
INV ITED
P A P E R

GPU Computing
Graphics Processing UnitsVpowerful, programmable, and highly parallelVare

increasingly targeting general-purpose computing applications.

By John D. Owens, Mike Houston, David Luebke, Simon Green,

John E. Stone, and James C. Phillips

ABSTRACT | The graphics processing unit (GPU) has become an

integral part of today’s mainstream computing systems. Over

the past six years, there has been a marked increase in the

performance and capabilities of GPUs. The modern GPU is not

only a powerful graphics engine but also a highly parallel

programmable processor featuring peak arithmetic and mem-

ory bandwidth that substantially outpaces its CPU counterpart.

The GPU’s rapid increase in both programmability and

capability has spawned a research community that has

successfully mapped a broad range of computationally de-

manding, complex problems to the GPU. This effort in general-

purpose computing on the GPU, also known as GPU computing,

has positioned the GPU as a compelling alternative to

traditional microprocessors in high-performance computer

systems of the future. We describe the background, hardware,

and programming model for GPU computing, summarize the

state of the art in tools and techniques, and present four GPU

computing successes in game physics and computational

biophysics that deliver order-of-magnitude performance gains

over optimized CPU applications.

KEYWORDS | General-purpose computing on the graphics

processing unit (GPGPU); GPU computing; parallel computing

I . INTRODUCTION

Parallelism is the future of computing. Future micropro-
cessor development efforts will continue to concentrate on

adding cores rather than increasing single-thread perfor-

mance. One example of this trend, the heterogeneous

nine-core Cell broadband engine, is the main processor in

the Sony Playstation 3 and has also attracted substantial

interest from the scientific computing community. Simi-

larly, the highly parallel graphics processing unit (GPU) is

rapidly gaining maturity as a powerful engine for
computationally demanding applications. The GPU’s

performance and potential offer a great deal of promise

for future computing systems, yet the architecture and

programming model of the GPU are markedly different

than most other commodity single-chip processors.

The GPU is designed for a particular class of

applications with the following characteristics. Over the

past few years, a growing community has identified other
applications with similar characteristics and successfully

mapped these applications onto the GPU.

• Computational requirements are large. Real-time

rendering requires billions of pixels per second,

and each pixel requires hundreds or more opera-

tions. GPUs must deliver an enormous amount of

compute performance to satisfy the demand of

complex real-time applications.
• Parallelism is substantial. Fortunately, the graphics

pipeline is well suited for parallelism. Operations

on vertices and fragments are well matched to fine-

grained closely coupled programmable parallel

compute units, which in turn are applicable to

many other computational domains.

• Throughput is more important than latency. GPU

implementations of the graphics pipeline prioritize
throughput over latency. The human visual system

operates on millisecond time scales, while opera-

tions within a modern processor take nanoseconds.

This six-order-of-magnitude gap means that the

latency of any individual operation is unimportant.

As a consequence, the graphics pipeline is quite

Manuscript received May 11, 2007; revised October 21, 2007 and January 2008. The

work of J. Owens was supported by the U.S. Department of Energy under Early

Career Principal Investigator Award DE-FG02-04ER25609, the National Science

Foundation under Award 0541448, the SciDAC Institute for Ultrascale Visualization,

and Los Alamos National Laboratory. The work of M. Houston was supported by

the Intel Foundation Ph.D. Fellowship Program, the U.S. Department of Energy,

AMD, and ATI.

J. D. Owens is with the Department of Electrical and Computer Engineering, University

of California, Davis, CA 95616 USA (e-mail: jowens@ece.ucdavis.edu).

M. Houston is with the Department of Computer Science, Stanford University,

Stanford, CA 94305 USA (e-mail: Michael.Houston@amd.com).

D. Luebke and S. Green are with NVIDIA Corporation, Santa Clara, CA 95050 USA

(e-mail: dave@luebke.us; sgreen@nvidia.com).

J. E. Stone and J. C. Phillips are with the Beckman Institute for Advanced Science and

Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA

(e-mail: johns@ks.uiuc.edu; jim@ks.uiuc.edu).

Digital Object Identifier: 10.1109/JPROC.2008.917757

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 8790018-9219/$25.00 �2008 IEEE

deep, perhaps hundreds to thousands of cycles,
with thousands of primitives in flight at any given

time. The pipeline is also feed-forward, removing

the penalty of control hazards, further allowing

optimal throughput of primitives through the

pipeline. This emphasis on throughput is charac-

teristic of applications in other areas as well.

Six years ago, the GPU was a fixed-function processor,

built around the graphics pipeline, that excelled at three-
dimensional (3-D) graphics but little else. Since that

time, the GPU has evolved into a powerful programmable

processor, with both application programming interface

(APIs) and hardware increasingly focusing on the

programmable aspects of the GPU. The result is a

processor with enormous arithmetic capability [a single

NVIDIA GeForce 8800 GTX can sustain over 330 giga-

floating-point operations per second (Gflops)] and
streaming memory bandwidth (80+ GB/s), both substan-

tially greater than a high-end CPU. The GPU has a

distinctive architecture centered around a large number

of fine-grained parallel processors that we discuss in

Section II.

Just as important in the development of the GPU as a

general-purpose computing engine has been the advance-

ment of the programming model and programming tools.
The challenge to GPU vendors and researchers has been to

strike the right balance between low-level access to the

hardware to enable performance and high-level program-

ming languages and tools that allow programmer flexibility

and productivity, all in the face of rapidly advancing

hardware. In Section III, we discuss how general-purpose

programs are mapped onto the GPU. We then give a high-

level summary of the techniques used in building
applications on the GPU (Section V) and the rapidly

advancing software environments that enable their devel-

opment (Section IV).

Until recently, GPU computing could best be described

as an academic exercise. Because of the primitive nature of

the tools and techniques, the first generation of applications

were notable for simply working at all. As the field matured,

the techniques became more sophisticated and the compar-
isons with non-GPU work more rigorous. Our recent survey

of the field (completed in November 2006) summarizes this

age of GPU computing [1]. We are now entering the third

stage of GPU computing: building real applications on which

GPUs demonstrate an appreciable advantage.

For instance, as games have become increasingly limited

by CPU performance, offloading complex CPU tasks to the

GPU yields better overall performance. We summarize one
notable GPGPU success in Section VI: BHavok FX[game

physics, which runs on NVIDIA and AMD GPUs.

GPUs are also playing an increasing role in scientific

computing applications. In Section VII, we detail three

applications in computational biophysics: protein folding

simulation, scalable molecular dynamics, and calculating

electrostatic potential maps. These applications demonstrate

the potential of the GPU for delivering real performance
gains on computationally complex, large problems.

In Section VIII, we conclude by looking to the future:

what features can we expect in future systems, and what

are the most important problems that we must address as

the field moves forward? One of the most important

challenges for GPU computing is to connect with the

mainstream fields of processor architecture and program-

ming systems, as well as learn from the parallel computing
experts of the past, and we hope that the audience of

this paper will find common interests with the experts in

our field.

II . GPU ARCHITECTURE

The GPU has always been a processor with ample

computational resources. The most important recent
trend, however, has been exposing that computation to

the programmer. Over the past few years, the GPU has

evolved from a fixed-function special-purpose processor

into a full-fledged parallel programmable processor with

additional fixed-function special-purpose functionality.

More than ever, the programmable aspects of the

processor have taken center stage.

We begin by chronicling this evolution, starting from
the structure of the graphics pipeline and how the GPU has

become a general-purpose architecture, then taking a

closer look at the architecture of the modern GPU.

A. The Graphics Pipeline
The input to the GPU is a list of geometric primitives,

typically triangles, in a 3-D world coordinate system.

Through many steps, those primitives are shaded and
mapped onto the screen, where they are assembled to

create a final picture. It is instructive to first explain the

specific steps in the canonical pipeline before showing

how the pipeline has become programmable.

Vertex Operations: The input primitives are formed

from individual vertices. Each vertex must be transformed

into screen space and shaded, typically through computing

their interaction with the lights in the scene. Because
typical scenes have tens to hundreds of thousands of

vertices, and each vertex can be computed independently,

this stage is well suited for parallel hardware.

Primitive Assembly: The vertices are assembled into

triangles, the fundamental hardware-supported primitive

in today’s GPUs.

Rasterization: Rasterization is the process of determin-

ing which screen-space pixel locations are covered by each
triangle. Each triangle generates a primitive called a

Bfragment[at each screen-space pixel location that it

covers. Because many triangles may overlap at any pixel

location, each pixel’s color value may be computed from

several fragments.

Fragment Operations: Using color information from the

vertices and possibly fetching additional data from global

Owens et al.: GPU Computing

880 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

memory in the form of textures (images that are mapped
onto surfaces), each fragment is shaded to determine its

final color. Just as in the vertex stage, each fragment can be

computed in parallel. This stage is typically the most

computationally demanding stage in the graphics pipeline.

Composition: Fragments are assembled into a final

image with one color per pixel, usually by keeping the

closest fragment to the camera for each pixel location.

Historically, the operations available at the vertex and
fragment stages were configurable but not programmable.

For instance, one of the key computations at the vertex

stage is computing the color at each vertex as a function of

the vertex properties and the lights in the scene. In the

fixed-function pipeline, the programmer could control

the position and color of the vertex and the lights, but not

the lighting model that determined their interaction.

B. Evolution of GPU Architecture
The fixed-function pipeline lacked the generality to

efficiently express more complicated shading and lighting

operations that are essential for complex effects. The key step

was replacing the fixed-function per-vertex and per-fragment

operations with user-specified programs run on each vertex

and fragment. Over the past six years, these vertex programs
and fragment programs have become increasingly more
capable, with larger limits on their size and resource

consumption, with more fully featured instruction sets,

and with more flexible control-flow operations.

After many years of separate instruction sets for vertex

and fragment operations, current GPUs support the

unified Shader Model 4.0 on both vertex and fragment

shaders [2].

• The hardware must support shader programs of at
least 65 k static instructions and unlimited dynamic

instructions.

• The instruction set, for the first time, supports

both 32-bit integers and 32-bit floating-point

numbers.

• The hardware must allow an arbitrary number of

both direct and indirect reads from global memory

(texture).
• Finally, dynamic flow control in the form of loops

and branches must be supported.

As the shader model has evolved and become more

powerful, and GPU applications of all types have increased

vertex and fragment program complexity, GPU architec-

tures have increasingly focused on the programmable parts

of the graphics pipeline. Indeed, while previous genera-

tions of GPUs could best be described as additions of
programmability to a fixed-function pipeline, today’s GPUs

are better characterized as a programmable engine

surrounded by supporting fixed-function units.

C. Architecture of a Modern GPU
In Section I, we noted that the GPU is built for

different application demands than the CPU: large,

parallel computation requirements with an emphasis on
throughput rather than latency. Consequently, the archi-

tecture of the GPU has progressed in a different direction

than that of the CPU.

