer, cannot be trusted to be free of vulnerabilities? �is is made
all the more challenging by the need to preserve the system’s existing functionality and per-
formance.

To address these challenges, Chapter 4 presents the Flicker architecture [129, 131, 132, 133],
which is designed to satisfy the need for features and security. Indeed, Flicker shows that
these con�icting needs can both be satis�ed by constructing a secure execution environ-
ment on demand, using a combination of so�ware techniques and recent commodity CPU
enhancements. When invoked for a security task (e.g., signing an email or authenticating to
a website), Flicker protects the execution of that code from all other so�ware on the sys-
tem, as well as from potentially malicious devices (e.g., an Ethernet card with malicious
�rmware). Since we only deploy Flicker’s protections on demand, Flicker, unlike previous
approaches discussed in Chapter 2, induces no performance overhead or feature reduction

CHAPTER 1. INTRODUCTION 19

during regular computer use. Limiting Flicker’s persistence to the time necessary for the task
also strengthens Flicker’s security guarantees, since it avoids the complexity (and hence po-
tential vulnerability) of solutions based on a virtual machine monitor or a security kernel.
Naturally, non-persistence poses its own set of challenges, so we develop (or adapt) protocols
to securely preserve state between Flicker invocations, to veri�ably establish secure channels
between the Flicker environment and a remote party, and to prevent various subtle attacks
on Flicker’s records.

As a result, Flicker provides a solid foundation for constructing secure systems that oper-
ate in conjunction with standard so�ware; the developer of a security-sensitive code module
need only trust her own code, plus as few as 250 lines of Flicker code, for the secrecy and
integrity of her code’s execution. Flicker guarantees these properties even if the BIOS, OS,
and DMA-enabled devices are all malicious.

In Chapter 4, we demonstrate a full implementation of Flicker on an AMD platform and
describe our development environment for simplifying the construction of Flicker-enabled
code. We also show how Flicker can enhance the security of various classes of applications,
including veri�able malware scanning, distributed computing, and SSH password handling.
Since many applications require frequent, e�cient trust establishment (e.g., for each client
that connects), we suggest modi�cations to existing hardware architectures to facilitate more
e�cient trust establishment.

1.6 Leveraging Secure Code Execution to
Improve Network Protocols

If we can provide secure code execution on endhosts, the next frontier is to examine how
such trust can be used to improve the performance and e�ciency of network applications.
In other words, if endhosts (or at least portions of each endhost) can be trusted, then network
infrastructure no longer needs to arduously and imprecisely reconstruct data already known
by the endhosts.

In Chapter 5, through the design of a general-purpose architecture we call Assayer [156],
we explore the issues in providing trusted host-based data, including the balance between
useful information and user privacy, and the tradeo�s between security and e�ciency. We
also evaluate the usefulness of such information in three case studies: spam identi�cation,
distributed denial-of-service attack mitigation, and super-spreader worm detection.

To gain insight into the performance we could expect from such a system, we implement
and evaluate a basic Assayer prototype. Our prototype requires fewer than 1,000 lines of

CHAPTER 1. INTRODUCTION 20

code on the endhost. Endhosts can annotate their outbound tra�c in a few microseconds,
and these annotations can be checked e�ciently; even packet-level annotations on a gigabit
link can be checked with a loss in throughput of only 3.7-18.3%, depending on packet size.

1.7 Secure Code Execution Despite
Untrusted So�ware and Hardware

With Flicker, we assume that the user’s computer is physically secure. To generalize Flicker’s
results, we need techniques to establish trust in code execution when even the hardware is
untrustworthy. �is scenario is particularly compelling as the growth of “cloud computing”
and the proliferation of mobile devices contribute to the desire to outsource computing from
a client device to an online service. In these applications, how can the client be assured that
the secrecy of her data will be protected? Equally importantly, how can the client verify that
the result returned is correct, without redoing the computation?

While various forms of homomorphic encryption can provide data secrecy [69, 202], the
results in Chapter 6 demonstrate that we can e�ciently verify the results of arbitrary tasks
(abstracted as function evaluations) on a computational service (e.g., in the cloud) without
trusting any hardware or so�ware on that system. �is contrasts with previous approaches
that were ine�cient or that could only verify the results of restricted function families.

To formalize secure computational outsourcing, Chapter 6 introduces the notion of ver-
i�able computing [67]. Abstractly, a client wishes to evaluate a function F (e.g., sign a docu-
ment or manipulate a photograph) over various, dynamically selected inputs x1, . . . , xk on
one or more untrusted computers, and then verify that the values returned are indeed the
result of applying F to the given inputs. �e critical requirement, which precludes the use
of previous solutions, is that the client’s e�ort to generate and verify work instances must be
substantially less than that required to perform the computation on her own.

Drawing on techniques frommulti-party secure computation, as well as some recent de-
velopments in lattice-based cryptography, we present the �rst protocol for veri�able comput-
ing. It provably provides computational integrity for work done by an untrusted party; it also
provides provable secrecy for the computation’s inputs and outputs. Moreover, the protocol
provides asymptotically optimal performance (amortized over multiple inputs). Speci�cally,
the protocol requires a one-time pre-processing stage which takes O(|C|) time, where C

is the smallest known Boolean circuit computing F . For each work instance, the client per-
formsO(|m|)work to prepare anm-bit input, the worker performsO(|C|)work to compute
the results, and the client performs O(|n|) work to verify the n-bit result.

CHAPTER 1. INTRODUCTION 21

�is result shows that we can outsource arbitrary computations to untrusted workers,
preserve the secrecy of the data, and e�ciently verify that the computations were done cor-
rectly. �us, veri�able computing could be used, for instance, in a distributed computing
project like Folding@home [153], which outsources the simulation of protein folding to mil-
lions of Internet users. To prevent cheating, these projects o�en assign the same work unit to
multiple clients and compare the results; veri�able computing would eliminate these redun-
dant computations and provide strong cryptographic protections against colluding workers.

�us, even without secure hardware, these results show that we can leverage a user’s
trust in one device to verify (and hence trust) the results of computations performed by an
arbitrary number of remote, untrusted commodity computers.

1.8 Summary of Contributions

In the course of investigating techniques to leverage a user’s existing trust in a device or ser-
vice in order to securely utilize other devices or services, this dissertationmakes the following
high-level contributions.

1. A logical framework for analyzing the steps required to establish trust in a computer
equipped with secure hardware.

2. A new approach for securely executing code on a platform that must also support
untrusted legacy code. Providing security strictly on demand allows security to coex-
ist with features and performance, and enables new properties, such as �ne-grained
meaningful attestations that report precisely about security-relevant actions.

3. An investigation (and development of a corresponding architecture) of the various
ways in which trust in endhosts can improve the e�ciency and security of network
protocols.

4. A set of formal de�nitions for secure outsourcing of computation, as well as a proto-
col that satis�es those de�nitions; provides integrity and secrecy for the computation,
the inputs, and the outputs; and achieves asymptotically optimal performance when
amortized over multiple inputs.

Chapter 2

Background and RelatedWork in
Trust Establishment

Suppose you are presentedwith two physically identical computers. One is running a highly-
certi�ed, formally-proven, time-tested so�ware stack, while the other is running a commod-
ity so�ware stack that provides similar features, but is completely infestedwith highly sophis-
ticated malware. How can you tell which computer is which? How can you decide which
computer you should use to check your email, update your medical records, or access your
bank account?

While the design and validation of secure so�ware is an interesting study in its own
right, we focus this chapter on a survey of existing techniques for bootstrapping trust in
commodity computers, speci�cally by conveying information about a computer’s current
execution environment to an interested party. �is would, for example, enable a user to
verify that her computer is free of malware, or that a remote web server will handle her data
responsibly.

To better highlight the research aspects of bootstrapping trust, we organize this chapter
thematically, rather than chronologically. �us, we examine mechanisms for securely col-
lecting and storing information about the execution environment (Section 2.1), methods for
using that information locally (Section 2.2), techniques for securely conveying that informa-
tion to an external party (Section 2.3), and various ways to convert the resulting information
into a meaningful trust decision (Section 2.4).

Bootstrapping trust requires some foundational root of trust, and we review various can-
didates in Section 2.5. We then consider how the process of bootstrapping trust can be vali-
dated (Section 2.6) and used in applications (Section 2.7). Of course, creating trust ultimately

22

CHAPTER 2. BACKGROUND AND RELATEDWORK 23

involves human users, which creates a host of additional challenges (Section 2.8). Finally, all
of the work we survey has certain fundamental limitations (Section 2.9).

Much of the research in this area falls under the heading of “Trusted Computing”, the
most visible aspect of which is the Trusted PlatformModule (TPM), which has already been
deployed on over 200 million computers [88]. In many ways, this is one of the most signi�-
cant changes in hardware-supported security in commodity systems since the development
of segmentation and process rings in the 1960s, and yet it has been met with muted interest
in the security research community, perhaps due to its perceived association with Digital
Rights Management (DRM) [11]. However, like any other technology, the TPM can be used
for either savory or unsavory purposes. One goal of this chapter is to highlight the many
ways in which it can be used to improve user security without restricting user �exibility.

While Trusted Computing is the most visible aspect of this research area, we show that
many of the techniques used by Trusted Computing date back to the 1980s [66]. �ese ideas
thus extend beyond Trusted Computing’s TPM to the general concept of bootstrapping trust
in commodity computers. �is fact becomes all the more relevant as cellphones emerge as
the next major computing platform (as of 2005, the number of cellphones worldwide was
about double the number of personal computers [80, 207]). In fact, many cellphones already
incorporate stronger hardware support for security than many desktop computers and use
some of the techniques described in this chapter [14, 16]. Indeed, as CPU transistor counts
continue to climb, CPU vendors are increasingly willing to provide hardware support for
secure systems (see, for example, Intel and AMD’s support for virtualization [3, 95], and
Intel’s new AES instructions, which provide greater e�ciency and resistance to side-channel
attacks [81]). �us, research in this area can truly guide the development of new hardware-
supported security features.
Contributions. In this chapter, we make the following contributions: (1)We draw attention
to the opportunities presented by the spread of commodity hardware support for security.
(2) We provide a uni�ed presentation of the reasoning behind and the methods for boot-
strapping trust. (3)We present existing research in a coherent framework, highlighting un-
derexamined areas, and hopefully preventing the reinvention of existing techniques. While
we aim tomake this chapter accessible to those new to the area, we do not intend to provide a
comprehensive tutorial on the various technologies; instead, we refer the interested reader to
the various references, particularly those highlighted in Section 2.10, for additional details.

CHAPTER 2. BACKGROUND AND RELATEDWORK 24

2.1 What DoWe Need to Know?
Techniques for Recording Platform State

In deciding whether to trust a platform, it is desirable to learn about its current state. In this
section, we discuss why code identity is a crucial piece of platform state and how to measure
it (Section 2.1.1). We then consider additional dynamic properties that may be of interest,
e.g., whether the running code respects information-�ow control (Section 2.1.2). Finally, we
argue that establishing code identity is a more fundamental property than establishing any
of the other dynamic properties discussed (Section 2.1.3). Unfortunately, the security o�ered
by many of these techniques is still brittle, as we discuss in Section 2.9.

2.1.1 Recording Code Identity

Why Code Identity? To trust an entity X with her private data (or with a security-sensitive
task), Alice must believe that at no point in the future will she have cause to regret having
given her data (or entrusted her task) to X . In human interactions, we o�en form this belief
on the basis of identity – if you know someone’s identity, you can decide whether to trust
them. However, while user identity su�ces for some tasks (e.g., authorizing physical access),
buggy so�ware and user inexperience makes it di�cult for a user to vouch for the code
running on their computer. For example, when Alice attempts to connect her laptop to the
corporate network, the network can verify (e.g., using a password-based protocol) that Alice
is indeed at the laptop. However, even if Alice is considered perfectly trustworthy, this does
not mean that Alice’s laptop is free of malware, and hence it may or may not be safe to allow
the laptop to connect.

�us, to form a belief about a computer’s future behavior, we need to know more than
the identity of its user. One way to predict a computer’s behavior is to learn its complete
current state. �is state will be a function of the computer’s hardware con�guration, as well
as the code it has executed. While hardware con�guration might be vouched for via a signed
certi�cate from the computer’s manufacturer, so�ware state is more ephemeral, and hence
requires us to establish code identity before we can make a trust decision.

Of course, the question remains: what constitutes code identity? At present, the state-of-
the-art for identifying so�ware is to compute a cryptographic hash over the so�ware’s binary,
as well as any inputs, libraries, or con�guration �les used. �e resulting hash value is o�en
termed a measurement. We discuss some of the di�culties with the interpretation of this
type of measurement, as well as approaches to convert such measurements into higher-level
properties, in Section 2.4.

CHAPTER 2. BACKGROUND AND RELATEDWORK 25

What Code Needs To Be Recorded? To bootstrap trust in a platform, we must, at the very
least, record the identity of the code currently in control of the platform. More subtly, we
also need to record the identity of any code that could have a�ected the security of the cur-
rently executing code. For example, code previously in control of the platform might have
con�gured the environment such that the currently running code behaves unexpectedly or
maliciously. In the context of the IBM 4758 secure coprocessor [185, 186], Smith analyzes in
greater detail which pieces of code can a�ect the security of a given piece of so�ware [183],
examining issues such as previously installed versions of an application that may have had
access to the currently installed application’s secrets.
Who Performs the Measurements? �e best time to measure a piece of so�ware is before
it starts to execute. At this point, it is in a fresh “canonical” form that is likely to be similar
across many platforms [66, 127]. Once it starts executing, it will generate local state that may
vary across platforms, making it di�cult to evaluate the measurement. �us, if the so�ware
currently in control of the platform isSn, then the logical entity tomeasureSn is the so�ware
that was previously in control of the platform, i.e., Sn−1. In other words, before executing
Sn,Sn−1 must contain code to record ameasurement ofSn in its “pristine” state.�is logical
progression continues recursively, with each so�ware Si responsible for measuring so�ware
Si+1 before giving it control of the platform. �ese measurements document the chain of
trust [200]; i.e., the party interpreting the measurements must trust each piece of so�ware to
have properly measured and recorded subsequently launched pieces of so�ware. Of course,
this leads to the question of who (or what) measures the �rst so�ware (S1) to execute on the
system.

Ultimately, measuring code identity requires a hardware-based root of trust. A�er all, if
we simply ask the running code to self-identify, malicious so�ware will lie. As we discuss in
Section 2.5, most research in this area uses secure hardware (e.g., secure coprocessors) for
this purpose, but some recent work considers the use of general-purpose CPUs.

�us, in a trusted boot (a technique �rst introduced by Gasser et al. [66]), a hardware-
based root of trust initiates the chain of trust by measuring the initial BIOS code (see Fig-
ure 2.1). �e BIOS then measures and executes the bootloader, and the bootloader, in turn,
measures and executes the operating system. Note that a trusted boot does not mean that
the so�ware that has booted is necessarily trustworthy, merely that it must be trusted if the
platform itself is to be trusted.

�is process of temporal measurement collection can be extended to include additional
information about less privileged code aswell (i.e., code that is not in control of the platform).
For example, the OS might record measurements of each application that it executes. On a

CHAPTER 2. BACKGROUND AND RELATEDWORK 26

System
(Hardware)

System
(P1, C1)

System
(P2, C2)

Prog P1
Conf C1

Prog P2
Conf C2

M
easu

re

Exe
cu

te

Exe
cu

te

M
easu

re

Secure Boot

(Section 3.1):

Trusted Boot:

L=0
Append:
L←L||m1

Append:
L←L||m2

m1 m2

if m1 ∉ L*:
then ABORT

if m2 ∉ L*:
then ABORT

...
m1 m2

Figure 2.1: Trusted Boot vs. Secure Boot. �e state of a computer system changes as programs run
with particular con�gurations. Trusted boot accumulates a list (L) of measurements for each program
executed, but it does not perform any enforcement. Secure boot (Section 2.2.1) will halt the system if
any attempt is made to execute a program that is not on an approved list (L*). Note that both systems
must always measure programs before executing them. It is also possible to employ both types of boot
simultaneously [66].

general-purpose platform, this additional information is crucial to deciding if the platform is
currently in a trustworthy state, sincemostmodern operating systems do not, by themselves,
provide enough assurance as to the security of the entire system.

On the other hand, if the so�ware in control of the platform can be trusted to protect
itself from, and maintain isolation between, less privileged code, then it may only need to
recordmeasurements of less privileged code that performs security sensitive operations. For
example, the Terra project [63] observed that a trusted virtual machine monitor (VMM) can
implement a trusted bootmodel both for itself and its virtualmachines (VMs).�is approach
simpli�es measurement, since the measurement of a single VM image can encompass an
entire so�ware stack. Furthermore, since a VMM is generally trusted to isolate itself from
the VMs (and the VMs from each other), the VMM need only record measurements for the
VMs that perform security-relevant actions.

Of course, virtualization can also complicate the use of secure hardware, since each VM
may want or need exclusive control of it. �e virtual Trusted Platform Module (vTPM)
project [27] investigated how a single physical TPM can bemultiplexed acrossmultiple VMs,
providing each with the illusion that it has dedicated access to a TPM.
How CanMeasurements Be Secured? Of course, all of these code identity records must be
secured; otherwise, malicious code might erase the record of its presence. �is can happen
in one of two ways (see Figure 2.2). First, in a privilege escalation attack, less privileged code
may �nd an exploit in more privileged code, allowing it to access that code’s secrets, erase

CHAPTER 2. BACKGROUND AND RELATEDWORK 27

Attack Type

C
ha

in
Ty

pe Privilege Hando� Control
Escalation to Malicious Code

Hash Record latest value in HW Record latest value in HW
Cert Record latest value in HW Prove access to latest key

Figure 2.2: Securely Recording CodeMeasurements. Techniques for preventing attacks on the mea-
surement record di�er based on the method used to secure the record.

the record of the malicious code’s presence, or even create fake records of other so�ware.
Second, in a hando� attack, trusted so�ware may inadvertently cede control of the platform
to malicious so�ware (e.g., during the boot process, the bootloader may load a malicious
OS) which may attempt to erase any previously created records. Unfortunately, existing lit-
erature [63, 66, 170] tends to con�ate these two types of attacks, obscuring the relative merits
of techniques for securing measurements. While some research considers the design of a
general-purpose, secure append-only log [173], it tends to make use of an independent log-
ging server which may not be readily available in many environments.

CertificateChains. Initial architecture designs for recording code identity measurements
employed certi�cate chains [63, 66]. Before loading a new piece of so�ware, Gasser et al.
require the currently running system to generate a certi�cate for the new so�ware [66]. To do
so, the currently running systemgenerates a newkeypair for use by the new so�ware and uses
its private key to sign a certi�cate containing the new public key and a measurement of the
new so�ware. �e system then erases its own secrets and loads the new so�ware, providing
the new keypair and certi�cate as inputs. As a result, a certi�cate chain connects the keypair
held by the currently running so�ware all the way back to the computer’s hardware. �is
approach prevents hando� attacks, since by the time malicious code is loaded, the keys used
to generate the certi�cate chain have been erased (this is an important point, o�en omitted
in later work [63]). �us, the only keypair the malicious code can both use (in the sense of
knowing the private key) and produce a certi�cate chain for, is a keypair that is certi�ed with
a certi�cate containing the measurement of the malicious code. �us, by requiring code to
prove knowledge of a certi�ed keypair, a remote entity can ensure that it receives an accurate
measurement list.

A certi�cate chain, on its own, cannot prevent a privilege escalation attack from sub-
verting the measurements. To maintain the certi�cate chain, privileged code must keep its
private key available, and hence a privileged-escalated attacker can use that key to rewrite
the chain. �is attack can be prevented by recording a hash of the most recent certi�cate in

CHAPTER 2. BACKGROUND AND RELATEDWORK 28

a more secure layer, such as secure hardware, though we are not aware of work suggesting
this solution.

Hash Chains. Hash chains represent a potentially more e�cient method of recording so�-
ware measurements. A hash chain requires only a constant amount of secure memory to
record an arbitrarily long, append-only list of code identities. As long as the current value of
the hash chain is stored in secure memory, both privilege escalation and hando� attacks can
be prevented. �is is the approach adopted by the Trusted Platform Module (TPM) [200].
Several research e�orts have applied this approach to the Linux kernel, and developed tech-
niques to improve its e�ciency [127, 170].

For a hardware-backed hash chain, the hardware sets aside a protected memory regis-
ter that is initialized to a known value (e.g., 0) when the computer �rst boots. On a TPM,
these protected memory registers are called Platform Con�guration Registers (PCRs); cur-
rent (version 1.2) TPMs are required to support at least 24 PCRs [200]. �e so�ware deter-
mining a new code module’s identity I uses a hardware API to extend I into the log. �e
hardware computes a cryptographic hash over the the identity record and the current value
V of the register and updates the register with the output of the hash: V ← Hash(V ||I). �e
so�ware may keep an additional log of I in untrusted storage to help with the interpretation
of the register’s value at a future point. As long as Hash is collision-resistant, the register value
V guarantees the integrity of the append-only log; i.e., even if malicious so�ware gains con-
trol of the platform (via privilege escalation or a control hando�), it cannot erase its identity
from the log without rebooting the platform and losing control of the machine.

Of course, without secure storage of the current value of the hash chain, a hash chain
cannot protect the integrity of the log, since once malicious code gains control, it can simply
replay the earlier extend operations and omit its measurement. �ere are no secret keys
missing that would impede it.
TPM-Based Measurement Example. To make this discussion more concrete, we give an
example of a TPM-based trusted boot sequence. �is example is highly simpli�ed; IBM’s In-
tegrity Measurement Architecture discusses the design and implementation of a muchmore
complete solution for performing measurements [170]. We assume that the BIOS (B), the
bootloader (L), and the operating system (O) have all been modi�ed to support measure-
ment collection.

When the computer �rst boots, the TPM’s PCRs are initialized to a known value (e.g.,
0). ROM code then measures (computes a hash) of the BIOS (B) and invokes PCRExtend

CHAPTER 2. BACKGROUND AND RELATEDWORK 29

with a canonical PCR index, e.g., 5:

PCRExtend(5,B)

As a result, the TPM computes:

PCR5 ← H(0||B)

�e ROM code then starts executing the BIOS. �e BIOS performs its usual initialization
routines and extends a measurement of the bootloader (L) into the TPM. It could choose a
di�erent PCR, but we will assume it continues to use PCR5, so we have:

PCR5 ← H(H(0||B)||L)

�e underlined value simply represents the previous value of PCR5. A�er the PCRExtend
operation, the BIOS can launch the bootloader. Similarly, the bootloader will extend a mea-
surement of the OS (O) into the TPM before staring to execute it. Finally, the OS will extend
a measurement of the application (A) into the TPM and launch the application. As a result,
the value of PCR5 is :

h = H(H(H(H(0||B)||L)||O)||A)

Notice that the entire boot sequence is captured in a single hash value. Section 2.2–2.4
discuss how to use and interpret this information.

2.1.2 Recording Dynamic Properties

While code identity is an important property, it is o�en insu�cient to guarantee security.
A�er all, even though the system may start in a secure state, external inputs may cause it to
arrive in an insecure state. �us, before entrusting a computer with sensitive data, it might
be useful to know whether the code has followed its intended control �ow (i.e., that it has
not been hijacked by an attack), preserved the integrity of its data structures (e.g., the stack
is still intact), or maintained some form of information-�ow control. We compare themerits
of these dynamic properties to those of code identity in Section 2.1.3. Below, we discuss two
approaches, load-time and run-time, to capturing these dynamic properties.

�e simplest way to capture dynamic properties is to transform the program itself and
then record the identity of the transformed program. For example, the XFI [57] and CFI [1]
techniques transform a code binary by inserting inline reference monitors that enforce a va-

CHAPTER 2. BACKGROUND AND RELATEDWORK 30

riety of properties, such as stack and control-�ow integrity. By submitting the transformed
binary to the measurement infrastructure described in Section 2.1.1, we record the fact that a
program with the appropriate dynamic property enforcements built-in was loaded and exe-
cuted. If the transformation is trusted to perform correctly, then we can extrapolate from the
code identity that it also has the property enforced by the transformation. Of course, this ap-
proach does not protect against attacks that do not tamper with valid control �ows [43]. For
example, a bu�er over�ow attack might overwrite the Boolean variable isAdministrator
to give the attacker unexpected privileges.

Another approach is to load some piece of code that is trusted to dynamically enforce
a given security property on less-privileged code. An early example of this approach is “se-
mantic” attestation [84], in which a language runtime (e.g., the Java or .NET virtualmachine)
monitors and records information about the programs it runs. For example, it might report
dynamic information about the class hierarchy or that the code satis�es a particular security
policy. In a similar spirit, the ReDAS system [109] loads a kernel that has been instrumented
to check certain application data invariants at each system call. Trust in the kernel and the
invariants that it checks can allow an external party to conclude that the applications run-
ning on the kernel have certain security-relevant properties. Again, this approach relies on
a code identity infrastructure to identify that the trusted monitor was loaded.

2.1.3 Which Property is Necessary?

As discussed above, there are many code properties that are relevant to security, i.e., things
we would like to know about the code on a computer before entrusting it with a security-
sensitive task. However, since hardware support is expensive, we must consider what prop-
erties are fundamentally needed (as opposed to merely being more e�cient in hardware).

�e discussion in Section 2.1.2 suggests thatmanydynamic properties can be achieved (in
some sense) using code identity. In otherwords, the identity of the code conveys the dynamic
properties one can expect from it or the properties that one can expect it to enforce on other
pieces of so�ware. However, the converse does not appear to be true. �at is, if a hardware
primitive could report, for example, that the currently running code respected its intended
control �ow, then it is not clear how to use that mechanism to provide code identity. Fur-
thermore, it clearly does not su�ce to say anything meaningful about the security-relevant
behavior of the code. A malicious program may happily follow its intended control-�ow as
it conveys the user’s data to an attacker. Similar problems appear to a�ect other potential
candidates as well. Knowing that a particular invariant has been maintained, whether it is
stack integrity or information-�ow control, is not particularly useful without knowing more

CHAPTER 2. BACKGROUND AND RELATEDWORK 31

about the context (that is the code) in which the property is being enforced.
�us, one can argue that code identity truly is a fundamental property for providing

platform assurance, and thus a worthy candidate for hardware support. Of course, this need
not preclude additional hardware support formonitoring (or enforcing) dynamic properties.

2.2 CanWe Use Platform Information Locally?

Wenow discuss how accumulated platform information (Section 2.1) can bene�t a local user.
Unfortunately, these measurements cannot be used to directly provide information to local
so�ware; i.e., it does not make sense for higher-privileged so�ware to use these measure-
ments to convey information to less-privileged so�ware, since the less-privileged so�ware
must already trust the higher-privileged so�ware.

Nonetheless, in this section, we review techniques for using these measurements to con-
vince the user that the platform has booted into a secure state, as well as to provide access
control to a protected storage facility, such that secrets will only be available to a speci�c so�-
ware con�guration in the future. Such techniques tend to focus on preserving the secrecy
and integrity of secrets, with less emphasis placed on availability. Indeed, using code identity
for access control can make availability guarantees fragile, since a small change to the code
(made for malicious or legitimate reasons) may make secret data unavailable.

2.2.1 Secure Boot

How can a user tell if her computer has booted into a secure state? One approach is to use a
technique �rst described by Gasser et al. [66] and later dubbed “secure boot” [13].

In a computer supporting secure boot, each system component, starting with the com-
puter’s boot ROM, compares the measurement of code to be loaded to a list of measure-
ments for authorized so�ware (authorization is typically expressed via a signature from a
trusted authority, which requires the authority’s public key to be embedded in the computer’s
�rmware) [13, 66]. Secure boot halts the boot process if there is an attempt to load unautho-
rized code, and thus assures the user that the platform is in an approved state simply by
booting successfully.

One of the �rst systems to actually implement these ideas was AEGIS1 [13]. With AEGIS,
before a piece of so�ware is allowed to execute, its identity is checked against a certi�cate

1Two relevant research e�orts have used the name AEGIS. One is that of Arbaugh et al. [13] discussed in this
section. �e other is a design for a secure coprocessor by Suh et al. [195] and is discussed in Section 2.5.1.

CHAPTER 2. BACKGROUND AND RELATEDWORK 32

from the platform’s owner. �e certi�cate identi�es permitted so�ware. Anything without a
certi�cate will not be executed.

However, a remote party cannot easily determine that a computer has been con�gured
for secure boot. Even if it can make this determination, it only learns that the computer
has booted into some authorized state, but it does not learn any information about what
speci�c state it happens to be in. Section 2.3 discusses the techniques needed to provide
more information to a remote party.

2.2.2 Storage Access Control Based on Code Identity

Applications o�en require long-term protection of the secrets that they generate. Practical
examples include the keys used for full disk encryption or email signatures, and a list of stored
passwords for a web browser. Abstractly, we can provide this protection via an access control
mechanism for cryptographic keys, where access policies consist of sets of allowed platform
con�gurations, represented by the measurement lists described in Section 2.1. Below, we
discuss two of the most prominent protected storage solutions: the IBM 4758 cryptographic
co-processor and the Trusted Platform Module (TPM).

2.2.2.1 Tamper-Responding Protected Storage

�e IBM 4758 family of cryptographic co-processors provides a rich set of secure storage
facilities [53, 100, 185, 186]. First and foremost, it incorporates tamper-responding storage in
battery-backed RAM (BBRAM). Additional FLASH memory is also available, but the con-
tents of FLASH are always encrypted with keys maintained in BBRAM.�e design intention
is that any attempt to physically tamper with the device will result in it actively erasing se-
crets. Cryptographic keys that serve as the root for protected storage can be kept here.

�e IBM 4758 enforces storage access restrictions based on the concept of so�ware priv-
ilege layers. Layer 0 is read-only �rmware. Layer 1 is, by default, the IBM-provided CP/Q++
OS. Layers 2 and 3 are for applications. Each layer can store secrets either in BBRAM or in
FLASH. A hardware ratcheting lock prevents a lower-privilege layer from accessing the state
of a higher-privilege layer. �us, once an application loads at layer 2 or 3, the secrets of layer
1 are unavailable. Extensions to the OS in layer 1 could permit arbitrarily sophisticated pro-
tected storage properties, for example mirroring the TPM’s sealed storage facility (discussed
below) of binding secrets to a particular so�ware con�guration. �e BBRAM is also ideal
for storing secure counters, greatly simplifying defense against state replay attacks.

CHAPTER 2. BACKGROUND AND RELATEDWORK 33

2.2.2.2 TPM-Based Sealed Storage

Despite providing much less functionality than a full-blown secure coprocessor, the TPM
can also restrict storage access based on platform state. It does so by allowing so�ware on
the platform’s main CPU to seal or bind secrets to a set of measurements representing some
future platform state (we discuss the di�erences between these operations below). Both op-
erations (seal and bind) essentially encrypt the secret value provided by the so�ware. �e
TPM will refuse to perform a decryption, unless the current values in its Platform Con�g-
uration Registers (PCRs - see Section 2.1.1) match those speci�ed during the seal or bind
operation.

Full disk encryption is an example of an application that bene�ts from sealed storage.�e
disk encryption keys can be sealed tomeasurements representing the user’s operating system.
�us, the disk can only be decrypted if the intended OS kernel has booted. (�is is the basic
design of Microso� BitLocker, discussed in Section 2.7.) Connecting disk encryption with
code identity prevents an attacker from modifying the boot sequence to load malware or an
alternate OS kernel (e.g., an older kernel with known vulnerabilities).

To provide protected storage, both operations use encryption with 2048-bit asymmetric
RSA keys. For greater e�ciency, applications typically use a symmetric key for bulk data
encryption and integrity protection, and then use the TPM to protect the symmetric key.�e
RSA keys are generated on the TPM itself,2 and the private portions are never released in the
clear. To save space in the TPM’s protected storage area, the private portions are encrypted
using the TPM’s Storage Root Keypair. �e private component of the keypair resides in the
TPM’s non-volatile RAM and never leaves the safety of the chip.
Sealing Data. With the TPM’s seal operation, the RSA encryption must take place on the
TPM. As a result, the TPM can produce a ciphertext that also includes the current values
of any speci�ed PCRs. When the data is later decrypted, the exact identity of the so�ware
that invoked the original seal command can be ascertained. �is allows an application that
unseals data to determine whether the newly unsealed data should be trusted. �is may be
useful, for example, during so�ware updates.

Because sealing requires the TPM to perform the encryption, it would be much more
e�cient to use a symmetric encryption scheme, such as AES.�e choice of RSA appears to
have been an attempt to avoid adding additional complexity to the TPM’s implementation,
since it already requires an RSA module for other functionality.

2�e TPM ensures that these keys are only used for encryption operations (using RSA PKCS #1v2.0 OAEP
padding [200]) and never for signing.

CHAPTER 2. BACKGROUND AND RELATEDWORK 34

Binding Data. In contrast to sealing, encryption using a public binding key need not take
place on the TPM. �is allows for greater e�ciency and �exibility when performing data
encryption, but it means that the resulting ciphertext does not include a record of the entity
that originally invoked the bind operation, so it cannot be used to assess data integrity.
Replay Issues. Note that the above-mentioned schemes bind cryptographic keys to some
representation of so�ware identity (e.g., hashes stored in PCRs). Absent from these primi-
tives is any form of freshness or replay-prevention. �e output of a seal or bind operation is
ciphertext. Decryption depends on PCR values and an optional 20-byte authorization value.
It does not depend on any kind of counter or versioning system. Application developersmust
take care to account for versioning of important sealed state, as older ciphertext blobs can
also be decrypted. An example attack scenario is when a user changes the password to their
full disk encryption system. If the current password is maintained in sealed storage, and the
old password is leaked, certain classes of adversaries may be able to supply an old ciphertext
at boot time and successfully decrypt the disk using the old password. �e TPM includes
a basic monotonic counter that can be used to provide such replay protection. However,
the TPM has no built-in support for combining sealed storage with the monotonic counter.
Application developers must shoulder this responsibility. Section 2.7.2 discusses research on
enhancing the TPM’s counter facilities.
TPM-Based Sealed Storage Example. Here we continue the example begun in Section 2.1.1.
Recall that we assumed that the BIOS (B), the bootloader (L) and the operating system (O)
have all been modi�ed to record the appropriate code identity records in the TPM. If the OS
is currently running an application (A), then the value of PCR5 is :

h = H(H(H(H(0||B)||L)||O)||A)

�e application can generate secret data Dsecret and seal it under the current value of
PCR5 by invoking:

Seal((5), Dsecret)→ (C,MACKroot(5, h))

What bene�t does this provide? If the same boot sequence is repeated (in other words, if
the exact same BIOS, bootloader, OS and application are loaded in the same order) then
clearly PCR5 will take on the same value it had before. �us a call to Unseal will produce
Dsecret. However, if any of these pieces of so�ware changes, then the Unseal will fail. For
example, suppose an attacker replaces theOSwith amaliciousOS (Ô). When the application

CHAPTER 2. BACKGROUND AND RELATEDWORK 35

is executed, the value of PCR5 will be:

ĥ = H(H(H(H(0||B)||L)||Ô)||A)

�e properties of the hash functionH guarantee that with extremely high probability ĥ 6= h,
and thus if an attacker invokes Unseal, the TPM will refuse to decrypt C .

2.3 CanWe Use Platform Information Remotely?

Section 2.1 described mechanisms for accumulating measurements of so�ware state. In this
section, we treat the issue of conveying these measurement chains to an external entity in an
authentic manner. We refer to this process as attestation, though some works use the phrase
outbound authentication. We also discuss privacy concerns and mitigation strategies that
arise when sharing this information with third parties.

2.3.1 Prerequisites

�e secure boot model (Section 2.2.1) does not capture enough information to securely in-
form a remote party about the current state of a computer, since it (at best), informs the
remote party that the platform booted into some “authorized” state, but does not capture
which state that happens to be, nor which values were considered during the authorization
boot process.

Instead, a remote party would like to learn about the measurement of the currently ex-
ecuting code, as well as any code that could have a�ected the security of this code. Section
2.1 describes how a trusted boot process securely records this information in measurement
chains (using either certi�cates or hashes).

2.3.2 Conveying Code Measurement Chains

�e high-level goal is to convince a remote party (herea�er: veri�er) that a particular mea-
surement chain represents the so�ware state of a remote device (herea�er: attestor). Only
with an authentic measurement chain can the veri�er make a trust decision regarding the
attestor. A veri�er’s trust in an attestor’s measurement chain builds from a hardware root
of trust (Section 2.5). �us, a prerequisite for attestation is that the veri�er (1) understands
the hardware con�guration of the attestor and (2) is in possession of an authentic public key
bound to the hardware root of trust.

CHAPTER 2. BACKGROUND AND RELATEDWORK 36

�e attestor’s hardware con�guration is likely represented by a certi�cate from its man-
ufacturer, e.g., the IBM 4758’s factory Layer 1 certi�cate [183], or the TPM’s Endorsement,
Platform, and Conformance Credentials [200]. Attestation-speci�c mechanisms for con-
veying public keys in an authentic way are treated with respect to privacy issues in Section
2.3.3. Otherwise, standardmechanisms (such as a Public Key Infrastructure) for distributing
authentic public keys apply.

�e process of actually conveying an authenticatedmeasurement chain varies depending
on the hardware root of trust. We �rst discuss a more general and more powerful approach
to attestation used on general-purpose secure coprocessors such as the IBM 4758 family of
devices.�en, given the prevalence of TPM-equipped platforms today, we discuss attestation
as it applies to the TPM.

2.3.2.1 General Purpose Coprocessor-Based Attestation

Smith discusses the need for coprocessor applications to be able to authenticate themselves
to remote parties [183]. �is is to be distinguished from merely con�guring the coprocessor
as desired prior to deployment, or including a signed statement about the con�guration.
Rather, the code entity itself should be able to generate and maintain authenticated key pairs
and communicate securely with any party on the internet. Smith details the decision to keep
a private key in tamper-protected memory and have some authority generate certi�cates
about the corresponding public key. As these coprocessors are expensive devices intended
for use in high assurance applications, considerably less attention has been given to the device
identity’s impact on privacy.

Naming code entities on a coprocessor is itself an interesting challenge. For example, an
entity may go through one or more upgrades, and it may depend on lower layer so�ware
that may also be subject to upgrades. �us, preserving desired security properties for code
and data (e.g., integrity, authenticity, and secrecy) may depend not only on the versions of
so�ware currently running on the coprocessor, but also on past and even future versions.�e
IBM 4758 exposes these notions as con�gurations and epochs, where con�guration changes
are secret-preserving and epoch changes wipe all secrets from the device.

During a con�guration change, certi�cate chains incorporating historical data are main-
tained. For example, the chainmay contain a certi�cate stating the version of the lowest layer
so�ware that originally shipped on the device, along with a certi�cate for each incremental
upgrade. �us, when a remote party interacts with one of these devices, all information is
available about the so�ware and data contained within.

CHAPTER 2. BACKGROUND AND RELATEDWORK 37

�is model is a relative strength of general-purpose cryptographic coprocessors. TPM-
based attestations (discussed in the next section) are based on hash chains accumulated for
no longer than the most recent boot cycle. �e history of so�ware that has handled a given
piece of sensitive data is not automatically maintained.

Smith examines in detail the design space for attestation, some of which is speci�c to the
IBM 4758, but much of which is more generally applicable [183]. A noteworthy contribution
not discussed here is a logic-based analysis of attestation.

2.3.2.2 TPM-Based Attestation

TPM-based attestation a�ords less �exibility than general coprocessor-based attestation, since
the TPM is not capable of general-purpose computation. During the attestation protocol
(shown in Figure 2.3), so�ware on the attestor’s computer is responsible for relaying infor-
mation between the remote veri�er and the TPM [200]. �e protocol assumes that the at-
testor’s TPM has generated an Attestation Identity Keypair (AIK), which is an asymmetric
keypair whose public component must be known to the veri�er in advance, and whose pri-
vate component is only accessible to the TPM. We discuss privacy issues regarding AIKs in
Section 2.3.3.1.

During the protocol, the veri�er supplies the attestor with a nonce to ensure freshness
(i.e., to prevent replay of old attestations). �e attestor then asks the TPM to generate a
Quote. �e Quote is a digital signature covering the veri�er’s nonce and the current mea-
surement aggregates stored in the TPM’s Platform Con�guration Registers (PCRs). �e at-
testor then sends both the quote and an accumulated measurement list to the veri�er. �is
measurement list serves to capture su�ciently detailed metadata about measured entities to
enable the veri�er to make sense of them. Exactly what this list contains is implementation-
speci�c. Marchesini et al. focus on the measurement of a long-term core (e.g., kernel) [127],
while IBM’s Integrity Measurement Architecture contains the hash and full path to a loaded
executable, and recursively measures all dynamic library dependencies [170]. To check the
accuracy of the measurement list, the veri�er computes the hash aggregate that would have
been generated by the measurement list and compares it to the aggregate signed by the TPM
Quote. �is veri�cation process involves e�cient hash function computations, so it is more
e�cient than performing a public-key based certi�cate veri�cation for every measurement.
Preventing Reboot Attacks. A naive implementation of the above attestation protocol is
susceptible to a reboot or reset attack. �e basic weakness is a time-of-check to time-of-
use (TOCTOU) vulnerability where the attesting platform is subject to primitive physical
tampering, such as power-cycling the platform or components therein [191]. For example,

CHAPTER 2. BACKGROUND AND RELATEDWORK 38

Attestation Service

Prog P1, Conf C1

Prog P2, Conf C2

...

Meas. List

TPM

PCR 0

PCR N
...

External

Veri!er
Daemon

1. AttRequest

5. QuoteRes, MeasList

2. QuoteRequest

3. QuoteResponse

4. Retrieve
6. Validate Response

Figure 2.3: Attestation. High-level summary of TPM-based attestation protocol based on signed hash
chain measurements [200], e.g., as in IBM’s Integrity Measurement Architecture [170]. Some protocol
details are elided, e.g., the inclusion of an anti-replay nonce as part of the AttRequest message.

the adversary may wait until the veri�er has received an attestation, then reset the attestor
and boot amalicious so�ware image. Mitigating this attack requires a way to bind ephemeral
session keys to the currently executing so�ware [63, 73, 131]. �ese keys can then be used
to establish a trusted tunnel (see below). A reboot destroys the established tunnel, thereby
breaking the connection and preventing the attack.
Linking Code Identity to Secure Channels. Binding a secure channel (i.e., a channel that
provides secrecy, integrity, and authenticity) to a speci�c code con�guration on a remote
host requires some care. Goldman et al. [73] consider an SSL client that connects to a server
with attestation capabilities. Even if the client veri�es the SSL certi�cate and the server’s
attestation, there is no linkage between the two.�is enables an attack where a compromised
SSL server forwards the client’s attestation request to a di�erent, trusted server. McCune
et al. consider a similar challenge in establishing a secure channel between a client system
and an isolated execution environment on a server [131]. Both conclude that the solution
is to include a measurement of the public key used to bootstrap the secure channel in the
attestation, e.g., extend the public key into one of the TPM’s PCRs. Goldman et al. also
discuss other more e�cient solutions in the context of a virtualized environment.

2.3.3 Privacy Concerns

Participating in an attestation protocol conveys to the veri�er detailed information about the
so�ware loaded for execution on a particular platform. Furthermore, the attestation o�en
depends on a cryptographic key embedded in the secure hardware, and using the same key
in multiple attestations allows those attestations to be linked together.

CHAPTER 2. BACKGROUND AND RELATEDWORK 39

In some cases, this may not be a privacy concern. For example, in the military and in
many enterprises, precise platform identi�cation is desirable, and users do not have an ex-
pectation of privacy. As a result, some of the more expensive cryptographic co-processors
that target these environments contain little provision for privacy.

However, in consumer-oriented applications, privacy is vital, and hence several tech-
niques have been developed to maintain user privacy while still providing the ability to se-
curely bootstrap trust.

2.3.3.1 Identity Certi�cate Authorities

One way to enhance user privacy is to employ a trusted third party to manage the relation-
ship between a platform’s true unique identity, and one or more pseudonyms that can be
employed to generate attestations for di�erent purposes. �e Trusted Computing Group
initially adopted this approach in the TPM [200], dubbing the trusted third party a Privacy
CA and associating the pseudonyms withAttestation Identity Keypairs (AIKs). A TPM’s true
unique identity is represented by the Endorsement Keypair (EK) embedded in the TPM.3

At a high-level, the trusted third party validates the correctness of the user’s secure hard-
ware, and then issues a certi�cate declaring the user’s pseudonym corresponds to legitimate
secure hardware. With the TPM, the user can ask the TPM to generate an arbitrary number
of AIKs. Using the TPM’s EK, the user can convince the Privacy CA to issue a certi�cate for
the public portion of an AIK, certifying that the private portion of the AIK is known only
to a real, standards-compliant TPM. Of course, for many applications, it will be necessary to
use a consistent pseudonym for that particular application (e.g., online banking).

�e Privacy CA architecture described above has met with some real-world challenges.
In reality, there is no one central authority trusted by all or even most users. Furthermore,
a Privacy CA must be highly secure while also maintaining high availability, a nontrivial
undertaking. To date, no commercial Privacy CAs are in operation, though a handful of
experimental services have been created for research and development purposes [60].

3It is possible to clear a TPM’s EK and generate a new one. However, once an EK is cleared, it cannot be
reinstated (the private key is lost). Further, high-quality TPMs ship from the manufacturer with a certi�ed EK.
Without a certi�ed EK, it is di�cult for a PrivacyCA tomake a trust decision about a particular TPM.Generating
one’s own EK is most appropriate for security-aware enterprises with procedures in place to generate new EKs
in physically controlled environments, or for highly security-conscious individuals.

CHAPTER 2. BACKGROUND AND RELATEDWORK 40

2.3.3.2 Direct Anonymous Attestation

To address the limitations of Privacy CAs, a replacement protocol called Direct Anony-
mous Attestation (DAA) [33] was developed and incorporated into the latest TPM speci-
�cation [200]. DAA is completely decentralized and achieves anonymity by combining re-
search on group signatures and credential systems. Unlike many group signatures, it does
not include a privileged group manager, so anonymity can never be revoked. However, it
does allow membership to be revoked. In other words, an adversary’s credentials can be
invalidated without the system ever actually learning the adversary’s identity.

WithDAA, aTPMequipped platform can convince an Issuer that it possesses a legitimate
TPM and obtain a membership certi�cate certifying this fact. However, the interaction with
the Issuer is performed via zero-knowledge proofs, so that even if the Issuer colludes with a
veri�er, the user’s anonymity is protected.

DAA also allows a user to select any desired level of privacy by employing an arbitrarily
large set of pseudonyms. �us, the user can be anonymous (by using a new pseudonym for
every attestation), fully traceable (by using a single �xed pseudonym), or any level of privacy
in between. �ese pseudonyms can be used to authorize standard TPM AIKs, so existing
techniques for attestation continue to function.

In practice, however, DAA has been slow to catch on. No currently available hardware
TPMs o�er DAA support, due in part to the cost of implementing expensive group signature
operations on the limited TPM processor. �e DAA algorithm is also quite complex, since it
o�oads asmuch computation as possible to the system’s (relatively) untrusted primary CPU.

Rudolph noted some weaknesses in the original DAA design that could undermine its
anonymity properties [166], primarily by having the Issuer employ di�erent long-term keys
for di�erent users. Several �xes have been proposed [121], but these attacks highlight the
ability of implementation “details” to undermine the security of formally proven systems.

2.4 How DoWeMake Sense of Platform State?

Knowing what code is executing on a platform does not necessarily translate into knowing
whether that code can be trusted. In this section, we elaborate on this problem (2.4.1) and
then review solutions that fall into two broad categories: solutions that provide only the iden-
tity of security-relevant code (2.4.2), and those that convey higher-level information (2.4.3).

CHAPTER 2. BACKGROUND AND RELATEDWORK 41

2.4.1 CopingWith Information Overload

At a high-level, converting code identity into security properties is simply an exercise in so�-
ware engineering. If we build perfectly secure so�ware, then knowing this bulletproof code is
running on a computer su�ces to assure us that the computer can be trusted. Unfortunately,
developing so�ware with strong security properties, evenminimal security kernels with lim-
ited functionality, has proven to be a daunting and labor-intensive task [8, 72, 104, 113].

As a result, most computers run a large collection of buggy, unveri�ed code. Worse, both
OS and application code changes rapidly over time, making it di�cult to decide whether a
particular version of so�ware, combined with dozens of other applications, libraries, drivers,
etc., really constitutes a secure system.

Below, we examine techniques developed to cope with this state-space explosion.

2.4.2 Focusing on Security-Relevant Code

Oneway to simplify the decision as towhether a computer is trustworthy is to only record the
identity of code that will impact the computer’s security. Reducing the amount of security-
relevant code also simpli�es the veri�er’s workload in interpreting an attestation. To achieve
this reduction, the platformmust support multiple privilege layers, and the more-privileged
codemust be able to enforce isolation between itself and less-privileged codemodules. With-
out isolation, privilege-escalation attacks (recall Section 2.1.1) become possible, enablingma-
licious code to potentially erase its tracks.

