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Abstract. Recently there has been a huge emphasis on constructing
cryptographic protocols that maintain their security guarantees even in
the presence of side channel attacks. Such attacks exploit the physi-
cal characteristics of a cryptographic device to learn useful information
about the internal state of the device. Designing protocols that deliver
meaningful security even in the presence of such leakage attacks is a
challenging task.

The recent work of Garg, Jain, and Sahai formulates a meaningful
notion of zero-knowledge in presence of leakage; and provides a con-
struction which satisfies a weaker variant of this notion called (1 + ε)-
leakage-resilient-zero-knowledge, for every constant ε > 0. In this weaker
variant, roughly speaking, if the verifier learns � bits of leakage during
the interaction, then the simulator is allowed to access (1 + ε) · � bits of
leakage. The round complexity of their protocol is �n

ε
�.

In this work, we present the first construction of leakage-resilient zero-
knowledge satisfying the ideal requirement of ε = 0. While our focus is
on a feasibility result for ε = 0, our construction also enjoys a constant
number of rounds. At the heart of our construction is a new “public-coin
preamble” which allows the simulator to recover arbitrary information
from a (cheating) verifier in a “straight line.” We use non-black-box
simulation techniques to accomplish this goal.

1 Introduction

The concept of zero-knowledge interactive proofs, originating in the seminal work
of Goldwasser, Micali, and Rackoff [39], is a fundamental concept in theoretical
cryptography. Informally speaking, a zero-knowledge proof allows a prover P to
prove an assertion x to a verifier V such that V learns “nothing more” beyond
the validity of x. The proof is an interactive and randomized process. To for-
mulate “nothing more,” the definition of zero-knowledge requires that for every
malicious V ∗ attempting to lean more from the proof, there exists a polynomial
time simulator S which on input only x, simulates a “real looking” interaction
for V ∗.

In formulating the zero-knowledge requirement, it is assumed that the prover
P is able to keep its internal state — the witness and the random coins —
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perfectly hidden from the verifier V ∗. It has been observed, however, that this
assumption may not hold in many settings where an adversary has the ability
to perform side channel attacks. These attacks enable the adversary to learn
useful information about the internal state of a cryptographic device (see e.g.,
[48,6,68,59] and the references therein). In presence of such attacks, standard
cryptographic primitives often fail to deliver any meaningful notion of security.
As a matter of fact, even formulating a meaningful security notion under such
attacks—as is the case with leakage-resilient zero-knowledge—can be a challeng-
ing task.

To deliver meaningful security in the presence side channel attacks, many
recent works consider stronger adversarial models in which the device implement-
ing the honest algorithm leaks information about its internal state to the adver-
sary. The goal of these works is then to construct cryptographic primitives that
are “resilient” to such leakage. Leakage resilient constructions for many basic
cryptographic tasks are now known [29,3,64,26,4,5,57,47,15,25,24,50,30,49,14,2].

Leakage-resilient zero-knowledge. Very recently Garg, Jain, and Sahai [33] ini-
tiated an investigation of leakage-resilient zero-knowledge (LRZK). Their notion
considers a cheating verifier V ∗ who can learn an arbitrary amount of leakage on
the internal state of the honest prover, including the witness. This is formulated
by allowing V ∗ to make leakage queries F1, F2, . . . throughout the execution of
the protocol. Then the definition of LRZK, roughly speaking, captures the intu-
ition that no such V ∗ learns anything beyond the validity of the assertion and
the leakage.

The actual formulation of this intuition is slightly more involved. Observe
that during the simulation, S will need to answer leakage queries of V ∗, which
may contain information about the witness to V ∗. Simulator S cannot answer
such queries without having access to the witness. The definition of [33] there-
fore provides S with access to a leakage oracle which holds a witness to x. The
oracle, Ln

w(·), is parameterized by the witness w and n = |x|; on input a function
F expressed as a boolean circuit, it returns F (w). To ensure that S can answer
leakage requests of V ∗, the simulator is also allowed to query Ln

w on leakage
functions of its choice. Of course, providing S with uncontrolled access to the
witness will render the notion meaningless.1 Therefore, to ensure that the notion
delivers meaningful security, the LRZK definition requires the following restric-
tion on the length of bits that S can read from Ln

w. Suppose that S
Ln

w outputs a
simulated view υ for V ∗. Denote by �S(υ) the number of bits S reads from Ln

w

in generating this particular view υ. Denote by �V ∗(υ) the total length of the
leakage answers that S provides to V ∗ (which are already included in υ, and can
be different from answers received by S). Then, it is required that:

�S(υ) ≤ �V ∗(υ). (1)

1 S can simply access the entire witness, and then simulate.
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More precisely, in [33], a slightly more general notion of (1 + ε)-LRZK is defined
in which the above condition is relaxed to:

�S(υ) ≤ (1 + ε) · �V ∗(υ),

where ε > 0 is a constant. In addition, [33] also present a protocol of �n
ε � rounds,

which achieves (1 + ε)-LRZK for every a-priori fixed constant ε > 0. Since ε > 0,
the resulting notion is weaker than the one required by equation 1. Neverthe-
less, [33] show that despite this relaxation, (1 + ε)-LRZK still delivers meaning-
ful security. By applying this notion in the context of cryptography based on
hardware-tokens, [33] were able to weaken the requirements of tamper-proofness
on the hardware tokens.

Our main result. Although a protocol with ε > 0 is still useful certain contexts,
it is significantly weaker than the ideal requirement of ε = 0—both qualitatively
and philosophically. Qualitatively, a constant ε > 0 allows the simulator to learn
strictly more information about the internal secret than the actual leakage allows!
Qualitatively, it means that a protocol proven to be (1 + ε)-LRZK “secure” may
actually expose additional parts of the internal secret than the actual leakage.
Furthermore, even in situations where (1+ ε)-LRZK is sufficient, protocol of [33]
requires a large round complexity, which continues to increase as we lower the
value of ε.