Consider a pipeline of tasks, such as we see in most

graphics APIs (and many other applications), that must

process a large number of input elements. In such a

pipeline, the output of each successive task is fed into the

input of the next task. The pipeline exposes the task
parallelism of the application, as data in multiple pipeline

stages can be computed at the same time; within each

stage, computing more than one element at the same time

is data parallelism. To execute such a pipeline, a CPU

would take a single element (or group of elements) and

process the first stage in the pipeline, then the next stage,

and so on. The CPU divides the pipeline in time, applying

all resources in the processor to each stage in turn.
GPUs have historically taken a different approach. The

GPU divides the resources of the processor among the

different stages, such that the pipeline is divided in space,
not time. The part of the processor working on one stage

feeds its output directly into a different part that works on

the next stage.

This machine organization was highly successful in

fixed-function GPUs for two reasons. First, the hardware
in any given stage could exploit data parallelism within

that stage, processing multiple elements at the same time.

Because many task-parallel stages were running at any

time, the GPU could meet the large compute needs of the

graphics pipeline. Secondly, each stage’s hardware could

be customized with special-purpose hardware for its given

task, allowing substantially greater compute and area

efficiency over a general-purpose solution. For instance,
the rasterization stage, which computes pixel coverage

information for each input triangle, is more efficient when

implemented in special-purpose hardware. As program-

mable stages (such as the vertex and fragment programs)

replaced fixed-function stages, the special-purpose fixed-

function components were simply replaced by program-

mable components, but the task-parallel organization did

not change.
The result was a lengthy, feed-forward GPU pipeline

with many stages, each typically accelerated by special-

purpose parallel hardware. In a CPU, any given operation

may take on the order of 20 cycles between entering and

leaving the CPU pipeline. On a GPU, a graphics operation

may take thousands of cycles from start to finish. The

latency of any given operation is long. However, the task

and data parallelism across and between stages delivers
high throughput.

The major disadvantage of the GPU task-parallel

pipeline is load balancing. Like any pipeline, the perfor-

mance of the GPU pipeline is dependent on its slowest

stage. If the vertex program is complex and the fragment

program is simple, overall throughput is dependent on the

performance of the vertex program. In the early days of

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 881

programmable stages, the instruction set of the vertex and

fragment programs were quite different, so these stages

were separate. However, as both the vertex and fragment

programs became more fully featured, and as the

instruction sets converged, GPU architects reconsidered

a strict task-parallel pipeline in favor of a unified shader
architecture, in which all programmable units in the
pipeline share a single programmable hardware unit.

While much of the pipeline is still task-parallel, the

programmable units now divide their time among vertex

work, fragment work, and geometry work (with the new

DirectX 10 geometry shaders). These units can exploit

both task and data parallelism. As the programmable parts

of the pipeline are responsible for more and more

computation within the graphics pipeline, the architecture

of the GPU is migrating from a strict pipelined task-parallel

architecture to one that is increasingly built around a

single unified data-parallel programmable unit.

AMD introduced the first unified shader architecture

for modern GPUs in its Xenos GPU in the XBox 360

(2005). Today, both AMD’s and NVIDIA’s flagship GPUs
feature unified shaders (Fig. 1). The benefit for GPU users

is better load-balancing at the cost of more complex

hardware. The benefit for GPGPU users is clear: with all

the programmable power in a single hardware unit,

GPGPU programmers can now target that programmable

unit directly, rather than the previous approach of dividing

work across multiple hardware units.

Fig. 1. Today, both AMD and NVIDIA build architectures with unified, massively parallel programmable units at their cores. (a) The NVIDIA

GeForce 8800 GTX (top) features 16 streaming multiprocessors of 8 thread (stream) processors each. One pair of streaming multiprocessors

is shown below; each contains shared instruction and data caches, control logic, a 16 kB shared memory, eight stream processors, and

two special function units. (Diagram courtesy of NVIDIA.)

Owens et al.: GPU Computing

882 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

III . GPU COMPUTING

Now that we have seen the hardware architecture of the
GPU, we turn to its programming model.

A. The GPU Programming Model
The programmable units of the GPU follow a single-

program multiple-data (SPMD) programming model. For

efficiency, the GPU processes many elements (vertices or

fragments) in parallel using the same program. Each

element is independent from the other elements, and in

the base programming model, elements cannot communi-

cate with each other. All GPU programs must be structured

in this way: many parallel elements, each processed in

parallel by a single program.

Each element can operate on 32-bit integer or floating-

point data with a reasonably complete general-purpose

instruction set. Elements can read data from a shared global

memory (a Bgather[operation) and, with the newest GPUs,

also write back to arbitrary locations in shared global
memory (Bscatter[).

This programming model is well suited to straight-line

programs, as many elements can be processed in lockstep

running the exact same code. Code written in this manner

is single instruction, multiple data (SIMD). As shader

programs have become more complex, programmers

Fig. 1. (continued) Today, both AMD and NVIDIA build architectures with unified, massively parallel programmable units at their cores.

(b) AMD’s Radeon HD 2900XT contains 320 stream processing units arranged into four SIMD arrays of 80 units each. These units are

arranged into stream processing blocks containing five arithmetic logic units and a branch unit. In the diagram, gray ovals indicate logic units

and red-bordered rectangles indicate memory units. Green triangles at the top left of functional units are units that read from memory,

and blue triangles at the bottom left write to memory. (Diagram courtesy of M. Doggett, AMD.)

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 883

prefer to allow different elements to take different paths
through the same program, leading to the more general

SPMD model. How is this supported on the GPU?

One of the benefits of the GPU is its large fraction of

resources devoted to computation. Allowing a different

execution path for each element requires a substantial

amount of control hardware. Instead, today’s GPUs

support arbitrary control flow per thread but impose a

penalty for incoherent branching. GPU vendors have
largely adopted this approach. Elements are grouped

together into blocks, and blocks are processed in parallel.

If elements branch in different directions within a block,

the hardware computes both sides of the branch for all

elements in the block. The size of the block is known as the

Bbranch granularity[and has been decreasing with recent

GPU generationsVtoday, it is on the order of 16 elements.

In writing GPU programs, then, branches are permit-
ted but not free. Programmers who structure their code

such that blocks have coherent branches will make the best

use of the hardware.

B. General-Purpose Computing on the GPU
Mapping general-purpose computation onto the GPU

uses the graphics hardware in much the same way as any

standard graphics application. Because of this similarity, it is
both easier and more difficult to explain the process. On one

hand, the actual operations are the same and are easy to

follow; on the other hand, the terminology is different

between graphics and general-purpose use. Harris provides

an excellent description of this mapping process [3]. We

begin by describing GPU programming using graphics

terminology, then show how the same steps are used in a

general-purpose way to author GPGPU applications, and
finally use the same steps to show the more simple and direct

way that today’s GPU computing applications are written.

1) Programming a GPU for Graphics: We begin with the

same GPU pipeline that we described in Section II,

concentrating on the programmable aspects of this pipeline.

1) The programmer specifies geometry that covers a

region on the screen. The rasterizer generates a
fragment at each pixel location covered by that

geometry.

2) Each fragment is shaded by the fragment program.

3) The fragment program computes the value of the

fragment by a combination of math operations and

global memory reads from a global Btexture[
memory.

4) The resulting image can then be used as texture on
future passes through the graphics pipeline.

2) Programming a GPU for General-Purpose Programs
(Old): Coopting this pipeline to perform general-purpose

computation involves the exact same steps but different

terminology. A motivating example is a fluid simulation

computed over a grid: at each time step, we compute the

next state of the fluid for each grid point from the current
state at its grid point and at the grid points of its neighbors.

1) The programmer specifies a geometric primitive

that covers a computation domain of interest. The

rasterizer generates a fragment at each pixel

location covered by that geometry. (In our example,

our primitive must cover a grid of fragments equal

to the domain size of our fluid simulation.)

2) Each fragment is shaded by an SPMD general-
purpose fragment program. (Each grid point runs

the same program to update the state of its fluid.)

3) The fragment program computes the value of the

fragment by a combination of math operations

and Bgather[accesses from global memory. (Each

grid point can access the state of its neighbors

from the previous time step in computing its

current value.)
4) The resulting buffer in global memory can then be

used as an input on future passes. (The current state

of the fluid will be used on the next time step.)

3) Programming a GPU for General-Purpose Programs (New):
One of the historical difficulties in programming GPGPU

applications has been that despite their general-purpose

tasks’ having nothing to do with graphics, the applications
still had to be programmed using graphics APIs. In

addition, the program had to be structured in terms of the

graphics pipeline, with the programmable units only

accessible as an intermediate step in that pipeline, when

the programmer would almost certainly prefer to access

the programmable units directly.

The programming environments we describe in detail

in Section IV are solving this difficulty by providing a more
natural, direct, nongraphics interface to the hardware and,

specifically, the programmable units. Today, GPU com-

puting applications are structured in the following way.

1) The programmer directly defines the computation

domain of interest as a structured grid of threads.

2) An SPMD general-purpose program computes the

value of each thread.

3) The value for each thread is computed by a
combination of math operations and both Bgather[
(read) accesses from and Bscatter[(write) accesses

to global memory. Unlike in the previous two

methods, the same buffer can be used for both

reading and writing, allowing more flexible

algorithms (for example, in-place algorithms that

use less memory).

4) The resulting buffer in global memory can then be
used as an input in future computation.

This programming model is a powerful one for several

reasons. First, it allows the hardware to fully exploit the

application’s data parallelism by explicitly specifying that

parallelism in the program. Next, it strikes a careful balance

between generality (a fully programmable routine at each

element) and restrictions to ensure good performance

Owens et al.: GPU Computing

884 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

(the SPMD model, the restrictions on branching for
efficiency, restrictions on data communication between

elements and between kernels/passes, and so on). Finally,

its direct access to the programmable units eliminates

much of the complexity faced by previous GPGPU

programmers in coopting the graphics interface for

general-purpose programming. As a result, programs are

more often expressed in a familiar programming language

(such as NVIDIA’s C-like syntax in their CUDA program-
ming environment) and are simpler and easier to build and

debug (and are becoming more so as the programming tools

mature). The result is a programming model that allows its

users to take full advantage of the GPU’s powerful hardware

but also permits an increasingly high-level programming

model that enables productive authoring of complex

applications.

IV. SOFTWARE ENVIRONMENTS

In the past, the majority of GPGPU programming was done

directly through graphics APIs. Although many researchers

were successful in getting applications to work through

these graphics APIs, there is a fundamental mismatch

between the traditional programming models people were

using and the goals of the graphics APIs. Originally, people
used fixed function, graphics-specific units (e.g. texture

filters, blending, and stencil buffer operations) to perform

GPGPU operations. This quickly got better with fully

programmable fragment processors which provided pseu-

do assembly languages, but this was still unapproachable

by all but the most ardent researchers. With DirectX 9,

higher level shader programming was made possible

through the Bhigh-level shading language[(HLSL),
presenting a C-like interface for programming shaders.

NVIDIA’s Cg provided similar capabilities as HLSL but was

able to compile to multiple targets and provided the first

high-level language for OpenGL. The OpenGL Shading

Language (GLSL) is now the standard shading language for

OpenGL. However, the main issue with Cg/HLSL/GLSL

for GPGPU is that they are inherently shading languages.

