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Abstract

The performance analysis of multiserver systems is notoriously hard, especially when the system
involves resource sharing or prioritization. We provide two new analytical tools for the perfor-
mance analysis of multiserver systems: moment matching algorithms and dimensionality reduction
of Markov chains (DR).

Moment matching algorithms allow us to approximate a general distribution with a phase type
(PH) distribution. Our moment matching algorithms improve upon existing ones with respect to
the computational efficiency (we provide closed form solutions) as well as the quality and general-
ity of the solution (the first three moments of almost any nonnegative distribution are matched).
Approximating job size and interarrival time distributions by PH distributions enables modeling a
multiserver system by a Markov chain, so that the performance of the system is given by analyzing
the Markov chain. However, when the multiserver system involves resource sharing or prioritiza-
tion, the Markov chain often has a multidimensionally infinite state space, which makes the analysis
computationally hard.

DR allows us to closely approximate a multidimensionally infinite Markov chain with a Markov
chain on a one-dimensionally infinite state space, which can be analyzed efficiently. We validate the
accuracy of DR against simulation. Further, we formally define two classes of multidimensionally
infinite Markov chains, called recursive foreground-background processes and generalized foreground-
background processes (RFB/GFB processes), and analyze the RFB/GFB process via DR. The def-
inition of the RFB/GFB process enables one to easily identify whether a given multiserver system
can be analyzed via DR, and our analysis of the RFB/GFB process enables the immediate analysis
of a multiserver system by simply modeling it as an RFB/GFB process.

These new analytical tools enable us to analyze the performance of many multiserver systems
with resource sharing or prioritization for the first time. For example, we study the benefit and
penalty of cycle stealing, the effectiveness of prioritization and threshold-based resource allocation
policies for multiserver systems, and the impact of job size variability and irregularity of arrival
processes on the response time in multiserver systems. Our analysis results in lessons on the design
of good resource allocation policies for multiserver systems.
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Chapter 1

Introduction

How can we analyze the performance of multiserver systems efficiently and accurately?

1.1 Motivation

The use of multiple servers (such as computers, operators, and machines) is ubiquitous. In our
everyday life, we frequently see more than one teller serving at a bank, more than one checker at a
supermarket, and more than one cashier at a fast food restaurant, in situations where a single teller,
checker, or cashier is insufficient to handle the volume of customers. Similarly, the use of multiple
computers is popular in computer systems such as web server farms and supercomputing centers,
because the use of multiple computers is a cost-effective and scalable solution for achieving high
performance and dependability (reliability).

When we design a multiserver system (or even a single-server system), an important step is to
analyze and understand their performance. The study of system performance analysis dates back
to the seminal work of A. K. Erlang in 1917 [50], where he provided formulas that can be used to
evaluate the performance at a telephone exchange. Erlang’s formulas were heavily used by telephone
companies to provide necessary and sufficient resources, which led to the successful and rapid growth
of telephone networks. Erlang’s work was followed by many researchers and developed into a theory
known today as queueing theory.

Queueing theory was introduced to computer scientists in 1960s by L. Kleinrock and others,
and contributed to the successful growth of computer systems such as the Internet and time-sharing
systems. For example, J. R. Jackson’s theory for networks of queues [83, 84] was used to study the
performance of the ARPANET, a precursor of the Internet. Understanding how the performance is
affected by various parameters was an important necessary step for optimizing the network topology,
capacity assignment, and flow control of the ARPANET [101, 102].

Although Erlang’s formulas and Jackson’s theory are defined for (simple) multiserver systems,
much of queueing theory has been developed ironically for single-server systems. In earlier days
(prior to the 1970s), researchers in queueing theory provided beautiful and simple formulas that can
be used directly to evaluate the performance of single-server systems and some of the simplest models
of multiserver systems such as the ones studied by Erlang and Jackson. These explicit formulas not
only can be evaluated numerically but also can give us good intuition on how the system parameters
affect the performance. However, as researchers moved on to more complex models, the formulas
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that they obtained became more complex. This was particularly true for multiserver systems. As a
result, although classical queueing theory provides beautiful formulas that allow us to evaluate the
performance of complicated single-server systems, it provides much less for multiserver systems. (See
[189] for more details of a history of queueing theory.)

Today’s multiserver systems can employ more complex configurations and/or more complex re-
source allocation towards more efficient and more profitable operations. For example, advancement
of operating systems and communication technology allows sharing resources among tasks or users for
utilizing otherwise idle CPU cycles. Also, advancement of technology such as information retrieval
and data mining enables one to identify customers (jobs, or tasks) who are likely to bring more
revenue to a company, and today’s routers allow a sophisticated assignment of customers to servers
based on the available information on the customers (e.g. based on the priority of the customers).

