
Unary NFAs with Limited Nondeterminism

Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
{alex,ksalomaa,akl}@cs.queensu.ca

Abstract. We consider unary finite automata employing limited nonde-
terminism. We show that for a unary regular language, a minimal finite
tree width nondeterministic finite automaton (NFA) can always be found
in Chrobak normal form. A similar property holds with respect to other
measures of nondeterminism. The latter observation is used to establish
relationships between classes of unary regular languages recognized by
NFAs of given size where the nondeterminism is limited in various ways.
Finally, we show that the branching measure of a unary NFA is always
either bounded by a constant or has an exponential growth rate.

Keywords: finite automata, limited nondeterminism, state complexity,
unary regular languages.

1 Introduction

The descriptional complexity of finite automata has been studied for over half
a century, and there has been particularly much work done over the last two
decades. Good general surveys on the topic include [8,9] and as examples of
early papers on state complexity of finite automata we mention [17,18,19].

Motivated by the well known exponential trade-off in the NFA (nondeter-
ministic finite automaton) to DFA (deterministic finite automaton) conversion,
the literature has considered various ways of quantifying the amount of non-
determinism in finite automata. The degree of ambiguity of an NFA refers to
the number of accepting computations on a given input [15,23]. The guessing
measure, roughly, counts the number of advice bits used by an accepting com-
putation on a given input [7,11]. The branching of an NFA is the product of the
degrees of nondeterministic choices on the best accepting computation [7,14] and
the trace of an NFA is the corresponding worst-case measure [21]. The tree width
measure [20] counts the total number of computation paths corresponding to a
given input. This measure is called leaf size in [10,11], see also [1]. The reader is
referred to [6] for more information and references on NFAs employing limited
nondeterminism.

With a few exceptions, little is known about the interrelationships of the dif-
ferent nondeterminism measures from a descriptional complexity point of view.
Directly based on the definitions it follows that the branching and guessing
measure are exponentially related [7] and some further results can be found in
[10,11,21]. The size trade-off between NFAs of finite branching and DFAs with
multiple initial states has been considered in [13,22].

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 443–454, 2014.
c© Springer International Publishing Switzerland 2014

444 A. Palioudakis, K. Salomaa, and S.G. Akl

In this paper we study the interrelationships of the different nondeterminism
measures for the special case of unary NFAs. We show that for a given k ∈ N

and a unary regular language, a minimal NFA with tree width k or trace k can
always be found in Chrobak normal form. An analogous result for unary NFAs
with finite ambiguity is known from [12]. The above normal form result is used
to show that the state complexity classes defined by bounded tree width and by
bounded trace, respectively, coincide in the case of unary regular languages and
a similar correspondence, with certain limitations, holds for state complexity
classes of unary regular languages defined by bounded ambiguity. The situation
is different for the branching measure. In contrast with the measures of tree
width, trace and ambiguity, it remains open whether unary NFAs with finite
branching could have a normal form with a simple nice structure.

In the literature it is known that the growth rate of the degree of ambigu-
ity and of tree width can be either constant, polynomial or exponential and
that the growth rate of the trace measure is always either constant or expo-
nential [16,11,21]. As our main result in Section 4, we show that the branching
function of a unary NFA is either constant or grows exponentially, and in the
latter case give a lower bound for the exponential growth rate that depends only
on the number of states. It remains open whether for an NFA defined over an
arbitrary alphabet that has unbounded branching, the branching growth rate is
always exponential.

2 Preliminaries

We assume that the reader is familiar with the basic definitions concerning fi-
nite automata [24,25] and descriptional complexity [6,9]. Here we just fix some
notation needed in the following.

The set of strings, or words, over a finite alphabet Σ is Σ∗, the length of
w ∈ Σ∗ is |w| and ε is the empty string. The set of positive integers is denoted
by N. The cardinality of a finite set S is #S.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is
the transition function, q0 is the initial state and F ⊆ Q is the set of accepting
states. The function δ is extended in the usual way as a function Q×Σ∗ → 2Q

and the language recognized by A, L(A), consists of strings w ∈ Σ∗ such that
δ(q0, w) ∩ F �= ∅. An NFA A is called deterministic finite automaton (DFA)
if for every state q of A and letter a of the input alphabet of A, the transition
function goes to at most one state, i.e. #δ(q, a) ≤ 1. Unless otherwise mentioned,
we assume that any state q of an NFA A is reachable from the start state and
some computation originating from q reaches a final state. The size of A is the
number of states of A, i.e. size(A) = #Q.

