
Volume 26 (2007), number 1 pp. 80–113 COMPUTER GRAPHICS forum

A Survey of General-Purpose Computation on Graphics
Hardware

John D. Owens1, David Luebke2, Naga Govindaraju3, Mark Harris2, Jens Krüger4, Aaron E. Lefohn5 and Timothy J. Purcell2

1University of California, Davis, USA
jowens@ece.ucdavis.edu

2NVIDIA
{dluebke,mharris,tpurcell}@nvidia.com

3Many-core Technology Incubation Group, Microsoft Corporation
nagag@microsoft.com

4Technische Universität München
kruegeje@in.tum.de

5Neoptica
lefohn@neoptica.com

Abstract
The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programma-
bility, have made graphics hardware a compelling platform for computationally demanding tasks in a wide variety
of application domains. In this report, we describe, summarize, and analyze the latest research in mapping general-
purpose computation to graphics hardware.

We begin with the technical motivations that underlie general-purpose computation on graphics processors
(GPGPU) and describe the hardware and software developments that have led to the recent interest in this field.
We then aim the main body of this report at two separate audiences. First, we describe the techniques used in
mapping general-purpose computation to graphics hardware. We believe these techniques will be generally useful
for researchers who plan to develop the next generation of GPGPU algorithms and techniques. Second, we survey
and categorize the latest developments in general-purpose application development on graphics hardware.

Keywords: GPGPU, general-purpose computing on graphics hardware, parallel computing, GPU, graphics hard-

ware, SIMD, stream processing, stream computing, data-parallel computing, high-performance computing, HPC

ACM CCS: I.3.1 Computer Graphics: Hardware architecture, I.3.6 Computer Graphics: Methodology and tech-
niques, D.2.2 Software Engineering: Design tools and techniques.

1. Introduction: Why GPGPU?

Commodity computer graphics chips, known generically as

Graphics Processing Units or GPUs, are probably today’s

most powerful computational hardware for the dollar. Re-

searchers and developers have become interested in har-

nessing this power for general-purpose computing, an effort

known collectively as GPGPU (for “General-Purpose com-

puting on the GPU”). In this article we summarize the prin-

cipal developments to date in the hardware and software

behind GPGPU, give an overview of the techniques and

computational building blocks used to map general-purpose

computation to graphics hardware, and survey the various

general-purpose computing tasks to which GPUs have been

applied. We begin by reviewing the motivation for and chal-

lenges of general-purpose GPU computing. Why GPGPU?

1.1. Powerful and inexpensive

Recent graphics architectures provide tremendous memory

bandwidth and computational horsepower. For example, the

flagship NVIDIA GeForce 7900 GTX ($378 as of October

2006) boasts 51.2 GB/sec memory bandwidth; the similarly

priced ATI Radeon X1900 XTX can sustain a measured

240 GFLOPS, both measured with GPUBench [BFH04a].

Compare to 8.5 GB/sec and 25.6 GFLOPS theoretical peak

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA 02148, USA.

80

Submitted May 2006
Revised August 2006

Accepted October 2006

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 81

0

100

200

300
G

F
L
O

P
S

2002 2004 2006
YearYear

NVIDIA

ATI

Intel

dual-core

Figure 1: The programmable floating-point performance of
GPUs (measured on the multiply-add instruction, counting 2
floating-point operations per MAD) has increased dramati-
cally over the last four years when compared to CPUs.

for the SSE units of a dual-core 3.7 GHz Intel Pentium Ex-

treme Edition 965 [Int06]). GPUs also use advanced proces-

sor technology; for example, the ATI X1900 contains 384

million transistors and is built on a 90-nanometer fabrication

process.

Graphics hardware is fast and getting faster quickly. For

example, the arithmetic throughput (again measured by

GPUBench) of NVIDIA’s current-generation launch prod-

uct, the GeForce 7800 GTX (165 GFLOPS), more than triples

that of its predecessor, the GeForce 6800 Ultra (53 GFLOPS).

In general, the computational capabilities of GPUs, measured

by the traditional metrics of graphics performance, have com-

pounded at an average yearly rate of 1.7 (pixels/second) to

2.3 (vertices/second). This rate of growth significantly out-

paces the often-quoted Moore’s Law as applied to traditional

microprocessors; compare to a yearly rate of roughly 1.4 for

CPU performance [EWN05] (Figure 1).

Why is graphics hardware performance increasing more

rapidly than that of CPUs? Semiconductor capability, driven

by advances in fabrication technology, increases at the same

rate for both platforms. The disparity can be attributed

to fundamental architectural differences: CPUs are opti-

mized for high performance on sequential code, with many

transistors dedicated to extracting instruction-level paral-

lelism with techniques such as branch prediction and out-of-

order execution. On the other hand, the highly data-parallel

nature of graphics computations enables GPUs to use addi-

tional transistors more directly for computation, achieving

higher arithmetic intensity with the same transistor count.

We discuss the architectural issues of GPU design further in

Section 2.

1.2. Flexible and programmable

Modern graphics architectures have become flexible as well

as powerful. Early GPUs were fixed-function pipelines whose

output was limited to 8-bit-per-channel color values, whereas

modern GPUs now include fully programmable processing

units that support vectorized floating-point operations on val-

ues stored at full IEEE single precision (but note that the

arithmetic operations themselves are not yet perfectly IEEE-

compliant). High level languages have emerged to support

the new programmability of the vertex and pixel pipelines

[BFH*04b,MGAK03,MDP*04]. Additional levels of pro-

grammability are emerging with every major generation of

GPU (roughly every 18 months). For example, current gen-

eration GPUs introduced vertex texture access, full branch-

ing support in the vertex pipeline, and limited branching ca-

pability in the fragment pipeline. The next generation will

expand on these changes and add “geometry shaders”, or

programmable primitive assembly, bringing flexibility to an

entirely new stage in the pipeline [Bly06]. The raw speed,

increasing precision, and rapidly expanding programmabil-

ity of GPUs make them an attractive platform for general-

purpose computation.

1.3. Limitations and difficulties

The GPU is hardly a computational panacea. Its arithmetic

power results from a highly specialized architecture, evolved

and tuned over years to extract maximum performance on the

highly parallel tasks of traditional computer graphics. The

increasing flexibility of GPUs, coupled with some ingenious

uses of that flexibility by GPGPU developers, has enabled

many applications outside the original narrow tasks for which

GPUs were originally designed, but many applications still

exist for which GPUs are not (and likely never will be) well

suited. Word processing, for example, is a classic example

of a “pointer chasing” application, dominated by memory

communication and difficult to parallelize.

Today’s GPUs also lack some fundamental computing con-

structs, such as efficient “scatter” memory operations (i.e.,

indexed-write array operations) and integer data operands.

The lack of integers and associated operations such as bit-

shifts and bitwise logical operations (AND, OR, XOR, NOT)

makes GPUs ill-suited for many computationally intense

tasks such as cryptography (though upcoming Direct3D

10-class hardware will add integer support and more general-

ized instructions [Bly06]). Finally, while the recent increase

in precision to 32-bit floating point has enabled a host of

GPGPU applications, 64-bit double precision arithmetic re-

mains a promise on the horizon. The lack of double precision

hampers or prevents GPUs from being applicable to many

very large-scale computational science problems.

Furthermore, graphics hardware remains difficult to apply

to non-graphics tasks. The GPU uses an unusual program-

ming model (Section 2.3), so effective GPGPU programming

is not simply a matter of learning a new language. Instead, the

computation must be recast into graphics terms by a program-

mer familiar with the design, limitations, and evolution of the

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

82 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

Vertex

Buffer

Vertex

Processor
Rasterizer

Fragment

Processor

Texture

Frame

Buffer

Figure 2: The modern graphics hardware pipeline. The ver-
tex and fragment processor stages are both programmable by
the user.

underlying hardware. Today, harnessing the power of a GPU

for scientific or general-purpose computation often requires

a concerted effort by experts in both computer graphics and

in the particular computational domain. But despite the pro-

gramming challenges, the potential benefits—a leap forward

in computing capability, and a growth curve much faster than

traditional CPUs—are too large to ignore.

1.4. GPGPU today

A vibrant community of developers has emerged around

GPGPU (http://GPGPU.org/), and much promising early

work has appeared in the literature. We survey GPGPU ap-

plications, which range from numeric computing operations,

to non-traditional computer graphics processes, to physical

simulations and “game physics”, to data mining. We cover

these and more applications in Section 5.

2. Overview of Programmable Graphics Hardware

In this section we will outline the evolution of the GPU and

describe its current hardware and software.

2.1. Overview of the graphics pipeline

The application domain of interactive 3D graphics has several

characteristics that differentiate it from more general compu-

tation domains. In particular, interactive 3D graphics applica-

tions require high computation rates and exhibit substantial

parallelism. Building custom hardware that takes advantage

of the native parallelism in the application, then, allows higher

performance on graphics applications than can be obtained

on more traditional microprocessors.

All of today’s commodity GPUs structure their graphics

computation in a similar organization called the graphics
pipeline. This pipeline is designed to allow hardware imple-

mentations to maintain high computation rates through par-

allel execution. The pipeline is divided into several stages.

All geometric primitives pass through each stage: vertex op-

erations, primitive assembly, rasterization, fragment opera-

tions, and composition into a final image. In hardware, each

stage is implemented as a separate piece of hardware on the

GPU in what is termed a task-parallel machine organization.

Figure 2 shows the pipeline stages in current GPUs. For

more detail on GPU hardware and the graphics pipeline,

NVIDIA’s GeForce 6 series of GPUs is described by

Kilgariff and Fernando [KF05] and Montrym and Moreton

[MM05]. From a software perspective, the OpenGL Program-

ming Guide is an excellent reference [OSW*03].

2.2. Programmable hardware

As graphics hardware has become more powerful, one of the

primary goals of each new generation of GPU has been to

increase the visual realism of rendered images. The graph-

ics pipeline described above was historically a fixed-function

pipeline, where the limited number of operations available at

each stage of the graphics pipeline were hardwired for spe-

cific tasks. However, the success of offline rendering systems

such as Pixar’s RenderMan [Ups90] demonstrated the ben-

efit of more flexible operations, particularly in the areas of

lighting and shading. Instead of limiting lighting and shading

operations to a few fixed functions, RenderMan evaluated a

user-defined shader program on each primitive, with impres-

sive visual results.

Over the past seven years, graphics vendors have trans-

formed the fixed-function pipeline into a more flexible pro-

grammable pipeline. This effort has been primarily concen-

trated on two stages of the graphics pipeline: the vertex stage

and the fragment stage. In the fixed-function pipeline, the

vertex stage included operations on vertices such as trans-

formations and lighting calculations. In the programmable

pipeline, these fixed-function operations are replaced with

a user-defined vertex program. Similarly, the fixed-function

operations on fragments that determine the fragment’s color

are replaced with a user-defined fragment program.

Each new generation of GPUs has increased the func-

tionality and generality of these two programmable stages.

1999 marked the introduction of the first programmable stage,

NVIDIA’s register combiner operations that allowed a lim-

ited combination of texture and interpolated color values to

compute a fragment color. In 2002, ATI’s Radeon 9700 led

the transition to floating-point computation in the fragment

pipeline.

The vital step for enabling general-purpose computation on

GPUs was the introduction of fully programmable hardware

and an assembly language for specifying programs to run

on each vertex [LKM01] or fragment. This programmable

shader hardware is explicitly designed to process multiple

data-parallel primitives at the same time. As of 2006, the ver-

tex shader and pixel shader standards are both in their third

revision, and the OpenGL Architecture Review Board main-

tains extensions for both [Ope04, Ope03]. The instruction

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 83

sets of each stage are limited compared to CPU instruction

sets; they are primarily math operations, many of which are

graphics-specific. The newest addition to the instruction sets

of these stages has been limited control flow operations.

In general, these programmable stages input a limited num-

ber of 32-bit floating-point 4-vectors. The vertex stage out-

puts a limited number of 32-bit floating-point 4-vectors that

will be interpolated by the rasterizer; the fragment stage out-

puts up to 4 floating-point 4-vectors, typically colors. Each

programmable stage can access constant registers across all

primitives and also read-write registers per primitive. The

programmable stages have limits on their numbers of inputs,

outputs, constants, registers, and instructions; with each new

revision of the vertex shader and pixel [fragment] shader stan-

dard, these limits have increased.

GPUs typically have multiple vertex and fragment pro-

cessors (for example, the ATI Radeon X1900 XTX features

8 vertex processors and 48 fragment processors). Fragment

processors have the ability to fetch data from textures, so they

are capable of memory gather. However, the output address

of a fragment is always determined before the fragment is

processed—the processor cannot change the output location

of a pixel—so fragment processors are incapable of memory

scatter. Vertex processors recently acquired texture capabil-

ities, and they are capable of changing the position of input

vertices, which ultimately affects where in the image pixels

will be drawn. Thus, vertex processors are capable of both

gather and scatter. Unfortunately, vertex scatter can lead to

memory and rasterization coherence issues further down the

pipeline. Combined with the lower performance of vertex

processors, this limits the utility of vertex scatter in current

GPUs.

2.3. Introduction to the GPU programming model

As we discussed in Section 1, GPUs are a compelling so-

lution for applications that require high arithmetic rates

and data bandwidths. GPUs achieve this high performance

through data parallelism, which requires a programming

model distinct from the traditional CPU sequential program-

ming model. In this section, we briefly introduce the GPU

programming model using both graphics API terminology

and the terminology of the more abstract stream program-

ming model, because both are common in the literature.

The stream programming model exposes the parallelism

and communication patterns inherent in the application

by structuring data into streams and expressing computa-

tion as arithmetic kernels that operate on streams. Purcell

et al. [PBMH02] characterize their ray tracer in the stream

programming model; Owens [Owe05] and Lefohn et al.
[LKO05] discuss the stream programming model in the con-

text of graphics hardware, and the Brook programming sys-

tem [BFH*04b] offers a stream programming system for

GPUs.

Because typical scenes have more fragments than vertices,

in modern GPUs the programmable stage with the highest

arithmetic rates is the fragment stage. A typical GPGPU pro-

gram uses the fragment processor as the computation en-

gine in the GPU. Such a program is structured as follows

[Har05a]:

1. First, the programmer determines the data-parallel por-

tions of his application. The application must be seg-

mented into independent parallel sections. Each of these

sections can be considered a kernel and is implemented

as a fragment program. The input and output of each ker-

nel program is one or more data arrays, which are stored

(sometimes only transiently) in textures in GPU memory.

In stream processing terms, the data in the textures com-

prise streams, and a kernel is invoked in parallel on each

stream element.

2. To invoke a kernel, the range of the computation (or the

size of the output stream) must be specified. The program-

mer does this by passing vertices to the GPU. A typical

GPGPU invocation is a quadrilateral (quad) oriented par-

allel to the image plane, sized to cover a rectangular region

of pixels matching the desired size of the output array. Note

that GPUs excel at processing data in two-dimensional ar-

rays, but are limited when processing one-dimensional

arrays.

3. The rasterizer generates a fragment for every pixel location

in the quad, producing thousands to millions of fragments.

4. Each of the generated fragments is then processed by the

active kernel fragment program. Note that every fragment

is processed by the same fragment program. The fragment

program can read from arbitrary global memory locations

(with texture reads) but can only write to memory locations

corresponding to the location of the fragment in the frame

buffer (as determined by the rasterizer). The domain of the

computation is specified for each input texture (stream) by

specifying texture coordinates at each of the input vertices,

which are then interpolated at each generated fragment.

Texture coordinates can be specified independently for

each input texture, and can also be computed on the fly

in the fragment program, allowing arbitrary memory ad-

dressing.

5. The output of the fragment program is a value (or vector of

values) per fragment. This output may be the final result of

the application, or it may be stored as a texture and then

used in additional computations. Complex applications

may require several or even dozens of passes (“multipass”)

through the pipeline.

While the complexity of a single pass through the pipeline

may be limited (for example, by the number of instructions,

by the number of outputs allowed per pass, or by the limited

control complexity allowed in a single pass), using multi-

ple passes allows the implementation of programs of arbi-

trary complexity. For example, using an OpenGL simulation

with the addition of floating-point compositing operations,

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

84 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

Peercy et al. [POAU00] demonstrated that even the fixed-

function pipeline, given enough passes, can implement

arbitrary RenderMan shaders.

2.4. GPU program flow control

Flow control is a fundamental concept in computation.

Branching and looping are such basic concepts that it can

be daunting to write software for a platform that supports

them to only a limited extent. The latest GPUs support vertex

and fragment program branching in multiple forms, but their

highly parallel nature requires care in how they are used. This

section surveys some of the limitations of branching on cur-

rent GPUs and describes a variety of techniques for iteration

and decision-making in GPGPU programs. Harris and Buck

[HB05] provide more detail on GPU flow control.

2.4.1. Hardware mechanisms for flow control

There are three basic implementations of data-parallel

branching in use on current GPUs: predication, MIMD

branching, and SIMD branching.

Architectures that support only predication do not have

true data-dependent branch instructions. Instead, the GPU

evaluates both sides of the branch and then discards one of

the results based on the value of the Boolean branch condition.

The disadvantage of predication is that evaluating both sides

of the branch can be costly, but not all current GPUs have true

data-dependent branching support. The compiler for high-

level shading languages like Cg or the OpenGL Shading Lan-

guage automatically generates predicated assembly language

instructions if the target GPU supports only predication for

flow control.

In Multiple Instruction Multiple Data (MIMD) architec-

tures that support branching, different processors can follow

different paths through the program. In Single Instruction

Multiple Data (SIMD) architectures, all active processors

must execute the same instructions at the same time. The only

MIMD processors in a current GPU are the vertex processors

of the NVIDIA GeForce 6 and 7 series and NV40- and G70-

based Quadro GPUs. Classifying GPU fragment processors

is more difficult. The programming model is effectively Sin-

gle Program Multiple Data (SPMD), meaning that threads

(pixels) can take different branches. However, in terms of ar-

chitecture and performance, fragment processors on current

GPUs process pixels in SIMD groups. Within a SIMD group,

when evaluation of the branch condition is identical for all

pixels in the group, only the taken side of the branch must be

evaluated. However, if one or more of the processors evalu-

ates the branch condition differently, then both sides must be

evaluated and the results predicated. As a result, divergence

in the branching of simultaneously processed fragments can

lead to reduced performance.

2.4.2. Moving branching up the pipeline

Because explicit branching can hamper performance on

GPUs, it is useful to have multiple techniques to reduce the

cost of branching. A useful strategy is to move flow-control

decisions up the pipeline to an earlier stage where they can

be more efficiently evaluated.

Static Branch Resolution On the GPU, as on the CPU,

avoiding branching inside inner loops is beneficial. For ex-

ample, when evaluating a partial differential equation (PDE)

on a discrete spatial grid, an efficient implementation divides

the processing into multiple loops: one over the interior of

the grid, excluding boundary cells, and one or more over the

boundary edges. This static branch resolution results in loops

that contain efficient code without branches. (In stream pro-

cessing terminology, this technique is typically referred to as

the division of a stream into substreams.) On the GPU, the

computation is divided into two fragment programs: one for

interior cells and one for boundary cells. The interior pro-

gram is applied to the fragments of a quad drawn over all

but the outer one-pixel edge of the output buffer. The bound-

ary program is applied to fragments of lines drawn over the

edge pixels. Static branch resolution is further discussed by

Goodnight et al. [GWL*03], Harris and James [HJ03], and

Lefohn et al. [LKHW03].