While layering is a time-honored technique for improving security and managing com-
plexity [72, 104], we focus on the use of layering to simplify or interpret information given
to an external party about the state of the system.
Privilege Layering. Marchesini et al. introduce a system [127] that uses privilege layering
to simplify measurement information. It mixes the trusted boot and secure boot processes
described in Section 2.1.1 and Section 2.2.1. �e platform records the launch of a long-term
core (an SELinux kernel in their implementation) which loads and veri�es a policy �le sup-
plied by an administrator. �e long-term core contains an Enforcermodule that ensures that
only applications matching the policy are allowed to execute. �us, application execution
follows the secure boot model. Secrets are bound to the long-term core, rather than speci�c
applications, using trusted boot measurements as described in Section 2.2.2. If an external
party can be convinced via remote attestation that the long-term core is trustworthy, then
the only additional workload is to verify that the Enforcer is con�gured with an appropriate
policy (i.e., one that satis�es the external party’s requirements).

CHAPTER 2. BACKGROUND AND RELATEDWORK 42

Virtualization.�emodel of attesting �rst to amore-privileged andpresumably trustworthy
core, and then to only a portion of the environment running thereupon, has been explored
in great detail in the context of virtualization.

One of the early designs in this space was Microso�’s Next-Generation Secure Comput-
ing Base (NGSCB) [45, 56]. With NGSCB, security-sensitive operations are con�ned to one
virtual machine (VM), while another VM can be used for general-purpose computing. �e
VMM is trusted to provide strong isolation between virtual machines (VMs), and hence an
external party need only learn about the identity of the VMM and a particular VM, rather
than all of the code that has executed in the other VMs. Speci�cally, hando� attacks (Sec-
tion 2.1.1) are signi�cant only prior to the VMM itself launching, and within the VM where
an application of interest resides. Hando� attacks in other VMs are irrelevant. �e challenge
remains to this day, however, to construct a VMMwhere privilege-escalation attacks are not
a serious concern.

Recording the initial VM image also provides a simple way of summarizing an entire
so�ware stack. With the advent of “virtual appliances,” e.g., a dedicated banking VM pro-
vided by one’s bank, this model can be quite promising. Terra generalized this approach to
allow multiple “open”, unrestricted VMs to run alongside “closed” or proprietary VMs [63].
sHype, from IBM, enforcesmandatory access control (MAC)policies at the granularity of en-
tire virtual machines [169]. Similar projects, including Nizza [180], Proxos [196], and Over-
shadow [44], have utilized virtualization to separate security-sensitive code from untrusted
code. Unfortunately, the large TCB of such solutions makes strong assurance di�cult.
Late Launch. A further challenge is that even VMM-based solutions include a considerable
amount of non-security-relevant code, e.g., the BIOS, the boot loader, and various option
ROMs. �ese values di�er signi�cantly across platforms, making it di�cult for the recipient
to assess the security of a particular so�ware stack. Additionally, these entities are more
privileged than the VMM (since they run before the VMM at the highest possible privilege
level) and may be capable of undermining the VMM’s ability to subsequently instantiate
strong isolation between VMs.

To address these shortcomings, AMD and Intel extended the x86 instruction set to sup-
port a late launch operationwith their respective Secure VirtualMachine (SVM) andTrusted
eXecution Technology (TXT) (formerly codenamed LaGrande Technology) initiatives [3,
95]. Both AMD and Intel are shipping chips with these capabilities; they can be purchased
in commodity computers. At a high level, a late launch operation essentially resets the plat-
form to a known state, atomically measures a piece of code, and begins executing the code
in a hardware-protected environment.

CHAPTER 2. BACKGROUND AND RELATEDWORK 43

In more detail, the key new feature o�ered by the SKINIT instruction on AMD (or SEN-
TER on Intel) is the ability to late launch a Virtual Machine Monitor (VMM) or Security
Kernel at an arbitrary time with built-in protection against so�ware-based attacks. When a
late launch is invoked, the CPU’s state is reset and memory protections for a region of code
are enabled. �e CPU measures the code in the memory region, extends the measurement
into a PCR of the TPM, and begins executing the code. Essentially, a late launch provides
many of the security bene�ts of rebooting the computer (e.g., starting from a clean-slate),
while bypassing the overhead of a full reboot (i.e., devices remain enabled, the BIOS and
bootloader are not invoked, memory contents remain intact, etc.).

We now describe AMD’s implementation of late launch, followed by Intel’s di�erences in
terminology and technique.

AMD Secure Virtual Machine (SVM). To “late launch” a VMM with AMD SVM, so�-
ware in CPU protection ring 0 (e.g., kernel-level code) invokes the SKINIT instruction,
which takes a physical memory address as its only argument. AMD refers to the memory at
this address as the Secure Loader Block (SLB).�e �rst two words (16-bit values) of the SLB
are de�ned to be its length and entry point (both must be between 0 and 64 KB).

To protect the SLB launch against so�ware attacks, the processor includes a number of
hardware protections. When the processor receives an SKINIT instruction, it disables direct
memory access (DMA) to the physical memory pages composing the SLB by setting the
relevant bits in the system’s Device Exclusion Vector (DEV). It also disables interrupts to
prevent previously executing code from regaining control. Debugging access is also disabled,
even for hardware debuggers. Finally, the processor enters �at 32-bit protected mode and
jumps to the provided entry point.

SVM also includes support for attesting to the proper invocation of the SLB. As part of
the SKINIT instruction, the processor �rst causes the TPM to reset the values of the TPM’s
dynamic PCRs (i.e., PCRs 17–23) to zero,4 and then transmits the (up to 64 KB) contents of
the SLB to the TPM so that it can be measured (hashed) and extended into PCR 17. Note that
so�ware cannot invoke the command to reset PCR 17. �e only way to reset PCR 17 is by
executing another SKINIT instruction. �us, future TPM attestations can include the value
of PCR 17 to attest to the use of SKINIT and to the identity of the SLB loaded.

Intel Trusted Execution Technology (formerly LT). Intel’s TXT is comprised of pro-
cessor support for virtualization (VT-x) and Safer Mode Extensions (SMX) [95]. SMX pro-
vides support for the late launch of a VMM in a manner similar to AMD’s SVM, so we focus

4A reboot of the platform sets the values of dynamic PCRs to−1, unlike with static PCRs, which are set to 0
during a reboot.

CHAPTER 2. BACKGROUND AND RELATEDWORK 44

primarily on the di�erences between the two technologies. Instead of SKINIT, Intel intro-
duces an instruction called SENTER.5

A late launch invoked with SENTER is comprised of two phases. First, an Intel-signed
code module—called the Authenticated Code Module, or ACMod—must be loaded into
memory. �e platform’s chipset veri�es the signature on the ACMod using a built-in public
key, extends ameasurement of theACMod into PCR 17, and �nally executes theACMod.�e
ACMod is then responsible for measuring the equivalent of AMD’s SLB, extending the mea-
surement into PCR 18, and then executing the code. In analogy to AMD’s DEV protection,
Intel protects the memory region containing the ACMod and the SLB from outside memory
access using the Memory Protection Table (MPT). However, unlike the 64 KB protected by
AMD’s DEV, Intel’s MPT covers 512 KB by default.

As the OSLO bootloader project noted [105], a late launch allows the chain of trust de-
scribed in Section 2.1.1 to be signi�cantly shortened. One promising design is to late launch
a VMM, which prevents malicious platform �rmware from attacking the VMM.

BIND [179] combined the late launch with secure information about the late-launched
code’s inputs and outputs, hence providing amore dynamic picture to a remote party. Since it
predated the arrival of actual late launch hardware, it necessarily lacked an implementation.

�e Flicker project (described in Chapter 4) found this approach could be extended even
further to provide a secure execution environment on demand. It combined late launch with
sealed storage (see Section 2.2.2) and a carefully engineered kernel module to allow the cur-
rently executing environment to be temporarily paused while a measured and isolated piece
of code ran. Once completed, the previous environment could be resumed and run with full
access to the platform’s hardware (and hence performance). �is reduced the code identity
conveyed to a third party to a tiny Flicker-supplied shim (reported to be as little as 250 lines
of code) and the security-relevant code executed with Flicker protections. However, the au-
thors found that since the late launch primitive had not been designed to support frequent
or rapid invocation, it introduced context-switch overheads on the order of tens or hundreds
of milliseconds for practical security-sensitive code. Nonetheless, relatively simple changes
to the hardware could dramatically improve this performance (see Section 4.6).

Finally, the TrustVisor project [130] attempts to strike a middle ground by employing a
minimalist hypervisor to provide late-launch-like functionality to applications. It also pro-
vides a higher-level, simpli�ed interface to TPM-like functionality, such as sealing secrets to
code identity.

5Technically, Intel created a new “leaf ” instruction called GETSEC, which can be customized to invoke vari-
ous leaf operations (including SENTER).

CHAPTER 2. BACKGROUND AND RELATEDWORK 45

2.4.3 Conveying Higher-Level Information

An orthogonal approach to interpreting code identity is to convert the information into a
set of higher-level properties that facilitate trust judgements. �is is typically accomplished
either via code-level constraints or by outsourcing the problem to a third-party.
Code Constraints. As discussed in Section 2.1.2, multiple research e�orts have studied
mechanisms for applying static (e.g., via type checking [101] or inline referencemonitors [57])
or dynamic (e.g., via hypervisors [174] or security kernels [109]) methods for conveying in-
formation about so�ware. Attesting to code identity allows an external party to verify that the
running code has been appropriately transformed or that the dynamic checker was loaded
correctly.�is in turn assures the external party that the code has the property (or properties)
provided by the transformation or checker.

A related technique for providing higher-level information is to attest to a low-level
policy enforcement mechanism and the policy that is being enforced. Jaeger et al. pro-
pose a policy-reduced integritymeasurement architecture (PRIMA) [98] that enforces an in-
tegrity policy called Clark Wilson-Lite (CW-Lite) [177]. CW-Lite relaxes the original Clark-
Wilson [47] requirements that complete, formal assurance of programs is required, and that
all interfaces must have �lters. Instead, only interfaces accepting low-integrity inputs must
have �lters. PRIMA supports the notion of trusted and untrusted subjects, and extends
IBM’s IMA [170] to also measure the Mandatory Access Control (MAC) policy, the set of
trusted subjects, and the code-subject mapping (e.g., the active user or role when a program
is run). Veri�cation of an attestation produced on a PRIMA-capable system involves ad-
ditional checks. Veri�cation fails if any of the following occur: (1) an untrusted program
executes, or (2) a low integrity �ow enters a trusted program without �rst being �ltered.
PRIMA is prototyped using SELinux.
Outsourcing. Another approach is to outsource the problem of interpreting code identity to
a third party. Terra [63] took an initial step in this direction, as the authors suggest that clients
obtain certi�cates from their so�ware providers that map hash values to so�ware names
and/or versions. By including these certi�cates with their attestation, the client simpli�es
the veri�er’s interpretation task (i.e., the veri�er no longer needs to have its own database
for mapping hash values to so�ware packages, assuming the veri�er trusts the PKI used by
the so�ware vendors). Subsequent work takes this idea much further [84, 168]. �e client
contacts a third-party who certi�es that the client’s so�ware satis�es a much higher-level
property, e.g., the client’s so�ware will never leak sensitive data. �e client then presents this
certi�cate to the veri�er. Assuming the veri�er trusts this third-party, it can easily conclude

CHAPTER 2. BACKGROUND AND RELATEDWORK 46

that the client possesses the certi�ed property. Unfortunately, most work in this area does
not specify how the third party decides whether a particular piece of so�ware provides a
given property.

2.5 Roots of Trust

Trust in any system needs a foundation or a root of trust. Here, we discuss the roots of trust
that have been proposed or deployed. Typically, the root of trust is based on the secrecy of
a private key that is embedded in hardware; the corresponding public key is certi�ed by the
hardware’s manufacturer. As we discuss, some systems further rely on a piece of code that
must execute in the early boot process for their root of trust. We also discuss schemes where
the root of trust is established by the properties of the physical hardware itself.

We divide this section as follows: 1) general-purpose devices with signi�cant resistance
to physical tampering, 2) general-purpose devices without signi�cant physical defenses, 3)
special-purpose minimal devices, 4) research solutions that attempt to instantiate a root of
trust without custom hardware support, and 5) cryptographic techniques for evaluating spe-
ci�c functions, rather than creating generic roots of trust.

2.5.1 General-Purpose Tamper-Resistant and
Tamper-Responding Devices

We �rst discuss commercial solutions available today. Relatively few products have achieved
widespread commercial success, since tamper-resistant devices require costlymanufacturing
processes. We then discuss research projects that developed many of the design ideas man-
ifested in today’s commercial solutions. In all of these systems, the hardware stores a secret
private key, and themanufacturer digitally signs a certi�cate of the corresponding public key.
�e certi�cate forms the root of trust that a veri�er uses to establish trust in the platform.

2.5.1.1 Commercial Solutions

IBM o�ers a family of general-purpose cryptographic co-processors with tamper-resistant
and tamper-responding properties, including the PCI-based 4758 [100, 185, 186] and the PCI-
X-based 4764/PCIXCC [15, 93]. �ese devices include packaging for resisting and respond-
ing to physical penetration and �uctuations in power and temperature. Batteries provide
power that enables an active response to detected tampering, in the form of immediate era-
sure of the area where internal secrets are stored and permanently disabling the device. Some

CHAPTER 2. BACKGROUND AND RELATEDWORK 47

of these devices include support for online battery replacement, so that the lifetime of these
devices is not constrained by the lifetime of a battery.

Smart cards are also widely deployed. A private key, typically used for authentication, re-
sides solely in the smart card, and all private key operations take place within the card itself.
In this way the cards can be used to interact with potentially untrusted terminals without
risking key exposure. Gobio� et al. discuss the need for an on-card trusted path to the user,
since an untrusted terminal can display one thing to the user and perform a di�erent trans-
action with the card itself (e.g., doubling the amount of a transaction) [71]. Smart cards are
also discussed in Section 2.8.

2.5.1.2 Research Projects

µABYSS [209] and Citadel [211] are predecessors of themodern IBMdesigns, placing a CPU,
DRAM,FLASHROM, andbattery-backedRAM(BBRAM)within a physically tamper-resistant
package. Tampering causes erasure of the BBRAM, consequently destroying the keys re-
quired to decrypt the contents of DRAM.�e Dyad secure co-processor [218] also presents
some design elements visible today in IBM’s devices. Only signed code from a trusted entity
will be executed, and bootstrapping proceeds in stages. Each stage checks its integrity by
comparing against a signature stored in the device’s protected non-volatile memory.

�e XOM [123] and AEGIS6 [195] designs do not trust the operating system, and include
native support for partitioning cache and memory between mutually distrusting programs.
�e AEGIS [195] design generates secrets (for use as encryption keys) based on the phys-
ical properties of the CPU itself (e.g., logic delays). Physical tampering will impact these
properties, rendering the encryption keys inaccessible.

�e Cerium processor design is an attempt at providing similar properties while remain-
ing a largely open system [41]. Cerium relies on a physically tamper-resistant CPU with a
built-in private key. �is key is then used to encrypt sensitive data before it is sent to mem-
ory. Cerium depends on a trustedmicro-kernel tomanage address space separation between
mutually distrusting processes, and to manage encryption of sensitive data while it resides
in untrusted DRAM.

Lee et al. propose the Secret Protected (SP) architecture for virtual secure coprocess-
ing [120]. SP proposes hardware additions to standard CPUs in the form of a small key
store, encryption capabilities at the cache-memory interface, new instructions, and platform
changes to support a minimalistic trusted path. �ese facilities enable a Trusted So�ware

6Two relevant research e�orts have used the name AEGIS. One is that of Arbaugh et al. [13] discussed in
Section 2.1.1. �e other is by Suh et al. [195] and is discussed in this section.

CHAPTER 2. BACKGROUND AND RELATEDWORK 48

Module to execute with direct hardware protection on the platform’s primary CPU. �is
module can provide security-relevant services to the rest of the system (e.g., emulate a TPM’s
functionality), or it can implement application-speci�c functionality. Data is encrypted and
integrity protected when it leaves the CPU for main memory, with the necessary keys resid-
ing solely within the CPU itself. SP pays considerable attention to the performance as well
as security characteristics of the resulting design.

2.5.2 General-Purpose Devices Without Dedicated Physical Defenses

Here we discuss devices that are designed to help increase the security of so�ware systems,
but donot incorporate explicit physical defensemeasures. In practice, the degree of resilience
to physical compromise varies widely. For example, consider the di�erences in physically
attacking a device 1) on a daughter card that can be readily unplugged and interposed on,
2) soldered to the motherboard, 3) integrated with the “super-IO” chip, and 4) on the same
silicon as the main CPU cores. �e best examples for commodity platforms today are those
equippedwith aTrusted PlatformModule (TPM), itsmobile counterpart, theMobile Trusted
Module (MTM [55, 201]), or a smart card.
TPM-equipped Platforms. �e TPM chip is a hardware device, but it does not employ any
speci�c tamper resistance. Trust in the TPM stems from three roots of trust, speci�cally
the roots of trust for Storage, Reporting, and Measurement. Trusted storage is provided
by an encryption key that permanently resides within the TPM in non-volatile RAM (see
Section 2.2.2.2). �e root for reporting (or communicating measurements to an external
party) can be protected by the TPM’s storage facilities. Finally, TPM measurement depends
an immutable part of platform �rmware called the Core Root of Trust for Measurement,
which initializes the TPM when a platform �rst boots up.
MTM-equipped Platforms. For space reasons, we consider here only one pro�le from the
MTM speci�cation [201], that of the Remote Owner MTM. Trust stems from four distinct
roots of trust, speci�cally the roots of trust for Storage, Enforcement, Reporting, and Veri-
�cation. �ese roots of trust represent security preconditions required for the MTM to ini-
tialize successfully [55]. Unlike the TPM, anMTMmay be implemented entirely in so�ware,
although a device secret must be protected so that it can be used to provide secure storage fa-
cilities. Similar to the TPM, the other roots can use keys that are protected by secure storage.
�e root for execution typically makes use of the isolated execution features of the platform’s
main CPU, e.g., ARM TrustZone [14] or TI M-Shield [16]. Boot integrity is provided using
a secure boot model (Section 2.2.1).

CHAPTER 2. BACKGROUND AND RELATEDWORK 49

Smart Cards. Smart cards and SIM cards may not have any active tamper response mecha-
nisms; instead, they o�en attempt to protect a secret key through techniques such as hard-
ware obfuscation [220]. Private key operations are performed within the card to protect the
card’s secrets from being exposed to untrusted terminals.

2.5.3 Special-Purpose Minimal Devices

Several research projects have considered the utility of special-purpose security hardware. In
general, this minimalistic approach works for some applications, but the limited functional-
ity will exclude many applications that depend on reporting exactly what code is currently
executing. Characterizing more precisely what functionality is needed in secure hardware
for various classes of applications is still an open area of research.

Chun et al. observe that much of the complexity in Byzantine-Fault-Tolerant protocols
arises from an adversary’s ability to lie di�erently to each legitimate participant [46]. �ey
show that the ability to attest to an append-only log can prevent such duplicity, and hence
greatly reduces the complexity and overhead of these protocols. Following up on this work,
Levin et al. [122] show that the same property can be achievedwith amuch simpler primitive,
namely the ability to attest to the value of a counter.�ey informally argue that this is simplest
primitive that can provide this property, and they show that an attested counter can be used
in a range of applications, including PeerReview and BitTorrent.

2.5.4 Research Solutions Without Hardware Support

�e research community has proposed mechanisms to establish a root of trust based solely
on the properties of the physical hardware, i.e., without special hardware support. �e key
idea in so�ware-based attestation is to have code compute a checksum over itself to verify its
integrity [70, 106, 175, 176, 192]. �e veri�er checks the result of the checksum and also mea-
sures the time taken to compute it. If an adversary attempts to interfere with the checksum
computation, the interference will slow the computation, and this timing deviation can be
detected by the veri�er. So�ware-based attestation requires a number of strong assumptions,
including the need for the veri�er to have intimate knowledge of the hardware platform be-
ing veri�ed, i.e., the veri�er must know the platform’s CPU make and model, clock speed,
cache architecture, etc. In comparison with hardware-based techniques, the resulting secu-
rity properties are similar to those of a late launch on a platform such as AMD SVM [3] or
Intel TXT [95] (see Section 2.4.2). Secure storage remains a challenge as we discuss below.

CHAPTER 2. BACKGROUND AND RELATEDWORK 50

�e earliest proposal in this area is due to Spinellis [192], who proposes to use a timed
self-checksumming code to establish a root of trust on a system. In the same vein, Kennel
and Jamieson propose to use hardware side-e�ects to authenticate so�ware [106]. Seshadri et
al. implement a timed checksum function on embedded systems as well as on PCs [175, 176].
Gi�n et al. propose the use of self-modifying code to strengthen self-checksumming [70].

Attacks have recently been proposed against weakened versions of so�ware-based attes-
tation mechanisms [38, 214]; however, these attacks are primarily based on implementation
�aws, rather than fundamental limitations of the approach. Even so, additional formalism is
needed to create true con�dence in so�ware-based attestation.

Long-term secure storage is also an open challenge for so�ware-based attestation. �is
is because so�ware-based attestation has no dedicated or hardware-protected storage for
integritymeasurements or secrets bound to integritymeasurements.�us, if such properties
are desired, theymust be engineered in so�ware. However, there are fundamental limitations
to the types of storage that can be protected long-term (e.g., across a power cycle) without a
root of trust for storage (e.g., an encryption key available only to the trusted code that runs
as part of the so�ware-based attestation).

One line research has avoided this dependence on hardware properties by focusing on
auditing the results of speci�c function evaluations. Audit-based solutions [26, 146] typically
require the client (or randomly selected workers) to recalculate some portion of the work
done by untrusted workers.�is may be infeasible for resource-constrained clients and o�en
relies on some fraction of the workers to be honest, or at least non-colluding.

2.5.5 Cryptographic Protocols

In the cryptographic community, the idea of outsourcing expensive cryptographic opera-
tions to a semi-trusted device has a long history. Chaum and Pedersen de�ne the notion
of wallets with observers [40], a piece of secure hardware installed by a third party, e.g. a
bank, on the client’s computer to “help” with expensive computations. �e hardware is not
trusted by the client who retains assurance that it is performing correctly by analyzing its
communication with the bank. Hohenberger and Lysyanskaya formalize this model [90],
and present protocols for the computation of modular exponentiations (arguably the most
expensive step in public-key cryptography operations). �eir protocol requires the client to
interact with two non-colluding servers. Other work targets speci�c function classes, such
as one-way function inversion [76].

Recent advances in fully-homomorphic encryption [69, 202] allow a worker to compute
arbitrary functions over encrypted data, but they do not su�ce to provide outsourceable

CHAPTER 2. BACKGROUND AND RELATEDWORK 51

computing. Indeed, fully-homomorphic encryption provides no guarantee that the worker
performed the correct computation. While our solution does employ fully-homomorphic
encryption, we combine it with other techniques to provide veri�ability.

�e theoretical community has devoted considerable attention to the veri�able compu-
tation of arbitrary functions. Interactive proofs [17, 75] are a way for a powerful (e.g. super-
polynomial) prover to (probabilistically) convince a weak (e.g. polynomial) veri�er of the
truth of statements that the veri�er could not compute on its own. As it is well known, the
work on interactive proofs lead to the concept of probabilistically checkable proofs (PCPs),
where a prover can prepare a proof that the veri�er can check in only very few places (in
particular only a constant number of bits of the proofs needed for NP languages). Notice,
however, that the PCP proof might be very long, potentially too long for the veri�er to pro-
cess. To avoid this complication, Kilian proposed the use of e�cient arguments7 [110, 111] in
which the prover sends the veri�er a short commitment to the entire proof using a Merkle
tree. �e prover can then interactively open the bits requested by the veri�er (this requires
the use of a collision-resistant hash function). A non-interactive solution can be obtained us-
ingMicali’s CS Proofs [140], which remove interaction from the above argument by choosing
the bits to open based on the application of a random oracle to the commitment string. Re-
searchers have attempted to provide non-interactive, e�cient protocols by combining PCP
proofs with Private-Information Retrieval (PIR) schemes [4], but Dwork et al. demonstrate
that these proposals are unsound and that this approach contains inherent di�culties [52].
In more recent work, which still uses some of the standard PCP machinery, Goldwasser et
al. [74] show how to build an interactive proof to verify arbitrary polynomial time computa-
tions in almost linear time. �ey also extend the result to a non-interactive argument for a
restricted class of functions.

�erefore, if we restrict our attention to non-interactive protocols, the state of the art
o�ers either Micali’s CS Proofs [140] which are arguments that can only be proven in the
random oracle model, or the arguments from [74] that can only be used for a restricted class
of functions.

7 We follow the standard terminology: an argument is a computationally sound proof, i.e. a protocol in
which the prover is assumed to be computationally bounded. In an argument, an in�nitely powerful prover can
convince the veri�er of a false statement, as opposed to a proof where this is information-theoretically impossible
or extremely unlikely.

CHAPTER 2. BACKGROUND AND RELATEDWORK 52

2.6 Validating the Process

Bootstrapping trust can only be e�ective if we can validate the hardware, so�ware, and pro-
tocols involved. Below we summarize the (relatively few) e�orts in this direction.

From a hardware perspective, Smith and Austel discuss e�orts to apply formal methods
to the design of secure coprocessors [181, 185]. �ey also state formal security goals for such
processors. Bruschi et al. use a model checker to �nd a replay attack in the TPM’s Object
Independent Authorization Protocol (OIAP) [36]. �ey also propose a countermeasure to
address their attack, though it requires a TPM design change.

Taking amore empirical approach, Chen andRyan identify an opportunity to performan
o�ine dictionary attack on weak TPM authorization data, and propose �xes [42]. Sadeghi et
al. performed extensive testing on TPMs frommultiple vendors to evaluate their compliance
with the speci�cation [167]. �ey �nd a variety of violations and bugs, including some that
impact security. Finally, starting from the TPM speci�cation, Gürgens et al. developed a
formal automata-based model of the TPM [83]. Using an automated veri�cation tool, they
identify several inconsistencies and potential security problems.

At the so�ware level, Kauer notes several implementation �aws in trusted computing ap-
plications [105]. �ese include bootloaders that fail to appropriately measure so�ware before
loading it, and BIOS so�ware that allows �ash updates without validation.

At the protocol layer, Smith de�nes a logic for reasoning about the information that
must be included in platform measurements to allow a veri�er to draw meaningful con-
clusions [183]. Datta et al. use the Logic of Secure Systems (LS2) [48] to formally de�ne and
prove the code integrity and execution integrity properties of the static and dynamic TPM-
based attestation protocols.�e logic also helpsmake explicit the invariants and assumptions
required for the security of the protocols.

2.7 Applications

Clearly, many applications bene�t from the ability to bootstrap trust in a computer. Rather
than give an exhaustive list, we focus on applications deployed in the real world, and a hand-
ful of particularly innovative projects in academia.

2.7.1 Real World

Code Access Security in Microso� .NET. Microso�’s Code Access Security is intended to
prevent unauthorized code from performing privileged actions [141]. �e Microso� .NET

CHAPTER 2. BACKGROUND AND RELATEDWORK 53

Common Language Runtime (CLR)maintains evidence for assemblies of code and uses these
to determine compliance with a security policy. One form of evidence is the cryptographic
hash of the code in question. �is represents one of the more widely deployed systems that
supports making security-relevant decisions based purely on the identity of code as repre-
sented by a cryptographic hash of that code.
Bitlocker. Oneof themostwidely-used applications of trust bootstrapping is BitLocker [142],
Microso�’s drive encryption feature, which �rst appeared in theWindows Vista OS. Indeed,
BitLocker’s dependence on the presence of a v1.2 TPM likely helped encourage the adoption
of TPMs into the commodity PCmarket.�e keys used to encrypt and authenticate the hard-
drive’s contents are sealed (see Section 2.2.2) to measurements taken during the computer’s
initial boot sequence. �is ensures that malware such as boot-sector viruses and rootkits
cannot hijack the launch of the OS nor access the user’s �les. �ese protections can be sup-
plemented with a user-supplied PIN and/or a secret key stored on a USB drive.
Trusted Network Connect (TNC). TNC is a working group with goals including strength-
ening network endpoints. TNC supports the use of attestation to perform Network Access
Control. �us, before a computer can connect to the network, it must pass integrity checks
on its so�ware stack, as well as perform standard user authentication checks. An explicit
goal is to give non-compliant computer systems an avenue for remediation. Existing open
source solutions have already been tested for interoperability with promising results [205].
Secure Boot on Mobile Phones. Mobile phones (and other embedded devices) have long
bene�tted from a secure boot architecture. Until recently, these devices served very spe-
ci�c purposes, and the degree of control a�orded to mobile network operators by a secure
boot architecture helped to ensure dependable service and minimize fraud. Even many
modern smartphones with support for general-purpose applications employ rich capability-
based secure architectures whose properties stem from secure boot. For example, Symbian
Signed [55] is the interface to getting applications signed such that they can be installed and
access certain capabilities on smartphones running the Symbian OS. Apple’s iPhone OS em-
ploys a similar design.

2.7.2 Research Proposals

Multiple projects have considered using secure hardware to bootstrap trust in a traditional
“Trusted�ird Party”. Examples include certifying the behavior of the auctioneer in an on-
line auction [158], protecting the private key of a Certi�cate Authority [131], protecting the
various private keys for a Kerberos Distribution Center [96].

CHAPTER 2. BACKGROUND AND RELATEDWORK 54

Given the ever increasing importance of web-based services, multiple research e�orts
have studied how to bootstrap greater assurance in public web servers. In the WebALPS
project, building on the IBM 4758, Jiang et al. enhanced an SSL server to provide greater
security assurance to a web client [99, 182]. A “guardian” program running on the secure
coprocessor provides data authenticity and secrecy, as well as safeguarding the server’s pri-
vate SSL keys. �is approach helps protect both the web client and the web server’s operator
from insider attacks. In the Spork project, Moyer et al. consider the techniques needed to
scale TPM-based attestation to support a high-performance web server [147]. �ey also im-
plement their design by modifying the Apache web server to provide attested content and
developing a Firefox extension for validating the attestations.

Of course, other network protocols can bene�t from bootstrapped trust as well. For
example, the Flicker project enhanced the security of SSH passwords while they are handled
by the server (see Section 4.4.3.1). With a Flicker-enhanced SSH server, the client veri�es
an attestation that allows it to establish a secure channel to an isolated code module on the
server. By submitting its password over this channel, the client can ensure that only a tiny
piece of code on the server will ever see the password, even if other malware has infected
the server. On a related note, the BIND project [179] observed that by binding bootstrapped
code to its inputs, they could achieve a transitive trust property. For example, in the context
of BGP, each router can verify that the previous router in the BGP path executed the correct
code, made the correct decisions given its input, and veri�ed the same information about the
router before it. �e last property ensures that by verifying only the previous router in the
chain, the current router gains assurance about the entire BGP path.

Researchers have also investigated the use of bootstrapped trust in the network itself.
Ramachandran et al. propose imbuing packets with the provenance of the hosts and appli-
cations that generated them [161]. Unfortunately, these packet markings are not secured, so
the system must assume that the entire network is trusted and that all hosts have deployed
the system in a tamper-proof fashion. Gar�nkel et al. noted that secure hardware might help
defend against network-based attacks [64].

However, the �rst design and implementation of this idea came from Baek and Smith,
who describe an architecture for prioritizing tra�c from privileged applications [18]. Using
a TPM, clients attest to the use of an SELinux kernel equipped with a module that attaches
Di�serv labels to outbound packets based on an administrator’s network policy. �is system
requires a large TCB (i.e., an entire Linux kernel) and universal deployment. Gummadi et al.
propose the Not-A-Bot system [82], which tries to distinguish human-generated tra�c from
bot-driven tra�c. �ey attest to a small client module that tags outgoing packets generated

CHAPTER 2. BACKGROUND AND RELATEDWORK 55

within one second of a keystroke or mouse click. �rough trace-driven experiments, the
authors show that the system can signi�cantly reduce malicious tra�c. However, the system
only considers application-level attacks, i.e., the network is assumed to be uncongested.�us,
the server is responsible for verifying client attestations, which is less practical for applica-
tions such as combating network-level DDoS attacks or super-spreader worms. �e system
works well for human-driven application-speci�c scenarios, but it is di�cult to adapt it to
services that are not primarily human-driven, such as NTP, transaction processing, network
backup, or so�ware update servers. Rather than use a TPM, Feng and Schluessler propose, at
a high-level, using Intel’s ActiveManagement Technology to provide information on thema-
chine’s state to network elements by introspecting on the main CPU’s activities [59]. �ey do
not focus on conveying this information e�ciently, nor do they provide a full system design
and implementation. Lastly, Dixon et al. propose pushing middle-box functionality, such as
NAT and QoS to endhosts, using trusted computing as a foundation [51]. �is is orthogonal,
but potentially complementary, to Chapter 5’s goal of conveying host-based information to
network elements.

Finally, Sarmenta et al. observe that a trusted monotonic counter can be used in a wide
variety of applications, including count-limited objects (e.g., keys that can only be used a
�xed number of times), digital cash, and replay prevention [171]. While the TPM includes
monotonic counter functionality, the speci�cation only requires it to support a maximum of
four counters, and only one such counter need be usable during a particular boot cycle.�us,
they show how to use a log-based scheme to support an arbitrary number of simultaneous
counters. �ey also design a more e�cient scheme based on Merkle trees [137], but this
scheme would require modi�cations to the TPM, so that it could securely store the tree’s
root and validate updates to it.

2.8 Human Factors & Usability

Most existing work in attestation and trusted computing focuses on interactions between
two computing devices. �is section treats a higher goal – that of convincing the human op-
erator of a computer that it is in a trustworthy state. �ese solutions sort into two categories:
those where the user is in possession of an additional trustworthy device, and those based
solely on the human’s sensory and cognitive abilities. An additional, though somewhat or-
thogonal, category concerns techniques to pair two trustworthy devices, e.g., to establish a
secure channel between two cellphones.

CHAPTER 2. BACKGROUND AND RELATEDWORK 56

2.8.1 Trustworthy Veri�er Device

To help a human establish trust in a computer, Itoi et al. describe a smart card-based solution
called sAEGIS [97]. sAEGIS builds on the AEGIS [13] secure boot (see Section 2.2.1) but
changes the source of the trusted so�ware list. Instead of being precon�gured by a potentially
untrustworthy administrator, sAEGIS allows the smart card to serve as the repository of
trusted so�ware list. �us, a user can insert her smart card into an untrusted computer and
reboot. If booting is successful, the resulting environment conforms to the policy encoded
on her smart card, i.e., the executing so�ware appears in the list stored in the smart card.
Of course, the user must establish through some out-of-band mechanism that the computer
indeed employs the sAEGIS system. Otherwise, it might simply ignore the user’s smart card.

To help humans verify that a platform is trustworthy, Lee et al. propose the addition of a
simple multi-color LED and button to computers to enable interaction with a Trusted So�-
ware Module [120]. A complete architecture and implementation for these simple interfaces
remains an open problem.

�e Bumpy [135] system is an architecture to provide a trusted path for sending input to
web pages from a potentially malicious client-side host. A user is assumed to possess a trust-
worthy smartphone and an encryption-capable keyboard. Attestation is used to convince
the smartphone that the user’s input is being encrypted in an isolated code module.

Chapter 3 considers the challenges faced by a human user trying to learn the identity
(e.g., authentic public key) of the TPM in a speci�c computer. �is highlights the risk of
a Cuckoo Attack, in which malware on the user’s computer forwards the user’s attestation
request to another attacker-controlled system that conforms to the expected con�guration.
�us, the user concludes her computer is safe, despite the presence of malware.

2.8.2 Using Your Brain to Check a Computer

Roots of trust established based on timing measurements (Section 2.5.4) can potentially be
veri�ed by humans. Franklin et al. propose personally veri�able applications as part of the
PRISM architecture for human-veri�able code execution [61]. �e person inputs a challenge
from a physical list and then measures the length of time before the application produces
the correct response (also on the list). Veri�cation amounts to checking that the response is
correct and that it arrived in a su�ciently short period of time. However, the timing-based
proposals on which these solutions rest (Section 2.5.4) still face several challenges.

CHAPTER 2. BACKGROUND AND RELATEDWORK 57

2.8.3 Pairing Two Trustworthy Devices

Considerable work has studied how to establish secure communication between two devices.
Proposals use infrared [21], visual [134, 172], and audio channels [77, 189], as well as physical
contact [193], shared acceleration [128], and even the electrical conductivity of the human
body [190]. Unlike this work in which one device may be infected with malware, in these
systems, the two devices are trusted, and the adversary is assumed to be an external entity.

In the realm of access control, researchers have studied a related problem known as the
Chess Grandmaster Problem, Ma�a Fraud, or Terrorist Fraud [5, 29], in which an adversary
acts as a prover to one honest party and a veri�er to another party in order to obtain access to
a restricted area. Existing solutions rely on distance bounding [29, 32], which, as explained
in Section 3.2.1, is ine�ective for a TPM, or employ radio-frequency hopping [5] which is
also infeasible for the TPM.

2.9 Limitations

When it comes to bootstrapping trust in computers, there appear to be signi�cant limitations
on the types of guarantees that can be o�ered against so�ware and hardware attacks. We
summarize these limitations below to alert practitioners to the dangers and to inspire more
research in these areas.

2.9.1 Load-Time Versus Run-Time Guarantees

As described in Section 2.1, existing techniques measure so�ware when it is �rst loaded.
�is is the easiest time to obtain a clean snapshot of the program, before, for example, it can
create temporary and di�cult to inspect local state. However, this approach is fundamentally
“brittle”, since it leaves open the possibility that malware will exploit the loaded so�ware. For
example, if an attacker exploits a bu�er over�ow in the loaded so�ware, no measurement of
this will be recorded. In other words, the information about this platform’s state will match
that of a platform that contains pristine so�ware. �us, any vulnerability in the attesting
system’s so�ware potentially renders the attestation protocol meaningless. While Section
2.1.2 and Section 2.4.3 surveyed several attempts to providemore dynamic properties, the fact
remains that they all depend on a static load-time guarantee. �is reinforces the importance
ofminimizing the amount of so�ware thatmust be trusted and attested to, since smaller code
tends to contain fewer bugs and be more amendable to formal analysis.

CHAPTER 2. BACKGROUND AND RELATEDWORK 58

2.9.2 Hardware Attacks

As discussed in Section 2.5, protection against hardware attacks has thus far been a trade-
o� between cost (and hence ubiquity) and resilience [12]. Even simple hardware attacks,
such as connecting the TPM’s reset pin to ground, can undermine the security o�ered by
this inexpensive solution [105]. Another viable attack is to physically remove the TPM chip
and interpose on the LPC bus that connects the TPM to the chipset. �e low speed of the
bus makes such interposition feasible and would require less than one thousand dollars in
FPGA-based hardware. Tarnovsky shows how to perform a more sophisticated hardware
attack [197], but this attack requires costly tools, skills, and equipment including an elec-
tron microscope. An important consequence of these attacks is that applications that rely
on widespread, commodity secure hardware, such as the TPM, must align the application
incentives with those of the person in direct physical control of the platform. �us, applica-
tions such as BitLocker [142], which help a user protect her �les from attackers, are far more
likely to succeed than applications such as DRM, which attempt to restrict users’ capabilities
by keeping secrets from them.

�is also makes the prospect of kiosk computing daunting. Kiosks are necessarily cost-
sensitive, and hence unlikely to invest in highly-resilient security solutions. Combining vir-
tualization with a TPM can o�er a degree of trust in a kiosk computer [65], but only if the
owner of the computer is trusted not to tamper with the TPM itself. Of course, other phys-
ical attacks exist, including physical-layer keyboard sni�ers and screen-scrapers. �e roots
of trust we consider in this chapter are unlikely to ever cope with such attacks.

Similar problems plague cloud computing and electronic voting applications. When a
client entrusts a cloud service with sensitive data, it can bootstrap trust in the cloud’s so�-
ware using the techniques we have described, but it cannot verify the security of the cloud’s
hardware. �us, the client must trust the cloud provider to deploy adequate physical secu-
rity. Likewise, a votermight use a trusted device to verify the so�ware on an electronic voting
machine, but she still has no guarantee regarding the machine’s physical security.

Another concern is hardware attacks on secrets stored in memory. Even if a combina-
tion of hardware and so�ware protections can protect a user’s secrets while the computer is
active, recent research by Halderman et al. has shown that data in RAM typically persists
for a surprisingly long time (seconds or even minutes) a�er the computer has been powered
down [85]. Hence, an attacker who has physical access to the computer may be able to read
these secrets directly out of the computer’s memory.

CHAPTER 2. BACKGROUND AND RELATEDWORK 59

2.10 Additional Reading

With a focus on the IBM 4758, Smith’s book [184] provides a thorough survey of early work
in the design and use of secure coprocessors. Balache� et al.’s book documents the early de-
sign of the TPM [19], but it is now mostly superseded by Grawrock’s more recent book [79],
which covers the motivation and design of the TPM, as well as Intel’s late launch and virtu-
alization support. Challener et al.’s book [39] touches on similar topics but focuses primarily
on Trusted Computing from a developer’s perspective, including guidance on writing TPM
device drivers or applications that interface with the Trusted So�ware Stack (TSS). Mitchell’s
book [144] contains a collection of articles surveying the general �eld of Trusted Computing,
providing useful overviews of topics such as NGSCB and DAA.

2.11 Summary

In this chapter, we organize and clarify extensive research on bootstrapping trust in com-
modity systems. We identify inconsistencies (e.g., in the types of attacks considered by
various forms of secure and trusted boot), and commonalities (e.g., all existing attempts to
capture dynamic system properties still rely in some sense on static, load-time guarantees)
in previous work. We also consolidate the various types of hardware support available for
bootstrapping trust. �is leads us to the observation that applications based on low-cost,
non-tamper-resistant hardware (e.g., the TPM), must align their incentives with those of the
computer owner, suggesting that applications that help the user protect her own secrets or
check her computer for malware are more likely to succeed than applications that try to hide
information from her.

Chapter 3

Bootstrapping Trust in a
Commodity Computer

Before entrusting a computer with a secret, a user needs some assurance that the computer
can be trusted. Without such trust, many tasks are currently impossible. For example, if
Alice does not trust her PC, then she cannot log in to any websites, read or edit con�dential
documents, or even assume that her browsing habits will remain private. While the need
to bootstrap trust in a machine is most evident when traveling (and hence using computers
with which the user has no prior relationship), this problem also arises more generally. For
example, Alice might wish to check her email on a friend’s computer. Alice may not even be
able to say for sure whether she can trust her own personal computer.

One way to bootstrap trust in a computer is to use secure hardwaremechanisms tomon-
itor and report on the so�ware state of the platform. Given the so�ware state, the user (or an
agent acting on the user’s behalf) can decide whether the platform should be trusted. Due
to cost considerations, most commodity computers do not include a full-blown secure co-
processor such as the IBM 4758 [186]. Instead, the move has been towards cheaper devices
such as the Trusted Platform Module (TPM) [200]. �e cost reduction is due in part to the
decision to make the TPM secure only against so�ware attacks. As a consequence, a TPM in
the physical possession of an adversary cannot be trusted.

With appropriate so�ware support, the TPM can be used to measure and record each
piece of so�ware loaded for execution, and to securely convey this information (via an at-
testation) to a remote party [170, 200]. With hardware support for a dynamic root of trust,
included in the most recent CPUs fromAMD and Intel, the attestation from the TPM can be
simpli�ed to attest to the secure, isolated execution of a particular piece of so�ware (see Sec-

60

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 61

tion 2.4.1). With either approach, the resulting attestations can be veri�ed by a user’s trusted
device, such as a cellphone or a special-purpose USB fob [203]. �us, the TPM can be used
to establish trust in the so�ware on a machine.

However, the question remains: How do we bootstrap trust in the TPM itself? Surpris-
ingly, neither the TPM speci�cations nor the academic literature have considered this prob-
lem. Instead, it is assumed that the user magically possesses the TPM’s public key. While
this assumption dispenses with the problem, it does not truly solve it, since in real life the
user does not typically receive authentic public keys out of the blue. Without the TPM’s
public key, the user cannot determine if she is interacting with the desired local TPM or
with an adversarially-controlled TPM. For example, in a cuckoo attack, malware on the lo-
cal machine may forward the user’s messages to a remote TPM that the adversary physically
controls. �us, the user cannot safely trust the TPM’s attestation, and hence cannot trust the
computer in front of her.

As a result, we need a system to allow a conscientious user to bootstrap trust in the local
TPM, so that she can leverage that trust to establish trust in the entire platform.
Contributions. In this chapter, we make the following contributions: (1)We formally de�ne
(using predicate logic) the problem of bootstrapping trust in a platform. (2) We show how
the model captures the cuckoo attack, as well as how it suggests potential solutions. (3)We
give sample instantiations of each type of solution and discuss their advantages and disad-
vantages. (4)We recommend improvements for future platforms that aspire to be trusted.

3.1 Problem De�nition

In this section, we give an informal description of the problem, followed by a more rigorous,
formal de�nition.

In this chapter, we focus on a slightly abstracted model of the Trusted Platform Module
(TPM). In particular, we model it as a security chip equipped with a public/private keypair
{KTPM,K−1

TPM} and a set of PCRs. �e TPM’s manufacturer provides the TPM with an
Endorsement Certi�cate. �e Endorsement Certi�cate certi�es that the TPM is a genuine,
hardware TPM and serves to authenticate the TPM’s public keyKTPM. Chapter 2 describes
the lower-level details hidden by this abstraction.

3.1.1 Informal Problem Description

Our high-level goal is to establish trust in a potentially compromised computer, so that a user
can perform security-sensitive tasks. To achieve this goal, we must assume the user already
trusts someone or something, and then leverage that trust to establish trust in the computer.

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 62

(a) Example Implementation (b) Logical Equivalent

Figure 3.1: �e Cuckoo Attack. In one implementation of the cuckoo attack (a), malware on the user’s
local machine sends messages intended for the local TPM (TPML) to a remote attacker who feeds the
messages to a TPM (TPMM) inside a machine the attacker physically controls. Given physical control of
TPMM, the attacker can violate its security guarantees via hardware attacks. �us, at a logical level (b),
the attacker controls all communication between the veri�er and the local TPM, while having access to
an oracle that provides all of the answers a normal TPMwould, without providing the security properties
expected of a TPM.

Speci�cally, we make two initial trust assumptions. First, we assume the user has a mo-
bile, trusted device, such as a cellphone, or a special-purpose USB fob [203] that can com-
pute and communicate with the computer. �is device is assumed to be trusted in part due
to its limited interface and functionality,1 so it cannot be used for general security-sensitive
tasks. We also assume the user trusts someone (potentially herself) to vouch for the physi-
cal integrity of the local machine. Without this assumption (which may not hold for kiosk
computers), it is di�cult to enable secure, general-purpose computing. Fortunately, humans
are relatively good at protecting their physical belongings (as opposed to virtual belongings,
such as passwords). Furthermore, the assumption is true relative to Internet-based attackers.

Ideally, from these two trust assumptions (a trustworthy veri�er device and a physically
secure local computer), we would establish trust in the secure hardware (TPM) in the local
computer. Trust in the TPM could then be used to establish trust in the so�ware on the
computer. Unfortunately, there is currently no way to connect our trust assumptions to trust
in the local TPM.When a user walks up to a computer, she has no reliable way of establishing
the identity (public key) of the TPM inside the computer. As a result, she may fall victim to
what we call a cuckoo attack.

In a cuckoo attack,2 the adversary convinces the user that a TPM the adversary physically
controls in fact resides in the user’s own local computer. Figure 3.1(a) illustrates one possible

1Arguably, this assumption may not hold for current smartphones.
2 �e cuckoo bird replaces other birds’ eggs with its own. �e victim birds are tricked into feeding the cuckoo

chick as if it were their own. Similarly, the attacker “replaces” the user’s trusted TPMwith his own TPM, leading
the user to treat the attacker’s TPM as her own.

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 63

Predicates
Predicate Meaning
TrustedPerson(p) User trusts person p.
PhysSecure(c) Computer c is physically secure.
SaysSecure(p, c) Person p says computer c is physically secure.
TrustedC(c) Computer c is trusted.
TrustedT(t) TPM t is trusted.
On(t, c) TPM t resides on computer c.
CompSaysOn(c, t) Computer c says TPM t is installed on computer c.

Axioms
1. ∀p, c TrustedPerson(p) ∧ SaysSecure(p, c)

→ PhysSecure(c)
2. ∀t, c On(t, c) ∧ ¬ PhysSecure(c)→¬ TrustedT(t)
3. ∀t, c On(t, c) ∧ PhysSecure(c)→ TrustedT(t)
4. ∀t, c On(t, c) ∧ TrustedT(t)→ TrustedC(c)
5. ∀t, c On(t, c) ∧ ¬ TrustedT(t)→¬ TrustedC(c)
6. ∀c, t CompSaysOn(c, t)→ On(t, c)

Figure 3.2: Trust Model. �e predicates describe relevant properties of the system, while the axioms
encode facts about the domain.

Assumption Encoding
1. Alice trusts herself. TrustedPerson(Alice)
2. Alice says her computer C is

physically secure.
SaysSecure(Alice, C)

3. �e adversary controls machine
M containing TPMM .

On(TPMM , M)

4. M is not physically secure. ¬ PhysSecure(M)
5. Malware on Alice’s machine C

causes it to say that TPMM is in-
stalled on C .