Philosophically, an ε > 0 essentially defies the very nature of simulation-
based security. In particular, as argued above, since it allows S to learn strictly
more than what the verifier does, it is not “zero” knowledge, but only an “ε-
approximation” of it, and closer in spirit to super-polynomial time simulation
[61,67,65]. Furthermore, this is not merely a philosophical issue—(1 + ε)-LRZK
can be particularly problematic in protocol composition [16,17]. For example,
using such a simulator in place of a cheating party may result in learning more
“outputs” than allowed.

In this work, we present the first construction of an LRZK protocol satisfying
ε = 0. Although our main goal is to obtain a feasibility result, our protocol also
enjoys a constant number of rounds. Our protocol uses standard cryptographic
tools. However, it requires some of them – particularly, oblivious transfer – to
have an invertible sampling property [20,42]. To the best of our knowledge,
instantiations satisfying this property are known only based on the decisional
Diffie-Hellman assumption (ddh) [23]. We leave constructing an LRZK proof
system based on general assumption as an interesting open question.

Theorem 1 (Main Result). Suppose that the decision Diffie-Hellman assump-
tion holds. Then, there exists a constant-round leakage-resilient zero-knowledge
proof system for all languages in NP.

We remark that the low round-complexity is usually a desirable protocol fea-
ture [37,7,69,66,70]. In the context of side channel attacks, however, it can be a
particularly attractive one to have. This is because a protocol with high round
complexity may require the device to maintain state for more rounds, and there-
fore may give an adversary more opportunities to launch side-channel attacks.



Achieving Constant Round Leakage-Resilient Zero-Knowledge 149

1.1 An Overview of Our Approach

Let us start by recalling the main difficulty in constructing an LRZK protocol.
Recall that a zero-knowledge simulator S “cheats” in the execution of the pro-
tocol so that it can produce a convincing view. When dealing with leakage, not
only the simulator needs to continue executing the protocol, but it also needs
to “explain its actions” so far by maintaining a state consistent with an honest
prover.

To be able to simultaneously perform these two actions, the GJS simulator
does the following. It combines the following two different but well-known meth-
ods of “cheating.” The first method, due to Goldreich-Kahan [37], requires the
verifier to commit its challenge ch; the second method, due to Feige-Shamir
[31], requires the prover to use equivocal2 commitments. The GJS simulator
uses these methods together. It uses ch to perform its main simulation (by using
[37] strategy), and uses the trapdoor of equivocal commitments, denoted t1, to
“explain its actions” so far. We call (t1, ch) the double trapdoor.

The GJS simulator “rewinds” the verifier to obtain the two trapdoors before
it actually enters the main proof stage. By using a precise rewinding strategy
[53], GJS achieves (1 + ε)-LRZK. However, since rewinding strategy is crucial to
their simulation, this approach by itself seems insufficient for achieving LRZK.

A fundamentally different simulation strategy, in which the simulator uses the
program of the malicious verifier V ∗, was presented in Barak’s work [7]. This
method does not need to “rewind” the verifier to produce its output. Our first
idea there is to somehow use Barak’s simulation strategy along with the use of
equivocal commitments as in [31]. Unfortunately, this does not work since the
trapdoor t1 for equivocation has to be somehow recovered and only then any
other simulation strategy (such as knowing the challenge ch) can be used.

We therefore modify this approach so that we can use Barak’s method to
recover arbitrary information from the verifier during the simulation. For the
purpose of this discussion, let us assume that Barak’s technique provides a way
for P and V to interactively generate a statement σ for some NP-relation Rsim

so that no cheating prover P ∗ can prove σ ∈ Lsim, but a simulator S holding
the program of the cheating verifier V ∗ will always have a witness ω such that
Rsim(σ, ω) = 1. At this point, let us just assume that the verifier does not ask
leakage queries.

Then, we need to design a two party protocol for the following task. The first
party P holds a private input ω, the second party V holds an arbitrary private
message m, the common input to both parties is σ. The protocol allows P to
learn m if and only if Rsim(σ, ω) = 1, nothing otherwise; V learns nothing. This
is similar in spirit to the conditional disclosure primitive of [34], except that
here the condition is an arbitrary NP-relation Rsim(σ, ω) = 1. Constructing
such protocols for NP-conditions has not been studied, since they follow from
work on secure two-party computation [71,35,54]. Clearly, we cannot directly use

2 These are commitments which, given appropriate trapdoor information, can be
opened to both 0 or 1.
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secure two-party computation since their security-guarantee is often simulation-
based—which is essentially what our protocol is trying to achieve in the first
place.

Our next observation is that we do not really require the strong simulation-
based guarantee. We only need to construct a conditional disclosure protocol
for a very specific NP-relation. We construct such a protocol based on Yao’s
garbled circuit technique. We show that if we use properly chosen OT proto-
cols (constructed in [1,56]) — then we get a conditional disclosure protocol. In
addition, the protocol ensures that the messages of P are pseudorandom (more
precisely, invertible samplable [20,42]). As a result, the protocol maintains its
security claims even in the presence of leakage. This is a two-round protocol,
and a crucial ingredient in achieving leakage resilience.

Armed with this new tool, simulation now seems straightforward: use the
conditional disclosure protocol to recover both (t1, ch) and then use the GJS-
simulator. While this idea works, there is a difficulty in proving the soundness
of this protocol. Recall that in Barak’s protocol, one must find collisions in the
hash function h to prove that no cheating P ∗ can succeed in learning a witness
to statement σ. Typically, this is achieved by applying “rewinding techniques”
to extract knowledge P ∗. However, ensuring this typical requires the simulator
to demonstrate “knowledge”—which is difficult to “explain” later when leakage
queries are asked by the cheating prover.