A special case of an NFA A = (Q,Σ, δ, q0, F) is when the alphabet Σ has a
unique letter. In this case we call the NFA A unary and we omit the alphabet of
its tuple notation. Similarly, the transition function δ of an unary NFA has one
argument, i.e. δ : Q → 2Q. For a unary NFA A = (Q, δ, q0, F) over an alphabet

Limited Nondeterminism 445

Σ = {a} we say that the numberm is accepted by the NFA A instead of the word
am, when am ∈ L(A). To avoid confusion between operations on numbers and
strings we use the symbols +,×,∪, · for the operations addition, multiplication,
union, and concatenation respectively.

Every unary regular language L has a period and a preperiod. The period and
preperiod of a regular language L are natural numbers m and n0, respectively,
where for all n > n0 we have n ∈ L if and only if n+m ∈ L.

The minimal size of a DFA (respectively, an NFA) recognizing a regular lan-
guage is called the state complexity (respectively, the nondeterministic state
complexity) of L and denoted sc(L) (respectively, nsc(L)). Note that we allow
DFAs to be incomplete and, consequently, the deterministic state complexity of
L may differ by one from a definition using complete DFAs.

A computation of an NFA A from a state s1 to a state s2 is a sequence
of transitions (qi, ai, pi), 1 ≤ i ≤ k, where qi+1 = pi, i = 1, . . . , k − 1, and
s1 = q1, s2 = pk. The underlying word of a computation (q1, a1, q2) (q2, a2, q3)
· · · (qm, am, qm+1) is a1a2 · · ·am. For x ∈ Σ∗, compA(x) denotes the set of all
computation of A with underlying word x, starting from the initial state of A.
We call a computation of A accepting if it starts from the initial state and it
finishes at a final state. For x ∈ Σ∗, acc compA(x) denotes the set of all accepting
computations of A with underlying word x.

We say that the computations C and C′ on word w are equivalent if C and
C′ begin in the same state and they both end in the same state.

The branching of a transition (q, a, p) of an NFA A, denoted by βA((q, a, p)), is
the number #δ(q, a) and the branching of a computation C, denoted by βA(C),
is the product of the branching of each transition in C. The branching of a
word x ∈ L(A) is the minimum branching among all accepting computations by
reading the word x, the branching of a word x is given by the formula βA(x) =
min{βA(C) | C ∈ acc compA(x)}. The branching of an NFA A, denoted by
β(A), is the maximum branching of A on any string, assuming this quantity is
bounded. More details on the branching measure can be found in [7].

We have also considered a worst-case variant of the above measure, so called
trace [21]. The trace of an NFA A on a string x is the maximum branching among
all computations reading the word x (accepting or not). The trace of a word x
is given by the formula τA(x) = max{βA(C) | C ∈ compA(y), y is a prefix of x}
(the prefixes of the word x are in the given formula to emphasize that we include
also computation reading only an initial part of the word x). The trace of an
NFA A, denoted by τ(A), is the maximum trace of A on any string, assuming
this quantity is bounded.

The computation tree of an NFA A on string w is defined in the natural way
and denoted as TA,w. The tree width of A on w, twA(w), is the number of leaves
of TA,w and the tree width of A, tw(A) (if it is finite) is the maximum tree
width of A on any string w. The formal definitions associated with computation
trees and tree width of an NFA can be found in [20,21].1 The ambiguity of A

1 Note that the tree width of an NFA is unrelated to the notion of tree width as used
in graph theory [2].

446 A. Palioudakis, K. Salomaa, and S.G. Akl

on w, ambA(w), is the number of accepting leaves of TA,w and the ambiguity
of A, amb(A) (if it is finite) is the maximum ambiguity of A on any string
w. Ambiguity is a well studied measure of nondeterminism, more details on
ambiguity in NFAs can be found in [6].