CompSaysOn(C ,
TPMM)

Figure 3.3: Trust Model Assumptions. We encode our assumptions about the situation in predicates.

implementation of the cuckoo attack. Malware on the user’s local machine proxies the user’s
TPM-related messages to a remote, TPM-enabled machine controlled by the attacker. �e
attacker’s TPMM can produce an Endorsement Certi�cate certifying that the TPM’s public
key KTPMM

comes from an authentic TPM. �e attacker’s computer then faithfully par-
ticipates in the TPM protocol, and it provides an attestation that trusted so�ware has been
loaded correctly.

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 64

(1) TrustedPerson(Alice) Assumption 1
(2) SaysSecure(Alice, C) Assumption 2
(3) PhysSecure(C) Axiom 1: (1), (2)
(4) CompSaysOn(C , TPMM) Assumption 5
(5) On(TPMM , C) Axiom 6: (4)
(6) TrustedT(TPMM) Axiom 3: (5), (3)
(7) TrustedC(C) Axiom 4: (5), (6)
(8) On(TPMM , M) Assumption 3
(9) ¬ PhysSecure(M) Assumption 4
(10) ¬ TrustedT(TPMM) Axiom 2: (8), (9)
(11) ¬ TrustedC(C) Axiom 5: (5), (10)
(12) ⊥ 7, 11

Figure 3.4: Proof Failure Reveals Cuckoo Attack. Applying our axioms to our assumptions leads to
a logical contradiction.

As a result, the user will decide to trust the local PC. Any secrets she enters can be cap-
tured bymalware and forwarded to the attacker. Even secrets protected by TPM-based guar-
antees (e.g., encrypted usingKTPMM

) will be compromised, since the TPM’s speci�cations
o�er no guarantees for a TPM in the physical possession of the adversary.

�us, it is crucial that the user be able to securely communicate with the TPM in the local
machine before revealing any sensitive information. Note that while this attack resembles a
classic Attacker-in-the-Middle attack, it di�ers in that the attacker controls both the local
and the remote machine.

3.1.2 Formal Model

To analyze the cuckoo attackmore formally, we canmodel the situation using predicate logic.
Figure 3.2 summarizes our proposed model for establishing trust in a computer equipped
with secure hardware. �e �rst axiom encodes our assumption that trusted humans can
vouch for the physical integrity of a computer. �e next two axioms codify the TPM’s vul-
nerability to hardware attacks. �e second set of axioms encodes our assumption that trust
in the TPM inside a computer su�ces (via so�ware attestations) to establish trust in the com-
puter. �e �nal axiom represents the fact that today, without the local TPM’s public key, the
user must accept the computer’s assertion that a particular TPM resides on the computer.

To “initialize” the system, we also encode our assumptions about the concrete setting
in a set of predicates (shown in Figure 3.3). By applying our set of axioms to the initial as-
sumptions, we can reason about the trustworthiness of the local machine. Unfortunately,

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 65

as shown in Figure 3.4, such reasoning leads to a logical contradiction, namely that the lo-
cal machine C is both trusted and untrusted. �is contradiction captures the essence of the
cuckoo attack, since it shows that the user cannot decide whether to trust the local machine.

Removing the contradiction requires revisiting our axioms or our assumptions. We ex-
plore these options below.

3.2 Potential Solutions

�e cuckoo attack is possible because the attacker can convince the user to accept assurances
from an untrustworthy TPM. In this section, we �rst show that an obvious solution, cutting
o� network access, addresses one instantiation of the cuckoo attack but does not solve the
problem, since malware on the local machine may have enough information to perfectly
emulate a TPM in so�ware. To avoid similar missteps, we return to our formal model and
consider solutions that remove an assumption, as well as solutions that �x an axiom. For each
approach, we provide several concrete instantiations and an analysis of their advantages and
disadvantages.

3.2.1 Removing Network Access

From Figure 3.1(a), it may seem that the cuckoo attack can be prevented by severing the con-
nection between the localmalware the adversary’s remote PC.�e assumption is thatwithout
a remote TPM to provide the correct responses, the infected machine must either refuse to
respond or allow the true TPM to communicate with the user’s device (thus, revealing the
presence of the malware).

Below, we suggest how this could be implemented, and show that regardless of the im-
plementation, this solution fundamentally does not work. We demonstrate this both with
the formal model from Section 3.1.2, and with an attack.

�ere are several ways to remove the localmalware’s access to the remote TPM.We could
instruct the user to sever all network connections. If the user cannot be trusted to reliably ac-
complish this task,3 the veri�er could jam the network connections. For example, the user’s
fobmight include a small RJ-45 connector to plug the Ethernet jack and jam the wireless net-
work at the logical level (by continuously sending Request-to-Send frames) or at the physical
level. Finally, we could use a distance-bounding protocol [32] to prevent the adversary from
making use of a remote TPM. Since the speed of light is constant [54], the veri�er can re-

3For example, it may be di�cult to tell if an infected laptop has its wireless interface enabled.

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 66

quire fast responses from the local platform and be assured that malware on the computer
does not have time to receive an answer from a remote party. However, with current TPMs,
identi�cation operations take half a second or more, with considerable variance both on a
single TPM and across the various TPM brands (see Section 4.5.2.3). A signal traveling at
the speed of light can circle the earth about four times in the time required for an average
TPM to compute a signature, making distance-bounding infeasible.

Unfortunately, removing network access is fundamentally insu�cient to prevent the re-
play attack. Oneway to see this is via the formalmodel fromFigure 3.2. Neither the predicates
nor the axioms assume the local adversary has access to the remote PC.�e logical �aw that
allows the cuckoo attack to happen arises from Axiom 6, i.e., the local computer’s ability to
convince the user that a particular TPM resides on the local computer. In other words, as
shown in Figure 3.1(b), the cuckoo attack is possible because the malware on the local ma-
chine has access to a “TPM oracle” that provides TPM-like answers without providing TPM
security guarantees. If the local malware can access this oracle without network access, then
cutting o� network access is insu�cient to prevent the cuckoo attack.

In particular, since the adversary has physical possession of TPMM, he can extract its
private key. He can then provide the malware on the local computer with the private key,
TPMM’s Endorsement Certi�cate, and a list of trusted PCR values. �us provisioned, the
malware on the local machine can perfectly emulate TPMM, even without network access.

3.2.2 Eliminating Malware

An alternate approach is to try to remove the malware on Alice’s local computer. In our for-
mal model, this equates to removing Assumption 5, which would remove the contradiction
that results in the cuckoo attack. Unfortunately, this approach is both circular and hard to
achieve.

First, we arrived at the cuckoo attack based on the goal of ensuring that the localmachine
could be trusted. In other words, the goal is to detect (and eventually remove), any malware
on the machine using the TPM. Removing malware in order to communicate securely with
the TPM, in order to detect and remove malware, potentially leaves us stuck in an endless
loop without a base case.

In practice, there are two approaches to cutting through this circularity, but neither is
satisfactory.

§1 Trust. �e “null” solution is to simply ask the local machine for its key and trust that no
malware is present.

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 67

Pros: �is is clearly the simplest possible solution. Sadly, it seems to be the only viable
solution available today, at least without special devices or additional hardware changes.

Cons: �e assumption that themachine is not compromisedwill not hold formany com-
puters. Unprotected Windows PCs are infected in minutes [2]. Even newly purchased
devices may not meet this criteria [119, 188].

§2 Timing Deviations. Researchers have observed that certain computations can be done
faster locally thanmalware can emulate the same computationswhile hiding its ownpres-
ence (see Section 2.5.4). By repeating these computations, a timing gap appears between
a legitimate execution of the protocol, and a malware-simulated execution. Using such a
system, we could run a code module on the local computer to check for malware.

Pros: Since these approaches do not rely on special hardware, they can be employed
immediately on current platforms.

Cons: Using timing deviations requires severing the PC’s network access; Section 3.2.1
shows that this is non-trivial. Also, such techniques require speci�c hardware knowledge
(e.g., about the exact CPU architecture/model, memory size, cache size, etc.) that the user
is unlikely to possess.

3.2.3 Establishing a Secure Channel

Given the conclusions above, we must keep the assumptions in Figure 3.3. �us, to �nd a
solution, we must �x one or more of our axioms. We argue that the correct target is Axiom
6, as the others are fundamental to our problem de�nition.

We cannot simply remove Axiom 6, since without it, we cannot introduce the notion of
a TPM being installed on a computer. Instead, establishing a secure (authentic and integrity-
preserving) channel to the TPM on the local machine su�ces to �x Axiom 6. Such a secure
channel may be established using hardware or cryptographic techniques.

For a hardware-based approach, we would introduce a new predicate HwSaysOn(t,c)
indicating that a secure hardwired channel allowed the user to connect to the TPM on the
local machine. Axiom 6 would then be written as:

∀t, c HwSaysOn(t, c)→ On(t, c)

A cryptographic approach requires the user to obtain some authentic cryptographic in-
formation about the TPM she wishes to communicate with. Based on the user’s trust in the
source of the information, she could then decide that the TPM was in fact inside the ma-

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 68

chine. We could encode this using the predicate PersonSaysOn(p, t, c) indicating that
a person p has claimed that TPM t is inside computer c. Axiom 6 would then be written as:

∀p, t, c TrustedPerson(p) ∧ PersonSaysOn(p, t, c)→ On(t, c)

3.2.3.1 Hardware-Based Secure Channels

Below, we analyze ways to implement a hardware-based modi�cation to Axiom 6 to allow
the user to establish a secure channel with the TPM on the local computer.

§3 Special-Purpose Interface. Add a new hardware interface to the computer that allows
an external device to talk directly to the TPM. �e TPM already supports di�erential
access rights, so the external interface could be designed to allow the external veri�er to
guarantee that so�ware on the machine does not interfere with the contents of the TPM
while the veri�er is attached.

Pros: �e use of a special-purpose port reduces the chances for user error (since they
cannot plug the external veri�er into an incorrect port).

Cons: Introducing an entirely new interface and connector speci�cation would require
signi�cant industry collaboration and changes from hardware manufacturers, making it
an unlikely solution in the near term.

§4 Existing Interface. Use an existing external interface (such as Firewire or USB) to talk
directly to the TPM.

Pros: �is solution is much simpler to deploy, since it does not require anymanufacturer
changes.

Cons: Existing interfaces are not designed to support this type of communication. For
example, USB devices cannot communicate with the host platform until addressed by
the host. Even devices with more freedom, such as Firewire devices, can only read and
write to memory addresses. While the TPM is made available via memory-mapped I/O
ports, these mappings are established by the so�ware on the machine, and hence can be
changed by malware. �us, there does not appear to be a way to reuse existing interfaces
to communicate reliably with the local TPM.

§5 External Late LaunchData. RecentCPUs fromAMDand Intel can perform a late launch
of an arbitrary piece of code (see Section 2.4.1). During the late launch, the code to be
executed is measured and the measurement is sent to the TPM. �e code is then exe-
cuted in a protected environment that prevents interference from any other hardware or

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 69

so�ware on the platform. If the late launch operation also made the code’s measurement
code available externally, then the user’s veri�er could check that the invoked code was
trustworthy. �e code could then check the integrity of the platform or establish a secure
channel from the veri�er to the TPM.

Pros: Recent CPUs contain the late launch functionality needed to measure and securely
execute code.

Cons: Existing interfaces (such as USB) do not allow the CPU to convey the fact that
a late launch occurred nor the measurement of the executed code in an authentic fash-
ion. Malware on the computer could claim to perform a late launch and then send a
measurement of a legitimate piece of code. �is attack could be prevented by creating
a special-purpose interface that talks directly to the CPU, but this brings us back to §3,
which is a simpler solution.

§6 Special-PurposeButton. Add anewbutton on the computer for bootstrapping trust. For
example, the button can execute an authenticated code module that establishes a secure
channel between the veri�er (connected via USB, for example) and the TPM. Alterna-
tively, the button could disable all network interfaces to prevent the cuckoo attack from
occurring. Such a button could also be useful for taking a laptop on an airplane.

Pros: A hardware button press cannot be overridden by malware. It also provides the
user with a tangible guarantee that secure bootstrapping has been initiated.

Cons: Executing an authenticated code module requires hardware not only for invoking
the necessary code, but also for verifying digital signatures (similar to §9), since the code
will inevitably need updates. �is approach also relies on the user to push the button
before connecting the veri�er device, since the device cannot detect the button push. If
the user plugs in the veri�er before pushing the button, on the computer could fool the
device with a cuckoo attack. Both versions of this solution require hardware changes.

3.2.3.2 Cryptographic Secure Channels

Establishing a cryptographically-secure channel requires the user to share a secret with the
TPM or to obtain the TPM’s public key. Without a prior relationship with the TPM, the user
cannot establish a shared secret, so in this section we focus on public-key methods.

§7 Seeing-is-Believing (SiB).An approach suggested byMcCune et al. [134] (and later used
for kiosk computing [65]) is to have the computer’s manufacturer encode a hash of the
platform’s identity in a 2-D barcode and attach the barcode to the platform’s case. Note

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 70

that this step should be performed by the manufacturer and not, say, the current owner,
since the current owner would have to establish the TPM’s identity, in which case the
problem would simply recurse to them. Using a camera-equipped smartphone, the user
can take a picture of the 2-D barcode and use the smartphone to process the computer’s
attestation.

Pros: �is solution is attractive, since it requires relatively little e�ort from the manufac-
turer, and most people �nd picture-taking simple and intuitive.

Cons: Because it requires a vendor change, this solution will not help current platforms.
It also requires the user to own a relatively expensive smartphone and install the relevant
so�ware. �e user must also trust that the smartphone has not been compromised. As
these phones grow increasingly complex, this assumption is likely to be violated. In a
kiosk setting, the 2-D barcode may be replaced or covered up by an attacker.

§8 SiB Without a Camera. Instead of using a 2-D barcode, the manufacturer could en-
code the hash as an alpha-numeric string. �e user could then enter this string into a
smartphone, or into a dedicated fob.

Pros: Similar to §7, except the user no longer needs a camera-equipped device.

Cons: Similar to those of §7, but it still requires non-trivial input capability on the user’s
device. Relies on the user to correctly enter a complicated string.

§9 TrustedBIOS. If the user trusts themachine’s BIOS, she can reboot themachine and have
the trusted BIOS output the platform’s identity (either visually or via an external interface,
such as USB).�e trusted BIOSmust be protected frommalicious updates. For example,
some Intel motherboards will only install BIOS updates signed by Intel [118].

Pros: �is approach does not require the user to use any custom hardware.

Cons: �e user must reboot the machine, which may be disruptive. It relies on the user
to only insert the veri�er a�er rebooting, since otherwise the veri�er may be deceived by
local malware. �e larger problem is that manymotherboards do not include the protec-
tions necessary to guarantee the trustworthiness of the BIOS, and there is no indicator
to signal to the user that the BIOS in the local computer is trustworthy.

§10 Trusted�ird Party.�e TPM could be equippedwith a certi�cate provided by a trusted
third-party associating the TPM with a particular machine. �e veri�er can use the
trusted third party’s public key to verify the certi�cate and establish trust in the TPM’s
public key.

CHAPTER 3. BOOTSTRAPPING TRUST IN A COMMODITY COMPUTER 71

Pros: �e veri�er only needs to hold the public key for the trusted third party and per-
form basic certi�cate checks. No hardware changes are needed.

Cons: It is unclear how the veri�er could communicate the TPM’s location as speci�ed in
the certi�cate to the user in a clear and unambiguous fashion. �is solution also simply
moves the problem of establishing a TPM’s identity to the third party, who would need
to employ one of the other solutions suggested here.

3.3 Preferred Solutions

Of all the solutions presented in Section 3.2, we argue that §3 (a special-purpose hardware
interface) provides the strongest security. It removes almost every opportunity for user error,
does not require the preservation of secrets, and does not require so�ware updates. Unfor-
tunately, the cost and industry collaboration required to introduce a new interface make it
unlikely to be deployed in the near future.

Of the plausibly deployable solutions, we argue in favor of §8 (an alphanumeric hash of
the TPM’s public key), since it allows for a simpler veri�cation device.

Nonetheless, we recognize that these selections are open to debate, and believe that con-
siderable room remains for additional solutions.

3.4 Summary

Trust in a local computer is necessary for a wide variety of important tasks. Ideally, we should
be able to use secure hardware, such as the TPM, to leverage our trust in the physical security
of the machine in order to trust the so�ware executing on the platform. Our formal model
reveals that current attempts to create this chain of trust are vulnerable to the cuckoo attack.
�emodel is also useful for identifying solutions, andwehave explored the tradeo�s inherent
in such solutions.

Chapter 4

On-Demand Secure Code Execution
on Commodity Computers

While the techniques from Chapter 3 allow the user to learn what code is running on her
computer, today’s popular operating systems run a daunting amount of code in the CPU’s
most privileged mode. For example, the Linux kernel (as of version 2.6) consists of nearly 5
million lines of code [210], while Microso�’s Windows Vista includes over 50 million lines
of code [125]. �eir large size and huge complexity makes them di�cult to analyze and vul-
nerable to attack. Indeed, the plethora of vulnerabilities in operating system code makes
the compromise of systems commonplace, and an OS’s privileged status is inherited by the
malware that invades it. �e integrity and secrecy of every application is at risk in such an
environment.

Previous work has attempted to deal with this problem by running a persistent security
layer in the computer’s most privileged mode [44, 72, 104, 113, 180, 196]. �is layer has been
variously dubbed a security kernel, a virtual machine monitor (VMM), or a hypervisor. �is
layer is responsible for creating isolation domains for ordinary, untrusted code and for the
security-sensitive code. Unfortunately, this approach has a number of inherent drawbacks.
�e security layer’s need to interpose on hardware accesses leads to performance degradation
for ordinary code, and o�en requires eliminating access to devices that are too complicated
to emulate (e.g., a 3D graphics card) [25]. Furthermore, the need to run both untrusted
and trusted code simultaneously can lead to security vulnerabilities (e.g., side-channel at-
tacks [28, 157]), as well as code bloat in the security layer; the initial implementation of the
Xen VMM required 42K lines of code [24] and within a few years almost doubled to approx-
imately 83K lines [126].

72

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 73

Figure 4.1: Trusted Computing Base Comparison. On the le�, a traditional computer is shown
with an application that executes sensitive code (S). On the right, Flicker protects the execution of the
sensitive code. �e shaded portions represent components that must be trusted; other applications are
included on the le� because many applications run with superuser privileges, or with the same user
privileges as the application executing sensitive code.

To avoid these drawbacks, we propose Flicker, an architecture for providing secure code
execution on demand with a minimal Trusted Computing Base (TCB). When invoked for
secure code execution, Flicker creates an isolated environment such that none of the so�-
ware executing before Flicker begins can monitor or interfere with Flicker code execution,
and all traces of Flicker code execution can be eliminated before regular so�ware execution
resumes. For example, a Certi�cate Authority (CA) could sign certi�cates with its private
key, even while keeping the key secret from an adversary who controls the BIOS, OS, and
DMA-enabled devices (see Section 4.4.3.2). Furthermore, Flicker imposes zero overhead on
ordinary code execution: when security-sensitive code is not executing, ordinary code has
full access to hardware features and performance.

Flicker provides strong isolation guarantees while requiring an application to trust as few
as 250 additional lines of code for its secrecy and integrity. As a result, Flicker circumvents
entire layers of legacy system so�ware and eliminates the need to rely on their correctness
for security properties. As indicated in Figure 4.1, the contrast in the TCB for a sensitive
operation with and without Flicker is dramatic. Once the TCB for code execution has been
precisely de�ned and limited, formal assurance of both reliability and security properties
enters the realm of possibility.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 74

�e use of Flicker, as well as the exact code executed (and its inputs and outputs), can be
attested to an external party. For example, a piece of server code handling a user’s password
can execute in complete isolation from all other so�ware on the server, and the server can
prove to the client that the secrecy of the password was preserved (see Section 4.4.3.1). Such
�ne-grained attestations make a remote party’s veri�cation much simpler, since the veri�er
need only trust a small piece of code, instead of trusting Application X running alongside
Application Y on top of OS Z with some number of device drivers installed. Also, the party
using Flicker does not leak extraneous information about the system’s so�ware state, thus
helping to preserve user privacy.

To achieve these properties, Flicker utilizes hardware support for late launch and attes-
tation recently introduced in commodity processors from AMD and Intel. �ese processors
already ship with o�-the-shelf computers and will soon become ubiquitous. Although cur-
rent hardware still has a high overhead, due to TPM implementations optimized for cost
and a design that was meant to infrequently bootstrap a new VMM, we anticipate that fu-
ture hardware performance will improve as these functions are increasingly used. Indeed,
in Section 4.6, we suggest hardware modi�cations that can improve performance by up to
six orders of magnitude. Although other researchers have proposed compelling hardware
security architectures, e.g., XOM [123] or AEGIS [195], we focus on hardware modi�cations
that tweak or slightly extend existing hardware functionality. We believe this approach o�ers
the best chance of seeing hardware-supported security deployed in the real world.

From a programmer’s perspective, the sensitive code protected by Flicker can be written
from scratch or extracted from an existing program. To simplify this task, the programmer
can draw on a collection of small code modules we have developed for common functions.
For example, one small module protects the existing execution environment frommalicious
or malfunctioning sensitive code. A programmer can also apply tools we have developed
to extract sensitive operations and relevant code from an application. Flicker then executes
this code in complete isolation from the rest of the system. Note that applications are not
restricted to de�ning a single Flicker module; rather, they can use arbitrarily many Flicker
modules to perform various sensitive operations.

We present an implementation of Flicker using AMD’s SVM technology and use it to
improve the security of a variety of applications. We develop a rootkit detector that an ad-
ministrator can run on a remote machine in such a way that she receives a guarantee that the
detector executed correctly and returned the correct result. We also show how Flicker can
improve the integrity of results for distributed computing projects, such as SETI@Home [10]
or Folding@Home [153]. Finally, we use Flicker to protect a CA’s private signing key and to
improve an SSH server’s password handling.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 75

Contributions. In this chapter, we make the following contributions: (1) We design and
implement an architecture that provides on-demand isolated code execution while adding
a smidgen of code (orders of magnitude smaller than previous systems) to the TCB for an
application’s data secrecy and integrity. (2)We provide meaningful, �ne-grained attestations
of only the security-sensitive code. (3) We describe the development of a Flicker toolkit
to simplify application development. (4) We provide a detailed description of a complete
implementation and performance evaluation of Flicker on an AMD SVM platform with a
v1.2 TPM. (5) We recommend modi�cations of commodity hardware to securely improve
the performance and concurrency of Flicker. In our recommendations, we seek to minimize
the changes required, thereby increasing the likelihood of their adoption.

4.1 Problem De�nition

Before presenting Flicker, we de�ne the class of adversaries we consider. We also de�ne our
goals and explain why the new hardware capabilities do not meet them on their own.

4.1.1 Adversary Model

At the so�ware level, the adversary can subvert the operating system, so it can also com-
promise arbitrary applications and monitor all network tra�c. Since the adversary can run
code at ring 0, it can invoke the SKINIT instruction with arguments of its choosing. We also
allow the adversary to regain control between Flicker sessions. In other words, the Flicker
code run by SKINIT will eventually yield control of the system back to the compromised
operating system. We do not consider Denial-of-Service attacks, since a malicious OS can
always simply power down the machine or otherwise halt execution to deny service.

At the hardware level, we make the same assumptions as does the Trusted Computing
Group with regard to the TPM [200]. In essence, the attacker can launch simple hardware
attacks, such as opening the case, power cycling the computer, or attaching a hardware de-
bugger. �e attacker can also compromise expansion hardware such as a DMA-capable Eth-
ernet card with access to the PCI bus. However, the attacker cannot launch sophisticated
hardware attacks, such as monitoring the high-speed bus that links the CPU and memory.

4.1.2 Goals

Wedescribe the goals for isolated execution and explainwhy SVMalone does notmeet them.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 76

Isolation. Provide complete isolation of security-sensitive code from all other so�ware (in-
cluding the OS) and devices in the system. Protect the secrecy and integrity of the code’s data
a�er it exits the isolated execution environment.
Provable Protection. A�er executing security-sensitive code, convince a remote party that
the intended code was executed with the proper protections in place. Provide assurance that
a remote party’s sensitive data will be handled only by the intended code.
Meaningful Attestation. Allow the creation of attestations that include measurements of
exactly the code executed, its inputs and outputs, and nothing else. �is property gives the
veri�er a tractable task, instead of learning only that untold millions of lines of code were
executed, and leaks as little information as possible about the attestor’s so�ware state.
Minimal Mandatory TCB. Minimize the amount of so�ware that security-sensitive code
must trust. Individual applications may need to include additional functionality in their
TCBs, e.g., to process user input, but the amount of code that must be included in every
application’s TCB must be minimized.

On their own, AMD’s SVM and Intel’s TXT technologies only meet two of the above
goals. While both provide Isolation and Provable Protection, they were both designed with
the intention that the SKINIT instruction would be used to launch a secure kernel or secure
VMM [79]. Either mechanism will signi�cantly increase the size of an application’s TCB and
dilute themeaning of future attestations. For example, a systemusing theXen [25] hypervisor
with SKINIT would add almost 50, 000 lines of code1 to an application’s TCB, not including
the Domain 0 OS, which potentially adds millions of additional lines of code to the TCB.

In contrast, Flicker takes a bottom-up approach to the challenge of managing TCB size.
Flicker starts with fewer than 250 lines of code in the so�ware TCB. �e programmer can
then add only the code necessary to support her particular application into the TCB.

4.2 Flicker Architecture

Flicker provides complete, hardware-supported isolation of security-sensitive code from all
other so�ware and devices on a platform (even including hardware debuggers and DMA-
enabled devices). Hence, the programmer can include exactly the so�ware needed for a
particular sensitive operation and exclude all other so�ware on the system. For example, the
programmer can include the code that decrypts and checks a user’s password but exclude the
portion of the application that processes network packets, the OS, and all other so�ware on
the system.

1http://xen.xensource.com/

http://xen.xensource.com/

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 77

Figure 4.2: PALExecution. Timeline showing the steps necessary to execute aPAL.�e SLB includes
thePAL, as well as the code necessary to initialize and terminate the Flicker session. �e gap in the time
axis indicates that the �icker-module is only loaded once.

4.2.1 Flicker Overview

Flicker achieves its properties using the late launch capabilities described in Section 2.4.2.
Instead of launching aVMM, Flicker pauses the current execution environment (e.g., the un-
trusted OS), executes a small piece of code using the SKINIT instruction, and then resumes
operation of the previous execution environment. �e security-sensitive code selected for
Flicker protection is the Piece of Application Logic (PAL). �e protected environment of
a Flicker session starts with the execution of SKINIT and ends with the resumption of the
previous execution environment. Figure 4.2 illustrates this sequence.

Application developers must provide the PAL and de�ne its interface with the remain-
der of their application (we discuss this process, as well as our work on automating it, in Sec-
tion 4.3). To create an SLB (the Secure Loader Block supplied as an argument to SKINIT),
the application developer links her PAL against an uninitialized code module we have de-
veloped called the SLB Core. �e SLB Core performs the steps necessary to set up and tear
down the Flicker session. Figure 4.4 shows the SLB’s memory layout.

To execute the resulting SLB, the application passes it to a Linux kernel module we have
developed, �icker-module. It initializes the SLB Core and handles untrusted setup and tear-
down operations. �e �icker-module is not included in the TCB of the application, since its
actions are veri�ed.

4.2.2 Isolated Execution

We provide a simpli�ed discussion of the operation of a Flicker session by following the
timeline in Figure 4.2.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 78

Accept Uninitialized SLB and Inputs. SKINIT is a privileged instruction, so an applica-
tion uses the �icker-module’s interface to invoke a Flicker session. In the sysfs,2 the �icker-
module makes four entries available: control, inputs, outputs, and slb. Applications
interact with the �icker-module via these �lesystem entries. An application �rst writes to the
slb entry an uninitialized SLB containing its PAL code. �e �icker-module allocates kernel
memory in which to store the SLB; we refer to the physical address at which it is allocated
as slb_base. �e application writes any inputs for its PAL to the inputs sysfs entry; the
inputs aremade available at a well-known address once execution of thePAL begins (the pa-
rameters are at the top of Figure 4.4). �e application initiates the Flicker session by writing
to the control entry in the sysfs.
Initialize the SLB.When the application developer links herPAL against the SLB Core, the
SLB Core contains several entries that must be initialized before the resulting SLB can be
executed. �e �icker-module updates these values by patching the SLB.

When the SKINIT instruction executes, it puts the CPU into �at 32-bit protected mode
with paging disabled, and begins executing at the entry point of the SLB. By default, thePAL
is not built as position independent code, so it assumes that it starts at address 0, whereas the
actual SLB may start anywhere within the kernel’s address space. �e SLB Core addresses
this issue by enabling the processor’s segmentation support and creating segments that start
at the base of the PAL code. During the build process, the starting address of the PAL code
is unknown, so the SLB Core includes a skeleton Global Descriptor Table (GDT) and Task
State Segment (TSS). Once the �icker-module allocates memory for the SLB, it can compute
the starting address of the PAL code, and hence it can �ll in the appropriate entries in the
SLB Core.
Suspend OS. SKINIT does not save existing state when it executes. However, we want to
resume the untrusted OS following the Flicker session, so appropriate state must be saved.
�is is complicated by the fact that the majority of systems available with AMD SVM sup-
port are multi-core. On amulti-CPU system, the SKINIT instruction has additional require-
ments which must be met for secure initialization. In particular, SKINIT can only be run on
the Boot Strap Processor (BSP), and all Application Processors (APs) must successfully re-
ceive an INIT Inter-Processor Interrupt (IPI) so that they respond correctly to a handshaking
synchronization step performed during the execution of SKINIT. However, the BSP cannot
simply send an INIT IPI to the APs if they are executing processes. Our solution is to use
the CPU Hotplug support available in recent Linux kernels (starting with version 2.6.19) to
deschedule all APs. Once the APs are idle, the �icker-module sends an INIT IPI by writing to

2A virtual �le system that exposes kernel state.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 79

Register Description
EBP Stack base pointer
ESP Stack pointer
EFER Extended feature register
EFLAGS Flags register
CR0 Processor control register
CR3 Page table base address
CR4 Model-speci�c extensions
GDTR Global descriptor table register
IDTR Interrupt descriptor table register
TR Task register

Figure 4.3: Saved Execution State. Registers with state which must be saved during Flicker sessions.

the system’s Advanced Programmable Interrupt Controller. At this point, the BSP is prepared
to execute SKINIT, and the OS state needs to be saved. In particular, we save information
about the Linux kernel’s page tables so the SLB Core can restore paging and resume the OS
a�er the PAL exits. Figure 4.3 provides additional details about the system registers with
values that must be saved.

While the v1.2 TPM is capable of being shared by multiple layers of system so�ware, the
current Linux driver (the tpm_tis module) does not expect to share the TPM. To allow
SKINIT to operate successfully, and to permit the OS to maintain its ability to interact with
the TPM a�er a Flicker session, we modi�ed the tpm_tis driver by exposing an interface to
its functions for gaining and releasing control of the TPM. (the alternative was to unload the
entire driver, and thus any so�ware which depends upon it, before the Flicker session and
then reload it a�erwards).
SKINIT and the SLB Core. �e SKINIT instruction enables hardware protections and then
begins to execute the SLB Core, which prepares the environment for PAL execution. Ex-
ecuting SKINIT enables the hardware protections described in Section 2.4.2. In brief, the
processor adds entries to the Device Exclusion Vector (DEV) to disable DMA to the mem-
ory region containing the SLB, disables interrupts to prevent the previously executing code
from regaining control, and disables debugging support, even for hardware debuggers. By
default, these protections are o�ered to 64 KB of memory, but they can be extended to larger
memory regions. If this is done, preparatory code in the �rst 64 KBmust add this additional
memory to the DEV, and extend measurements of the contents of this additional memory
into the TPM’s PCR 17 a�er the hardware protections are enabled, but before transferring
control to any code in these upper memory regions.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 80

Figure 4.4: Memory Layout of the SLB. �e shaded region indicates memory containing executable
PAL code. �e dotted lines indicates memory used to transfer data into and out of the SLB. A�er the
PAL has executed and erased its secrets, memory that previously contained executable code is used for
the skeleton page tables needed to reload the OS.

To enable straightforward execution ofPAL code, it is useful to (re)de�ne the code, data,
and stack segments such that they begin at the physical base address allocated by the �icker-
module. When the �icker-module prepares the PAL for use as an SLB, it writes this base
address into GDT and TSS entries in the SLB Core. To minimize GDT size, the entries de-
scribing data segments are also used for stack segments. �e GDT in our SLB Core contains
six entries: a code and data descriptor with base address 0, a code and data descriptor with
base address slb_base, and a call gate and task state selector. We defer discussion of the last
two entries until Section 4.3, where we consider CPU privilege level changes.

�e Initialization operations performed by the SLB Core once SKINIT gives it control
are: (i) load the GDT, (ii) load the CS, DS, and SS registers and (iii) call the PAL, providing
the address of PAL inputs as a parameter.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 81

Execute PAL. Once the environment has been prepared, the PAL executes its speci�ed ap-
plication logic. To keep the TCB small, the default SLB Core includes no support for heaps,
memory management, or virtual memory. �us, it is up to thePAL developer to include the
functionality necessary for her particular application. Section 4.3 describes some of our ex-
isting modules that can optionally be included to provide additional functionality. We have
also developed a module that can restrict the actions of aPAL, since by default (i.e., without
the module), a PAL can access the machine’s entire physical memory and execute arbitrary
instructions (see Section 4.3.1.2 for more details).

During PAL execution, output parameters are written to a well-known location beyond
the end of the SLB. When the PAL exits, the SLB Core regains control.
Cleanup. �e PAL’s exit triggers the cleanup and exit code at the end of the SLB Core. �e
cleanup code erases any sensitive data le� in memory by the PAL.
Extend PCR. To signal the completion of the SLB, the SLB Core extends a well known value
into PCR 17. Aswe discuss in Section 4.2.4.1, this allows a remote party to distinguish between
values generated by thePAL (trusted), and those produced a�er theOS resumes (untrusted).
Resume OS. Linux operates with paging enabled and segment descriptors set to cover all
of memory, but the SLB executes in protected mode with segment descriptors starting at
slb_base. We transition between these two states in two phases. First, we reload the seg-
ment descriptors with GDT entries that cover all of memory, and second, we enable paged
memory mode.

We use a call gate in the SLB Core’s GDT as a well-known point for resuming the un-
trustedOS. It is used to reload the code segment descriptor registerwith a descriptor covering
all of memory.

A�er reloading the data and stack segments, we re-enable paged memory mode. �is
requires the creation of a skeleton of page tables to map the SLB Core’s memory pages to
the virtual addresses where the Linux kernel believes they reside. �e procedure resembles
that executed by the Linux kernel when it �rst initializes. �e page tables must contain a
unity mapping for the memory location of the next instruction, allowing paging to be en-
abled. Finally, the kernel’s page tables are restored by rewriting CR3 (the page table base
address register) with the value saved during the Suspend OS phase. Next, the kernel’s GDT
is reloaded, and control is transferred back to the �icker-module.

�e �icker-module restores the execution state saved during the Suspend OS phase and
fully restores control to the Linux kernel by re-enabling interrupts. On a multi-CPU system,
it also sends an IPI signal to reenable the Application Processors. If the PAL outputs any
values, the �icker-modulemakes them available through the sysfs outputs entry.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 82

4.2.3 Multiple Flicker Sessions

PALs can leverage TPM-based sealed storage to maintain state across Flicker sessions, en-
abling more complex applications. For example, a Flicker-based application may wish to
interact with a remote entity over the network. Rather than include an entire network stack
and device driver in the PAL (and hence the TCB), we can invoke Flicker more than once
(upon the arrival of each message), using secure storage to protect sensitive state between
invocations.

Flicker-based secure storage can also be used by applications that wish to share data be-
tween PALs. �e �rst PAL can store secrets so that only the second PAL can read them,
thus protecting the secrets even when control reverts to the untrusted OS. Finally, Flicker-
based secure storage can improve the performance of long-running PAL jobs. Since Flicker
execution pauses the rest of the system, an application may prefer to break up a long work
segment into multiple Flicker sessions to allow the rest of the system time to operate, es-
sentially multitasking with the OS. We �rst present the use of TPM Sealed Storage and then
describe extensions necessary to protect multiple versions of the same object from a replay
attack against sealed storage.

4.2.3.1 TPM Sealed Storage

To save state across Flicker sessions, a PAL uses the TPM to seal the data under the mea-
surement of the PAL that should have access to its secrets. More precisely, suppose PAL P ,
operating in a Flicker session, wishes to securely store data so that only PAL P ′, also oper-
ating under Flicker protection, can read the data.3 P ′ could be a later invocation of P , or
it could be a completely di�erent PAL. Either way, while it is executing within the Flicker
session, PAL P uses the TPM’s Seal command to secure the sensitive data. As an argument,
P speci�es that PCR 17 must have the value V ← H(0x0020||H(P ′)) before the data can
be unsealed. Only an SKINIT instruction can reset the value of PCR 17, so PCR 17 will have
value V only a�er PAL P ′ has been invoked using SKINIT. �us, the sealed data can be
unsealed if and only if P ′ executes under Flicker’s protection. �is allows PAL code to store
persistent data such that it is only available to a particular PAL in a future Flicker session.

3For brevity, we will assume thatPALs operate with Flicker protection. Similarly, a measurement of thePAL
consists of a hash of the SLB containing the PAL.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 83

Seal(d): Unseal(c):
IncrementCounter() d||j′ ← TPM_Unseal(c)
j ← ReadCounter() j ← ReadCounter()
c← TPM_Seal(d||j,PCR_List) if (j′ 6= j) Output(⊥)
Output(c) else Output(d)

Figure 4.5: Protocols for Replay Protection. Replay protection for sealed storage based on a secure
counter. Ciphertext c is created when data d is sealed.

4.2.3.2 Replay Prevention for Sealed Storage

TPM-based sealed storage prevents other code from directly learning or modifying a PAL’s
secrets. However, TPM Seal outputs ciphertext c (for data d) that is handled by untrusted
code: c← TPM _Seal(d,PCR_list). �e untrusted code is capable of performing a replay
attack where an older ciphertext c′ is provided to a PAL. For example, consider a password
database that is maintained in sealed storage and a user who changes her password because
it is publicized. To change a user’s password, version i of the database is unsealed, updated
with the new password, and then sealed again as version i + 1. An attacker who can cause
the system to operate on version i of the password database can gain unauthorized access
using the publicized password. To summarize, TPM Unseal ensures that the plaintext of c′

is accessible only to the intended PAL, but it does not guarantee that c′ is the most recent
sealed version of data d.

Replay attacks against sealed storage can be prevented if a secure counter is available,
as illustrated in Figure 4.5. To seal an updated data object, the secure counter should be
incremented, and the data object should be sealed along with the new counter value. When
a data object is unsealed, the counter value included in the data object at seal time should
be the same as the current value of the secure counter. If the values do not match, either
the counter was tampered with, or the unsealed data object is a stale version and should be
discarded.

Options for realizing a secure counter with Flicker include a trusted third party, and
the Monotonic Counter and Non-volatile Storage facilities of v1.2 TPMs [200]. We provide
a sketch of how to implement replay protection for sealed storage with Flicker using the
TPM’s Non-volatile Storage facility, though a complete solution is outside the scope of this
paper. In particular, we do not treat recovery a�er a power failure or system crash during
the counter-increment and sealed storage ciphertext-output. In these scenarios, the secure
counter can become out-of-sync with the latest sealed-storage ciphertext maintained by the
OS. An appropriate mechanism to detect such events is also necessary.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 84

�e TPM’s Non-volatile Storage facility exposes interfaces to De�ne Space, and Read and
Write values to de�ned spaces. Space de�nition is authorized by demonstrating possession
of the 20-byte TPM Owner Authorization Data, which can be provided to a Flicker session
using the protocol we present in Section 4.2.4. A de�ned space can be con�gured to restrict
access based on the contents of speci�ed PCRs. Setting the PCR requirements to match
those speci�ed during theTPMSeal command creates an environmentwhere a counter value
stored in non-volatile storage is only available to the desired PAL. Values placed in non-
volatile storage aremaintained in the TPM, so there is no dependence on the untrustedOS to
store a ciphertext. �is, combined with the PCR-based access control, is su�cient to protect
a counter value against attacks from the OS.

4.2.4 InteractionWith a Remote Party

Since neither SVM nor TXT include any visual indication that a secure session has been ini-
tiated via a late launch, a remote party must be used to bootstrap trust in a platform running
Flicker. Below, we describe how a platform attests to the PAL executed, the use of Flicker,
and any inputs or outputs provided. We also demonstrate how a remote party can establish
a secure channel to a PAL running within the protection of a Flicker session.

4.2.4.1 Attestation and Result Integrity

A platform using Flicker can convince remote parties that a Flicker session executed with
a particular PAL. Our approach builds on the TPM attestation process described in Sec-
tion 2.3.2.2. Below, we refer to the party executing Flicker as the challenged party, and the
remote party as the veri�er.

To create an attestation, the challenged party accepts a randomnonce from the veri�er to
provide freshness and replay protection. �e challenged party then uses Flicker to execute
a particular PAL as described in Section 4.2.2. As part of Flicker’s execution, the SKINIT
instruction resets the value of PCR 17 to 0 and then extends it with the measurement of the
PAL. �us, PCR 17 will take on the value V ← H(0x0020||H(P)), where P represents the
PAL code. �e properties of the TPM, chipset, and CPU guarantee that no other operation
can cause PCR 17 to take on this value. �us, an attestation of the value of PCR 17 will
convince a remote party that the PAL was executed using Flicker’s protection.

A�er Flicker terminates, theOS causes theTPM to load itsAIK, invokes theTPM’sQuote
command with the nonce provided by the veri�er, and speci�es the inclusion of PCR 17 in
the quote.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 85

To verify the use of Flicker, the veri�er must know both the measurement of the PAL,
and the public key corresponding to the platform’s AIK.�ese components allow the veri�er
to authenticate the attestation from the platform. �e veri�er uses the platform’s public AIK
to verify the signature from the TPM. It then computes the expected measurement of the
PAL, as well as the hash of the input and output parameters. If these values match those
extended into PCR 17 and signed by the TPM, the veri�er accepts the attestation as valid.

To provide result integrity, a�er PAL execution terminates, the SLB Core extends PCR
17 with measurements of the PAL’s input and output parameters. By verifying the quote
(which includes the value of PCR 17), the veri�er also veri�es the integrity of the inputs
and results returned by the challenged party, and hence knows that it has received the exact
results produced by the PAL. �e nonce provided by the remote party is also extended into
PCR 17 to guarantee the freshness of the outputs.

As another important security procedure, a�er extending the PAL’s results into PCR 17,
the SLB Core extends PCR 17 with a �xed public constant. �is provides several powerful
security properties: (i) it prevents any other so�ware from extending values into PCR 17 and
attributing them to thePAL; and (ii) it revokes access to any secrets kept in the TPM’s sealed
storage which may have been available during PAL execution.

4.2.4.2 Establishing a Secure Channel

�e techniques described above ensure the integrity of the PAL’s input and output, but to
communicate securely (i.e., with both secrecy and integrity protections) with a remote party,
the PAL and the remote party must establish a secure channel. Fortunately, we need not
include communication so�ware (such as network drivers) in the PAL’s TCB, since we can
use multiple invocations of a PAL to process data from the remote party while letting the
untrusted OS manage the encrypted network packets.

Figure 4.6 illustrates a protocol for securely conveying a public key from the PAL to a
remote party. �is protocol is similar to one developed at IBM for linking remote attestation
to secure tunnel endpoints [73]. �e PAL generates an asymmetric keypair {KPAL,K−1

PAL}
within its secure execution environment. It seals the private key K−1

PAL under the value of
PCR 17 so that only the identical PAL invoked in the secure execution environment can ac-
cess it. Note that thePAL developer may extend other application-dependent data into PCR
17 before sealing the private key.�is ensures the key will be released only if that application-
dependent data is present.

�e nonce value sent by the remote party for the TPM quote operation is also provided
as an input to the PAL for extension into PCR 18. �is provides the remote party with a

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 86

Remote Party (RP): has AIKserver,
expected hash(PAL || shim) = Ĥ

RP: generate nonce
RP→ App: nonce
App→ PAL: nonce
PAL: extend(PCR18,nonce)

generate {KPAL,K−1
PAL}

extend(PCR18, h(KPAL))
sdata ← seal(PCR17,K

−1
PAL)

extend(PCR17,⊥)
extend(PCR18,⊥)

PAL→ App: KPAL, sdata

App: q ← quote(nonce, {17, 18})
App→ RP: q, KPAL

RP: if (¬Verify(AIKserver, q,nonce)
∨ q.PCR17 6= h(h(0||Ĥ)||⊥)
∨ q.PCR18 6=
h(h(h(0||nonce)||h(KPAL))||⊥)

) then abort
RP: has authentic KPAL

knows server ran Flicker
App: saves sdata

Figure 4.6: Establishing a Secure Channel. A protocol to generate a cryptographic keypair and
convey the public key KPAL to a remote party (RP). �e messages sent between the remote party and
the PAL can safely travel through the untrusted portion of the application (App) and the OS kernel. ⊥
denotes a well-known value which signals the end of extensions performed within the Flicker session.

di�erent freshness guarantee: that the PAL was invoked in response to the remote party’s
request. Otherwise, amaliciousOSmay be able to foolmultiple remote parties into accepting
the same public key.

As with all output parameters, the public key KPAL is extended into PCR 18 before it is
output to the application running on the untrusted host. �e application generates a TPM
quote over PCRs 17 and 18 based on the nonce from the remote party. �e quote allows the
remote party to determine that the public key was indeed generated by aPAL running in the
secure execution environment. �e remote party can use the public key to create a secure
channel [86] to future invocations of the PAL.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 87

#include "slbcore.h"

const char* msg = "Hello, world";

void pal_enter(void *inputs) {

for(int i=0;i<13;i++)

PAL_OUT[i] = msg[i]; }

Figure 4.7: An Example PAL. A simple PAL that ignores its inputs, and outputs “Hello, world.”
PAL_OUT is de�ned in slbcore.h.

Our implementation of Flicker makes the above protocol available as a module that de-
velopers can include with their PAL. We discuss this further in Section 4.3.

4.3 Developer’s Perspective

Below, we describe the process of creating a PAL from the perspective of an application
developer. �en, we discuss techniques for automating the extraction of sensitive portions
of an existing application for inclusion in a PAL.

4.3.1 Creating a PAL

We have developed Flicker primarily in C, with some of the core functionality written in x86
assembly. However, any language supported by GNU binutils and that can be linked against
the core Flicker components is viable for inclusion in a PAL.

4.3.1.1 A “Hello, World” Example PAL

As an example, Figure 4.7 illustrates a simple PAL that ignores its inputs, and outputs the
classic message, “Hello, world.” Essentially, the PAL copies the contents of the global msg
variable to the well-known PAL output parameter location (de�ned in the slbcore header
�le). Our convention is to use the second 4-KB page above the 64-KB SLB.�e PAL code,
when built using the process described below, can be executed with Flicker protections. Its
message will be available from the outputs entry in the �icker-module sysfs location. �us
the application can simply use open and read to obtain the PAL’s results. Note that the
outputs entry is a �xed-size 4 KB binary �le, and it is up to the application developer to
interpret it appropriately. In this case, it would be read as a 4096 byte �le containing the
characters “Hello, world” followed by 4084 NULLs.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 88

Module Properties LOC Size (KB)
SLB Core Prepare environment, execute PAL,

clean environment, resume OS
94 0.312

OS Protection Memory protection, ring 3 PAL execu-
tion

5 0.046

TPM Driver Communication with the TPM 216 0.825
TPM Utilities Performs TPM operations, e.g., Seal,

Unseal, GetRand, PCR Extend
889 9.427

Crypto General purpose cryptographic opera-
tions, RSA, SHA-1, SHA-512 etc.

2262 31.380

Memory
Management

Implementation of malloc/free/realloc 657 12.511

Secure Channel Generates a keypair, seals private key,
returns public key

292 2.021

Figure 4.8: Existing Flicker Modules. Modules that can be included in the PAL. Only the SLB Core
is mandatory. Each adds some number of lines of code (LOC) to the PAL’s TCB and contributes to the
overall size of the SLB binary.

4.3.1.2 Building a PAL

To convert the code from Figure 4.7 into aPAL, we link it against the object �le representing
Flicker’s core functionality (described as SLBCore below) using the Flicker linker script.�e
linker script speci�es that the skeleton data structures and code from the SLB Core should
come �rst in the resulting binary, and that the resulting output format should be binary (as
opposed to an ELF executable). �e application then provides this binary blob to the �icker-
module for execution under Flicker’s protection.