Pre-computation In the example above, the result of a branch

was constant over a large domain of input (or range of output)

values. Similarly, sometimes the result of a branch is constant

for a period of time or a number of iterations of a computa-

tion. In this case we can evaluate the branches only when

the results are known to change, and store the results for use

over many subsequent iterations. This can result in a large

performance boost. This technique is used to pre-compute

an obstacle offset array in the Navier-Stokes fluid simulation

example in the NVIDIA SDK [Har05b].

Z-Cull Precomputed branch results can be taken a step fur-

ther by using another GPU feature to entirely skip unneces-

sary work. Modern GPUs have a number of features designed

to avoid shading pixels that will not be seen. One of these is

Z-cull. Z-cull is a hierarchical technique for comparing the

depth (Z) of an incoming block of fragments with the depth

of the corresponding block of fragments in the Z-buffer. If

the incoming fragments will all fail the depth test, then they

are discarded before their pixel colors are calculated in the

fragment processor. Thus, only fragments that pass the depth

test are processed, work is saved, and the application runs

faster. In fluid simulation, “land-locked” obstacle cells can

be “masked” with a z-value of zero so that all fluid simu-

lation computations will be skipped for those cells. If the

obstacles are fairly large, then a lot of work is saved by not

processing these cells. Sander et al. described this technique

[STM04] together with another Z-cull acceleration technique

for fluid simulation, and Harris and Buck provide pseudocode

[HB05]. Z-cull was also used by Purcell et al. to accelerate

GPU ray tracing [PBMH02].

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 85

Data-Dependent Looping With Occlusion Queries An-

other GPU feature designed to avoid drawing what is not

visible is the hardware occlusion query (OQ). This feature

provides the ability to query the number of pixels updated by

a rendering call. These queries are pipelined, which means

that they provide a way to get a limited amount of data (an in-

teger count) back from the GPU without stalling the pipeline

(which would occur when actual pixels are read back). Be-

cause GPGPU applications almost always draw quads with

known pixel coverage, OQ can be used with fragment kill

functionality to get a count of fragments updated and killed.

This allows the implementation of global decisions controlled

by the CPU based on GPU processing. Purcell et al. demon-

strated this in their GPU ray tracer [PBMH02], and Harris and

Buck provide pseudocode for the technique [HB05]. Occlu-

sion queries can also be used for subdivision algorithms, such

as the adaptive radiosity solution of Coombe et al. [CHL04].

2.5. Impact of DX10 hardware

The next major generation of GPUs are widely expected to

support Microsoft’s Direct3D 10 API, part of Microsoft’s

DirectX multimedia APIs, and appear sometime from late

2006 to early 2007. Blythe’s recent Siggraph paper [Bly06]

summarizes the major hardware and software changes that

will characterize these upcoming GPUs.

The impact on GPGPU from this new hardware may not be

felt for some time as GPGPU developers migrate their appli-

cations to the new feature set and become comfortable with

the performance aspects of the new hardware and software,

but we expect that the following features will be of particular

interest for general-purpose computing.� DX10 introduces a new programmable unit to the

pipeline, the geometry shader, that is placed after the

vertex shader. The input to the GS is an entire primitive.

The major difference between the GS and the previous

vertex/fragment shaders is that it can output anywhere

from 0 to many primitives. This ability to procedurally

create new elements is expected to be broadly useful in

both graphics tasks (such as shadow volume calculations)

and more general-purpose tasks.� GPGPU application developers have long requested more

flexible operations on memory buffers. While operations

such as render-to-texture and render-to-vertex-array have

partially met these requests, upcoming DX10 hardware

promises both greater functionality and greater perfor-

mance in this area. One new operation in DX10 hard-

ware will be the “stream output”, allowing the output of

the geometry shader to be directly stored into a memory

buffer.� The new shader model (4.0) associated with DX10 hard-

ware unifies the basic instruction set between the pro-

grammable shader units (though each programmable

shader still has stage-specific specializations). Along

with increases in a variety of shader limits, such as in-

struction count, register space, and render targets, shader

hardware now supports 32-bit integers. This integer ca-

pability is expected to both enhance current GPGPU ap-

plications (particularly in memory address calculations)

as well as enable new ones (such as cryptography). The

precision of floating-point computation is also expected

to significantly improve in DX10 hardware.

3. Programming Systems

Successful programming for any development platform re-

quires at least three basic components: a high-level language

for code development, a debugging environment, and profil-

ing tools. CPU programmers have a large number of well-

established languages, debuggers, and profilers to choose

from when writing applications. Conversely, GPU program-

mers have just a small handful of languages to choose from,

and few if any full-featured debuggers and profilers.

In this section we look at the high-level languages that have

been developed for GPU programming, and the debugging

tools that are available for GPU programmers. Code profiling

and tuning tends to be a very architecture-specific task. GPU

architectures have evolved very rapidly, making profiling and

tuning primarily the domain of the GPU manufacturer. As

such, we will not discuss code profiling tools in this section.

3.1. High-level shading languages

Most high-level GPU programming languages today share

one thing in common: they are designed around the idea that

GPUs generate pictures. As such, the high-level program-

ming languages are often referred to as shading languages.

That is, they are a high-level language that compiles a shader

program into a vertex shader and a fragment shader to pro-

duce the image described by the program.

Cg [MGAK03], HLSL [Mic05a], and the OpenGL Shad-

ing Language [KBR04] all abstract the capabilities of the

underlying GPU and allow the programmer to write GPU

programs in a more familiar C-like programming language.

They do not stray far from their origins as languages designed

to shade polygons. All retain graphics-specific constructs:

vertices, fragments, textures, etc. Cg and HLSL provide ab-

stractions that are very close to the hardware, with instruction

sets that expand as the underlying hardware capabilities ex-

pand. The OpenGL Shading Language was designed looking

a bit further out, with many language features (e.g. integers)

that do not directly map to hardware available today.

Sh is a shading language implemented on top of C++
[MDP*04]. Sh provides a shader algebra for manipulating

and defining procedurally parameterized shaders. Sh man-

ages buffers and textures, and handles shader partitioning

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

86 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

into multiple passes. Sh also provides a stream programming

abstraction suitable for GPGPU programming.

Finally, Ashli [BP03] works at a level one step above

that of Cg, HLSL, or the OpenGL Shading Language. Ashli

reads as input shaders written in HLSL, the OpenGL Shading

Language, or a subset of RenderMan. Ashli then automati-

cally compiles and partitions the input shaders to run on a

programmable GPU.

3.2. GPGPU languages and libraries

More often than not, the graphics-centric nature of shading

languages makes GPGPU programming more difficult than it

needs to be. As a simple example, initiating a GPGPU compu-

tation usually involves drawing a primitive. Looking up data

from memory is done by issuing a texture fetch. The GPGPU

program may conceptually have nothing to do with drawing

geometric primitives and fetching textures, yet the shading

languages described in the previous section force the GPGPU

application writer to think in terms of geometric primitives,

fragments, and textures. Instead, GPGPU algorithms are of-

ten best described as memory and math operations, concepts

much more familiar to CPU programmers. The programming

systems below attempt to provide GPGPU functionality while

hiding the GPU-specific details from the programmer.

The Brook programming language extends ANSI C with

concepts from stream programming [BFH*04b]. Brook can

use the GPU as a compilation target. Brook streams are con-

ceptually similar to arrays, except all elements can be op-

erated on in parallel. Kernels are the functions that operate

on streams. Brook automatically maps kernels and streams

into fragment programs and texture memory. Scout is a GPU

programming language designed for scientific visualization

[MIA*04]. Scout allows runtime mapping of mathematical

operations over data sets for visualization.

Accelerator is a system from Microsoft Research that aims

to simplify GPGPU programming by providing a high-level

data-parallel programming model in a library that is acces-

sible from within traditional imperative programming lan-

guages [TPO06]. Accelerator translates data-parallel opera-

tions on the fly to GPU pixel shaders, demonstrating signifi-

cant speedups over C versions running on the CPU.

CGiS is a data-parallel programming language from the

Saarland University Compiler Design Lab with similar aims

to Brook and Accelerator, but with a slightly different ap-

proach [LFW06]. Like Brook, CGiS provides stream data

types, but instead of explicit kernels that run on the GPU,

the language invokes GPU computation via a built-in data-

parallel forall operator.

Finally, the Glift template library provides a generic tem-

plate library designed to simplify GPU data structure design

and separate GPU algorithms from data structures [LKS*06].

Glift defines GPU computation as parallel iteration over the

Figure 3: Examples of fragment program “printf” debug-
ging. The left image encodes ray-object intersection hit points
as r, g, b color. The right image draws a point at each loca-
tion where a photon was stored in a photon map. (Images
generated by Purcell et al. [PDC*03].)

elements of a data structure. The model generalizes the stream

computation model and connects GPGPU with CPU-based

parallel data structure libraries such as the Standard Template

Adaptive Parallel Library (STAPL) [AJR*01]. The library

integrates with a C++, Cg, and OpenGL GPU development

environment.

3.3. Debugging tools

Until recently, support for debugging on GPUs was fairly

limited, and the features necessary for a good GPU debugger

were not well defined. The advent of GPGPU programming

makes it clear that a GPU debugger should have similar ca-

pabilities as traditional CPU debuggers, including variable

watches, program break points, and single-step execution.

GPU programs often involve user interaction. While a de-

bugger does not need to run the application at full speed, the

application being debugged should maintain some degree of

interactivity. A GPU debugger should be easy to add to and

remove from an existing application, should mangle GPU

state as little as possible, and should execute the debug code

on the GPU, not in a software rasterizer. Finally, a GPU de-

bugger should support the major GPU programming APIs

and vendor-specific extensions.

In many cases, graphically displaying the data for a given

set of pixels gives a much better sense of whether a compu-

tation is correct than a text box full of numbers would. This

visualization is essentially a “printf-style” debug, where the

values of interest are printed to the screen. Figure 3 shows

some examples of printf-style debugging that many GPGPU

programmers have become adept at implementing as part of

the debugging process. The ideal GPGPU debugger would

automate printf-style debugging, including programmable

scale and bias for values outside the display range (e.g. float-

ing point data), while also retaining the true data value at each

point if it is needed.

There are a few different systems for debugging GPU pro-

grams available to use, but nearly all are missing one or more

of the important features we just discussed.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 87

gDEBugger [Gra06] and GLIntercept [Tre06] are tools de-

signed to help debug OpenGL programs. Both are able to

capture and log OpenGL state from a program. gDEBugger

allows a programmer to set breakpoints and watch OpenGL

state variables at runtime, as well as to profile applications

using GPU hardware performance signals. There is currently

no specific support for debugging shaders, but both support

runtime shader editing.

The Microsoft Shader Debugger [Mic05b], however,

does provide runtime variable watches and breakpoints for

shaders. The shader debugger is integrated into the Visual

Studio IDE, and provides all the same functionality program-

mers are used to for traditional programming. Unfortunately,

debugging requires the shaders to be run in software em-

ulation rather than on the hardware. In contrast, the Apple

OpenGL Shader Builder [App06b] also has a sophisticated

IDE and actually runs shaders in real time on the hardware

during shader debug and edit. The downside to this tool is

that it was designed for writing shaders, not for computation.

The shaders are not run in the context of the application, but

in a separate environment designed to help facilitate shader

writing.

While many of the tools mentioned so far provide a lot of

useful features for debugging, none provide any support for

shader data visualization or printf-style debugging. Some-

times this is the single most useful tool for debugging pro-

grams. The Image Debugger [Bax06] was among the first

tools to provide this functionality by providing a printf-like

function over a region of memory. The region of memory

gets mapped to a display window, allowing a programmer

to visualize any block of memory as an image. The Image

Debugger does not provide any special support for shader

programs, so programmers must write shaders such that the

output gets mapped to an output buffer for visualization.

The Shadesmith Fragment Program Debugger [PS03] was

the first system to automate printf-style debugging while pro-

viding basic shader debugging functionality like breakpoints,

program stepping, and programmable scale and bias for the

image printf. While Shadesmith represents a big step in the

right direction for GPGPU debugging, it still has many lim-

itations, the largest of which is that Shadesmith is currently

limited to debugging assembly language shaders. Addition-

ally, Shadesmith only works for OpenGL fragment programs,

and provides no support for debugging OpenGL state.

Finally, Duca et al. recently described a system that not

only provides debugging for graphics state but also both ver-

tex and fragment programs [DNB*05]. Their system builds

a database of graphics state for which the user writes SQL-

style queries. Based on the queries, the system extracts the

necessary graphics state and program data and draws the ap-

propriate data into a debugging window. The system is build

on top of the Chromium [HHN*02] library, enabling debug-

ging of any OpenGL applications without modification to the

original source program. This promising approach combines

graphics state debugging and program debugging with visu-

alizations in a transparent and hardware-rendered approach.

4. GPGPU Techniques

This section is targeted at the developer of GPGPU libraries

and applications. We enumerate the techniques required to

efficiently map complex applications to the GPU and describe

some of the building blocks of GPU computation.

4.1. Stream operations

Recall from Section 2.3 that the stream programming model

is a useful abstraction for programming GPUs. There are

several fundamental operations on streams that many GPGPU

applications implement as a part of computing their final

results: map, reduce, scatter and gather, scan, stream filtering,

sort, and search. In the following sections we define each of

these operations, and briefly describe a GPU implementation

for each.

4.1.1. Map

Perhaps the simplest operation, the map (or apply) operation

operates just like a mapping function in Lisp. Given a stream

of data elements and a function, map will apply the function

to every element in the stream. A simple example of the map

operator is applying scale and bias to a set of input data for

display in a color buffer.

The GPU implementation of map is straightforward, and

perhaps best illustrated with an example. Assume we have a

stream of data with values in the range [0.0 .. 1.0). We would

like to convert these values to the range [0..255], perhaps

for mapping to a display. A kernel to do this would multiply

each element in the stream by 256 and take the floor of that

value, to produce an output stream in the desired range. This

application of a function to an input stream is the essence of

the map operation.

4.1.2. Reduce

Sometimes a computation requires computing a smaller

stream from a larger input stream, possibly to a single el-

ement stream. This type of computation is called a reduction.

For example, a reduction can be used to compute the sum or

maximum of all the elements in a stream.

On GPUs, reductions can be performed by alternately ren-

dering to and reading from a pair of textures. On each ren-

dering pass, the size of the output, the computational range,

is reduced by one half. In general, we can compute a reduc-

tion over a set of n data elements in O(n
p log n) time steps

using the parallel GPU hardware (with p elements processed

in one time step), compared to O(n) time steps for a sequen-

tial reduction on the CPU. To produce each element of the

output, a fragment program reads two values, one from a

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

88 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

corresponding location on either half of the previous pass re-

sult buffer, and combines them using the reduction operator

(for example, addition or maximum). These passes continue

until the output is a one-by-one buffer, at which point we

have our reduced result. For a two-dimensional reduction,

the fragment program reads four elements from four quad-

rants of the input texture, and the output size is halved in both

dimensions at each step. Buck et al. describe GPU reductions

in more detail in the context of the Brook programming lan-

guage [BFH*04b].

4.1.3. Scatter and gather

Two fundamental memory operations with which most pro-

grammers are familiar are write and read. If the write and read

operations access memory indirectly, they are called scatter

and gather respectively. A scatter operation looks like the C

code d[a] = v where the value v is being stored into the data

array d at address a. A gather operation is just the opposite

of the scatter operation. The C code for gather looks like v =
d[a].

The GPU implementation of gather is essentially a depen-

dent texture fetch operation. A texture fetch from texture d

with computed texture coordinates a performs the indirect

memory read that defines gather. Unfortunately, scatter is not

as straightforward to implement. Fragments have an implicit

destination address associated with them: their location in

frame buffer memory. A scatter operation would require that

a program change the framebuffer write location of a given

fragment, or would require a dependent texture write opera-

tion. Since neither of these mechanisms exist on today’s GPU,

GPGPU programmers must resort to various tricks to achieve

a scatter. These tricks include rewriting the problem in terms

of gather; tagging data with final addresses during a tradi-

tional rendering pass and then sorting the data by address to

achieve an effective scatter; and using the vertex processor to

scatter (since vertex processing is inherently a scattering op-

eration). Buck has described these mechanisms for changing

scatter to gather in greater detail [Buc05b].

4.1.4. Scan

A simple and common parallel algorithmic building block

is the all-prefix-sums operation, also known as scan [HS86].

For each element in a sequence of elements, prefix-sum com-

putes the sum of all previous elements in the sequence. Blel-

loch summarized a variety of potential applications of scan

[Ble90]. The first implementation of scan on GPUs was pre-

sented by Horn and demonstrated for the applications of col-

lision detection and subdivision surfaces [Hor05]. Hensley

et al. used a similar scan implementation to generate summed-

area tables on the GPU [HSC*05]. The algorithms of Horn

and Hensley et al. were efficient in the number of passes

(O(log n)) executed, but required O(n log n) total work, a

factor of log n worse than the optimal sequential work com-

plexity of O(n). Sengupta et al. and Greß et al. presented O(n)

algorithms for GPUs [SLO06, GGK06]. Greß et al. construct

a list of potentially intersecting bounding box pairs and uti-

lize scan to remove the non-intersecting pairs. The algorithm

of Sengupta et al. is notable for its method of switching from

a tree-based work-efficient algorithm to Horn’s brute-force

algorithm as it approaches the root of the tree. This hybrid

approach more efficiently uses all of the parallelism provided

by the GPU.

4.1.5. Stream filtering

Many algorithms require the ability to select a subset of ele-

ments from a stream, and discard the rest. The location and

number of elements to be filtered is variable and not known

a priori. Example algorithms that benefit from this stream
filtering operation include simple data partitioning (where

the algorithm only needs to operate on stream elements with

positive keys and is free to discard negative keys) and colli-

sion detection (where only objects with intersecting bounding

boxes need further computation).

Horn has described a technique called stream compaction

[Hor05] that implements stream filtering on the GPU. Us-

ing a combination of scan (Section 4.1.4) and search, stream

filtering can be achieved in O(log n) passes.

4.1.6. Sort

A sort operation allows us to transform an unordered set of

data into an ordered set of data. Sorting is a classic algorithmic

problem that has been solved by several different techniques

on the CPU. Many of these algorithms are data-dependent and

generally require scatter operations; therefore, they are not

directly applicable to a clean GPU implementation. Recall

from Section 2.4 that data-dependent operations are difficult

to implement efficiently, and we just saw in Section 4.1.3

that scatter is not implemented for fragment processors on

today’s GPUs. To make efficient use of GPU resources, a

GPU-based sort should be oblivious to the input data, and

should not require scatter.

Most GPU-based sorting implementations [BP04, CND03,

GZ06, KSW04, KW05a, PDC*03, Pur04] have been based

on sorting networks. The main idea behind a sorting network

is that a given network configuration will sort input data in a

fixed number of steps, regardless of the input data. Addition-

ally, all the nodes in the network have a fixed communication

pattern. The fixed communication pattern means the prob-

lem can be stated in terms of gather rather than scatter, and

the fixed number of stages for a given input size means the

sort can be implemented without data-dependent branching.

This yields an efficient GPU-based sort, with an overall O(n
log2n) computational complexity.