Next we want to consider questions that involve the state complexity of classes
of NFAs of limited nondeterminism. To formalize such question we have to define
the following notation, where sNFA is the set of all NFAs, α is a measure of
nondeterminism, and c a constant.

nscα≤c(L) = min
A∈sNFA

{size(A) | L = L(A) and α(A) ≤ c}

Now the numbers nscβ≤k(L) and nscτ≤k(L) have a meaning. The number
nscβ≤k(L) is the size of a smallest NFA A such that L = L(A) and β(A) ≤ k. The
number nscτ≤k(L) is the smallest number of states required from an automaton
B such that τ(B) ≤ k. It is easy to see that nscβ≤k(L) ≤ nscτ≤k(L) by the
definitions of the measures branching and trace.

Let us remind to the reader the Chrobak normal form [3]. A unary NFA A
is in Chrobak normal form if initially the states of A form a ‘tail’ and later, at
the end of the tail, are followed nondeterministically by disjoint deterministic
cycles. Note, that the only state with nondeterministic choices is the last state
of the tail. Formally, the NFA M = (Q, δ, q0, F) is in Chrobak normal form if it
has the following properties:

(i) Q = {q0, . . . , qt−1} ∪ C1 ∪ · · · ∪ Ck, where Ci = {pi,0, pi,1, . . . , pi,yi−1} for
i ∈ {1, . . . , k},

(ii) δ = {(qi, qi+1) | 0 ≤ i ≤ t − 2} ∪ {(qt−1, pi,0) | 1 ≤ i ≤ k} ∪ {(pi,j , pi,j+1) |
1 ≤ i ≤ k, 1 ≤ j ≤ yi − 2} ∪ {(pi,yi−1 , pi,0) | 1 ≤ i ≤ k}.

We will use also a more relaxed normal form for unary NFAs which we call
a semi-Chrobak normal form. A semi-Chrobak normal form NFA consists of a
tail and a finite number of disjoint cycles. The only nondeterministic transitions
are from the last state of the tail to the cycles, however, as opposed to the usual
Chrobak normal form now there may be more than one transition from the last
state of the tail to the same cycle. An example of a unary NFA in semi-Chrobak
normal can be found in Figure 1.

3 Finite Tree Width and Chrobak Normal Form

For an NFA A in Chrobak normal form it is easy to determine the various
nondeterminism measures of A.

Lemma 3.1. Let A be a Chrobak normal form NFA with k cycles. Then β(A) =
τ(A) = tw(A) = k.

Furthermore, if A is a minimal NFA for L(A) and m ≥ k, then

size(A) = nscβ≤m(L(A)) = nscτ≤m(L(A)) = nsctw≤m(L(A)) = nsc(L(A)).

Limited Nondeterminism 447

Fig. 1. Two unary NFAs in Chrobak normal form and semi-Chrobak normal form
respectively

Proof. The first claim follows directly from the definition of Chrobak normal
form. If A is minimal, size(A) = nsc(L(A)) and the chain of equalities follows
because for any m ≥ k and ϕ ∈ {β, τ, tw}, nsc(L(A)) ≤ nscϕ≤m(L(A)) ≤
size(A). ��

The semi-Chrobak normal form is a less restrictive variant of the Chrobak
normal form. Lemma 3.2 shows that a semi-Chrobak NFA can be transformed
to a Chrobak normal form NFA of the same size.

Lemma 3.2. Every semi-Chrobak normal form NFA has an equivalent Chrobak
normal form NFA of same size.

Proof outline. A semi-Chrobak normal form NFA A with tail T and cycles
C1, . . . , Ck can be transformed to a Chrobak normal form NFA B with the
same tail T and cycles C1, . . . , Ck. The NFA B has only one transition from the
last state of T to each cycle Ci and to compensate for the omitted transitions
we add new final states to the cycles. ��

Chrobak showed in [3] that every unary NFA can be transformed into an
equivalent NFA in Chrobak normal form with losing in efficiency in terms of the
number of states. In the following lemma we show that we can transform any
NFA with finite tree width into an NFA in Chrobak normal form without losing
in efficiency.

Theorem 3.1. Let A be a unary n-state NFA with tree width k. Then there
exists an equivalent Chrobak normal form NFA B with at most n states and tree
width k.