Computation must still be expressed in graphics terms like
vertices, textures, fragments, and blending. So, although

you could do more general computation with graphics APIs

and shading languages, they were still largely unapproach-

able by the common programmer.

What developers really wanted were higher level

languages that were designed explicitly for computation

and abstracted all of the graphics-isms of the GPU.

BrookGPU [4] and Sh [5] were two early academic
research projects with the goal of abstracting the GPU as

a streaming processor. The stream programming model

structures programs to express parallelism and allows for

efficient communication and data transfer, matching the

parallel processing resources and memory system available

on GPUs. A stream program comprises a set of streams,
ordered sets of data, and kernels, the functions applied to

each element in a set of streams producing one or more
streams as output.

Brook takes a pure streaming computation abstraction

approach representing data as streams and computation as

kernels. There is no notion of textures, vertices, fragments,

or blending in Brook. Kernels are written in a restricted

subset of C, notably the absence of pointers and scatter,

and defined the input, output, and gather streams used in a

kernel as part of the kernel definition. Brook contains
stream access functionality such as repeat and stride,

reductions over streams, and the ability to define domains,

subsets, of streams to use as input and output. The kernels

are run for each element in the domain of output streams.

The user’s kernels are mapped to fragment shader code

and streams to textures. Data upload and download to the

GPU is performed via explicit read/write calls translating

into texture updates and framebuffer readbacks. Lastly,
computation is performed by rendering a quad covering

the pixels in the output domain.

Microsoft’s Accelerator [6] project has a similar goal as

Brook in being very compute-centric, but instead of using

offline compilation, Accelerator relies on just-in-time

compilation of data-parallel operators to fragment shaders.

Unlike Brook and Sh, which are largely extensions to C,

Accelerator is an array-based language based on C#, and all
computation is done via operations on arrays. Unlike

Brook, but similar to Sh, the delayed evaluation model

allows for more aggressive online compilation, leading to

potentially more specialized and optimized generated code

for execution on the GPU.

In the last year, there have been large changes in the

ecosystem that allow for much easier development of

GPGPU applications as well as providing more robust,
commercial quality development systems. RapidMind [7]

commercialized Sh and now targets multiple platforms

including GPUs, the STI Cell Broadband Engine, and

multicore CPUs, and the new system is much more

focused on computation as compared to Sh, which

included many graphics-centric operations. Similar to

Accelerator, RapidMind uses delayed evaluation and

online compilation to capture and optimize the user’s
application code along with operator and type extensions

to C++ to provide direct support for arrays. PeakStream

[8] is a new system, inspired by Brook, designed around

operations on arrays. Similar to RapidMind and Acceler-

ator, PeakStream uses just-in-time compilation but is

much more aggressive about vectorizing the user’s code to

maximize performance on SIMD architectures. Peak-

Stream is also the first platform to provide profiling and
debugging support, the latter continuing to be a serious

problem in GPGPU development. Both of these efforts

represent third-party vendors creating systems with

support from the GPU vendors. As a demonstration of

the excitement around GPGPU and the success of these

approaches to parallel computation, Google purchased

PeakStream in 2007.

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 885

Both AMD and NVIDIA now also have their own GPGPU
programming systems. AMD announced and released their

system to researchers in late 2006. CTM, or Bclose to the

metal,[provides a low-level hardware abstraction layer

(HAL) for the R5XX and R6XX series of ATI GPUs. CTM-

HAL provides raw assembly-level access to the fragment

engines (stream processors) along with an assembler and

command buffers to control execution on the hardware. No

graphics-specific features are exported through this inter-
face. Computation is performed by binding memory as

inputs and outputs to the stream processors, loading an ELF

binary, and defining a domain over the outputs on which to

execute the binary. AMD also offers the compute abstraction

layer (CAL), which adds higher level constructs, similar to

those in the Brook runtime system, and compilation support

to GPU ISA for GLSL, HLSL, and pseudoassembly like Pixel

Shader 3.0. For higher level programming, AMD supports
compilation of Brook programs directly to R6XX hardware,

providing a higher level programming abstraction than

provided by CAL or HAL.

NVIDIA’s CUDA is a higher level interface than AMD’s

HAL and CAL. Similar to Brook, CUDA provides a C-like

syntax for executing on the GPU and compiles offline.

However, unlike Brook, which only exposed one dimen-

sion of parallelism, data parallelism via streaming, CUDA
exposes two levels of parallelism, data parallel and

multithreading. CUDA also exposes much more of the

hardware resources than Brook, exposing multiple levels of

memory hierarchy: per-thread registers, fast shared

memory between threads in a block, board memory, and

host memory. Kernels in CUDA are also more flexible that

those in Brook by allowing the use of pointers (although

data must be on board), general load/store to memory
allowing the user to scatter data from within a kernel, and

synchronization between threads in a thread block.

However, all of this flexibility and potential performance

gain comes with the cost of requiring the user to

understand more of the low-level details of the hardware,

notably register usage, thread and thread block scheduling,

and behavior of access patterns through memory.

All of these systems allow developers to more easily build
large applications. For example, the Folding@Home GPU

client and large fluid simulation application are written in

BrookGPU, NAMD and VMD support GPU execution

through CUDA, RapidMind has demonstrated ray-tracing

and crowd simulation, and PeakStream has shown oil and gas

as well as computational finance applications. CUDA

provides tuned and optimized basic linear algebra subpro-

grams (BLAS) and fast Fourier transform (FFT) libraries to
use as building blocks for large applications. Low-level access

to hardware, such as that provided by CTM, or GPGPU-

specific systems like CUDA, allow developers to effectively

bypass the graphics drivers and maintain stable performance

and correctness. The vendors’ driver development and

optimizations for graphics APIs tend to test only the latest

released or most popular games. Optimizations performed to

optimize for game performance can affect GPGPU applica-
tion stability and performance.

V. TECHNIQUES AND APPLICATIONS

We now survey some important computational primitives,

algorithms, and applications for GPU computing. We first

highlight four data-parallel operations central to GPU

computing: performing scatter/gather memory operations,
mapping a function onto many elements in parallel,

reducing a collection of elements to a single element or

value, and computing prefix reductions of an array in

parallel. We delve into these core computational primitives

in some detail before turning to a higher level overview of

algorithmic problems that researchers have studied on

GPUs: scan, sort, search, data queries, differential equations,

and linear algebra. These algorithms enable a wide range of
applications ranging from databases and data mining to

scientific simulations such as fluid dynamics and heat

transfer toVas we shall see in Sections VI and VIIVrigid-

body physics for games and molecular dynamics.

A. Computational Primitives
The data-parallel architecture of GPUs requires program-

ming idioms long familiar to parallel supercomputer users
but often new to today’s programmers reared on sequential

machines or loosely coupled clusters. We briefly discuss four

important idioms: scatter/gather, map, reduce, and scan. We

describe these computational primitives in the context of

both Bold[(i.e., graphics-based) and Bnew[(direct-

compute) GPU computing to emphasize the simplicity and

flexibility of the direct-compute approach.

Scatter/gather: write to or read from a computed
location in memory. Graphics-based GPU computing

allows efficient gather using the texture subsystem, storing

data as images (textures) and addressing data by comput-

ing corresponding image coordinates and performing a

texture fetch. However, texture limitations make this

unwieldy: texture size restrictions require wrapping arrays

containing more than 4096 elements into multiple rows of

a two-dimensional (2-D) texture, adding extra addressing
math, and a single texture fetch can only retrieve four

32-bit floating point values, limiting per-element storage.

Scatter in graphics-based GPU computing is difficult and

requires rebinding data for processing as vertices, either

using vertex texture fetch or render-to-vertex-buffer. By

contrast, direct-compute layers allow unlimited reads

and writes to arbitrary locations in memory. NVIDIA’s

CUDA allows the user to access memory using standard C
constructs (arrays, pointers, variables). AMD’s CTM is

nearly as flexible but uses 2-D addressing.

Map: apply an operation to every element in a

collection. Typically expressed as a for loop in a sequential

program (e.g., a thread on a single CPU core), a parallel

implementation can reduce the time required by applying

the operation to many elements in parallel. Graphics-based

Owens et al.: GPU Computing

886 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

GPU computing performs map as a fragment program to be

invoked on a collection of pixels (one pixel for each

element). Each pixel’s fragment program fetches the

element data from a texture at a location corresponding

to the pixel’s location in the rendered image, performs the

operation, then stores the result in the output pixel.

Similarly, CTM and CUDA would typically launch a thread

program to perform the operation in many threads, with
each thread loading an element, performing the compu-

tation, and storing the result. Note that since loops are

supported, each thread may also loop over several

elements.

Reduce: repeatedly apply a binary associative operation

to reducing a collection of elements to a single element or

value. Examples include finding the sum (average,

minimum, maximum, variance, etc.) of a collection of
values. A sequential implementation on a traditional CPU

would loop over an array, successively summing (for

example) each element with a running sum of elements

seen so far. By contrast, a parallel reduce-sum implemen-

tation would repeatedly perform sums in parallel on an

ever-shrinking set of elements.1 Graphics-based GPU

computing implements reduce by rendering progressively

smaller sets of pixels. In each rendering pass, a fragment
program reads multiple values from a texture (performing

perhaps four or eight texture reads), computes their sum,

and writes that value to the output pixel in another texture

(four or eight times smaller), which is then bound as input

to the same fragment shader and the process repeated until

the output consists of a single pixel that contains the result

of the final reduction. CTM and CUDA express this same

process more directly, for example, by launching a set of

threads each of which reads two elements and writes

their sum to a single element. Half the threads then

repeat this process, then half of the remaining threads,

and so on until a single surviving thread writes the final

result to memory.

Scan: Sometimes known as parallel-prefix-sum, scan
takes an array A of elements and returns an array B of the

same length in which each element B½i� represents a

reduction of the subarray A½1 . . . i�. Scan is an extremely

useful building block for data-parallel algorithms; Blelloch

describes a wide variety of potential applications of scan

ranging from quicksort to sparse matrix operations [9].

Harris et al. [10] demonstrate an efficient scan imple-

mentation using CUDA (Fig. 2); their results illustrate the
advantages of a direct-compute over graphics-based GPU

computing. Their CUDA implementation outperforms the

CPU by a factor of up to 20 and OpenGL by a factor of up

to seven.

B. Algorithms and Applications
Building largely on the above primitives, researchers

have demonstrated many higher level algorithms and
applications that exploit the computational strengths of the

GPU. We give only a brief survey of GPU computing

algorithms and their application domains here; for a

detailed overview, please see our recent survey [1].

Sort: GPUs have come to excel at sorting as the GPU

computing community has rediscovered, adapted, and

improved seminal sorting algorithms, notably bitonic merge
sort [11]. This Bsorting network[algorithm is intrinsically
parallel and oblivious, meaning the same steps are executed

1Note that floating-point arithmetic is only pseudoassociative, so
parallel and sequential reduce may produce different final values due to
roundoff, etc.