Kipfer et al. and Purcell et al. implement a bitonic merge

sort [Bat68] and Callele et al. use a periodic balanced sort-

ing network [DPRS89]. The implementation details of each

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 89

1

2

3

4

5

6

7

8

7

6

1

3

8

5

2

4

5

6

3

8

1

2

7

4

2

6

3

8

1

5

4

7

2

5

3

7

1

6

4

8

7

5

3

2

8

6

4

1

7

5

2

3

8

6

1

4

Figure 4: A simple parallel bitonic merge sort of eight el-
ements requires six passes. Elements at the head and tail of
each arrow are compared, with larger elements moving to
the head of the arrow.

technique vary, but the high-level strategy for each is the

same. The data to be sorted is stored in texture memory. Each

of the fixed number of stages for the sort is implemented as a

fragment program that does a compare-and-swap operation.

The fragment program simply fetches two texture values, and

based on the sort parameters, determines which of them to

write out for the next pass. Figure 4 shows a simple bitonic

merge sort.

Sorting networks can also be implemented efficiently using

the texture mapping and blending functionalities of the GPU

[GRM05]. In each step of the sorting network, a comparator

mapping is created at each pixel on the screen and the color

of the pixel is compared against exactly one other pixel. The

comparison operations are implemented using the blending

functionality and the comparator mapping is implemented

using the texture mapping hardware, thus entirely elimi-

nating the need for fragment programs. Govindaraju et al.
[GRH*05] have also analyzed the cache efficiency of sorting

network algorithms and presented an improved bitonic sort-

ing network algorithm with a better data access pattern and

data layout. The precision of the underlying sorting algorithm

using comparisons with fixed-function blending hardware is

limited to the precision of the blending hardware. For exam-

ple, the current blending hardware has 16-bit floating point

precision. Alternatively, the limitation to 16-bit values on cur-

rent GPUs can be alleviated by using a single-line fragment

program for evaluating the conditionals, but the fragment

program implementation on current GPUs is slightly slower

than the fixed-function pipeline. Figure 5 highlights the per-

formance of different GPU-based and CPU-based sorting al-

gorithms on different sequences composed of 16-bit floating

point values using a high-end PC. A sorting library imple-

menting the algorithm for 16-bit and 32-bit floats is freely

available for noncommercial use [GPU06].

Greß and Zachmann [GZ06] present a novel algorithm,

GPU-ABiSort, to further enhance the sorting performance on

0

1

2

3

4

5

0M 2M 4M 6M 8M
Database size

S
o

rt
in

g
 t

im
e

 (
s

e
c

s
)

GPU Bitonic Sort

(PDC
*
03) CPU Qsort (MSVC)

CPU Qsort (Intel Compiler)

GPU Bitonic Sort (KW05)

GPU PBSN (GRM05)

GPU Bitonic Sort (GRHM05) Fixed

GPU Bitonic Sort (GRHM05) Prog

Figure 5: Performance of CPU-based and GPU-based sort-
ing algorithms on 16-bit floating point values. The CPU-
based Qsort available in the Intel compiler is optimized using
hyperthreading and SSE instructions. We observe that the
cache-efficient GPU-based sorting network algorithm is
nearly 6 times faster than the optimized CPU implementation
on a 3.4 GHz PC with an NVIDIA GeForce 6800 Ultra GPU.
Furthermore, the fixed-function pipeline implementation de-
scribed by Govindaraju et al. [GRH*05] is nearly 1.2 times
faster than their implementation with fragment programs.

GPUs. Their algorithm is based on an adaptive bitonic sorting

algorithm and achieves an optimal performance of O(n log n)

for any computation time T in the range of O(log2 n) ≤ T ≤
O(n log n). The algorithm maps well to the GPU and is able

to achieve comparable performance to GPUSort [GPU06] on

an NVIDIA 7800 GTX GPU.

GPUs have also been used to efficiently perform 1-D and

3-D adaptive sorting of sequences [GHLM05]. Unlike sorting

network algorithms, the computational complexity of adap-

tive sorting algorithms is dependent on the extent of disorder

in the input sequence, and work well for nearly-sorted se-

quences. The extent of disorder is computed using Knuth’s

measure of disorder. Given an input sequence I, the measure

of disorder is defined as the minimal number of elements that

need to be removed for the rest of the sequence to remain

sorted. The algorithm proceeds in multiple iterations. In each

iteration, the unsorted sequence is scanned twice. In the first

pass, the sequence is scanned from the last element to the first,

and an increasing sequence of elements M is constructed by

comparing each element with the current minimum. In the

second pass, the sorted elements in the increasing sequence

are computed by comparing each element in M against

the current minimum in I − M . The overall algorithm

is simple and requires only comparisons against the mini-

mum of a set of values. The algorithm is, therefore, useful

for fast 3D visibility ordering of elements where the mini-

mum comparisons are implemented using the depth buffer

[GHLM05].

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

90 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

External memory sorting algorithms are used to orga-

nize large terabyte-scale datasets. These algorithms proceed

in two phases and use limited main memory to order the

data. Govindaraju et al. [GGKM06] present a novel exter-

nal memory sorting algorithm to sort billion-record wide-

key databases using a GPU. In the first phase, GPUTeraSort

pipelines the following tasks on the CPU, disk controller and

GPU: read disk asynchronously, build keys, sort using a GPU,

generate runs and write disk. In this phase, GPUTeraSort uses

the data parallelism and high memory bandwidth on GPUs

to quickly sort large runs. In the second phase, GPUTera-

Sort uses a similar task pipeline to read, merge and write

the runs. GPUTeraSort offloads the compute-intensive and

memory-intensive tasks to the GPU; therefore, it is able to

achieve higher I/O performance and better memory perfor-

mance than CPU-only algorithms. In practice, GPUTeraSort

outperforms the Indy PennySort1 record and is able to achieve

the best reported price-to-performance on large databases.

4.1.7. Search

The last stream operation we discuss, search, allows us to find

a particular element within a stream. Search can also be used

to find the set of nearest neighbors to a specified element.

Nearest neighbor search is used extensively when computing

radiance estimates in photon mapping (Section 5.4.2) and in

database queries (e.g. find the 10 nearest restaurants to point

X). When searching, we will use the parallelism of the GPU

not to decrease the latency of a single search, but rather to

increase search throughput by executing multiple searches in

parallel.

Binary Search The simplest form of search is the binary

search. This is a basic algorithm, where an element is located

in a sorted list in O(log n) time. Binary search works by com-

paring the center element of a list with the element being

searched for. Depending on the result of the comparison, the

search then recursively examines the left or right half of the

list until the element is found, or is determined not to exist.

The GPU implementation of binary search [Hor05,

PDC*03, Pur04] is a straightforward mapping of the standard

CPU algorithm to the GPU. Binary search is inherently se-

rial, so we can not parallelize lookup of a single element. That

means only a single pixel’s worth of work is done for a binary

search. We can easily perform multiple binary searches on the

same data in parallel by sending more fragments through the

search program.

Nearest Neighbor Search Nearest neighbor search is a

slightly more complicated form of search. In this search, we

want to find the k nearest neighbors to a given element. On

the CPU, this has traditionally been done using a k-d tree

[Ben75]. During a nearest neighbor search, candidate ele-

ments are maintained in a priority queue, ordered by distance

1http://research.microsoft.com/barc/SortBenchmark

from the “seed” element. At the end of the search, the queue

contains the nearest neighbors to the seed element.

Unfortunately, the GPU implementation of nearest neigh-

bor search is not as straightforward. We can search a k-d tree

data structure [FS05], but it is difficult to efficiently maintain

a priority queue. The important detail about the priority queue

is that candidate neighbors can be removed from the queue

if closer neighbors are found. Purcell et al. propose a data

structure for finding nearest neighbors called the kNN-grid

[PDC*03, Pur04]. The grid approximates a nearest-neighbor

search, but is unable to reject candidate neighbors once they

are added to the list. The quality of the search then depends

on the density of the grid and the order in which candidate

neighbors are visited during the search. The next section of

this article discusses GPGPU data structures like arrays and

the kNN-grid.

4.2. Data structures

Every GPGPU algorithm must operate on data stored in an

appropriate structure. This section describes the data struc-

tures used thus far for GPU computation. Effective GPGPU

data structures must support fast and coherent parallel ac-

cesses as well as efficient parallel iteration, and must also

work within the constraints of the GPU memory model. We

first describe this model and explain common patterns seen

in many GPGPU structures, then present data structures un-

der three broad categories: dense arrays, sparse arrays, and

adaptive arrays. Lefohn et al. [LKO05, LKS*06] give a more

detailed overview of GPGPU data structures and the GPU

memory model.

The GPU Memory Model As described in Section 2.3, GPU

data are almost always stored in texture memory. To maintain

parallelism, operations on these textures are limited to read-

only or write-only access within a kernel. Write access is

further limited by the lack of scatter support (Section 4.1.3).

Outside of kernels, users may allocate or delete textures, copy

data between the CPU and GPU, copy data between GPU tex-

tures, or bind textures for kernel access. Lastly, most GPGPU

data structures are built using 2D textures for three reasons.

First, GPU’s 2D memory layout and rasterization pattern (i.e.,

iteration traversal pattern) are closely coupled to deliver the

best possible memory access pattern. Second, the maximum

1D texture size is often too small for most problems, and

third, current GPUs cannot efficiently write to a slice of a 3D

texture.

Iteration In modern C/C++ programming, algorithms are

defined in terms of iteration over the elements of a data struc-

ture. The stream programming model described in Section 2.3

performs an implicit data-parallel iteration over a stream. It-

eration over a dense set of elements is usually accomplished

by drawing a single large quad. This is the computation model

supported by Brook, Sh, and Scout. Complex structures, how-

ever, such as sparse arrays, adaptive arrays, and grid-of-list

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 91

structures often require more complex iteration constructs

[BFGS03, KW03, LKHW04]. These range iterators are usu-

ally defined using numerous smaller quads, lines, or point

sprites.

Generalized Arrays via Address Translation The major-

ity of data structures used thus far in GPGPU programming

are random-access multidimensional containers, including

dense arrays, sparse arrays, and adaptive arrays. Lefohn et al.
[LKS*06] show that these virtualized grid structures share a

common design pattern. Each structure defines a virtual grid

domain (the problem space), a physical grid domain (usually

a 2D texture), and an address translator between the two do-

mains. A simple example is a 1D array represented with a 2D

texture. In this case, the virtual domain is 1D, the physical

domain is 2D, and the address translator converts between

them [LKO05, PBMH02].

In order to provide programmers with the abstraction of

iterating over elements in the virtual domain, GPGPU data

structures must support both virtual-to-physical and physical-

to-virtual address translation. For example, in the 1D array

example above, an algorithm reads from the 1D array us-

ing a virtual-to-physical (1D-to-2D) translation. An algo-

rithm that writes to the array, however, must convert the

2D pixel (physical) position of each stream element to a

1D virtual address before performing computations on 1D

addresses. A number of authors describe optimization tech-

niques for pre-computing these address translation operations

before the fragment processor [BFGS03, CHL04, KW03,

LKHW04]. These optimizations pre-compute the address

translation using the CPU, the vertex processor, and/or the

rasterizer.

The Brook programming systems provide virtualized inter-

faces to most GPU memory operations for contiguous, multi-

dimensional arrays. Sh provides a subset of the operations for

large 1D arrays. The Glift template library provides virtual-

ized interfaces to GPU memory operations for any structure

that can be defined using the programmable address transla-

tion paradigm. These systems also define iteration constructs

over their respective data structures [BFH*04b, LKS*06,

MDP*04].

4.2.1. Dense arrays

The most common GPGPU data structure is a contiguous

multidimensional array. These arrays are often implemented

by first mapping from N-D to 1D, then from 1D to 2D

[BFH*04b, PBMH02]. For 3D-to-2D mappings, Harris et al.
describe an alternate representation, flat 3D textures, that

directly maps the 2D slices of the 3D array to 2D mem-

ory [HBSL03]. Figures 6 and 7 show diagrams of these ap-

proaches.

Iteration over dense arrays is performed by drawing large

quads that span the range of elements requiring computa-

tion. Brook, Glift, and Sh provide users with fully virtualized

Figure 6: GPU-based multidimensional arrays usually store
data in 2D texture memory. Address translators for N-D ar-
rays generally convert N-D addresses to 1D, then to 2D.

Figure 7: For the special case of 3D-to-2D conversions or
flat 3D textures, 2D slices of the 3D array are packed into a
single 2D texture. This structure maintains 2D locality and,
therefore, supports native bilinear filtering.

CPU/GPU interfaces to these structures. Lefohn et al. give

code examples for optimized implementations [LKO05].

4.2.2. Sparse arrays

Sparse arrays are multidimensional structures that store only

a subset of the grid elements defined by their virtual domain.

Example uses include sparse matrices and implicit surface

representations.

Static Sparse Arrays We define static to mean that the

number and position of stored (non-zero) elements does not

change throughout GPU computation, although the GPU

computation may update the value of the stored elements.

A common application of static sparse arrays is sparse matri-

ces. These structures can use complex, pre-computed packing

schemes to represent the active elements because the struc-

ture does not change.

Sparse matrix structures were first presented by Bolz et al.
[BFGS03] and Krüger et al. [KW03]. Bolz et al. treat each

row of a sparse matrix as a separate stream and pack the rows

into a single texture. They simultaneously iterate over all

rows containing the same number of non-zero elements by

drawing a separate small quad for each row. They perform

the physical-to-virtual and virtual-to-physical address trans-

lations in the fragment stage using a two-level lookup table.

In contrast, for random sparse matrices, Krüger et al. pack

all active elements into vertex buffers and iterate over the

structure by drawing a single-pixel point for each element.

Each point contains a pre-computed virtual address. Krüger

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

92 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

Figure 8: Page table address data structures can be used to
represent dynamic sparse or adaptive GPGPU data struc-
tures. For sparse arrays, page tables map only a subset of
possible pages to texture memory. Page-table-based adaptive
arrays map either uniformly sized physical pages to a varying
number of virtual pages or vice versa. Page tables consume
more memory than a tree structure but offer constant-time
memory accesses and support efficient data-parallel inser-
tion and deletion of pages. Example applications include ray
tracing acceleration structures, adaptive shadow maps, and
deformable implicit surfaces [LKHW04, LSK*05, PBMH02].
Lefohn et al. describe these structures in detail [LKS*06].

et al. also describe a packed texture format for banded

sparse matrices. Buck et al. [BFH*04b] later introduced

a sparse matrix Brook example application that performs

address translation with only a single level of indirection.

The scheme packs the non-zero elements of each row into

identically sized streams. As such, the approach applies to

sparse matrices where all rows contain approximately the

same number of non-zero elements. Section 4.4 contains

more detail about GPGPU linear algebra.

Dynamic Sparse Arrays Dynamic sparse arrays are similar

to those described in the previous section but support insertion

and deletion of non-zero elements during GPU computation.

An example application for a dynamic sparse array is the data

structure for a deforming implicit surface.

Multidimensional page table address translators are an

attractive option for dynamic sparse (and adaptive) arrays

because they provide fast data access and can be easily

updated. Like the page tables used in modern CPU architec-

tures and operating systems, page table data structures enable

sparse mappings by mapping only a subset of possible pages

into physical memory. Page table address translators support

constant access time and storage proportional to the num-

ber of elements in the virtual address space. The translations

always require the same number of instructions and are, there-

fore, compatible with the current fragment processor’s SIMD

architecture. Figure 8 shows a diagram of a sparse 2D page

table structure.

Lefohn et al. represent a sparse dynamic volume using a

CPU-based 3D page table with uniformly-sized 2D physical

pages [LKHW04]. They store the page table on the CPU,

the physical data on the GPU, and pre-compute all address

translations using the CPU, vertex processor, and rasterizer.

The GPU creates page allocations and deletion requests by

rendering a small bit-vector message. The CPU decodes this

message and performs the requested memory management

operations. Strzodka et al. use a page discretization and sim-

ilar message-passing mechanism to define sparse iteration

over a dense array [ST04]. Lefebvre et al. [LDN04] describe

using a page table to implement a virtual texture system.

4.2.3. Adaptive structures

Adaptive arrays are a generalization of sparse arrays and rep-

resent structures such as quadtrees, octrees, kNN-grids, and

k-d trees. These structures non-uniformly map data to the vir-

tual domain and are useful for very sparse or multiresolution

data. Similar to their CPU counterparts, GPGPU adaptive ad-

dress translators are represented with a tree, a page table, or

a hash table. Example applications include ray tracing accel-

eration structures, photon maps, adaptive shadow maps, and

octree textures.

Static Adaptive Structures Purcell et al. use a static adap-

tive array to represent a uniform-grid ray tracing acceler-

ation structure [PBMH02]. The structure uses a one-level,

3D page table address translator with varying-size physical

pages. A CPU-based pre-process packs data into the varying-

size pages and stores the page size and page origin in the 3D

page table. The ray tracer advances rays through the page

table using a 3D line drawing algorithm. Rays traverse the

variable-length triangle lists one render pass at a time. The

conditional execution techniques described in Section 2.4

are used to avoid performing computation on rays that have

reached the end of the triangle list.

Foley et al. recently introduced the first k-d tree for GPU

ray tracing [FS05]. A k-d tree adaptively subdivides space

into axis-aligned bounding boxes whose size and position

are determined by the data rather than a fixed grid. Like the

uniform grid structure, the query input for their structure is

the ray origin and direction and the result is the origin and

size of a triangle list. In their implementation, a CPU-based

pre-process creates the k-d tree address translator and packs

the triangle lists into texture memory. They present two new

k-d tree traversal algorithms that are GPU-compatible and,

unlike previous algorithms, do not require the use of a stack.

Thrane and Simonsen [TS05] also describe and analyze static

adaptive ray tracing acceleration structures. They introduce a

GPU bounding-volume hierarchy (BVH) structure and com-

pare it to a GPU k-d tree.

Dynamic Adaptive Arrays Purcell et al. introduced the

first dynamic adaptive GPU array, the kNN-grid photon

map [PDC*03]. The structure uses a one-level page table

with either variable-sized or fixed-sized pages. They update

the variable-page-size version by sorting data elements and

searching for the beginning of each page. The fixed-page-

size variant limits the number of data elements per page but

avoids the costly sorting and searching steps.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 93

Figure 9: Tree-based address translators can be used in
place of page tables to represent adaptive data structures such
as quadtrees, octrees and k-d trees [FS05, LHN05]. Trees
consume less memory than page table structures but result
in longer access times and are more costly to incrementally
update.

Lefohn et al. use a mipmap hierarchy of page tables

to define quadtree-like and octree-like dynamic structures

[LSK*05, LKS*06]. They apply the structures to GPU-based

adaptive shadow mapping and dynamic octree textures. The

structure achieves adaptivity by mapping a varying number

of virtual pages to uniformly sized physical pages. The page

tables consume more memory than a tree-based approach but

support constant-time accesses and can be efficiently updated

by the GPU. The structures support data-parallel iteration

over the active elements by drawing a point sprite for each

mapped page and using the vertex processor and rasterizer to

pre-compute physical-to-virtual address translations.

In the limit, multilevel page tables are synonymous with N-

tree structures. Coombe et al. and Lefebvre et al. describe dy-

namic tree-based structures [CHL04, LHN05]. Tree address

translators consume less memory than a page table (O(log n)),

but result in slower access times (O(log n)) and require non-

uniform (non-SIMD) computation. Coombe et al. use a CPU-

based quadtree translator [CHL04] while Lefebvre et al. de-

scribe a GPU-based octree-like translator [LHN05]. Figure 9

depicts a tree-based address translator.

4.2.4. Nonindexable structures

All the structures discussed thus far support random ac-

cess and, therefore, trivially support data-parallel accesses.

Nonetheless, researchers are beginning to explore non-

indexable structures. Ernst et al. and Lefohn et al. both de-

scribe GPU-based stacks [EVG04, LKS*06].