To resolve this difficulty, we need to ensure that extraction can be performed
from a party without requiring it to maintain knowledge.3 We ensure this by
using a variant of the commitment protocol of Barak and Lindell [11]. We use
this protocol to extract useful information directly from Barak’s preamble [7],
without requiring the honest party to maintain knowledge explicitly.

Recall that we work in the model of [33]. In this model the verifier is allowed
to ask arbitrary leakage queries F1, F2, . . . on prover’s state. The state of the
prover at any given round only consists of its witness and the randomness up to
that round. In particular, the randomness of future rounds is determined only
at the beginning of those round. Observe that all ingredients described by us
so far actually require the prover to send only random strings. Therefore, it is
easy to asnswer the leakage queries up to this point in the simulation. By the
time simulator enters the main body, it recovers (t1, ch) and use them to answer
leakage queries as in [33].

1.2 Related Work

Relevant to our work are the works on zero-knowledge proofs in other more
complex attack models such as man-in-middle attacks [27], concurrent attacks
[28], resettable attacks [19,8], and so on. Also relevant to our work are different
variants of non-black-box simulation used in the literature [7,9,62,63,22] as well
as efficient and universal arguments [46,52,10,43].

3 Indeed, there is a difference between the two, see discussion in [11].
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The explicit study of leakage-resilient cryptography was started by Dziem-
bowski and Pietrzak [29]. Related study on protecting devices appears in the
works of Ishai, Prabhakaran, Sahai, and Wagner [45,44]. After these works a long
line of research has focussed on constructing primitives resilient to leakage includ-
ing public-key encryption and signatures [3,64,26,4,5,57,47,15,25,24,49,14,50],
devices [30,2], and very recently interactive protocols [33,12].

Also relevant to our work are the works on adaptive security [18] and invertible
sampling [20,42]. Adaptively secure protocols and leakage-resilience in interactive
protocols were shown to be tightly connected in the work of Bitansky, Canetti,
and Halevi [12].

2 Notation and Definitions

Notation. For a randomized algorithm A we write A(x; r) the process of evalu-
ating A on input x with random coins r. We write A(x) the process of sampling
a uniform r and then evaluating A(x; r). We define A(x, y; r) and A(x, y) anal-
ogously. The set of natural numbers is represented by N. Unless specified other-
wise, n ∈ N represents a security parameter available as an implicit input when
necessary. All inputs are assumed to be of length at most polynomial in n. We
assume familiarity with standard concepts such as interactive Turing machines
(itm), computational indistinguishability, commitment schemes, NP-languages,
witness relations and so on (see [36]).

For two randomized itms A and B, we denote by [A(x, y) ↔ B(x, z)] the
interactive computation between A and B, with A’s inputs (x, y) and B’s in-
puts (x, z), and uniform randomness; and [A(x, y; rA) ↔ B(x, z; rB)] when
we wish to specify randomness. We denote by viewB[A(x, y) ↔ B(x, z)] and
outB[A(x, y) ↔ B(x, z)] the view and output of B in this computation; viewA,
outA are defined analogously. Finally, trans[A(x, y) ↔ B(x, z)] denotes the
public transcript of the interaction [A(x, y) ↔ B(x, z)].

For two probability distributions D1 and D2, we write D1
c≡ D2 to mean

that D1 and D2 are computationally indistinguishable.

Definition 1 (Interactive Proofs). A pair of probabilistic polynomial time
interactive Turing machines 〈P, V 〉 is called an interactive proof system for a
language L ∈ NP with witness relation R if the following two conditions with
respect to some negligible function negl(·):
– Completeness: for every x ∈ L, and every witness w such that R(x,w) = 1,

Pr [outV [P (x,w) ↔ V (x)] = 1] ≥ 1− negl(|x|).
– Soundness: for every x /∈ L, every interactive Turing machine P ∗, and every

y ∈ {0, 1}∗,
Pr [outV [P

∗(x, y) ↔ V (x)] = 1] ≤ negl(|x|).
If the soundness condition holds only against polynomial time machines P ∗,
〈P, V 〉 is called an argument system. We will only need/construct argument
systems in this work.
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Leakage attack. Machine P and V are modeled as randomized itm which inter-
act in rounds. It is assumed that the the random coins used by a party in any
particular round are determined only at the beginning of that round. Denote
by state a variable initialized to prover’s private input w. At the end begin-
ning of each round i, P flips coins ri to be used for that round, and updates
state := state ‖ ri. A leakage query on prover’s state in round i corresponds
to verifier sending a function Fi (represented as a polynomial-sized circuit), to
which the prover responds with Fi(state). The verifier is allowed to any number
of arbitrary leakage queries throughout the interaction. A malicious verifier who
obtains leakage under this setting is said to be launching a leakage attack.

To formulate zero-knowledge under a leakage attack, we consider a ppt ma-
chine S called the simulator, which receives access to an oracle Ln

w(·). Ln
w(·) is

called the leakage oracle, and parametrized by the witness w and the security
parameter n. A query to the leakage oracle consists of an efficiently computable
function F , to which the oracle responds with F (w). The leakage-resilient zero-
knowledge is defined by requiring that the output of S be computationally indis-
tinguishable from the real view; in addition the length of all bits read by S from
Ln
w in producing a particular view υ is at most the length of leakage answers

contained in the υ.
For x ∈ L, w such that R(x,w) = 1, z ∈ {0, 1}∗, and randomness r ∈ {0, 1}∗

defining the output υ = SLn
w(·)(x, z; r), we let the function �S(υ, r) denote the

number of bits that S receives from Ln
w(·) in generating view υ with randomness

r. Further, we let the function �V ∗(υ) denote the total length of leakage answers
that V ∗ receives in the output υ. By convention, randomness r will be included
in the notation only when we need to be explicit about it.