Proof outline. Since the NFA A has finite tree width, we can divide its states
into two groups. The states of the first group are the ones belonging in a cycle
of A and the second group has the rest. The first group can have only disjoint
cycles and its states can have only deterministic choices. We can replace the

448 A. Palioudakis, K. Salomaa, and S.G. Akl

states of the second group with a chain (the number of the new states is at most
as the number of states in the second group). The tail of the NFA B is made
from the new states and its cycles are the cycles of the NFA A. ��

Theorem 3.1 speaks about NFAs with finite tree width, not only minimal
automata. Sometimes we may use the minimality of an automaton so we want
to emphazise that it also holds for minimal automata. We do that with the
following corollary.

Corollary 3.1. For any unary regular language, a state minimal finite tree
width NFA is in Chrobak normal form.

Moreover, Theorem 3.1 suggests a better comparison between NFA with fi-
nite tree width and a deterministic finite automaton with multiple initial states
(MDFA) [5]. Recall that in [22] we have seen that the size of an MDFA can be
exponentially larger than the size of a finite tree width NFA as a function of the
degree of its tree width. In the next corollary we show that this is not the case
for unary languages.

Corollary 3.2. Let B be an n-state unary NFA with tree width k ≥ 2. Then,
there is an MDFA B′ equivalent with B such that it has at most k×n−5×(k−1)
states.

Corollary 3.2 gives an upper bound on the size of MDFAs in terms of the size
of equivalent NFAs with finite tree width. The size of an MDFA can be linearly
more than the size of an equivalent finite tree width NFA. However, note that
the limited state complexity of a regular language L for finite tree width k is at
most the limited state complexity of MDFAs having k initial states plus one. We
can not do better than this, since there are languages that make these quantities
equal. Such a language is L = (p1)

∗ ∪ . . . ∪ (pk)
∗, where the numbers pj are

prime, for 1 ≤ j ≤ k.
In [21] we have seen that every NFA has finite tree width if and only if it has

finite trace. In that paper we have also seen that the trace of an NFA can be as
small as its tree width, but the trace can also be exponentially larger than the
tree width. In the next corollary, we show that these two measures are equivalent
for unary minimal NFAs. Its proof comes from Theorem 3.1 and Lemma 3.1.

Corollary 3.3. For every unary regular language L and every natural number
k, we have the following equality,

nscτ≤k(L) = nsctw≤k(L)

Moreover, there is an NFA A with tree width k and trace k such that L = L(A)
and size(A) = nscτ≤k(L) = nsctw≤k(L).

Corollary 3.3 compares minimal NFAs with finite tree width and NFAs with
finite trace. The corollary says that the size of a minimal NFA with tree width
k is the same as the size of a minimal NFA with trace k, and vice versa. The
question here is whether this is true comparing NFAs with finite branching with

Limited Nondeterminism 449

NFAs with finite trace or finite tree width. This question seems more difficult
since the branching and tree width measures are not comparable, in general.
For example take the automaton A of Figure 2, then, for all m ∈ N, we have
that twA(m) = m + 1 and βA(m) = 2. For the automaton B of the same
figure, for all m ∈ N, we have twB(m) = m + 1 and βB(m) = 2m. Both NFAs
A and B are minimal for the language L = {i ∈ N | i ≥ 1}. However, from
Corollary 3.3 we have that for bounded branching and bounded tree width we
can show an inequality between nsctw≤k(L) and nscβ≤k(L). Since for any NFA
A, β(A) ≤ τ(A), as a consequence of Corollary 3.3 we have Corollary 3.4.

Fig. 2. The NFA A is on the left, the NFA B is on the right

Corollary 3.4. For every unary regular language L and every natural number
k, we have that nscβ≤k(L) ≤ nsctw≤k(L)

In contrast to Corollary 3.3, the inequality for a unary language L,
nscβ≤k(L) ≤ nsctw≤k(L) of Corollary 3.4 cannot be replaced by an equality.
Let A be the unary NFA depicted in Figure 3. On any accepted input, the NFA
A needs to go through the first cycle at most two times and, hence, βA = 4. On
the other hand, it is easy to verify that any NFA with finite tree width for the
language L(A) needs at least 6 states.