Efficient dynamic parallel data structures are an active area

of research. For example, structures such as priority queues

(Section 4.1.7), sets, linked lists, and hash tables have not yet

been demonstrated on GPUs. While several dynamic adap-

tive tree-like structures have been implemented, many open

problems remain in efficiently building and modifying these

structures, and many structures (e.g., k-d trees) have not yet

been constructed on the GPU. Continued research in under-

standing the generic components of GPU data structures may

Figure 10: Solving the wave equation PDE on the GPU al-
lows for fast and stable rendering of water surfaces. (Image
generated by Krüger et al. [KBW06].)

also lead to the specification of generic algorithms, such as

in those described in Section 4.1.

4.3. Differential equations

Differential equations arise in many disciplines of science

and engineering. Their efficient solution is necessary for ev-

erything from simulating physics for games to detecting fea-

tures in medical imaging. Typically differential equations are

solved for entire arrays of input. For example, physically

based simulations of heat transfer or fluid flow typically solve

a system of equations representing the temperature or veloc-

ity sampled over a spatial domain. This sampling means that

there is high data parallelism in these problems, which makes

them suitable for GPU implementation.

There are two main classes of differential equations: or-

dinary differential equations (ODEs) and partial differen-

tial equations (PDEs). An ODE is an equality involving a

function and its derivatives. An ODE of order n is an equa-

tion of the form F(x, y,
∂ y
∂x , . . . ,

∂n y
∂xn) = 0 where ∂n y

∂xn is the

nth derivative with respect to x. A very simple yet prominent

example for ODEs is particle tracing where ∂ x̃
∂t = ṽ(x̃(t), t)

is to be solved over time (Figure 11). PDEs, on the other

hand, are equations involving functions and their partial

derivatives, like the wave equation ∂2ψ

∂x2 + ∂2ψ

∂ y2 + ∂2ψ

∂z2 = ∂2ψ

v2∂t2

(Figure 10). ODEs typically arise in the simulation of the

motion of objects, and this is where GPUs have been ap-

plied to their solution. Particle system simulation involves

moving many point particles according to local and global

forces. This results in simple ODEs that can be solved via

explicit integration (most have used the well-known Euler,

Midpoint, or Runge-Kutta methods). This is relatively sim-

ple to implement on the GPU: a simple fragment program is

used to update each particle’s position and velocity, which

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

94 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

Figure 11: GPU-computed stream ribbons in a 3D flow field.
The entire process from vectorfield interpolation and integra-
tion to curl computation, and finally geometry generation and
rendering of the stream ribbons, is performed on the GPU
[KKKW05].

are stored as 3D vectors in textures. Kipfer et al. presented a

method for simulating particle systems on the GPU includ-

ing inter-particle collisions by using the GPU to quickly sort

the particles to determine potential colliding pairs [KSW04].

In simultaneous work, Kolb et al. produced a GPU particle

system simulator that supported accurate collisions of parti-

cles with scene geometry by using GPU depth comparisons

to detect penetration [KLRS04]. Krüger et al. presented a

scientific flow exploration system that supports a wide va-

riety of of visualization geometries computed entirely on

the GPU [KKKW05] (Figure 11). A simple GPU particle

system example is provided in the NVIDIA SDK [Gre04].

Nyland et al. extended this example to add n-body gravita-

tional force computation [NHP04]. Related to particle sys-

tems is cloth simulation. Green demonstrated a very simple

GPU cloth simulation using Verlet integration [Ver67] with

basic orthogonal grid constraints [Gre03]. Zeller extended

this with shear constraints which can be interactively bro-

ken by the user to simulate cutting of the cloth into multiple

pieces [Zel05].

When solving PDEs, the two common methods of sam-

pling the domain of the problem are finite differences and

finite element methods (FEM). The former has been much

more common in GPU applications due to the natural

mapping of regular grids to the texture sampling hardware of

GPUs. Most of this work has focused on solving the pressure-

Poisson equation that arises in the discrete form of the Navier-

Stokes equations for incompressible fluid flow. Among the

numerical methods used to solve these systems are the conju-

gate gradient method (Bolz et al. [BFGS03] and Krüger and

Westermann [KW03]), the multigrid method (Bolz et al.
[BFGS03] and Goodnight et al. [GWL*03]), and simple

Jacobi and red-black Gauss-Seidel iteration (Harris et al.
[HBSL03]).

The earliest work on using GPUs to solve PDEs was done

by Rumpf and Strzodka, who mapped mathematical struc-

tures like matrices and vectors to textures and linear algebra

operations to GPU features such as blending and the OpenGL

imaging subset. They applied the GPU to segmentation and

non-linear diffusion in image processing [RS01b, RS01a] and

used GPUs to solve finite element discretizations of PDEs

like the anisotropic heat equation [RS01c]. Recent work by

Rumpf and Strzodka [RS05] discusses the use of finite ele-

ment schemes for PDE solvers on GPUs in detail. Lefohn and

Whitaker applied GPUs to the solution of sparse, non-linear

PDEs (level-set equations) for volume segmentation [LW02,

Lef03].

4.4. Linear algebra

As GPU flexibility has increased over the last decade, re-

searchers were quick to realize that many linear algebraic

problems map very well to the pipelined SIMD hardware in

these processors. Furthermore, linear algebra techniques are

of special interest for many real-time visual effects important

in computer graphics. A particularly good example is fluid

simulation (Section 5.2), for which the results of the numer-

ical computation can be computed in and displayed directly

from GPU memory.

Larsen and McAllister described an early pre-floating-

point implementation of matrix multiplies. Adopting a tech-

nique from parallel computing that distributes the computa-

tion over a logically cube-shaped lattice of processors, they

used 2D textures and simple blending operations to perform

the matrix product [LM01]. Thompson et al. proposed a gen-

eral computation framework running on the GPU vertex pro-

cessor; among other test cases they implemented some linear

algebra operations and compared the timings to CPU imple-

mentations. Their test showed that especially for large ma-

trices a GPU implementation has the potential to outperform

optimized CPU solutions [THO02].

With the availability of 32-bit IEEE floating point tex-

tures and more sophisticated shader functionality in 2003,

Hillesland et al. presented numerical solution techniques to

least squares problems [HMG03]. Bolz et al. [BFGS03] pre-

sented a representation for matrices and vectors. They im-

plemented a sparse matrix conjugate gradient solver and a

regular-grid multigrid solver for GPUs, and demonstrated

the effectiveness of their approach by using these solvers

for mesh smoothing and solving the incompressible Navier-

Stokes equations. Goodnight et al. presented another multi-

grid solver; their solution focused on an improved memory

layout of the domain [GWL*03] that avoids the context-

switching latency that arose with the use of OpenGL pbuffers.

Other implementations avoided this pbuffer latency by

using the DirectX API. Moravánszky [Mor02] proposed a

GPU-based linear algebra system for the efficient repre-

sentation of dense matrices. Krüger and Westermann took

a broader approach and presented a general linear algebra

framework supporting basic operations on GPU-optimized

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 95

Figure 12: This image shows a 2D Navier-Stokes fluid
flow simulation with arbitrary obstacles. It runs on a stag-
gered 512 by 128 grid. Even with additional features like
vorticity confinement enabled, such simulations perform at
about 300 fps on current GPUs such as ATI’s Radeon X1800
[KW03].

representations of vectors, dense matrices, and multiple types

of sparse matrices [KW03].

Using this set of operations, encapsulated into C++
classes, Krüger and Westermann enabled more complex algo-

rithms to be built without knowledge of the underlying GPU

implementation [KW03]. For example, a conjugate gradient

solver was implemented with fewer than 20 lines of C++
code. This solver in turn can be used for the solution of PDEs

such as the Navier-Stokes equations for fluid flow (Figure 12).

Apart from their applications in numerical simulation, lin-

ear algebra operators can be used for GPU performance

evaluation and comparison to CPUs. For instance Brook

[BFH*04b] featured a spMatrixVec test that used a padded

compressed sparse row format.

Galoppo et al. [GGHM05] presented an approach to effi-

ciently solve dense linear systems. In contrast to the sparse

matrix approaches, they stored the entire matrix as a single 2D

texture, allowing them to efficiently modify matrix entries.

The results show that even for dense matrices the GPU is able

to outperform highly optimized ATLAS implementations.

Instead of focusing on iterative methods, Kass et al. re-

cently described a direct tridiagonal linear solver on GPUs

used for interactive depth of field simulation [KLO06].

A general evaluation of the suitability of GPUs for linear

algebra operations was done by Fatahalian et al. [FSH04].

They focused on matrix-matrix multiplication and discovered

that these operations are strongly limited by memory band-

width when implemented on the GPU. They explained the

reasons for this behavior and proposed architectural changes

to further improve GPU linear algebra performance. To better

adapt to such future hardware changes and to address vendor-

specific hardware differences, Jiang and Snir presented a first

evaluation of automatically tuning GPU linear algebra code

[JS05].

The major limitation of all of these approaches is the lack of

double precision on current GPUs making them unusable for

certain applications. To overcome this issue Göddeke et al.

[GST06] analyzed native, emulated, and mixed precision ap-

proaches for systems of linear equations as they typically

arise in the FEM context. They reported speedups of four to

five for a mixed precision CPU-GPU over a native CPU im-

plementation. Later Strzodka and Göddeke showed that these

iterative refinement methods can be generalized to arbitrary

convergent iterative processes [SG06].

4.5. Data queries

In this section, we provide a brief overview of the basic

database queries that can be performed efficiently on a GPU

[GLW*04].

Given a relational table T of m attributes (a1, a2, . . . , am),

a basic SQL query takes the form

Select A

from T

where C

where A is a list of attributes or aggregations defined on in-

dividual attributes and C is a Boolean combination of pred-
icates that have the form ai op a j or ai op constant. The

operator op may be any of the following: =, �=, >, ≥, <,

≤. Broadly, SQL queries involve three categories of basic

operations: predicates, Boolean combinations, aggregations,

and join operations and are implemented efficiently using

graphics processors as follows:

Predicates We can use the depth test and the stencil test

functionality for evaluating predicates in the form of ai op
constant. Predicates involving comparisons between two at-

tributes, ai op a j , are transformed to (ai − a j) op 0 using

the programmable pipeline and are evaluated using the depth

and stencil tests.

Boolean combinations A Boolean combination of predicates

is expressed in a conjunctive normal form. The stencil test

can be used repeatedly to evaluate a series of logical operators

with the intermediate results stored in the stencil buffer.

Aggregations These include simple operations such as

COUNT, AVG, and MAX. The COUNT query can be imple-

mented using the counting capability of the occlusion queries.

The SUM query is computed as
∑k

i=0 2i COUNT(Select a j

from T where a j = 2i) where k is the number of bits in the

data representation. Similarly, the AVG and MAX queries are

implemented using COUNT operation at each bit-location in

the data representation.

Join Operations Join operations combine the records in mul-

tiple relations with a common key attribute. They are com-

putationally expensive, and can be accelerated by sorting the

records based on the join key. The fast sorting algorithms

described in Section 4.1.6 are used to efficiently order the

records based on the join key [GM05].

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

96 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

The attributes of each database record are stored in the

multiple channels of a single texel, or in the same texel lo-

cation of multiple textures, and are accessed at run-time to

evaluate the queries.

The above queries are key routines used in general rela-

tional databases. Bustos et al. [BDHK06] presented nearest

neighbor search algorithms for point datasets using GPUs.

The nearest neighbor queries often arise in multimedia

databases, data mining and information retrieval applications.

They represent datasets using multiple 2D textures, and at

run time, a simple fragment program is used to compute the

distance between the dataset vectors and the input vector.

Then, the nearest neighbor is computed using a parallel re-

duction operation on the GPU. In order to handle large high-

dimensional data sets, their technique partitions the dataset

into blocks. The algorithm is iteratively applied to each block

and the nearest neighbor result is readback to the CPU.

5. GPGPU applications

Using many of the algorithms and techniques described in the

previous section, in this section we survey the broad range of

applications and tasks implemented on graphics hardware.

5.1. Early work

The use of computer graphics hardware for general-purpose

computation has been an area of active research for many

years, beginning on machines like the Ikonas [Eng78], the

Pixel Machine [PH89], and Pixel-Planes 5 [FPE*89]. Pixar’s

Chap [LP84] was one of the earliest processors to explore

a programmable SIMD computational organization, on 16-

bit integer data; Flap [LHPL87], described three years later,

extended Chap’s integer capabilities with SIMD floating-

point pipelines. These early graphics computers were typ-

ically graphics compute servers rather than desktop worksta-

tions. Early work on procedural texturing and shading was

performed on the UNC Pixel-Planes 5 and PixelFlow ma-

chines [RTB*92, OL98]. This work can be seen as precursor

to the high-level shading languages in common use today

for both graphics and GPGPU applications. The PixelFlow

SIMD graphics computer [EMP*97] was also used to crack

UNIX password encryption [KI99].

The wide deployment of GPUs in the last several years has

resulted in an increase in experimental research with graphics

hardware. The earliest work on desktop graphics processors

used non-programmable (“fixed-function”) GPUs. Lengyel

et al. used rasterization hardware for robot motion planning

[LRDG90]. Hoff et al. described the use of z-buffer tech-

niques for the computation of Voronoi diagrams [HCK*99]

and extended the method to proximity detection [HZLM01].

Bohn used fixed-function graphics hardware in the computa-

tion of artificial neural networks [Boh98]. Convolution and

wavelet transforms with the fixed-function pipeline were re-

alized by Hopf and Ertl [HE99a, HE99b].

Programmability in GPUs first appeared in the form of

vertex programs combined with a limited form of fragment

programmability via extensive user-configurable texture ad-

dressing and blending operations. While these don’t con-

stitute a true ISA, so to speak, they were abstracted in a

very simple shading language in Microsoft’s pixel shader

version 1.0 in Direct3D 8.0. Trendall and Stewart gave a

detailed summary of the types of computation available on

these GPUs [TS00]. Thompson et al. used the programmable

vertex processor of an NVIDIA GeForce 3 GPU to solve

the 3-Satisfiability problem and to perform matrix multipli-

cation [THO02]. A major limitation of this generation of

GPUs was the lack of floating-point precision in the frag-

ment processors. Strzodka showed how to combine multiple

8-bit texture channels to create virtual 16-bit precise opera-

tions [Str02], and Harris analyzed the accumulated error in

boiling simulation operations caused by the low precision

[Har02]. Strzodka constructed and analyzed special discrete

schemes which, for certain PDE types, allow reproduction of

the qualitative behavior of the continuous solution even with

very low computational precision, e.g. 8 bits [Str04].

5.2. Physically based simulation

Early GPU-based physics simulations used cellular tech-

niques such as cellular automata (CA). Greg James of

NVIDIA demonstrated the “Game of Life” cellular automata

and a 2D physically based wave simulation running on

NVIDIA GeForce 3 GPUs [Jam01a, Jam01b, Jam01c]. Harris

et al. used a Coupled Map Lattice (CML) to simulate dynamic

phenomena that can be described by partial differential equa-

tions, such as boiling, convection, and chemical reaction-

diffusion [HCSL02]. The reaction-diffusion portion of this

work was later extended to a finite difference implementa-

tion of the Gray-Scott equations using floating-point-capable

GPUs [HJ03]. Kim and Lin used GPUs to simulate dendritic

ice crystal growth [KL03]. Related to cellular techniques

are lattice simulation approaches such as Lattice-Boltzmann

Methods (LBM), used for fluid and gas simulation. LBM

represents fluid velocity in “packets” traveling in discrete

directions between lattice cells. Li et al. have used GPUs

to apply LBM to a variety of fluid flow problems [LWK03,

LFWK05].

Full floating point support in GPUs has enabled the next

step in physically based simulation: finite difference and fi-

nite element techniques for the solution of systems of partial

differential equations (PDEs). Spring-mass dynamics on a

mesh were used to implement basic cloth simulation on a

GPU [Gre03, Zel05]. Several researchers have also imple-

mented particle system simulation on GPUs (Section 4.3).

Several groups have used the GPU to successfully

simulate fluid dynamics. Four papers in the summer

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 97

of 2003 presented solutions of the Navier-Stokes equations

(NSE) for incompressible fluid flow on the GPU [BFGS03,

GWL*03, HBSL03, KW03]. Harris provides an introduction

to the NSE and a detailed description of a basic GPU imple-

mentation [Har04]. Harris et al. combined GPU-based NSE

solutions with PDEs for thermodynamics and water conden-

sation and light scattering simulation to implement visual

simulation of cloud dynamics [HBSL03]. Recently Hagen

et al. [HLN06] simulated the dynamics of ideal gases in two

and three dimensions described by the Euler equations on the

GPU.

Other recent work includes flow calculations around ar-

bitrary obstacles [BFGS03, KW03, LLW04]. Sander et al.
[STM04] described the use of GPU depth-culling hardware

to accelerate flow around obstacles, and sample code that im-

plements this technique is made available by Harris [Har05b].

Rumpf and Strzodka used a quantized FEM approach to solv-

ing the anisotropic heat equation on a GPU [RS01c] (Sec-

tion 4.3). Kolb and Cuntz [KC05] simulated fluids with the

SPH method using flattened 3D textures and point sprites on

the GPU.

Related to fluid simulation is the visualization of flows,

which has been implemented using graphics hardware to ac-

celerate line integral convolution and Lagrangian-Eulerian

advection [HWSE99, JEH01, WHE01].

Recently rigid body simulation for computer games has

been shown to perform very well on GPUs. Havok [Bon06,

GH06] demonstrated an API for rigid body and particle simu-

lation on GPUs, featuring full collisions between rigid bodies

and particles, as well as support for simulating and rendering

on separate GPUs in a multi-GPU system. Running on a PC

with dual NVIDIA GeForce 7900 GTX GPUs and a dual-

core AMD Athlon 64 X2 CPU, Havok FX achieves more

than a 10x speedup running on GPUs compared to an equiv-

alent, highly optimized multithreaded CPU implementation

running on the dual-core CPU alone.

5.3. Signal and image processing

The high computational rates of the GPU have made graphics

hardware an attractive target for demanding applications such

as those in signal and image processing. Among the most

prominent applications in this area are those related to image

segmentation (Section 5.3.1) as well as a variety of other

applications across the gamut of signal, image, and video

processing (Section 5.3.2).

5.3.1. Segmentation

The segmentation problem seeks to identify features embed-

ded in 2D or 3D images. A driving application for segmen-

tation is medical imaging. A common problem in medical

imaging is to identify a 3D surface embedded in a volume

image obtained with an imaging technique such as Magnetic

Resonance Imaging (MRI) or Computed Tomograph (CT)

Imaging. Fully automatic segmentation is an unsolved im-

age processing research problem. Semi-automatic methods,

however, offer great promise by allowing users to interac-

tively guide image processing segmentation computations.

GPGPU segmentation approaches have made a significant

contribution in this area by providing speedups of more than

10 times and coupling the fast computation to an interactive

volume renderer.

Image thresholding is a simple form of segmentation that

determines if each pixel in an image is within the seg-

mented region based on the pixel value. Yang and Welch

[YW03] used register combiners to perform thresholding

and basic convolutions on 2D color images. Their NVIDIA

GeForce4 GPU implementation demonstrated a 30% speed

increase over a 2.2 GHz Intel Pentium 4 CPU. Viola et al.
performed threshold-based 3D segmentations combined with

an interactive visualization system and observed an ap-

proximately 8 times speedup over a CPU implementation

[VKG03].