Application developers depend on a variety of libraries. �ere is no reason this should
be any di�erent just because the target executable is a PAL, except that it is desirable to
modularize the libraries further than is traditionally done to help minimize the amount of
code included in the PAL’s TCB. We have developed several small libraries in the course
of applying Flicker to the applications described in Section 4.4. �e following paragraphs
provide a brief description of the libraries listed in Figure 4.8.
SLB Core. �e SLB Core module provides the minimal functionality needed to support a
PAL. Section 4.2.2 describes this functionality in detail. In brief, the SLB Core contains
space for the SLB’s entry point, length, GDT, TSS, and code to manage segment descrip-
tors and page tables. �e SLB Core transfers control to the PAL code, which performs
application-speci�c work. When the PAL terminates, it transfers control back to the SLB
Core for cleanup and resumption of the OS.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 89

OSProtection. �us far, Flicker has focused on protecting a security-sensitivePAL from all
of the other so�ware on the system. However, we have also developed a module to protect
a legitimate OS from a malicious or malfunctioning PAL. It is important to note that since
SKINIT is a privileged instruction, only code executing at CPU protection ring 0 (recall that
x86 has 4 privilege rings, with 0 being most privileged) can invoke a Flicker session. �us,
the OS ultimately decides which PALs to run, and presumably it will only run PALs that it
trusts or has veri�ed in somemanner, e.g., using proof carrying code [148]. Nonetheless, the
OS may desire additional guarantees. �e OS Protection module restricts a PAL’s memory
accesses to the exact memory region allocated by the OS, thus preventing it from intention-
ally or inadvertently reading or overwriting the code and/or data of other so�ware on the
system. We are also investigating techniques to limit a PAL’s execution time using timer in-
terrupts in the SLB Core. �ese timing restrictions must be chosen carefully, however, since
aPALmay need someminimal amount of time to allow TPM operations to complete before
the PAL can accomplish any meaningful work.

To restrict the memory accessed by a PAL, we use segmentation and run the PAL in
CPU protection ring 3. Essentially, the SLB Core creates segment descriptors for the PAL
that have a base address set at the beginning of the PAL and a limit placed at the end of the
memory region allocated by the OS. �e SLB Core then runs the PAL in ring 3 to prevent
it from modifying or otherwise circumventing these protections. When the PAL exits, it
transitions back to the SLB Core running in ring 0. �e SLB Core can then cleanse the
memory region used and reload the OS.

In more detail, we transition from the SLB Core running in ring 0 to the PAL running
in ring 3 using the IRET instruction which loads the slb_base-o�set segment descriptors
before the PAL executes. Executing the PAL in ring 3 only requires two additional PUSH
instructions in the SLB Core. Returning execution to ring 0 once the PAL terminates in-
volves the use of the call gate and task state segment (TSS) in the GDT. �is mechanism is
invoked with a single (far) call instruction in the SLB Core.
TPM Driver and Utilities. �e TPM is a memory-mapped I/O device. As such, it needs a
small amount of driver functionality to keep it in an appropriate state and to ensure that its
bu�ers never over- or under�ow. �is driver code is necessary before any TPM operations
can be performed, and it is also necessary to release control of the TPM when the Flicker
session is ready to exit, so that the Linux TPM driver can regain access to the TPM.

�e TPM Utilities allow other PAL code to perform useful TPM operations. Currently
supported operations includeGetCapability, PCRRead, PCRExtend, GetRandom, Seal, Un-
seal, and the OIAP and OSAP sessions necessary to authorize Seal and Unseal [200].

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 90

Crypto. We have developed a small library of cryptographic functions based partially on
code from version 0.58 of the Putty SSH client4 and partially on code from the PolarSSL
library.5 Supported operations include amulti-precision integer library, RSA key generation,
RSA encryption and decryption, SHA-1, SHA-512, MD5, AES, and RC4.
MemoryManagement. We have implemented a small version of malloc/free/realloc for use
by applications. �e memory region used as the heap is simply a large global bu�er.
Secure Channel. We have implemented the protocol described in Section 4.2.4 for creating
a secure channel into a PAL from a remote party. It relies on all of the other modules we
have developed (except the OS Protection module which the developer may add).

4.3.2 Automation

Ideally, we envision each PAL containing only the security-sensitive portion of each ap-
plication, rather than the application in its entirety. Minimizing the PAL makes it easier
to ensure that the required functionality is performed correctly and securely, facilitating a
remote party’s veri�cation task. Previous research indicates that many applications can be
readily split into a privileged and an unprivileged component. Such privilege separation can
be performed manually [100, 112, 160, 196], or automatically [20, 35, 219].

While each PAL is necessarily application-speci�c, we have developed a tool using the
source-code analysis tool CIL [149] to help extract functionality from existing programs.
Since CIL can replace the C compiler (e.g., the programmer can simply run “CC=cil make”
using an existingMake�le), our tool can operate even on large programs with complex build
dependencies.

�e programmer supplies our tool with the name of a target function within a larger
program (e.g., rsa_keygen()). �e tool then parses the program’s call graph and extracts
any functions that the target depends on, along with relevant type de�nitions, etc., to create a
standalone C program. �e tool also indicates which additional functions from standard li-
brariesmust be eliminated or replaced. For example, by default, aPAL cannot call printf or
malloc. Since printf usually does not make sense for a PAL, the programmer can simply
eliminate the call. For malloc, the programmer can convert the code to use statically allo-
cated variables or link against our memory management library (described above). While
the process is clearly not completely automated, the tool does automate a large portion of
PAL creation and eases the programmer’s burden, and we continue to work on increasing

4http://www.putty.nl/
5http://www.polarssl.org/

http://www.putty.nl/
http://www.polarssl.org/

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 91

the degree of automation provided. We found the tool useful in our application of Flicker to
the applications described next.

4.4 Flicker Applications

In this section, we demonstrate the versatility of the Flicker platform by showing how Flicker
can be applied to several broad classes of applications. We consider applications that do not
require local state, applications that require local state whose integritymust be protected, and
�nally, applications with state that must be both secret and integrity-protected. Within each
class, we describe our implementation of one or more applications and show how Flicker
signi�cantly enhances security in each case. In Section 4.5, we evaluate the performance of
the applications, as well as the general Flicker platform.

We have implemented Flicker for AMD SVM on a 32-bit Linux kernel v2.6.20, includ-
ing the various modules described in Section 4.3. Each application described below utilizes
precisely themodules needed (and some application-speci�c logic) and nothing else. On the
untrusted OS, the �icker-module loadable kernel module is responsible for invoking the PAL
and facilitating delivery of inputs and reception of outputs from the Flicker session. Further,
it manages the suspension and resumption of the untrusted OS before and a�er the Flicker
session. We also developed a TPM Quote Daemon (the tqd) on top of the TrouSerS6 TCG
So�ware Stack that runs on the untrusted OS and provides an attestation service.

4.4.1 Stateless Applications

Many applications do not require long-term state to operate e�ectively. For these applica-
tions, the primary overhead of using Flicker is the time required for the SKINIT instruction,
since the attestation can be generated by the untrusted OS (see Section 4.2.4.1). As a concrete
example, we use Flicker to provide veri�able isolated execution of a kernel rootkit detector
on a remote machine.

For this application, we assume a network administrator wishes to run a rootkit detector
on remote hosts that are potentially compromised. For instance, a corporation may wish to
verify that employee laptops have not been compromised before allowing them to connect
to the corporate Virtual Private Network (VPN).

We implement our rootkit detector for version 2.6.20 of the Linux kernel as aPAL. A�er
the SLB Core hands control to the rootkit detector PAL, it computes a SHA-1 hash of the

6http://trousers.sourceforge.net/

http://trousers.sourceforge.net/

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 92

kernel text segment, system call table, and loaded kernel modules.�e detector then extends
the resulting hash value into PCR 17 and copies it to the standard output memory location.
Once the PAL terminates, the untrusted OS resumes operation and the tqd provides an
attestation to the network administrator. Since the attestation contains the TPM’s signature
on the current PCR values, the administrator knows that the correct rootkit detector ranwith
Flicker protections in place and can verify that the untrusted OS returns the correct value.
Finally, the administrator can compare the hash value returned against known-good values
for that particular kernel.

4.4.2 Integrity-Protected State

Some applications may require multiple Flicker sessions, and hence a means of preserving
state across sessions. For some, simple integrity protection of this state will su�ce (we con-
sider those that also require secrecy in Section 4.4.3). To illustrate this class of applications,
we apply Flicker to a distributed computing application.

Applications such as SETI@Home [10] divide a task into smaller work units and dis-
tribute these units to hosts with spare computation capacity. When the hosts are untrusted,
the application must take measures to detect erroneous results. A common approach dis-
tributes the same work unit to multiple hosts and compares the results. Unfortunately, this
wastes signi�cant amounts of computation, and does not provide any tangible correctness
guarantees [145]. With Flicker, the clients can process their work units inside a Flicker ses-
sion and attest the results to the server. �e server then has a high degree of con�dence in
the results and need not waste computation on redundant work units.

In our implementation, we apply Flicker to the BOINC framework [9], which is a generic
framework for distributed computing applications. It is currently used by several dozen
projects.7 By targeting BOINC, rather than a speci�c application, we can allow all of these ap-
plications to take advantage of Flicker’s security properties (though some amount of application-
speci�cmodi�cations are still required). As an illustration, we developed a simple distributed
application using the BOINC framework that attempts to factor a large number by naively
asking clients to test a range of numbers for potential divisors.

In this application, our modi�ed BOINC client contacts the server to obtain a work unit.
It then invokes a Flicker session to perform application speci�c work. Since the PAL may
have to compute for an extended period of time, it periodically returns control to the un-
trusted OS. �is allows the OS to process interrupts (including a user’s return to the com-
puter) and multitask with other programs.

7http://boinc.berkeley.edu/projects.php

http://boinc.berkeley.edu/projects.php

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 93

Since many distributed computing applications care primarily about the integrity of the
result, rather than the secrecy of the intermediate state, our implementation focuses onmain-
taining the integrity of the PAL’s state while the untrusted OS operates. To do so, the very
�rst invocation of the BOINCPAL generates a 160-bit symmetric key based on randomness
obtained from the TPM and uses the TPM to seal the key so that no other code can access
it. It then performs application speci�c work.

Before yielding control back to the untrusted OS, the PAL computes a cryptographic
MAC (HMAC) over its current state (for the factoring application, the state is simply the
current prospective divisor and any successful divisors found thus far). Each subsequent
invocation of the PAL unseals the symmetric key and checks the MAC on its state before
beginning application-speci�c work. When the PAL �nally �nishes its work unit, it extends
the results into PCR 17 and exits. Our modi�ed BOINC client then returns the results to the
server, along with an attestation. �e attestation demonstrates that the correct BOINC PAL
executed with Flicker protections in place and that the returned result was truly generated
by the BOINC PAL. �us, the application writer can trust the result.

4.4.3 Secret and Integrity-Protected State

Finally, we consider applications that need to maintain both the secrecy and the integrity of
their state between Flicker invocations. To evaluate this class of applications, we developed
two additional applications. �e �rst uses Flicker to protect SSH passwords, and the second
uses Flicker to protect a Certi�cate Authority’s private signing key.

4.4.3.1 SSH Password Authentication

We have applied Flicker to password-based authentication with SSH. Since people tend to
use the same password for multiple independent computer systems, a compromise on one
system may yield access to other systems. Our primary goal is to prevent any malicious
code on the server from learning the user’s password, even if the server’s OS is compro-
mised. Our secondary goal is to convince the client system (and hence, the user) that the
secrecy of the password has been preserved. Flicker is well suited to these goals, as it makes
it possible to restrict access to the user’s cleartext password on the server to a tiny TCB (the
PAL), and to attest to the client that this indeed was enforced. While other techniques (e.g.,
PwdHash [163]) exist to ensure varied user passwords across servers, SSH provides a useful
illustration of Flicker’s properties when applied to a real-world system.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 94

Client: has KPAL

Server: has sdata, salt , hashed_passwd
generates nonce

Server→ Client: nonce
Client: user inputs password

c←encryptKPAL
({password ,nonce})

Client→ Server: c

Server→ PAL: c, salt , sdata,nonce

PAL: K−1
PAL ← unseal(sdata)
{password ,nonce ′} ← decryptK−1

PAL
(c)

PAL: if (nonce ′ 6= nonce)
then abort

hash ←md5crypt(salt , password)
extend(PCR17,⊥)

PAL→ Server: hash

Server: if (hash = hashed_passwd)
then allow_login
else abort

Figure 4.9: SSH Password Checking Protocol. �e protocol surrounding the second Flicker ses-
sion for our SSH implementation. sdata contains the sealed private key, K−1

PAL. Variables salt and
hashed_passwd are components of the entry in the system’s /etc/passwd �le for the user attempting
to log in. �e nonce serves to prevent replay attacks against a well-behaved server.

Our implementation is built upon the basic componentswe have described in the preced-
ing sections, and consists of �ve main so�ware components. A modi�ed SSH client runs on
the client system. �e client system does not need hardware support for Flicker, but a com-
promise of the clientmay leak the user’s password. We are investigating techniques for utiliz-
ing Flicker on the client side. We add a new client authentication method, �icker-password,
to OpenSSH version 4.3p2. �e �icker-password module establishes a secure channel to the
PAL on the server using the protocol described in Section 4.2.4.2 and implements the client
portion of the protocol shown in Figure 4.9.

�e other four components, a modi�ed SSH server daemon, the �icker-module kernel
module, the tqd, and the SSH PAL, all run on the server system. Below, we describe the two
Flicker sessions used to protect the user’s password on the server.
First Flicker Session (Setup). �e �rst session uses our Secure Channel module to provide
the client’s computer with a secure channel for sending the user’s password to the second
Flicker session, which will perform the password check.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 95

In more detail, the Secure Channel module conveys a public key KPAL to the client in
such a way that the client is convinced that the corresponding private key is accessible only
to the same PAL in a subsequent Flicker session. �us, by verifying the attestation from the
�rst Flicker session, the client is convinced that the correctPAL executed, that the legitimate
PAL created a fresh keypair, and that the SLBCore erased all secrets before returning control
to the untrustedOS.Using its authentic copy ofKPAL, the client encrypts the user’s password
for transmission to the second Flicker session on the server. We use PKCS1 encryptionwhich
is chosen-ciphertext-secure and nonmalleable [103].�e end-to-end encryption of the user’s
password, from the client system all the way into thePAL, protects the user’s password in the
event that any of the server’s so�ware, potentially including the OS, the sshd server so�ware
or the �icker-module kernel module, is malicious.
Second Flicker Session (Login). �e second Flicker session processes the user’s encrypted
password and outputs a hash of the (unencrypted) password for comparison with the user’s
login information in the server’s password �le (see Figure 4.9).

When the second session begins, the PAL uses TPM Unseal to retrieve its private key
K−1

PAL from sdata . It then uses the key to decrypt the user’s password. Finally, the PAL
computes the hash of the user’s password and salt8 and outputs the result for comparison
with the server’s password �le. �e end result is that the user’s unencrypted password only
exists on the server during a Flicker session.

No attestation is necessary a�er the second Flicker session because, thanks to the prop-
erties of Flicker and sealed storage, the client knows that K−1

PAL is inaccessible unless the
correct PAL is executing within a Flicker session.

Instead of outputting the hash of the password, an alternative implementation could keep
the entire password �le in sealed storage between Flicker sessions. �is would prevent dic-
tionary attacks, but make the password �le incompatible with local logins.

An obvious optimization of the authentication procedure described above is to only cre-
ate a new keypair the �rst time a user connects to the server. Between logins, the sealed
private key can be kept at the server, or it could even be given to the user to be provided
during the next login attempt. If the user loses this data (e.g., if she uses a di�erent client
machine) or provides invalid data, the PAL can simply create a new keypair, at the cost of
some additional latency for the user.

8Most *nix systems compute the hash of the user’s password concatenated with a “salt” value and store the
resulting hash value in an authentication �le (e.g., /etc/passwd).

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 96

4.4.3.2 Certi�cate Authority

Our �nal application, a Flicker-enhanced Certi�cate Authority (CA), is similar to the SSH
application but focuses on protecting theCA’s private signing key.�e bene�t of using Flicker
is that only a tiny piece of code ever has access to the CA’s private signing key. �us, the key
will remain secure, even if all of the other so�ware on the machine is compromised. Of
course, malevolent code on the server may submit malicious certi�cates to the signingPAL.
However, the PAL can implement arbitrary access control policies on certi�cate creation
and can log those creations. Once the compromise is discovered, any certi�cates incorrectly
created can be revoked. In contrast, revoking a CA’s public key, as would be necessary if the
private key were compromised, is a more heavyweight proposition in many settings.

In our implementation, one PAL session generates a 1024-bit RSA keypair using ran-
domness from the TPM and seals the private key under PCR 17. �e public key is made
generally available. �e second PAL session takes in a certi�cate signing request (CSR). It
uses TPMUnseal to obtain its private key and certi�cate database. If the access control policy
supplied by an administrator approves the CSR, then the PAL signs the certi�cate, updates
the certi�cate database, reseals it, and outputs the signed certi�cate.

4.5 Performance Evaluation

Below, we describe our experimental setup and evaluate the performance of the Flicker
platform via microbenchmarks, as well as via macrobenchmarks of the various application
classes described in Section 4.4. We also measure the impact of Flicker sessions on the rest
of the system, e.g., the untrusted OS and applications.

While the overhead for several applications is signi�cant, Section 4.6 identi�es several
hardwaremodi�cations that can potentially improve performance by up to six orders ofmag-
nitude.�us, it is reasonable to expect signi�cantly improved performance in future versions
of this technology.

4.5.1 Experimental Setup

Our primary test machine is an HP dc5750 which contains an AMDAthlon64 X2 Dual Core
4200+ processor running at 2.2 GHz, and a v1.2 Broadcom BCM0102 TPM. In experiments
requiring a remote veri�er, we use a generic PC with a CPU running at 1.6 GHz. �e re-
mote veri�er is 12 hops away (determined using traceroute) with minimum, maximum, and
average ping times of 9.33 ms, 10.10 ms, and 9.45 ms over 50 trials.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 97

TPM CPU System Con�guration PAL Size
Vendor 0 KB 4 KB 8 KB 16 KB 32 KB 64 KB

Yes AMD HP dc5750 Avg (ms): 0.00 11.94 22.98 45.05 89.21 177.52
No Tyan n3600R Avg (ms): 0.01 0.56 1.11 2.21 4.41 8.82
Yes Intel TEP Avg (ms): 26.39 26.88 27.38 28.37 30.46 34.35

Figure 4.10: SKINIT and SENTER Benchmarks. We run SKINIT benchmarks on AMD systems
with and without a TPM to isolate the overhead of the SKINIT instruction from the overhead induced
by the TPM. We also run SENTER benchmarks on an Intel machine with a TPM.

All of our timing measurements were performed using the RDTSC instruction to count
CPU cycles. We converted cycles to milliseconds based on each machine’s CPU speed, ob-
tained by reading /proc/cpuinfo.

4.5.2 Microbenchmarks

We begin by performing a number of microbenchmarks to measure the time needed by late
launch and various TPM operations on two AMDmachines and one Intel machine.

In addition to the AMDHP dc5750 described above, we employ a second AMD test ma-
chine based on a Tyan n3600R server motherboard with two 1.8 GHz dual-core Opteron
processors. �is second machine is not equipped with a TPM, but it does support execution
of SKINIT.�is allows us to isolate the performance of SKINIT without the potential bottle-
neck of a TPM. Our Intel test machine is anMPCClientPro Advantage 385 TXT Technology
Enabling Platform (TEP), which contains a 2.66 GHz Core 2 Duo processor, an Atmel v1.2
TPM, and the DQ965CO motherboard.

Since we have observed that the performance of di�erent TPM implementations varies
considerably, we also evaluate the TPMperformance of two othermachines with a v1.2 TPM:
a Lenovo T60 laptop with an Atmel TPM, and an AMDworkstation with an In�neon TPM.

4.5.2.1 Late Launch with an AMD Processor

AMD SVM supports late launch via the SKINIT instruction. �e overhead of the SKINIT
instruction can be broken down into three parts: (1) the time to place the CPU in an ap-
propriate state with protections enabled, (2) the time to transfer the PAL to the TPM across
the low pin count (LPC) bus, and (3) the time for the TPM to hash the PAL and extend the
hash into PCR 17. To investigate the breakdown of the instruction’s performance overhead,
we ran the SKINIT instruction on theHP dc5750 (with TPM) and the Tyan n3600R (without
TPM) with PALs of various sizes. We invoke RDTSC before executing SKINIT and invoke
it a second time as soon as code from the PAL can begin executing.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 98

Figure 4.10 summarizes the timing results.�emeasurements for the empty (0 KB)PAL
indicate that placing the CPU in an appropriate state introduces relatively little overhead
(less than 10 µs). �e Tyan n3600R (without TPM) allows us to measure the time needed to
transfer the PAL across the LPC bus. �e maximum LPC bandwidth is 16.67 MB/s, so the
fastest possible transfer of 64KB is 3.8ms [94]. Ourmeasurements agreewith this prediction,
indicating that it takes about 8.8 ms to transfer a 64 KB PAL, with the time varying linearly
for smaller PALs.

Unfortunately, our results for the HP dc5750 indicate that the TPM introduces a signi�-
cant delay to the SKINIT operation. We investigated the cause of this overhead and identi�ed
the TPMas causing a reduction in throughput on the LPCbus.�e TPMslows down SKINIT
runtime by causing long wait cycles on the LPC bus. SKINIT sends the contents of the PAL
to a TPM to be hashed using the following TPM command sequence: TPM_HASH_START,
zero or more invocations of TPM_HASH_DATA (each sends one to four bytes of the PAL to
the TPM), and �nally TPM_HASH_END.�e TPM speci�cation states that each of these com-
mands may take up the entire long wait cycle of the control �ow mechanism built into the
LPC bus that connects the TPM [199]. Our results suggest that the TPM is indeed utilizing
most of the long wait cycle for each of the commands, and as a result, the TPM contributes
almost 170 ms of overhead. �is may be either a result of the TPM’s low clock rate or an
ine�cient implementation, and is not surprising given the low-cost nature of today’s TPM
chips. �e 8.82 ms taken by the Tyan n3600R may be representative of the performance of
future TPMs which are able to operate at maximum bus speed.

4.5.2.2 Late Launch with an Intel Processor

Recall from Section 2.4.2 that Intel’s late launch consists of two phases. In the �rst phase,
the ACMod is extended into PCR 17 using the same TPM_HASH_START, TPM_HASH_DATA,
and TPM_HASH_END command sequence used by AMD’s SKINIT. In the second phase, the
ACMod hashes the PAL on the main CPU and uses an ordinary TPM_Extend operation to
record thePAL’s identity in PCR 18. �us, only the 20 byte hash of thePAL is passed across
the LPC to the TPM in the second phase.

�e last row in Figure 4.10 presents experimental results from invoking SENTER on our
Intel TEP. Interestingly, the overhead of SENTER is initially quite high, and it grows linearly
but slowly. �e large initial overhead (26.39 ms) results from two factors. First, even for a
0 KB PAL, the Intel platform must transmit the entire ACMod to the TPM and wait for
the TPM to hash it. �e ACMod is just over 10 KB, which matches nicely with the fact that
the initial overhead falls in between the overhead for an SKINIT with PALs of size 8 KB

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 99

(22.98 ms) and 16 KB (45.05 ms). �e overhead for SENTER also includes the time necessary
to verify the signature on the ACMod.

�e slow increase in the overhead of SENTER relative to the size of the PAL is a result
of where the PAL is hashed. On an Intel platform, the ACMod hashes the PAL on the main
CPU and hence sends only a constant amount of data across the LPC bus. In contrast, an
AMD systemmust send the entirePAL to the TPM andwait for the TPM to do the hashing.9

Figure 4.10 suggests that for large PALs, Intel’s implementation decision pays o�. Further
reducing the size of the ACMod would improve Intel’s performance even more. �e gradual
increase in SENTER’s runtime with increase in PAL size is most likely attributable to the
hash operation performed by the ACMod.

On an Intel TXT platform, the ACMod veri�es that system con�guration is acceptable,
enables chipset protections such as the initial memory protections for the PAL, and then
measures and launches the PAL [78]. On AMD SVM systems, microcode likely performs
similar operations, but we do not have complete information about AMD CPUs. Since Intel
TXT measures the ACMod into a PCR, an Intel TXT attestation to an external veri�er may
contain more information about the challenged platform and may allow an external veri�er
to make better trust decisions.

4.5.2.3 Trusted PlatformModule (TPM) Operations

�ough Intel and AMD send di�erent modules of code to the TPM using the TPM_HASH_*
command sequence, this command sequence is responsible for the majority of late launch
overhead. More signi�cant to overall PAL overhead, however, is Flicker’s use of the TPM’s
sealed storage capabilities to protectPAL state during a context switch. To better understand
these overheads, we perform TPM benchmarks on four di�erent TPMs. Two of these are the
TPMs in our already-introducedHP dc5750 and Intel TEP.�e other twoTPMs are anAtmel
TPM (a di�erent model than that included in our Intel TEP) in an IBM T60 laptop, and an
In�neon TPM in an AMD system.

We evaluate the time needed for relevant operations across several di�erent TPMs.�ese
operations are: PCR Extend, Seal, Unseal, Quote, and GetRandom. Figure 4.11 shows the
results of our TPM microbenchmarks. �e results show that di�erent TPM implementa-
tions optimize di�erent operations. �e Broadcom TPM in our primary test machine is the

9�ere is no technical reason why a PAL for an AMD system cannot be written in two parts: one that is
measured as part of SKINIT and another that is measured by the �rst part before it receives control. �is will
enable aPAL on AMD systems to achieve improved performance, and suggests that AMD’s mechanism is more
�exible than Intel’s.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 100

PCR Extend Seal Quote Unseal GetRand 128B
TPM Operation

0

200

400

600

800
T

im
e

(m
s)

Atmel
Broadcom
Infineon

Figure 4.11: TPMMicrobenchmarks. TPMbenchmarks run against the Atmel v1.2 TPM in a Lenovo
T60 laptop, the Broadcom v1.2 TPM in an HP dc5750, the In�neon v1.2 TPM in an AMDmachine, and
the Atmel v1.2 TPM (note that this is not the same as the Atmel TPM in the Lenovo T60 laptop) in the
Intel TEP. Error bars indicate the standard deviation over 20 trials (not all error bars are visible).

slowest for Quote and Unseal. Switching to the In�neon TPM (which has the best average
performance across the relevant operations) would reduce the TPM-induced overhead for a
combined Quote and Unseal by 1132 ms, although it would also add 213 ms of Seal overhead.
Even if we choose the best performing TPM for each operation (which is not necessarily
technically feasible, since a speedup on one operation may entail a slowdown in another), a
PALGen would still require almost 200 ms (177 ms for SKINIT and 20.01 ms for the Broad-
com Seal), and a PAL Use could require at least 579.37 ms (177 ms for SKINIT, 390.98 ms
for the In�neon Unseal, and 11.39 ms for the Broadcom Seal). �ese values indicate that
TPM-based context-switching is extremely heavy-weight.

4.5.3 Stateless Applications

We evaluate the performance of the rootkit detector by measuring the total time required to
execute a detection query. We perform additional experiments to break down the various
components of the overhead involved. Finally, we measure the impact of regular runs of the
rootkit detector on overall system performance.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 101

Operation Time (ms)
SKINIT 15.4
PCR Extend 1.2
Hash of Kernel 22.0
TPM Quote 972.7
Total Query Latency 1022.7

Figure 4.12: Breakdown of Rootkit Detector Overhead. �e �rst three operations occur during the
Flicker session, while the TPM Quote is generated by the OS.�e standard deviation was negligible for
all operations.

End-to-End Performance. We begin by evaluating the total time required for an adminis-
trator to run our rootkit detector on a remote machine. Our �rst experiment measures the
total time between the time the administrator initiates the rootkit query on the remote ver-
i�er and the time the response returns from the AMD test machine. Over 25 experiments,
the average query time was 1.02 seconds, with a standard deviation of less than 1.4 ms. �is
relatively small latency suggests that it would be reasonable to run the rootkit detector on
remote machines before allowing them to connect to the corporate VPN, for example.
Microbenchmarks. To better understand the overhead of the rootkit detector, we performed
additional microbenchmarks to determine the most expensive operations involved (see Fig-
ure 4.12). �e results indicate that the highest overhead comes from the TPM Quote oper-
ation. �is performance is TPM-speci�c. Other TPMs contain faster implementations (see
Figure 4.11); for example, an In�neon TPM can generate a quote in under 331 ms. To reduce
the overhead of SKINIT, we developed the following optimization.
SKINIT Optimization. Short of changing the speed of the TPM and the bus through which
the CPU communicates with the TPM, Figure 4.10 indicates that the best opportunity for
improving the performance of SKINIT is to reduce the size of the SLB. To maintain the se-
curity properties provided by SKINIT, however, code in the SLB must be measured before it
is executed. Note that SKINIT enables the Device Exclusion Vector for the entire 64 KB of
memory starting from the base of the SLB, even if the SLB’s length is less than 64 KB. One
viable optimization is to create a PAL that only includes a cryptographic hash function and
enough TPM support to perform a PCR Extend. �is PAL can then measure and extend
the application-speci�c PAL. A PAL constructed in this way o�oads most of the burden of
computing code measurement to the system’s main CPU. We have constructed such a PAL
in 4736 bytes. When this PAL runs, it measures the entire 64 KB and extends the resulting
measurement into PCR 17. �us, when SKINIT executes, it only needs to transfer 4736 bytes
to the TPM. In 50 trials, we found the average SKINIT time to be 14 ms. While only a small

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 102

Detection Period Benchmark Time Standard Deviation
[m:s] [m:s] [s]

No Detection 7:22.6 2.6
5:00 7:21.4 1.1
3:00 7:21.4 0.9
2:00 7:21.8 1.0
1:00 7:21.9 1.1
0:30 7:22.6 1.7

Figure 4.13: Impact of the Rootkit Detector. Kernel build time when run with no detection and with
rootkit detection run periodically. Note that the detection does not actually speed up the build time;
rather the small performance impact it does have is lost in experimental noise.

savings for the rootkit detector, it saves 164 ms of the 176 ms SKINIT requires with a 64-KB
SLB. We use this optimization in the rest of our applications.
System Impact. As a �nal experiment, we evaluate the rootkit detector’s impact on the sys-
tem by measuring the time required to build the 2.6.20 Linux kernel while also running
the rootkit detector periodically. Figure 4.13 summarizes our results. Essentially, our results
suggest that even frequent execution of the rootkit detector (e.g., once every 30 seconds) has
negligible impact on the system’s overall performance.

4.5.4 Integrity-Protected State

At present, our distributed computing PAL periodically exits to check whether the main
system has work to perform. �e frequency of these checks represents a tradeo� between
low latency in responding to system events (such as a user returning to the computer) and
e�ciency of computation (the percentage of time performing useful, application-speci�c
computation), since the Flicker-induced overhead is experienced every time the application
resumes its work.

In our experiments, we evaluate the amount of Flicker-imposed overhead by measuring
the time required to start performing useful application work, speci�cally, between the time
the OS executes SKINIT, and the time at which the PAL begins to perform application-
speci�c work.

Figure 4.14 shows the resulting overhead, as well as its most expensive constituent oper-
ations, in particular, the time for the SKINIT, and the time to unseal and verify the PAL’s
previous state.10 �e table demonstrates how the application’s e�ciency improves as we al-

10As described in Section 4.4.2, the initial PAL must also generate a symmetric key and seal it under PCR 17.
We discuss this overhead in more detail in Section 4.5.5.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 103

Operation Time (ms)
Application Work 1000 2000 4000 8000
SKINIT 14.3 14.3 14.3 14.3
Unseal 898.3 898.3 898.3 898.3
Flicker Overhead 47% 30% 18% 10%

Figure 4.14: Operations for Distributed Computing. �is table indicates the signi�cant expense of
the Unseal operation, as well as the tradeo� between e�ciency and latency.

1 2 3 4 5 6 7 8 9 10
User Latency [s]

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

(%
) Flicker

3-Way
5-Way
7-Way

Figure 4.15: Flicker vs. Replication E�ciency. Replicating to a given number of machines represents
a constant loss in e�ciency. Flicker gains e�ciency as the length of the periods during which application
work is performed increases.

low the PAL to run for longer periods of time before exiting back to the untrusted OS. For
example, if the application runs for one second before returning to the OS, only 53% of the
Flicker session is spent on application work; the remaining 47% is consumed by Flicker’s
setup time. However, if we allow the application to run to two or four seconds at a time, then
Flicker’s overhead drops to only 30% or 18%, respectively. Figure 4.14 also indicates that the
vast majority of the overhead arises from the TPM’s Unseal operation. Again, a faster TPM,
such as the In�neon, can unseal in under 400 ms.

While Flicker adds additional overhead on a single client, the true savings come from
the higher degree of trust the application writer can place in the results returned. Figure 4.15
illustrates this savings by comparing the e�ciency of Flicker-enhanced distributed comput-

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 104

Operation Time (ms)
SKINIT 14.3
Key Gen 185.7
Seal 10.2
Total Time 217.1

(a) PAL 1

Operation Time (ms)
SKINIT 14.3
Unseal 905.4
Decrypt 4.6
Total Time 937.6

(b) PAL 2

Figure 4.16: SSH Performance Overhead. Average server side performance over 100 trials, including
a breakdown of time spent inside eachPAL. �e standard error on all measurements is under 1%, except
key generation at 14%.

ing with the standard solution of using redundancy. With our current implementation, a
two second user latency allows a more e�cient distributed application than replicating to
three or more machines. As the performance of this new hardware improves, the e�ciency
of using Flicker will only increase.

4.5.5 Secret and Integrity-Protected State

Since both SSH and the CA perform similar activities, we focus on the modi�ed SSH imple-
mentation and then highlight places where the CA di�ers.

4.5.5.1 SSH Password Authentication

Our �rst set of experiments measures the total time required for each PAL on the server.
�e quote generation, seal and unseal operations are performed on the TPM using 2048-bit
asymmetric keys, while the key generation and the password decryption are performed by
the CPU using 1024-bit RSA keys.

Figure 4.16 presents these results, as well as a breakdown of the most expensive opera-
tions that execute on the SSH server. �e total time elapsed on the client between the es-
tablishment of the TCP connection with the server, and the display of the password prompt
for the user is 1221 ms (this includes the overhead of the �rst PAL, as well as 949 ms for the
TPMQuote operation), compared with 210 ms for an unmodi�ed server. Similarly, the time
elapsed beginning immediately a�er password entry on the client, and ending just before the
client system presents the interactive session to the user is approximately 940 ms while the
unmodi�ed server only requires 10 ms. �e primary source of overhead is clearly the TPM.
As these devices have just been introduced by hardware vendors and have not yet proven
themselves in the market, it is not surprising that their performance is poor. Nonetheless,

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 105

current performance su�ces for lightly-loaded servers, or for less time-critical applications,
such as the CA.

During the �rst PAL, the 1024-bit key generation clearly imposes the largest overhead.
�is cost could be mitigated by choosing a di�erent public key algorithm with faster key
generation, such as ElGamal, and is readily parallelized. Both Seal and SKINIT contribute
overhead, but compared to the key generation, they are relatively insigni�cant. We alsomake
one call to TPM GetRandom to obtain 128 bytes of random data (it is used to seed a pseu-
dorandom number generator), which averages 1.3 ms. �e performance of PCR Extend is
similarly quick and takes less than 1 ms on the Broadcom TPM.

Quote is an expensive TPM operation, averaging 949 ms, but it is performed while the
untrusted OS has control. �us, it is experienced as a latency only for the SSH client. It does
not impact the performance of other processes running on the SSH server, as long as they
do not require access to the TPM.

�e second PAL’s main overhead comes from the TPM Unseal. As mentioned above,
the Unseal overhead is TPM-speci�c. An In�neon TPM can Unseal in 391 ms.

4.5.5.2 Certi�cate Authority

For the CA, we measure the total time required to sign a certi�cate request. In 100 trials,
the total time averaged 906.2 ms (again, mainly due to the TPM’s Unseal). Fortunately, the
latency of the signature operation is far less critical than the latency in the SSH example. �e
components of the overhead are almost identical to the SSH server’s, though in the second
PAL, the CA replaces the RSA decrypt operation with an RSA signature operation. �is
requires approximately 4.7 ms.

4.5.6 Impact on Suspended Operating System

Flicker runs with the legacy OS suspended and interrupts disabled. We have presented
Flicker sessions that run for more than one second, e.g., in the context of a distributed com-
puting application (Figure 4.14). While these are long times to keep the OS suspended and
interrupts disabled, we have observed relatively few problems in practice. We relate some of
our experience with Flicker, and then describe the options available today to reduce Flicker’s
impact on the suspended system. Finally, we introduce some recommendations to modify
today’s hardware architecture to better support Flicker.

While a Flicker session runs, the user will perceive a hang on themachine. Keyboard and
mouse input during the Flicker session may be lost. Such responsiveness glitches sometimes

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 106

occur even without Flicker, and while unpleasant, they do not put valuable data at risk. Like-
wise, network packets are sometimes lost even without Flicker, and today’s network-aware
applications can and do recover. �e most signi�cant risk to a system during a Flicker ses-
sion is lost data in a transfer involving a block device, such as a hard drive, CD-ROM drive,
or USB �ash drive.

We have performed experiments on our HP dc5750 copying large �les while the dis-
tributed computing application runs repeatedly. Each run lasts an average of 8.3 seconds,
and the legacy OS runs for an average of 37 ms in between. We copy �les from the CD-ROM
drive to the hard drive, from the CD-ROM drive to the USB drive, from the hard drive to
the USB drive, and from the USB drive to the hard drive. Between �le copies, we reboot the
system to ensure cold caches. We use a 1-GB �le created from /dev/urandom for the hard
drive to/from USB drive experiments, and a CD-ROM containing �ve 50-200-MB Audio-
Video Interleave (AVI) �les for the CD-ROM to hard drive / USB drive experiments. During
each Flicker session, the distributed computing application performs a TPMUnseal and then
performs division on 1,500,000 possible factors of a 384-bit prime number. In these experi-
ments, the kernel did not report any I/O errors, and integrity checks with md5sum con�rmed
that the integrity of all �les remained intact.

To provide stronger guarantees for the integrity of device transfers on a system that sup-
ports Flicker, these transfers should be scheduled such that they donot occur during a Flicker
session. �is requires OS awareness of Flicker sessions so that it can quiesce devices appro-
priately. Modern devices already support suspension in the form of ACPI power events [89],
although this is sub-optimal since power will remain available to devices. �e best solution
is to modify device drivers to be Flicker-aware, so that minimal work is required to prepare
for a Flicker session. We plan to further investigate Flicker-aware device drivers and OS ex-
tensions, but the best solution may be an architectural change for next-generation hardware.

4.5.7 Major Performance Problems

Our experiments reveal two signi�cant performance bottlenecks forminimal TCB execution
on current CPU architectures: (1) on a multi-CPU machine, the inability to execute PALs
and untrusted code simultaneously on di�erent CPUs, and (2) the use of TPM Seal and Un-
seal to protect PAL state during a context switch between secure and insecure execution.

�e �rst issue exacerbates the second, since the TPM-based overheads apply to the entire
platform, and not only to the running PAL, or even only to the CPU on which the PAL
runs. With TPM-induced delays of over a second, this results in signi�cant overhead. While
this overhead may be acceptable for a system dedicated to a particular security-sensitive
application, it is not generally acceptable in a multiprogramming environment.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 107

Figure 4.17: Goal of Our Architectural Recommendations. Physical platform running a legacy OS
and applications along with some number of PALs.

Below, we suggest modi�cations to the hardware that will overcome these limitations.

4.6 Architectural Recommendations

In this section, we make hardware recommendations to alleviate the performance issues we
summarize in Section 4.5.7, while maintaining the security properties of Flicker. Speci�cally,
the goal of these recommendations is twofold: (1) to enable the concurrent execution of an
arbitrary number ofmutually-untrustingPALs alongside an untrusted legacy OS and legacy
applications, and (2) to enable performant context switching of individual PALs. A system
achieving these goals supports multiprogramming with PALs, so that there can be more
PALs executing than there are physical CPUs in a system. It also enables e�cient use of the
execution resources available on today’s multicore computing platforms. Figure 4.17 shows
an example of our desired execution model. Note that we assume that a PAL only executes
on one CPU core at a time, but Section 4.6.8 discusses extension to multiple cores.

We have two requirements for the recommendations we make. First, our recommen-
dations must make minimal modi�cations to the architecture of today’s trusted computing
technologies: AMD SVM and Intel TXT. Admittedly, such a requirement narrows the scope
of our creativity. However, we believe that by keeping our modi�cations minimal, our rec-
ommendations are more likely to be implemented by hardware vendors. Second, in order to
keep our execution architecture as close to today’s systems architectures as possible, we re-
quire that the untrusted OS retain the role of the resource manager. With this requirement,
we open up the possibility that the untrusted OS could perform denial-of-service attacks
against the PALs. However, we believe this risk is unavoidable, as the untrusted OS can
always simply power down or otherwise crash the system.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 108

CPU State
General purpose registers
Flags, condition codes
Instruction pointer
Stack pointer
etc.
Memory Pages
Resume Flag
Preemption Timer
sePCR Handle
PAL Length | Entry Point

Figure 4.18: SECB Structure.

�ere are two new hardware mechanisms required to achieve our desired execution
model (Figure 4.17) while simultaneously satisfying the two requirements mentioned in the
previous paragraph.�e �rst is a hardwaremechanism formemory isolation that isolates the
memory pages belonging to a PAL from all other code. �e second is a hardware context
switch mechanism that can e�ciently suspend and resumePALs, without exposing aPAL’s
execution state to other PALs or the untrusted OS. In addition to these two mechanisms,
we also require modi�cations to the TPM to allow external veri�cation via attestation when
multiple PALs execute concurrently.

In the rest of this section, we �rst describe PAL launch (Section 4.6.1), followed by our
proposed hardware memory isolation mechanism (Section 4.6.2). Section 4.6.3 talks about
the hardware context switchmechanismwe propose. In Section 4.6.4 we describe changes to
the TPM chip to enable external veri�cation. We describePAL termination in Section 4.6.5.
Section 4.6.6 ties these recommendations together and presents the life-cycle of a PAL. Fi-
nally, Section 4.6.7 summarizes the expected performance improvement of our recommen-
dations, and Section 4.6.8 suggests some natural extensions.

4.6.1 Launching a PAL

We propose a new mechanism for securely launching a PAL.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 109

4.6.1.1 Recommendation

First, we recommend that the untrusted OS allocate resources for a PAL. Resources include
execution time on a CPU and a region of memory to store the PAL’s code and data. We
de�ne a Secure Execution Control Block (SECB, Figure 4.18) as a structure to hold PAL state
and resource allocations, both for the purposes of launching a PAL and for storing the state
of a PAL when it is not executing. �e PAL and SECB should be contiguous in memory
to facilitate memory isolation mechanisms. �e SECB entry for allocated memory should
consist of a list of physical memory pages allocated to the PAL.

To begin execution of a PAL described by a newly allocated SECB, we propose the ad-
dition of a new CPU instruction, Secure Launch (SLAUNCH), that takes as its argument the
starting physical address of a SECB. Upon execution, SLAUNCH:

1. reinitializes the CPU on which it executes to a well-known trusted state,

2. enables hardware memory isolation (described in Section 4.6.2) for the memory re-
gion de�ned in the SECB and for the SECB itself,

3. transmits the PAL to the TPM to be measured (described in Section 4.6.4),

4. disables interrupts on the CPU executing SLAUNCH,

5. initializes the stack pointer to the top of the memory region de�ned in the SECB (al-
lowing the PAL to con�rm the size of its data memory region),

6. sets theMeasured Flag in the SECB to indicate that this PAL has been measured, and

7. jumps to the PAL’s entry point as de�ned in the SECB.

4.6.1.2 Suggested Implementation Based On Existing Hardware

We can modify the existing hardware virtual machine management data structures of AMD
and Intel to realize the SECB. BothAMDand Intel use an in-memory data structure tomain-
tain guest state.11 �e functionality of SLAUNCH when used to begin execution of a PAL is
designed to give the same security properties as today’s SKINIT and SENTER instructions.

4.6.2 Hardware Memory Isolation

To securely execute a PAL using a minimal TCB, we need a hardware mechanism to isolate
its memory state from all devices and from all code executing on other CPUs (including
other PALs and the untrusted OS and applications).

11�ese structures are the Virtual Machine Control Block (VMCB) and Virtual Machine Control Structure
(VMCS) for AMD and Intel, respectively.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 110

Figure 4.19: Memory Page States. State machine for the possible states of a memory page in our
proposedmemory controller modi�cation. �e states correspond to which CPUs can access an individual
memory page.

4.6.2.1 Recommendation

We propose that the memory controller maintain an access control table with one entry per
physical page, where each entry speci�es which CPUs (if any) have access to the physical
page. �e size of this table will beM ×N , whereM is the number of physical pages present
on the platform and N is the maximum number of CPUs. Other multiprocessor designs
use a similar partitioning system to protect memory from other processors [117]. To use the
access control table, the memory controller must be able to determine which CPU initiates
a given memory request.

Figure 4.19 presents the state machine detailing the possible states of an entry in the
access control table as context switches (described in Section 4.6.3) occur. Memory pages
are by default marked ALL to indicate that they are accessible by all CPUs and DMA-capable
devices. �e other states are described below. Note that the SECB for a PAL must reside
within the PAL’s memory region so as to bene�t from its own memory protections.

When PAL execution is started using SLAUNCH, the memory controller updates its
access control table so that each page allocated to thePAL (as speci�ed by the list of memory
pages in the SECB) is accessible only to the CPU executing the PAL. When the PAL is
subsequently suspended, the state of its memory pages transitions to NONE, indicating that
nothing currently executing on the platform is allowed to read or write to those pages. Note

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 111

that the memory allocated to a PAL includes space for data, and is a superset of the pages
containing the PAL binary.

4.6.2.2 Suggested Implementation Based On Existing Hardware

We can realize hardware memory isolation as an extension to existing DMA protection
mechanisms. As noted in Section 2.4.2, AMD SVM and Intel TXT already support DMA
protections for physical memory pages.12 In both protection systems, thememory controller
maintains a bit vector with one bit per physical page. �e value of the bit indicates whether
the corresponding page can be accessed (read or written) using a DMA operation. One im-
plementation strategy for our recommendations may be to increase the size of each entry in
this protection table to include a bit per CPU on the system.

Existing memory access and cache coherence mechanisms can be used to provide the
necessary information to enforce memory isolation. Identifying the CPU from which mem-
ory requests originate is straightforward, since memory reads and writes on di�erent CPUs
already operate correctly today. For example, every memory request from a CPU in an In-
tel system includes an agent ID that uniquely identi�es the requesting CPU to the memory
controller [178].

�e untrusted OS will be unable to access the physical memory pages that it allocates to
thePALs, and so supporting the execution ofPALs requires theOS to cope with discontigu-
ous physical memory. Modern OSes support discontiguous physical memory for structures
like the AGP graphics aperture, which require the OS to relinquish certain memory pages to
hardware. �ese mechanisms can bemodi�ed to tolerate the allocation of memory toPALs.

4.6.3 Hardware Context Switch

To enable multiplexing of CPUs between multiple PALs and the untrusted OS, a secure
context switch mechanism is required. Our mechanism retains the legacy OS as the primary
resource manager on a system, allowing it to specify on which CPU and for how long aPAL
can execute.

4.6.3.1 Recommendation

We �rst treat the mechanism required to cause an executing PAL to yield, and then detail
how a suspended PAL is resumed.

12�e protection mechanisms are the Device Exclusion Vector (DEV) and the Memory Protection Table
(MPT) for AMD and Intel, respectively.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 112

PAL Yield. We recommend the inclusion of a PAL preemption timer in the CPU that can
be con�gured by the untrusted OS. When the timer expires, or a PAL voluntarily yields,
the PAL’s CPU state should be automatically and securely written to its SECB by hardware,
and control should be transferred to an appropriate handler in the untrusted OS. To enable
a PAL to voluntarily yield, we propose the addition of a new CPU instruction, Secure Yield
(SYIELD). Part of writing the PAL’s state to its SECB includes signaling the memory con-
troller that the PAL and its state should be inaccessible to all entities on the system. Note
that any microarchitectural state that may persist long enough to leak the secrets of a PAL
must be cleared upon PAL yield.
PAL Resume. �e untrusted OS can resume a PAL by executing an SLAUNCH on the de-
sired CPU, parameterized with the physical address of the PAL’s SECB. �e PAL’s Mea-
sured Flag indicates to the CPU that the PAL has already been measured and is only being
resumed, not started for the �rst time. Note that the Measured Flag is honored only if the
SECB’s memory page is set to NONE. �is prevents the untrusted OS from invoking a PAL
without it beingmeasured by the TPM.DuringPAL resume, the SLAUNCH instruction will
signal the memory controller that the PAL’s state should be accessible to the CPU on which
thePAL is now executing. Note that thePALmay execute on a di�erent CPU each time it is
resumed. Once a PAL is executing on a CPU, any other CPU that tries to resume the same
PAL will fail, as that PAL’s memory is inaccessible to the other CPUs.

4.6.3.2 Suggested Implementation Based On Existing Hardware

We achieve signi�cant performance improvements by eliminating the use of TPM sealed
storage as a protection mechanism for PAL state during context switches. Existing hard-
ware virtualization extensions of AMD and Intel support suspending and resuming guest
VMs.13 We can enhance thesemechanisms to provide secure context switch by extending the
memory controller to isolate a PAL’s state while it is executing, even from an OS. Table 4.20
shows that with current hardware, VM entry and exit overheads are on the order of half a
microsecond. Reducing the context switch overhead of between approximately 200ms and a
full second for the TPM sealed storage-based context switch mechanism (recall Figure 4.11)
to essentially the overhead of a VM exit or entry would be a pronounced improvement.

13A guest yields by executing VMMCALL / VMCALL. A VMM resumes a guest by executing VMRUN /
VMRESUME for AMD and Intel, respectively.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 113

Operation AMD SVM Intel TXT
Avg (µs) Stdev Avg (µs) Stdev

VM Enter 0.5580 0.0028 0.4457 0.0029
VM Exit 0.5193 0.0036 0.4491 0.0015

Figure 4.20: VM Entry and Exit Performance. Benchmarks showing the average runtime of VM
Entry and VM Exit on the Tyan n3600R with a 1.8 GHz AMDOpteron and theMPC ClientPro 385 with
a 2.66 GHz Intel Core 2 Duo.