Fig. 2. Scan performance on CPU, graphics-based GPU (using OpenGL), and direct-compute GPU (using CUDA). Results obtained on a

GeForce 8800 GTX GPU and Intel Core2-Duo Extreme 2.93 GHz CPU. (Figure adapted from Harris et al. [10].)

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 887

regardless of input. Govindaraju et al. won the price-
performance BPennySort[category of the 2005 BTeraSort[
competition [12] using careful system design and a

combination of many algorithmic improvements.

Search and database queries: Researchers have also

implemented several forms of search on the GPU, such as

binary search [13] and nearest neighbor search [14], as well

as high-performance database operations that build on

special-purpose graphics hardware (called the depth and
stencil buffers) and the fast sorting algorithms mentioned

above [15], [16].

Differential equations: The earliest attempts to use

GPUs for nongraphics computation focused on solving

large sets of differential equations. Particle tracing is a

common GPU application for ordinary differential equa-

tions, used heavily in scientific visualization (e.g., the

scientific flow exploration system by Krüger et al. [17])
and in visual effects for computer games. GPUs have been

heavily used to solve problems in partial differential

equations (PDEs) such as the Navier–Stokes equations for

incompressible fluid flow. Particularly successful applica-

tions of GPU PDE solvers include fluid dynamics (e.g.,

Bolz et al. [18]) and level set equations for volume seg-

mentation [19].

Linear algebra: Sparse and dense linear algebra routines
are the core building blocks for a huge class of numeric

algorithms, including many PDE solvers mentioned above.

Applications include simulation of physical effects such as

fluids, heat, and radiation, optical effects such as depth of

field [20], and so on. Accordingly, the topic of linear algebra

on GPUs has received a great deal of attention. One

representative example is the work of Krüger and

Westermann [21], which addressed a broad class of linear
algebraic problems by focusing on the representation of ma-

trices and vectors in graphics-based GPU computing (e.g.,

packing dense and sparse vectors into textures, vertex

buffers, etc.). Other notable work includes an analysis of

dense matrix–matrix multiplication by Fatahalian et al. [22]

and a solver for dense linear systems by Gallapo et al. [23]

that the authors show is able to outperform even highly

optimized ATLAS implementations.
The use of direct-compute layers such as CUDA and

CTM both simplifies and improves the performance of

linear algebra on the GPU. For example, NVIDIA provides

CuBLAS, a dense linear algebra package implemented in

CUDA and following the popular BLAS conventions.

Sparse linear algebraic algorithms, which are more varied

and complicated than dense codes, are an open and active

area of research; researchers expect sparse codes to realize
benefits similar to or greater than those of the new GPU

computing layers.

C. Recurring Themes
Several recurring themes emerge throughout the

algorithms and applications explored in GPU computing

to date. Examining these themes allows us to characterize

what GPUs do well. Successful GPU computing applica-
tions do the following.

Emphasize parallelism: GPUs are fundamentally parallel

machines, and their efficient utilization depends on a high

degree of parallelism in the workload. For example,

NVIDIA’s CUDA prefers to run thousands of threads at one

time to maximize opportunities to mask memory latency

using multithreading. Emphasizing parallelism requires

choosing algorithms that divide the computational domain
into as many independent pieces as possible. To maximize

the number of simultaneous running threads, GPU

programmers should also seek to minimize thread usage of

shared resources (such as local registers and CUDA shared

memory) and should use synchronization between threads

sparingly.

Minimize SIMD divergence: As Section III discusses,

GPUs provide an SPMD programming model: multiple
threads run the same program but access different data and

thus may diverge in their execution. At some granularity,

however, GPUs perform SIMD execution on batches of

threads (such as CUDA Bwarps[). If threads within a batch

diverge, the entire batch will execute both code paths until

the threads reconverge. High-performance GPU comput-

ing thus requires structuring code to minimize divergence

within batches.
Maximize arithmetic intensity: In today’s computing

landscape, actual computation is relatively cheap but

bandwidth is precious. This is dramatically true for GPUs

with their abundant floating-point horsepower. To obtain

maximum utilization of that power requires structuring

the algorithm to maximize the arithmetic intensity or

number of numeric computations performed per memory

transaction. Coherent data accesses by individual threads
help, since these can be coalesced into fewer total memory

transactions. Use of CUDA shared memory on NVIDIA

GPUs also helps, reducing overfetch (since threads can

communicate) and enabling strategies for Bblocking[the

computation in this fast on-chip memory.

Exploit streaming bandwidth: Despite the importance of

arithmetic intensity, it is worth noting that GPUs do have

very high peak bandwidth to their onboard memory, on the
order of 10� the CPU-memory bandwidths on typical PC

platforms. This is why GPUs can outperform CPUs at tasks

such as sort, which have a low computation/bandwidth

ratio. To achieve high performance on such applications

requires streaming memory access patterns in which

threads read from and write to large coherent blocks

(maximizing bandwidth per transaction) located in sepa-

rate regions of memory (avoiding data hazards).
Experience has shown that when algorithms and

applications can follow these design principles for GPU

computingVsuch as the PDE solvers, linear algebra

packages, and database systems referenced above, and

the game physics and molecular dynamics applications

examined in detail nextVthey can achieve 10–100�
speedups over even mature, optimized CPU codes.

Owens et al.: GPU Computing

888 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

VI. CASE STUDY: GAME PHYSICS

Physics simulation occupies an increasingly important role

in modern video games. Game players and developers seek
environments that move and react in a physically plausible

fashion, requiring immense computational resources. Our

first case study focuses on Havok FX (Fig. 3), a GPU-

accelerated game physics package and one of the first

successful consumer applications of GPU computing.

Game physics takes many forms and increasingly

includes articulated characters (Brag doll physics[),

vehicle simulation, cloth, deformable bodies, and fluid
simulation. We concentrate here on rigid body dynamics,

which simulate solid objects moving under gravity and

obeying Newton’s laws of motion and are probably the

most important form of game physics today. Rigid body

simulation typically incorporates three steps: integration,

collision detection, and collision resolution.

Integration: The integration step updates the objects’

velocities based on the applied forces (e.g., gravity, wind,
player interactions) and updates the objects’ position based

on the velocities.

Collision detection: This step determines which objects

are colliding after integration and their contact points.

Collision detection must in principle compare each object

with every other objectVa very expensive ðOðn2ÞÞ
proposition. In practice, most systems mitigate this cost

by splitting collision detection into a broad phase and a

narrow phase [24]. The broad phase compares a

simplified representation of the objects (typically their

bounding boxes) to quickly determine potentially collid-

ing pairs of objects. The narrow phase then accurately

determines the pairs of objects that are actually colliding,

resulting in the contact points, contact normals, and

penetration depths.

Collision resolution: Once collisions are detected,

collision resolution applies impulses (instant transitory

forces) to the colliding objects so that they move apart.

Due to the hard real-time constraints of game play,

game physics systems usually employ iterative solvers

rather than the matrix-based solvers more commonly

described in the literature. This allows them to trade off

accuracy for performance by varying the number of

iterations.

In 2005, Havok, the leading game physics middleware

supplier, began researching new algorithms targeted at

simulating tens of thousands of rigid bodies on parallel

Fig. 3. Havok FX can simulate 15 000 colliding boulders at more than 60 frames per second.

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 889

processors. Havok FX was the result, and both NVIDIA
and ATI have worked with Havok to implement and

optimize the system on the GPU. Several reasons argue for

moving some physics simulation to the GPU. For instance,

many games today are CPU-limited, and physics can easily

consume 10% or more of CPU time. Performing physics on

the GPU also enables direct rendering of simulation results

from GPU memory, avoiding the need to transfer the

positions and orientations of thousands or millions of
objects from CPU to GPU each frame.

Havok FX is a hybrid system, leveraging the strengths

of the CPU and GPU. It stores the complete object state

(position, orientation, linear and angular velocities) on the

GPU, as well as a proprietary texture-based representation

for the shapes of the objects. This representation is

designed to handle convex–convex collisions very quickly,

though potentially less accurately than a (much more
expensive) full polyhedral intersection algorithm.

The CPU performs broad phase collision detection

using a highly optimized sort and sweep algorithm after

reading axis-aligned bounding boxes of each object back

from the GPU each frame in a compressed format. The

list of potential colliding pairs is then downloaded back

to the GPU for the narrow phase. Both transfers consist

of a relatively small amount of data (on the order of a
few hundred kilobytes), which transfer quickly over the

PCIe bus.

To improve simulation stability, the CPU splits

colliding pairs into independent batches in which each

object is involved in at most one collision, and each batch

is processed in a separate pass. A major challenge facing

the designers of Havok FX was to minimize the number of

passes, increasing the amount of parallel work to do in
each pass and thus reducing the total overhead of initiating

computation on the GPU.

The GPU performs all narrow phase collision detection

and integration. Havok FX uses a simple Euler integrator

with a fixed time step. The quality of the collision solver is

generally more important than the integrator for the

stability of the simulation.

The system includes a simple friction model stable
enough to handle basic stacking of objects, for example, to

simulate brick walls composed of individually simulated

bricks. Rendering takes place directly from data on the

GPU, typically using the instancing feature of the graphics

API for maximum performance.

The shader programs used in Havok FX were among the

most complex ever developed at the time, comprising

thousands of instructions and stretching the limits of
available resources. Havok FX also allows user-defined

shaders to be written for custom effects such as boundary

conditions, vortices, attractors, special-case collision

objects, etc.

The end result is an order of magnitude performance

boost over Havok’s reference single-core CPU implemen-

tation. Simulating a scene of 15 000 boulders rolling down

a terrain, the CPU implementation (on a single core of an
Intel 2.9 GHz Core 2 Duo) achieved 6.2 frames per

second, whereas the initial GPU implementation on an

NVIDIA GeForce 8800 GTX reached 64.5 frames per

second. Performance continues to scale as new generations

of GPUs are released. The system also supports multiple

GPUsVone GPU can be used exclusively to perform the

physics computations, while another is dedicated to

rendering. The rendering data can either be transferred
via the host CPU or transmitted directly using a peer-to-

peer PCIe transfer.

Havok FX demonstrates the feasibility of building a

hybrid system in which the CPU executes serial portions of

the algorithm and the GPU executes data parallel portions.

The overall performance of this hybrid system far exceeds

a CPU-only system despite the frequent transfers between

CPU and GPU, which are often seen as an obstacle to such
hybrid system. Soon the increasing flexibility of GPUs

should allow executing the complete pipeline, including

broad phase collision, on the GPU for even greater

performance.

VII. CASE STUDIES:
COMPUTATIONAL BIOPHYSICS

Commercial GPUs deliver a high compute capacity at low

cost, making them attractive for use in scientific computing.

In this section, we focus on the application of GPU com-

puting to three computationally demanding applications in

the field of computational biophysics: Folding@Home, a

protein-folding simulation project at Stanford University;

NAMD, a scalable molecular dynamics package developed

at the University of Illinois; and VMD, a molecular
visualization and analysis tool also developed at the

University of Illinois.