Implicit surface deformation is a more powerful and accu-

rate segmentation technique than thresholding but requires

significantly more computation. These level-set techniques

specify a partial differential equation (PDE) that evolves an

initial seed surface toward the final segmented surface. The

resulting surface is guaranteed to be a continuous, closed

surface.

Rumpf and Strzodka were the first to implement level-set

segmentation on GPUs [RS01a]. They supported 2D image

segmentation using a 2D level-set equation with intensity and

gradient image-based forces. Lefohn et al. extended that work

and demonstrated the first 3D level-set segmentation on the

GPU [LW02]. Their implementation also supported a more

complex evolution function that allowed users to control

the curvature of the evolving segmentation, thus enabling

smoothing of noisy data. These early implementations com-

puted the PDE on the entire image despite the fact that only

pixels near the segmented surface require computation. As

such, these implementations were not faster than highly op-

timized sparse CPU implementations.

The first GPU-based sparse segmentation solvers came a

year later. Lefohn et al. [LKHW03, LKHW04] demonstrated

a sparse (narrow-band) 3D level-set solver, using the sparse

data structure techniques of Section 4.2.2, that provided a

speedup of 10–15 times over a highly optimized CPU-based

solver [Ins03] (Figure 13). Concurrently, Sherbondy et al.
presented a GPU-based 3D segmentation solver based on the

Perona-Malik PDE [SHN03]. They also performed sparse

computation, but had a dense (complete) memory represen-

tation. They used the depth culling technique for conditional

execution to perform sparse computation. Both of these seg-

mentation systems were integrated with interactive volume

renderers.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

98 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

Figure 13: Interactive volume segmentation and visualiza-
tion of Magnetic Resonance Imaging (MRI) data on the GPU
enables fast and accurate medical segmentations. Image gen-
erated by Lefohn et al. [LKHW04].

Griesser et al.’s recent work concentrates specifically on

GPU-based foreground/background segmentation for im-

age sequences [GDNV05, Gri05], using an iterative solution

run to convergence on a 3×3 neighborhood at each pixel.

They incorporate darkness compensation into their algorithm

and typically achieve frame times on the order of 4 ms on

640×480 images with an NVIDIA GeForce 6800GT.

5.3.2. Other signal and image processing applications

Computer Vision Fung et al. use graphics hardware

to accelerate image projection and compositing oper-

ations [FTM02] in a camera-based head-tracking sys-

tem [FM04]; their implementation has been released

as the open-source OpenVIDIA computer vision li-

brary [Ope06], whose website also features a good bib-

liography of papers for GPU-based computer/machine

vision applications.

Yang and Pollefeys used GPUs for real-time stereo depth

extraction from multiple images [YP05]. Their pipeline first

rectifies the images using per-pixel projective texture map-

ping, then computes disparity values between the two images,

and, using adaptive aggregation windows and cross checking,

chooses the most accurate disparity value. Their implemen-

tation was more than four times faster than a comparable

CPU-based commercial system. Both Geys et al. and

Woetzel and Koch addressed a similar problem using a plane

sweep algorithm. Geys et al. compute depth from pairs of

images using a fast plane sweep to generate a crude depth

map, then use a min-cut/max-flow algorithm to refine the re-

sult [GKV04]; the approach of Woetzel and Koch begins with

a plane sweep over images from multiple cameras and pays

particular attention to depth discontinuities [WK04].

Image Processing The process of image registration es-

tablishes a correlation between two images by means of a

(possibly non-rigid) deformation. Before the emergence of

programmable hardware, Rezk-Salama et al.’s 1999 work

[RSHGE99] exploited the trilinear interpolation capabilities

of 3D texturing hardware for nonlinear image registration in

a medical volume rendering application, with the hardware

implementation two orders of magnitude faster than the soft-

ware implementation. The work of Strzodka et al. is one of

the earliest to use the programmable floating point capabili-

ties of graphics hardware in this area [SDR03, SDR04]; their

image registration implementation is based on the multi-scale

gradient flow registration method of Clarenz et al. [CDR02]

and uses an efficient multi-grid representation of the image

multi-scales, a fast multi-grid regularization, and an adap-

tive time-step control of the iterative solvers. They achieve

per-frame computation time of under 2 seconds on pairs of

256×256 images.

Strzodka and Garbe describe a real-time system that com-

putes and visualizes motion on 640×480 25 Hz 2D image

sequences using graphics hardware [SG04]. Their system as-

sumes that image brightness only changes due to motion (due

to the brightness change constraint equation). Using this as-

sumption, they estimate the motion vectors from calculating

the eigenvalues and eigenvectors of the matrix constructed

from the averaged partial space and time derivatives of im-

age brightness. In the context of video compression, Kelly

and Kokaram describe their gradient-based motion estimator

[KK04], implemented on the GPU, that uses a hierarchical

Wiener-based algorithm that is robust to noise. Both of these

papers demonstrate performance improvements over a CPU

implementation.

Computed tomography (CT) methods that reconstruct

an object from its projections are computationally inten-

sive and often accelerated by special-purpose hardware.

Xu and Mueller implement three 3D reconstruction algo-

rithms (Feldkamp Filtered Backprojection, SART, and EM)

on programmable graphics hardware, achieving high-quality

floating-point 1283 reconstructions from 80 projections in

time frames from seconds to tens of seconds [XM05].

Erra recently introduced fractal image compression to the

GPU with a brute-force Cg implementation that achieved a

speedup of over 100:1 over a comparable CPU implementa-

tion [Err05].

Signal Processing Motivated by the high arithmetic capa-

bilities of modern GPUs, several projects have developed

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 99

GPU implementations of the fast Fourier transform (FFT)

[BFH*04b, JvHK04, MA03, MAH02, SL05, SW04, Wlo03].

(The GPU Gems 2 chapter by Sumanaweera and Liu, in

particular, gives a detailed description of the FFT and

their GPU implementation [SL05].) In general, these

implementations operate on 1D or 2D input data, use a

Cooley-Tukey radix-2 decimation-in-time approach (with

the exception of Jansen et al.’s decimation-in-frequency

approach [JvHK04]), and require one fragment-program

pass per FFT stage. Govindaraju et al. suggest that the

Stockham formulation of the FFT is better suited for the

GPU by avoiding the need for bit reversal [GLGM06];

in their implementation they focus on efficient cache

utilization. The real and imaginary components of the

FFT can be computed using two components of the

4-vectors in each fragment processor, so many imple-

mentations support processing two FFTs in parallel; other

implementations use multiple render targets [GLGM06] or

clever packing [Hor06] to fully utilize the 4-wide arithmetic

units in the fragment processors on a single FFT.

Daniel Horn’s open-source “libgpufft” FFT library

[Hor06] is one of the performance leaders in GPU FFTs.

Horn’s implementation is written in Brook, runs efficiently on

both NVIDIA and ATI hardware, and is notable for its full use

of 4-wide arithmetic on a single FFT in the fragment program

and its identical communication pattern across all stages.

Owens et al.’s analysis of this library [OSH05] showed that

repeated computation of 1D FFTs on the GPU had compa-

rable performance to a highly tuned CPU implementation

[FJ98]; the GPU was limited by overhead, memory band-

width, and the lack of write-back GPU caches, while the CPU

was limited by computation. GPUs are correspondingly bet-

ter than CPUs on 2D FFTs because of poorer CPU cache

performance on 2D FFTs [Buc05a].

A GPU implementation of the related discrete cosine

transform (DCT), used in JPEG and MPEG compression, was

recently presented by Green [Gre05]. The discrete wavelet

transform (DWT), used in the JPEG2000 standard, is an-

other useful fundamental signal processing operation; a group

from the Chinese University of Hong Kong has developed a

GPU implementation of the DWT [WWHL04], which has

been integrated into an open-source JPEG2000 codec called

“JasPer” [Ada05].

Smirnov and Chuieh compared finite-impulse-response

(FIR) filter performance for three FIR components from GNU

Radio [SC05], finding that GPU FIR performance was supe-

rior to CPU performance for very large numbers of FIR taps,

and that replacing CPU stages of a GNU radio receiver with

GPU stages also improved overall performance.

Infinite impulse response (IIR) filters, unlike FIR filters,

have an impulse response with infinite extent. As a result,

each evaluation of an infinite impuse response filter depends

on the result from the previous sample. This serial depen-

dence has been refactored into a parallel GPU-compatible

formulation in two ways. Simon Green described an im-

plementation of separable 2D IIRs by drawing one row or

column of an image, synchronizing between each iteration

[Gre05]. More recently, Kass et al. presented a more efficient

parallel formulation of 2D IIRs on the GPU using cyclic re-

duction implemented with a parallel-prefix scan formulation

[KLO06].

Tone Mapping Tone mapping is the process of mapping

pixel intensity values with high dynamic range to the smaller

range permitted by a display. Goodnight et al. implemented

an interactive, time-dependent tone mapping system on GPUs

[GWWH03]. In their implementation, they chose the tone-

mapping algorithm of Reinhard et al. [RSSF02], which is

based on the “zone system” of photography, for two reasons.

First, the transfer function that performs the tone mapping

uses a minimum of global information about the image, mak-

ing it well-suited to implementation on graphics hardware.

Second, Reinhard et al.’s algorithm can be adaptively refined,

allowing a GPU implementation to trade off efficiency and

accuracy. Among the tasks in Goodnight et al.’s pipeline was

an optimized implementation of a Gaussian convolution. On

an ATI Radeon 9800, they were able to achieve highly in-

teractive frame rates with few adaptation zones (limited by

mipmap construction) and a few frames per second with many

adaptation zones (limited by the performance of the Gaussian

convolution).

Audio Gallo and Tsingos characterized GPUs for two au-

dio rendering kernels [GT04], analyzing the performance of

variable-delay-line and filtering operations. Their implemen-

tation was 20% slower than a CPU implementation, and they

identified floating-point texture resampling and long 1D tex-

ture support as desirable features for improving performance.

Jȩdrzejewski used ray tracing techniques on GPUs to com-

pute echoes of sound sources in highly occluded environ-

ments [Jȩd04]. BionicFX has developed commercial “Audio

Video Exchange” (AVEX) software that accelerates audio

effect calculations using GPUs [Bio06].

Image/Video Processing Frameworks Apple’s Core Image

and Core Video frameworks allow GPU acceleration of image

and video processing tasks [App06a]; the open-source frame-

work Jahshaka uses GPUs to accelerate video compositing

[Jah06].

5.4. Global illumination

Perhaps not surprisingly, one of the early areas of GPGPU

research was aimed at improving the visual quality of GPU-

generated images. Many of the techniques described below

accomplish this by simulating an entirely different image

generation process from within a fragment program (e.g. a ray

tracer). These techniques use the GPU strictly as a computing

engine. Other techniques leverage the GPU to perform most

of the rendering work, and augment the resulting image with

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

100 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

Figure 14: Sample images from several global illumination techniques implemented on the GPU. (a) Ray tracing and photon
mapping [PDC*03]. (b) Radiosity [CHL04]. (c) Subsurface scattering [CHH03]. (d) Final gather by rasterization [Hac05].

global effects. Figure 14 shows images from some of the

techniques we discuss in this section.

5.4.1. Ray tracing

Ray tracing is a rendering technique based on simulating light

interactions with surfaces [Whi80]. It is nearly the reverse of

the traditional GPU rendering algorithm: the color of each

pixel in an image is computed by tracing rays out from the

scene camera and discovering which surfaces are intersected

by those rays and how light interacts with those surfaces.

The ray-surface intersection serves as a core for many global

illumination algorithms. Perhaps it is not surprising, then, that

ray tracing was one of the earliest GPGPU global illumination

techniques to be implemented.

Ray tracing consists of several types of computation: ray

generation, ray-surface intersection, and ray-surface shading.

Generally, there are too many surfaces in a scene to test ev-

ery ray against every surface for intersection, so special data

structures (called acceleration structures) are used to reduce

the total number of surfaces rays need to be tested against.

Ray-surface shading generally requires generating additional

rays to test against the scene (e.g. shadow rays, reflection rays,

etc.) The earliest GPGPU ray tracing systems demonstrated

that the GPU was capable of not only performing ray-triangle

intersections [CHH02], but that the entire ray tracing compu-

tation including acceleration structure traversal and shading

could be implemented entirely within a set of fragment pro-

grams [PBMH02, Pur04]. Section 4.2 enumerates several of

the data structures used in this ray tracer.

Nearly all of the major ray tracing acceleration struc-

tures have been implemented in some form on the GPU:

uniform grids [PBMH02, Pur04], k-d trees [FS05], and

bounding volume hierarchies [TS05]. Detailed comparisons

between GPU implementations of these three accelera-

tion structures can be found in Thrane and Simonsen’s

masters thesis [TS05]. All of these structures are lim-

ited to accelerating ray tracing of static scenes. The effi-

cient implementation of dynamic ray tracing acceleration

structures is an active research topic for both CPU and

GPU-based ray tracers. Recent work by Carr et al. [CHCH06]

describes a dynamic bounding volume hierarchy acceleration

structure, though the current implementation is limited to ac-

celerating only a single mesh.

Some of the early GPU-based ray tracing work required

special drivers, as features like fragment programs and float-

ing point buffers were relatively new and rapidly evolving.

There are currently open-source GPU-based ray tracers that

run with standard drivers and APIs [Chr05, KL04].

Finally, Weiskopf et al. have implemented nonlinear ray

tracing on the GPU [WSE04]. Nonlinear ray tracing is a tech-

nique that can be used for visualizing gravitational phenom-

ena such as black holes, or light propagation through me-

dia with a varying index of refraction (which can produce

mirages). Their technique builds upon the linear ray trac-

ing discussed previously, and approximates curved rays with

multiple ray segments.

5.4.2. Photon mapping

Photon mapping [Jen96] is a two-stage global illumination

algorithm. The first stage consists of emitting photons from

the light sources in the scene, simulating the photon interac-

tions with surfaces, and finally storing the photons in a data

structure for lookup during the second stage. The second

stage in the photon mapping algorithm is a rendering stage.

Initial surface visibility and direct illumination are computed

first, often by ray tracing. Then, the light contributed to each

surface point by the environment (indirect) or through focus-

ing by reflection or refraction (caustic) is computed. These

computations are done by querying the photon map to get

estimates for the amount of energy that arrived from these

sources.

Tracing photons is much like ray tracing (Section 5.4.1).

Constructing the photon map and indexing the map to find

good energy estimates at each image point are much more

difficult on the GPU than the CPU. Purcell et al. imple-

mented two different techniques for constructing the photon

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 101

map and a technique for querying the photon map, all of

which run at interactive rates [PDC*03] (Sections 4.1.7 and

4.2 contain some implementation details). Figure 14a shows

an image rendered with this system. Larsen and Christensen

load-balance photon mapping between the GPU and the CPU

and exploit inter-frame coherence to achieve very high frame

rates for photon mapping [LC04].

Finally, caustics rendering can be performed interactively

on the GPU using image-space techniques. Wyman and Davis

[WD06] describe a caustics rendering technique that works

by rendering the scene from the light source, and storing the x,

y, z location for the nearest diffuse surface. They then evalu-

ate indirect illumination by directly drawing these photons, or

by performing an image-space nearest neighbor search. Shah

et al. [SKP06] describe a caustics rendering technique which

works by splatting photons into a caustics map via point ren-

dering. Caustics are then rendered by projecting visible scene

points into the light source coordinate system and index-

ing into the caustic map, much like current shadow mapping

techniques.

5.4.3. Radiosity

At a high level, radiosity works much like photon mapping

when computing global illumination for diffuse surfaces. In

a radiosity-based algorithm, energy is transferred around the

scene much like photons are. Unlike photon mapping, the

energy is not stored in a separate data structure that can be

queried at a later time. Instead, the geometry in the scene is

subdivided into patches or elements, and each patch stores

the energy arriving on that patch.

The classical radiosity algorithm [GTGB84] solves for

all energy transfer simultaneously. Classical radiosity was

implemented on the GPU with an iterative Jacobi solver

[CHH03]. The implementation was limited to matrices of

around 2000 elements, severely limiting the complexity of

the scenes that can be rendered.

An alternate method for solving radiosity equations,

known as progressive radiosity, iterates through the energy

transfer until the system reaches a steady state [CCWG88].

A GPU implementation of progressive radiosity can ren-

der scenes with over one million elements [CHL04, CH05].

Figure 14b shows a sample image created with progressive

refinement radiosity on the GPU.

5.4.4. Subsurface scattering

Most real-world surfaces do not completely absorb, reflect, or

refract incoming light. Instead, incoming light usually pen-

etrates the surface and exits the surface at another location.

This subsurface scattering effect is an important component

in modeling the appearance of transparent surfaces [HK93].

This subtle yet important effect has also been implemented

on the GPU [CHH03]. Figure 14c shows an example of GPU

subsurface scattering. The GPU implementation of subsur-

200

300

400

500

600

700

800

20G 40G 53G 60G
Data Size

T
im

e
 (

in
 s

e
c
o

n
d

s
)

7800 GT

6800 Ultra

Xeon

Pentium 4

6800

Figure 15: Performance of GPUTeraSort on a low-end PC
with a $250 commodity GPU and an optimized CPU-based
algorithm on high-end CPUs costing $1500. GPUTeraSort
is able to achieve 3 times better performance-price and
also scales better on gigabyte-scale databases. Result from
Govindaraju et al. [GGKM06].

face scattering uses a three-pass algorithm. First, the amount

of light on a given patch in the model is computed. Second,

a texture map of the transmitted radiosity is built using pre-

computed scattering links. Finally, the generated texture is

applied to the model. This method for computing subsurface

scattering runs in real time on the GPU.

5.4.5. Hybrid rendering

Finally, several GPGPU global illumination methods that

have been developed do not fit with any of the classically

defined rendering techniques. Some methods use traditional

GPU rendering in unconventional ways to obtain global illu-

mination effects. Others combine traditional GPU render-

ing with global illumination effects. We call all of these

techniques hybrid global illumination techniques.

The Parthenon renderer generates global illumination im-

ages by rasterizing the scene multiple times, from different

points of view [Hac05]. These scene rasterizations are ac-

cumulated to form an estimate of the indirect illumination at

each visible point. This indirect illumination estimate is com-

bined with direct illumination computed by traditional GPU

rendering techniques. A sample image from the Parthenon

renderer is shown in Figure 14d. In a similar fashion, Ni-

jasure computes a sparse sampling of the scene for indirect

illumination into cubemaps [Nij03]. The indirect illumination

is progressively computed and summed with direct lighting

to produce a fully illuminated scene.

Szirmay-Kalos et al. demonstrate how to approximate

ray tracing on the GPU by localizing environment maps

[SKALP05]. They use fragment programs to correct reflec-

tion map lookups to more closely match what a ray tracer

would compute. Their technique can also be used to generate

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

102 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

multiple refractions or caustics, and runs in real time on the

GPU.

Finally, Gautron et al. describe a technique for acceler-

ating irradiance caching using the GPU [GKBP05]. They

use the GPU to compute irradiance contributions (via splat-

ting) and geometric data, the CPU to traverse the irradiance

data, and the GPU to combine direct and indirect illumination

for the final image. Their technique shows well over an or-

der of magnitude speedup over a traditional irradiance cache

implementation.

5.5. Geometric computing

GPUs have been widely used for performing a number of

geometric computations. These geometric computations are

used in many applications including motion planning, virtual

reality, etc. and include the following.

Constructive Solid Geometry (CSG) operations CSG op-

erations are used for geometric modeling in computer-aided

design applications. Basic CSG operations involve Boolean

operations such as union, intersection, and difference, and

can be implemented efficiently using the depth test and the

stencil test [GHF86, GMTF89, GKMV03, RR86, SLJ98].