Definition 2 (Leakage-resilient Zero-knowledge). We say that an inter-
active proof system 〈P, V 〉 for a language L ∈ NP with a witness relation R,
is leakage-resilient zero-knowledge if for every probabilistic polynomial time ma-
chine V ∗ launching a leakage attack on P , there exists a probabilistic polynomial
time machine S such that the following two conditions hold:

1. For every x ∈ L, every w such that R(x,w) = 1, and every z ∈ {0, 1}∗, dis-
tributions viewV ∗ [P (x,w) ↔ V ∗(x, z)] and SLn

w(·)(x, z) are computationally
indistinguishable.

2. For every x ∈ L, every w such that R(x,w) = 1, every z ∈ {0, 1}∗, and every
sufficiently long r ∈ {0, 1}∗ defining the output υ = SLn

w(·)(x, z; r), it holds
that �S(υ, r) ≤ �V ∗(υ).

The definition of standard zero-knowledge is obtained by removing condition 2,
and enforcing that no leakage queries are allowed to any machine.

3 Cryptographic Tools

We start by recalling some standard cryptographic tools and two-party protocols.
Looking ahead, we will require that our protocols satisfy the following important



Achieving Constant Round Leakage-Resilient Zero-Knowledge 153

property. For a specific party (chosen depending upon the protocol), all messages
sent by this party be pseudorandom strings. In some cases where this is not
possible, it will be sufficient if the messages are pseudorandom elements of group
(e.g., a prime-order subgroup of Z∗

p for a (safe) prime p of length n).4 We will
provide necessary details when appropriate.

Statistically-Binding Commitments. We use Naor’s scheme [55], based on a pseu-
dorandom generator (prg). Recall that in this scheme, first the receiver sends a
random string τ of length 3n; to commit to bit b, the sender selects a uniform
seed s of length n and sends y such that if b = 0 then y = prg(s), otherwise
y = τ ⊕ prg(s). This scheme is statistically binding; in addition, sender’s mes-
sage is pseudorandom. A string can be committed by committing bitwise, and
it suffices to use same τ for all the bits. We write sbcomτ (m; s) to represent
sender’s string, when receiver’s first message is τ .

Statistically-Hiding Commitments. We use a statistically hiding commitment
scheme as well. We require the receiver of this scheme to be public coin. Such
schemes are known, including a two-round string commitment scheme, based
on collision-resistant hash functions (crhf) [58,41,21]. We write shcomρ(m; s) to
denote sender’s commitment string, when receiver’s first message is ρ. Without
loss of generality, |ρ| = n.

Zero-Knowledge Proofs. We use a statistical zero-knowledge argument-of-
knowledge (szkaok) protocol for proving NP-statements. We require the verifier
of this protocol to be public coin. Such protocols are known to exist; including
a constant-round protocol based on crhf [7,10,63], and a ω(1)-round protocol
based on statistically-hiding commitments [38,13].

We choose the constant-round protocol of Pass and Rosen, denoted Πpr, as
our candidate szkaok. Let Spr denote the corresponding simulator for Πpr. We
remark that Spr is a “straight-line” simulator, with strict polynomial running
time.

3.1 Oblivious Transfer

We will use a two-round oblivious transfer protocol OT := 〈Sot, Rot〉. For the
choice bit b of the receiver, we denote by {Rot(1

n, b)}n∈N the message sent by
Rot on input (1n, b).

Let p, q be primes such that p = 2q + 1 and |p| = n. Then, we require the
OT protocol to satisfy the following requirement. There exists a randomized ppt
algorithm Rpub

ot such that for every n ∈ N, every b ∈ {0, 1}, and every safe prime
p = 2q + 1, the following two conditions hold:

4 This will be sufficient since public sampling from such a group admits invertible
sampling [20,42]. However, it is more convenient to directly work with the assumption
that algorithms can receive random elements in such a group as part of their random
tape.
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1. Rot(1
n, 0)

c≡ Rpub
ot (1

n, p)

2. The output of Rpub
ot (1

n, p) consists of components {αi}poly(n)i=1 such that every
αi is a uniform and independent element in an order q subgroup of Z∗

p.

We can formulate the second requirement by simply requiring the output to
contain independent and random bits. The difficulty is that we do not know
any OT protocol that would satisfy such a requirement. We therefore choose
the above formulation. Note that without loss of generality, we can assume that
uniform and independent elements can be provided as part of the random tape.5

We will call algorithm Rpub
ot the “fake” receiver algorithm.

Concrete Instantiation: The existence of Rpub
ot is extremely crucial for our con-

struction. Unfortunately, no OT protocol satisfying this requirement are known
to exist based on general assumptions. However, two round OT protocols of
[56,1] based on the ddh assumption, do satisfy both of our requirements. For
concreteness, we fix the Naor-Pinkas oblivious transfer (protocol 4.1 in [56]) as

our choice, and denote it by OTnp. Algorithm Rpub
ot in this protocol consists of

sending random and independent elements in order q subgroup of Z
∗
p. When

multiple secrets must be exchanged we simply repeat this protocol in parallel.

Security of OT. In terms of security, the protocols in [56,1] are secure against
malicious adversaries. However, they do not satisfy the usual simulation based
(i.e., “ideal/real”) security. Instead, they satisfy the following (informally stated)
security notions:

1. Indistinguishability for receiver: it ensures that

{Rot(1
n, 0)}n∈N

c≡ {Rot(1
n, 1)}n∈N, where {Rot(1

n, b)}n∈N denotes the
message sent by honest receiver on input (1n, b).