4.6.4 Improved TPM Support for Flicker

�us far, our focus has been on recommendations to alleviate the two performance bottle-
necks identi�ed in Section 4.5.7. Unfortunately, the functionality of today’s TPMs is insuf-
�cient to provide measurements, sealed storage, and attestations for multiple, concurrently
executing PALs. �ese features are essential to provide external veri�cation.

As implemented with today’s hardware, Flicker always uses PCR 17 (and 18 on Intel sys-
tems) to store a PAL’s measurement. �e addition of the SLAUNCH instruction introduces
the possibility of concurrent PAL execution. When executing multiple PALs concurrently,
today’s TPMs do not have enough PCR registers to securely store the PALs’ measurements.
Further, since PALs may be context switched in and out, there can be many more PALs
executing than there exist CPUs on the system.

Ideally, the TPMshouldmaintain a separatemeasurement chain for each executingPAL,
and themeasurement chain should indicate that thePAL began execution via the SLAUNCH
instruction. �ese are the same properties that late launch provides for one PAL today.

Wepropose the inclusion of additional secure executionPCRs (sePCRs) that can be bound
to a PAL during SLAUNCH.�e number of sePCRs present in a TPM establishes the limit
for the number of concurrently executing PALs, as measurements of additional PALs do
not have a secure place to reside. �e PAL must also learn the identity of its sePCR so that
it can output a sePCR handle usable by untrusted so�ware to generate a TPM Quote once
execution is complete.

However, the addition of sePCRs introduces several challenges:
1. A PAL must be bound to a unique sePCR (Section 4.6.4.1).

2. A PAL’s sePCR must be inaccessible to all other code until the PAL terminates (Sec-
tion 4.6.4.2).

3. TPM Quote must be able to address the sePCRs when invoked from untrusted code
(Section 4.6.4.3).

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 114

4. A PAL that used TPM Seal to seal secrets to one sePCR must be able to unseal its
secrets in the future, even if that PAL terminates and is assigned a di�erent sePCR on
its next invocation (Section 4.6.4.4).

5. A hardware mechanism is required to arbitrate TPM access frommultiple CPUs (Sec-
tion 4.6.4.5).

Below, we present additional details for each of these challenges and propose solutions.

4.6.4.1 sePCR Assignment and Communication

Challenge 1 speci�es that a PAL must be bound to a unique sePCR while it executes. �e
binding of the sePCR to thePALmust prevent other code (PALs or the untrusted OS) from
extending or reading the sePCR until the PAL has terminated. We describe how the TPM
and CPU communicate to assign a sePCR to a PAL during SLAUNCH.

As part of SLAUNCH, the contents of the PAL are sent from the CPU to the TPM to be
measured. �e arrival of these messages signals the TPM that a new PAL is starting, and
the TPM assigns a free sePCR to the PAL being launched. �e sePCR is reset to zero and
extended with a measurement of the PAL. If no sePCR is available, SLAUNCH must return
a failure code.

As part of SLAUNCH, the TPM returns the allocated sePCR’s handle to the CPU exe-
cuting the PAL. �is handle becomes part of the PAL’s state, residing in the CPU while
the PAL is executing and written to the PAL’s SECB when the PAL is suspended.14 �e
handle is also made available to the executingPAL. One implementation strategy is to make
the handle available in one of the CPU’s general purpose registers when the PAL �rst gets
control.

TPM Extend, Seal, and Unseal must be extended to optionally accept a PAL’s sePCR as
an argument, but only when invoked from within that PAL. �e CPU, memory controller,
and TPMmust prevent other code from invoking TPMExtend, Seal, or Unseal with aPAL’s
sePCR. Enforcement can be performed by the CPU or memory controller using the CPU’s
copy of thePAL’s sePCR handle.�ese restrictions do not apply to TPMQuote, as untrusted
code will eventually need the PAL’s sePCR handle to generate a TPM Quote. We describe
its use in more detail in Section 4.6.4.3.

Note that the TPM in today’s machines is a memory-mapped device, and access to the
TPM involves the memory controller. �e exact architectural details are chipset-speci�c,

14�is is similar to the handling of Machine Status Registers (MSRs) by AMD SVM and Intel TXT for virtu-
alized CPU state today.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 115

but it may be necessary to enable the memory controller to cache the sePCR handles during
SLAUNCH to enable enforcement of the PAL-to-sePCR binding and avoid excessive com-
munication between the CPU and memory controller during TPM operations.

4.6.4.2 sePCR Access Control

Challenge 2 is to render a PAL’s sePCR inaccessible to all other code. �is includes concur-
rently executing PALs and the untrusted OS.�is condition must hold whether the PAL is
actively running on a CPU or context switched out.

�e binding between a PAL and its sePCR is maintained in hardware by the CPU and
TPM. �us, a PAL’s sePCR handle need not be secret, as other code attempting any TPM
commands with the PAL’s sePCR handle will fail. PAL code is able to access its own sePCR
to invoke TPM Extend to measure its inputs, or TPM Seal or Unseal to protect secrets, as
described in the previous section.

A PAL needs exclusive access to its sePCR for the TPM Extend, Seal, and Unseal opera-
tions. Allowing, e.g., a TPM PCR Read by other code does not introduce a security vulnera-
bility for a PAL. However, we cannot think of a scenario where it is bene�cial, and allowing
sePCR access from other code for selected commands may unnecessarily complicate the ac-
cess control mechanism.

4.6.4.3 sePCR States and Attestation

�e previous section describes techniques that give a PAL exclusive access to its sePCR.
However, Challenge 3 states our aim to allow TPM Quote to be invoked from untrusted
code. To enable these semantics, sePCRs exist in one of three states: Exclusive, Quote,
and Free. While aPAL is executing or context-switched out, its sePCR is in the Exclusive
state. No other code on the system can read, extend, reset, or otherwise modify the contents
of the sePCR.

When the PAL terminates, untrusted code is tasked with generating an attestation of
the PAL’s execution. �e purpose of the Quote state is to grant the necessary access to
the untrusted code. �us, as part of PAL termination, the CPU must signal the TPM to
transition this PAL’s sePCR from the Exclusive to the Quote state.

To generate the quote, the untrusted codemust be able to specify the handle of the sePCR
to use. It is the responsibility of thePAL to include its sePCR handle as an output. �e TPM
Quote command must be extended to optionally accept a sePCR handle instead of (or in
addition to) a list of regular PCR registers to include in the quote.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 116

A�er a TPMQuote is generated, the TPM transitions the sePCR to the Free state, where
it is eligible for use by another PAL via SLAUNCH. �is can be realized as a new TPM
command, TPM_SEPCR_Free, executable from untrusted code. We treat the case where a
PAL does not terminate cleanly in Section 4.6.5.

4.6.4.4 Sealing Data Under a sePCR

TPMSeal can be used to encrypt data such that it can only be decrypted (using TPMUnseal)
if the platform is in a particular so�ware con�guration, as de�ned by the TPM’s PCRs. TPM
Seal and Unseal must be enhanced to work with our proposed sePCRs.

A PAL is assigned a free sePCR by the TPM when SLAUNCH is executed on a CPU.
However, the PAL does not have control over which sePCR it is assigned. �is breaks the
traditional semantics of TPM Seal and Unseal, where the index of the PCR(s) that must
contain particular values for TPM Unseal are known at seal-time. To meet Challenge 4, we
must ensure that a PAL that uses TPM Seal to seal secrets to its assigned sePCR will be able
to unseal its secrets in the future, even if that PAL terminates and is assigned a di�erent
sePCR when it executes next.

We propose that TPM Seal and Unseal accept a boolean �ag that indicates whether to
use a sePCR. �e sePCR to use is speci�ed implicitly by the sePCR handle stored inside of
the PAL’s SECB.

4.6.4.5 TPM Arbitration

Today’s TPM-to-CPU communication architecture assumes the use of so�ware locking to
prevent multiple CPUs from trying to access the TPM concurrently. With the introduction
of SLAUNCH, we require a hardware mechanism to arbitrate TPM access from PALs ex-
ecuting on multiple CPUs. A simple arbitration mechanism is hardware locking, where a
CPU requests a lock for the TPM and obtains the lock if it is available. All other CPUs learn
that the TPM lock is set and wait until the TPM is free to attempt communication.

4.6.5 PAL Exit

When a PAL �nishes executing, its resources must be returned to the untrusted OS so that
they can be allocated to another PAL or legacy application that is ready to execute. We �rst
describe this process for a well-behavedPAL, and then discuss what must happen for aPAL
that crashes or otherwise exits abnormally.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 117

Normal Exit. �e memory pages for aPAL that are inaccessible to the remainder of the sys-
temmust be freed when thatPAL completes execution. It is thePAL’s responsibility to erase
any secrets that it created or accessed before freeing its memory. To free this memory, we
propose the addition of a new CPU instruction, Secure Free (SFREE). SFREE is parameter-
ized with the address of the PAL’s SECB, and communicates to the memory controller that
these pages no longer require protection.�ememory controller then updates its access con-
trol table to mark these pages as ALL so that the untrusted OS can allocate them elsewhere.
Note that SFREE executed by other code must fail. �is can be detected by verifying that the
SFREE instruction resides at a physical memory address inside the PAL’s memory region.
As part of SFREE, the CPU also sends a message to the TPM to cause the terminating PAL’s
sePCR to transition from the Exclusive state to the Quote state.
Abnormal Exit. �e code in a PAL may contain bugs or exploitable �aws that cause it to
deviate from the intended termination sequence. For example, it may become stuck in an
in�nite loop. �e preemption timer discussed in Section 4.6.3 can preempt the misbehaving
PAL, but the memory allocated to that PAL remains in the NONE state, and the sePCR allo-
cated to that PAL remains in the Exclusive state. �ese resources must be freed without
exposing any of the PAL’s secrets to other entities on the system.

We propose the addition of a new CPU instruction, Secure Kill (SKILL), to kill a misbe-
having PAL. Its operations are as follows:

1. Erase all memory pages associated with the PAL.

2. Mark the PAL’s memory pages as available to ALL.

3. Extend the PAL’s sePCR with a well known constant that indicates that SKILL was
executed.

4. Transition the PAL’s sePCR to the Free state.
Depending on low-level implementation details, SKILL may be merged with SFREE. One
possibility is that SFREE behaves identically to SKILLwhenever it executes outside of aPAL.

4.6.6 PAL Life Cycle

Figure 4.21 summarizes the life cycle of a PAL on a system with our recommendations. To
provide a better intuition for the ordering of events, we step through each state in detail.
We also provide pseudocode for SLAUNCH, and indicate which states of a PAL’s life cycle
correspond to portions of the SLAUNCH pseudocode (Figure 4.22).
Launch: Protect and Measure. �e untrusted OS is responsible for creating the necessary
SECB structure for aPAL so that thePAL can be executed. �e OS allocates memory pages

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 118

Figure 4.21: LifeCycle of aPAL.MFstands forMeasured Flag. Note that these states are for illustrative
purposes and need not be represented in the system.

Start:
OS: Allocate pages for SECB S and PAL P
OS: Initialize SECB.pages
OS: Initialize SECB.timer
Protect:
CPUi: SLAUNCH (S)
CPUi: Reinitialize to trusted state
CPUi: Disable interrupts
CPUi to MC: SECB.pages
MC: if(∃p ∈ SECB.pages s.t. p.accessible = NONE) FAIL
MC: ∀p ∈ SECB.pages: p.accessible = CPUi

MC to CPUi: done
CPUi: ESP=SECB.pages.top
Measure:
if(¬SECB.MeasuredFlag)
CPUi: send PAL to TPM
TPM: Allocate sePCR `
MC: if(¬∃` ∈ sePCRs s.t. sePCR [`].state = Quote) FAIL
TPM: h = SHA-1(PAL)
TPM: sePCR [`] = 0
TPM: sePCR [`] = SHA-1(sePCR [`]||h)
TPM to CPUi: done
CPUi: SECB.MeasuredFlag = 1

Execute:
CPUi: EIP=SECB.pages.eip
CPUi: Begin executing

Figure 4.22: SLAUNCH Pseudocode.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 119

for the PAL and sets the PAL’s preemption timer. �e OS then invokes the SLAUNCH
CPU instruction with the address of the SECB, initiating the transition from the Start state
to the Protect state in Figure 4.21. �is causes the CPU to signal the memory controller
with the address of the SECB.�e memory controller updates its access control table (recall
Section 4.6.2) tomark thememory pages associatedwith the SECBas being accessible only by
the CPUwhich executed the SLAUNCH instruction. If thememory controller discovers that
anotherPAL is already using any of these memory pages, it signals the CPU that SLAUNCH
must return a failure code. Once thememory protections are in place, thememory controller
signals the CPU.�e CPU inspects theMeasured Flag and begins the measurement process
since it is clear. �eMeasured Flag in the SECB (Figure 4.18) is used to distinguish between a
PAL that is being executed for the �rst time and aPAL that is being resumed.�is completes
the transition from the Protect state to the Measure state.

�e CPU then begins sending the contents of the PAL to the TPM to be hashed. When
the �rst message arrives at the TPM, the TPM attempts to allocate a sePCR for this PAL. A
free sePCR is allocated, reset, and then extended with a measurement of the contents of the
PAL. �e TPM returns a handle to the allocated sePCR to the CPU, where it is maintained
as part of the SECB. If there is no sePCR available, the TPM returns a failure code to the
CPU. �e CPU signals the memory controller to return the SECB’s pages to the ALL state,
and SLAUNCH returns a failure code. Upon reception of the sePCR handle, the CPU sets
the Measured Flag for the PAL to indicate that it has been measured. �e completion of
measurement causes a transition from the Measure state to the Execute state.
Execute. �e PAL is now executing with full hardware protections. It is free to complete
whatever application-speci�c task it was designed to do. If it requires data from an external
source (e.g., network or disk), it may yield by executing SYIELD. If it has been running for
too long, the CPU may preempt it. �ese events a�ect transitions to the Suspend state. If
the PAL is ready to exit, it can transition directly to the Done state by executing SFREE.
Suspend: Preempted or SYIELD. �e PAL is no longer executing, and it must transition
securely to the Suspend state. �e CPU signals the memory controller that this PAL is sus-
pending, and the memory controller updates its access control table for that PAL’s memory
pages to NONE, indicating that those pages should be unavailable to all processors and devices
until thePAL resumes. Once the protections are in place, the memory controller signals the
CPU, and the CPU completes the secure state clear (e.g., it may be necessary to clear mi-
croarchitectural state such as cache lines). At this point, thePAL is suspended. If the OS has
reason to believe that thisPAL is malfunctioning, it can terminate thePAL using the SKILL
instruction. SKILL causes a transition directly to the Done state.

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 120

Resume. �e untrusted OS invokes the SLAUNCH instruction on the desired CPU to re-
sume a PAL, again with the address of the PAL’s SECB. �e causes a transition from the
Suspend state to the Protect state.�e CPU signals thememory controller with the SECB’s
address, just as when Protect was reached from the initial Start state. �e memory con-
troller enables access to the PAL’s memory pages by removing the NONE status on the PAL’s
memory pages, setting them as accessible only to the CPU executing the PAL. �e memory
controller signals an error if these pages were in use by another CPU.�ememory controller
then signals the CPU that protections are in place. �eMeasured Flag is set, indicating that
thePAL has already beenmeasured, so the CPU reloads the suspended architectural state of
the PAL and directly resumes executing the PAL’s instruction stream, causing a transition
from the Protect to the Execute state.
Exit. While executing, thePAL can signal that it has completed execution with SFREE.�is
causes theCPU to send amessage to the TPM indicating that thePAL’s sePCR should transi-
tion to the Quote state. It is assumed that thePALhas already completed an application-level
state clear. �e CPU then performs a secure state clear of architectural and microarchitec-
tural state, and signals to the memory controller that this PAL has exited. �e memory
controller marks the relevant pages as available to the remainder of the system by transition-
ing them to the ALL state. �is CPU is now �nished executingPAL code, as indicated by the
transition to the Done state. It becomes available to the untrusted OS for use elsewhere.

4.6.7 Expected Impact

Here, we summarize the impact we expect our recommendations to have on Flicker applica-
tion performance. First, the improved memory isolation of PAL state allows truly concur-
rent execution of secure and legacy code, even on multicore systems. �us, PAL execution
no longer requires the entire system to grind to a halt.

With Flicker on existing hardware, a PAL yields by simply transferring control back to
the untrusted OS. Resume is achieved by executing late launch again. It is the responsibility
of the PAL to protect its own state before yielding, and to reconstruct the necessary state
from its inputs upon resume. Protecting state requires the use of the TPM Seal and Unseal
commands. An SKINIT on AMD hardware can take up to 177.52 ms (Figure 4.10), while
Seal requires 20-500ms and Unseal requires 290-900ms (Figure 4.11). �us, context switch-
ing into a PAL (which requires unsealing prior data) can take over 1000 ms, while context
switching out (which requires sealing the PAL’s state) can require 20-500 ms. Further, ex-
isting hardware has no facility for guaranteeing that a PAL can be preempted (to prevent it
from compromising system availability).

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 121

With our recommendations, we eliminate the use of TPM Seal and Unseal during con-
text switches and only require that the TPM measure the PAL once (instead of on every
context switch). We expect that an implementation of our recommendations can achieve
PAL context switch times on the order of those possible today using hardware virtualization
support, i.e., 0.6 µs on current hardware (Figure 4.20). �is reduces the overhead of context
switches by six orders of magnitude (from 200-1000 ms on current hardware) and hence
makes it signi�cantly more practical to switch in and out of a PAL.

Taken together, these improvements help make on-demand minimal TCB code execu-
tion with Flicker a practical and e�ective way to achieve secure computation on commodity
systems, while only requiring relatively minor changes in existing technology.

As an alternative to our recommended hardware modi�cations, we could instead con-
sider increasing the speed of the TPM and the bus through which it communicates with the
CPU.As shown in Section 4.5, the TPM is amajor bottleneck for e�cient Flicker applications
on current hardware. Increasing the TPM’s speed could potentially reduce the cost of using
the TPM to protect PAL state during a context switch, and similarly reduce the penalty of
using SKINIT during every context switch. However, achieving sub-microsecond overhead
comparable to our recommendations would require signi�cant hardware engineering of the
TPM, since many of its operations use a 2048-bit RSA keypair. Even with hardware support
to make the operations performant, the power consumed by such operations is wasteful,
since we can achieve superior performance with less power-intensive modi�cations.

4.6.8 Extensions

We discuss issues that our recommendations do not address, but that may be desirable in
future systems.
Multicore PALs. As presented, we o�er no mechanism for allocating more than one CPU
to a single PAL. First, it should be noted that a single application-level function that will
bene�t from multicore PALs can be implemented as multiple single-CPU PALs. However,
applications that require frequent communication between code running on di�erent CPUs
(e.g., for locks) may su�er from PAL launch, termination and context switching overheads.
To address this, a mechanism is needed to join a CPU to an existingPAL.�e join operation
adds the new CPU to the memory controller’s access control table for the PAL’s pages.
sePCRSets. As presented, we propose a one-to-one relationship between sePCRs andPALs.
It is a straightforward extension to group sePCRs into sets and bind a set of sePCRs to each
PAL. �e TPM operations that accept an sePCR as an argument will need to be modi�ed
appropriately. Some will be indexed by the sePCR set itself (e.g., SLAUNCH will need to

CHAPTER 4. ON-DEMAND SECURE CODE EXECUTION 122

cause all sePCRs in a set to reset), some by a subset of the sePCRs in a set (e.g., TPMQuote),
and others by the individual sePCRs inside a set (e.g., TPM Extend).
PAL Interrupt Handling. As presented, interrupts are disabled on the CPU executing a
PAL (expiry of the preemption timer does not cause a so�ware-observable interrupt to
the PAL). We believe that a PAL’s purpose should be to perform an application-speci�c
security-sensitive operation. As such, we recommend that a PAL not accept interrupts.
However, there may still be situations where it is necessary to receive an interrupt, e.g., in
future systems where a PAL requires human input from the keyboard. �us, a PAL should
be able to con�gure an Interrupt Descriptor Table to receive interrupts. However, this may
result in the PAL receiving extraneous interrupts. Routing only the interrupts the PAL is
interested in requires the CPU to reprogram the interrupt routing logic every time a PAL is
scheduled, which may create undesirable overhead or design complexity.

4.7 Summary

Flicker allows code to veri�ably execute with hardware-enforced isolation, while adding as
few as 250 lines of code to the application’s TCB. Given the correlation between code size
and bugs in the code, Flicker signi�cantly improves the security of the code it executes. New
desktopmachines already contain the hardware support necessary for Flicker, so widespread
Flicker-based applications can soon become a reality. We have also recommended changes
to the CPU,memory controller, and TPM that alleviate today’s dependence on computation-
ally expensive TPM operations to protect application state during context switches, and that
allow concurrent execution of secure and insecure code. As a result, our research brings a
Flicker of hope for securing commodity computers.

Chapter 5

Using Trustworthy Host-Based
Information in the Network

Why is it di�cult to improve network security? One culprit is the fact that network ele-
ments cannot trust information provided by the endhosts. Indeed, network elements o�en
waste signi�cant resources painstakingly reconstructing information that endhosts already
know. For example, a network-level Denial-of-Service (DoS) �lter must keep track of how
many packets each host recently sent, in order to throttle excessive sending. Researchers
have developed many sophisticated algorithms to trade accuracy for reduced storage over-
head [58, 204, 208], but they all amount to approximating information that can be precisely
and cheaply tracked by the sender! In other words, the �lter’s task could be greatly simpli-
�ed if each sender could be trusted to include its current outbound bandwidth usage in each
packet it sent.

Of course, the question remains: Is it possible to trust endhosts? Chapters 2-4 imply
that we can leverage the widespread deployment of commodity computers equipped with
hardware-based security enhancements to allow the network to trust some host-based infor-
mation. As such security features become ubiquitous, it is natural to ask if we can leverage
them to improve network security and e�ciency.

As an initial exploration of how endhost hardware security features can be used to im-
prove the network, we have designed a general architecture named Assayer. While Assayer
may not represent the optimal way to convey this information, we see it as a valuable �rst
step to highlight the various issues involved. For example, can we provide useful host-based
information while also protecting user privacy? Which cryptographic primitives are needed
to verify this information in a secure and e�cient manner? Our initial �ndings suggest that

123

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 124

improved endhost security can improve the security and e�ciency of the network, while
simultaneously reducing the complexity of in-network elements.

In the Assayer architecture, senders employ secure hardware to convince an o�-path
veri�er that they have installed a small code module that maintains network-relevant infor-
mation. A small protection layer enforces mutual isolation between the code module and
the rest of the sender’s so�ware, ensuring both security and privacy. Once authorized by a
veri�er, the code module can insert cryptographically-secured information into outbound
tra�c. �is information is checked and acted on by in-path �lters.

To evaluate the usefulness of trustworthy host-based information, we consider the ap-
plication of Assayer to three case studies: spam identi�cation, Distributed Denial-of-Service
(DDoS) mitigation, and super-spreader worm detection. We �nd that Assayer is well-suited
to aid in combating spam and can mitigate many (though certainly not all) network-level
DDoS attacks. In these two applications, Assayer can be deployed incrementally, since vic-
tims (e.g., email hosts or DDoS victims) can deploy Assayer �lters in conjunction with ex-
isting defenses. Legitimate senders who install Assayer will then see improved performance
(e.g., fewer emails marked as spam, or higher success in reaching a server under DDoS at-
tack). Legacy tra�c is not dropped but is processed at a lower priority, encouraging, but not
requiring, additional legitimate senders to install Assayer. Surprisingly, we �nd that while it
is technically feasible to use Assayer to combat super-spreader worms, such use would face
challenges when it comes to deployment incentives.

To better understand the performance implications of conveying host-based information
to the network, we implement a full Assayer prototype, including multiple protocol imple-
mentations. Our prototype employs trusted computing hardware (a TPM) that is readily
available in commodity hardware [88]. �e size of the protection layer on the client that pro-
tects code modules from the endhost (and vice versa) is minuscule (it requires 841 lines of
code), and the individual modules are even smaller. Our veri�er prototype can sustain 3300
client veri�cations per second and can handle bursts of up to 5700 clients/second. Generat-
ing and verifying annotations for outbound tra�c requires only a few microseconds for our
most e�cient scheme, and these annotations can be checked e�ciently. Even on a gigabit
link, we can check the annotations with a reasonable throughput cost of 3.7-18.3%, depending
on packet size.
Contributions. In this chapter, we make the following contributions: (1) We explore the
design of network mechanisms to leverage endhost-based computation and state to improve
application e�ciency, accuracy, and security. (2)We design an architecture to provide such
information securely and e�ciently. (3)We implement and evaluate the architecture.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 125

5.1 Problem De�nition

5.1.1 Architectural Goals

We aim to design an architecture to allow endhosts to share information with the network
in a trustworthy and e�cient manner. �is requires the following critical properties:
Annotation Integrity. Malicious endhosts or network elements should be unable to alter or
forge the data contained in message annotations.
Stateless In-Network Processing. To ensure the scalability of network elements that rely on
endhost information, we seek to avoid keeping per-host or per-�ow state on these devices.
If per-�ow state becomes feasible, we can use it to cache authentication information carried
in packets.
Privacy Preservation. We aim to leak no more user information than is already leaked in
present systems. In other words, we do not aim to protect the privacy of a user who visits
a website and enters personal information. However, some applications may require small
losses of user privacy. For example, annotating outbound emails with the average length
of emails the user sent in the last 24 hours leaks a small amount of personal information,
but it can signi�cantly decrease the probability that a legitimate sender’s email is marked
as spam [87]. We can provide additional privacy by only specifying this information at a
coarse granularity, e.g., “short”, “medium”, and “long”. Further research will be necessary to
determine whether people accept this tradeo�.
Incremental Deployability. While we believe that trustworthy endhost information would
be useful in future networks, we strive for a system that can bring immediate bene�t to those
who deploy it, regardless of others’ adoption status.
E�ciency. To be adopted, the architecture must not unduly degrade client-server network
performance. Furthermore, to prevent DoS attacks on the architecture’s components, they
must be capable of acting e�ciently.

5.1.2 Assumptions

Since we assume that our trusted so�ware and hardware components behave correctly, we
aim to minimize the size and complexity of our trusted components, since so�ware vulner-
abilities are correlated with code size [143], and smaller code is more amenable to formal
analysis. We assume that clients can perform hardware-based attestations. In this work,
we focus on TCG-based attestations, since TPMs are becoming ubiquitous in commodity
PCs [88]; however, other types of secure hardware are also viable (see Section 2.5). Finally,

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 126

we make the assumption that secure-hardware-based protections can only be violated with
local hardware attacks. We assume remote attackers cannot induce users to perform physical
attacks on their own hardware.

5.2 �e Assayer Architecture

With Assayer, we hope to explore the intriguing possibilities o�ered by the advent of im-
proved hardware security in endhosts. If endhosts can be trusted, how can we simplify and
improve the network? What techniques are needed to extend host-based hardware assurance
into the network? Can trust be veri�edwithout signi�cantly reducing network performance?
We examine these issues and more below.

Initially, we focus on the qualities needed to build a generic architecture for conveying
host-based information to the network, and hence our discussion is necessarily quite gen-
eral. However, we explore application-speci�c details, including deployment incentives in
Section 5.4.

5.2.1 Overview

Suppose a mail server wants to improve the accuracy of its spam identi�cation using host-
based information. For example, a recent study indicates that the average and standard de-
viation of the size of emails sent in the last 24 hours are two of the best indicators of whether
any given email is spam [87]. �ese statistics are easy for an endhost to collect, but hard for
any single mail recipient to obtain.

However, the mail server is faced with the question: how can it decide whether host-
provided information is trustworthy? Naively, the mail server might ask each client to in-
clude a hardware-based attestation (see Section 2.3) of its information in every email. �e
mail server’s spam �lter could verify the attestation and then incorporate the host-provided
information into its classi�cation algorithm. Any legacy tra�c arriving without an attesta-
tion could simply be processed by the existing algorithms. Unfortunately, checking attesta-
tions is time-consuming and requires interaction with the client. Even if this were feasible
for an email �lter, it would be unacceptable for other applications, such as DDoS mitigation,
which require per-packet checks at line rates.

�us, the question becomes: how can wemake the average case fast and non-interactive?
�e natural approach is to cryptographically extend the trust established during a single
hardware-based attestation over multiple outbound messages. �us, the cost of the initial
veri�cation is amortized over subsequent messages.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 127

Veri�er

Relying

Party
Client

3. A
tte

statio
n

4. Sender Token

5. Message +

 Annotation

{Setup

{Use

1. Client Policy
2. Veri�er Info

Figure 5.1: System Components. �e relying party (e.g., a mail server or an ISP) delegates the task of
inspecting clients to one or more veri�ers. It also con�gures one or more �lters with information about
the veri�ers. EveryT days, the client convinces a veri�er via an attestation that its networkmeasurement
modules satisfy the relying party’s policy. �e veri�er issues a Sender Token that remains valid for the
next T days. �e client can use the Sender Token to annotate its outbound messages (e.g., an annotation
for each email, �ow, or packet). �e �lter veri�es the client’s annotation and acts on the information in
the annotation. For example, the �lter might drop the message or forward it at a higher priority to the
relying party.

As a result, the Assayer architecture employs two distinct phases: an infrequent setup
phase in which the relying party (e.g., the mail server) establishes trust in the client, and
the more frequent usage phase in which the client generates authenticated annotations on
outbound messages (Figure 5.1).

�e relying party delegates the task of inspecting clients to one or more o�-path veri�er
machines. Every T days, the client convinces a veri�er that it has securely installed a trust-
worthy codemodule thatwill keep track of network-relevant information (Figure 5.2), such as
the number of emails recently sent, or the amount of bandwidth recently used. Section 5.2.2.1
considers how we can secure this information while still allowing the user to employ a com-
modity OS and preserving user privacy. Having established the trustworthiness of the client,
the veri�er issues a limited-duration Sender Token that is bound to the client’s code module.

During the usage phase, the client submits outboundmessages to its codemodule, which
uses the Sender Token to authenticate the message annotations it generates. �ese annota-
tions are then checked by one or more fast-path �lter middleboxes, which verify the anno-
tations and react accordingly. For instance, a relying party trying to identify spam might
feed the authenticated information from the �lter into its existing spam classi�cation algo-

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 128

rithms. Alternatively, a web service might contract with its ISP to deploy �lters on its ingress
links tomitigate DDoS attacks by prioritizing legitimate tra�c. If the tra�c does not contain
annotations, then the �lter treats it as legacy tra�c (e.g., DDoS �lters give annotated tra�c
priority over legacy tra�c).

5.2.2 Assayer Components

Wepresent the design decisions for each of Assayer’s components, saving the protocol details
for Section 5.2.3.

5.2.2.1 Clients

In this section, we consider the generic requirements for allowing clients to transmit trust-
worthy information to the network. We explore application-speci�c functionality and client
deployment incentives in our case studies (Section 5.4).
Client Architecture. At a high-level, we aim to collect trustworthy data on the client, despite
the presence of (potentially compromised) commodity so�ware. To accomplish this, a client
who wishes to obtain the bene�ts of Assayer can install a protective layer that isolates the
application-speci�c client modules from the rest of the client’s so�ware (Figure 5.2(a)). �ese
client modules could be simple counters (e.g., tracking the number or size of emails sent) or
more complex algorithms, such as Bayesian spam �lters. �e protective layer preserves the
secrecy and integrity of the module’s state, as well as its execution integrity. It also protects
the client’s other so�ware from a malicious or malfunctioning module. Untrusted code can
submit outbound tra�c to a module in order to obtain an authenticated annotation (see
Figure 5.2(b)).

How can a client convince the veri�er that it has installed an appropriate protective layer
and client module? With Assayer, the client can employ hardware-based attestation to prove
exactly that. When the veri�er returns a Sender Token, the protective layer invokes sealed
storage to bind the Sender Token to the attested so�ware state.�is can be combinedwith the
TPM’smonotonic counters to prevent state-replay attacks.�us, any change in the protective
layer or client module will make the Sender Token inaccessible and require a new attestation.

Designing the protective layer raises several questions. Howmuch functionality should it
provide? Should the client modules be able to learn about the client’s other so�ware? Should
the protective layer control the entire platform, or only enough to provide basic isolation?

WithAssayer, we chose to implement the protective layer as aminimal hypervisor (dubbed
MiniVisor) that contains only the functionality needed to protect the client modules from

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 129

Module
Module

Hardware

OS

App

1

App

2

MiniVisor
Module

OS
Module

1. Msg

2. Annotation

3. Message +

 Annotation

MiniVisor

(a) Client Con�guration (b) Annotation Generation

Figure 5.2: Client Operations. (a) �e client attests to the presence of a protective layer (MiniVisor)
that isolates modules from untrusted code (and vice versa) and from each other. �is allows the client to
attest to multiple relying parties without a reboot. (b) Untrusted code submits messages (e.g., email or
packets) to the modules to obtain authenticated annotations.

the client’s other so�ware (and vice versa). �is approach sacri�ces visibility into the client’s
so�ware state (e.g., a client module for web browsing cannot determine which web browser
the client is using), but protects user privacy from overly inquisitive client modules. Using
MiniVisor makes the Trusted Computing Base tiny (potentially fewer than 1,000 lines of
code – see Section 5.5) and reduces the performance impact on the client’s other so�ware.

In developingMiniVisor, we reject the use of a full-�edged OS [170] or even a VMM [45,
56] as protective layers. Such an approach would leak an excessive amount of information
about the client’s platform, and assuring the security of these larger code bases would be
di�cult.

Initially, it is tempting to give MiniVisor full control over the client’s network card, in
order to ensure that all tra�c can be examined by the clientmodules. However, this approach
would signi�cantly increase MiniVisor’s complexity, and it would be di�cult to ensure full
control over all outbound tra�c on all interfaces. Instead, we advocate the use of application-
speci�c incentives to convince the commodity so�ware to submit outbound tra�c to the
client modules. Since the resulting annotations are cryptographically protected for network
transmission, these protections will also su�ce while the annotations are handled by the
untrusted so�ware. In Section 5.4, we explore whether su�cient client incentives exist for a
variety of applications.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 130

ClientModules. Asmentioned above (and explored inmore detail in Section 5.4), we expect
Assayer to support a wide variety of client modules. While we have initially focused on
relatively simple modules, e.g., modules to track the size and frequency of emails sent, they
could potentially expand to performmore complex operations (e.g., Bayesian spam �ltering)
of interest to relying parties.

For global vantage applications, such as recording statistics on email volume, we expect a
single clientmodulewould be standardized and accepted bymultiple relying parties. MiniVi-
sor’s con�guration would ensure that the client only runs a single copy of the module to
prevent state-splitting attacks. �e module could be obtained and installed along with the
client’s application so�ware (e.g., email client). �e application (or a plugin to the applica-
tion) would then know to submit outbound emails to the module via MiniVisor.

For single relying party applications, such as DDoS prevention, a relying party may only
care about tracking statistics speci�c to itself. In this case, the relying partymay itself provide
an appropriate client module, for example, when the client �rst contacts the veri�er. �is
model highlights the importance of preserving user privacy, as we emphasized above. �e
client’s OS can submit packets to this module if and only if they are destined to the particular
relying party that supplied the client module.

5.2.2.2 Veri�ers

Veri�ers are responsible for checking that clients have installed a suitable version of MiniVi-
sor and clientmodule and for issuing Sender Tokens.�e exact deployment of veri�ers is ap-
plication and relying-party speci�c. We envision three primary deployment strategies. First,
a relying party could deploy its own veri�ers within its domain. Second, a trusted third party,
such as VeriSign or Akamai could o�er a veri�cation service to many relying parties. Finally,
a coalition of associated relying parties, such as a group of ISPs, might create a federation of
veri�ers, such that each relying party deploys a veri�er and trusts the veri�ers deployed by
the other relying parties.

In the last two of these scenarios, the veri�ers operate outside of the relying party’s direct
administrative domain. Even in the �rst scenario, the relying party may worry about the
security of its veri�er. To assuage these concerns, the relying party periodically requests a
hardware-based attestation from the veri�er. Assuming the attestation is correct, the relying
party establishes the key material necessary to create an authenticated channel between the
veri�ers and the �lters. On the veri�er, this keymaterial is bound (using sealed storage) to the
correct veri�er so�ware con�guration. �e limited duration of the veri�er’s key material is a
performance optimization that bounds the length of revocation lists thatmust bemaintained
to track misbehaving veri�ers.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 131

�e use of multiple veri�ers, as well as the fact that clients only renew their client tokens
infrequently (every T days), makes the veri�ers unlikely targets for Denial-of-Service (DoS)
attacks, since a DoS attacker would need to �ood many veri�ers over an extended time (e.g.,
a week or a month) to prevent clients from obtaining tokens.

Any distributed and well-provisioned set of servers could enable clients to locate the
veri�ers for a given relying party. While a content distribution network is a viable choice,
we propose a simpler, DNS-based approach to ease adoption. Initially, each domain can
con�gure a well-known subdomain to point to the appropriate veri�ers. For example, the
DNS records for company.com would include a pointer to a veri�er domain name, e.g.,
verifier.company.com. �at domain name would then resolve to a distributed set of
IP addresses representing the server’s veri�er machines. While the DNS servers may them-
selves become victims ofDoS attacks, the static listing of veri�ermachines is relatively easy to
replicate, cache, and serve. Furthermore, if Assayer becomes ubiquitous, the global top-level
domain (gTLD) servers could be extended to store a veri�er record (in addition to the stan-
dard name server record) for each domain. �e gTLD servers are already well-provisioned,
since a successful attack on them would make many services unavailable.

5.2.2.3 Filters

Filters are middleboxes deployed on behalf of the relying party to act on the annotations
provided by the client. For instance, a spam �lter might give a lower spam score to an email
from a sender who has generated very little email recently. �ese �lters must be able to verify
client annotations e�ciently to prevent the �lters themselves from becoming bottlenecks. In
addition, to prevent an attacker from reusing old annotations, each �lter must only accept
a given annotation once. Section 5.6 shows that �lters can perform all of these duties at
reasonable speeds.

Filter deployment will be dictated by the application (discussed in more detail in Sec-
tion 5.4), as well as by the relying party’s needs and business relationships. For example, a
mail server might simply deploy a single �lter as part of an existing spam classi�cation tool
chain, whereas a web hosting company may contract with its ISP to deploy DDoS �lters at
the ISP’s ingress links.

To enable �lters to perform duplicate detection, the client modules include a unique
nonce as part of the authenticated information in each annotation. Filters can insert these
unique values into a rotating Bloom Filter [30] to avoid duplication. Section 5.3 discusses the
e�ectiveness of this approach against replay attacks.

company.com
verifier.company.com

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 132

5.2.2.4 Relying Party

�e relying party (e.g., the operator of the mail or web server) must arrange for an appropri-
ate deployment of veri�ers and �lters. It may also periodically verify the correctness of its
veri�ers and issue fresh key material to them. If it detects that a veri�er is misbehaving, the
relying party can refuse to renew its keymaterial. In Section 5.2.3, we also describe additional
provisions to allow the relying party to actively revoke rogue veri�ers.

5.2.3 Protocol Details

Below, we enumerate desirable properties for the authorization scheme used to delegate ver-
ifying power to veri�ers, as well as that used by clients to annotate their outbound tra�c. We
then describe a scheme based on asymmetric cryptographic operations that achieves all of
these properties. Since asymmetric primitives o�en prove ine�cient, we showhow tomodify
the protocols to use e�cient symmetric cryptography, though at the cost of two properties.
Hybrid approaches of these two schemes are possible, but we focus on these two to explore
the extremes of the design space. In Section 5.6, we quantify their performance trade-o�s.

5.2.3.1 Desirable Properties

1. Limited Token Validity. Veri�er key material is only valid for a limited time period
and is accessible only to valid veri�er so�ware. Sender Tokens should have similar
restrictions.

2. Veri�er Accountability. Veri�ers should be held accountable for the clients they ap-
prove. �us one veri�er should not be able to generate Sender Tokens that appear to
originate from another veri�er.

3. Scalability in Filter Count.�e veri�er’s work, as well as the size of the Sender Token,
should be independent of the number of �lters.

4. Topology Independence. Neither the veri�er nor the sender should need to know
which �lter(s) will see the client’s tra�c. In many applications, more than one �l-
ter may handle the client’s tra�c, and the number may change over time. �us, the
sender’s token must be valid at any �lter operated by the same relying party. We feel
the bene�ts of this approach outweigh the potential for an adversary to use a single
Sender Token on multiple disparate paths to the server. Such duplicated packets will
be detected when the paths converge.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 133

V Knows KRP

V Launches so�ware CodeV . CodeV recorded in PCRs.
CodeV Generates {KV ,K−1

V }. Seals K−1
V to CodeV .

V Extends KV into a PCR.
RP → V Attestation request and a random nonce n
V → RP KV , TPM_Quote = PCRs, SignK−1

AIK
(PCRs||n), CAIK

RP Check cert, sig, n, PCRs represent CodeV and KV

RP → V Policy, SignK−1
RP

(Policy)

RP
∗→ Fi KV , SignK−1

RP
(KV)

Figure 5.3: Veri�er Attestation. V is the veri�er, RP the relying party, Fi the �lters, and CAIK a
certi�cate for the veri�er’s AIK. Section 2.3 has additional background on attestation.

5. Filter Independence. A �lter should not be able to generate Sender Tokens that are
valid at other �lters. �is prevents a rogue �lter from subverting other �lters.

6. Client and Filter Accountability. �e relying party should be able to distinguish be-
tween tra�c generated by a malicious client and that generated by a malicious �lter.
Otherwise, a rogue �lter can impersonate a sender.

5.2.3.2 Protocol Speci�cations

At a high-level, a�er verifying the trustworthiness of a veri�er, the relying party installs the
veri�er’s public key in each of the �lters. �e veri�er, in turn, assesses the trustworthiness
of clients. If a veri�cation is successful, the veri�er signs the client’s public key to create
a Sender Token. �e client includes this token in each annotated message, and the client
module generates annotations by signing its information (e.g., count of emails sent) using
the client’s private key. Below, we describe these interactions in more detail.
Veri�er Attestation. Before giving a veri�er the power to authorize client annotations, the
relying party must ascertain that the veri�er is in a correct, trusted state (Figure 5.3). It does
so via an attestation (Section 2.3). �e attestation convinces the relying party that the veri�er
is running trusted code, that only the trusted code has access to the veri�er’s private key, and
that the keypair is freshly generated. Since the veri�er token’s validity is limited, the relying
party periodically rechecks the veri�er’s correctness by rerunning the attestation protocol.

To prepare for an attestation, the veri�er launches trusted veri�er code.�is code ismea-
sured by the platform, and the measurement is stored in the TPM’s Platform Con�guration
Registers (PCRs). In practice (see Section 5.5), we use a late launch operation tomeasure and
execute a minimal kernel and the code necessary to implement the veri�er. �e veri�er code

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 134

C Launches so�ware CodeC . CodeC recorded in PCRs.
CodeC Generates {KC ,K−1

C }. Seals K−1
C to CodeC .

C Extends KC into a PCR.
C → V Token request
V → C Attestation request and a random nonce n
C → V Kc, TPM_Quote = PCRs, SignK−1

AIK
(PCRs||n), CAIK

V Check cert, sig, n, PCRs represent CodeC and KC

V → C TokenC =
[
IDV ,KC , expireC ,H(CAIK),

SignK−1
V

(V ||KC ||expireC ||H(CAIK))
]

Figure 5.4: Client Attestation. C is the client, CodeC is the MiniVisor protection layer from Sec-
tion 5.2.2.1. V is the veri�er, expireC is an expiration date for the sender’s token, and H is a crypto-
graphic hash function.

C → CodeC Tra�c contents p.
CodeC Processes p to produce digest d.
CodeC Generates a random nonce m.

CodeC → C AnnoteC = (m, d, SignK−1
C

(m||d))
C → RP p, TokenC , AnnoteC

Figure 5.5: Tra�c Annotation. C is the client, CodeC is the client module from Section 5.2.2.1 and
RP is the relying party. �e digest d represents the module’s summary of network-relevant information
about the client and/or tra�c. �e client sends the tra�c to the relying party, but it will be processed
along the way by one or more �lters.

generates a new public/private keypair and uses the TPM to seal the private key to the cur-
rent so�ware con�guration. �us, any change in the veri�er’s so�ware will make the private
key inaccessible.

A�er checking the veri�er’s attestation, the relying party instructs its �lters to accept the
veri�er’s new public key when processing annotated tra�c. Since the �lter is run by (or acts
on behalf of) the relying party, it can be con�gured with the relying party’s public key, and
thus verify the authenticity of such updates.
ClientAttestation. A similar process takes place when a client requests a Sender Token from
a veri�er (Figure 5.4). �e client’s MiniVisor generates a keypair and attests to the veri�er
that the private key is bound to the client module and was generated recently. If the client’s
attestation veri�es correctly, the veri�er returns a Sender Token consisting of the veri�er’s
ID, the client’s public key, an expiration date, and the veri�er’s signature.
Tra�cAnnotation. To annotate outbound tra�c (e.g., an email or a packet), untrusted code
on the client asks the client module to produce an annotation (Figure 5.5). �e untrusted
code passes the tra�c’s contents to the clientmodule.�e clientmodule uses its internal state

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 135

1: if p contains TokenC , AnnoteC then
2: (IDV ,KC , expireC ,H, SigV)← TokenC

3: Verify SigV using KV .
4: Use expireC to check that TokenC has not expired.
5: (m, d, SigC)← AnnoteC

6: Verify SigC using KC .
7: Check that pair (KC ,m) is unique.
8: Insert (KC ,m) into Bloom Filter.
9: if All veri�cations succeed then
10: Accept d as an authentic annotation of p
11: else
12: Drop p
13: end if
14: end if

Figure 5.6: Filtering Annotations. Processing of tra�c contents p at a �lter.

to generate a digest d containing network relevant information about the tra�c and/or client;
i.e., it may indicate the average bandwidth used by the host, or the number of emails sent.
Note that for most applications, the digest will include a hash of the tra�c’s contents to bind
the annotation to a particular piece of tra�c. Finally, the module produces an annotation
that consists of a unique nonce, the digest, and the client’s signature. Untrusted code can
then add the client’s Sender Token and annotation to the outbound tra�c and send it to the
relying party.
Annotation Checking. Filters that receive annotated tra�c can verify its validity using the
�ltering algorithm shown in Figure 5.6. �e �lter uses the veri�er’s ID to look up the corre-
sponding public key provided by the relying party. It uses the key to verify the authenticity
and freshness of the client’s Sender Token. �e �lter may optionally decide to cache these
results to speed future processing. It then checks the authenticity and uniqueness of the an-
notation. It stores a record of the nonce to prevent duplication and accepts the validity of the
annotation’s digest if it passes all veri�cation checks. However, if an annotation’s veri�cation
checks fail, the �lter drops the tra�c. Legitimately generated tra�c will only fail to verify if
an on-path adversarymodi�es the tra�c. Such an adversary can also drop or alter the tra�c,
so dropping malformed tra�c does not increase the adversary’s ability to harm the client.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 136

5.2.3.3 A Symmetric Alternative

�e protocols shown above possess all of the properties described in Section 5.2.3.1. Unfor-
tunately, they require the client to compute a public-key signature for each item of tra�c sent
and the �lter to verify two public-key signatures per annotation. �e challenge is to improve
the e�ciency while retaining as many of the properties from Section 5.2.3.1 as possible.

At a high-level, instead of giving the veri�er’s public key to the �lters, we establish a
shared symmetric key between each veri�er and all of the �lters. Similarly, the client uses a
symmetric, rather than a public, key to authenticate its annotations.�e veri�er provides the
client with this key, which is calculated based on the symmetric key the veri�er shares with
the �lters, as well as the information in the client’s Sender Token. �is makes it unnecessary
for the veri�er to MAC the client’s token, since any changes to the token will cause the �lters
to generate an incorrect symmetric key, and hence to reject client’s annotations. We describe
these changes in more detail below.
Veri�er Attestation. �e last step of the protocol in Figure 5.3 is the only one that changes.
Instead of sending the veri�er’s public key to all of the �lters, the relying party generates
a new symmetric key KV F . �e relying party encrypts the key using the veri�er’s newly
generated public key and sends the veri�er the resulting ciphertext (EncryptKV

(KV F)).
Since the corresponding private key is sealed to the veri�er’s trusted code, the relying party
guarantees that the symmetric key is protected. �e relying party also encrypts the key and
sends it to each of the �lters, establishing a shared secret between the veri�er and the �lters.
Client Attestation. �e protocol shown in Figure 5.4 remains the same, except for two
changes. First, when the client sends its token request, it includes a randomly chosen client
identi�er IDC . Second, to create the client’s Sender Token, the veri�er �rst computes a sym-
metric key that the client uses to authorize annotations:

KCF = PRFKV F
(V ||IDC ||expireC), (5.1)

where PRF is a secure pseudo-random function. �e veri�er then sends the client:

EncryptKC
(KCF), T oken = (V, IDC , expireC).