For the performance evaluation of these multiserver systems with resource sharing or prioriti-
zation, analytical tools are largely unavailable. The lack of analytical tools is unfortunate, since
analytical tools have been proved to be effective in allocating necessary and sufficient resources, for
example, at telephone exchanges and the ARPANET. Such capacity planning remains difficult for
multiserver systems with resource sharing or prioritization.

Also, due to the lack of analytical tools, it is not well understood what is a good configuration
and what is a good resource allocation policy for a multiserver system with resource sharing or
prioritization. It is also not well understood how different configurations and different resource
allocation policies compare with respect to their performance in these multiserver systems. In fact,
many fundamental questions regarding the performance of multiserver systems, of importance to
system designers and service providers, are largely unanswered.

For example, when a high volume web site (web server farm) receives requests of web pages or
files, each request must be dispatched to exactly one of the web servers to be served. Similarly,
when a supercomputing center receives jobs (tasks), each job must be dispatched to exactly one of
the host machines for processing (see Figure 1.1(a)). The rule for assigning requests/jobs to host
servers/machines is known as the task assignment policy. The choice of the task assignment policy
can have a significant effect on the performance perceived by users of web sites and supercomputing
centers. Designing a distributed server system such as web server farms and supercomputing centers
thus often comes down to choosing the “best” possible task assignment policy for the given system
and user requirements.

However, analyzing even the simplest task assignment policies can prove to be difficult. As a
result, fundamental questions regarding the optimal task assignment policy and relative performance
among various task assignment policies are largely open.

Which job should be assigned to which server? What is the best task assignment policy, and how
does its performance compare to other task assignment policies?

Networks of workstations can benefit tremendously from allowing a user to take advantage of
machines other than her own, at times when those machines are idle (see Figure 1.1(b)). This
notion is often referred to as cycle stealing. Cycle stealing has been implemented in various workload
management systems for networks of workstations such as Butler [139], Condor [115, 116], Benevolent
Bandit [54], Sprite [48], Stealth Distributed Scheduler [109], and Linger-Longer [170]. Cycle stealing
is also popular in Internet computing, which allows one to steal idle cycles of personal computers
at home [41]. Internet computing has been used for the purpose of searching for extraterrestrial
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Figure 1.1: Fundamental questions in multiserver systems.

intelligence, protein folding research, cancer research, AIDS research, finding large prime numbers,
etc. More generally, cycle stealing enables one to use multiple servers as a single resource, and has
been receiving attention in the context of grid computing [14, 40, 56].

Despite the popularity of cycle stealing, the performance benefit or penalty of cycle stealing is
not well understood, largely due to the lack of analytical tools for multiserver systems with cycle
stealing. For example, when is cycle stealing a good idea?

When does cycle stealing pay, and how much? Should we always steal idle cycles? Should we
steal only idle cycles?

Analytical tools can also be used to gain insights into the physical nature of a system such as
how the performance of the system is affected by the number of servers, system loads, job size
distributions, and arrival processes of jobs. Such insights into the physical nature of a system are
useful in designing good resource allocation policies for the system and in configuring the system
effectively. However, due to the lack of analytical tools for multiserver systems with resource sharing
and job prioritization, the physical nature of these multiserver systems is not well understood. For
example, a single fast computer of speed s is more expensive than k slow computers, each of speed
s/k, but does this mean that a single fast computer is better (see Figure 1.1(c))?

How many servers are best? Does the answer change depending on system loads, job size
distributions, and how the jobs are processed (e.g., first-come-first-served or with priority)?
How much is the performance different between a single fast computer and k slow computers?
What is the optimal k?

The goal of this thesis is thus twofold. First, we will develop new analytical tools for analyzing the
performance of multiserver systems with resource sharing or job prioritization. Second, we will apply
the new analytical tools to analyze various multiserver systems, addressing the fundamental questions
regarding their performance. Our analysis leads to many lessons and guidelines useful in configuring
multiserver systems and designing good resource allocation policies for multiserver systems.

3



1.2 Difficulty of performance analysis of multiserver systems

We begin by specifying two fundamental problems that we will address towards the first goal of this
thesis, i.e. new analytical tools for the performance analysis of multiserver systems with resource
sharing or job prioritization. To motivate these fundamental problems, it helps to first review some
major attempts to overcome the limitations of classical queueing theory in the performance analysis
of complex (multiserver) systems.