Distance Fields and Skeletons Distance fields compute the

minimum distance of each point to a set of objects and are

useful in applications such as path planning and navigation.

Distance computation can be performed either using a frag-

ment program or by rendering the distance function of each

object in image space [HCK*99, SOM04, SPG03, ST04].

Collision Detection GPU-based collision detection algo-

rithms rasterize the objects and perform either 2D or

2.5-D overlap tests in screen space [BW03, GRLM03,

HTG03, HTG04, HCK*99, KP03, VSC01]. Furthermore,

visibility computations can be performed using occlusion

queries and used to compute both intra- and inter-object col-

lisions among multiple objects [GLM05].

Transparency Computation Transparency computations

require the sorting of 3D primitives or their image-space frag-

ments in a back-to-front or a front-to-back order and can be

performed using depth peeling [Eve01] or by image-space

occlusion queries [GHLM05].

Particle Tracing Particle tracing—and in general gener-

ation of vector-field visualizing primitives—has been an

active field of research, particularly since the availabil-

ity of geometry creation and modification features on

GPUs. Recent applications make use of either the copy-to-

vertex-buffer [KLRS04,KC05], the render-to-vertex-buffer

[KSW04, KKKW05] or the vertex-texture-fetch [KW05b,

KKW05] functionality to displace primitives.

Compression and LOD Techniques Quite often CPU-based

LOD techniques that are able to efficiently handle large

amounts of data suffer from the problem that the speedup

due to the reduced geometry is often neutralized by the time

for the bus transfer of the updated geometry. Therefore, GPU-

based LOD [DVS03, BS05, JWLL05] and compression tech-

niques [KSW05] minimize the transfer by expanding the data

on the GPU only during rendering.

These algorithms perform computations in image space,

and require little or no pre-processing. Therefore, they work

well on deformable objects. However, the accuracy of these

algorithms is limited to image precision, and can be an issue

in some geometric computations such as collision detection.

Recently, Govindaraju et al. proposed a simple technique to

overcome the image-precision error by sufficiently “fatten-

ing” the primitives [GLM04]. The technique has been used

in performing reliable inter- and intra-object collision com-

putations among general deformable meshes [GKJ*05].

The performance of many geometric algorithms on GPUs

is also dependent upon the layout of polygonal meshes; a

better layout more effectively utilizes the vertex caches on

GPUs. Recently, Yoon et al. proposed a novel method for

computing cache-oblivious layouts of polygonal meshes and

applied it to improve the performance of geometric appli-

cations such as view-dependent rendering and collision de-

tection on GPUs [YLPM05]. Their method does not require

any knowledge of cache parameters and does not make as-

sumptions on the data access patterns of applications. A user

constructs a graph representing an access pattern of an appli-

cation, and the cache-oblivious algorithm constructs a mesh

layout that works well with the cache parameters. The cache-

oblivious algorithm was able to achieve 2–20 times improve-

ment on many complex scenarios without any modification

to the underlying application or the run-time algorithm.

5.6. Databases and data mining

Database Management Systems (DBMSs) and data mining

algorithms are an integral part of a wide variety of commercial

applications such as online stock market trading and intru-

sion detection systems. Many of these applications analyze

large volumes of online data and are highly computation-

and memory-intensive. As a result, researchers have been ac-

tively seeking new techniques and architectures to improve

the query execution time. The high memory bandwidth and

the parallel processing capabilities of the GPU can signifi-

cantly accelerate the performance of many essential database

queries such as conjunctive selections, aggregations, semi-

linear queries and join queries. These queries are described

in Section 4.5. Govindaraju et al. compared the performance

of SQL queries on an NVIDIA GeForce 6800 against a

2.8 GHz Intel Xeon processor. Preliminary comparisons in-

dicate up to an order of magnitude improvement for the GPU

over a SIMD-optimized CPU implementation [GLW*04].

GPUs are highly optimized for performing rendering oper-

ations on geometric primitives and can use these capabilities

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 103

to accelerate spatial database operations. Sun et al. exploited

the color blending capabilities of GPUs for spatial selection

and join operations on real world datasets [SAA03]. Bandi

et al. integrated GPU-based algorithms for improving the per-

formance of spatial database operations into Oracle 9I DBMS

[BSAE04].

Recent research has also focused attention on the effective

utilization of graphics processors for fast stream mining al-

gorithms. In these algorithms, data is collected continuously

and the underlying algorithm performs continuous queries

on the data stream as opposed to one-time queries in tra-

ditional systems. Many researchers have advocated the use

of GPUs as stream processors for compute-intensive algo-

rithms [BFH*04b, FF88, Man03, Ven03]. Recently, Govin-

daraju et al. have presented fast streaming algorithms using

the blending and texture mapping functionalities of GPUs

[GRM05]. Data is streamed to and from the GPU in real

time, and a speedup of 2–5 times is demonstrated on on-

line frequency and quantile estimation queries over high-end

CPU implementations. The high growth rate of GPUs, com-

bined with their substantial processing power, are making the

GPU a viable architecture for commercial database and data

mining applications.

6. Conclusions: Looking Forward

The field of GPGPU computing is maturing. Early efforts

were characterized by a somewhat ad hoc approach and a

“GPGPU for its own sake” attitude; the challenge of achiev-

ing non-graphics computation on the graphics platform over-

shadowed analysis of the techniques developed or careful

comparison to well optimized, best-in-class CPU analogs.

Today researchers seeking to publish GPGPU work typi-

cally face a much higher bar, set by careful analyses such as

Fatahalian et al.’s examination of matrix multiplication

[FSH04]. The bar is higher for novelty as well as analysis;

new work must go beyond simply “porting” an existing al-

gorithm to the GPU, to demonstrating general principles and

techniques or making significantly new and non-obvious use

of the hardware. Fortunately, the accumulated body of knowl-

edge on general techniques and building blocks surveyed in

Section 4 means that GPGPU researchers need not contin-

ually reinvent the wheel. Meanwhile, developers wishing to

use GPUs for general-purpose computing have a broad array

of applications to learn from and build on. GPGPU algorithms

continue to be developed for a wide range of problems, from

options pricing to protein folding. On the systems side, sev-

eral research groups have major ongoing efforts to perform

large-scale GPGPU computing by harnessing large clusters

of GPU-equipped computers. The emergence of high-level

programming languages provided a huge leap forward for

GPU developers generally, and languages like BrookGPU

[BFH*04b] hold similar promise for non-graphics develop-

ers who wish to harness the power of GPUs.

More broadly, GPUs may be seen as the first generation

of commodity data-parallel coprocessors. Their tremendous

computational capacity and rapid growth curve, far outstrip-

ping traditional CPUs, highlight the advantages of domain-

specialized data-parallel computing. We can expect increased

programmability and generality from future GPU architec-

tures, but not without limit; neither vendors nor users want

to sacrifice the specialized performance and architecture that

have made GPUs successful in the first place. The next gener-

ation of GPU architects face the challenge of striking the right

balance between improved generality and ever-increasing

performance.

At the same time, other desktop parallel machines are be-

ginning to appear in the mass market. CPU vendors are ag-

gressively pursuing multicore designs, including a heteroge-

neous example in the Cell processor produced by IBM, Sony,

and Toshiba [PAB*05]. The tiled architecture of Cell provides

a dense computational fabric well suited to the stream pro-

gramming model discussed in Section 2.3, similar in many

ways to GPUs but oriented toward running fewer threads

with more available resources than the very large number of

fine-grained, lightweight threads on the GPU.

Perhaps the most important challenge is to find the

right high-level programming model for aggressively multi-

threaded parallel computation. Heterogenous systems such

as the Sony Playstation 3, which joins a Cell processor and

a modern GPU with a high-bandwidth 20 GB/s bus, present

even more interesting opportunities and challenges. Current

graphics APIs, and GPGPU languages layered on top of

graphics APIs, hide much of the complexity of parallel ex-

ecution (such as scheduling, synchronization, locks, and so

on) with an “implicitly parallel” programming model. For

example, pixel computations must be completely indepen-

dent (e.g., no communication with neighboring pixels) and

do not include scatter operations that would enable multi-

ple fragment processors to write to the same pixel. GPUs

are growing more general, low-level GPGPU programming

is being supplanted by high-level languages and toolkits,

and new general-purpose data-parallel contenders such as the

Cell chip have emerged. Can the GPGPU research commu-

nity build on its experience with successful, high-level paral-

lel programming models to transcend its computer graphics

roots and develop the computational idioms, techniques, and

frameworks for the desktop parallel computing environment

of the future?

Acknowledgments

This article is an updated and extended version of the authors’
2005 State of the Art Report, presented at Eurographics 2005
[OLG*05].

Thanks to David Blythe, Ian Buck, Jeff Bolz, Dominik

Göddeke, Daniel Horn, Marc Pollefeys, and Robert Strzodka

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

104 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

for their thoughtful comments, and to the anonymous review-

ers for their helpful and constructive criticism.

References

[Ada05] ADAMS M.: JasPer project. Available at

http://www.ece.uvic.ca/∼mdadams/jasper/, 2005.

[AJR*01] AN P., JULA A., RUS S., SAUNDERS S., SMITH

T., TANASE G., THOMAS N., AMATO N., RAUCHWERGER

L.: STAPL: An adaptive, generic parallel C++ library.

In Workshop on Languages and Compilers for Parallel
Computing, pp. 193–208, August 2001.

[App06a] Apple Computer Core Image. Available at http://

www.apple.com/macosx/tiger/coreimage.html, 2006.

[App06b] Apple Computer OpenGL shader builder/

profiler. Available at http://developer.apple.com/

graphicsimaging/opengl/, 2006.

[Bat68] BATCHER K. E.: Sorting networks and their appli-

cations. In Proceedings of the AFIPS Spring Joint Com-
puting Conference, vol. 32, pp. 307–314, April 1968.

[Bax06] BAXTER B.: The image debugger. Available at

http://www.billbaxter.com/projects/imdebug/, 2006.

[BDHK06] BUSTOS B., DEUSSEN O., HILLER S., KEIM D.:

A graphics hardware accelerated algorithm for nearest

neighbor search. In Proceedings of the 6th International
Conference on Computational Science, vol. 3994 of Lec-
ture Notes in Computer Science. Springer, pp. 196–199,

May 2006.

[Ben75] BENTLEY J. L.: Multidimensional binary search

trees used for associative searching. Commun. ACM
18(9):509–517, September 1975.

[BFGS03] BOLZ J., FARMER I., GRINSPUN E., SCHRÖDER

P.: Sparse matrix solvers on the GPU: Conjugate gradients

and multigrid. ACM Trans. Graph. (Proceedings of ACM
SIGGRAPH) 22(3). 917–924, July 2003.

[BFH04a] BUCK I., FATAHALIAN K., HANRAHAN P.:

GPUBench: Evaluating GPU performance for numerical

and scientific applications. In 2004 ACM Workshop on
General-Purpose Computing on Graphics Processors, p.

C–20, August 2004.

[BFH*04b] BUCK I., FOLEY T., HORN D., SUGERMAN J.,

FATAHALIAN K., HOUSTON M., HANRAHAN P.: Brook for

GPUs: Stream computing on graphics hardware. ACM
Trans. Graph. 23(3):777–786, August 2004.

[Bio06] Bionic FX.: Available at http://www.bionicfx.

com/, 2006.

[Ble90] BLELLOCH G.: Vector Models for Data-Parallel
Computing. MIT Press, 1990.

[Bly06] BLYTHE D.: The Direct3D 10 system. ACM Trans.
Graph. 25(3):724–734, August 2006.

[Boh98] BOHN C. A.: Kohonen feature mapping through

graphics hardware. In Proceedings of the Joint Conference
on Information Sciences, vol. II, pp. 64–67, 1998.

[Bon06] BOND A.: Havok FX: GPU-accelerated physics for

PC games. In Proceedings of Game Developers Confer-
ence 2006. Available at http://www.havok.com/content/

view/187/77/, March 2006.

[BP03] BLEIWEISS A., PREETHAM A.: Ashli—Advanced

shading language interface. ACM SIGGRAPH Course
Notes. Available at http://www.ati.com/developer/

SIGGRAPH03/AshliNotes.pdf, July 2003.

[BP04] BUCK I., PURCELL T.: A toolkit for computation

on GPUs. In GPU Gems, Fernando R., editor. Addison

Wesley, pp. 621–636, March 2004.

[BS05] BOUBEKEUR T., SCHLICK C.: Generic mesh refine-

ment on GPU. In Graphics Hardware 2005, pp. 99–104,

July 2005.

[BSAE04] BANDI N., SUN C., AGRAWAL D., EL ABBADI

A.: Hardware acceleration in commercial databases: A

case study of spatial operations. In Proceedings of the
Thirtieth International Conference on Very Large Data
Bases, pp. 1021–1032, September 2004.

[Buc05a] BUCK I.: GPGPU: General-purpose computation

on graphics hardware—high level languages for GPUs.

ACM SIGGRAPH Course Notes, August 2005.

[Buc05b] BUCK I.: Taking the plunge into GPU computing.

In GPU Gems 2, M. Pharr, editor. Addison Wesley, chapter

32, pp. 509–519, March 2005.

[BW03] BACIU G., WONG W. S. K.: Image-based tech-

niques in a hybrid collision detector. IEEE Trans. Vis.
Comput. Graph. 9(2): 254–271, April 2003.

[CCWG88] COHEN M. F., CHEN S. E., WALLACE J. R.,

GREENBERG D. P.: A progressive refinement approach to

fast radiosity image generation. In Comput. Graph. (Pro-
ceedings of SIGGRAPH), vol. 22, pp. 75–84, August 1988.

[CDR02] CLARENZ U., DROSKE M., RUMPF M.: Towards

fast non-rigid registration. In Inverse Problems, Image
Analysis and Medical Imaging, AMS Special Session In-
teraction of Inverse Problems and Image Analysis, vol.

313, AMS, pp. 67–84, 2002.

[CH05] COOMBE G., HARRIS M.: Global illumination us-

ing progressive refinement radiosity. In GPU Gems 2,

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 105

Pharr M., editor. Addison Wesley, chapter 39, pp. 635–

647, March 2005.

[CHCH06] CARR N. A., HOBEROCK J., CRANE K., HART

J. C.: Fast GPU ray tracing of dynamic meshes using ge-

ometry images. In Proceedings of the 2006 Conference on
Graphics Interface, pp. 203–209, June 2006.

[CHH02] CARR N. A., HALL J. D., HART J. C.: The ray en-

gine. In Graphics Hardware 2002, pp. 37–46, September

2002.

[CHH03] CARR N. A., HALL J. D., HART J. C.: GPU algo-

rithms for radiosity and subsurface scattering. In Graphics
Hardware, pp. 51–59, July 2003.

[CHL04] COOMBE G., HARRIS M. J., LASTRA A.: Radiosity

on graphics hardware. In Proceedings of the 2004 Confer-
ence on Graphics Interface, pp. 161–168, May 2004.

[Chr05] CHRISTEN M.: Ray Tracing on GPU. Master’s the-

sis, University of Applied Sciences Basel, 2005.

[CND03] CALLELE D., NEUFELD E., DE LATHOUWER

K.: Sorting on a GPU. Available at http://www.

cs.usask.ca/faculty/callele/gpusort/gpusort.html, 2003.

[DNB*05] DUCA N., NISKI K., BILODEAU J., BOLITHO M.,

CHEN Y., COHEN J.: A relational debugging engine for

the graphics pipeline. ACM Trans. Graph. 24(3):453–463,

August 2005.

[DPRS89] DOWD M., PERL Y., RUDOLPH L., SAKS M.: The

periodic balanced sorting network. J. ACM 36(4):738–

757, October 1989.

[DVS03] DACHSBACHER C., VOGELGSANG C., STAM-

MINGER M.: Sequential point trees. ACM Trans. Graph.
22(3):657–662, July 2003.

[EMP*97] EYLES J., MOLNAR S., POULTON J., GREER T.,

LASTRA A., ENGLAND N., WESTOVER L.: PixelFlow: The

realization. In 1997 SIGGRAPH / Eurographics Workshop
on Graphics Hardware, pp. 57–68, August 1997.

[Eng78] ENGLAND J. N.: A system for interactive model-

ing of physical curved surface objects. In Comput. Graph.
(Proceedings of SIGGRAPH 1978), vol. 12, pp. 336–340,

August 1978.

[Err05] ERRA U.: Toward real time fractal image compres-

sion using graphics hardware. In International Sympo-
sium on Visual Computing 2005, vol. 3804 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 723–728,

December 2005.

[Eve01] EVERITT C.: Interactive Order-Independent Trans-
parency. Tech. rep., NVIDIA Corporation. Available

at http://developer.nvidia.com/object/Interactive Order

Transparency.html, May 2001.

[EVG04] ERNST M., VOGELGSANG C., GREINER G.: Stack

implementation on programmable graphics hardware.

In Proceedings of Vision, Modeling, and Visualization,

pp. 255–262, November 2004.

[EWN05] EKMAN M., WARG F., NILSSON J.: An in-depth

look at computer performance growth. ACM SIGARCH
Comput. Archit. News 33(1):144–147, March 2005.

[FF88] FOURNIER A., FUSSELL D.: On the power of the

frame buffer. ACM Trans. Graph. 7(2):103–128, 1988.

[FJ98] FRIGO M., JOHNSON S. G.: FFTW: An adaptive soft-

ware architecture for the FFT. In Proceedings of the 1998
International Conference on Acoustics, Speech, and Sig-
nal Processing, vol. 3, pp. 1381–1384, May 1998.

[FM04] FUNG J., MANN S.: Computer vision signal pro-

cessing on graphics processing units. In Proceedings
of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 5, pp. 93–96, May

2004.

[FPE*89] FUCHS H., POULTON J., EYLES J., GREER T.,

GOLDFEATHER J., ELLSWORTH D., MOLNAR S., TURK

G., TEBBS B., ISRAEL L.: Pixel-Planes 5: A heteroge-

neous multiprocessor graphics system using processor-

enhanced memories. In Comput. Graph. (Proceedings of
SIGGRAPH), vol. 23, pp. 79–88, July 1989.

[FS05] FOLEY T., SUGERMAN J.: KD-Tree acceleration

structures for a GPU raytracer. In Graphics Hardware
2005, pp. 15–22, July 2005.

[FSH04] FATAHALIAN K., SUGERMAN J., HANRAHAN P.:

Understanding the efficiency of GPU algorithms for

matrix-matrix multiplication. In Graphics Hardware
2004, pp. 133–138, August 2004.

[FTM02] FUNG J., TANG F., MANN S.: Mediated reality

using computer graphics hardware for computer vision.

In 6th International Symposium on Wearable Computing,

pp. 83–89, October 2002.

[GDNV05] GRIESSER A., DE ROECK S., NEUBECK A., VAN

GOOL L.: GPU-based foreground-background segmenta-

tion using an extended colinearity criterion. In Proceed-
ings of Vision, Modeling, and Visualization, pp. 319–326,

November 2005.

[GGHM05] GALOPPO N., GOVINDARAJU N. K., HENSON

M., MANOCHA D.: LU-GPU: Efficient algorithms for solv-

ing dense linear systems on graphics hardware. In Pro-
ceedings of the ACM/IEEE Conference on Supercomput-
ing, p. 3, November 2005.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

106 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

[GGK06] GREß A., GUTHE M., KLEIN R.: GPU-based

collision detection for deformable parameterized sur-

faces. Comput. Graph. Forum. 25(3):497–506, September

2006.