�e attestation convinces the veri�er that K−1
C is bound to trusted code, i.e., only trusted

code can obtain KCF . Without knowing KV F , no one can produce KCF .
Tra�cAnnotation. Tra�c annotation is the same as before, except that instead of producing
a signature over the tra�c’s contents, the code module produces a Message Authentication
Code (MAC) using KCF , an operation that is orders of magnitude faster.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 137

Annotation Checking. �e algorithm for checking annotations remains similar. Instead
of checking the veri�er’s signature, the �lter regenerates KCF using Equation 5.1 and its
knowledge of KV F . Instead of verifying the client’s signature on the annotation, the �lter
uses KCF to verify the MAC. As a result, instead of verifying two public key signatures,
the �lter calculates one PRF application and one MAC, operations that are three orders of
magnitude faster.

�is scheme achieves the �rst four properties listed in Section 5.2.3.1, but it does not
provide properties 5 and 6. Since each veri�er shares a single symmetric key with all �lters,
a rogue �lter can convince other �lters to accept bogus annotations. We could prevent this
attack by having the relying party establish a unique key for each veri�er-�lter pair, but this
would violate another property. Either the veri�er would have to MAC the client’s Sender
Token using all of the keys it shares with the �lters (violating the fourth property), or the
veri�er would have to guess which �lters would see the client’s tra�c, violating our topology-
independence property.

Similarly, since the client and the �lter share a symmetric key, the relying party cannot
distinguish between malicious �lters and malicious clients. Nonetheless, since the relying
party’s operator controls the �lters, such risks should be acceptable in many applications,
given the dramatic performance bene�ts o�ered by the symmetric scheme.

5.2.4 User Privacy and Client Revocation

To encourage adoption, Assayer must preserve user privacy, while still limiting clients to
one identity per machine and allowing the relying party to revoke misbehaving clients. �e
Direct Anonymous Attestation (DAA) protocol [33] was designed to provide exactly these
properties. However, asmentioned in Section 2.3.3, available TPMsdonot yet implement this
protocol, so until DAA becomes available on TPMs (or whatever secure hardware forms the
basis for Assayer), Assayermust imperfectly approximate it using structuredAIK certi�cates.
We emphasize that this is a temporary engineering hack, not a fundamental limitation of
Assayer, since DAA demonstrates that we can achieve both privacy and accountability.

Recall from Section 2.3.3 that TPM-equipped clients sign attestations using randomly
generated attestation identity keys (AIKs). A Privacy CA issues a limited-duration certi�-
cate that vouches for the binding between an AIK and the original TPM Endorsement Key
(EK). With Assayer, clients obtain AIK certi�cates that specify that the AIK is intended for
communicating with a speci�c relying party. Using a di�erent AIK for each relying party
prevents the relying parties from tracking the client across sites. However, since all of the
AIKs are certi�ed by the same EK, they can all be bound to a single installation of MiniVi-
sor, preventing an attacker from using a separate MiniVisor for each destination.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 138

Of course, similar to issuing multiple DNS lookups using the same source IP address,
this approach allows the Privacy CA to learn that some client intends to visit a particular set
of relying parties. �e DAA protocol eliminates both this linkage and the reliance on the
Privacy CA.

To preserve user privacy with respect to a single relying party, the client can generate a
newAIK and request a new certi�cate from the Privacy CA. However, Privacy CAsmay only
simultaneously issue one AIK certi�cate per relying party per TPM EK.�us, a client could
obtain a 1-day certi�cate for an AIK, but it could not obtain another certi�cate for the same
relying party until the �rst certi�cate expires. �is prevents a client from generatingmultiple
simultaneous identities for communicating with a particular relying party.

Since each client token contains a hash of the client’s AIK certi�cate, if the relying party
decides a client is misbehaving, it can provide the hash to the Privacy CA and request that
the Privacy CA cease providing relying party-speci�c AIK certi�cates to the EK associated
with that particular AIK. �is would prevent the client from obtaining new AIKs for com-
munication with this particular relying party, though not for other relying parties. Similarly,
the relying party can instruct its veri�ers and �lters to cease accepting attestations and an-
notations from that AIK.

5.3 Potential Attacks

In this section, we analyze potential attacks on the generic Assayer architecture and show
how Assayer defends against them. We consider application-speci�c attacks in Section 5.4.

5.3.1 Exploited Clients

Code Replacement. An attacker may exploit code on remote, legitimate client machines. If
the attacker replaces MiniVisor or the client module with malware, the TPM will refuse to
unseal the client’s private key, and hence themalware cannot produce authentic annotations.
Without physical access to the client’s machine, the attacker cannot violate these hardware-
based guarantees.
Code Exploits. An adversary who �nds an exploit in trusted code (i.e., in MiniVisor or a
client module) can violate Assayer’s security. �is supports our argument that trusted client
code should be minimized as much as possible. Exploits of untrusted code are less problem-
atic. �e relying party trusts MiniVisor to protect the client module, and it trusts the client
module to provide accurate annotations. �us, the trusted client module will continue to
function, regardless of how the adversary exploits the untrusted code.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 139

Flooding Attacks. Since an attacker cannot subvert the annotations, she might instead
choose to �ood Assayer components with tra�c. As we explained in Section 5.2.2.2, the ver-
i�ers are designed to withstand DoS attacks, so �ooding them will be unproductive. Since
�lters must already check annotations e�ciently to prevent bottlenecks, �ooding the �lters
(with missing, invalid, or even valid annotations) will not hurt legitimate tra�c throughput.
AnnotationDuplication. SinceMiniVisor does not maintain control of the client’s network
interface, an attacker could ask the client module to generate an annotation and then repeat-
edly send the same annotation, either to the same �lter or to multiple �lters. Because each
authorized annotation contains a unique nonce, duplicate annotations sent to the same �l-
ter will be dropped. Duplicates sent to di�erent �lters will be dropped as soon as the tra�c
converges at a single �lter downstream. Section 5.5.4 discusses our Bloom Filter implemen-
tation for duplicate detection. Furthermore, duplicates are more likely to cause congestion
problems close to the victim (since those links tend to be smaller), but paths also tend to
converge close to the victim, minimizing the advantage of sending duplicate annotations.
Bypassing the Client Module. Since MiniVisor does not control the client’s network inter-
face, malicious so�ware need not submit outbound messages to the client module. Instead
of trying to lockdown the client’s communication channels, we rely on application-speci�c
incentives (see Section 5.4) to encourage both legitimate and malicious senders to obtain
proper annotations. For example, in some applications, �lters will drop messages that do
not contain annotations. In others (such as DDoSmitigation), simply prioritizing annotated
messages su�ces to improve the performance of legitimate clients, even ifmalicious so�ware
sends non-annotated tra�c.

5.3.2 Malicious Clients

Beyond the above attacks, an attackermight use hardware-based attacks to subvert the secure
hardware on machines she physically controls. For example, the adversary could physically
attack the TPM in her machine and extract its private keys. �is would allow her to create
a fake attestation, i.e., convince the veri�er that the adversary’s machine is running trusted
Assayer code, when it is not.

However, the adversary can only extract N TPM keys, where N is the number of ma-
chines in her physical possession. �is limits the attacker toN unique identities. Contacting
multiple veri�ers does not help, since sender identities are tracked based on their AIKs, not
on their Sender Tokens. As discussed in Section 5.2.4, at any moment, each TPM key corre-
sponds to exactly one AIK for a given relying party. Furthermore, to obtain a Sender Token
from the veri�er, the attacker must commit to a speci�c relying-party-approved client mod-

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 140

ule. If the attacker’s tra�c deviates from the annotations it contains, it can be detected, and
the attacker’s AIK for communicating with that relying party will be revoked. For example,
if the attacker’s annotations claim she has only sent X packets, and the relying party detects
that the attacker has sent more thanX packets, then the relying party knows that the client is
misbehaving and will revoke the AIK the client uses to communicate with this relying party
(see Section 5.2.4). Since the Privacy CAwill not give the attacker a second AIK for the same
relying party, this AIK can only be replaced by purchasing a new TPM-equipped machine,
making this an expensive and unsustainable attack.

5.3.3 Rogue Veri�ers

A rogue veri�er can authorize arbitrary clients to create arbitrary annotations. However, the
veri�er’s relatively simple task makes its code small and easy to analyze. �e attestation pro-
tocol shown in Figure 5.3 guarantees that the relying party only approves veri�ers running
the correct code. Since veri�ers are owned by the relying party or by someonewithwhom the
relying party has a contractual relationship, local hardware exploits should not be a concern.
Furthermore, since veri�ers cannot imitate each other (even in the symmetric authentica-
tion scheme), a relying party that detects unusual or incorrect tra�c coming from clients
approved by a veri�er can revoke that veri�er. Revocation can be performed by refusing to
renew the veri�er’s key material, or by actively informing the �lters that they should discard
the rogue veri�er’s public key.

5.3.4 Rogue Filters

A rogue �lter can discard or mangle annotated tra�c, or give priority to attack tra�c. How-
ever, since it sits on the path from the client to the relying party, a rogue �lter can already
drop or alter tra�c arbitrarily. In the asymmetric scheme (Section 5.2.3.2), a rogue �lter can-
not convince correct �lters to elevate attack tra�c, since it cannot generate correct veri�er
signatures necessary for the Sender Tokens. Similarly, a rogue �lter cannot frame a client,
since it cannot sign packets using the client’s private key. �e symmetric scheme trades o�
these properties in favor of greater e�ciency. Fortunately, since the �lters are directly admin-
istered by the relying party and perform a relatively simple task, rogue �lters should rarely
be a problem.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 141

Policy Creator
Recipient Network

Fo
cu
s Concentrated Spam DDoS

Di�use Spam Super Spreaders

Figure 5.7: Case Studies. Our case studies can be divided based on who determines acceptable policies
and how focused the attack tra�c is. For example, spammers can send a large amount of spam to one
recipient or a few spam messages to many recipients.

5.4 Case Studies

To evaluate the power of trustworthy host-based information, we consider the usefulness of
Assayer in three diverse applications (see Figure 5.7). For each application, we motivate why
Assayer can help, explain how to instantiate and deploy Assayer’s components, and consider
the motivations for clients to deploy the system. While we present evidence that Assayer-
provided information can help in each application, it is beyond the scope of this work to
determine the optimal statisticsAssayer should provide or the optimal thresholds that relying
parties should set.

5.4.1 Spam Identi�cation

Motivation. Numerous studies [34, 87, 162] suggest that spam can be distinguished from
legitimate email based on the sender’s behavior. For example, one study found that the time
between sending two emails was typically on the order of minutes [213], whereas the average
email virus or spammer generates mail at a much higher rate (e.g., in the Storm botnet’s
spam campaigns, the average sending rate was 152 spammessages per minute, per bot [115]).
Another study [87] found that the average and standard deviation of the size of emails sent
over the last 24 hours were two of the best indicators of whether any individual email was
spam.

�ese statistics can be di�cult to collect on an Internet-scale, especially since spammers
may adopt stealthy strategies that send only a few spam messages to each domain [162], but
still send a large amount of spam in aggregate. However, the host generating the email is in
an ideal position to collect these statistics.

Of course, host-based statistics are not su�cient to de�nitively identify spam, and they
may falsely suggest that legitimate bulk email senders are spammers. However, by combining
these statistics with existing spam classi�cation techniques [108, 162], we expect that spam
identi�cation can be signi�cantly improved for most senders.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 142

Instantiation. To aid in spam identi�cation, we can design a client module for annotating
outbound email with relevant statistics, e.g., the average size of all emails generated during
the last 24 hours. Each time the client generates a new email, it submits the email to the
client module. �e client module creates an authenticated annotation for the email with the
relevant statistics, which the untrusted client email so�ware can then add as an additional
email header.

�e relying party in this case would be the email recipient’s mail provider, which would
designate a set of veri�ers. �e �lter(s) could simply be added as an additional stage in the
existing spam identi�cation infrastructure. In other words, the �lter veri�es the email’s an-
notation and con�rms the statistics it contains. �ese statistics can then be used to assess
the probability that the message is spam. For example, an email from a sender who has not
generated any email in the last 24 hours may be less likely to be marked as spam.
Client Incentives. Legitimate clients with normal sending behavior will have an incentive
to deploy this system, since it will decrease the chance their email is marked as spam. Some
mail domains may even require endhosts to employ a system like Assayer before accepting
email from them.

Malicious clients may deploy Assayer, but either they will continue to send email at a
high rate, which will be indicated by the emails’ annotations, or they will be forced to reduce
their sending behavior to that of legitimate senders. While not ideal, this may represent a
substantial reduction in spam volume. Finally, malicious clients may send non-annotated
spam, but as more legitimate senders adopt Assayer, this will make spam more likely to be
identi�ed as such.

5.4.2 Distributed Denial-of-Service (DDoS) Mitigation

Motivation. Like spam, DDoS is an attack in which adversaries typically behave quite di�er-
ently from benign users. To maximize the e�ectiveness of a network-level attack, malicious
clients need to generate as much tra�c as possible, whereas a recent study indicates that
legitimate clients generate much less tra�c [31]. To con�rm this, we analyzed eight days
(135 GB of data representing about 1.27 billion di�erent connections) of �ow-level network
traces from a university serving approximately 9,000 users. If we focus, for example, on web
tra�c, we �nd that 99.08% of source IP addresses never open more than 6 simultaneous
connections to a given destination, and 99.64% never open more than 10. Similarly, 99.56%
of source IP addresses send less than 10 KBps of aggregate tra�c to any destination. �is is
far less than the client links permit (10-1000 Mbps). Since the traces only contain �ow-level
information, it is di�cult to determine whether the outliers represent legitimate ormalicious

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 143

tra�c. However, other application tra�c, such as for SSL or email, shows similar trends; the
vast majority of users generate very little outbound tra�c. �is suggests that it is indeed
possible to set relatively low thresholds to mitigate DDoS activity while leaving virtually all
legitimate users una�ected.

Assayer enables legitimate hosts to annotate their tra�c with additional information to
indicate that their tra�c is benign. For example, the client module might annotate each
packet to show the rate at which the client is generating tra�c. By prioritizing packets with
low-rate annotations, �lters ensure that, during DDoS attacks, legitimate tra�c will be more
likely to reach the server. A few non-standard legitimate clients may be hurt by this policy,
but the vast majority will bene�t. In the absence of a perfect solution, a utilitarian calculus
suggests this approach is worthwhile.

Of course, this approach will only prevent attackers from sending large �oods of tra�c
from each machine they control. �ey can still have each machine send a low rate of traf-
�c, and, if they control enough machines, the aggregate may be enough to overwhelm the
victim. Nonetheless, this will reduce the amount of tra�c existing botnets can use for at-
tack purposes and/or require attackers to build much larger botnets to have the same level
of e�ect on the victim.

Numerous other systems have been proposed to �ght DDoS. Packet capability systems,
such as TVA [215] could use Assayer to decide whether to provide a client with a capabil-
ity. Resource-based systems, such as Portcullis [155] or speak-up [206], attempt to rate-limit
clients or enforce equal behavior amongst clients using checkable resource consumption,
such as CPU or bandwidth. Assayer provides a more direct view into endhost behavior, but
relies on secure hardware to bootstrap its guarantees. Overlay systems such as SOS [107] and
Phalanx [50] use a large system of nodes to absorb and redirect attack tra�c. �is approach
is largely orthogonal to Assayer, though combining these two approaches could be promis-
ing. For example, Assayer could keep track of overlay-relevant statistics on the host, or help
provide per-client fair queuing within the overlay.
Instantiation. On the client, we modify the untrusted network stack to submit outbound
packets to the Assayer client module. �e client module generates an annotation indicating
the number or size of packets generated recently. In this case, the relying party is the server
the client is attempting to access (e.g., a website or so�ware update server). �e �lters can
prioritize annotated packets with “legitimate-looking” statistics over other tra�c. To avoid
hurting �ows destined to other servers, �lters give preference to annotated packets relative
to other packets destined to that same server. �is could be implemented via per-destination
fair-queuing, with the Assayer-enabled server’s queue giving priority to approved packets.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 144

Servert

ISPInternet

Figure 5.8: Filter Deployment. Initially, a server is likely to deploy a single �lter (F1) on its access link.
For a fee, an ISP may decide to deploy �lters (F2-F4) at its access links. �e server may also be able to
leverage �lters scattered around the Internet (F5-F7) if it has business relations with these entities.

To combat network-level DDoS attacks, we need to prioritize annotated packets as early
as possible, before they reach the server’s bottleneck. �e �lters must also be able to verify
packet annotations e�ciently at line rates to prevent the �lters themselves from becoming
bottlenecks. Section 5.6 shows that �lters can perform these duties at reasonable speeds.

We envision �lter deployment occurring in phases (see Figure 5.8), dictated by the server
operator’s needs and business relationships. Initially, to combat application-level attacks,
the server operator may simply deploy a single �lter in front of (or as a part of) the server.
However, to combat network-level attacks, the server’s operator may contract with its ISP
to deploy �lters at the ISP’s ingress links. Similar arrangements could be made with other
organizations around the network, depending on the business relationships available. In the
long run, �lters will likely become standardized, shared infrastructure that is deployed ubiq-
uitously. However, as we show in Section 5.6.4, partial deployment can provide signi�cant
protection from attacks.
Client Incentives. From the client’s perspective, the client proves that it is generating tra�c
at a moderate rate in exchange for elevated service from the network and server. �is makes
it more likely that the client can access the web services it desires, even during DDoS attacks.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 145

5.4.3 Super-Spreader Worm Detection

Motivation. A super-spreader worm exploits a host and then begins rapidly scanning hun-
dreds or even thousands of additional hosts for potential vulnerabilities. Again, studies show
that rapidly contacting multiple hosts, as such worms do, is quite unlike typical user behav-
ior [212]. While detecting such tra�c is relatively straightforward on an enterprise scale
(using tools such as NetFlow), detecting this behavior on an Internet scale is much more
challenging, since any individual monitor has only a limited view of an endhost’s behavior,
and the amount of tra�c sent to each host is so small (o�en no more than a single packet)
that it can be missed by sampling algorithms.

�ese observations have lead to the development of multiple algorithms [204, 208] for
trading detection accuracy for reduced state and processing overhead. However, ultimately,
the host generating the scanning tra�c is in the best position to detect this behavior, since
it can keep a perfectly accurate local count of how many hosts it has contacted, assuming
that the network can indeed trust the host’s count. While middleboxes might perform this
service in enterprise networks, home networks and small businesses are less likely to install
such additional hardware. An Assayer approach would also allow remote destinations to
verify that incoming packets do not constitute worm propagation. Nonetheless, deployment
issues remain, as we discuss below.
Instantiation. For this application, the client so�ware would again submit packets to the
clientmodule, which would produce annotations indicating the number of destinations con-
tacted in the last X minutes. �e relying party could be a backbone ISP hoping to avoid
worm-based congestion, or a stub ISPprotecting its clients fromworm infections. In-network
�lters can verify the authenticity of these annotations and drop or delay packets from hosts
that have contacted too many destinations recently. Like in the DDoS application, �lters
would need to be deployed at the edges of the relying party’s administrative domain and
would need to be able to verify annotations at line rate.
Client Incentives. While it is interesting to see that Assayer enables super-spreader worm
detection from a technical perspective, there are several challenges in incentivizing clients
and in dealing with non-annotated tra�c. �ese challenges suggest that, despite its technical
feasibility, Assayer may not be an optimal choice for this application.

While a next-generation clean-slate network could simply mandate the use of Assayer to
detect super-spreader worms, deploying Assayer in a legacy environment faces a bootstrap-
ping challenge. Unlike in the DDoS application, it is not su�cient to simply prioritize anno-
tated tra�c over non-annotated tra�c, since lower-priority tra�c will still spread the worm.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 146

Instead, non-annotated tra�c must be signi�cantly delayed or dropped to have a credible
chance of slowing or stopping worm propagation. However, in a legacy environment, ISPs
cannot slow or drop legacy tra�c until most users have started annotating their tra�c, but
users will not annotate their tra�c unless motivated to do so by the ISPs. A non-technical
approach would be to hold users liable for any damage done by non-annotated packets, thus
incentivizing legitimate users to annotate their packets. �is obviously raises both legal and
technical issues.

5.5 Implementation

To evaluate the e�ectiveness and performance of Assayer, we have developed a basic pro-
totype system. Because these are prototypes, they give rough upper-bounds on Assayer’s
performance impact, but considerable room for optimization remains.

We implemented MiniVisor along with appropriate client modules for our applications.
Our client so�ware can attest to MiniVisor’s presence, and these attestations are checked by
our veri�er prototype. We have implemented a basic �lter to verify annotations. To evaluate
Assayer’s performance at the packet level, we incorporated the �lter’s functionality into the
Click router [114]. We present our performance results in Section 5.6.

5.5.1 Client Architecture

We implemented the client con�guration shown in Figure 5.2 employing a tiny hypervisor
called MiniVisor that we developed using hardware-virtualization support available from
both AMD and Intel. We also evaluated using the Flicker architecture (see Chapter 4) to
protect the client module with an even smaller TCB, but we found that context switching
into and out of Flicker increased annotation generation time by 1-2 orders of magnitude, and
hence we decided it is not yet practical for performance critical applications. As discussed in
Section 4.6, hardware improvements are expected to make Flicker viable in these scenarios.

Since MiniVisor does not interact with any devices, we were able to implement it in 841
lines of code and still (as shown in Section 5.6) o�er excellent performance. It supports a
single hypercall that allows untrusted code to submit tra�c to a client module and receive
an annotation in return. MiniVisor’s implementation is similar in spirit to that of SecVi-
sor [174] and TrustVisor [130]. However, SecVisor focuses on kernel integrity protection,
while TrustVisor provides a much more general interface than MiniVisor.

We employ a late launch operation (recall Section 2.4.2) to simplify client attestations
by removing the early boot code (e.g., the BIOS and bootloader) from the set of trusted

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 147

code. When MiniVisor is late launched, it uses shadow page tables to isolate its own private
memory area and then boots the Linux kernel for normal client usage (since we employ
hardware virtualization, MiniVisor could equally well launch Windows instead). �e client
attestations consist of the protection layer (MiniVisor), a client module, and the fact that the
protection layer is con�gured to properly isolate the module.

For packet-based applications (e.g., DDoS mitigation and super-spreader detection), we
use Linux’s TUN/TAP interface1 to re-route outbound packets to a user-space program. �e
user-space program invokes MiniVisor’s hypercall to obtain an annotation and then routes
the packet back to the physical interface. �is con�guration simpli�ed development, but
it is less than optimal from a performance standpoint, since packets are passed across the
user-kernel space divide multiple times. Intercepting packets inside of a network driver or
kernel module would improve our performance. For these applications, adding annotations
to packets could potentially cause considerable packet fragmentation. To prevent this, we
reduce the MTU on the network interface facing untrusted code by the number of bytes in a
standard annotation. Of course, untrusted code can increase the MTU, but that will merely
hurt performance, not security.

5.5.2 Client Veri�cation

Regardless of the application, the client must be able to create an attestation that can be
checked by a veri�er. �us, we developed generic client so�ware to produce the attestations,
as well as a veri�er server program to check the attestations and produce client tokens. To-
gether, they implement the protocol shown in Figure 5.4. Since the code that allows the rely-
ing party to check veri�er attestations (Figure 5.3) is similar (and less performance-sensitive),
we describe and evaluate only the client attestation and veri�cation implementations.
Client Attestations. Before it can create an attestation, our client code �rst generates an AIK
and obtains an AIK certi�cate from a Privacy CA. To create an attestation, the client contacts
the veri�er and requests a nonce. Given the veri�er’s nonce, the client invokes a TPM_Quote
operation. It sends the veri�er the public key created by its code module, the contents of the
PCRs, the list of the code described by the PCRs, the TPM’s signature and the AIK certi�cate.
�e veri�er checks the validity of the certi�cate, veri�es the TPM’s signature, checks that the
nonce value is the same one it sent, and �nally checks to make sure the PCR values re�ect an
appropriate version and con�guration of MiniVisor. Assuming these checks pass, it returns
an appropriate Sender Token (we discuss the token components in more detail below).

1http://vtun.sourceforge.net/tun/

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 148

Unused(12)m(2)

Sig(50)

VID(1) CID(6)Len(2) Hash(12) E(2)

m(2)MAC(20) Unused(10)

Token

Annotation

Asymmetric Symmetric
Len(2) Hash(12) Sig(50)

VID(1)

KeyC (41)

E(2) Unused(20)

Figure 5.9: Token and Annotation Layout. Byte-level layout for Sender Tokens and tra�c anno-
tations. �e two are shown separately for clarity, but in practice, would be packed together. E is an
expiration date, and m is a randomly-chosen nonce.

Veri�er Implementation. Our veri�er prototype is implemented as a simple user-space
server program. �e implementation is based on a Unix/Linux preforked server library (sp-
procpool)2, and the client and the veri�er communicate using UDP. �e veri�er pre-forks
several worker processes and waits for client connections. When it receives a connection,
the veri�er passes this connection to an idle worker process. �e worker process chooses
a random nonce for the client and veri�es the resulting attestation. A more sophisticated
server architecture would undoubtedly improve our system’s performance, but this simple
prototype gives us a lower bound on a veri�er’s potential performance.

5.5.3 Tra�c Annotation

To evaluate their relative performance, we implemented both the asymmetric and symmetric
protocols for generating annotations (Section 5.2.3). Figure 5.9 illustrates the layout of the
Sender Tokens and tra�c annotations for each scheme.

With both schemes, we add the Sender Token and the annotation to the payload itself,
and then adjust the appropriate header �elds (length, checksum, etc.). �is provides com-
patibility with legacy network devices. �e tra�c recipient needs to remove this informa-
tion before handing the payload to applications, but this is simple to implement. Of course,
legacy tra�c will not contain annotations, and hence is easy to identify and handle in an
application-speci�c manner.

With the asymmetric scheme, we use elliptic curve cryptography to minimize the size
of the client’s public key, since it is included in the client’s Sender Token and hence requires
space in every packet. We use the secp160k1 curve [194], which provides approximately 80

2http://code.google.com/p/spprocpool/

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 149

bits of cryptographic strength. �e veri�er uses the elliptic curve version of the digital signa-
ture algorithm (ECDSA) to sign the client’s token, and the client also uses ECDSA to sign the
contents of authorized packets. In sum, the client’s token takes 108 bytes, and the annotation
requires 52 bytes.

With the symmetric scheme, if we use a 160-bit key with SHA1-HMAC (which remains
secure, despite recent collision attacks on SHA1), then the client’s token only requires 23
bytes, and the annotation requires 22 bytes.

5.5.4 Filter

We implemented the �lter’s functionality (Figure 5.6) both in userspace (for applications such
as spam �ltering), and as a module for the Click router [114] (for applications such as DDoS
mitigation and super-spreader detection). Both implementations check tra�c (either email
or packets) for an Assayer �ag in the header �elds. If present, the �lter checks the Sender
Token and the annotation, following the algorithm in Figure 5.6. If all checks succeed, the
packet is added to a priority queue.

With the asymmetric scheme, the �lter needs to verify both the veri�er’s ECDSA signa-
ture in the client’s token and the client’s ECDSA signature in the annotation. With the sym-
metric scheme, the �lter needs to generate the shared symmetric key and verify the client’s
SHA1-HMAC in the annotation.

To detect duplicate annotations, we use a Bloom Filter [30]. We only insert an annota-
tion into the Bloom Filter a�er verifying the Sender Token and the annotation. �e Bloom
Filter ensures that a valid annotation is unique in a given time period t with a bounded false
positive probability γ.

To illustrate this, suppose that the �lter receives N valid annotations/second, each ac-
companied by a valid Sender Token. If we useK di�erent hash functions, andN di�erent an-
notations are added into a BloomFilter ofM bits, then γ is approximately (1−e

−KN
M)K [30].

For network applications, suppose the �lter operates on a 1 Gbps link. In the worst case,
the �lter would receive n packets/sec, where n is the link’s capacity divided by the mini-
mum packet size, and all of these packets carry valid annotations. In the symmetric scheme,
n = 1, 262, 626 packets/second. �us, to limit the false positive probability to less than 1

106

per annotation, we need a 2MB Bloom Filter with 20 hash functions. Similar calculations
can be applied to less performance-intensive applications, such as spam identi�cation.

If we use public hash functions in our Bloom Filter, an adversary could use carefully
chosen inputs to pollute the Bloom Filter, i.e., use a few specially-cra�ed annotations to set
nearly all the bits in the Bloom Filter to 1. �is attack would dramatically increase the false

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 150

positive rate and break the duplicate detection.�us, we use a pseudorandom function (AES)
with a secret key known only to the �lter to randomize the input to the Bloom Filter. �us,
attackers cannot pollute the Bloom Filter with chosen input.

5.6 Evaluation

To identify potential performance bottlenecks in the Assayer architecture, we evaluated the
performance of each prototype component and compared our two authentication schemes.
In the interest of space, and since our spam detection application is far less latency-sensitive
than our packet-level applications (DDoS and worm mitigation), we focus our evaluation
on Assayer’s packet-level performance. We also developed an Internet-scale simulator to
evaluate how Assayer performs against DDoS attacks by large botnets.

We �nd that, as expected, the symmetric authentication scheme outperforms the asym-
metric scheme by 1–2 orders of magnitude. Using the symmetric scheme, MiniVisor’s per-
formance is quite close to native, with network overheads ranging from 0-11%. Our veri�er
can sustain about 3300 veri�cations/second, and the �lter can validate Assayer tra�c with
only a 3.7-18.3% decrease in throughput (depending on packet size). Finally, our simulations
indicate that even sparse deployments (e.g., at the victim’s ISP) of Assayer o�er strong DDoS
mitigation during large-scale attacks.

In our experiments, our clients and veri�er run on Dell Optiplex 755s, each equipped
with a 3 GHz Intel Core2 Duo and 2 GB of RAM. �e �lter has one 2.4 GHz Intel(R) Pen-
tium(R) 4 with 512 MB of memory. All hosts are connected via 1 Gbps links.

5.6.1 Client Veri�cation

We measure the time it takes a single client to generate an attestation and obtain a Sender
Token from a veri�er. We also evaluate howmany simultaneous clients our veri�er supports.

5.6.1.1 Client Latency

Since clients request new Sender Tokens infrequently (e.g., once a week), the latency of the
request is unlikely to be noticed during normal operation. Nonetheless, for completeness,
we measured this time using our prototype client and veri�er and found that the client takes
an average of 795.3 ms to obtain a Sender Token. �e vast majority (99.7%) of the time is
spent obtaining a quote from the TPM, since the quote requires the calculation of a 2048-bit
RSA signature on a resource-impoverished TPM processor. �e veri�er only spends a total

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 151

Annotation Size Symmetric Asymmetric
10 B 2.11 1166.40

100 B 3.15 1156.75
1,000 B 5.00 1154.20

10,000 B 27.20 1180.45
100,000 B 247.55 1396.40

1,000,000 B 2452.15 3597.95
10,000,000 B 24696.25 25819.75

Figure 5.10: Annotation Generation. Average time required to generate annotations using our sym-
metric and asymmetric protocols. All times are in microseconds.

of 1.75 ms processing the client’s request using the symmetric scheme and 3.58 ms using the
asymmetric scheme.

5.6.1.2 Veri�er�roughput

To test the throughput of the veri�er, we developed a minimal client program that requests
a nonce and responds with a pre-generated attestation as soon as the veri�er responds. �e
client employs a simple timeout-based retransmission protocol. We launch X clients per
second and measure the time it takes each client to receive its Sender Token. In our tests,
each of our 50 test machines simulates 20-500 clients.

In 10 trials, we found that a single veri�er using the symmetric scheme can serve a burst
of up to 5700 clients without any UDP retransmission, and can sustain an average rate of
approximately 3300 clients/second. With the asymmetric scheme, a veri�er can serve 3800
clients in a burst, and can sustain about 1600 clients/second. �is implies that our simple,
unoptimized veri�er prototype could, in a day, serve approximately 285 million clients with
the symmetric scheme and 138 million clients with the asymmetric scheme.

5.6.2 Client Annotations

With Assayer, clients must compute a signature or MAC for each annotation. Annotating
tra�c adds computational latency and reduces e�ective bandwidth, since each tra�c item
(e.g., email or packet) carries fewer bytes of application data.

Figure 5.10 summarizes the results of our microbenchmarks examining the latency of
generating annotations of various sizes. All results are the average of 20 trials. We expect
applications such as DDoS mitigation and super-spreader worm detection to require small
annotations (since the annotationmust �t in a packet), while spam identi�cationmay require
larger annotations.�e symmetric scheme’s performance is dominated by the cost of hashing

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 152

the annotation. With the asymmetric scheme, the performance for smaller annotations is
dominated by the time required to generate the ECDSA signature.�anks toMiniVisor’s use
of hardware support for virtualization, context switching to the client module is extremely
fast (approximately 0.5 µs).

For macrobenchmarks, since email is designed to be delay tolerant, we focus on quanti-
fying Assayer’s e�ect on packet-level tra�c. �us, we evaluate the e�ect of annotating each
outbound packet with the number of packets sent, along with a hash of the packet’s contents.
We �rst ping a local host (Ping L), as well as a host across the country (Ping R).�is quan-
ti�es the computational latency, since each ping only uses a single packet and bandwidth is
not an issue. We then fetch a static web page (8 KB) (Req L/R) and download a large (5 MB)
�le from a local web server and from a web server across the country (Down L/R). �ese
tests indicate the performance impact a user would experience during an average web ses-
sion. �ey require our client module to annotate the initial TCP handshake packets, the web
request, and the outbound acknowledgements. To quantify the impact of Assayer’s band-
width reduction, we also measure the time to upload a large (5 MB) �le (Up L/R).�is test
signi�cantly increases the number of packets the client module must annotate.

We performed the above experiments using both the asymmetric and the symmetric
schemes described in Section 5.2.3. Figure 5.11 summarizes our results. �ese results con-
�rm our suspicion that the symmetric scheme o�ers signi�cantly better performance than
the asymmetric scheme. �e symmetric scheme adds less than 12% overhead, even in the
worst-case tests that involve uploading a large �le. In many cases, the di�erence between the
symmetric scheme and native Linux is statistically insigni�cant. �e asymmetric scheme, on
the other hand, adds signi�cant overhead, though the e�ects are mitigated for remote hosts,
since round-trip times occupy a large portion of the test. We could reduce the overhead by
selecting a scheme that allows more e�cient signing, but this would increase the burden on
the �lters.

5.6.3 Filter�roughput

In order to evaluate the �lter’s throughput inspecting packet-level annotations, we use the
Netperf tools3 running on a clientmachine to saturate the �lter’s inbound linkwith annotated
packets. To compare our various schemes, we launch the Netperf TCP_STREAM test using
512-byte packets, which is close to the average packet size on the Internet [198]. We then
experiment with varying packet sizes.

3http://www.netperf.org

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 153

Native Linux Assayer Symmetric Assayer Asymmetric
Ping L 0.817±0.32 0.811±0.13 (-0.1%) 2.104±0.31 (+157.5%)
Ping R 11.91 ±1.90 11.99±3.24 (+0.1%) 14.03 ±3.67 (+17.8%)
Req L 3.129±0.03 3.48±0.26 (+11.3%) 12.27 ±4.18 (+292.1%)
Req R 45.83 ±12.3 44.07±6.93 (-0.4%) 51.35 ±12.1 (+12.0%)
Down L 1339. ±348 1427. ±382 (+6.6%) 2634. ±114 (+96.7%)
Down R 5874. ±1000 5884. ±990 (+0.2%) 6631. ±721 (+12.8%)
Up L 706.5 ±61.4 777.4 ±153 (+10.0%) 5147. ±177 (+628.5%)
Up R 3040. ±568 3078. ±1001 (+0.1%) 6234. ±961 (+105.1%)

Figure 5.11: Performance of Client Annotations: Symmetric vs. Asymmetric. L represents a local
request, andR represents a remote request. All times are shown inmilliseconds rounded to four signi�cant
�gures. Values in parentheses represent the change versus the native con�guration.

�roughput (Mbps) % of Click
Basic Click (user) 124 -
Sym Filter (user) 87 70.1%
AsymFilter (user) 2 1.7%
Basic Click (kernel) 225 -
Sym Filter (kernel) 154 68.4%
Sym Filter (kernel, no dup) 169 75.1%
Sym Filter (kernel, UMAC) 204 90.7%

Figure 5.12: Packet Filtering Performance. “User” and “kernel” denote user-level and kernel-level
mode. “Sym” and “asym” denote the symmetric scheme and the asymmetric scheme. “Basic Click” is the
basic click router which simply forwards each packet. “no dup” means no duplicate detection operations
are performed. All tests employ 512-byte packets.

In our experiments (Figure 5.12), we found that a user-level basic Click router, which
simply forwards all packets, could sustain a throughput of approximately 124 Mbps. A user-
level �lter implementing our symmetric annotation scheme has about 87 Mbps throughput,
while a �lter using the asymmetric scheme can only sustain approximately 2 Mbps.

By implementing the �lter as a Click kernel module, we improve the performance of the
�lter using the symmetric scheme to about 154 Mbps, while the performance of a kernel-
level basic Click router is approximately 225 Mbps. �e �lter using the symmetric scheme
performs two major operations: verifying packet annotations and detecting duplicate an-
notations (see Section 5.2.3.3). Eliminating the duplicate detection operation only slightly
improves the �lter’s throughput (up to 169 Mbps), which indicates that verifying the packet
annotation is the signi�cant performance bottleneck.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 154

To con�rm this, we modify our packet annotation implementation to use UMAC [116]
instead of SHA1-HMAC. UMAC is much faster than SHA1-HMAC if the key has been set
up, but with Assayer, a key is generated from the client’s token and set up for every packet.
�is would make UMAC slower than SHA1-HMAC. To improve UMAC’s performance, we
implement a key cache mechanism that only generates and sets up a UMAC key for the
�rst packet of every network �ow, since all of the packets in a network �ow will have the
same Sender Token. Measurements indicate that the average Internet �ow consists of ap-
proximately 20 packets [198]. Using this measurement as a rough estimate of our key cache’s
e�ectiveness, our �lter’s performance improves to 204 Mbps. �is represents a 9.3% perfor-
mance loss relative to a kernel-level basic Click router.

Finally, we vary the packet size used in our experiments. We �nd that our UMAC-based
symmetric �lter undergoes a 18.3% performance loss relative to Click when using 100 byte
packets, whereas it comes within 3.7% of Click when using 1500 byte packets.

5.6.4 Internet-Scale Simulation

Finally, to evaluate Assayer’s e�ectiveness for DDoS mitigation, we developed an Internet-
scale simulator. �e simulation’s topology was developed from the CAIDA Skitter probes of
router-level topology [37]. �e Skitter map forms a rooted tree at the trace source and spans
out to over 174,000 endpoints scattered largely uniformly around the Internet. We make
the trace source the victim of the DDoS attack and then randomly select 1,000 endpoints to
represent legitimate senders and 100,000 endpoints to represent attackers. We assume that
legitimate senders have obtained Sender Tokens, whereas the attackers simply �ood (since
�ooding with Sender Tokens will result in the revocation of the attacker’s keys – see Sec-
tion 5.2.4).

Since the Skitter map does not include bandwidth measurements, we use a simple band-
width model in which endhost uplinks have one tenth the capacity of the victim’s network
connection, while the rest of the links have ten times that capacity. �us, each endhost has a
small uplink that connects it to a well-provisioned core that narrows down when it reaches
the victim. Tomake these values concrete, senders have 10Mbps connections, the victim has
a 100 Mbps link, and the links in the middle of the network operate at 1 Gbps. As a result,
ten attackers can saturate the victim’s network connection. In our experiments, legitimate
senders make one request every 10 ms, while attackers �ood the victim with requests at their
maximum uplink capacity (i.e., 10 Mbps). Attackers are allowed to start sending until the
network is saturated (so that legitimate senders face the full brunt of the DDoS attack), and
then we measure how long it takes legitimate senders to contact the server.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 155

0.1 1 10
Time (s)

0

20

40

60

80

100
%

 S
uc

ce
ss

fu
l R

eq
ue

st

Full Deployment
ISP Deployment
No Deployment

Figure 5.13: Internet-Scale Simulations. Time for 1,000 senders to contact the server in the presence
of 100,000 attackers. Note that the X-axis is on a logarithmic scale.

We run our simulations with noAssayer deployment, with Assayer �lters deployed at the
victim’s ISP, and with ubiquitous (full) Assayer deployment. Figure 5.13 shows the amount
of time it takes legitimate senders to contact the server. With no deployment, less than 6%
of legitimate clients can contact the server, even a�er 10 seconds. With a full deployment of
Assayer, most clients contact the server within one RTT, which is unsurprising given that
legitimate tra�c enjoys priority over the attack tra�c throughout the network. However,
even with partial deployment at the victim’s ISP, more than 68% of legitimate clients succeed
in less than a second, and 95% succeed within 10 seconds, even in the face of a DDoS attack
by 100,000 endhosts.

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 156

5.7 Potential Objections

In this section, we consider potential objections to the notion of conveying endhost infor-
mation to the network.

5.7.1 Why Not Collect Information on the Local Router?

Onemight imagine that, instead of collecting statistics on the host, we could collect them on
the local router, which has almost as good a view of host behavior as the host itself. How-
ever, this would misalign resource and incentives. Compared to endhosts, routers tend to be
resource-impoverished and lack the secure hardware to convey information to remote par-
ties. Even if they had such hardware, it is much harder to decide how much tra�c a router
should be allowed to send. For example, a spam �lter might be able to develop a reasonable
model of how much email a normal user (represented by a single TPM-equipped machine)
might send [87], but it seems more challenging to model how much email a TPM-equipped
router might be expected to forward. Furthermore, a sender’s ISP has relatively little incen-
tive to help a remote destination �lter out spam, whereas the user has a strong incentive to
ensure her email is not marked as spam. Nonetheless, as we note in Section 5.8, we consider
the development of an ISP-based proxy to be an interesting direction for future work.

5.7.2 Is�is Really Deployable Incrementally?

Yes, in the sense that for many applications, once a single server deploys an Assayer �lter,
individual senders can upgrade to Assayer and immediately see bene�ts. For example, a
server concerned about DDoS can install an Assayer �lter. Any client that upgrades will see
its tra�c prioritized during an attack, whereas legacy clients (easily distinguished by the lack
of annotations) will notice the same degradation they would today, potentially incentivizing
them to upgrade as well. As discussed in Section 5.4.3, not all applications are structured this
way; one contribution of this work is to identify which applications will immediately bene�t
from an Assayer approach, and which face deployment challenges.

5.8 Summary

Many interesting and useful host-based properties are di�cult or expensive to calculate ex-
ternal to the host, but simple to obtain on the host itself. In this chapter, we show that the
growing ubiquity of trusted hardware on endhosts o�ers a powerful opportunity: a small

CHAPTER 5. USING TRUSTWORTHY HOST DATA IN THE NETWORK 157

amount of so�ware on the endhosts can be trusted to provide useful information to receivers
and network elements. Even local malware cannot interfere with the information provided.
�is approach enables fundamentally di�erent network securitymechanisms for confronting
network attacks such as spam, DDoS, and worms, since network �lters can make decisions
based on the host-supplied data.

Chapter 6

Veri�able Computing:
Secure Code Execution Despite
Untrusted So�ware and Hardware

Several trends are contributing to a growing desire to “outsource” computing from a (rel-
atively) weak computational device to a more powerful computation service. For years, a
variety of projects, including SETI@Home [10], Folding@Home [153], and the Mersenne
prime search [138], have distributed computations to millions of clients around the Internet
to take advantage of their idle cycles. A perennial problem is dishonest clients: end users
who modify their client so�ware to return plausible results without performing any actual
work [145]. Users commit such fraud even when the only incentive is to increase their rel-
ative ranking on a website listing. Many projects cope with such fraud via redundancy: the
same work unit is sent to several clients and the results are compared for consistency. Apart
from wasting resources, this provides little defense against colluding users.

A related fear plagues cloud computing, where businesses buy computing time from a
service, rather than purchasing and maintaining their own computing resources [6, 151].
Sometimes the applications outsourced to the cloud are so critical that it is imperative to rule
out accidental errors during the computation. Moreover, in such arrangements, the business
providing the computing services may have a strong �nancial incentive to return incorrect
answers, if such answers require less work and are unlikely to be detected by the client.

�e proliferation of mobile devices, such as smart phones and netbooks, provides yet
another venue in which a computationally weak device would like to be able to outsource a
computation, e.g., a cryptographic operation or a photo manipulation, to a third party and
yet obtain a strong assurance that the result returned is correct.

158

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 159

In all of these scenarios, the computations are performed on a remote machine over
which the user does not have physical control. Unable to guarantee the physical security
of these machines, the user cannot assume that they have not been physically attacked or
tampered with. �us, solutions such as Flicker (Chapter 4) will not su�ce, since they rely
on commodity components (such as the CPU, RAM, and TPM) that are not designed to be
tamper-proof (see Section 2.9.2). As a result, we require techniques that will be resilient to
malicious so�ware and hardware.

A key constraint is that the amount of work performed by the client to generate and
verify work instances must be substantially cheaper than performing the computation on its
own. It is also desirable to keep the work performed by the workers as close as possible to
the amount of work needed to compute the original function. Otherwise, the worker may
be unable to complete the task in a reasonable amount of time, or the cost to the client may
become prohibitive.
Contributions. In this chapter, we make the following contributions: (1)We formally de�ne
the notion of Veri�able Computing to capture the outsourcing of computation to a remote
party. (2)Wedesign a protocol that provablymeets these de�nitions, while providing asymp-
totically optimal performance (with regard to CPU and bandwidth) when amortized over
multiple function inputs. (3) We provide the �rst protocol that provides secrecy of inputs
and outputs in addition to veri�ability of the outputs.

6.1 Overview

Wede�ne the notion of aVeri�able Computation Scheme as a protocol between twopolynomial-
time parties, a client and a worker, to collaborate on the computation of a function F :
{0, 1}n → {0, 1}m. Our de�nition uses an amortized notion of complexity for the client: he
can perform some expensive pre-processing, but a�er this stage, he is required to run very
e�ciently. Since the preprocessing stage happens only once, it is important to stress that it
can be performed in a trusted environment where the weak client, who does not have the
computational power to perform it, outsources it to a trusted party (think of a military ap-
plication in which the client loads the result of the preprocessing stage performed inside the
military base by a trusted server, and then goes o� into the �eld where outsourcing servers
may not be trusted anymore – or think of the preprocessing phase as being executed on the
client’s home machine and then used by his portable device in the �eld).

By introducing a one-time preprocessing stage (and the resulting amortized notion of
complexity), we can circumvent the result of Rothblum and Vadhan [165], which indicated

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 160

that e�cient veri�able computation requires the use of probabilistically checkable proof
(PCP) constructions. In other words, unless some a substantial improvement in the e�-
ciency of PCP constructions is achieved, our model potentially allows much simpler and
more e�cient constructions than those possible in previous models.

More speci�cally, a veri�able computation scheme consists of three phases:
Preprocessing A one-time stage in which the client computes some auxiliary (public and

private) information associated with F . �is phase can take time comparable to com-
puting the function from scratch, but it is performed only once, and its cost is amor-
tized over all the future executions.

Input Preparation When the client wants the worker to compute F (x), it prepares some
auxiliary (public and private) information about x. �e public information is sent to
the worker.

Output Computation and Veri�cation Once the worker has the public information asso-
ciated withF and x, it computes a string πx which encodes the valueF (x) and returns
it to the client. From the value πx, the client can compute the value F (x) and verify
its correctness.

Notice that this is inherently a non-interactive protocol: the client sends a single message to
the worker and vice versa. �e crucial e�ciency requirement is that Input Preparation and
Output Veri�cation must take less time than computing F from scratch (ideally linear time,
O(n + m)). Also, the Output Computation stage should take roughly the same amount of
computation as F .

A�er formally de�ning the notion of veri�able computation, we present a veri�able com-
putation scheme for any computable function. Assume that the function F is described by
a Boolean circuit C . �en the Preprocessing stage of our protocol takes time O(|C|), i.e.,
time linear in the size of the circuit C that the client would have used to compute the func-
tion on its own. Apart from that, the client runs in linear time, as Input Preparation takes
O(n) time and Output Veri�cation takes O(m) time. Finally the worker takes time O(|C|)
to compute the function for the client. Our protocol also provides the client with input and
output privacy, a property not considered in previous work

�e computational assumptions underlying the security of our scheme are the security
of block ciphers (i.e., the existence of one-way functions) and the existence of a secure fully
homomorphic encryption scheme [68, 69] (more details below). �us, the security of our
scheme can be proven in the standard model (as opposed to Micali’s proofs [140] which
require the random oracle model).

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 161

Dynamic and Adaptive Input Choice. We note that in this amortized model of compu-
tation, Goldwasser et al.’s protocol [74] can be modi�ed using Kalai and Raz’s transforma-
tion [102] to achieve a non-interactive scheme (see [164]). However an important feature of
our scheme, that is not enjoyed by Goldwasser et al.’s protocol [74], is that the inputs to the
computation ofF can be chosen in a dynamic and adaptive fashion throughout the execution
of the protocol (as opposed to [74] where they must be �xed and known in advance).
Privacy. We also note that our construction has the added bene�t of providing input and
output privacy for the client, meaning that the worker does not learn any information about
x or F (x) (details below). �is privacy feature is bundled into the protocol and comes at no
additional cost. �is is a critical feature for many real-life outsourcing scenarios in which a
function is computed over highly sensitive data (e.g., medical records or trade secrets). Our
work therefore is the �rst to provide a weak client with the ability to e�ciently and veri�ably
o�oad computation to an untrusted server in such a way that the input remains secret.