Since classical approaches in queueing theory lead to complex expressions or do not apply for
complex (multiserver) systems, at least two main streams of research emerged: computational prob-
ability and heavy traffic approximations. The theme of computational probability is to give numbers
efficiently. Computational probability provides ways (algorithms) to compute performance measures
rather than explicit (closed form) expressions. The need for computational probability was advo-
cated by M. F. Neuts and others. On the other hand, the theme of heavy traffic approximations is to
provide explicit expressions that are accurate in the heavy traffic limit (when the servers are almost
always busy). Heavy traffic approximations originates from the work of J. F. C. Kingman in 1961
[99], where he provided a heavy traffic approximation for a single-server system via the central limit
theorem. Since computational approaches are subject to inaccuracy and/or slow convergence in the
heavy traffic limit, heavy traffic approximations complement computational probability.

However, even computational probability usually does not apply directly to multiserver systems
with resource sharing or job prioritization. In this thesis, we will address two fundamental problems
towards an analysis of multiserver systems with resource sharing or job prioritization via computa-
tional probability. The first problem involves approximating a general probability distribution by a
collection of exponential distributions. This is an important step in an analysis of (multiserver) sys-
tems via computational probability. The second problem involves a multidimensionally infinite state
space (multidimensional state space) that is needed to capture the behavior of a multiserver system
with resource sharing or prioritization. The difficulty of a performance analysis via computational
probability stems from the multidimensional state space.

Approximating general distributions

Typically, a first step in the analysis via computational probability is to model the behavior of the
system as a Markov chain. (For an introduction to Markov chains, we refer readers to [169, 167, 210].)
By analyzing the Markov chain, we can understand the performance of the system, for example with
respect to the mean response time1 (see Figure 1.2). Modeling as a Markov chain is possible when
system parameters such as service demand (time needed to complete a job) and interarrival time (time
between two consecutive arrivals of jobs) are exponential random variables or some combinations of
exponential random variables (for example, a sum of exponential random variables)2. However,
these system parameters are not usually given as combinations of exponential random variables,
but they are rather given as some general probability distributions. Thus, an important step in
modeling system behavior as a Markov chain is to map these general probability distributions into
some combinations of exponential distributions. Here, we face a fundamental problem in Markov
chain modeling.

How can we map a general distribution into a combination of exponential distributions?

1The response time of a job refers to the time from when the job arrives until it is completed.
2We consider only continuous time systems.
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Figure 1.2: An example of Markov chain modeling: an M/M/1/FCFS queue. The system is modeled
as a Markov chain, and the analysis of the Markov chain gives (mean, variance, etc. of) the response
time of the system. Here, jobs arrive according to a Poisson process with rate λ (i.e., the interarrival
time between two consecutive job arrivals has an exponential distribution with rate λ). The jobs are
served in the order of their arrivals (first-come-first-served, FCFS). The service demand of a job has
an exponential distribution with rate µ.

Multidimensional Markov chains

One of the major achievements in computational probability is the development of algorithmic meth-
ods, which are known as matrix geometric methods [136] and matrix analytic methods [111]. Matrix
geometric/analytic methods allow us to efficiently analyze a Markov chain on a state space that is in-
finite in one dimension and finite in another dimension (1D Markov chain), provided that the Markov
chain has a certain structure (Figure 1.3 shows an example of such a 1D Markov chain). This is in
contrast to classical approaches (that provide exact and explicit expressions), which result in very
complicated expressions that are difficult to evaluate numerically, for the general 1D Markov chains.

The difficulty in the analysis of many multiserver systems stems from the fact that the Markov
chain that models the behavior of the system often has a state space that is infinite in multiple
dimensions (multidimensional Markov chain). Most multidimensional Markov chains cannot be an-
alyzed efficiently via matrix analytic methods or other computational methods. Unfortunately, the
multidimensional Markov chain appears quite frequently in the analysis of multiserver systems with
resource sharing or job prioritization, as these multiserver systems involve multiple classes/types
of jobs.

For example, consider two servers, Betty and Dan, each serving its own queue, but Dan (donor)
allows Betty (beneficiary) to steal his idle cycles. That is, when Dan has no jobs in his queue (and
Betty has more than one job in her queue), we allow Dan to process Betty’s job. We can model the
behavior of this simple cycle stealing system by a Markov chain, but the Markov chain has a state
space that is infinite in two dimensions (2D Markov chain). This is illustrated in Figure 1.4. Since
there is an inherent dependency between the number of Dan’s jobs and the number of Betty’s jobs,
the 2D Markov chain cannot simply be decomposed into two 1D Markov chains. As a result, the
performance analysis of this cycle stealing system requires an analysis of the multidimensional Markov
chain. Here, a fundamental problem arises in the performance analysis of multiserver systems.
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Figure 1.3: A 1D Markov chain.