[GGKM06] GOVINDARAJU N. K., GRAY J., KUMAR R.,

MANOCHA D.: GPUTeraSort: High performance graph-

ics coprocessor sorting for large database management.

In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pp. 325–336, June

2006.

[GH06] GREEN S., HARRIS M.: Game physics simula-

tion on NVIDIA GPUs. In Proceedings of Game De-
velopers Conference 2006. Available at http://www.

havok.com/content/view/187/77/, March 2006.

[GHF86] GOLDFEATHER J., HULTQUIST J. P. M., FUCHS

H.: Fast constructive-solid geometry display in the

Pixel-Powers graphics system. In Comput. Graph. (Pro-
ceedings of SIGGRAPH 86), vol. 20, pp. 107–116,

August 1986.

[GHLM05] GOVINDARAJU N. K., HENSON M., LIN M. C.,

MANOCHA D.: Interactive visibility ordering of geometric

primitives in complex environments. In Proceedings of the
2005 Symposium on Interactive 3D Graphics and Games,

pp. 49–56, April 2005.

[GKBP05] GAUTRON P. K., KŘIVÁNEK J., BOUATOUCH K.,

PATTANAIK S. N.: Radiance cache splatting: A GPU-

friendly global illumination algorithm. In Eurographics
Symposium on Rendering, pp. 55–64, June 2005.

[GKJ*05] GOVINDARAJU N. K., KNOTT D., JAIN N., KABUL

I., TAMSTORF R., GAYLE R., LIN M. C., MANOCHA D.:

Interactive collision detection between deformable mod-

els using chromatic decomposition. ACM Trans. Graph.
24(3):991–999, August 2005.

[GKMV03] GUHA S., KRISHNAN S., MUNAGALA K.,

VENKATASUBRAMANIAN S.: Application of the two-sided

depth test to CSG rendering. In 2003 ACM Symposium on
Interactive 3D Graphics, pp. 177–180, April 2003.

[GKV04] GEYS I., KONINCKX T. P., VAN GOOL L.: Fast

interpolated cameras by combining a GPU based plane

sweep with a max-flow regularisation algorithm. In Pro-
ceedings of the 2nd International Symposium on 3D Data
Processing, Visualization and Transmission, pp. 534–541,

September 2004.

[GLGM06] GOVINDARAJU N. K., LARSEN S., GRAY J.,

MANOCHA D.: A memory model for scientific algo-

rithms on graphics processors. In Proceedings of the
2006 ACM/IEEE Conference on Supercomputing. p. 89,

November 2006.

[GLM04] GOVINDARAJU N. K., LIN M. C., MANOCHA D.:

Fast and reliable collision culling using graphics hardware.

In Proceedings of ACM Virtual Reality and Software Tech-
nology, pp. 2–9, November 2004.

[GLM05] GOVINDARAJU N. K., LIN M. C., MANOCHA D.:

Quick-CULLIDE: Efficient inter- and intra-object colli-

sion culling using graphics hardware. In Proceedings of
IEEE Virtual Reality, pp. 59–66, March 2005.

[GLW*04] GOVINDARAJU N. K., LLOYD B., WANG W., LIN

M., MANOCHA D.: Fast computation of database opera-

tions using graphics processors. In Proceedings of the 2004
ACM SIGMOD International Conference on Management
of Data, pp. 215–226, June 2004.

[GM05] GOVINDARAJU N. K., MANOCHA D.: Efficient re-

lational database management using graphics processors.

In ACM SIGMOD Workshop on Data Management on New
Hardware, pp. 29–34, June 2005.

[GMTF89] GOLDFEATHER J., MOLNAR S., TURK G., FUCHS

H.: Near real-time CSG rendering using tree normaliza-

tion and geometric pruning. IEEE Comput. Graph. Appl.
9(3):20–28, May 1989.

[GPU06] GPUSort: A high performance GPU sorting li-

brary. Available at http://gamma.cs.unc.edu/GPUSORT/,

2006.

[Gra06] Graphic Remedy gDEBugger. Available at

http://www.gremedy.com/, 2006.

[Gre03] GREEN S.: NVIDIA cloth sample. Available at

http://download.developer.nvidia.com/developer/SDK/

Individual Samples/samples.html#glsl physics, 2003.

[Gre04] GREEN S.: NVIDIA particle system sample. Avail-

able at http://download.developer.nvidia.com/developer/

SDK/Individual Samples/samples.html#gpu particles,

2004.

[Gre05] GREEN S.: Image processing tricks in OpenGL.

In Proceedings of Game Developers Conference 2005.

Available at http://download.nvidia.com/developer/

presentations/2005/GDC/OpenGL Day/OpenGL Image

Processing Tricks.pdf, March 2005.

[GRH*05] GOVINDARAJU N. K., RAGHUVANSHI N., HEN-

SON M., TUFT D., MANOCHA D.: A Cache-Efficient Sorting
Algorithm for Database and Data Mining Computations
using Graphics Processors. Tech. Rep. TR05-016, Uni-

versity of North Carolina, 2005.

[Gri05] GRIESSER A.: Real-Time, GPU-based Foreground-
Background Segmentation. Tech. Rep. BIWI-TR-

269, Computer Vision Lab, ETH Zürich, August

2005.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 107

[GRLM03] GOVINDARAJU N. K., REDON S., LIN M. C.,

MANOCHA D., CULLIDE: Interactive collision detection

between complex models in large environments using

graphics hardware. In Graphics Hardware, pp. 25–32, July

2003.

[GRM05] GOVINDARAJU N. K., RAGHUVANSHI N.,

MANOCHA D.: Fast and approximate stream mining of

quantiles and frequencies using graphics processors. In

Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pp. 611–622, June

2005.

[GST07] GÖDDEKE D., STRZODKA R., TUREK S.: Per-

formance and accuracy of hardware-oriented native-,

emulated- and mixed-precision solvers in FEM simula-

tions. Int. J. Parallel, Emerg. Distrib. Syst. To appear, 2007.

[GT04] GALLO E., TSINGOS N.: Efficient 3D audio process-

ing with the GPU. In 2004 ACM Workshop on General-
Purpose Computing on Graphics Processors, p. C–42, Au-

gust 2005.

[GTGB84] GORAL C. M., TORRANCE K. E., GREENBERG

D. P., BATTAILE B.: Modelling the interaction of light be-

tween diffuse surfaces. In Comput. Graph. (Proceedings
of SIGGRAPH 1984), vol. 18, pp. 213–222, July 1984.

[GWL*03] GOODNIGHT N., WOOLLEY C., LEWIN G., LUE-

BKE D., HUMPHREYS G.: A multigrid solver for bound-

ary value problems using programmable graphics hard-

ware. In Graphics Hardware 2003, pp. 102–111, July

2003.

[GWWH03] GOODNIGHT N., WANG R., WOOLLEY C.,

HUMPHREYS G.: Interactive time-dependent tone mapping

using programmable graphics hardware. In Proceedings of
the 14th Eurographics Workshop on Rendering, pp. 26–37,

June 2003.

[GZ06] GREß A., ZACHMANN G.: GPU-ABiSort: Optimal

parallel sorting on stream architectures. In Proceedings
of the 20th IEEE International Parallel and Distributed
Processing Symposium, April 2006.

[Hac05] HACHISUKA T.: High-quality global illumination

rendering using rasterization. In GPU Gems 2, PHARR M.,

(Ed.). Addison Wesley, chapter 38, pp. 615–633, March

2005.

[Har02] HARRIS M. J.: Analysis of Error in a CML Diffu-
sion Operation. Tech. Rep. TR02-015, University of North

Carolina, 2002.

[Har04] HARRIS M.: Fast fluid dynamics simulation on the

GPU. In GPU Gems, R. Fernando, editor. Addison Wesley,

pp. 637–665, March 2004.

[Har05a] HARRIS M.: Mapping computational concepts to

GPUs. In GPU Gems 2, M. Pharr, editor. Addison Wesley,

chapter 31, pp. 493–508, March 2005.

[Har05b] HARRIS M.: NVIDIA fluid code sample. Avail-

able at http://download.developer.nvidia.com/developer/

SDK/Individual Samples/samples.html#gpgpu fluid,

2005.

[HB05] HARRIS M., BUCK I.: GPU flow control idioms. In

GPU Gems 2, M. Pharr, editor. Addison Wesley, chapter

34, pp. 547–555, , March 2005.

[HBSL03] HARRIS M. J., BAXTER III W., SCHEUERMANN

T., LASTRA A.: Simulation of cloud dynamics on graphics

hardware. In Graphics Hardware 2003, pp. 92–101, July

2003.

[HCK*99] HOFF III K., CULVER T., KEYSER J., LIN

M., MANOCHA D.: Fast computation of generalized

Voronoi diagrams using graphics hardware. In Proceed-
ings of SIGGRAPH 1999, Computer Graphics Proceed-
ings, Annual Conference Series, pp. 277–286, August

1999.

[HCSL02] HARRIS M. J., COOMBE G., SCHEUERMANN T.,

LASTRA A.: Physically-based visual simulation on graph-

ics hardware. In Graphics Hardware 2002, pp. 109–118,

September 2002.

[HE99a] HOPF M., ERTL T.: Accelerating 3D convolution

using graphics hardware. In IEEE Visual. 1999, pp. 471–

474, October 1999.

[HE99b] HOPF M., ERTL T.: Hardware based wavelet trans-

formations. In Proceedings of Vision, Modeling, and Visu-
alization, pp. 317–328, November 1999.

[HHN*02] HUMPHREYS G., HOUSTON M., NG R., FRANK

R., AHERN S., KIRCHNER P., KLOSOWSKI J.: Chromium: A

stream-processing framework for interactive rendering on

clusters. ACM Trans. Graph. 21(3):693–702, July 2002.

[HJ03] HARRIS M. J., JAMES G.: Simulation and animation

using hardware accelerated procedural textures. In Pro-
ceedings of Game Developers Conference 2003, March

2003.

[HK93] HANRAHAN P., KRUEGER W.: Reflection from lay-

ered surfaces due to subsurface scattering. In Proceedings
of SIGGRAPH 1993, Computer Graphics Proceedings,
Annual Conference Series, pp. 165–174, August 1993.

[HLN06] HAGEN T. R., LIE K.-A., NATVIG J. R.: Solving

the Euler equations on graphics processing units. In Pro-
ceedings of the 6th International Conference on Compu-
tational Science, vol. 3994 of Lecture Notes in Computer
Science. Springer, pp. 220–227, May 2006.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

108 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

[HMG03] HILLESLAND K. E., MOLINOV S., GRZESZCZUK

R.: Nonlinear optimization framework for image-based

modeling on programmable graphics hardware. ACM
Trans. Graph. 22(3):925–934, July 2003.

[Hor05] HORN D.: Stream reduction operations for GPGPU

applications. In GPU Gems 2, M. Pharr, editor. Addison

Wesley, chapter 36, pp. 573–589, March 2005.

[Hor06] HORN D.: libgpufft. Available at

http://sourceforge. net/projects/gpufft/, 2006.

[HS86] HILLIS W. D., STEELE JR. G. L.: Data parallel algo-

rithms. Comm. ACM 29(12):1170–1183, December 1986.

[HSC*05] HENSLEY J., SCHEUERMANN T., COOMBE G.,

SINGH M., LASTRA A.: Fast summed-area table generation

and its applications. Comput. Graph. Forum 24(3):547–

555, September 2005.

[HTG03] HEIDELBERGER B., TESCHNER M., GROSS M.:

Real-time volumetric intersections of deforming objects.

In Proceedings of Vision, Modeling, and Visualization,

pp. 461–468, November 2003.

[HTG04] HEIDELBERGER B., TESCHNER M., GROSS M.:

Detection of collisions and self-collisions using image-

space techniques. J. of WSCG 12(3):145–152, February

2004.

[HWSE99] HEIDRICH W., WESTERMANN R., SEIDEL H.-P.,

ERTL T.: Applications of pixel textures in visualization

and realistic image synthesis. In 1999 ACM Symposium
on Interactive 3D Graphics, pp. 127–134, April 1999.

[HZLM01] HOFF K. E. III, ZAFERAKIS A., LIN M. C.,

MANOCHA D.: Fast and simple 2D geometric proximity

queries using graphics hardware. In 2001 ACM Sympo-
sium on Interactive 3D Graphics, pp. 145–148, March

2001.

[Ins03] The Insight Toolkit. Available at http://www.itk.

org/, 2003.

[Int06] Intel processors product list. Available at

http://www.intel.com/products/processor, 2006.

[Jah06] JAHSHAKA: Jahshaka image processing toolkit.

Available at http://www.jahshaka.org/, 2006.

[Jam01a] JAMES G.: NVIDIA game of life sample.

Available at http://download.developer.nvidia.com/

developer/SDK/Individual Samples/samples.html#GL

GameOfLife, 2001.

[Jam01b] JAMES G.: NVIDIA water surface simulation

sample. Available at http://download.developer. nvidia.

com/developer/SDK/Individual Samples/samples.html#

WaterInteraction, 2001.

[Jam01c] JAMES G.: Operations for hardware-accelerated

procedural texture animation. In Game Programming
Gems 2, M. Deloura, editor. Charles River Media, pp. 497–

509, 2001.

[J
↪
ed04] J

↪
EDRZEJEWSKI M.: Computation of Room Acous-

tics on Programmable Video Hardware. Master’s thesis,

Polish-Japanese Institute of Information Technology, War-

saw, Poland, 2004.

[JEH01] JOBARD B., ERLEBACHER G., HUSSAINI M. Y.:

Lagrangian-Eulerian advection for unsteady flow visual-

ization. In IEEE Visual., pp. 53–60, October 2001.

[Jen96] JENSEN H. W.: Global illumination using photon

maps. In Rendering Techniques ’96 (Proceedings of the
6th Eurographics Rendering Workshop), pp. 21–30, June

1996.

[JS05] JIANG C., SNIR M.: Automatic tuning matrix multi-

plication performance on graphics hardware. In Proceed-
ings of the Fourteenth International Conference on Par-
allel Architecture and Compilation Techniques (PACT),
pp. 185–196, September 2005.

[JVRHK04] JANSEN T., VON RYMON-LIPINSKI B.,

HANSSEN N., KEEVE E.: Fourier volume rendering on the

GPU using a Split-Stream-FFT. In Proceedings of Vision,
Modeling, and Visualization, pp. 395–403, November

2004.

[JWLL05] JI J., WU E., LI S., LIU X.: Dynamic LOD on

GPU. In Proceedings of Computer Graphics International
2005, pp. 108–114, June 2005.

[KBR04] KESSENICH J., BALDWIN D., ROST R.: The

OpenGL Shading Language version 1.10.59. Avail-

able at http://www.opengl.org/documentation/oglsl.html,

April 2004.

[KBW06] KRÜGER J., BÜRGER K., WESTERMANN R.: In-

teractive screen-space accurate photon tracing on GPUs.

In Eurographics Symposium on Rendering, pp. 319–329,

June 2006.

[KC05] KOLB A., CUNTZ N.: Dynamic particle coupling

for GPU-based fluid simulation. In Proceedings of the
18th Symposium on Simulation Technique, pp. 722–727,

September 2005.

[KF05] KILGARIFF E., FERNANDO R.: The GeForce 6

series GPU architecture. In GPU Gems 2, M. Pharr,

editor. Addison Wesley, chapter 30, pp. 471–491,

March 2005.

[KI99] KEDEM G., ISHIHARA Y.: Brute force attack on

UNIX passwords with SIMD computer. In Proceedings
of the 8th USENIX Security Symposium, pp. 93–98,

August 1999.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 109

[KK04] KELLY F., KOKARAM A.: Graphics hardware for

gradient based motion estimation. In Embedded Proces-
sors for Multimedia and Communications, vol. 5309 of
Proceedings of the SPIE, pp. 92–103, April 2004.

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P.,

WESTERMANN R.: A particle system for interactive visu-

alization of 3D flows. IEEE Trans. on Visual. Comput.
Graph. 11(6):744–756, November/December 2005.

[KKW05] KONDRATIEVA P., KRÜGER J., WESTERMANN R.:

The application of GPU particle tracing to diffusion tensor

field visualization. In IEEE Visual., pp. 73–78, October

2005.

[KL03] KIM T., LIN M. C.: Visual simulation of ice crystal

growth. In 2003 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pp. 86–97, August 2003.

[KL04] KARLSSON F., LJUNGSTEDT C. J.: Ray tracing
fully implemented on programmable graphics hardware.

Master’s thesis, Chalmers University of Technology,

2004.

[KLO06] KASS M., LEFOHN A., OWENS J.: Interactive
Depth of Field. Tech. Rep. #06-01, Pixar. Available at

http://graphics.pixar.com/DepthOfField/, 2006.

[KLR04] KOLB A., LATTA L., REZK-SALAMA C.:

Hardware-based simulation and collision detection for

large particle systems. In Graphics Hardware, pp. 123–

132, August 2004.

[KP03] KNOTT D., PAI D. K.: CInDeR: Collision and in-

terference detection in real-time using graphics hardware.

In Proceedings of the 2003 Conference on Graphics Inter-
face, pp. 73–80, June 2003.

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.: Uber-

Flow: A GPU-based particle engine. In Graphics Hard-
ware 2004, pp. 115–122, August 2004.

[KSW05] KRÜGER J., SCHNEIDER J., WESTERMANN R.:

DuoDecim—a structure for point scan compression

and rendering. In Proceedings of the Symposium
on Point-Based Graphics 2005, pp. 99–108, June

2005.

[KW03] KRÜGER J., WESTERMANN R.: Linear algebra op-

erators for GPU implementation of numerical algorithms.

ACM Trans. Graph. 22(3):908–916, July 2003.

[KW05a] KIPFER P., WESTERMANN R.: Improved GPU

sorting. In GPU Gems 2, M. Pharr, editor. Addison Wesley,

chapter 46, pp. 733–746, March 2005.

[KW05b] KRÜGER J., WESTERMANN R.: GPU simula-

tion and rendering of volumetric effects for computer

games and virtual environments. Comput. Graph. Forum
24(3):685–693, September 2005.

[LC04] LARSEN B. D., CHRISTENSEN N. J.: Simulating pho-

ton mapping for real-time applications. In Eurographics
Symposium on Rendering, pp. 123–132, June 2004.

[LDN04] LEFEBVRE S., DARBON J., NEYRET F.: Unified
Texture Management for Arbitrary Meshes. Tech. Rep.

5210, INRIA, May 2004.

[Lef03] LEFOHN A. E.: A Streaming Narrow-Band Al-
gorithm: Interactive Computation and Visualization of
Level-Set Surfaces. Master’s thesis, University of Utah,

December 2003.

[LFW06] LUCAS P., FRITZ N., WILHELM R.: The CGiS

compiler. In Proceedings of the 15th International Con-
ference on Compiler Construction, vol. 3923 of Lecture
Notes in Computer Science. Springer, pp. 105–108, March

2006.

[LFWK05] LI W., FAN Z., WEI X., KAUFMAN A.: GPU-

based flow simulation with complex boundaries. In GPU
Gems 2, M. Pharr, editor. Addison Wesley, chapter 47, pp.

747–764, March 2005.

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: Octree

textures on the GPU. In GPU Gems 2, M. Pharr, ed-

itor. Addison Wesley, chapter 37, pp. 595–613, March

2005.

[LHPL87] LEVINTHAL A., HANRAHAN P., PAQUETTE M.,

LAWSON J.: Parallel computers for graphics applications.

ACM SIGOPS Oper. Syst. Rev. 21(4):193–198, October

1987.