The classical N-body problem consists of obtaining the

time evolution of a system of N mass particles interacting

according to a given force law. The problem arises in

several contexts, ranging from molecular-scale calculations

in structural biology to stellar-scale research in astro-

physics. Molecular dynamics (MD) has been successfully
used to understand how certain proteins fold and function,

which have been outstanding questions in biology for over

three decades. The calculations required for MD are

extremely compute intensive, and research is limited by

the computational resources available. Even the calcula-

tions required for simulation preparation and analysis have

become onerous as MD simulation protocols have become

more sophisticated and the size of simulated structures has
increased.

Every additional factor of ten in total simulation

performance that is made available to the biomedical

research community opens new doors in either simula-

tion size or time scale. Unfortunately, increases in the

performance of individual processor cores have recently

stalled as faster clock speeds result in unacceptable heat

Owens et al.: GPU Computing

890 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

and power consumption. Thus, the developers of
software such as NAMD, Folding@Home, and VMD

are required to extend the limits of parallel computing

and seek out new paths to increased performance on

architectures such as GPUs. Compared against highly

tuned CPU versions of these applications, the GPU

implementations provide more than an order of magni-

tude gain in performance.

A. Folding@Home: Massively Distributed Simulation
Folding@Home is a distributed molecular dynamics

application for studying the folding behavior of proteins

and is designed to run on home and office computers

donated by individuals and organizations around the

world. The GPU implementation of Folding@Home, the

first widely deployed scientific GPU computing applica-

tion, delivers large improvements in performance over
current-generation CPUs [25]. The Folding@Home project

has achieved a massive increase in computing power from

using these methods on GPUs, as well as on the Cell

processor in the Sony Playstation 3.2

The simplest force models are pairwise additive: the

force of interaction between two particles is independent

of all the other particles, and the individual forces on a

particle add linearly. The force calculation for such models
is of complexity OðN2Þ. Since typical studies involve a large

number of particles (103 to 106) and the desired number of

integration steps is usually very large (106 to 1015),

computational requirements often limit both problem size

and simulation time, and consequently limit the useful

information that may be obtained from such simulations.

Numerous methods have been developed to deal with

these issues. For molecular simulations, it is common to
reduce the number of particles by treating the solvent

molecules as a continuum. Folding@Home uses this

technique, performing the OðN2Þ force calculations that

constitute the major part of N-body protein-folding

simulations with implicit water. In stellar simulations,

one uses individual time stepping or tree algorithms to

minimize the number of force calculations. Despite such

algorithmic approximations and optimizations, the com-
putational capabilities of traditional hardware remain the

limiting factor.

Typically, N-body simulations utilize neighbor-lists,

tree methods, or other algorithms to reduce the quadratic

complexity of the force calculations. Building the

neighbor-list is difficult without a scatter operation to

memory along with synchronization primitives, and

research on computing the neighbor-list on the GPU is
still in progress. Interacting with the CPU for these

updates is also impractical. However, we find we can do

an OðN2Þ calculation significantly faster on the GPU than

an OðNÞ method using the CPU (or even with a

combination of the GPU and CPU) for the protein sizes

used in Folding@Home. This has direct applicability to
biological simulations that use continuum solvent mod-

els. We note also that in many of the reduced order

methods such as tree-based schemes, at some stage an

OðN2Þ calculation is performed on a subsystem of the

particles, so our method can be used to improve the

performance of such methods as well.

1) GPU Algorithm: In its simplest form, the N-body force

calculation can be described by the following pseudocode:

for i ¼ 1 to N

force½i� ¼ 0
ri ¼ coordinates½i�
for j ¼ 1 to N

rj ¼ coordinates½j�
force½i� ¼ force½i� þ force functionðri; rjÞ

end

end

Since all coordinates are fixed during the force
calculation, the force computation can be parallelized for

the different values of i. In terms of streams and kernels,

this can be expressed as follows:

stream coordinates;

stream forces;

kernel kforce(ri)

force ¼ 0

for j ¼ 1 to N

rj ¼ coordinates½j�
force ¼ force þ force functionðri; rjÞ

end

return force

end kernel

forces ¼ kforceðcoordinatesÞ

The kernel kforce is applied to each element of the

stream coordinates to produce an element of the forces

stream. Note that the kernel can perform an indexed

fetch from the coordinates stream inside the j-loop. An
out-of-order indexed fetch can be slow, since in general,

there is no way to prefetch the data. However, in this case,

the indexed accesses are sequential. Moreover, the j-loop is

executed simultaneously for many i-elements; even with

minimal caching, rj can be reused for many N i-elements

without fetching from memory. Thus the performance of

this algorithm would be expected to be high. The

implementation of this algorithm on GPUs and GPU-
specific performance optimizations are described in the

following section.

There is, however, one caveat in using a streaming

model. Newton’s Third Law states that the force on particle i
due to particle j is the negative of the force on particle j due to

particle i. CPU implementations use this fact to halve the

number of force calculations. However, the combination of

GPU and programming system used in this implementation2http://www.folding.stanford.edu/.

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 891

does not allow kernels to write an out-of-sequence element
(scatter), so forces½j� cannot be updated while summing over

the j-loop to calculate forces[i]. This effectively doubles the

number of computations that must be done on the GPU

compared to a CPU.

2) Kernel Optimization: The algorithm outlined in

Section VII-A1 was implemented in BrookGPU and

targeted for the ATI X1900XTX. Even this naive imple-
mentation performs very well, achieving over 40 GFLOPS,

but its performance can be improved by carefully adjusting

the implementation for better arithmetic intensity. We

take a closer look at one particular kernel, the GA kernel,

which corresponds to the gravitational attraction between

two mass particles. GA is one of five force-calculation

kernels, which input between 64 to 128 bytes per

interaction, deliver 19–43 FLOPs on each interaction,
and have inner loops from 104 to 138 instructions in

length.

A naBve implementation of GA executes 48 G-

instructions/s and has a memory bandwidth of 33 GB/s.

Using information from GPUBench [26], we expect the

X1900XTX to be able to execute approximately 30–50 G-

instruction/s (it depends heavily on the pipelining of

commands) and have a cache memory bandwidth of
41 GB/s. The nature of the algorithm is such that almost all

the memory reads will be from the cache since all the

pixels being rendered at a given time will be accessing the

same j-particle. Thus this kernel is limited by the rate at

which the GPU can issue instructions (compute bound).

To improve this kernel’s performance, we utilize

several techniques. We begin with loop unrolling, which

achieves a modest speedup compared to our first imple-
mentation and results in a switch from compute-bound to

bandwidth-bound (35 G-instructions/s and �40 GB/s).

Further reducing bandwidth usage is somewhat more

difficult. It involves using the multiple render targets

capability of recent GPUs, which is abstracted as multiple

output streams by BrookGPU. This reduces by a factor of

four the bandwidth required by both input and output

streams. This results in a kernel that is once more
instruction-rate limited. Its bandwidth is half that of the

maximum bandwidth available on the ATI X1900XT, but

the overall performance has increased significantly,

around a factor of two.

In all cases, performance is severely limited when the

number of particles is less than about 4000. This is due

to a combination of fixed overhead in executing kernels

and the lack of sufficiently many parallel threads of
execution to hide latency. In molecular dynamics, where

forces tend to be short-range in nature, it is more

common to use OðNÞ methods by neglecting or approx-

imating the interactions beyond a certain cutoff distance.

However, when using continuum solvent models, the

number of particles is small enough (N � 1000) that the

OðN2Þ method is comparable in complexity while giving

greater accuracy than OðNÞ methods. To take maximal
advantage of GPUs, it is therefore important to get good

performance for small output stream sizes, and we do so

by increasing the number of parallel threads by

replicating the input stream and performing a reduction

to get the final forces.

3) Performance: The GROMACS [27] molecular dynam-

ics software is highly tuned and uses handwritten SSE
assembly loops. As mentioned in Section VII-A1, the CPU

can do out-of-order writes without a significant penalty.

GROMACS uses this fact to halve the number of calculations

needed in each force calculation step. In the comparison

against the GPU in Table 1, this has been accounted for in the

performance numbers. In MD it is common to use neighbor

lists to reduce the order of the force computation to OðNÞ.
The performance of GROMACS doing an OðN2Þ calculation
as well as an OðNÞ calculation for a 80-residue protein

(lambda repressor, 1280 atoms) is shown in Table 1. Despite

using a fairly modest cutoff length of 1.2 nm for the OðNÞ
calculation, the OðN2Þ GPU calculation represents an order-

of-magnitude performance improvement over existing

methods on CPUs.

4) Application to Folding@Home: Most biological phe-
nomena of interest occur on time scales currently beyond

the reach of MD simulations. For example, the simplest

proteins fold on a time scale of 5 to 20 �s, while more

complex proteins may take milliseconds to seconds. MD

simulations on current generation CPUs are usually limited

to simulating about 10 ns per dayVit would take several

years to obtain a 10 �s simulation. However, with the speed

increases afforded by the algorithms and hardware
discussed here, we are now be able to simulate protein

dynamics with individual trajectories on the 10 �s time

scale in under three months. This allows the direct

simulation of the folding of fast-folding proteins. More-

over, by incorporating this methodology into a distributed

computing framework, we are now situated to build

Markovian state models to simulate even longer time

scales, likely approaching seconds [28]. Thus with the

Table 1 Comparison of GROMACS (GMX) Running on a 3.2 GHz

Pentium 4 Versus the GPU Showing the Simulation Time per Day for an

80-Residue Protein (Lambda Repressor)

Owens et al.: GPU Computing

892 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

combined effort of GPUs and distributed computing, one
would be able to reach time scales for folding of essentially

all single-domain two-state folding proteins. Compared

to the donations of CPUs from over 150 000 Windows

computers currently producing 145 Tflops, we have

550 GPUs donated to the project producing over 34 Tflops.

Thus each GPU is providing roughly 60 times the per-

formance of the average donated x86 CPU.

The streaming model we have designed for the GPU
is also the basis for the code executing on the Sony

Playstation 3, showing the portability of the streaming

model to other parallel processors. With the combined

computing power of GPUs and the Playstation 3, we

have more than tripled the computing power available to

Folding@Home, approaching 1 Pflops. Although we are

currently only running implicit solvent models, which

represent a subset of the simulations performed by
Folding@Home, work continues in efficient implementa-

tions of the data structures required to support OðNÞ and

OðN logNÞ models for explicit solvent routines. The

main issue is not the efficient use of the data structures

but the building and updating of these data structures as

the simulation progresses. The limited synchronization

and communication capabilities of current GPUs make

this difficult, although there is promising research into
this area.

B. NAMD: Large-Scale Molecular Dynamics
NAMD (nanoscale molecular dynamics)3 is an award-

winning package for the classical molecular dynamics

simulation of biomolecular systems on large parallel

computers [29]. In this section, we first describe NAMD

usage and a bit of the underlying science, emphasizing the
core NAMD algorithms including some (highly tuned)

CPU implementation details. We then describe a GPU

implementation that exploits new capabilities exposed by

CUDA to achieve a 20� speedup [30].