2. Statistical secrecy for sender: it ensures either

{Sot(1n,m0,m1, q)}n∈N

s≡ {Sot(1n,m0,m
′)}n∈N or

{Sot(1n,m0,m1, q)}n∈N

s≡ {Sot(1n,m′,m1)}n∈N, where m′ is an
arbitrary message and Sot(1

n,m0,m1, q) denotes the message sent by the
honest sender on input (1n,m0,m1) when receiver’s message is q.

This type of security notion is sufficient for our purpose. A formal description,
following [40], is given in the full version of this work [60].

3.2 Extractable Commitments

We will need a perfectly-binding commitment scheme which satisfies the follow-
ing two properties. First, if a cheating committer C∗ successfully completes the
protocol, then there exists an extractor algorithm E which outputs the value

5 This assumption is easily removed by requiring an invertible sampling algorithm for
Rpub
ot , which are known to exist. Also, the two-round requirement is not essential and

can be relaxed.
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committed by C∗ during the commit stage. Second, there exists a public-coin al-
gorithm Cpub such that no cheating receiver can tell if it is interacting with Cpub

or the honest committing algorithm C. Algorithm Cpub is essentially the “fake”
committing algorithm for C (much like the fake receiver Rp

ot define above). Let
us first define these properties.

Commit-with-Extract. We will actually need a slightly property than mere ex-
traction, called commit-with-extract [11,51]. Informally, commit-with-extract re-
quires that for every cheating C∗, there exists an extractor E which first simulates
the view of the cheating committer in an execution with honest receiver; further,
if the view is accepting then it also outputs the value committed to in this view.
Our specific use requires that the quality of simulation be statistical.

Definition 3 (Commit-with-extract [11]). Let n ∈ N be the security pa-
rameter. A perfectly-binding commitment scheme Πcom := 〈C,R〉 is a commit-
with-extract scheme if the following holds: there exists a strict ppt commitment-
extractor E such that for every ppt committer C∗, for every m ∈ {0, 1}n, every
(advice) z ∈ {0, 1}∗ and every r ∈ {0, 1}∗, upon input (C∗,m, z, r), machine E
outputs a pair, denoted (E1(C

∗,m, z, r), E2(C
∗,m, z, r)), such that the following

conditions hold:

1. E1(C
∗,m, z, r)

s≡ viewC∗ [C∗(m, z; r) ↔ R()]
2. Pr [E2(C

∗,m, z, r)] = value(E1(C
∗,m, z, r)) ≥ 1− negl(n)

where value(·) is a deterministic function which outputs either the unique value
committed to in the view E1(C

∗,m, z, r), or ⊥ if no such value exists.

We say that a perfectly binding commitment scheme Πcom admits public
decommitment if there exists a deterministic polynomial time algorithm Dcom

which on input the public transcript of interaction m̂, and the decommitment
information d, outputs the unique value m committed in m̂. If there is no such
value, the algorithm outputs ⊥. For perfectly binding commitment schemes, the
function value is well defined on the public transcripts as well. Therefore, we can
write Dcom(d, m̂) = value(m̂).

We now specify our “fake” public-coin sender requirement. Since we are work-
ing with ddh based construction, we will use a safe prime p = 2q + 1 of length
n, (as used in Rpub

ot ).
Let n ∈ N be the security parameter. We say that a perfectly binding com-

mitment scheme Πcom := 〈C,R〉 has a fake public-coin sender if there exists an
algorithm Cpub such that for every malicious ppt R∗, every m ∈ {0, 1}n, every
safe prime p of length n, every advice z ∈ {0, 1}∗, the following two conditions
hold:

1. viewR∗ [C(m) ↔ R∗(z)]
c≡ viewR∗ [Cpub(p) ↔ R∗(z)]

2. The output of Cpub(p) consists of components {αi}poly(n)i=1 such that for every
i: αi is a uniform and independent element either in {0, 1} or in an order q
subgroup of Z∗

p.
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Concrete Instantiation. Unfortunately, no commitment protocol satisfying these
requirements is known. The central reason behind this is that the fake public-coin
sender Cpub requirement interferes with the commit-with-extract requirement.
In [11], Barak and Lindell constructed a commitment protocol with the goal of
strict polynomial time extraction. We observe that somewhat surprisingly, with
some very minor changes, this protocol actually satisfies all our requirements. In
particular, this commitment scheme is a commit-with-extract scheme, has a fake
public-coin sender, and admits public decommitment. However, as with the OT
protocol, this change requires us to use ElGamal [32] and hence ddh (instead of
a general trapdoor permutation). For completeness, we present the protocol of
[11] and explain the required modifications in the full version of this work [60].

Important Notation. For concreteness, fix Πcom := 〈C,R〉 to be a specific com-
mitment protocol satisfying all three conditions above, and let Dcom denote it’s
public decommitment algorithm. Let Lcom := {(m, m̂) : ∃d s.t. Dcom(m̂, d) =
m}. That is, Lcom is an NP-language containing statements (m, m̂) such that
m̂ is a commitment-transcript for value m. Let Rcom be the corresponding NP-
relation so that Rcom((m, m̂), d) = 1 if Dcom(m̂, d) = m and 0 otherwise.

3.3 Barak’s Preamble

In this section, we will recall Barak’s non-black-box simulation method. In addi-
tion, we will make a slight change to this protocol which requires us to reprove
some of the claims. We start by recalling Barak’s relation for the complexity
class NTIME(nlog log(n)).

Barak’s Relation. Let n ∈ N be the security parameter, and {Hn}n be a family of
crhf, h : {0, 1}∗ → {0, 1}n. Since we are using Naor’s commitment scheme, we will
have an extra string τ for the commitment scheme sbcom. Barak’s relation, Rb

takes as input an instance of the form 〈h, τ, c, r〉 ∈ {0, 1}n×{0, 1}3n×{0, 1}3n2 ×
{0, 1}n+n2

and a witness of the form 〈M, y, s〉 ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}poly(n).