[LKHW03] LEFOHN A. E., KNISS J. M., HANSEN C. D.,

WHITAKER R. T.: Interactive deformation and visualiza-

tion of level set surfaces using graphics hardware. In IEEE
Visual., pp. 75–82, October 2003.

[LKHW04] LEFOHN A. E., KNISS J. M., HANSEN C. D.,

WHITAKER R. T.: A streaming narrow-band algorithm:

Interactive computation and visualization of levelset sur-

faces. IEEE Trans. Visual. Comput. Graph. 10(4):422–

433, July/August 2004.

[LKM01] LINDHOLM E., KILGARD M. J., MORETON H.:

A user-programmable vertex engine. In Proceedings of
ACM SIGGRAPH 2001, Computer Graphics Proceed-
ings, Annual Conference Series, pp. 149–158, August

2001.

[LKO05] LEFOHN A., KNISS J., OWENS J.: Implementing

efficient parallel data structures on GPUs. In GPU Gems
2, M. Pharr, editor. Addison Wesley, chapter 33, pp. 521–

545, March 2005.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

110 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

[LKS*06] LEFOHN A. E., KNISS J., STRZODKA R., SEN-

GUPTA S., OWENS J. D.: Glift: An abstraction for generic,

efficient GPU data structures. ACM Trans. on Graphics
26(1):60–99, January 2006.

[LLW04] LIU Y., LIU X., WU E.: Real-time 3D fluid simu-

lation on GPU with complex obstacles. In Proceedings of
Pacific Graphics 2004, pp. 247–256, October 2004.

[LM01] LARSEN E. S., MCALLISTER D.: Fast matrix mul-

tiplies using graphics hardware. In Proceedings of the
2001 ACM/IEEE Conference on Supercomputing, p. 55,

November 2001.

[LP84] LEVINTHAL A., PORTER T.: Chap – a SIMD graph-

ics processor. In Computer Graphics (Proceedings of SIG-
GRAPH 84), vol. 18, pp. 77–82, July 1984.

[LRDG90] LENGYEL J., REICHERT M., DONALD B. R.,

GREENBERG D. P.: Real-time robot motion planning us-

ing rasterizing computer graphics hardware. In Computer
Graphics (Proceedings of ACM SIGGRAPH 1990), vol.

24, pp. 327–335, August 1990.

[LSK*05] LEFOHN A., SENGUPTA S., KNISS J., STRZODKA

R., OWENS J. D.: Dynamic adaptive shadow maps on

graphics hardware. In ACM SIGGRAPH 2005 Conference
Abstracts and Applications, August 2005.

[LW02] LEFOHN A. E., WHITAKER R. T.: A GPU-Based,
Three-Dimensional Level Set Solver with Curvature Flow.

Tech. Rep. UUCS-02-017, University of Utah, 2002.

[LWK03] LI W., WEI X., KAUFMAN A.: Implementing lat-

tice Boltzmann computation on graphics hardware. In The
Visual Computer, vol. 19, pp. 444–456, December 2003.

[MA03] MORELAND K., ANGEL E.: The FFT on a

GPU. In Graphics Hardware, pp. 112–119. Available at

http://www.cs.unm.edu/∼kmorel/documents/fftgpu/, July

2003.

[MAH02] MITCHELL J. L., ANSARI M. Y., HART E.: Ad-

vanced image processing with DirectX� 9 pixel shaders.

In ShaderX2: Shader Programming Tips and Tricks with
DirectX 9.0,W. F. Engel, editor. Wordware Publishing, pp.

457–464, 2002.

[Man03] MANOCHA D.: Interactive geometric and scientific

computations using graphics hardware. ACM SIGGRAPH
Course Notes, July 2003.

[MDP*04] MCCOOL M., DU TOIT S., POPA T., CHAN B.,

MOULE K.: Shader algebra. ACM Trans. on Graphics
23(3):787–795, August 2004.

[MGAK03] MARK W. R., GLANVILLE R. S., AKELEY K.,

KILGARD M. J.: Cg: A system for programming graphics

hardware in a C-like language. ACM Trans. on Graphics
22(3):896–907, July 2003.

[MIA*04] MCCORMICK P. S., INMAN J., AHRENS J. P.,

HANSEN C., ROTH G.: Scout: A hardware-accelerated sys-

tem for quantitatively driven visualization and analysis. In

IEEE Visual., pp. 171–178, October 2004.

[Mic05a] Microsoft high-level shading language. Available

at http://msdn.microsoft.com/library/default.asp?url=/

library/en-us/directx9 c/directx/graphics/reference/

hlslreference/hlslreference.asp, 2005.

[Mic05b] Microsoft shader debugger. Available at http://

msdn.microsoft.com/library/default.asp?url=/library/en-

us/directx9 c/directx/graphics/Tools/ShaderDebugger.asp,

2005.

[MM05] MONTRYM J., MORETON H.: The GeForce 6800.

IEEE Micro 25(2):41–51, March/April 2005.

[Mor02] MORAVÁNSZKY A.: Dense matrix algebra on the

GPU. In ShaderX2: Shader Programming Tips and Tricks
with DirectX 9.0,W. F. Engel, editor. Wordware Publish-

ing, pp. 352–380, 2002.

[NHP04] NYLAND L., HARRIS M., PRINS J.: N-body sim-

ulations on a GPU. In 2004 ACM Workshop on General-
Purpose Computing on Graphics Processors, p. C–37, Au-

gust 2004.

[Nij03] NIJASURE M.: Interactive Global Illumination on
the Graphics Processing Unit. Master’s thesis, University

of Central Florida, 2003.

[OL98] OLANO M., LASTRA A.: A shading language on

graphics hardware: The PixelFlow shading system. In Pro-
ceedings of SIGGRAPH 1998, Computer Graphics Pro-

ceedings, Annual Conference Series, pp. 159–168, July

1998.

[OLG*05] OWENS J. D., LUEBKE D., GOVINDARAJU N.,

HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL T.: A

survey of general-purpose computation on graphics hard-

ware. In Eurographics 2005, State of the Art Reports, pp.

21–51, September 2005.

[Ope03] OpenGL Architecture Review Board. ARB

fragment program. Revision 26. Available at http://

oss.sgi.com/projects/ogl-sample/registry/ARB/fragment

program.txt, 22 August 2003.

[Ope04] OpenGL Architecture Review Board. ARB ver-

tex program. Revision 45. Available at http://oss.sgi.com/

projects/ogl-sample/registry/ARB/vertex program.txt, 27

September 2004.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 111

[Ope06] OpenVIDIA. GPU-accelerated computer vision

library. Available at http://openvidia.sourceforge.net/,

2006.

[OSH05] OWENS J. D., SENGUPTA S., HORN D.: Assessment
of Graphic Processing Units (GPUs) for Department
of Defense (DoD) Digital Signal Processing (DSP)
Applications. Tech. Rep. ECE-CE-2005-3, De-

partment of Electrical and Computer Engineer-

ing, University of California, Davis. Available at

http://www.ece.ucdavis.edu/cerl/techreports/2005-3/,

October 2005.

[OSW*03] OpenGL Architecture Review Board,

SHREINER D., WOO M., NEIDER J., DAVIS T.: OpenGL
Programming Guide: The Official Guide to Learning
OpenGL. Addison-Wesley, 2003.

[Owe05] OWENS J.: Streaming architectures and technol-

ogy trends. In GPU Gems 2, M. Pharr, editor. Addison

Wesley, chapter 29, pp. 457–470, March 2005.

[PAB*05] PHAM D., ASANO S., BOLLIGER M., DAY M.

N., HOFSTEE H. P., JOHNS C., KAHLE J., KAMEYAMA A.,

KEATY J., MASUBUCHI Y., RILEY M., SHIPPY D., STASIAK

D., WANG M., WARNOCK J., WEITZEL S., WENDEL D.,

YAMAZAKI T., YAZAWA K.: The design and implementa-

tion of a first-generation CELL processor. In Proceedings
of the International Solid-State Circuits Conference, pp.

184–186, February 2005.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRA-

HAN P.: Ray tracing on programmable graphics hardware.

ACM Trans. Graph. 21(3):703–712, July 2002.

[PDC*03] PURCELL T. J., DONNER C., CAMMARANO M.,

JENSEN H. W., HANRAHAN P.: Photon mapping on pro-

grammable graphics hardware. In Graphics Hardware, pp.

41–50, July 2003.

[PH89] POTMESIL M., HOFFERT E. M.: The Pixel Machine:

A parallel image computer. In Comput. Graph. (Pro-
ceedings of SIGGRAPH 1989), vol. 23, pp. 69–78, July

1989.

[POAU00] PEERCY M. S., OLANO M., AIREY J., UNGAR P.

J.: Interactive multi-pass programmable shading. In Pro-
ceedings of ACM SIGGRAPH 2000, Computer Graphics
Proceedings, Annual Conference Series, pp. 425–432, July

2000.

[PS03] PURCELL T. J., SEN P.: Shadesmith frag-

ment program debugger. Available at http://

graphics.stanford.edu/projects/shadesmith/, 2003.

[Pur04] PURCELL T. J.: Ray Tracing on a Stream processor.
PhD thesis, Stanford University, March 2004.

[RR86] ROSSIGNAC J. R., REQUICHA A. A. G.: Depth-

buffering display techniques for constructive solid geom-

etry. IEEE Comput. Graph. Appl. 6(9):29–39, September

1986.

[RS01a] RUMPF M., STRZODKA R.: Level set segmentation

in graphics hardware. In Proceedings of the IEEE Inter-
national Conference on Image Processing (ICIP ’01), vol.

3, pp. 1103–1106, October 2001.

[RS01b] RUMPF M., STRZODKA R.: Nonlinear diffusion in

graphics hardware. In Data Visualization 2001 (Proceed-
ings of the EG/IEEE VisSym), pp. 75–84, May 2001.

[RS01c] RUMPF M., STRZODKA R.: Using graphics cards

for quantized FEM computations. In Proceedings of VIIP
2001, pp. 193–202, 2001.

[RS05] RUMPF M., STRZODKA R.: Graphics processor

units: New prospects for parallel computing. In Numer-
ical Solution of Partial Differential Equations on Parallel
Computers, vol. 51 of Lecture Notes in Computational Sci-
ence and Engineering. Springer-Verlag, pp. 89–134, 2005.

[RSHGE99] REZK-SALAMA C., HASTREITER P., GREINER

G., ERTL T.: Non-linear registration of pre- and intraoper-

ative volume data based on piecewise linear transforma-

tions. In Proceedings of Vision, Modeling, and Visualiza-
tion, pp. 365–372, November 1999.

[RSSF02] REINHARD E., STARK M., SHIRLEY P., FERW-

ERDA J.: Photographic tone reproduction for digital im-

ages. ACM Trans. Graph. 21(3):267–276, July 2002.

[RTB*92] RHOADES J., TURK G., BELL A., STATE A., NEU-

MANN U., VARSHNEY A.: Real-time procedural textures.

In 1992 Symposium on Interactive 3D Graphics, vol. 25,

pp. 95–100, March 1992.

[SAA03] SUN C., AGRAWAL D., ABBADI A. E.: Hard-

ware acceleration for spatial selections and joins. In Pro-
ceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, pp. 455–466, June

2003.

[SC05] SMIRNOV A., CHIUEH T.: An Implementation of a
FIR Filter on a GPU. Tech. rep., Experimental Com-

puter Systems Lab, Stony Brook University. Available at

http://www.ecsl.cs.sunysb.edu/fir/, 2005.

[SDR03] STRZODKA R., DROSKE M., RUMPF M.: Fast im-

age registration in DX9 graphics hardware. J. Med. Inform.
Techn. 6:43–49, November 2003.

[SDR04] STRZODKA R., DROSKE M., RUMPF M.: Image

registration by a regularized gradient flow: A streaming

implementation in DX9 graphics hardware. Computing
73(4):373–389, November 2004.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

112 J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware

[SG04] STRZODKA R., GARBE C.: Real-time motion es-

timation and visualization on graphics cards. In IEEE
Visual., pp. 545–552, October 2004.

[SG06] STRZODKA R., GÖDDEKE D.: Mixed precision

methods for convergent iterative schemes. In Proceedings
of the Workshop on Edge Computing Using New Commod-
ity Architectures, pp. D-59–60, May 2006.

[SHN03] SHERBONDY A., HOUSTON M., NAPEL S.: Fast

volume segmentation with simultaneous visualization us-

ing programmable graphics hardware. In IEEE Visual
2003, pp. 171–176, October 2003.

[SALP05] SZIRMAY-KALOS L., ASZÓDI B., LAZÁNYI I.,

PREMECZ M.: Approximate ray-tracing on the GPU with

distance imposters. Comput. Graph. Forum 24(3): 685–

704, September 2005.

[SKP07] SHAH M. A., KONTTINEN J., PATTANAIK S. N.:

Caustics mapping: An image-space technique for real-time

caustics. IEEE Trans. Visual. Comput. Graph. 13(2):272–

280, March/April 2007.

[SL05] SUMANAWEERA T., LIU D.: Medical image recon-

struction with the FFT. In GPU Gems 2, M. Pharr, editor.

Addison Wesley, chapter 48, pp. 765–784, March 2005.

[SLJ98] STEWART N., LEACH G., JOHN S.: An im-

proved Z-buffer CSG rendering algorithm. In 1998 SIG-
GRAPH/Eurographics Workshop on Graphics Hardware,

pp. 25–30, August 1998.

[SLO06] SENGUPTA S., LEFOHN A. E., OWENS J. D.:

A work-efficient step-efficient prefix sum algorithm. In

Proceedings of the Workshop on Edge Computing Us-
ing New Commodity Architectures, pp. D-26–27, May

2006.

[SOM04] SUD A., OTADUY M. A., MANOCHA D.: DiFi:

Fast 3D distance field computation using graphics

hardware. Comput. Graph. Forum 23(3):557–566,

September 2004.

[SPG03] SIGG C., PEIKERT R., GROSS M.: Signed distance

transform using graphics hardware. In IEEE Visual., pp.

83–90, October 2003.

[ST04] STRZODKA R., TELEA A.: Generalized distance

transforms and skeletons in graphics hardware. In Pro-
ceedings of EG/IEEE TCVG Symposium on Visualization
(VisSym 2004), pp. 221–230, 2004.

[STM04] SANDER P., TATARCHUK N., MITCHELL J. L.:

Explicit Early-Z Culling for Efficient Fluid Flow Sim-
ulation and Rendering. Tech. rep., ATI Research.

Available at http://www.ati.com/developer/techreports/

ATITechReport EarlyZFlow.pdf, August 2004.

[Str02] STRZODKA R.: Virtual 16 bit precise operations on

RGBA8 textures. In Proceedings of Vision, Modeling, and
Visualization, pp. 171–178, November 2002.

[Str04] STRZODKA R.: Hardware Efficient PDE Solvers in
Quantized Image Processing. PhD thesis, University of

Duisburg-Essen, 2004.

[SW04] SCHIWIETZ T., WESTERMANN R.: GPU-PIV. In

Proceedings of Vision, Modeling, and Visualization, pp.

151–158, November 2004.

[THO06] THOMPSON C. J., HAHN S., OSKIN M.: Using

modern graphics architectures for general-purpose com-

puting: A framework and analysis. In Proceedings of the
35th Annual ACM/IEEE International Symposium on Mi-
croarchitecture, pp. 306–317, November 2006.

[TPO06] TARDITI D., PURI S., OGLESBY J.: Accelerator:

Using data-parallelism to program GPUs for general-

purpose uses. In Proceedings of the Twelfth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 325–335,

October 2006.

[Tre06] TREBILCO D.: GLIntercept. Available at http://

glintercept.nutty.org/, 2006.

[TS00] TRENDALL C., STEWART A. J.: General calculations

using graphics hardware, with applications to interactive

caustics. In Rendering Techniques 2000: Proceedings of
the 11th Eurographics Rendering Workshop, pp. 287–298,

June 2000.

[TS05] THRANE N., SIMONSEN L. O.: A Comparison of Ac-
celeration structures for GPU Assisted Ray Tracing. Mas-

ter’s thesis, University of Aarhus, August 2005.

[Ups90] UPSTILL S.: The RenderMan Companion: A
Programmer’s Guide to Realistic Computer Graphics.

Addison-Wesley, 1990.

[Ven03] VENKATASUBRAMANIAN S.: The graphics card as

a stream computer. In SIGMOD-DIMACS Workshop on
Management and Processing of Data Streams, 2003.

[Ver67] VERLET L.: Computer “experiments” on classical

fluids. I. Thermodynamical properties of Lennard-Jones

molecules. Phys. Rev., 159, 98–103, July 1967.

[VKG03] VIOLA I., KANITSAR A., GRÖLLER M. E.:

Hardware-based nonlinear filtering and segmentation

using high-level shading languages. In IEEE Visual.,
pp. 309–316, October 2003.

[VSC01] VASSILEV T., SPANLANG B., CHRYSANTHOU Y.:

Fast cloth animation on walking avatars. Computer Graph-
ics Forum 20(3):260–267, September 2001.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 113

[WD06] WYMAN C., DAVIS S.: Interactive image-space

techniques for approximating caustics. In SI3D ’06:
Proceedings of the 2006 Symposium on Interac-
tive 3D Graphics and Games, pp. 153–160, March

2006.

[WHE01] WEISKOPF D., HOPF M., ERTL T.: Hardware-

accelerated visualization of time-varying 2D and 3D

vector fields by texture advection via programmable

per-pixel operations. In Proceedings of Vision, Mod-
eling, and Visualization, pp. 439–446, November

2001.

[Whi80] WHITTED T.: An improved illumination model for

shaded display. Communications of the ACM 23(6):343–

349, June 1980.

[WK04] WOETZEL J., KOCH R.: Multi-camera realtime

depth estimation with discontinuity handling on PC graph-

ics hardware. In Proceedings of the 17th International
Conference on Pattern Recognition, pp. 741–744, August

2004.

[Wlo04] WLOKA M.: Interactive geometric and scientific

computations using graphics hardware—implementing a

GPU-efficient FFT. ACM SIGGRAPH Course Notes. Pre-

sented by John Spitzer, July 2003.

[WSE04] WEISKOPF D., SCHAFHITZEL T., ERTL T.: GPU-

based nonlinear ray tracing. Comput. Graph. Forum
23(3):625–633, September 2004.

[WWHL04] WANG J., WONG T.-T., HENG P.-A., LEUNG

C.-S.: Discrete wavelet transform on GPU. Available at

http://www.cse.cuhk.edu.hk/∼ttwong/software/dwtgpu/

dwtgpu.html, August 2004.

[XM05] XU F., MUELLER K.: Accelerating popular to-

mographic reconstruction algorithms on commodity PC

graphics hardware. IEEE Trans. on Nuclear Science
52(3):654–663, June 2005.

[YLPM05] YOON S.-E., LINDSTROM P., PASCUCCI V.,

MANOCHA D.: Cache-oblivious mesh layouts. ACM Trans.
Graph. 24(3):886–893, August 2005.

[YP05] YANG R., POLLEFEYS M.: A versatile stereo imple-

mentation on commodity graphics hardware. Real-Time
Imaging 11(1):7–18, February 2005.

[YW03] YANG R., WELCH G.: Fast image segmentation and

smoothing using commodity graphics hardware. J. Graph.
Tools. 7(4):91–100, 2003.

[Zel05] ZELLER C.: Cloth simulation on the GPU. In ACM
SIGGRAPH 2005 Conference Abstracts and Applications,

August 2005.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