NAMD models full atomic coordinates of proteins,

nucleic acids, and/or lipids solvated in explicit water and

ions based on known crystallographic or other structures

An empirical energy function, which consists of
approximations of covalent interactions (bonded terms)

in addition to Lennard–Jones and electrostatic (non-

bonded) terms, is applied to the system. The resulting

Newtonian equations of motion are typically integrated

by symplectic and reversible methods using femtosecond

timesteps. Modifications are made to the equations of

motion to control temperature and pressure during the

simulation.
Continuing increases in high performance computing

technology have rapidly expanded the domain of biomolec-

ular simulation from isolated proteins in solvent to complex

aggregates, often in a lipid environment. Such systems can

easily comprise 100 000 atoms, and several published

NAMD simulations have exceeded 1 000 000 atoms. At
the same time, studying the function of even the simplest of

biomolecular machines requires simulations of 100 ns or

longer, even when employing techniques for accelerating

processes of interest.

1) Optimization Strategies: The complexity of long-range

electrostatic force evaluation is reduced from OðN2Þ to

OðN logNÞ via the particle mesh Ewald (PME) algorithm,
which combines an 8–12 Å cutoff direct calculation with

an FFT-based mesh calculation. The short-range correction

required for PME involves the expensive erfcðÞ function,

which is more efficiently evaluated through an interpola-

tion table. NAMD on a CPU also uses interpolation tables

for the r�12 and r�6 terms of the Lennard–Jones potential.

For each pair of atoms, the distance-dependent inter-

polants are multiplied by parameters that depend on the
types of the atoms and are combined for each pair of atoms

through simple algebraic forms.

Bonded forces reflect the effect of covalent chemical

bonds and involve only two to four nearby atoms in the

molecular chain. Since bonded pairs of atoms share

electrons, the normal nonbonded potential does not apply

to them and we must avoid calculating nonbonded forces

between such excluded pairs of atoms. The number of
excluded pairs grows with the size of the simulation, but

the repetitive nature of biomolecules allows all of the

exclusion data to be compressed into a few hundred atom

signatures.
NAMD uses a spatial decomposition strategy for

parallelization in which atoms are assigned to boxes

slightly larger than the cutoff distance in each dimension.

These boxes are then distributed to processors. The
computation of forces between atoms in neighboring

boxes is then independently assigned to processors by a

measurement-based load balancer. Even in serial runs, this

box-based decomposition functions to determine atoms

within the cutoff distance in OðNÞ time. For greater

performance on the CPU, a list of atom pairs is created

periodically for every pair of neighboring boxes.

2) GPU Strategies: The GPU implementation of

nonbonded forces for NAMD takes advantage of all of

the G80 resources made available under the CUDA

programming model. Forces between all pairs of neigh-

boring boxes are evaluated in a single grid, with each

thread block responsible for a pair of boxes. Thirty-two

bytes of data are required per atom, allowing the 16 KB

shared memory to store roughly 500 atoms of one box. A
second box can be stored in the 32 KB of registers

associated with individual threads, with one or two atoms

per thread. Both sets of atoms can be efficiently loaded

from device memory through coalesced reads. For each

atom, the least and greatest excluded atom index as well as

an index into the compressed exclusion table is loaded

along with the coordinates, charge, and Lennard–Jones3http://www.ks.uiuc.edu/Research/namd/.

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 893

parameters. The entire exclusion table, stored as individual
bits, can then be stored in the 8 KB constant cache. The

force interpolation table is implemented through the

texture unit, which provides special hardware for linear

interpolation. A total of 512 sample points for four

different functions fit in the 8 KB texture cache.

All threads in a block simultaneously iterate through

the atoms in shared memory, accumulating the forces on

the atoms in their individual registers. Since all threads
access the same shared memory location, data are

broadcast to all threads by the hardware, and no bank

conflict penalty is incurred. The force between any pair of

atoms is only calculated if they are within the cutoff

distance, which produces a small performance gain despite

the added branch because, in a significant fraction of cases,

all of the threads within a warp will have atoms outside of

the cutoff distance. It is possible to use shared memory to
accumulate reciprocal forces, reducing the number of

force calculations by half, but the overhead of synchro-

nizing threads between individual force calculations

exceeds the cost of performing the calculations them-

selves. When the forces on the atoms in registers have

been accumulated, the forces are written to a buffer in

device memory, the atoms in registers and shared memory

are swapped, and the force calculation is repeated for the
new atoms. Once the force-calculation grid completes, a

second grid with one block per box accumulates forces for

each atom from all of its output buffers and writes the net

force to a contiguous array that can be efficiently copied to

the CPU. All force reads and writes are coalesced by the

hardware.

When implemented in a test harness with box

dimensions exactly equal to the cutoff distance, the
GPU provided a factor of 20 performance increase over a

single CPU core. In order to reduce the frequency of

assigning atoms to boxes and to keep hydrogen atoms in

the same processor as the heavy atoms to which they are

bonded, NAMD uses larger boxes, 16 �A for a 12 �A cutoff.

As a result, more than 93% of pairs of atoms in

neighboring boxes are beyond the cutoff distance. On

the CPU, this is dealt with through a pair list, updated
every ten steps, that stores all atoms that are or may move

within the cutoff distance of another atom before the next

update. Experiments with using a pair list on the GPU,

loading atoms randomly through the texture unit, showed

double the speed of the box method above, but building

the pairlist on the CPU and copying it to the GPU more

than negated this advantage. Generating the pairlist

efficiently on the GPU may require atomic memory
operations not available in CUDA. The current GPU

implementation has reduced the time for nonbonded

force calculation in NAMD to the level that it can be

overlapped with bonded forces and the PME long-range

force calculation on the CPU. These other calculations

must be ported to the GPU before further optimization of

nonbonded forces will be useful.

C. VMD: Electrostatics of Biomolecules
VMD (visual molecular dynamics)4 is a molecular

visualization and analysis tool that includes scripting and

plugin interfaces for user-extensibility and automation of

complex tasks [31]. State-of-the-art GPUs offer new

opportunities for accelerating computationally demanding

analyses on desktop computers, which previously required

batch mode runs on clusters or supercomputers [30].

While many nongraphical functions within VMD are
well suited to GPU acceleration, one particularly compu-

tationally demanding feature of the program is the ability

to calculate electrostatic potential maps. Electrostatic

potential maps can be used for visualization, for placing

ions during structure building, and can be time-averaged to

better capture regions of structure where ions bind

transiently, for example. Full-accuracy direct summation

of Coulomb potentials proves to be a versatile method for
many analyses, but it is far too computationally expensive

for casual use on CPUs, particularly in the case of time-

averaged analyses. The inherent data parallelism of the

direct summation method makes it extremely well suited

to execution on GPUs.

1) Direct Coulomb Summation Algorithm: The direct

Coulomb summation algorithm computes the sum of the
partial charges of all atoms scaled by their distance to the

point in the electrostatic field being evaluated. Since

electrostatic potentials can be computed entirely indepen-

dently from one another, an effective parallel decompo-

sition is achieved by assigning potential evaluations to

individual GPU computation threads. Each GPU thread

computes its assigned potential values by looping over all

of the atoms, summing the results, and storing them out to
GPU global memory. A simplified sequential form of the

computation for a single point in the electrostatic field is

shown in pseudocode below:

potential ¼ 0:0;

for atomindex ¼ 1 to numatoms

r ¼ distance (atomindex, voxelcoordinate);

potential ¼ potential þ ðcharge½atomindex�=rÞ

2) GPU Kernel Optimization: The CUDA implementation

of this algorithm makes use of register-speed constant

memory to store atom coordinates and charges, since they

are concurrently accessed in the inner loop of all of the

GPU threads. Due to the limited size of the constant

memory, potentials are evaluated in multiple passes,
reloading the constant memory with new atom data in

each successive pass. Significant performance improve-

ments were achieved through loop unrolling optimizations

and precomputation of partial components of atom

distance vectors that are constant over individual rows

4http://www.ks.uiuc.edu/Research/vmd/.

Owens et al.: GPU Computing

894 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

and planes within the potential grid. GPU shared memory

can be used for storage of intermediate potential sums,

counteracting register pressure induced by the loop

unrolling optimizations. These optimizations decrease

the number of memory references per atom potential

evaluation, making the kernel compute-bound. The
CUDA-Unroll8y kernel precomputes constant portions of

atom distance vectors using GPU shared memory, at the

cost of limiting CUDA thread block geometries that

negatively impact performance on smaller potential maps.

3) Single GPU Performance Results: The performance

results in Table 2 compare the performance levels

achieved by highly tuned CPU kernels using SSE
instructions versus CUDA GPU kernels, all implemented

in C. Benchmarks were run on a system consisting of a

2.6 GHz Intel QX6700 quad-core CPU with GeForce

8800 GTX GPUs. The CPU-based SSE kernels take ad-

vantage of all algorithmic optimizations and measure peak

performance obtainable without resorting to assembly

language. The CUDA-Simple GPU kernel illustrates

performance gains achieved with a direct mapping of the
computation to GPU threads, without the arithmetic or

loop unrolling optimizations used in the other GPU

kernels. The CUDA-Unroll8y kernel uses shared memory

and additional precomputation techniques to achieve high

performance for the number of floating-point arithmetic

operations, providing an example of the utility of these

techniques, though it falls short of the peak-performing

CUDA-Unroll8clx kernel. The CUDA-Unroll8clx kernel
reorganizes global memory references so that they occur

only at the end of the kernel, eliminating the need for

shared memory storage as a means of reducing register

pressure. Like the CUDA-Unroll8y kernel, this kernel

benefits from global memory coalescing. The CUDA-

Unroll8clx kernel outperforms all others due to the

comparative simplicity of its inner loop, and even though

it does significantly more arithmetic than the CUDA-
Unroll8y kernel. All floating-point arithmetic operations

are counted as 1 flop with the exception of multiply–add

and reciprocal–sqrt, which are counted as 2 flops.

4) Parallel Multi-GPU Runs: When calculating potentials

for multimillion atom structures and particularly when

time-averaging the potential calculations, ample parallel-

ism is available to usefully occupy multiple GPUs. Since
the amount of computation is identical for each potential

calculation, a coarse, statically load-balanced, round robin

parallel decomposition of individual 2-D potential map

slices onto the pool of GPUs works very well. For each

GPU, a CPU thread is created on the host machine and is

assigned the task of managing one GPU. Each of these GPU

management threads loops over the potential grid,

calculating the 2-D slices it is responsible for by running
GPU kernels and managing I/O to and from the GPU. The

main limitation to parallel scaling of multiple GPUs within

a single host system is the bandwidth of the PCI Express

bus connecting the GPUs to the host. When possible,

multi-GPU applications should ensure that host CPU

threads, GPU direct memory access buffers, and GPUs are

matched according to CPU affinity, NUMA memory

topology, and bus topology yielding the highest bandwidth
between the host thread and GPU. Fortunately, in the

present instance, for all but the smallest test cases, the

computation time dominates and the available bus

bandwidth is inconsequential. Benchmarks were run on

a system consisting of two dual-core 2.4 GHz AMD

Opteron 2216 CPUs with two QuadroPlexes, each contain-

ing two Quadro FX 5600 GPUs. Performance scaled

linearly with up to four GPUs (maximum GPU capacity of
the test system), yielding an aggregate performance of

157 billion atom evaluations per second and 1161 Gflops.