Relation: Rb(〈h, τ, c, r〉, 〈M, y, s〉) = 1 if and only if:
1. |y| ≤ |r| − n.
2. c = sbcomτ (h(M); s).
3. M(c, y) = r within nlog logn steps.

Let LB be the language corresponding to RB. We use this more complex
version involving y, since it will allow us to successfully simulate even in the
presence of leakage queries, which a cheating verifier obtains during the protocol
execution.6

6 This relation is identical to the one used for constructing bounded concurrent zero-
knowledge in constant rounds in [7].
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Universal Arguments and Statement Generation. Universal arguments (uarg)
are four-round public-coin interactive argument systems [46,52,10], which can be
used to prove statements in LB. Let 〈Pua, Vua〉 be such a system. We will denote
the four rounds of this uarg by 〈α, β, γ, δ〉. Consider the following protocol be-
tween a party PB and a party Vb.

Protocol GenStat: Let {Hn}n be a family of crhf functions.

1. Vb sends h ← Hn and τ ← {0, 1}3n
2. Pb sends c ← {0, 1}3n2

3. Vb sends r ← {0, 1}n+n2

.

Note that that length of r is n2+n which allows y to be of length at most n2.
Length of c is 3n2 since it is supposed to be a commitment to n bits. We have
the following lemma:7

Composed Protocol 〈P⊗, V ⊗〉. We define this for convenience. The composed
protocol is simply the GenStat protocol followed by an universal argument that
the transcript σ := 〈h, τ, c, r〉 is in Rb. More precisely, strategy P⊗ := PB � Pua

is the composed prover, and V ⊗ := VB � Vua is the composed verifier, where
A � B denotes the process of running itm A first, and then continuing itm B
from then onwards.8 The following lemma states that the composed verifier V ⊗

almost always rejects in an interaction with any ppt prover (i.e., it always rejects
that σ ∈ Lb).

Lemma 1 ([7]). Suppose that {Hn}n is a family of crhf functions. There exists
a negligible function negl such that for every ppt strategy P ∗, every z ∈ {0, 1}∗,
every r ∈ {0, 1}∗, and every sufficiently large n,

Pr
[

outV ⊗ [P ∗(z; r) ↔ V ⊗()]
] ≤ negl(n)

where the probability is taken over the randomness of V ⊗.

The “Encrypted” Version. In Barak’s protocol, an “encrypted” version of the
above protocol is used in which the honest prover sends commitments to its
uarg-messages (instead of the messages themselves). This is possible to do since
the verifier is public coin.

We will use our commit-with-extract schemeΠcom := 〈C,R〉 for this purpose.9
Recall that for Πcom, there exists a fake public-coin sender algorithm Cpub whose

7 The version of Barak’s relation that we use is actually a somewhat simplified form
of the relation given in [10], which results only in a reduction to hash functions that
are crhf against circuits of size nlog n. By using the more complex version of [10], we
get a reduction to standard crhf, without affecting any of our claims.

8 A and B do not share states and run with their own independent inputs.
9 Recall that Πcom is perfectly-binding commitment scheme which satisfies the
commit-with-extract notion. In addition, the protocol has a public decommitment
algorithm Dcom, an associated NP-relation Rcom, and NP-language Lcom, and a
fake public-coin sender algorithm. See section 3.2.
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execution is indistinguishable from that of C. During the commitment phase, our
prover algorithm will follow instructions of Cpub; the verifier will continue to use
the normal receiver strategy R.

“Encrypted” preamble. 〈 ̂Pb, ̂Vb〉: Let {Hn}n be a family of crhf func-
tions.

1. ̂Pb and ̂Vb run the GenStat protocol.
Let 〈h, τ, c, r〉 denote the resulting statement.

2. ̂Pb and ̂Vb execute uarg for the statement 〈h, τ, c, r〉.
(a) ̂Vb sends α, obtained from Vua.

(b) ̂Pb runs Cpub, and ̂Vb runs R;

Let ̂β be the commitment transcript.
(c) ̂Vb sends γ, obtained from Vua.

(d) ̂Pb runs Cpub, and ̂Vb runs R;

Let ̂δ be the commitment transcript.

The full transcript of the preamble is 〈h, τ, c, r, α, ̂β, γ, ̂δ〉.
Since the prover messages are committed, we cannot make a claim along the

lines of lemma 1. Therefore, we define the following NP-relation Rsim and claim
that it is a “hard” relation. This relation simply tests that there exist valid de-
commitments (d1, d2) for strings ̂β, ̂δ so that the transcript is accepted by the
uarg verifier.

Relation: Rsim(〈h, τ, c, r, α, ̂β, γ, ̂δ〉, 〈β, d1, δ, d2〉) = 1 if and only if:

1. Rcom(〈β, ̂β〉, d1) = 1.

2. Rcom(〈δ, ̂δ〉, d2) = 1.
3. Vua(h, τ, c, r, α, β, γ, δ) = 1.

The language corresponding to relation Rsim is denoted by Lsim. Also note
that ̂Pb sends either random strings of uniform elements in a prime order group
of Z∗

p. The proof of the following lemma appears in the full version of this work
[60].

Lemma 2. Suppose that {Hn}n is a family of crhf functions. There exists a
negligible function negl such that for every ppt strategy P ∗, every z ∈ {0, 1}∗,
every r ∈ {0, 1}∗, and every sufficiently large n,

Pr
[

σ ← trans[P ∗(z; r) ↔ ̂Vb()];σ ∈ Lsim

]

≤ negl(n)

where the probability is taken over the randomness of ̂Vb.