Our Solution in a Nutshell. Our work is based on the crucial (and somewhat surpris-
ing) observation that Yao’s Garbled Circuit Construction [216, 217], in addition to providing
secure two-party computation, also provides a “one-time” veri�able computation. In other
words, we can adapt Yao’s construction to allow a client to outsource the computation of a
function on a single input. More speci�cally, in the preprocessing stage the client garbles the
circuit C according to Yao’s construction. �en in the “input preparation” stage, the client
reveals the random labels associated with the input bits of x in the garbling. �is allows the
worker to compute the random labels associated with the output bits, and from them the
client will reconstruct F (x). If the output bit labels are su�ciently long and random, the
worker will not be able to guess the labels for an incorrect output, and therefore the client is
assured that F (x) is the correct output.

Unfortunately, reusing the circuit for a second input x′ is insecure, since once the out-
put labels of F (x) are revealed, nothing can stop the worker from presenting those labels
as correct for F (x′). Creating a new garbled circuit requires as much work as if the client
computed the function itself, so on its own, Yao’s Circuits do not provide an e�cient method
for outsourcing computation.

�e second crucial idea of the paper is to combine Yao’s Garbled Circuit with a fully
homomorphic encryption system (e.g., Gentry’s recent proposal [69]) to be able to safely
reuse the garbled circuit for multiple inputs. More speci�cally, instead of revealing the labels
associated with the bits of input x, the client will encrypt those labels under the public key
of a fully homomorphic scheme. A new public key is generated for every input in order to
prevent information from one execution from being useful for later executions. �e worker

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 162

can then use the homomorphic property to compute an encryption of the output labels and
provide them to the client, who decrypts them and reconstructs F (x).

Since we use the fully-homomorphic encryption scheme in a black-box fashion, we an-
ticipate that any performance improvements in future schemes will directly result in similar
performance gains for our protocol as well.
OnePre-Processing Step forManyWorkers. Note that the pre-processing stage is indepen-
dent of the worker, since it simply produces a Yao-garbled version of the circuitC .�erefore,
in addition to being reused many times, this garbled circuit can also be sent to many di�er-
ent workers, which is the usage scenario for applications like Folding@Home [153], which
employ a multitude of workers across the Internet.
How to Handle Malicious Workers. In our scheme, if we assume that the worker learns
whether or not the client accepts the proof πx, then for every execution, a malicious worker
potentially learns a bit of information about the labels of the Yao-garbled circuit. For ex-
ample, the worker could try to guess one of the labels, encrypt it with the homomorphic
encryption and see if the client accepts. In a sense, the output of the client at the end of the
execution can be seen as a very restricted “decryption oracle” for the homomorphic encryp-
tion scheme (which is, by de�nition, not CCA secure). Because of this one-bit leakage, we
are unable to prove security in this case.

�ere are two ways to deal with this. One is to assume that the veri�cation output bit
by the client remains private. �e other is to repeat the pre-processing stage, i.e. the Yao
garbling of the circuit, every time a veri�cation fails. In this case, in order to preserve a good
amortized complexity, wemust assume that failures do not happen very o�en. �is is indeed
the case in the previous scenario, where the same garbled circuit is usedwith several workers,
under the assumption that only a small fraction of workers will be malicious. Details appear
in Section 6.5.

6.2 Cryptographic Background

6.2.1 Yao’s Garbled Circuit Construction

We summarize Yao’s protocol for two-party private computation [216, 217]. For more details,
we refer the interested reader to Lindell and Pinkas’ excellent description [124].

We assume two parties, Alice and Bob, wish to compute a function F over their private
inputs a and b. For simplicity, we focus on polynomial-time deterministic functions, but the
generalization to stochastic functions is straightforward.

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 163

g

wa wb

wz

wa wb wz

0 0 g(0,0)

0 1 g(0,1)

1 0 g(1,0)

1 1 g(1,1)

(a) (b)

wa wb wz

k0
a k0

b k
g(0,0)
z

k0
a k1

b k
g(0,1)
z

k1
a k0

b k
g(1,0)
z

k1
a k1

b k
g(1,1)
z

wa wb wz

k0
a k0

b Ek0
a
(Ek0

b
(kg(0,0)

z))

k0
a k1

b Ek0
a
(Ek1

b
(kg(0,1)

z))

k1
a k0

b Ek1
a
(Ek0

b
(kg(1,0)

z))

k1
a k1

b Ek1
a
(Ek1

b
(kg(1,1)

z))

(c) (d)

Figure 6.1: Yao’s Garbled Circuits. �e original binary gate (a) can be represented by a standard truth
table (b). We then replace the 0 and 1 values with the corresponding randomly chosen λ-bit values (c).
Finally, we use the values for wa and wb to encrypt the values for the output wire wz (d). �e random
permutation of these ciphertexts is the garbled representation of gate g.

At a high-level, Alice convertsF into a boolean circuitC . She prepares a garbled version
of the circuit, G(C), and sends it to Bob, along with a garbled version, G(a), of her input.
Alice and Bob then engage in a series of oblivious transfers so that Bob obtainsG(b)without
Alice learning anything about b. Bob then applies the garbled circuit to the two garbled
outputs to derive a garbled version of the output: G(F (a, b)). Alice can then translate this
into the actual output and share the result with Bob. Note that this protocol assumes an
honest-but-curious adversary model.

In more detail, Alice constructs the garbled version of the circuit as follows. For each
wire w in the circuit, Alice chooses two random values k0

w, k1
w

R← {0, 1}λ to represent the
bit values of 0 or 1 on that wire. Once she has chosen wire values for every wire in the circuit,
Alice constructs a garbled version of each gate g (see Figure 6.1). Let g be a gate with input
wires wa and wb, and output wire wz . We de�ne the garbled version G(g) of g to be the

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 164

following four ciphertexts:

γ00 = Ek0
a
(Ek0

b
(kg(0,0)

z)) (6.1)

γ01 = Ek0
a
(Ek1

b
(kg(0,1)

z)) (6.2)

γ10 = Ek1
a
(Ek0

b
(kg(1,0)

z)) (6.3)

γ11 = Ek1
a
(Ek1

b
(kg(1,1)

z)), (6.4)

where E is an secure symmetric encryption scheme with an “elusive range” (more details
below).�e order of the ciphertexts is randomly permuted to hide the structure of the circuit
(i.e., we shu�e the ciphertexts, so that the �rst ciphertext does not necessarily encode the
output for (0, 0)).

We refer to w0
z and w1

z as the “acceptable” outputs for gate g, since they are the only two
values that represent valid bit-values for the output wire. Given input keys kx

a , ky
b , we will

refer to w
g(x,y)
z as the “legitimate” output, and w

1−g(x,y)
z as the “illegitimate” output.

In Yao’s protocol, Alice transfers all of the ciphertexts to Bob, along with the wire values
corresponding to the bit-level representation of her input. In otherwords, she transfers either
k0

a if her input bit is 0 or k1
a if her input bit is 1. Since these are randomly chosen values, Bob

learns nothing about Alice’s input. Alice and Bob then engage in an oblivious transfer so
that Bob can obtain the wire values corresponding to his inputs (e.g., k0

b or k1
b). Bob learns

exactly one value for each wire, and Alice learns nothing about his input. Bob can then use
the wire values to recursively decrypt the gate ciphertexts, until he arrives at the �nal output
wire values. When he transmits these to Alice, she can map them back to 0 or 1 values and
hence obtain the result of the function computation.

6.2.2 �e Security of Yao’s Protocol

Lindell and Pinkas prove [124] that Yao is a secure two-party computation protocol under
some speci�c assumptions on the encryption scheme E used to garble the circuit. More
speci�cally the encryption function E needs:

• Indistinguishable ciphertexts for multiple messages: For every two vectors of messages
x̄ and ȳ, no polynomial time adversary can distinguish between an encryption of x̄

and an encryption of ȳ. Notice that because we require security for multiple messages,
we cannot use a one-time pad.

• An elusive range: Encryptions under di�erent keys fall into di�erent ranges of the ci-
phertext space (at least with high probability).

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 165

• An e�ciently veri�able range: Given the key k, it is possible to decide e�ciently if a
given ciphertext falls into the range of encryptions under k.

We give a formal de�nition of these properties. Recall that a private encryption scheme
is a pair of algorithms (E,D), the encryption and decryption algorithms respectively, that
run on input the security parameter λ, a random λ-bit key k, and λ-bit strings (the plaintext
and ciphertext, respectively). We use negli() to denote a negligible function of its input.

De�nition 1 We say that a private encryption scheme (E,D) is Yao-secure if the following
properties are satis�ed. Assume k ← {0, 1}λ:

• Indistinguishability of ciphertexts for multiple messages: For every e�cient adversary
A, and every two vectors of ciphertexts [x1, ..., x`] and [y1, ..., y`] (with ` = poly(λ)),
and ui = Ek(xi), zi = Ek(yi), we have that

|Prob[A[u1, . . . , u`] = 1]− Prob[A[z1, . . . , z`] = 1]| < negli(λ)

• Elusive Range: Let Rangeλ(k) = {Ek(x)}x∈{0,1}λ . For every e�cient adversary A we
require:

Prob[A(1λ) ∈ Rangeλ(k)] < negli(λ)

• E�ciently Veri�able Range:�ere exists an e�cient machineM such thatM(k, c) = 1
if and only if c ∈ Rangeλ(k).

Lindell and Pinkas show [124] that Yao’s garbled circuit technique, combined with a se-
cure oblivious transfer protocol, is a secure two-party computation protocol (for semi-honest
parties) if E is Yao-secure. �ey also show how to build Yao-secure encryption schemes
based on one-way functions.

6.2.3 Fully Homomorphic Encryption

A fully-homomorphic encryption scheme E is de�ned by four algorithms: the standard en-
cryption functions KeyGenE , EncryptE , and DecryptE , as well as a fourth function
EvaluateE . EvaluateE takes in a circuitC and a tuple of ciphertexts and outputs a cipher-
text that decrypts to the result of applying C to the plaintexts. A nontrivial scheme requires
that EncryptEand DecryptE operate in time independent of C [68, 69]. More precisely,
the time needed to generate a ciphertext for an input wire of C , or decrypt a ciphertext for
an output wire, is polynomial in the security parameter of the scheme (independent of C).
Note that this implies that the length of the ciphertexts for the output wires is bounded by
some polynomial in the security parameter (independent of C).

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 166

Gentry recently proposed a scheme, based on ideal lattices, that satis�es these require-
ments for arbitrary circuits [68, 69]. �e complexity of KeyGenE in his initial leveled
fully homomorphic encryption scheme grows linearly with the depth of C . However, under
the assumption that his encryption scheme is circular secure – i.e., roughly, that it is “safe"
to reveal an encryption of a secret key under its associated public key – the complexity of
KeyGenE is independent of C . See [23, 68, 69] for more discussion on circular-security
(and, more generally, key-dependent-message security) as it relates to fully homomorphic
encryption.

In this paper, we use fully homomorphic encryption as a black box, and therefore do not
discuss the details of any speci�c scheme.

6.3 Problem De�nition

At a high-level, a veri�able computation scheme is a two-party protocol in which a client
chooses a function and then provides an encoding of the function and inputs to the function
to a worker. �e worker is expected to evaluate the function on the input and respond with
the output. �e client then veri�es that the output provided by the worker is indeed the
output of the function computed on the input provided.

6.3.1 Basic Requirements

A veri�able computation scheme VC = (KeyGen,ProbGen,Compute,Verify) con-
sists of the four algorithms de�ned below.

1. KeyGen(F, λ) → (PK, SK): Based on the security parameter λ, the randomized
key generation algorithm generates a public key that encodes the target function F ,
which is used by the worker to compute F . It also computes a matching secret key,
which is kept private by the client.

2. ProbGenSK(x) → (σx, τx): �e problem generation algorithm uses the secret key
SK to encode the function input x as a public value σx which is given to the worker
to compute with, and a secret value τx which is kept private by the client.

3. ComputePK(σx) → σy : Using the client’s public key and the encoded input, the
worker computes an encoded version of the function’s output y = F (x).

4. VerifySK(τx, σy) → y ∪ ⊥: Using the secret key SK and the secret “decoding” τx,
the veri�cation algorithm converts the worker’s encoded output into the output of the

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 167

function, e.g., y = F (x) or outputs ⊥ indicating that σy does not represent the valid
output of F on x.

A veri�able computation scheme should be both correct and secure. A scheme is cor-
rect if the problem generation algorithm produces values that allows an honest worker to
compute values that will verify successfully and correspond to the evaluation of F on those
inputs. More formally:

De�nition 2 (Correctness) A veri�able computation schemeVC is correct if for any choice of
function F , the key generation algorithm produces a keypair (PK, SK)← KeyGen(F, λ)
such that, ∀x ∈ Domain(F), if (σx, τx)← ProbGenSK(x) and σy ← ComputePK(σx)
then y = F (x)← VerifySK(τx, σy).

Intuitively, a veri�able computation scheme is secure if a malicious worker cannot per-
suade the veri�cation algorithm to accept an incorrect output. In other words, for a given
function F and input x, a malicious worker should not be able to convince the veri�cation
algorithm to output ŷ such that F (x) 6= ŷ. Below, we formalize this intuition with an exper-
iment, where poly(·) is a polynomial.

Experiment ExpV erif
A [VC, F, λ]

(PK, SK) R← KeyGen(F, λ);
For i = 1, . . . , ` = poly(λ);

xi ← A(PK, x1, σ1, . . . , xi, σi);
(σi, τi)← ProbGenSK(xi);

(i, σ̂y)← A(PK, x1, σ1, . . . , x`, σ`);
ŷ ← VerifySK(τi, σ̂y)
If ŷ 6=⊥ and ŷ 6= F (xi), output ‘1’, else ‘0’;

Essentially, the adversary is given oracle access to generate the encoding ofmultiple prob-
lem instances.�e adversary succeeds if it produces an output that convinces the veri�cation
algorithm to accept on the wrong output value for a given input value. We can now de�ne
the security of the system based on the adversary’s success in the above experiment.

De�nition 3 (Security) For a veri�able computation scheme VC, we de�ne the advantage of
an adversary A in the experiment above as:

AdvV erif
A (VC, F, λ) = Prob[ExpV erif

A [VC, F, λ] = 1] (6.5)

A veri�able computation scheme VC is secure for a function F , if for any adversary A

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 168

running in probabilistic polynomial time,

AdvV erif
A (VC, F, λ) ≤ negli(λ) (6.6)

where negli() is a negligible function of its input.

In the above de�nition, we could have also allowed the adversary to select the function
F . However, our protocol is a veri�able computation scheme that is secure for all F , so the
above de�nition su�ces.

6.3.2 Input and Output Privacy

While the basic de�nition of a veri�able computation protects the integrity of the computa-
tion, it is also desirable that the scheme protect the secrecy of the input given to theworker(s).
We de�ne input privacy based on a typical indistinguishability argument that guarantees that
no information about the inputs is leaked. Input privacy, of course, immediately yields out-
put privacy.

Intuitively, a veri�able computation scheme is private when the public outputs of the
problem generation algorithm ProbGen over two di�erent inputs are indistinguishable;
i.e., nobody can decide which encoding is the correct one for a given input. More formally
consider the following experiment: the adversary is given the public key for the scheme and
selects two inputs x0, x1. He is then given the encoding of a randomly selected one of the
two inputs and must guess which one was encoded. During this process the adversary is
allowed to request the encoding of any input he desires. �e experiment is described below.
�e oraclePubProbGenSK(x) callsProbGenSK(x) to obtain (σx, τx) and returns only
the public part σx.

Experiment ExpPriv
A [VC, F, λ]

(PK, SK) R← KeyGen(F, λ);
(x0, x1)← APubProbGenSK(·)(PK)
(σ0, τ0)← ProbGenSK(x0);
(σ1, τ1)← ProbGenSK(x1);
b

R← {0, 1};
b̂← APubProbGenSK(·)(PK, x0, x1, σb)
If b̂ = b, output ‘1’, else ‘0’;

De�nition 4 (Privacy) For a veri�able computation scheme VC, we de�ne the advantage of
an adversary A in the experiment above as:

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 169

AdvPriv
A (VC, F, λ) = Prob[ExpPriv

A [VC, F, λ] = 1] (6.7)

A veri�able computation scheme VC is private for a function F , if for any adversary A

running in probabilistic polynomial time,

AdvPriv
A (VC, F, λ) ≤ negli(λ) (6.8)

where negli() is a negligible function of its input.

An immediate consequence of the above de�nition is that in a private scheme, the en-
coding of the input must be probabilistic (since the adversary can always query x0, x1 to the
PubProbGen oracle, and if the answer were deterministic, he could decide which input
is encoded in σb).

A similar de�nition can be made for output privacy.

6.3.3 E�ciency

�e �nal condition we require from a veri�able computation scheme is that the time to en-
code the input and verify the output must be smaller than the time to compute the function
from scratch.

De�nition 5 (Outsourceable) A VC can be outsourced if it permits e�cient generation and
e�cient veri�cation.�is implies that for anyx and anyσy , the time required forProbGenSK(x)
plus the time required forVerify(σy) is o(T), where T is the time required to compute F (x).

Some functions are naturally outsourceable (i.e., they can be outsourced with no ad-
ditional mechanisms), but many are not. For example, it is cheaper to verify the result of
sorting a list of numbers than to perform the sort itself. Similarly, it is cheaper to verify a
factorization than to �nd a factorization. However, a function that asks whether the factors
of a number fall in a particular range is not naturally outsourceable.

Notice that we are not including the time to compute the key generation algorithm (i.e.,
the encoding of the function itself). �erefore, the above de�nition captures the idea of an
outsourceable veri�able computation scheme which is more e�cient than computing the
function in an amortized sense, since the cost of encoding the function can be amortized
over many input computations.

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 170

6.4 An E�cient Veri�able-Computation Scheme with
Input and Output Privacy

6.4.1 Protocol De�nition

We are now ready to describe our scheme. Informally, our protocol works as follows. �e
key generation algorithm consists of running Yao’s garbling procedure over a Boolean cir-
cuit computing the function F : the public key is the collection of ciphertexts representing
the garbled circuit, and the secret key consists of all the random wire labels. �e input is en-
coded in two steps: �rst a fresh public/secret key pair for a homomorphic encryption scheme
is generated, and then the labels of the correct input wires are encrypted with it. �ese ci-
phertexts constitute the public encoding of the input, while the secret key is kept private by
the client. Using the homomorphic properties of the encryption scheme, the worker per-
forms the computation steps of Yao’s protocol, but working over ciphertexts (i.e., for every
gate, given the encrypted labels for the correct input wires, obtain an encryption of the cor-
rect output wire, by applying the homomorphic encryption over the circuit that computes
the “double decryption” in Yao’s protocol). At the end, the worker will hold the encryption of
the labels of the correct output wires. He returns these ciphertexts to the client who decrypts
them and then computes the output from them. We give a detailed description below.

Protocol VC.
1. KeyGen(F, λ) → (PK, SK): Represent F as a circuit C . Following Yao’s Circuit

Construction (see Section 6.2.1), choose two values, w0
i , w

1
i

R← {0, 1}λ for each wire
wi. For each gate g, compute the four “garbled” ciphertexts (γg

00, γ
g
01, γ

g
10, γ

g
11) de-

scribed in Equations 6.1-6.4. �e public key PK will be the full set of ciphertexts,
i.e., PK ← ∪g(γ

g
00, γ

g
01, γ

g
10, γ

g
11), while the secret key will be the wire values chosen:

SK ← ∪i(w0
i , w

1
i).

2. ProbGenSK(x) → σx: Run the doubly-homomorphic encryption scheme’s key
generation algorithm to create a new keypair: (PKE , SKE) ← KeyGenE(λ). Let
wi ⊂ SK be the wire values representing the binary expression of x. Set σx ←
(PKε,EncryptE(PKE , wi)) and τx ← SKE .

3. ComputePK(σx) → σy : Calculate EncryptE(PKE , γi). Construct a circuit ∆
that on inputw,w′, γ outputsDw(Dw′(γ)), whereD is the decryption algorithm cor-
responding to the encryptionE used inYao’s garbling (thus,∆ computes the appropri-
ate decryption inYao’s construction). CalculateEvaluateE(∆,EncryptE(PKE , wi),
EncryptE(PKE , γi)) repeatedly, to decrypt your way through the ciphertexts, just

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 171

as in the evaluation of Yao’s garbled circuit. �e result is σy ← EncryptE(PKε, w̄i),
where w̄i are the wire values representing y = F (x) in binary.

4. VerifySK(σy)→ y ∪ ⊥: Use SKE to decrypt EncryptE(PKε, w̄i), obtaining w̄i.
Use SK to map the wire values to an output y. If the decryption or mapping fails,
output⊥.

Remark: On verifying ciphertext ranges in an encrypted form. Recall that Yao’s scheme re-
quires the encryption scheme E to have an e�ciently veri�able range: Given the key k, it is
possible to decide e�ciently if a given ciphertext falls into the range of encryptions under
k. In other words, there exists an e�cient machine M such that M(k, γ) = 1 if and only if
γ ∈ Rangeλ(k). �is is necessary to “recognize” which ciphertext to pick among the four
ciphertexts associated with each gate.

In our veri�able computation scheme VC, we need to perform this check using an en-
crypted form of the key c = EncryptE(PKE , k). When applying the homomorphic prop-
erties of E to the range testing machine M , the worker obtains an encryption of 1 for the
correct ciphertext, and an encryption of 0 for the others. Of course he is not able to distin-
guish which one is the correct one.

�e worker then proceeds as follows: for the four ciphertexts γ1, γ2, γ3, γ4 associated
with a gate g, he �rst computes ci = EncryptE(PKE ,M(k, γi)) using the homomor-
phic properties of E over the circuit describing M . Note that only one of these ciphertexts
encrypts a 1, exactly the one corresponding to the correct γi. �en the worker computes
di = EncryptE(PKE , Dk(γi)) using the homomorphic properties of E over the decryp-
tion circuit ∆. Note that k′ = ΣiM(k, γi)Dk(γi) is the correct label for the output wire.
�erefore, the worker can use the homomorphic properties of E to compute

c = EncryptE(PKE , k′) = EncryptE(PKE ,ΣiM(k, γi)Dk(γi))

from ci, di, as desired.

6.4.2 Proof of Security

�e main result of our paper is the following.
�eorem 1 LetE be a Yao-secure symmetric encryption scheme and E be a semantically secure
homomorphic encryption scheme. �en protocol VC is a secure, outsourceable and private
veri�able computation scheme.

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 172

�e proof of �eorem 1 requires two high-level steps. First, we show that Yao’s garbled
circuit scheme is a one-time secure veri�able computation scheme, i.e. a scheme that can
be used to compute F securely on one input. �en, by using the semantic security of the
homomorphic encryption scheme, we reduce the security of our scheme (with multiple ex-
ecutions) to the security of a single execution where we expect the adversary to cheat.

6.4.2.1 Proof Sketch of Yao’s Security for One Execution

Consider the veri�able computation scheme VCY ao de�ned as follows:

Protocol VCY ao.

1. KeyGen(F, λ) → (PK, SK): Represent F as a circuit C . Following Yao’s Circuit
Construction (see Section 6.2.1), choose two values, w0

i , w
1
i

R← {0, 1}λ for each wire
wi. For each gate g, compute the four ciphertexts (γg

00, γ
g
01, γ

g
10, γ

g
11) described in

Equations 6.1-6.4. �e public key PK will be the full set of ciphertexts, i.e, PK ←
∪g(γ

g
00, γ

g
01, γ

g
10, γ

g
11), while the secret key will be the wire values chosen: SK ←

∪i(w0
i , w

1
i).

2. ProbGenSK(x) → σx: Reveal the labels of the input wires associated with x. In
other words, let wi ⊂ SK be the wire values representing the binary expression of x,
and set σx ← (PKε, wi). τx is the empty string.

3. ComputePK(σx) → σy : Compute the decryptions in Yao’s protocol to obtain the
labels of the correct output wires. Set σy to be these labels.

4. VerifySK(σy) → y ∪ ⊥: Use SK to map the wire values in σy to the binary repre-
sentation of the output y. If the mapping fails, output⊥.

�eorem 2 VCY ao is a correct veri�able computation scheme.

Proof of�eorem 2: �e proof of correctness follows directly from the proof of correctness
for Yao’s garbled circuit construction [124]. Using C and x̃ will produce a ỹ that represents
the correct evaluation of F (x).

We prove that VCY ao is a one-time secure veri�able computation scheme. �e de�ni-
tion of one-time secure is the same as De�nition 3 except that in experiment ExpV erif

A , the
adversary is allowed to query the oracle ProbGenSK(·) only once (i.e., ` = 1) and must
cheat on that input.

Intuitively, an adversary who violates the security of this scheme must either guess the
“incorrect” random value k1−yi

w for one of the output bit values representing y, or he must
break the encryption scheme used to encode the “incorrect” wire values in the circuit. �e

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 173

former happens with probability ≤ 1
2λ , i.e., negligible in λ. �e latter violates our security

assumptions about the encryption scheme. We formalize this intuition belowusing an hybrid
argument similar to the one used in [124].

�eorem 3 Let E be a Yao-secure symmetric encryption scheme. �en VCY ao is a one-time
secure veri�able computation scheme.

Proof of�eorem 3: Assume w.l.o.g. that the function F outputs a single bit (at the end of
the proof we show how to deal with the case of multiple-bit outputs). Assume a canonical
order on the gates in the circuit computing F , and let m be the number of such gates. Let
PK be the garbled circuit obtained by running KeyGen(F, λ).

Fix any adversaryA; we show that forA, the probability of successfully cheating is negli-
gible in λ, if the encryption schemeE is Yao-secure. We do this by de�ning a series of hybrid
experiments where we change the setting in which A is run, but in a controlled way: each
experiment in the series will be computationally indistinguishable from the previous one, if
the security of the encryption scheme holds. �e �rst experiment in the series isExpV erif

A .
In the last experiment, we will show that information-theoretically A can cheat only with
negligible probability, therefore proving that in order to cheat in the original experiment,
A must distinguish between two experiments in the series, and thus break the encryption
scheme.

We denote withH i
A[VC, F, λ], the ith hybrid experiment, run with an adversaryA, veri-

�able computation schemeVC, functionF and security parameterλ. All experiments output
a Boolean value, and therefore we can de�ne Advi

A(VC, F, λ) = Prob[H i
A[VC, F, λ] = 1].

De�ne

pb = Prob[A in ExpV erif
A [VCY ao, F, λ] outputs x s.t. F (x) = b]

Note that we can estimate these probabilities by running the experiment many times. Set β

to be the bit such that pβ ≥ pβ̄ . Notice that pβ ≥ 1/2.

Experiment H0
A[VCY ao, F, λ] : �is experiment is exactly like ExpV erif

A [VCY ao, F, λ] ex-
cept that when A queries ProbGen on the input x (recall that we are considering the
case where the adversary only submits a single input value and must cheat on that input),
the oracle selects a random1 x′ such that F (x′) = β and returns σx′ , where (σx′ , τx′) ←
ProbGenSK(x′). �e experiment’s output bit is set to 1 if A manages to cheat over input
x′, i.e. produces a valid proof for β̄ (and to 0 otherwise).

1 SinceF is a Boolean function, w.l.o.g. we can assume that we can e�ciently sample x′ such thatF (x′) = b.

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 174

Lemma 1 If E is a Yao-secure encryption scheme, then for all e�cient adversaries A we have
|Adv0

A(VCY ao, F, λ)−AdvV erif
A (VCY ao, F, λ)| ≤ negli(λ).

Proof of Lemma 1: �e Lemma follows from the security of Yao’s two-party computation
protocol [124].

Recall that in Yao’s protocol, two parties P1 and P2 want to compute a function F over
inputs x and y privately held respectively by P1 and P2, without revealing any information
about their inputs except the valueF (x, y). �e protocol goes as follows: P1 garbles a circuit
computing the function F , and gives to P2 the labels of his input x. Moreover, P1 and P2

engage in OT protocols to give P2 the labels of her input y, without revealing this input to
P1. �en P2 executes the circuit on his own and sends the output label to P1, who reveals
the output of the function F (x, y). Note that P1 sends his input labels in the clear to P2.
�e intuition is that P1’s input remains private since P2 can’t associate the labels with the bit
values they represent. �is intuition is formalized in the proof in [124].

�erefore, we reduce the indistinguishability of the initial hybrid experimentH0
A[VCY ao, F, λ]

and ExpV erif
A∗ [VCY ao, F, λ] to the security of Yao’s protocol. In other words, we show that

if there exists A such that

|Adv0
A(VCY ao, F, λ)−AdvV erif

A (VCY ao, F, λ)| > ε

with non-negligible ε, then we can learn some information aboutP1’s input with roughly the
same advantage.

Suppose we run Yao’s two-party protocol between P1 and P2 with the function F com-
puted over justP1’s input x′. We assume thatP1’s input is chosen with the right distribution2

(i.e. F (x′) = β). For any two values x, x′, with F (x) = F (x′), the security of Yao’s protocol
implies that no e�cient player P2 can distinguish if x or x′ was used.

We build a simulator S that plays the role of P2 and distinguishes between the two input
cases, with probability pβε, thus creating a contradiction.

�e protocol starts with P1 sending the garbled circuit PK and the encoding of his
input σx′ . �e simulator computes the label ` associated with the outputF (x′). At this point
the simulator engages A over the input PK , and A requests the encoding of an input x. If
F (x) 6= β the simulator tosses a random coin, and outputs the resulting bit. Notice however
that with probability pβ , F (x) = β = F (x′). In this case, the simulator providesA with the
encoding σx′ , and returns as its output the experiment bit.

2 We can assume this since the security of Yao’s protocol is for all inputs, so in particular for this distribution.

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 175

Notice that if x = x′ we are running ExpV erif
A [VCY ao, F, λ], while if x 6= x′ we are

running H0
A∗ [VCY ao, F, λ]. �erefore the simulator distinguishes between the two input

values exactly with probability pβε, therefore creating a contradiction.

Experiment H i
A[VCY ao, F, λ] for i = 1, . . . ,m: During the ith experiment the ProbGen

oracle still chooses a random value x′ to answerA’s query as inH0
A[VCY ao, F, λ]. �is value

x′ de�nes 0/1 values for all the wires in the circuit. We say that a labelwb for wirew is active
if the value of wire w when the circuit is computed over x′ is b. We now de�ne a family of
fake garbled circuits PKi

fake for i = 0, . . . ,m, as follows. For gate gj with j ≤ i, if wb is
the active label associated with its output wire w, then all four ciphertexts associated with
gj encrypt wb. For gate gj , with j > i, the four ciphertexts are computed correctly as in
Yao’s garbling technique, where the value encrypted depends on the keys used to encrypt it.
Notice that PK0

fake = PK since for all of the gates, the ciphertexts are computed correctly.
�e experiment’s output bit is still set to 1 if A manages to cheat over input x′, i.e. produces
a valid proof for β̄ (and to 0 otherwise).

Lemma 2 If E is a Yao-secure encryption scheme, then for all e�cient adversaries A we have
|Advi

A(VCY ao, F, λ)−Advi−1
A (VCY ao, F, λ)| ≤ negli(λ).

�is lemma is proven in [124], and we refer the reader to it for a full proof. Intuitively,
the lemma follows from the ciphertext indistinguishability of the encryption scheme E.

Lemma 3 Advm
A (VCY ao, F, λ) = 2−λ

Proof of Lemma 3: Recall that Advm
A (VCY ao, F, λ) is the probability that A manages to

cheat over input x′, i.e., to provide the incorrect output label. However, the view of A is
information-theoretically independent of that label, since the incorrect output label is inac-
tive and has not been encrypted in the garbled circuit PKm

fake. Since labels are chosen as
random λ-bit strings, the probability of guessing the incorrect output label is exactly 2−λ.

�is completes the proof of�eorem 3.

Remark: �is proof does not readily extend to the case of a function F with multiple output
bits, because in that case it might not be possible to sample an x which produces a speci�c
output (think of a one-way function F for example). However, notice that if the output is
n bits, then the value y computed by a successful cheating adversary must be di�erent from
F (x) in at least one bit. �us, at the beginning of the simulation, we can try to guess the bit
on which the adversary will cheat and then run the proof for the 1-bit case. Our guess will
be right with probability 1/n.

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 176

6.4.2.2 Proof of�eorem 1

�e proof of �eorem 1 follows from �eorem 2 and the semantic security of the homo-
morphic encryption scheme. More precisely, we show that if the homomorphic encryption
scheme is semantically secure, then we can transform (via a simulation) a successful ad-
versary against the full veri�able computation scheme VC into an attacker for the one-time
secure protocol VCY ao. �e intuition is that for each query, the labels in the circuit are en-
crypted with a semantically-secure encryption scheme (the homomorphic scheme), so mul-
tiple queries do not help the adversary to learn about the labels, and hence if he cheats, he
must be able to cheat in the one-time case as well.

Proof of �eorem 1: Let us assume for the sake of contradiction that there is an adver-
sary A such that AdvV erif

A (VC, F, λ) ≥ ε, where ε is non-negligible in λ. We use A to
build another adversary A′ which queries the ProbGen oracle only once, and for which
AdvV erif

A′ (VCY ao, F, λ) ≥ ε′, where ε′ is close to ε. �e details of A′ follow.
A′ receives as input the garbled circuitPK . It activatesAwith the same input. Let ` be an

upper bound on the number of queries thatAmakes to itsProbGen oracle. �e adversary
A′ chooses an index i at random between 1 and ` and continues as follows. For the jth query
by A, with j 6= i, A′ will respond by (i) choosing a random private/public key pair for the
homomorphic encryption scheme (PKj

E , SKj
E) and (ii) encrypting random λ-bit strings

under PKj
E . For the ith query, x, the adversary A′ gives x to its own ProbGen oracle

and receives σx, the collection of active input labels corresponding to x. It then generates a
random private/public key pair for the homomorphic encryption scheme (PKi

E , SKi
E), and

it encrypts σx (label by label) under PKi
E .

Oncewe prove the Lemma4below, we have our contradiction and the proof of�eorem 1
is complete

Lemma 4 AdvV erif
A′ (VCY ao, F, λ) ≥ ε′ where ε′ is non-negligible in λ.

Proof of Lemma4: �is proof also proceeds by de�ning, for any adversaryA, a set of hybrid
experimentsHk

A(VC, F, λ) for k = 0, . . . , `− 1. We de�ne the experiments below. Let i be
an index randomly selected between 1 and ` as in the proof above.

ExperimentHk
A(VC, F, λ) = 1]: In this experiment, we change theway the oracleProbGen

computes its answers. For the jth query:
• j ≤ k and j 6= i: �e oracle will respond by (i) choosing a random private/public
key pair for the homomorphic encryption scheme (PKj

E , SKj
E) and (ii) encrypting

random λ-bit strings under PKj
E .

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 177

• j > k or j = i: �e oracle will respond exactly as in VC, i.e. by (i) choosing a random
private/public key pair for the homomorphic encryption scheme (PKj

E , SKj
E) and

(ii) encrypting the correct input labels in Yao’s garbled circuit under PKj
E .

In the end, the bit output by the experimentHk
A is 1 if A successfully cheats on the ith input

and otherwise is 0. We denote withAdvk
A(VC, F, λ) = Prob[Hk

A(VC, F, λ) = 1]. Note that
• H0

A(VC, F, λ) is identical to the experiment ExpV erif
A [VC, F, λ], except for the way

the bit is computed at the end. Since the index i is selected at random between 1 and
`, we have that

Adv0
A(VC, F, λ) =

AdvV erif
A (VC, F, λ)

`
≥ ε

`

• H`−1
A (VC, F, λ) is equal to the simulation conducted by A′ above, so

Adv`−1
A (VC, F, λ) = AdvV erif

A′ (VCY ao, F, λ)

If we prove for k = 0, . . . , ` − 1 that experiments Hk
A(VC, F, λ) and Hk−1

A (VC, F, λ)
are computationally indistinguishable, that is for every A

|Advk
A(VC, F, λ)−Advk−1

A (VC, F, λ)| ≤ negli(λ) (6.9)

we are done, since that implies that

AdvV erif
A′ (VCY ao, F, λ) ≥ ε

`
− ` · negli(λ)

which is the desired non-negligible ε′.
But Eq. 6.9 easily follows from the semantic security of the homomorphic encryption

scheme. Indeed assume thatwe could distinguish betweenHk
A andHk−1

A , thenwe can decide
the following problem, which is easily reducible to the semantic security of E :

Security of E with respect to Yao Garbled Circuits: Given a Yao-garbled circuit PKY ao,
an input x for it, a random public key PKE for the homomorphic encryption scheme, a set of
ciphertexts c1, . . . , cn where n is the size of x, decide if for all i, ci = EncryptE(PKE , wxi

i),
wherewi is the ith input wire and xi is the ith input bit of x, or ci is the encryption of a random
value.

Now run experiment Hk−1
A with the following modi�cation: at the kth query, instead of

choosing a fresh random key for E and encrypting random labels, answer with PKE and

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 178

the ciphertexts c1, . . . , cn de�ned by the problem above. If ci is the encryption of a ran-
dom value, then we are still running experimentHk−1

A , but if ci = EncryptE(PKE , wxi
i),

then we are actually running experiment Hk
A. �erefore we can decide the Security of E

with respect to Yao Garbled Circuits with the same advantage with which we can distinguish
betweenHk

A andHk−1
A .

�e reduction of the Security of E with respect to Yao Garbled Circuits to the basic se-
mantic security of E is an easy exercise, and details will appear in the �nal version.

6.4.3 Proof of Input and Output Privacy

Note that for each oracle query the input and the output are encrypted under the homomor-
phic encryption scheme E . It is not hard to see that the proof of correctness above, easily
implies the proof of input and output privacy. For the one-time case, it obviously follows
from the security of Yao’s two-party protocol. For the general case, it follows from the se-
mantic security of E , and the proof relies on the same hybrid arguments described above.

6.4.4 E�ciency

�e protocol we have described meets the e�ciency goals outlined in Section 6.3.3. During
the preprocessing stage, the client performsO(|C|)work to prepare the Garbled Yao circuit.
For each invocation of ProbGen, the client generates a new keypair and encrypts one Yao
label for each bit of the input, which requires O(n) e�ort. �e worker computes its way
through the circuit by performing a constant amount of work per gate, so the worker takes
time linear in the time to evaluate the original circuit, namely O(|C|). Finally, to verify
the worker’s response, the client performs a single decryption and comparison operation for
each bit of the output, for a total e�ort ofO(m).�us, amortized overmany inputs, the client
performs O(n + m) work to prepare and verify each input and result.

6.5 How to Handle CheatingWorkers

Our de�nition of security (De�nition 3) assumes that the adversary does not see the output
of theVerify procedure run by the client on the value σ returned by the adversary.�eorem
1 is proven under the same assumption. In practice this means that our protocol VC is secure
if the client keeps the result of the computation private.

In practice, there might be circumstances where this is not feasible, as the behavior of
the client will change depending on the result of the evaluation (e.g., the client might refuse

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 179

to pay the worker). Intuitively, and we prove this formally below, seeing the result ofVerify

on proofs the adversary correctly Computes using the output of PubProbGen does
not help the adversary (since it already knows the result based on the inputs it supplied to
PubProbGen). But what if the worker returns a malformed response – i.e., something
for which Verify outputs ⊥. How does the client respond, if at all? One option is for the
client to ask the worker to perform the computation again. But this repeated request informs
the worker that its response was malformed, which is an additional bit of information that
a cheating worker might exploit in its e�ort to generate forgeries. Is our scheme secure in
this setting? In this section, we prove that our scheme remains secure as long as the client
terminates a�er detecting a malformed response. We also consider the interesting question
of whether our scheme is secure if the client terminates only a�er detecting k > 1malformed
responses, but we are unable to provide a proof of security in this setting.

Note that there is a real attack on the scheme in this setting if the client does not ter-
minate. Speci�cally, for concreteness, suppose that each ciphertext output by EncryptE
encrypts a single bit of a label for an input wire of the garbled circuit, and that the adversary
wants to determine the �rst bit wb1

11 of the �rst label (where that label stands in for unknown
input b1 ∈ {0, 1}). To do this, the adversary runs Compute as before, obtaining cipher-
texts that encrypt the bits w̄i of a label for the output wire. Using the homomorphism of
the encryption scheme E , it XORs wb1

11 with the �rst bit of w̄i to obtain w̄′
i, and it sends (the

encryption of) w̄′
i as its response. If Verify outputs⊥, then wb1

11 must have been a 1; other-
wise, it is a 0 with overwhelming probability. �e adversary can thereby learn the labels of
the garbled circuit one bit at a time – in particular, it can learn the labels of the output wire,
and therea�er generate a veri�able response without actually performing the computation.

Intuitively, one might think that if the client terminates a�er detecting k malformed re-
sponses, then the adversary should only be able to obtain about k bits of information about
the garbled circuit before the client terminates (using standard entropy arguments), and
therefore it should still be hard for the adversary to output the entire “wrong" label for the
output wire as long as λ is su�ciently larger than k. However, we are unable to make this
argument go through. In particular, the di�culty is with the hybrid argument in the proof of
�eorem 1, wherewe gradually transition to an experiment inwhich the simulator is encrypt-
ing the same Yao input labels in every round. �is experiment must be indistinguishable
from the real world experiment, which permits di�erent inputs in di�erent rounds. When
we don’t give the adversary information about whether or not its response was well-formed
or not, the hybrid argument is straightforward – it simply depends on the semantic security
of the FHE scheme.

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 180

However, if we do give the adversary that information, then the adversary can distinguish
rounds with the same input from rounds with random inputs. To do so, it chooses some
“random" predicate P over the input labels, such that P (w1

b1
, w2

b2
, . . .) = P (w1

b′1
, w2

b′2
, . . .)

with probability 1/2 if (b1, b2, . . .) 6= (b′1, b
′
2, . . .). Given the encryptions of w1

b1
, w2

b2
, . . .,

the adversary runs Compute as in the scheme, obtaining ciphertexts that encrypt the bits
w̄i of a label for the output wire, XORs (using the homomorphism) P (w1

b1
, w2

b2
, . . .) with

the �rst bit of w̄i, and sends (an encryption of) the result w̄′
i as its response. If the client is

making the same query in every round – i.e., the Yao input labels are the same every time –
then, the predicate always outputs the same bit, and thus the adversary gets the same response
(well-formed or malformed) in every round. Otherwise, the responses will tend to vary.

One could try to make the adversary’s distinguishing attack more di�cult by (for exam-
ple) trying to hide which ciphertexts encrypt the bits of which labels – i.e., via some form of
obfuscation. However, the adversary may de�ne its predicate in such a way that it “analyzes"
this obfuscated circuit, determines whether two ostensibly di�erent inputs in fact represent
the same set of Yao input labels, and outputs the same bit if they do. (It performs this analysis
on the encrypted inputs, using the homomorphism.) We do not know of any way to prevent
this distinguishing attack, and suspect that preventing it may be rather di�cult in light of
Barak et al.’s result that there is no general obfuscator [22].

Security with Veri�cation Access. We say that a veri�able computation scheme is secure with
veri�cation access if the adversary is allowed to see the result of Verify over the queries xi

he has made to the ProbGen oracle in ExpV erif
A (see De�nition 3).

Let VC† be like VC, except that the client terminates if it receives a malformed response
from the worker. Below, we show that VC† is secure with veri�cation access. In other words,
it is secure to provide the worker with veri�cation access (indicating whether a response was
well-formedor not), until theworker gives amalformed response. LetExpV erif†

A

[
VC†, F, λ

]
denote the experiment described in Section 6.3.1, with the obvious modi�cations.

�eorem 4 IfVC is a secure outsourceable veri�able computation scheme, thenVC† is a secure
outsourceable veri�able computation scheme with veri�cation access. If VC is private, then so
is VC†.

Proof of �eorem 4: Consider two games between a challenger and an adversary A. In
the real world game for VC†, Game 0, the interactions between the challenger and A are
exactly like those between the client and a worker in the real world – in particular, if A’s
response was well-formed, the challenger tells A so, but the challenger immediately aborts
if A’s response is malformed. Game 1 is identical to Game 0, except that when A queries

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 181

Verify, the challenger always answers with the correct y, whether A’s response was well-
formed or not, and the challenger never aborts. Let εi be A’s success probability in Game i.

First, we show that if VC is secure, then ε1 must be negligible. �e intuition is simple:
since the challenger always responds with the correct y, there is actually no information in
these responses, since A could have computed y on its own. More formally, there is an algo-
rithm B that breaks VC with probability ε1 by using A as a sub-routine. B simply forwards
communications between the challenger (now a challenger for the VC game) and A, except
that B tells A the correct y w.r.t. all of A’s responses. B forwards A’s forgery along to the
challenger.

Now, we show that ε0 ≤ ε1, from which the result follows. Let Emal be the event that A
makes a malformed response, and let Ef be the event that A successfully outputs a forgery
– i.e., where ExpV erif†

A [VC†, F, λ] outputs ‘1’. A’s success probability, in either Game 0 or
Game 1, is:

Prob[Ef] = Prob[Ef |Emal] · Prob[Emal] + Prob[Ef |¬Emal] · Prob[¬Emal] (6.10)

If A does not make a malformed response, then Games 0 and 1 are indistinguishable to
A; therefore, the second term above has the same value in Games 0 and 1. In Game 0,
Prob[Ef |Emal] = 0, since the challenger aborts. �erefore, ε0 ≤ ε1.

In practice �eorem 4 implies that every time a malformed response is received, the
client must re-garble the circuit (or, as we said above, make sure that the results of the veri�-
cation procedure remain secret). �erefore the amortized e�ciency of the client holds only
if we assume that malformed responses do not happen very frequently.

In some settings, it is not necessary to inform the worker that its response is malformed,
at least not immediately. For example, in the Folding@Home application [153], suppose the
client generates a new garbled circuit each morning for its many workers. At the end of the
day, the client stops accepting computations using this garbled circuit, and it (optionally)
gives the workers information about the well-formedness of their responses. (Indeed, the
client may reveal all of its secrets for that day.) In this setting, our previous security proof
clearly holds even if there are arbitrarily many malformed responses.

CHAPTER 6. SECURE CODE EXECUTION ON UNTRUSTED HARDWARE 182

6.6 Summary

We introduced the notion of Veri�able Computation as a natural formulation for the in-
creasingly common phenomenon of outsourcing computational tasks to untrusted workers.
In this environment, neither the so�ware nor the hardware can be trusted. We describe a
scheme that combines Yao’s Garbled Circuits with a fully-homomorphic encryption scheme
to provide extremely e�cient outsourcing, even in the presence of an adaptive adversary. As
an additional bene�t, our scheme maintains the privacy of the client’s inputs and outputs.

Chapter 7

Conclusion

Motivated by the trend of entrusting sensitive data and services to insecure computers, we
develop techniques that allow a user to extend her trust in one device in order to securely
utilize another device or service. A key constraint is our focus on commodity computers,
particularly the need to preserve the performance and features expected of such platforms.

Using a logical framework, we analyze the perils of establishing trust in a local computer
equipped with commodity (i.e., low-cost) security hardware and provide guidance on se-
lecting a mechanism that preserves security while minimizing changes to existing computer
designs. To make the results of such an interaction meaningful, we develop the Flicker ar-
chitecture for providing an on-demand, secure execution environment for security-sensitive
code. Building on recent improvements in commodity CPUs, Flicker provides strong isola-
tion, reporting, and state preservation for security sensitive code. Because it runs only on
demand, Flicker imposes zero overhead on non-security-sensitive code.

Given the ability to construct a secure environment on an individual endhost, we design
and evaluateAssayer, an architecture for e�ciently extending trust in such an environment to
elements in the network. We show howprotocols for a wide variety of applications, including
spam identi�cation, DDoSmitigation, andworm suppression, can bene�t from such trusted,
host-based information.

Finally, we show how a user can use a trusted local host to verify the results of compu-
tations entrusted to one or more remote workers who employ completely untrusted com-
modity hardware and so�ware. To formalize this situation, we de�ne the notion ofVeri�able
Computing and design the �rst protocol that supports the e�cient, non-interactive outsourc-
ing of arbitrary functions to such workers while guaranteeing the secrecy of the data and the
integrity of the results.

183

CHAPTER 7. CONCLUSION 184

Collectively, these techniques provide a secure foundation on which to build trusted sys-
tems worthy of handling security-sensitive data and services, without abandoning the per-
formance and features that initially drove the adoption of commodity computers.

Bibliography

All of the URLs listed here are valid as of April, 2010.
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-�ow integrity. In Proceed-

ings of the ACM Conference on Computer and Communications Security (CCS), pages
340–353, 2005. (Referenced on page 29.)

[2] B. Acohido and J. Swartz. Unprotected PCs can be hijacked in minutes. USA Today,
Nov. 2004. (Referenced on page 67.)

[3] Advanced Micro Devices. AMD64 architecture programmer’s manual. AMD Publi-
cation no. 24593 rev. 3.14, 2007. (Referenced on pages 23, 42, and 49.)

[4] W. Aiello, S. N. Bhatt, R. Ostrovsky, and S. Rajagopalan. Fast veri�cation of any re-
mote procedure call: Short witness-indistinguishable one-round proofs for NP. In
Proceedings of the International Colloquium on Automata, Languages and Program-
ming (ICALP), pages 463–474, 2000. (Referenced on page 51.)