Fig. 3. A unary NFA recognizing the language 2∗ · 3+

Another consequence of Theorem 3.1 is a connection between finite tree width
NFAs and finite ambiguous NFAs. Recall in [20] we have seen that the limited
state complexity of finite tree width NFAs can be exponentially larger than the
size of unambiguous equivalent NFAs. The next theorem, from [12], is a similar
with Theorem 3.1 for finite ambiguity.

450 A. Palioudakis, K. Salomaa, and S.G. Akl

Theorem 3.2 ([12]). Let A be a unary n-state NFA with ambiguity k. There is
an equivalent Chrobak normal form NFA B with at most n states and ambiguity
k.

As a result of Theorem 3.1 and Theorem 3.2 we have the following corollary.

Corollary 3.5. Let A be a unary NFA with n states, for every k ≥ n
2 we have

nscamb≤k(L(A)) = nsctw≤k(L(A)).

Our final result for this section shows that there is a strict hierarchy for the
state complexity of NFA with finite tree width and respectively with finite trace.

Lemma 3.3. For any k ∈ N there exists a unary regular language L such that

nscτ≤k+1(L) < nscτ≤k(L) and nsctw≤k+1(L) < nsctw≤k(L).

4 Growth Rate of the Branching Measure

In this section we study the growth rate of the branching function for unary
automata. We show that the β-function of a unary NFA is either bounded by a
constant or grows exponentially.

Before we show our result on the growth rate of the β-function, we will give
two lemmas which we are going to use in the proof of the main theorem of
this section. The first lemma shows that every computation going through a
deterministic cycle S can be transformed into an equivalent computation that
repeats cycles outside of S at most a fixed number of times.

Lemma 4.1. Let A be a unary NFA and consider a computation C of A that
contains a deterministic cycle S of length k. Then the computation C has an
equivalent computation C′ containing the deterministic cycle S, such that every
state of A appearing in C′ and not in S appears at most k times.

Proof. Let A = (Q,Σ, q0, F) be a unary NFA and a computation C containing
a deterministic cycle S of length k.

Consider a state q appearing in C but not in the cycle S. Let us assume that
the state q appears at least k + 1 times in the computation C, notice here that
since cycle S is deterministic if the computation C enter the cycle S then it stays
inside the cycle S.

Let di be the length of the computation until i-th occurrence of the state q
in the computation C, for i = 1, . . . , k + 1. Two of the di numbers must be in
same congruence class modulo k. Then, the steps of the computation C between
these two occurrences of q can be shifted into the cycle S.

Continuing similar for all the states of A appearing in the computation C
but not in the cycle S, we end up with a computation C′, equivalent with the
computation C, such that every state before the cycle S appears at most k times.

��

Limited Nondeterminism 451

In [3] Chrobak showed that for every unary NFA A with n states, there is a
unary NFA A′ in Chrobak normal form with n states participating in cycles and
O(n2) states in its tail. For our purposes, we need a more accurate estimation
on the size of the tail, which is due to Gawrychowski in [4].

Lemma 4.2 ([4]). For each unary NFA A with n states, there is a unary NFA
A′ in Chrobak normal form with at most n states participating in cycles and with
a tail with at most n× (n− 1)states.

Now we are ready to give the main result of this section.

Theorem 4.1. Let A be a unary NFA with n states. Then either for every
natural number m, βA(m) ≤ nn×(n−1), or for every natural number m > n ×
(n− 1),

βA(m) ≥ 2
� m

e
√

n×logn
�

Proof. Let A = (Q, δ, q0, F) be a unary NFA with n states. Let the sets SN

and SD be

SD = {i ∈ N | i is accepted by a path that enters a deterministic cycle}
SN = {i ∈ N | i is accepted by a path that does not enter a deterministic cycle}
We have that L(A) = SD ∪ SN , note here that the sets SD and SN do not need
to be disjoint.

Let us have now the NFA D = (Q, δ, q0, F
′) which is exactly like the NFA

A except the final states. The final states of D are the final states of A which
are in a deterministic cycle. Since, if a computation enters a deterministic cyclic
cannot exit this cycle, we have that L(D) = SD. Similarly, we define the NFA
N = (Q, δ, q0, F/F

′) which we get by the NFA A by changing the final states
appearing in deterministic cycles to non-final states. The NFA N recognizes the
language SN .