4 Conditional Disclosure via Garbled Circuits

Yao’s garbled circuit method [72] allows two parties to compute any arbitrary
function f of their inputs in a “secure” manner. Without loss of generality, let
f : {0, 1}n × {0, 1}n → {0, 1}n.
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The Method. The garbled circuit method specifies two polynomial time algo-
rithms (Garble,Eval). Algorithm Garble is randomized; on input 1n and the de-
scription of a circuit (that computes) f , it outputs a triplet (C, key0, key1). C,
which consists of a set of tables containing encrypted values, is called the gar-
bled circuit ; and key0 = {(k00,i, k10,i)}ni=1 and key1 = {(k01,i), k11,i}ni=1 are called
the keys. Let a = a1, . . . , an and b = b1, . . . , bn be binary strings. Algorithm
Eval, on input (C,Ka,Kb) outputs a value v ∈ {0, 1}n such that if Ka = {kai

0,i}
and Kb = {kbi1,i} then v = f(a, b).

For an NP-relation R, and σ ∈ {0, 1}∗, let fσ,R be the following function.

Function fσ,R(ω,m):

If R(σ, ω) = 1, output m; otherwise output 0|m|.

That is, fσ,R discloses m if and only if ω is a valid witness for the statement σ.
We will use the garbled circuit method for such functions fσ,R. Jumping ahead,
we will use fσ,Rsim

for the NP-relation Rsim described in section 3.3.

Conditional disclosure via garbled-circuits. In the two party setting, one party
prepares the garbled circuit C and sends the keys Kb corresponding to her input
b to the other party. An OT protocol is used by the first party to receive keys
Ka for her input a, so that it can execute the evaluation algorithm. This allows
the receiver of the garbled circuit (and OT) to learn f(a, b) but “nothing more”.
In addition, receiver’s input remains secure due to OT-security for receiver.

Looking forward, we will require our protocol so that it will admit a “fake”
receiver algorithm. Therefore, we will use the Naor-Pinkas OT protocol, denoted
OTnp (see section 3.1). For a technical reason, our protocol starts by first execut-
ing steps of OTnp, and then executes the garbled circuit step. Note that the first
step involves n parallel executions of OT, one for each input bit. The resulting
two-round conditional disclosure protocol, Πcd, is as follows.

Protocol Πcd for computing fσ,R(ω,m): The protocol consists of two par-
ties, a receiver Rcd and a sender Scd. Rcd’s private input is bit string ω =
ω1, . . . , ωn, and Scd’s private input is bit string m = m1, . . . ,mn. The com-
mon input to the parties is the description of the function fσ,R as a circuit
(equivalently, just σ).
1. Rcd computes v = (v1, . . . , vn), where vi is the first message of OTnp

using the input ωi and fresh randomness for i ∈ [n]. It then sends v.
2. Scd prepares a garbled circuit for the function fσ,R: (Cσ,R, key0, key1) ←

Garble(fσ,R). Next, Scd prepares v′ = (v′1, . . . , v′n) where v′i is the second
message of OTnp computed using (k00,i, k

1
0,i) as sender’s input and vi as

receiver’s first message. Here the keys (k00,i, k
1
0,i) are the ith component

of key0. Finally, let Km denote the keys taken from key1 corresponding
to m. Scd sends (Cσ,R, v′,Km).

Recall that OTnp is a two-round protocol, it provides statistical secrecy for the
sender, and has a fake public-coin receiver. Also recall that OTnp does not satisfy
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the the standard simulation-based security. As a result, we cannot directly use
known results about the security of Yao’s protocol. Nevertheless, we can make
weaker indistinguishability-style claims which suffice for our purpose. First notice
that the OT-security for receiver, intuitively guarantees indistinguishability for
the input of Rcd. For the sender, we can prove the following claim, whose proof
appears in the full version of this work [60].

Lemma 3 (Security for sender). Let L ∈ NP with witness relation R and
σ ∈ {0, 1}∗. For the security parameter n, let Scd(1

n, fσ,R,m, q) represent the
response of the honest sender (of protocol Πcd), with input (fσ,R,m) when re-
ceiver’s first message is q. Then, for every pair of distinct messages (m,m′),
every q ∈ {0, 1}∗ (from a possibly malicious ppt receiver), and every σ /∈ L, it
holds that

Scd(1
n, fσ,R,m, q)

c≡ Scd(
n, fσ,R,m

′, q).

5 A Constant Round Protocol

In this section we will present our constant round protocol. The protocol will use
the dual simulation idea, introduced in [33], as an important tool. To simplify
the exposition and the proofs, we isolate a part of the protocol from [33], and
present it as a separate building block.10

Shortened GJS Protocol 〈Pgjs, Vgjs〉. The common input is an n vertex graph
G in the form of an adjacency matrix, and prover’s auxiliary input is a Hamil-
tonian cycle H in G. The protocol proceeds in following three steps.

1. Commitment stage:
(a) Pgjs sends a random string ρ.

(b) Vgjs sends ̂t1 = shcomρ(t1; s1) and ̂ch = shcomρ(ch; s2),

where t1 ← {0, 1}3n4

, ch ∈ {0, 1}n, and s1, s2 ← {0, 1}poly(n).
2. Coin flipping stage:

(a) Pgjs sends a random string t2.
(b) Vgjs opens ̂t1 by sending (t1, s1).

Let t = t1 ⊕ t2.
3. Blum Hamiltonicity protocol:

(a) Let t = t1, . . . , tn3 so that |ti| = 3n for i ∈ [n3].
Prover chooses n random permutations π1, . . . , πn and sets

Gi = πi(G)
for each i ∈ [n]. It then commits to each bit bj in Gi using

sbcomti×j .