5) Incorporation of CUDA GPU Kernels Into VMD: The

software engineering required to integrate the CUDA-based

GPU accelerated kernels into VMD was straightforward. In

practice, incorporating GPU accelerated kernels into a large

application like VMD is quite similar to doing so for highly
tuned CPU kernels. While CUDA allows much greater

flexibility than previous generation GPU programming

environments in terms of the sophistication of data structures

and data types that can be used, the performance considera-

tions of state-of-the-art hardware still favor compact, dense

data structures that are often rearranged, aligned, or padded

for most efficient access by the GPU. CPU-based algorithms

using SSE acceleration face similar requirements, so this
scenario is not unusual in high-performance scientific

software. VMD detects the availability of CUDA GPU

acceleration at startup, storing the number and the

characteristics of CUDA-capable GPUs. When calls are

made to GPU accelerated functions within VMD, a compu-

tation strategy routine refers to this information and creates

host threads to manage each of the GPUs. If the GPU strategy

routine encounters a problem size that cannot be handled by
the GPUs or an unrecoverable error occurs, VMD falls back to

using multithreaded SSE CPU routines instead. One open

problem with this BCPU fallback[approach is that if it occurs

during a noninteractive batch mode run, the CPU perfor-

mance may be tens to hundreds of times slower than a GPU-

accelerated run. Such a large performance drop would be a

very unwelcome surprise to a researcher waiting for a large

Table 2 Direct Coulomb Summation Kernel Performance Results

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 895

analysis job to complete. In some cases, it may be preferable
for such situations to result in termination of the calculation

rather than running an unusably slow CPU-based kernel.

VIII. THE FUTURE OF GPU COMPUTING

With the rising importance of GPU computing, GPU

hardware and software are changing at a remarkable pace.

In the upcoming years, we expect to see several changes to
allow more flexibility and performance from future GPU

computing systems:

• At Supercomputing 2006, both AMD and NVIDIA

announced future support for double-precision

floating-point hardware by the end of 2007. The

addition of double-precision support removes one

of the major obstacles for the adoption of the GPU

in many scientific computing applications.
• Another upcoming trend is a higher bandwidth

path between CPU and GPU. The PCI Express bus

between CPU and GPU is a bottleneck in many

applications, so future support for PCI Express 2,

HyperTransport, or other high-bandwidth connec-

tions is a welcome trend. Sony’s PlayStation 3

and Microsoft’s XBox 360 both feature CPU–

GPU connections with substantially greater band-
width than PCI Express, and this additional

bandwidth has been welcomed by developers. We

expect the highest CPU–GPU bandwidth will be

delivered by . . .
• . . . future systems, such as AMD’s Fusion, that

place both the CPU and GPU on the same die.

Fusion is initially targeted at portable, not high-

performance, systems, but the lessons learned
from developing this hardware and its heteroge-

neous APIs will surely be applicable to future

single-chip systems built for performance. One

open question is the fate of the GPU’s dedicated

high-bandwidth memory system in a computer

with a more tightly coupled CPU and GPU.

• Pharr notes that while individual stages of the

graphics pipeline are programmable, the structure
of the pipeline as a whole is not [32], and proposes

future architectures that support not just program-

mable shading but also a programmable pipeline.

Such flexibility would lead to not only a greater

variety of viable rendering approaches but also

more flexible general-purpose processing.

• Systems such as NVIDIA’s 4-GPU Quadroplex are

well suited for placing multiple coarse-grained
GPUs in a graphics system. On the GPU computing

side, however, fine-grained cooperation between

GPUs is still an unsolved problem. Future API

support such as Microsoft’s Windows Display

Driver Model 2.1 will help multiple GPUs to

collaborate on complex tasks, just as clusters of

CPUs do today.

A. Top Ten Problems in GPGPU
At Eurographics 2005, the authors presented their list

of top ten problems in GPGPU. At the time we hoped that

these problems would help focus the efforts of the GPGPU

community on broad problems of general interest. In the

intervening two years, substantial progress has been made

on many of these problems, yet the problems themselves

continue to be worthy of further study.

The killer app: Perhaps the most important question
facing the community is finding an application that will

drive the purchase of millions of GPUs. The number of

GPUs sold today for computation is minuscule compared

to the overall GPU market of half a billion units per year; a

mass-market application that spurred millions of GPU

sales, enabling a task that was not previously possible,

would mark a major milestone in GPU computing.

Programming models and tools: With the new program-
ming systems in Section IV, the state of the art over the

past year has substantially improved. Much of the difficulty

of early GPGPU programming has dissipated with the new

capabilities of these programming systems, though support

for debugging and profiling on the hardware is still

primitive. One concern going forward, however, is the

proprietary nature of the tools. Standard languages, tools,

and APIs that work across GPUs from multiple vendors
would advance the field, but it is as yet unclear whether

those solutions will come from academia, the GPU

vendors, or third-party software companies, large or small.

GPU in tomorrow’s computer?: The fate of coprocessors

in commodity computers (such as floating-point copro-

cessors) has been to move into the chipset or onto the

microprocessor. The GPU has resisted that trend with

continued improvements in performance and functionality
and by becoming an increasingly important part of today’s

computing environmentsVunlike with CPUs, the demand

for continued GPU performance increases has been

consistently large. However, economics and potential

performance are motivating the migration of powerful

GPU functionality onto the chipset or onto the processor

die itself. While it is fairly clear that graphics capability is a

vital part of future computing systems, it is wholly unclear
which part of a future computer will provide that

capability, or even if an increasingly important GPU with

parallel computing capabilities could absorb a CPU.

Design tradeoffs and their impact on the programming
model: GPU vendors are constantly weighing decisions

regarding flexibility and features for their programmers:

how do those decisions impact the programming model

and their ability to build hardware capable of top
performance? An illustrative example is data conditionals.

Today, GPUs support conditionals on a thread granularity,

but conditionals are not free; any GPU today pays a

performance penalty for incoherent branches. Program-

mers want a small branch granularity so each thread can be

independent; architects want a large branch granularity to

build more efficient hardware. Another important design

Owens et al.: GPU Computing

896 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

decision is thread granularity: less powerful but many
lightweight threads versus fewer, more powerful heavy-

weight threads. As the programmable aspects of the

hardware increasingly take center stage, and the GPU

continues to mature as a general-purpose platform, these

tradeoffs are only increasing in importance.

Relationship to other parallel hardware and software:
GPUs are not the only innovative parallel architecture in

the field. The Cell Broadband Engine, multicore CPUs,
stream processors, and others are all exploiting parallelism

in different ways. The future health of GPU computing

would benefit if programs written for GPUs run efficiently

on other hardware and programs written for other

architectures can be run on GPUs. The landscape of

parallel computing will continue to feature many kinds of

hardware, and it is important that GPUs be able to benefit

from advances in parallel computing that are targeted
toward a broad range of hardware.

Managing rapid change: Practitioners of GPU comput-

ing know that the interface to the GPU changes markedly

from generation to generation. This is a very different

model than CPUs, which typically maintain API consis-

tency over many years. As a consequence, code written for

one generation of GPUs is often no longer optimal or even

useful in future generations. However, the lack of
backward compatibility is an important key in the ability

of GPU vendors to innovate in new GPU generations

without bearing the burden of previous decisions. The

introduction of the new general-purpose programming

environments from the vendors that we described in

Section IV may finally mark the beginning of the end of

this churn. Historically, CPU programmers have generally

been able to write code that would continue to run faster
on new hardware (though the current focus on multiple

cores may arrest this trend; like GPUs, CPU codes will

likely need to be written as parallel programs to continue

performance increases). For GPU programmers, however,

the lack of backward compatibility and the lack of

roadmaps going forward make writing maintainable code

for the long term a difficult task.

Performance evaluation and cliffs: The science of
program optimization for CPUs is reasonably well

understoodVprofilers and optimizing compilers are

effective in allowing programmers to make the most of

their hardware. Tools on GPUs are much more

primitiveVmaking code run fast on the GPU remains

something of a black art. One of the most difficult

ordeals for the GPU programmer is the performance cliff,

where small changes to the code, or the use of one
feature rather than another, make large and surprising

differences in performance. The challenge going forward

is for vendors and users to build tools that provide better

visibility into the hardware and better feedback to the

programmer about performance characteristics.

Philosophy of faults and lack of precision: The hardware

graphics pipeline features many architectural decisions

that favored performance over correctness. For output to
a display, these tradeoffs were quite sensible; the

difference between perfectly Bcorrect[output and the

actual output is likely indistinguishable. The most notable

tradeoff is the precision of 32-bit floating-point values in

the graphics pipeline. Though the precision has im-

proved, it is still not IEEE compliant, and features such as

denorms are not supported. As this hardware is used for

general-purpose computation, noncompliance with stan-
dards becomes much more important, and dealing with

faultsVsuch as exceptions from division by zero, which

are not currently supported in GPUsValso becomes an

issue.

Broader toolbox for computation and data structures: On

CPUs, any given application is likely to have only a small

fraction of its code written by its author. Most of the code

comes from libraries, and the application developer
concentrates on high-level coding, relying on established

APIs such as STL or Boost or BLAS to provide lower level

functionality. We term this a Bhorizontal[model of

software development, as the program developer generally

only writes one layer of a complex program. In contrast,

program development for general-purpose computing on

today’s GPUs is largely Bvertical[Vthe GPU programmer

writes nearly all the code that goes into his program, from
the lowest level to the highest. Libraries of fundamental

data structures and algorithms that would be applicable to

a wide range of GPU computing applications (such as

NVIDIA’s FFT and dense matrix algebra libraries) are only

just today being developed but are vital for the growth of

GPU computing in the future.

Wedding graphics and GPU computing: One of the most

powerful motivations for GPU computing in the near term
is the use of general-purpose elements within traditional

graphics applications. The GPU physics example of

Section VI is an excellent example of such a trend. As

new programming environments for GPU computing offer

easier and more flexible ways to share data between

computing and graphics, and the performance of that

sharing improves from the relatively inefficient methods of

today, we expect to see an increasing amount of GPU-
based general-purpose computation within traditional

graphics applications such as games and visualization

applications. h

Acknowledgment

The authors wish to thank E. Elsen, V. Vishal, E. Darve,

and V. Pande, as well as P. L. Freddolino, D. J. Hardy,
L. G. Trabuco, and K. Schulten, for their contributions to

this paper. J. Owens thanks M. Doggett for his helpful

comments and figure contribution. J. Phillips and J. Stone

thank Prof. W. Hwu and the members of the IMPACT group

at the University of Illinois at Urbana-Champaign and

D. Kirk and the members of the NVIDIA CUDA develop-

ment team for their helpful insight and support.