[5] A. Alkassar, C. Stüble, and A.-R. Sadeghi. Secure object identi�cation or: Solving the
chess grandmaster problem. In Proceedings of the New Security Paradigm Workshow
(NSPW), 2003. (Referenced on page 57.)

[6] Amazon Web Services LLC. Amazon Elastic Compute Cloud. Online at http://
aws.amazon.com/ec2. (Referenced on page 158.)

[7] American Electronics Association. eHealth 101: Electronic medical records reduce
costs, improve care, and save lives. http://www.aeanet.org/publications/AeA_
CS_eHealth_EMRs.asp, Dec. 2006. (Referenced on page 15.)

[8] S. R. Ames, Jr. Security kernels: A solution or a problem? In Proceedings of the IEEE
Symposium on Security and Privacy, 1981. (Referenced on pages 4, 16, and 41.)

[9] D. P. Anderson. BOINC: A system for public-resource computing and storage. In
Proceedings of the IEEE/ACMWorkshop on Grid Computing, Nov. 2004. (Referenced
on page 92.)

185

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://www.aeanet.org/publications/AeA_CS_eHealth_EMRs.asp
http://www.aeanet.org/publications/AeA_CS_eHealth_EMRs.asp

BIBLIOGRAPHY 186

[10] D. P. Anderson, J. Cobb, E. Korpela,M. Lebofsky, andD.Werthimer. SETI@Home: An
experiment in public-resource computing. Communications of the ACM, 45(11):56–61,
2002. (Referenced on pages 74, 92, and 158.)

[11] R. Anderson. Cryptography and competition policy - issues with “Trusted Comput-
ing”. In Proceedings of the Workshop on Economics and Information Security, May
2003. (Referenced on page 23.)

[12] R. Anderson and M. Kuhn. Tamper resistance – a cautionary note. In Proceedings of
the USENIXWorkshop on Electronic Commerce, pages 1–11, July 1995. (Referenced on
page 58.)

[13] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A reliable bootstrap architecture. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 65–71, May 1997.
(Referenced on pages 31, 47, and 56.)

[14] ARM. ARM security technology. PRD29-GENC-009492C, 2009. (Referenced on
pages 23 and 48.)

[15] T. Arnold and L. van Doorn. �e IBMPCIXCC: A new cryptographic coprocessor for
the IBM eServer. IBM Journal of Research and Development, 48(3), 2004. (Referenced
on page 46.)

[16] J. Azema and G. Fayad. M-Shield mobile security technology: making wireless se-
cure. Texas Instruments Whitepaper. Available at http://focus.ti.com/pdfs/
wtbu/ti_mshield_whitepaper.pdf, Feb. 2008. (Referenced on pages 23 and 48.)

[17] L. Babai. Trading group theory for randomness. InProceedings of the ACMSymposium
on�eory of Computing (STOC), pages 421–429, 1985. (Referenced on page 51.)

[18] K.-H. Baek and S. Smith. Preventing the� of quality of service on open platforms. In
Proceedings of the IEEE/CREATE-NETWorkshop on Security and QoS in Communica-
tion Networks, Sept. 2005. (Referenced on page 54.)

[19] B. Balache�, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted Computing
Platforms – TCPA Technology in Context. Prentice Hall, 2003. (Referenced on page
59.)

[20] D. Balfanz. Access Control for Ad-hoc Collaboration. PhD thesis, Princeton University,
2001. (Referenced on page 90.)

[21] D. Balfanz, D. Smetters, P. Stewart, and H. C.Wong. Talking to strangers: Authentica-
tion in ad-hoc wireless networks. In Proceedings of the ISOC Symposium on Network

http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

BIBLIOGRAPHY 187

and Distributed System Security (NDSS), Feb. 2002. (Referenced on page 57.)

[22] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahay, S. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In Proceedings of CRYPTO, pages
1–18, 2001. (Referenced on page 180.)

[23] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message se-
curity. In Proceedings of EuroCrypt, 2010. (Referenced on page 166.)

[24] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, E. Kotsovinos, A. Mad-
havapeddy, R. Neugebauer, I. Pratt, and A. War�eld. Xen 2002. Technical Report
UCAM-CL-TR-553, University of Cambridge, Jan. 2003. (Referenced on page 72.)

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. War�eld. Xen and the art of virtualization. In Proceedings of the Symposium
on Operating Systems Principles (SOSP), 2003. (Referenced on pages 72 and 76.)

[26] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya. In-
centivizing outsourced computation. In Proceedings of the Workshop on Economics of
Networked Systems (NetEcon), pages 85–90, 2008. (Referenced on page 50.)

[27] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn. vTPM:
Virtualizing the trusted platformmodule. In Proceedings of the USENIX Security Sym-
posium, 2006. (Referenced on page 26.)

[28] D. J. Bernstein. Cache-timing attacks onAES. Online at http://cr.yp.to/papers.
html#cachetiming, Apr. 2005. (Referenced on page 72.)

[29] T. Beth and Y. Desmedt. Identi�cation tokens - or: Solving the chess grandmaster
problem. In Proceedings of CRYPTO, 1991. (Referenced on page 57.)

[30] B. Bloom. Space/time trade-o�s in hash coding with allowable errors. Communica-
tions of the ACM, 13(7), 1970. (Referenced on pages 131 and 149.)

[31] K. Borders and A. Prakash. Web tap: Detecting covert web tra�c. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS), Oct. 2004.
(Referenced on page 142.)

[32] S. Brands and D. Chaum. Distance-bounding protocols. In Proceedings of EuroCrypt,
1994. (Referenced on pages 57 and 65.)

[33] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS), Oct. 2004.
(Referenced on pages 40 and 137.)

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming

BIBLIOGRAPHY 188

[34] A. Brodsky and D. Brodsky. A distributed content-independent method for spam
detection. In Proceedings of the Workshop on Hot Topics in Understanding Botnets,
2007. (Referenced on page 141.)

[35] D. Brumley andD. Song. Privtrans: Automatically partitioning programs for privilege
separation. In Proceedings of the USENIX Security Symposium, 2004. (Referenced on
page 90.)

[36] D. Bruschi, L. Cavallaro, A. Lanzi, andM. Monga. Replay attack in TCG speci�cation
and solution. In Proceedings of the Annual Computer Security Applications Conference
(ACSAC), 2005. (Referenced on page 52.)

[37] CAIDA. Skitter. http://www.caida.org/tools/measurement/skitter/. (Ref-
erenced on page 154.)

[38] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the di�culty of so�ware-
based attestation of embedded devices. In Proceedings of the ACMConference on Com-
puter and Communications Security (CCS), 2009. (Referenced on page 50.)

[39] D. Challener, J. Ho�, R. Catherman, D. Sa�ord, and L. van Doorn. Practical Guide to
Trusted Computing. Prentice Hall, Dec. 2007. (Referenced on page 59.)

[40] D. Chaum and T. Pedersen. Wallet databases with observers. In Proceedings of
CRYPTO, 1992. (Referenced on page 50.)

[41] B. Chen and R. Morris. Certifying program execution with secure procesors. In Pro-
ceedings of the USENIX Workshop on Hot Topics in Operating Systems (HotOS), 2003.
(Referenced on page 47.)

[42] L. Chen and M. D. Ryan. O�ine dictionary attack on TCG TPM weak authorisation
data, and solution. In Proceedings of the Conference on Future of Trust in Computing,
2008. (Referenced on page 52.)

[43] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks are
realistic threats. In Proceedings of the USENIX Security Symposium, Aug. 2005. (Ref-
erenced on page 30.)

[44] X. Chen, T. Gar�nkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh,
J. Dwoskin, and D. R. K. Ports. Overshadow: A virtualization-based approach to
retro�tting protection in commodity operating systems. In Proceedings of the ACM
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), Mar. 2008. (Referenced on pages 42 and 72.)

http://www.caida.org/tools/measurement/skitter/

BIBLIOGRAPHY 189

[45] Y. Chen, P. England, M. Peinado, and B.Willman. High assurance computing on open
hardware architectures. Technical ReportMSR-TR-2003-20,Microso�Research,Mar.
2003. (Referenced on pages 42 and 129.)

[46] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only mem-
ory: Making adversaries stick to their word. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP), 2007. (Referenced on page 49.)

[47] D. D. Clark andD. R.Wilson. A comparison of commercial andmilitary security poli-
cies. In Proceedings of the IEEE Symposium on Security and Privacy, 1987. (Referenced
on page 45.)

[48] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure systems and its appli-
cation to trusted computing. In Proceedings of the IEEE Symposium on Security and
Privacy, 2009. (Referenced on page 52.)

[49] Department of Justice, Bureau of Statistics. Press release: Identity the� 2004. http://
bjs.ojp.usdoj.gov/content/pub/press/it04pr.cfm, Apr. 2006. (Referenced
on page 15.)

[50] C. Dixon, T. Anderson, and A. Krishnamurthy. Phalanx: Withstanding multimillion-
node botnets. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), Apr. 2008. (Referenced on page 143.)

[51] C. Dixon, A. Krishnamurthy, and T. Anderson. An end to the middle. In Hot Topics
in Operating Systems (HotOS), 2009. (Referenced on page 55.)

[52] C. Dwork, K. Nissim, M. Naor, M. Langberg, and O. Reingold. Succinct proofs for NP
and spooky interactions. Online at http://www.cs.bgu.ac.il/~kobbi/papers/
spooky_sub_crypto.pdf, Dec. 2004. (Referenced on page 51.)

[53] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. vanDoorn, S.W. Smith, and S.Weingart.
Building the IBM 4758 Secure Coprocessor. IEEE Computer, 2001. (Referenced on
page 32.)

[54] A. Einstein. On the electrodynamics of moving bodies. Annalen der Physik, 17:891–
921, 1905. (Referenced on page 65.)

[55] J.-E. Ekberg andM.Kylänpää. Mobile trustedmodule (MTM) - an introduction. Tech-
nical Report NRC-TR-2007-015, Nokia Research Center, 2007. (Referenced on pages
48 and 53.)

[56] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A trusted open

http://bjs.ojp.usdoj.gov/content/pub/press/it04pr.cfm
http://bjs.ojp.usdoj.gov/content/pub/press/it04pr.cfm
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf

BIBLIOGRAPHY 190

platform. IEEE Computer, 36(7):55–62, July 2003. (Referenced on pages 42 and 129.)

[57] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, andG. C. Necula. XFI: So�ware guards
for system address spaces. In Proceedings of the Symposium on Operating Systems De-
sign and Implementation (OSDI), Nov. 2006. (Referenced on pages 29 and 45.)

[58] C. Estan and G. Varghese. New directions in tra�c measurement and accounting.
ACM Transactions on Computer Systems, 21(3), 2003. (Referenced on page 123.)

[59] W.-C. Feng and T. Schluessler. �e case for network witnesses. In Proceedings of the
IEEE Workshop on Secure Network Protocols, Oct. 2008. (Referenced on page 55.)

[60] H. Finney. PrivacyCA. http://privacyca.com. (Referenced on page 39.)

[61] J. Franklin, M. Luk, A. Seshadri, and A. Perrig. PRISM: Enabling personal veri�cation
of code integrity, untampered execution, and trusted I/O or human-veri�able code
execution. Technical Report CMU-CyLab-07-010, CarnegieMellonUniversity, Cylab,
Feb. 2007. (Referenced on page 56.)

[62] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An inquiry into the nature and causes
of the wealth of internet miscreants. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), Nov. 2007. (Referenced on page 14.)

[63] T.Gar�nkel, B. Pfa�, J. Chow,M. Rosenblum, andD. Boneh. Terra: A virtualmachine-
based platform for trusted computing. In Proceedings of the Symposium on Operating
System Principles (SOSP), 2003. (Referenced on pages 18, 26, 27, 38, 42, and 45.)

[64] T. Gar�nkel, M. Rosenblum, and D. Boneh. Flexible OS support and applications
for Trusted Computing. In Proceedings of the USENIX Workshop on Hot Topics in
Operating Systems (HotOS), May 2003. (Referenced on page 54.)

[65] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and X. Zhang. Trustworthy
and personalized computing on public kiosks. In Proceedings of the Conference on
Mobile Systems, Applications, and Services (MobiSys), June 2008. (Referenced on pages
58 and 69.)

[66] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. �e digital distributed system
security architecture. In Proceedings of the National Computer Security Conference,
1989. (Referenced on pages 18, 23, 25, 26, 27, and 31.)

[67] R. Gennaro, C. Gentry, and B. Parno. Non-interactive veri�able computation: Out-
sourcing computation to untrusted workers. In Proceedings of CRYPTO, Aug. 2010.
(Referenced on page 20.)

http://privacyca.com

BIBLIOGRAPHY 191

[68] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. (Referenced on pages 160, 165, and 166.)

[69] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
ACM Symposium on the �eory of Computing (STOC), 2009. (Referenced on pages
20, 50, 160, 161, 165, and 166.)

[70] J. T. Gi�n, M. Christodorescu, and L. Kruger. Strengthening so�ware self-
checksumming via self-modifying code. In Proceedings of the Annual Computer Secu-
rity Applications Conference (ACSAC), Dec. 2005. (Referenced on pages 49 and 50.)

[71] H. Gobio�, S. Smith, J. Tygar, and B. Yee. Smart cards in hostile environments. In
Proceedings of the USENIXWorkshop on Electronic Commerce, July 1995. (Referenced
on page 47.)

[72] B. D. Gold, R. R. Linde, and P. F. Cudney. KVM/370 in retrospect. In Proceedings of
the IEEE Symposium on Security and Privacy, 1984. (Referenced on pages 4, 16, 41,
and 72.)

[73] K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to secure tunnel end-
points. In Proceedings of the ACM Workshop on Scalable Trusted Computing (STC),
2006. (Referenced on pages 38 and 85.)

[74] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive
proofs formuggles. In Proceedings of the ACM Symposium on the�eory of Computing
(STOC), 2008. (Referenced on pages 51 and 161.)

[75] S. Goldwasser, S. Micali, and C. Racko�. �e knowledge complexity of interactive
proof-systems. SIAM Journal on Computing, 18(1):186–208, 1989. (Referenced on
page 51.)

[76] P. Golle and I. Mironov. Uncheatable distributed computations. In Proceedings of the
RSA Conference, 2001. (Referenced on page 50.)

[77] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Uzun. Loud and clear:
Human-veri�able authentication based on audio. In Proceedings of the IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS), 2006. (Referenced
on page 57.)

[78] D. Grawrock. �e Intel Safer Computing Initiative: Building Blocks for Trusted Com-
puting. Intel Press, 2006. (Referenced on page 99.)

[79] D. Grawrock. Dynamics of a Trusted Platform. Intel Press, 2008. (Referenced on
pages 59 and 76.)

BIBLIOGRAPHY 192

[80] GSM Association. GSM mobile phone technology adds another billion connections
in just 30 months. GSMWorld Press Release, June 2006. (Referenced on page 23.)

[81] S. Gueron andM. E. Kounavis. Newprocessor instructions for accelerating encryption
and authentication algorithms. Intel Technology Journal, 13(2), 2009. (Referenced on
page 23.)

[82] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy. Not-a-bot: Improving
service availability in the face of botnet attacks. In Proceedings of the USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), 2009. (Referenced
on page 54.)

[83] S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Security evaluation
of scenarios based on the TCG’s TPM speci�cation. In Proceedings of the European
Symposium on Research in Computer Security (ESORICS), 2007. (Referenced on page
52.)

[84] V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation: a virtual machine
directed approach to trusted computing. In Proceedings of the Conference on Virtual
Machine Research, 2004. (Referenced on pages 30 and 45.)

[85] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks
on encryption keys. In Proceedings of the USENIX Security Symposium, 2008. (Ref-
erenced on page 58.)

[86] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. ACM
Transactions Information and System Security, 2(3), 1999. (Referenced on page 86.)

[87] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser. Detecting spammers with
SNARE: Spatio-temporal network-level automatic reputation engine. In Proceedings
of the USENIX Security Symposium, 2009. (Referenced on pages 125, 126, 141, and 156.)

[88] T. Hardjono and G. Kazmierczak. Overview of the TPM key management standard.
TCG Presentations: http://www.trustedcomputinggroup.org/resources/

overview_of_the_tpm_key_management_standard, Sept. 2008. (Referenced on
pages 23, 124, and 125.)

[89] Hewlett-Packard, Intel, Microso�, Phoenix, and Toshiba. Advanced con�guration
and power interface speci�cation. Revision 3.0b, Oct. 2006. (Referenced on page
106.)

http://www.trustedcomputinggroup.org/resources/overview_of_the_tpm_key_management_standard
http://www.trustedcomputinggroup.org/resources/overview_of_the_tpm_key_management_standard

BIBLIOGRAPHY 193

[90] S. Hohenberger and A. Lysyanskaya. How to securely outsource cryptographic com-
putations. In Proceedings of the IACR�eory of Cryptography Conference (TCC), 2005.
(Referenced on page 50.)

[91] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measurements andmitigation
of peer-to-peer-based botnets: A case study on storm worm. In Proceedings of the
USENIX Workshop on Large-Scale Exploits and Emergent �reats (LEET), Apr. 2008.
(Referenced on page 14.)

[92] J. Howell, J. R. Douceur, J. Elson, and J. R. Lorch. Leveraging legacy code to deploy
desktop applications on the web. In Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), Dec. 2008. (Referenced on page
14.)

[93] IBM. CCA basic services reference and guide for the IBM 4758 PCI and IBM 4764
PCI-X cryptographic coprocessors. 19th Ed., 2008. (Referenced on page 46.)

[94] Intel Corporation. Intel low pin count (LPC) interface speci�cation. Revision 1.1, Aug.
2002. (Referenced on page 98.)

[95] Intel Corporation. Intel trusted execution technology – measured launched environ-
ment developer’s guide. Document number 315168-005, June 2008. (Referenced on
pages 23, 42, 43, and 49.)

[96] N. Itoi. Secure coprocessor integration with Kerberos V5. In Proceedings of the
USENIX Security Symposium, 2000. (Referenced on page 53.)

[97] N. Itoi,W.A.Arbaugh, S. J. Pollack, andD.M.Reeves. Personal secure booting. InPro-
ceedings of the Australasian Conference on Information Security and Privacy (ACISP),
pages 130–144, July 2000. (Referenced on page 56.)

[98] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced integrity measurement
architecture. In Proceedings of the ACM Symposium on Access Control Models And
Technologies (SACMAT), 2006. (Referenced on page 45.)

[99] S. Jiang. WebALPS implementation and performance analysis. Master’s thesis, Dart-
mouth College, 2001. (Referenced on page 54.)

[100] S. Jiang, S. Smith, and K. Minami. Securing web servers against insider attack. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC), 2001.
(Referenced on pages 32, 46, and 90.)

[101] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type inference. In

BIBLIOGRAPHY 194

Proceedings of the USENIX Security Symposium, 2004. (Referenced on page 45.)

[102] Y. T. Kalai and R. Raz. Probabilistically checkable arguments. In Proceedings of
CRYPTO, 2009. (Referenced on page 161.)

[103] B. Kaliski and J. Staddon. PKCS #1: RSA cryptography speci�cations. RFC 2437, 1998.
(Referenced on page 95.)

[104] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn. A retrospec-
tive on the VAX VMM security kernel. IEEE Transactions on So�ware Engineering,
17(11):1147–1165, Nov. 1991. (Referenced on pages 4, 16, 41, and 72.)

[105] B. Kauer. OSLO: Improving the security of Trusted Computing. In Proceedings of the
USENIX Security Symposium, Aug. 2007. (Referenced on pages 44, 52, and 58.)

[106] R. Kennell and L. Jamieson. Establishing the genuinity of remote computer systems.
In Proceedings of the USENIX Security Symposium, 2003. (Referenced on pages 49
and 50.)

[107] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay services. In Pro-
ceedings of ACM SIGCOMM, 2002. (Referenced on page 143.)

[108] A. Khorsi. An overview of content-based spam �ltering techniques. Informatica,
31:269–277, 2007. (Referenced on page 141.)

[109] C. Kil, E. C. Sezer, A. Azab, P. Ning, and X. Zhang. Remote attestation to dynamic
system properties. In Proceedings of the IEEE/IFIP Conference on Dependable Systems
and Networks (DSN), 2009. (Referenced on pages 30 and 45.)

[110] J. Kilian. A note on e�cient zero-knowledge proofs and arguments (extended ab-
stract). In Proceedings of the ACM Symposium on�eory of computing (STOC), pages
723–732, 1992. (Referenced on page 51.)

[111] J. Kilian. Improved e�cient arguments (preliminary version). In Proceedings of
CRYPTO, pages 311–324, 1995. (Referenced on page 51.)

[112] D. Kilpatrick. Privman: A library for partitioning applications. In Proceedings of the
USENIX Annual Technical Conference, 2003. (Referenced on page 90.)

[113] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, M. Norrish, R. Kolanski, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal veri�cation of an OS kernel. In Proceedings of the ACM Symposium on Oper-
ating Systems Principles (SOSP), 2009. (Referenced on pages 16, 41, and 72.)

[114] E. Kohler. �e Click modular router. PhD thesis, MIT, Nov. 2000. (Referenced on

BIBLIOGRAPHY 195

pages 146 and 149.)

[115] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G.M.Voelker, V. Paxson, and S. Sav-
age. On the spam campaign trail. In Proceedings of the Workshop on Large-Scale Ex-
ploits and Emergent�reats, 2008. (Referenced on page 141.)

[116] E. T. Krovetz. UMAC: Message authentication code using universal hashing.
RFC 4418, Mar. 2006. (Referenced on page 154.)

[117] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. �e
Stanford FLASH multiprocessor. In Proceedings of the Symposium on Computer Ar-
chitecture, Apr. 1994. (Referenced on page 110.)

[118] P. Lang. Flash the Intel BIOS with con�dence. Intel Developer UPDATE Magazine,
Mar. 2002. (Referenced on page 70.)

[119] J. LeClaire. Apple ships iPods with Windows virus. Mac News World, Oct. 2006.
(Referenced on page 67.)

[120] R. B. Lee, P. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang. Architecture for protect-
ing critical secrets in microprocessors. In Proceedings of the International Symposium
on Computer Architecture (ISCA), June 2005. (Referenced on pages 47 and 56.)

[121] A. Leung, L. Chen, and C. J. Mitchell. On a possible privacy �aw in direct anonymous
attestation (DAA). In Proceedings of the Conference on Trust, 2008. (Referenced on
page 40.)

[122] D. Levin, J. R. Douceur, J. R. Lorch, and T.Moscibroda. TrInc: Small trusted hardware
for large distributed systems. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2009. (Referenced on page 49.)

[123] D. Lie, C. A. �ekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C. Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant so�ware. In Pro-
ceedings of the ACM Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2000. (Referenced on pages 47 and 74.)

[124] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party computation.
Journal of Cryptology, 22(2):161–188, 2009. (Referenced on pages 162, 164, 165, 172,
173, 174, and 175.)

[125] S. Lohr and J. Marko�. Windows is so slow, but why? �e New York Times, Mar. 2006.
(Referenced on page 72.)

BIBLIOGRAPHY 196

[126] D. Magenheimer. Xen/IA64 code size stats. Xen developer’s mailing list: http://
lists.xensource.com/, Sept. 2005. (Referenced on page 72.)

[127] J. Marchesini, S. W. Smith, O. Wild, J. Stabiner, and A. Barsamian. Open-source ap-
plications of TCPA hardware. In Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC), 2004. (Referenced on pages 25, 28, 37, and 41.)

[128] R. Mayrhofer and H. Gellersen. Shake well before use: Intuitive and secure pairing of
mobile devices. IEEE Transactions on Mobile Computing, 8(6):792–806, 2009. (Ref-
erenced on page 57.)

[129] J. M. McCune. Reducing the Trusted Computing Base for Applications on Commodity
Systems. PhD thesis, Carnegie Mellon University, Jan. 2009. (Referenced on page 18.)

[130] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor:
E�cient TCB reduction and attestation. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2010. (Referenced on pages 44 and 146.)

[131] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An execution
infrastructure for TCBminimization. In Proceedings of the ACMEuropean Conference
on Computer Systems (EuroSys), Apr. 2008. (Referenced on pages 18, 38, and 53.)

[132] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri. Minimal TCB code
execution (extended abstract). In Proceedings of the IEEE Symposium on Security and
Privacy, May 2007. (Referenced on page 18.)

[133] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri. How low can you
go? Recommendations for hardware-supportedminimal TCB code execution. In Pro-
ceedings of the ACM Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Mar. 2008. (Referenced on page 18.)

[134] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using camera phones
for human-veri�able authentication. InProceedings of the IEEE Symposiumon Security
and Privacy, May 2005. (Referenced on pages 57 and 69.)

[135] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for passwords and other
sensitive data. In Proceedings of the ISOC Symposium on Network and Distributed
System Security (NDSS), Feb. 2009. (Referenced on page 56.)

[136] J. M. McCune, A. Perrig, A. Sheshadri, and L. Doom. Turtles all the way down: Re-
search challenges in user-based attestation. In Proceedings of the Workshop on Hot
Topics in Security, 2007. (Referenced on page 16.)

http://lists.xensource.com/
http://lists.xensource.com/

BIBLIOGRAPHY 197

[137] R. C. Merkle. A certi�ed digital signature. In Proceedings of CRYPTO, pages 218–238,
1989. (Referenced on page 55.)

[138] Mersenne Research, Inc. �e great internet Mersenne prime search. http://www.
mersenne.org/prime.htm. (Referenced on page 158.)

[139] E. Messmer. Downadup/con�icker worm: When will the next shoe fall? Network
World, Jan. 2009. (Referenced on page 14.)

[140] S. Micali. CS proofs (extended abstract). In Proceedings of the IEEE Symposium on
Foundations of Computer Science, 1994. (Referenced on pages 51 and 160.)

[141] Microso� Corporation. Code access security. MSDN .NET Framework Developer’s
Guide – Visual Studio .NET Framework 3.5, 2008. (Referenced on page 52.)

[142] Microso� Corporation. Full volume encryption using Windows BitLocker drive en-
cryption. Microso� Services Datasheet, 2008. (Referenced on pages 53 and 58.)

[143] S. C. Misra and V. C. Bhavsar. Relationships between selected so�ware measures and
latent bug-density: Guidelines for improving quality. In Proceedings of the Conference
on Computational Science and Its Applications (CCSIA), Jan. 2003. (Referenced on
page 125.)

[144] C. Mitchell, editor. Trusted Computing. �e Institution of Electrical Engineers, 2005.
(Referenced on page 59.)

[145] D. Molnar. �e SETI@Home problem. ACM Crossroads, 7.1, 2000. (Referenced on
pages 15, 92, and 158.)

[146] F. Monrose, P. Wycko�, and A. Rubin. Distributed execution with remote audit. In
Proceedings of ISOC Network and Distributed System Security Symposium (NDSS ’99),
Feb. 1999. (Referenced on page 50.)

[147] T. Moyer, K. Butler, J. Schi�man, P. McDaniel, and T. Jaeger. Scalable web content
attestation. In Proceedings of the Annual Computer Security Applications Conference
(ACSAC), 2009. (Referenced on page 54.)

[148] G. C. Necula and P. Lee. �e design and implementation of a certifying compiler. In
Proceedings of the ACM Conference on Programming Language Design and Implemen-
tation, 1998. (Referenced on page 89.)

[149] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate language and
tools for analysis and transformation of C programs. In Proceedings of the Conference
on Compilier Construction, 2002. (Referenced on page 90.)

http://www.mersenne.org/prime.htm
http://www.mersenne.org/prime.htm

BIBLIOGRAPHY 198

[150] NIST Computer Security Resource Center (CSRC). National vulnerability database.
http://nvd.nist.gov/home.cfm. (Referenced on page 14.)

[151] Oracle Corporation. Sun Utility Computing. Online at http://www.sun.com/
service/sungrid/index.jsp. (Referenced on page 158.)

[152] Organization for Economic Co-operation and Development. Malicious so�ware
(malware): a security threat to the internet economy. http://www.oecd.org/

dataoecd/53/34/40724457.pdf. (Referenced on page 14.)

[153] Pande Lab. �e folding@home project. Stanford University, http://folding.
stanford.edu/. (Referenced on pages 21, 74, 158, 162, and 181.)

[154] B. Parno. Bootstrapping trust in a “trusted” platform. In Proceedings of the USENIX
Workshop on Hot Topics in Security (HotSec), July 2008. (Referenced on page 18.)

[155] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu. Portcullis: Pro-
tecting connection setup from denial-of-capability attacks. In Proceedings of ACM
SIGCOMM, Aug. 2007. (Referenced on page 143.)

[156] B. Parno, Z. Zhou, and A. Perrig. Help me help you: Using trustworthy host-based
information in the network. Technical Report CMU-CyLab-09-016, CarnegieMellon
University, Cylab, Nov. 2009. In submission. (Referenced on page 19.)

[157] C. Percival. Cache missing for fun and pro�t. In Proceedings of BSDCan, 2005. (Ref-
erenced on page 72.)

[158] A. Perrig, S. Smith, D. Song, and J. Tygar. SAM: A �exible and secure auction ar-
chitecture using trusted hardware. E-Commerce Tools and Applications, 1, Jan. 2002.
(Referenced on page 53.)

[159] Princeton Survey Research Associates International. Leap of Faith: Using the Internet
Despite the Dangers (Results of a National Survey of Internet Users for Consumer Re-
ports WebWatch). http://www.consumerwebwatch.org/pdfs/princeton.pdf,
Oct. 2005. (Referenced on page 15.)

[160] N. Provos,M. Friedl, andP.Honeyman. Preventing privilege escalation. InProceedings
of the USENIX Security Symposium, Aug. 2003. (Referenced on page 90.)

[161] A. Ramachandran, K. Bhandankar, M. B. Tariq, and N. Feamster. Packets with prove-
nance. Technical Report GT-CS-08-02, Georgia Tech, 2008. (Referenced on page
54.)

[162] A. Ramachandran and N. Feamster. Understanding the network-level behavior of

http://nvd.nist.gov/home.cfm
http://www.sun.com/service/sungrid/index.jsp
http://www.sun.com/service/sungrid/index.jsp
http://www.oecd.org/dataoecd/53/34/40724457.pdf
http://www.oecd.org/dataoecd/53/34/40724457.pdf
http://folding.stanford.edu/
http://folding.stanford.edu/
http://www.consumerwebwatch.org/pdfs/princeton.pdf

BIBLIOGRAPHY 199

spammers. In Proceedings of ACM SIGCOMM, 2006. (Referenced on page 141.)

[163] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger password au-
thentication using browser extensions. In Proceedings of the USENIX Security Sympo-
sium, Aug. 2005. (Referenced on page 93.)

[164] G. Rothblum. Delegating Computation Reliably: Paradigms and Constructions. PhD
thesis, Massachusetts Institute of Technology, 2009. (Referenced on page 161.)

[165] G. Rothblum and S. Vadhan. Are PCPs inherent in e�cient arguments? InProceedings
of Computational Complexity (CCC’09), 2009. (Referenced on page 159.)

[166] C. Rudolph. Covert identity information in direct anonymous attestation (DAA). In
Proceedings of the IFIP Information Security Conference, May 2007. (Referenced on
page 40.)

[167] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and M. Winandy. TCG inside?
- A note on TPM speci�cation compliance. In Proceedings of the ACM Workshop on
Scalable Trusted Computing (STC), 2006. (Referenced on page 52.)

[168] A.-R. Sadeghi and C. Stueble. Property-based attestation for computing platforms:
caring about properties, not mechanisms. In Proceedings of the Workshop on New
Security Paradigms (NSPW), 2004. (Referenced on page 45.)

[169] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. vanDoorn, J. L. Gri�n, and S. Berger. sHype:
Secure hypervisor approach to trusted virtualized systems. Technical Report RC23511,
IBM Research, Feb. 2005. (Referenced on page 42.)

[170] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a
TCG-based integrity measurement architecture. In Proceedings of the USENIX Secu-
rity Symposium, 2004. (Referenced on pages 18, 27, 28, 37, 38, 45, 60, and 129.)

[171] L. Sarmenta, M. van Dijk, C. O’Donnell, J. Rhodes, and S. Devadas. Virtual mono-
tonic counters and count-limited objects using a TPMwithout a trusted OS (extended
version). Technical Report MIT-CSAIL-2006-064, Massachusetts Institute of Tech-
nology, 2006. (Referenced on page 55.)

[172] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing based
on a visual channel (short paper). In Proceedings of the IEEE Symposium on Security
and Privacy, 2006. (Referenced on page 57.)

[173] B. Schneier and J. Kelsey. Cryptographic support for secure logs on untrusted ma-
chines. In Proceedings of the USENIX Security Symposium, 1998. (Referenced on page
27.)

BIBLIOGRAPHY 200

[174] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A tiny hypervisor to provide life-
time kernel code integrity for commodity OSes. In Proceedings of the ACMConference
on Operating Systems Principles (SOSP), 2007. (Referenced on pages 45 and 146.)

[175] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
integrity and guaranteeing execution of code on legacy platforms. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), Oct. 2005. (Referenced on
pages 49 and 50.)

[176] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: So�ware-based attes-
tation for embedded devices. In Proceedings of the IEEE Symposium on Security and
Privacy, May 2004. (Referenced on pages 49 and 50.)

[177] U. Shankar, T. Jaeger, and R. Sailer. Toward automated information-�ow integrity
veri�cation for security-critical applications. In Proceedings of the ISOC Symposium
on Network and Distributed System Security (NDSS), 2006. (Referenced on page 45.)

[178] T. Shanley. �e Unabridged Pentium 4. Addison Wesley, �rst edition, August 2004.
(Referenced on page 111.)

[179] E. Shi, A. Perrig, and L. vanDoorn. BIND: A time-of-use attestation service for secure
distributed systems. In Proceedings of the IEEE Symposium on Security and Privacy,
May 2005. (Referenced on pages 44 and 54.)

[180] L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth. Reducing TCB complexity for
security-sensitive applications: �ree case studies. In Proceedings of the ACM Eu-
ropean Conference in Computer Systems (EuroSys), 2006. (Referenced on pages 42
and 72.)

[181] S. Smith and V. Austel. Trusting trusted hardware: Towards a formal model for pro-
grammable secure coprocessors. In Proceedings of the USENIXWorkshop on Electronic
Commerce, 1998. (Referenced on page 52.)

[182] S. W. Smith. WebALPS: Using trusted co-servers to enhance privacy and security of
web transactions. IBM Research Report RC-21851, October 2000. (Referenced on
page 54.)

[183] S.W. Smith. Outbound authentication for programmable secure coprocessors. Journal
of Information Security, 3:28–41, 2004. (Referenced on pages 25, 36, 37, and 52.)

[184] S. W. Smith. Trusted Computing Platforms: Design and Applications. Springer, 2005.
(Referenced on page 59.)

BIBLIOGRAPHY 201

[185] S. W. Smith, R. Perez, S. H. Weingart, and V. Austel. Validating a high-performance,
programmable secure coprocessor. In Proceedings of the National Information Systems
Security Conference, Oct. 1999. (Referenced on pages 25, 32, 46, and 52.)

[186] S. W. Smith and S. Weingart. Building a high-performance, programmable secure
coprocessor. Computer Networks, 31(8), Apr. 1999. (Referenced on pages 17, 25, 32,
46, and 60.)

[187] Sophos. Do-it-yourself phishing kits found on the Internet, reveals Sophos. http:
//www.sophos.com/spaminfo/articles/diyphishing.html. (Referenced on
page 14.)

[188] Sophos. Best Buy digital photo frames ship with computer virus. http://www.

sophos.com/pressoffice/news/articles/2008/01/photo-frame.html, Jan.
2008. (Referenced on page 67.)

[189] C. Soriente, G. Tsudik, and E. Uzun. HAPADEP: Human-assisted pure audio device
pairing. InProceedings of the International Information Security Conference (ISC), Sept.
2008. (Referenced on page 57.)

[190] C. Soriente, G. Tsudik, and E. Uzun. Secure pairing of interface constrained devices.
International Journal on Security and Networks, 4(1), 2009. (Referenced on page 57.)

[191] E. R. Sparks. A security assessment of trusted platform modules. Technical Report
TR2007-597, Dartmouth College, 2007. (Referenced on page 37.)

[192] D. Spinellis. Re�ection as amechanism for so�ware integrity veri�cation. ACMTrans-
actions on Information and System Security, 3(1), 2000. (Referenced on pages 49
and 50.)

[193] F. Stajano and R. Anderson. �e resurrecting duckling: Security issues for ad-hoc
wireless networks. In Proceedings of the Security Protocols Workshop, 1999. (Refer-
enced on page 57.)

[194] Standards for E�cient Cryptography Group. SEC 2: Recommended elliptic curve
domain parameters, 2000. (Referenced on page 148.)

[195] G. E. Suh, D.Clarke, B.Gassend,M. vanDijk, and S.Devadas. AEGIS: Architecture for
tamper-evident and tamper-resistant processing. In Proceedings of the International
Conference on Supercomputing, 2003. (Referenced on pages 31, 47, and 74.)

[196] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust between applica-
tions and operating systems con�gurable. In Proceedings of the Symposium on Oper-

http://www.sophos.com/spaminfo/articles/diyphishing.html
http://www.sophos.com/spaminfo/articles/diyphishing.html
http://www.sophos.com/pressoffice/news/articles/2008/01/photo-frame.html
http://www.sophos.com/pressoffice/news/articles/2008/01/photo-frame.html

BIBLIOGRAPHY 202

ating Systems Design and Implementation (OSDI), 2006. (Referenced on pages 42, 72,
and 90.)

[197] C. Tarnovsky. Security failures in secure devices. In Black Hat DC Presentation, Feb.
2008. (Referenced on page 58.)

[198] K. �ompson, G. J. Miller, and R. Wilder. Wide-area Internet tra�c patterns and
characteristics. IEEE Network, 11, 1997. (Referenced on pages 152 and 154.)

[199] Trusted Computing Group. PC client speci�c TPM interface speci�cation (TIS). Ver-
sion 1.2, Revision 1.00, July 2005. (Referenced on page 98.)

[200] Trusted Computing Group. Trusted Platform Module Main Speci�cation. Version
1.2, Revision 103, 2007. (Referenced on pages 17, 25, 28, 33, 36, 37, 38, 39, 40, 60, 75, 83,
and 89.)

[201] Trusted Computing Group. TCG mobile trusted module speci�cation. Version 1.0,
Revision 6, 2008. (Referenced on page 48.)

[202] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Proceedings of EuroCrypt, June 2010. (Referenced on
pages 20 and 50.)

[203] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig. Lockdown: A safe and
practical environment for security applications. Technical Report CMU-CyLab-09-
011, Carnegie Mellon University, Cylab, July 2009. (Referenced on pages 16, 61,
and 62.)

[204] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New streaming algorithms for
fast detection of superspreaders. In Proceedings of the ISOC Symposium on Network
and Distributed System Security (NDSS), 2005. (Referenced on pages 123 and 145.)

[205] J. von Helden, I. Bente, and J. Vieweg. Trusted network connect (TNC). European
Trusted Infrastructure Summer School, 2009. (Referenced on page 53.)

[206] M. Wal�sh, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker. DDoS defense
by o�ense. In Proceedings of ACM SIGCOMM, Sept. 2006. (Referenced on page 143.)

[207] C. Wallace. Worldwide PC market to double by 2010. Forrester Research, Inc. Press
Release, Dec. 2004. (Referenced on page 23.)

[208] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms.
In Proceedings of the USENIX Security Symposium, 2004. (Referenced on pages 123
and 145.)

BIBLIOGRAPHY 203

[209] S. Weingart. Physical security for the µABYSS system. In Proceedings of the IEEE
Symposium on Security and Privacy, 1987. (Referenced on page 47.)

[210] D. A. Wheeler. Linux kernel 2.6: It’s worth more! Available at: http://www.

dwheeler.com/essays/linux-kernel-cost.html, Oct. 2004. (Referenced on
page 72.)

[211] S. White, S. Weingart, W. Arnold, and E. Palmer. Introduction to the Citadel architec-
ture: Security in physically exposed environments. Technical Report RC16672, IBM
T. J. Watson Research Center, 1991. (Referenced on page 47.)

[212] M. M. Williamson. �rottling viruses: Restricting propagation to defeat malicious
mobile code. In Proceedings of the Annual Computer Security Applications Conference
(ACSAC), 2002. (Referenced on page 145.)

[213] M. M. Williamson. Design, implementation and test of an email virus throttle. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC), 2003.
(Referenced on page 141.)

[214] G. Wurster, P. van Oorschot, and A. Somayaji. A generic attack on checksumming-
based so�ware tamper resistance. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2005. (Referenced on page 50.)

[215] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network architecture. In
Proceedings of ACM SIGCOMM, Aug. 2005. (Referenced on page 143.)

[216] A. Yao. Protocols for secure computations. In Proceedings of the IEEE Symposium
on Foundations of Computer Science, pages 160–164, 1982. (Referenced on pages 161
and 162.)

[217] A. Yao. How to generate and exchange secrets. In Proceedings of the IEEE Symposium
on Foundations of Computer Science, pages 162–167, 1986. (Referenced on pages 161
and 162.)

[218] B. S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon University, 1994.
(Referenced on page 47.)

[219] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Secure program partitioning.
ACM Transactions on Computer Systems, 20(3), Aug. 2002. (Referenced on page 90.)

[220] X. Zhuang, T. Zhang, H. Lee, and S. Pande. Hardware assisted control �owobfuscation
for embedded processors. In Proceedings of the Conference on Compilers, Architecture
and Synthesis for Embedded Systems, 2004. (Referenced on page 49.)

http://www.dwheeler.com/essays/linux-kernel-cost.html
http://www.dwheeler.com/essays/linux-kernel-cost.html

	Title
	1 Introduction
	1.1 Insecure Computers in a Hostile World
	1.2 A Vision for a Better World
	1.3 Overview: Building Up from a Firm Foundation
	1.4 Bootstrapping Trust in a Commodity Computer
	1.5 Securely Executing Code on a Commodity Computer
	1.6 Leveraging Secure Code Execution to Improve Network Protocols
	1.7 Secure Code Execution Despite Untrusted Software and Hardware
	1.8 Summary of Contributions

	2 Background and Related Work
	2.1 What Do We Need to Know? Techniques for Recording Platform State
	2.1.1 Recording Code Identity
	2.1.2 Recording Dynamic Properties
	2.1.3 Which Property is Necessary?

	2.2 Can We Use Platform Information Locally?
	2.2.1 Secure Boot
	2.2.2 Storage Access Control Based on Code Identity
	2.2.2.1 Tamper-Responding Protected Storage
	2.2.2.2 TPM-Based Sealed Storage

	2.3 Can We Use Platform Information Remotely?
	2.3.1 Prerequisites
	2.3.2 Conveying Code Measurement Chains
	2.3.2.1 General Purpose Coprocessor-Based Attestation
	2.3.2.2 TPM-Based Attestation

	2.3.3 Privacy Concerns
	2.3.3.1 Identity Certificate Authorities
	2.3.3.2 Direct Anonymous Attestation

	2.4 How Do We Make Sense of Platform State?
	2.4.1 Coping With Information Overload
	2.4.2 Focusing on Security-Relevant Code
	2.4.3 Conveying Higher-Level Information

	2.5 Roots of Trust
	2.5.1 General-Purpose Tamper-Resistant and Tamper-Responding Devices
	2.5.1.1 Commercial Solutions
	2.5.1.2 Research Projects

	2.5.2 General-Purpose Devices Without Physical Defenses
	2.5.3 Special-Purpose Minimal Devices
	2.5.4 Research Solutions Without Hardware Support
	2.5.5 Cryptographic Protocols

	2.6 Validating the Process
	2.7 Applications
	2.7.1 Real World
	2.7.2 Research Proposals

	2.8 Human Factors & Usability
	2.8.1 Trustworthy Verifier Device
	2.8.2 Using Your Brain to Check a Computer
	2.8.3 Pairing Two Trustworthy Devices

	2.9 Limitations
	2.9.1 Load-Time Versus Run-Time Guarantees
	2.9.2 Hardware Attacks

	2.10 Additional Reading
	2.11 Summary

	3 Bootstrapping Trust in a Commodity Computer
	3.1 Problem Definition
	3.1.1 Informal Problem Description
	3.1.2 Formal Model

	3.2 Potential Solutions
	3.2.1 Removing Network Access
	3.2.2 Eliminating Malware
	3.2.3 Establishing a Secure Channel
	3.2.3.1 Hardware-Based Secure Channels
	3.2.3.2 Cryptographic Secure Channels

	3.3 Preferred Solutions
	3.4 Summary

	4 On-Demand Secure Code Execution
	4.1 Problem Definition
	4.1.1 Adversary Model
	4.1.2 Goals

	4.2 Flicker Architecture
	4.2.1 Flicker Overview
	4.2.2 Isolated Execution
	4.2.3 Multiple Flicker Sessions
	4.2.3.1 TPM Sealed Storage
	4.2.3.2 Replay Prevention for Sealed Storage

	4.2.4 Interaction With a Remote Party
	4.2.4.1 Attestation and Result Integrity
	4.2.4.2 Establishing a Secure Channel

	4.3 Developer's Perspective
	4.3.1 Creating a PAL
	4.3.1.1 A ``Hello, World'' Example PAL
	4.3.1.2 Building a PAL

	4.3.2 Automation

	4.4 Flicker Applications
	4.4.1 Stateless Applications
	4.4.2 Integrity-Protected State
	4.4.3 Secret and Integrity-Protected State
	4.4.3.1 SSH Password Authentication
	4.4.3.2 Certificate Authority

	4.5 Performance Evaluation
	4.5.1 Experimental Setup
	4.5.2 Microbenchmarks
	4.5.2.1 Late Launch with an AMD Processor
	4.5.2.2 Late Launch with an Intel Processor
	4.5.2.3 Trusted Platform Module (TPM) Operations

	4.5.3 Stateless Applications
	4.5.4 Integrity-Protected State
	4.5.5 Secret and Integrity-Protected State
	4.5.5.1 SSH Password Authentication
	4.5.5.2 Certificate Authority

	4.5.6 Impact on Suspended Operating System
	4.5.7 Major Performance Problems

	4.6 Architectural Recommendations
	4.6.1 Launching a PAL
	4.6.1.1 Recommendation
	4.6.1.2 Suggested Implementation Given Existing Hardware

	4.6.2 Hardware Memory Isolation
	4.6.2.1 Recommendation
	4.6.2.2 Suggested Implementation Given Existing Hardware

	4.6.3 Hardware Context Switch
	4.6.3.1 Recommendation
	4.6.3.2 Suggested Implementation Given Existing Hardware

	4.6.4 Improved TPM Support for Flicker
	4.6.4.1 sePCR Assignment and Communication
	4.6.4.2 sePCR Access Control
	4.6.4.3 sePCR States and Attestation
	4.6.4.4 Sealing Data Under a sePCR
	4.6.4.5 TPM Arbitration

	4.6.5 PAL Exit
	4.6.6 PAL Life Cycle
	4.6.7 Expected Impact
	4.6.8 Extensions

	4.7 Summary

	5 Using Trustworthy Host Data in the Network
	5.1 Problem Definition
	5.1.1 Architectural Goals
	5.1.2 Assumptions

	5.2 The Assayer Architecture
	5.2.1 Overview
	5.2.2 Assayer Components
	5.2.2.1 Clients
	5.2.2.2 Verifiers
	5.2.2.3 Filters
	5.2.2.4 Relying Party

	5.2.3 Protocol Details
	5.2.3.1 Desirable Properties
	5.2.3.2 Protocol Specifications
	5.2.3.3 A Symmetric Alternative

	5.2.4 User Privacy and Client Revocation

	5.3 Potential Attacks
	5.3.1 Exploited Clients
	5.3.2 Malicious Clients
	5.3.3 Rogue Verifiers
	5.3.4 Rogue Filters

	5.4 Case Studies
	5.4.1 Spam Identification
	5.4.2 Distributed Denial-of-Service (DDoS) Mitigation
	5.4.3 Super-Spreader Worm Detection

	5.5 Implementation
	5.5.1 Client Architecture
	5.5.2 Client Verification
	5.5.3 Traffic Annotation
	5.5.4 Filter

	5.6 Evaluation
	5.6.1 Client Verification
	5.6.1.1 Client Latency
	5.6.1.2 Verifier Throughput

	5.6.2 Client Annotations
	5.6.3 Filter Throughput
	5.6.4 Internet-Scale Simulation

	5.7 Potential Objections
	5.7.1 Why Not Collect Information on the Local Router?
	5.7.2 Is This Really Deployable Incrementally?

	5.8 Summary

	6 Secure Code Execution On Untrusted Hardware
	6.1 Overview
	6.2 Cryptographic Background
	6.2.1 Yao's Garbled Circuit Construction
	6.2.2 The Security of Yao's Protocol
	6.2.3 Fully Homomorphic Encryption

	6.3 Problem Definition
	6.3.1 Basic Requirements
	6.3.2 Input and Output Privacy
	6.3.3 Efficiency

	6.4 An Efficient Verifiable-Computation Scheme with Input and Output Privacy
	6.4.1 Protocol Definition
	6.4.2 Proof of Security
	6.4.2.1 Proof Sketch of Yao's Security for One Execution
	6.4.2.2 Proof of Theorem 1

	6.4.3 Proof of Input and Output Privacy
	6.4.4 Efficiency

	6.5 How to Handle Cheating Workers
	6.6 Summary

	7 Conclusion
	Bibliography