How can we analyze Markov chains on multidimensionally infinite state spaces?

1.3 Road map

This thesis is organized into three parts. In Part I, we will develop new analytical tools for the
performance analysis of multiserver systems. In Part II, we will address fundamental questions
regarding the performance of multiserver systems. In Part III, we will further discuss applications of
the results in this thesis, and conclude. Although the analytical tools that we provide in Part I are
heavily used to derive results in Part II, Part II can be read independently without any difficulty.
Alternatively, a reader can obtain basic ideas of our analytical tools by reading “Overview” sections
at the beginning of each chapter in Part I, before proceeding to Part II. If, instead, a reader is
interested in applying or building upon our analytical tools, he/she can read the entire Part I, which
provides detailed information on our analytical tools.

1.3.1 Synopsis of Part I: Analytical tools for multiserver systems

Part I is organized into two chapters (see Figure 1.5). In Chapter 2, we address the first fundamental
problem in an analysis of multiserver systems, namely “How can we map a general distribution into
a combination of exponential distributions?” Specifically, we develop moment matching algorithms,
which allow us to map a general probability distribution into a combination of exponential distribu-
tions. Chapter 3 is the heart of this thesis, and here we address the second fundamental problem in
an analysis of multiserver systems, namely “How can we analyze Markov chains on multidimension-
ally infinite state spaces?” Specifically, we introduce dimensionality reduction (DR), which allows
us to analyze a class of multidimensional Markov chains that can model many multiserver systems
with resource sharing or job prioritization. The moment matching algorithm is also used in a key
step of DR.

Moment matching algorithm (Chapter 2)

In Chapter 2, we develop moment matching algorithms, which allow us to map a general probability
distribution into a combination of exponential distributions, known as a phase type (PH) distribution.
Specifically, a moment matching algorithm maps an input (general) distribution, G, into a PH
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Figure 1.4: A multidimensional Markov chain that appears in a multiserver analysis. Here, the ben-
eficiary jobs arrive according to a Poisson process with rate λB, and the donor jobs arrive according
to a Poisson process with rate λD. The service demands of these jobs have exponential distributions.
The beneficiary jobs are usually served by the beneficiary server with rate µB, and the donor jobs
are served by the donor server with rate µD. When there are no donor jobs and there are at least
two beneficiary jobs, the donor server helps the beneficiary server (i.e., the donor server processes a
beneficiary job), and hence the beneficiary jobs are completed with rate 2µB.

distribution, P , such that some moments of G and P agree. For example, if the first moment of G
and P agree, then the corresponding random variables have the same mean. If the first two moments
of G and P agree, then the corresponding random variables have the same mean and variance. In
practice, matching more moments leads to a better approximation. Moment matching algorithms
can be evaluated along four different measures:

1. The number of moments matched: In general matching more moments is desirable.

2. The computational efficiency of the algorithm: It is desirable that the algorithm have
short running time.

3. The generality of the solution: Ideally the algorithm should work for as broad a class of
distributions as possible.

4. The minimality of the number of phases: It is desirable that the matching PH distribution,
P , have a small number of exponential distributions (phases).

We will provide moment matching algorithms which perform very well along all four of these
measures. (i) Our moment matching algorithms match first three moments; (ii) their running time
does not depend on the input distribution (we provide closed form solutions for the parameters of
the approximate PH distribution); (iii) they apply to the widest possible set of input distributions;
(iv) they require a nearly minimal number of phases.

To prove that our moment matching algorithms use a nearly minimal number of phases, we need
to know the minimal number of phases needed to approximate (by matching first three moments) an
input distribution by a PH distribution. We will therefore start by providing a formal characterization
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of the set of distributions that are approximated by an n-phase PH distribution, for each n =
1, 2, 3, .... This characterization is used to prove the minimality of the number of phases used in our
moment matching algorithms.

Dimensionality reduction of Markov chains (Chapter 3)

Instead of analyzing individual multiserver systems separately, we will define a broad class of multi-
dimensional Markov chains that allow us to model many multiserver systems with resource sharing
or job prioritization, and show an (approximate) analysis of these Markov chains. We will refer to
these multidimensional Markov chains as RFB/GFB (recursive foreground-background or generalized
foreground-background) processes. Also, we will refer to our new analytical method for analyzing
the RFB/GFB process as dimensionality reduction (DR). Our analysis of the RFB/GFB process
via DR will enable one to analyze the performance of many multiserver systems by simply modeling
them as RFB/GFB processes. We will provide many examples of such multiserver systems.