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 897

REFERENCES

[1] J. D. Owens, D. Luebke, N. Govindaraju,
M. Harris, J. Krüger, A. E. Lefohn, and
T. Purcell, BA survey of general-purpose
computation on graphics hardware,[Comput.
Graph. Forum, vol. 26, no. 1, pp. 80–113,
2007.

[2] D. Blythe, BThe Direct3D 10 system,[
ACM Trans. Graph., vol. 25, no. 3,
pp. 724–734, Aug. 2006.

[3] M. Harris, BMapping computational concepts
to GPUs,[in GPU Gems 2, M. Pharr, Ed.
Reading, MA: Addison-Wesley, Mar. 2005,
pp. 493–508.

[4] I. Buck, T. Foley, D. Horn, J. Sugerman,
K. Fatahalian, M. Houston, and P. Hanrahan,
BBrook for GPUs: Stream computing on
graphics hardware,[ACM Trans. Graph.,
vol. 23, no. 3, pp. 777–786, Aug. 2004.

[5] M. McCool, S. Du Toit, T. Popa, B. Chan, and
K. Moule, BShader algebra,[ACM Trans.
Graph., vol. 23, no. 3, pp. 787–795,
Aug. 2004.

[6] D. Tarditi, S. Puri, and J. Oglesby,
BAccelerator: Using data-parallelism to
program GPUs for general-purpose uses,[in
Proc. 12th Int. Conf. Architect. Support
Program. Lang. Oper. Syst., Oct. 2006,
pp. 325–335.

[7] M. McCool, BData-parallel programming
on the cell BE and the GPU using the
RapidMind development platform,[in
Proc. GSPx Multicore Applicat. Conf.,
Oct.–Nov. 2006.

[8] PeakStream, The PeakStream platform:
High productivity software development for
multi-core processors. [Online]. Available:
http://www.peakstreaminc.com/reference/
peakstream_platform_technote.pdf

[9] G. Blelloch, Vector Models for Data-Parallel
Computing. Cambridge, MA: MIT Press,
1990.

[10] M. Harris, S. Sengupta, and J. D. Owens,
BParallel prefix sum (scan) with CUDA,[in
GPU Gems 3, H. Nguyen, Ed. Reading, MA:
Addison-Wesley, Aug. 2007, pp. 851–876.

[11] K. E. Batcher, BSorting networks and their
applications,[in Proc. AFIPS Spring Joint
Comput. Conf., Apr. 1968, vol. 32,
pp. 307–314.

[12] N. K. Govindaraju, M. Henson, M. C. Lin, and
D. Manocha, BInteractive visibility ordering

of geometric primitives in complex
environments,[in Proc. 2005 Symp.
Interact. 3D Graph. Games, Apr. 2005,
pp. 49–56.

[13] D. Horn, BStream reduction operations
for GPGPU applications,[in GPU Gems 2,
M. Pharr, Ed. Reading, MA:
Addison-Wesley, Mar. 2005, pp. 573–589.

[14] B. Bustos, O. Deussen, S. Hiller, and D. Keim,
BA graphics hardware accelerated algorithm
for nearest neighbor search,[in Proc. 6th Int.
Conf. Comput. Sci., May 2006, vol. 3994,
pp. 196–199, Lecture Notes in Computer
Science.

[15] N. K. Govindaraju, B. Lloyd, W. Wang,
M. Lin, and D. Manocha, BFast computation
of database operations using graphics
processors,[in Proc. 2004 ACM SIGMOD
Int. Conf. Manage. Data, Jun. 2004,
pp. 215–226.

[16] N. K. Govindaraju and D. Manocha, BEfficient
relational database management using
graphics processors,[in Proc. ACM SIGMOD
Workshop Data Manage. New Hardware,
Jun. 2005, pp. 29–34.

[17] J. Krüger, P. Kipfer, P. Kondratieva, and
R. Westermann, BA particle system for
interactive visualization of 3D flows,[IEEE
Trans. Vis. Comput. Graphics, vol. 11,
pp. 744–756, Nov.–Dec. 2005.

[18] J. Bolz, I. Farmer, E. Grinspun, and
P. Schröder, BSparse matrix solvers on the
GPU: Conjugate gradients and multigrid,[
ACM Trans. Graph., vol. 22, no. 3,
pp. 917–924, Jul. 2003.

[19] A. E. Lefohn, BA streaming narrow-band
algorithm: Interactive computation and
visualization of level-set surfaces,[Master’s
thesis, Univ. of Utah, Dec. 2003.

[20] M. Kass, A. Lefohn, and J. Owens,
BInteractive depth of field using simulated
diffusion on a GPU,[Pixar Animation Studios,
Tech. Rep. 06-01. [Online]. Available: http://
www.graphics.pixar.com/DepthOfField/

[21] J. Krüger and R. Westermann, BLinear algebra
operators for GPU implementation of
numerical algorithms,[ACM Trans. Graph.,
vol. 22, no. 3, pp. 908–916, Jul. 2003.

[22] K. Fatahalian, J. Sugerman, and P. Hanrahan,
BUnderstanding the efficiency of GPU
algorithms for matrix-matrix multiplication,[

in Proc. Graph. Hardware 2004, Aug. 2004,
pp. 133–138.

[23] N. Galoppo, N. K. Govindaraju, M. Henson,
and D. Manocha, BLU-GPU: Efficient
algorithms for solving dense linear systems on
graphics hardware,[in Proc. ACM/IEEE Conf.
Supercomput., Nov. 2005, p. 3.

[24] P. M. Hubbard, BCollision detection for
interactive graphics applications,[IEEE Trans.
Vis. Comput. Graphics, vol. 1, no. 3,
pp. 218–230, 1995.

[25] E. Elsen, V. Vishal, M. Houston, V. Pande,
P. Hanrahan, and E. Darve, BN-body
simulations on GPUs,[Stanford Univ.,
Stanford, CA, Tech. Rep. [Online]. Available:
http://www.arxiv.org/abs/0706.3060

[26] I. Buck, K. Fatahalian, and P. Hanrahan,
BGPUBench: Evaluating GPU performance
for numerical and scientific applications,[in
Proc. 2004 ACM Workshop General-Purpose
Comput. Graph. Process., Aug. 2004, p. C-20.

[27] E. Lindahl, B. Hess, and D. van der Spoel,
BGROMACS 3.0: A package for molecular
simulation and trajectory analysis,[J. Mol.
Mod., vol. 7, pp. 306–317, 2001.

[28] G. Jaychandran, V. Vishal, and V. S. Pande,
BUsing massively parallel simulations and
Markovian models to study protein folding:
Examining the Villin head-piece,[J. Chem.
Phys., vol. 124, no. 6, pp. 164 903–164 914,
2006.

[29] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot,
R. D. Skeel, L. Kale, and K. Schulten,
BScalable molecular dynamics with NAMD,[
J. Comp. Chem., vol. 26, pp. 1781–1802,
2005.

[30] J. E. Stone, J. C. Phillips, P. L. Freddolino,
D. J. Hardy, L. G. Trabuco, and K. Schulten,
BAccelerating molecular modeling
applications with graphics processors,[
J. Comp. Chem., vol. 28, pp. 2618–2640,
2007.

[31] W. Humphrey, A. Dalke, and K. Schulten,
BVMD-visual molecular dynamics,[J. Mol.
Graph., vol. 14, pp. 33–38, 1996.

[32] M. Pharr, BInteractive rendering in the
post-GPU era,[in Proc. Graph. Hardware
2006. keynote. [Online]. Available: http://
www.graphicshardware.org/previous/
www_2006/presentations/pharr-keynote-
gh06.pdf

ABOUT THE AUTHORS

John D. Owens received the B.S. degree in

electrical engineering and computer sciences

from the University of California, Berkeley, in

1995 and the Ph.D. degree in electrical engineering

from Stanford University, Stanford, CA, in 2003.

He is an Assistant Professor of Electrical

and Computer Engineering at the University of

California, Davis. His research interests are in GPU

computing (GPGPU) and more broadly commodity

parallel hardware and programming models.

Mike Houston received the B.S. degree from the

University of California, San Diego, and the M.S

degree from Stanford University, Stanford, CA, in

2001 and 2003, respectively, both in computer

science. He is currently pursuing the Ph.D. degree

in computer science from Stanford University.

His doctoral work is with the Stanford Univer-

sity Graphics Lab researching parallel program-

ming languages, architectures, and algorithms. His

research interests are in parallel architectures,

programming models, and algorithms. His current research is Sequoia, a

programming language centered around a parallel memory hierarchies

abstraction, allowing for portability and efficient execution on many

parallel architectures.

Owens et al.: GPU Computing

898 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

David Luebke received the B.A. degree in

chemistry from Colorado College, Colorado

Springs, and the Ph.D. degree in computer science

from the University of North Carolina, Chapel Hill.

He is a Research Scientist with NVIDIA Corpo-

ration. His principal research interests are general-

purpose GPU computing and realistic real-time

computer graphics. His specific recent projects

include fast multilayer subsurface scattering for

realistic skin rendering, temperature-aware

graphics architecture, scientific computation on graphics hardware,

advanced reflectance and illumination models for real-time rendering,

and image-based acquisition of real-world environments. His other

projects include Level of Detail for 3D Graphics, for which he is lead

author, and the Virtual Monticello exhibit in the major exhibition

BJefferson’s America and Napoleon’s France[at the New Orleans

Museum of Art.

Simon Green is a Senior Software Engineer in the

Developer Technology Group, NVIDIA, Santa Clara,

CA. His work focuses on developing new rendering

and simulation techniques and helping application

developers take maximum advantage of GPU

hardware. He is a regular presenter at the Game

Developer and Siggraph conferences and has

contributed to the GPU Gems series of books. His

research interests include physical simulation,

image processing, and GPU ray tracing.

John E. Stone received the B.S. and M.S. degrees

in computer science from the University of

Missouri at Rolla in 1998 and 1994, respectively.

He is a Senior Research Programmer in the

Theoretical and Computational Biophysics

Group, Beckman Institute for Advanced Science

and Technology, University of Illinois at Urbana-

Champaign. His research interests include scien-

tific visualization, GPU computing (GPGPU),

parallel rendering, virtual reality and haptic

interfaces for interactive simulation, and high-performance computing.

He is Lead Developer of the VMD molecular visualization and analysis

program.

James C. Phillips received the B.S. in physics and

mathematics from Marquette University, Milwaukee,

Wisconsin, and the Ph.D. degree in physics from the

University of Illinois at Urbana-Champaign.

He is a Senior Research Programmer in the

Theoretical and Computational Biophysics Group,

Beckman Institute for Advanced Science and

Technology, University of Illinois at Urbana-

Champaign. Since 1999, he has been Lead

Developer of the highly scalable parallel molec-

ular dynamics program NAMD. His research interests include improving

the performance and accuracy of biomolecular simulations through

parallelization, optimization, hardware acceleration, better algorithms,

and new methods.

Dr. Phillips received the Gordon Bell Award in 2002.

Owens et al. : GPU Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 899