Since the unary languages SN and SD are regular, they both have a period
and a preperiod. From Lemma 4.2 there are unary NFAs N ′ and D′ in Chrobak
normal form, respectively equivalent to the NFAs N and D, with tails of size at
most n × (n − 1). Then, the number n× (n − 1) is a preperiod for both of the
sets SD and SN .

Now we are interested in the relationship between SD and SN after their
preperiod n × (n − 1). To simplify things, we denote S(k) = {x ∈ S | x > k}.
Then, we are interested in the sets S

(n×(n−1))
N and S

(n×(n−1))
D . Here we can have

two cases, in the first case we have S
(n×(n−1))
N ⊆ S

(n×(n−1))
D , and in the second

case we have S
(n×(n−1))
N \ S(n×(n−1))

D �= ∅.
In the former case, where S

(n×(n−1))
N ⊆ S

(n×(n−1))
D , we have that for every

number k in L(A) greater than n × (n − 1) there is a computation Ck which
enters a deterministic cycle and accepts k. In this case we argue that for every
m ∈ N, we have βA(m) ≤ nn×(n−1). For every computation C with length at
most n × (n − 1) the maximum branching that C can have is nn×(n−1). For

452 A. Palioudakis, K. Salomaa, and S.G. Akl

any other accepting computation C with length greater than n × (n − 1) there
is an equivalent computation C′ which enters in a deterministic cycle. From
Lemma 4.1, we can safely assume that the computation C′ enters a deterministic

cycle and the number of states before this cycle is at most (n)2

4 , which implies

that the branching of C′ is at most nn×(n−1).

The latter case is a bit more complicated. In this case we have that S
(n×(n−1))
N \

S
(n×(n−1))
D �= ∅ which means that there is an accepting computation C which

does not enter a deterministic cycle and there is not an equivalent computation
with C such that enters a deterministic cycle. In the rest of this proof we will
argue that since the computation C exists, there are infinitely many such com-
putations and additionally the distance between two consecutive computations
is at most e

√
n×log n.

From Lemma 4.2 both of the NFAs N ′ and D′, which are in Chrobak normal
form, have disjoint cycles with the sum of sizes at most n. Consider the least
common multiple of the sizes of the cycles of the NFAs N ′ and D′ combined,
denote this least common multiple by z. Then the number z is a period for
both of the languages SD and SN (which implies also the same for the language
L(A)). To justify this, consider that there is an accepting computation C1 which
has finished in a final state q inside of one of these cycles, call it S1, in one of
these NFAs (same argument applies to all the cycles of N ′ and D′). From the
definition of the number z the size of the cycle S1 divides z, then by continuing
the computation C1 after it has reached state q for z more steps, we end up
again at the state q. This is true for all final states that are in any cycle of these
NFAs. Vice versa, if there is an accepting computation C2 greater in length than
n×(n−1)+z, then it finishes at a final state p which appears in one of these cycles,
call it S2. Considering the computation C′

2 which follows computation C2 and
stops exactly z steps before. The computation C2 is greater that n×(n−1) which
implies that the computation C′

2 finishes also in the same cycle S2. Since the size
of S2 divides z the computation C′

2 finishes at the state p as the computation

C2. From the Landau’s function we know that z is at most e
√
n×logn.

Since the number z is a period for the sets SN and SD and there is a number

i in S
(n×(n−1))
N \ S

(n×(n−1))
D �= ∅, we have that for every integer m, such that

i+m× z > n× (n− 1), the number i+m× z is in SN but not in SD. Since we

know that z ≤ e
√
n×logn we get that for every e

√
n×logn consecutive values (or

even more frequently) we have an integer in SN \ SD. The computation on such
an integer has at least one nondeterministic step (i.e. the transition function has
a choice of at least 2) for every n steps of the computation. We know that the β
function is monotone, but we do not know if there are numbers in SD between
two consecutive numbers in SN \ SD. Hence, we have that for every number
m > n× (n− 1) the function βA(m) is at least as the function

f(m) =

{
2

m
n if m ≡ 0 mod �e

√
n×logn�,

f(m− 1) otherwise .