10 The only difference is that the challenge-response slots in the [33] protocol have been
removed. As a result, many other parameters of their protocol become irrelevant,
and also do not appear in this protocol. This does not affect the soundness of the
protocol.
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(b) Verifier opens to ̂ch by sending (ch, s2).
(c) Let ch = ch1, . . . , chn. For every i ∈ [n], if chi = 0 then

prover opens
each edge in Gi and reveals πi; else, it opens edges of the

cycle in Gi.

The following lemma has been shown in [33].

Lemma 4 ([33]). Protocol 〈Pgjs, Vgjs〉 is a sound interactive argument system
for all of NP.

5.1 Our Protocol

We are now ready to present our protocol 〈P, V 〉. The protocol starts with an
execution of the “encrypted” preamble protocol (see section 3.3); this is followed
by the first i.e., commitment, stage of the GJS protocol. Before completing the
GJS protocol, verifier executes the garbled-circuit protocol Πcd for fσ,Rsim

and
a specific m (described shortly), and proves using an szkaok that this step was
performed honestly. This will enable the simulator to extract useful information
in m. Finally, the rest of the GJS protocol is executed to complete the proof.
The full description of the protocol is given in figure 1. It is easy to see that our
protocol has constant rounds. The completeness of the protocol follows directly
from the completeness of 〈Pgjs, Vgjs〉. In next two sections, we prove the sound-
ness and zero-knowledge of this protocol. Note that the the prover is actually
“public coin” up until the final step.

Proving Leakage-resilient Zero-Knowledge. Due to space constraints, the proof
of security of this protocol—theorem 1—appears in the full version of this work
[60]. At a high level, we use Barak’s non-black-box simulation idea along with
GJS simulation. Let V ∗ be an arbitrary ppt verifier whose program is given as
an input to the simulator S. There are four main ideas:

1. First, the simulation uses V ∗’s code to execute the preamble in such a way,
that at the end of the preamble, σ ∈ Lsim. In addition, the simulator will
also have a witness ω so that Rsim(σ, ω) = 1. The properties of the compo-
nents used in the preamble (in particular the use of fake sampling algorithms
that are public coin) guarantee that simulator’s actions in the preamble are
indistinguishable from a real execution with an honest prover. In addition,
it is easy to answer leakage queries since the messages exchanged so far rep-
resent the entire random-tape of the prover at this point. This allows the
simulator to answer leakage queries by simply appending these messages to
the state, and sending an appropriate query to the leakage oracle.

2. Next, the simulator will use ω in the garbled circuit step to obtain keys Kω.
Once again, since the first message of OTnp provides indistinguishability for
receiver’s input, this step does not affect the simulation. Further, since P is
public coin in this step as well, the simulator can continue to answer leakage
queries as before.
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Protocol 〈P, V 〉. The common input consists of 1n, and an n vertex graph G
in the form of its adjacency matrix. Prover’s private input is a Hamiltonian
cycle H in G.

1. “Encrypted” preamble: P ⇒ V
P and V run Barak’s encrypted preamble. P runs the public-coin strategy
̂Pb, and V runs strategy ̂Vb. Let the transcript be σ := 〈h, τ, c, r, α, ̂β, γ, ̂δ〉.

2. Commitment step: V ⇒ P
P and V run the first, i.e. commitment, step of 〈Pgjs, Vgjs〉.
(a) P sends a random string ρ

(b) V sends ̂t1 = shcomρ(t1; s1) and ̂ch = shcomρ(ch; s2), where t1 ←
{0, 1}3n4

,

ch ← {0, 1}n, and s1, s2 ← {0, 1}poly(n); let m := (t1, s1, ch, s2).
3. Garbled-circuit step: V ⇒ P

P and V run the two-round garbled circuit protocol, Πcd, for the function
fσ,Rsim

. V acts as the sender with private input m.

(a) P runs the fake receiver, v1 ← Rpub
ot (1

n, p) for a random safe prime p;
sends v1.
(b) V sends (C, v2,Km) ← Scd(fσ,R,m, v1; s3), using fresh coins s3.

4. Proof of correctness: V ⇒ P
V proves to P using public-coin szkaok Πpr the knowledge of s3 and m =
(t1, s1, ch, s2) so that:
(a) ̂t1 = shcomρ(t1; s1),

(b) ̂ch = shcomρ(ch; s2),
(c) Scd(fσ,R,m, v1; s3) = (C, v2, Km).

5. Final step: P ⇒ V
P and V complete all remaining five rounds of 〈Pgjs, Vgjs〉. P uses H as
the witness.

Fig. 1. Our Constant Round LRZK Protocol

3. Having obtainedKω along with C,Km in the garbled circuit step, the simula-
tor can evaluate the C and learn fσ,Rsim

(ω,m) to learn m. By the soundness
of szkaok of the next step, it is guaranteed that m contains valid openings

(t1, s1, ch, s2) for ̂t1 and ̂ch.
4. Finally, observe that (t1, ch) is precisely the information needed by the GJS

simulation method to successfully simulate the last step, while answering
leakage queries properly. Briefly, ch is the challenge for Blum’s protocol, and
a first message can be created by the simulator to successfully answer V ∗’s
challenge in the last message. At the same time, since t1 is known prior to
the coin-flipping stage of the GJS protocol (see section 5), the simulator will
have the ability to equivocate in Naor’s commitment scheme, allowing it to
successfully answer leakage queries.
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An important point to note is that if V ∗ asks more than n2 bits of leakage
after receiving c and before sending r (see GenStat), the simulator will not
be able to ensure that σ ∈ Lsim. However, if this happens, the simulator can
simply ask for the entire witness H from the leakage oracle since the length of
leakage is more than the witness size. The simulator can then continue to run
like the honest prover and output a view. See full proof in the full version of this
work [60].
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