Limited Nondeterminism 453

It is easy to see that for every value m the function f(m) is at least 2
� m

e
√

n×logn
�
,

which implies that the branching βA(m) for every number m ≥ n× (n− 1) is at

least 2
� m

e
√

n×logn
�
. ��

In Theorem 4.1 the values, given as a function of the number of states, are
not intended to be the best possible. With a more careful analysis, especially
the constant upper bound for βA(m) in the first case, nn×(n−1), could be sig-
nificantly improved. It is somewhat less clear whether, in the second case, the
factor e

√
n×logn in the exponent can be improved.

5 Conclusion and Open Problems

We have seen that for a unary regular languages, a minimal finite tree width
NFA can always be found in Chrobak normal form. It remains open whether
there is a similar simple structure for a minimal finite branching unary NFA.

We also studied the growth rate of branching for unary NFAs. We have seen
that the branching function of unary NFAs is either bounded by a constant or
grows exponentially. The characterization of possible growth rates of the branch-
ing function of an NFA defined over an arbitrary alphabet remains open. Here
techniques used for our result dealing with the unary case seem not directly
applicable.

References

1. Björklund, H., Martens, W.: The tractability frontier for nfa minimization. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 27–38. Springer,
Heidelberg (2008)

2. Bondy, J., Murty, U.: Graph theory. Graduate texts in mathematics, vol. 244.
Springer (2008)

3. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149–158 (1986)

4. Gawrychowski, P.: Chrobak normal form revisited, with applications. In: Bouchou-
Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011.
LNCS, vol. 6807, pp. 142–153. Springer, Heidelberg (2011)

5. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. Syst. Sci. 9(1),
1–19 (1974)

6. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002)

7. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inf. Comput. 86(2), 179–194 (1990)

8. Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20(4),
563–580 (2009)

9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata - a survey. Inf. Comput. 209(3), 456–470 (2011)

454 A. Palioudakis, K. Salomaa, and S.G. Akl

10. Hromkovič, J., Karhumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Measures of
nondeterminism in finite automata. In: Montanari, U., Rolim, J.D.P., Welzl, E.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 199–210. Springer, Heidelberg (2000)

11. Hromkovic, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communi-
cation complexity method for measuring nondeterminism in finite automata. Inf.
Comput. 172(2), 202–217 (2002)

12. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal
nfa’s over a unary alphabet. In: Biswas, S., Nori, K.V. (eds.) FSTTCS 1991. LNCS,
vol. 560, pp. 152–171. Springer, Heidelberg (1991)

13. Kappes, M.: Descriptional complexity of deterministic finite automata with multi-
ple initial states. Journal of Automata, Languages and Combinatorics 5(3), 269–278
(2000)

14. Kintala, C.M.R., Wotschke, D.: Amounts of nondeterminism in finite automata.
Acta Inf. 13, 199–204 (1980)

15. Leung, H.: On finite automata with limited nondeterminism. Acta Inf. 35(7),
595–624 (1998)

16. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

17. Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kiber-
netiki 9, 328–335 (1963)

18. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)

19. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers C-20(10), 1211–1214 (1971)

20. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeter-
minism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386,
pp. 252–265. Springer, Heidelberg (2012)

21. Palioudakis, A., Salomaa, K., Akl, S.G.: Comparisons between measures of non-
determinism on finite automata. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013.
LNCS, vol. 8031, pp. 217–228. Springer, Heidelberg (2013)

22. Palioudakis, A., Salomaa, K., Akl, S.G.: Finite nondeterminism vs. dfas with mul-
tiple initial states. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031,
pp. 229–240. Springer, Heidelberg (2013)

23. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to
the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989)

24. Shallit, J.O.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press (2008)

25. Yu, S.: Regular Languages. In: Handbook of Formal Languages, vol. 1, pp. 41–110.
Springer (1998)

	Unary NFAs with Limited Nondeterminism
	1 Introduction
	2 Preliminaries
	3 Finite Tree Width and Chrobak Normal Form
	4 Growth Rate of the Branching Measure
	5 Conclusion and Open Problems
	References