The key idea in the analysis of the RFB/GFB process via DR is the dimensionality reduction
of a multidimensional Markov chain: DR reduces (approximates) a multidimensional Markov chain,
which is hard to analyze, into a 1D Markov chain, which is easy to analyze. Figure 1.6 illustrates
the idea of DR for a simple 2D Markov chain. The 1D Markov chain will be carefully constructed
such that the 1D Markov chain well approximates the multidimensional Markov chain.

Since the analysis of the RFB/GFB process via DR involves approximations, we will extensively
validate the accuracy of DR via simulation. We will find that the error in DR is typically within
5% (and often within 1%) with respect to first order metrics (such as mean response time and mean
queue length), and within 10% with respect to second order metrics (such as the variance of the
queue length).
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Figure 1.6: The key idea in DR: dimensionality reduction (2D → 1D).

1.3.2 Synopsis of Part II: Performance analysis of multiserver systems

Part II is organized into four chapters (see Figure 1.7). In each chapter, we analyze the performance of
particular multiserver systems via DR, and address fundamental questions regarding the multiserver
systems, as we elaborate below. Our analysis leads to lessons and guidelines that are useful in
configuring multiserver systems and designing resource allocation policies for multiserver systems.

Configuring multiserver systems with multiple priority classes (Chapter 4)

In Chapter 4, we address a fundamental question in designing multiserver systems, namely “How
many servers are best to minimize mean response time?” As may be expected, this question has a long
history in the literature; however, it has not been fully resolved. As early as 1958, Morse observed
that for an M/M/k/FCFS system3, the optimal number of servers is one (k = 1) [131]. In 1970,
Stidham formalized and generalized the observation by Morse [188]; Stidham showed that a single
server is optimal in a G/Er/k/FCFS system, namely when the arrival process is a general process
and the service demand has an Erlang distribution (i.e., when the service demand is a sum of i.i.d.,
or independent identically distributed, exponential random variables). Stidham’s result is extended
by Brumelle to the system where the service demand is at most as variable as the exponential
random variable; i.e., a single server is optimal in a G/G/k/FCFS system where the service demand
distribution has the squared coefficient variation at most one (C2 ≤ 1) [31]. For general service
demand distributions, only results for limiting cases are known. Specifically, the work by Reiman
and Simon [161] can be used to show that a single server (k = 1) is optimal in the light traffic
limit (when servers are almost always idle), and the work by Iglehart and Whitt [79] implies that
a multiserver system (GI/GI/k/FCFS) and its single server counterpart (GI/GI/1/FCFS) coincide
in the heavy traffic limit (when servers are almost always busy). In fact, based on these results
in the light and heavy traffic limits, Mandelbaum and Reiman state “One expects, therefore, that
the difference in performance between the systems4 is maximal in light traffic, and it diminishes as

3An M/M/k/FCFS system has a single queue and k servers, where jobs arrive according to a Poisson process, and
the service demand has an exponential distribution. The jobs are served in the order of their arrivals (first-come-first-
served, FCFS).

4These systems refer to a single server system and a multiserver system with the same service capacity.
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Figure 1.7: Organization of Part II: Performance analysis of multiserver systems.

utilization increases to heavy traffic.” [120].
Contrary to the prior work that suggests the optimality of single server systems in special/limiting

cases, we will see that a multiserver system often provides lower mean response time than its single
server counterpart. Specifically, we will see that the optimal number of servers increases as the load
and/or the service demand variability increases. Intuition behind this finding is that multiple servers
allow short jobs to avoid queueing behind long jobs; by contrast, a long job blocks all the other jobs
in a single server system, while being processed.

Above we assume that jobs are served in the order of their arrivals (FCFS); however, real world
systems are not always FCFS. Rather, there is often inherent scheduling in the system to allow high
priority jobs to move ahead of low priority jobs (priority scheduling). For example, the high priority
jobs may carry more importance, e.g., representing users who pay more. Alternatively, high priority
jobs may simply consist of those jobs with small service demand, since giving priority to short jobs
reduces mean response time overall.

The prevalence of priority scheduling motivates us to study the question “How many servers
are best?” under priority scheduling. In particular, how does the optimal number of servers under
priority scheduling compare to that under FCFS, and how is the answer affected by system parameters
such as loads and service demand distributions? To answer these questions, we analyze the mean
response time in a multiserver systems with multiple priority classes via DR, as its analysis involves
a multidimensional Markov chain.

Our analysis shows that the optimal number of servers can be quite different between FCFS and
priority scheduling. Intuition behind this finding is seen by considering an example where shorter
jobs have higher priority: in this case, the benefit of multiple servers (i.e., allowing short jobs to
avoid queueing behind long jobs) is smaller under priority scheduling, since priority scheduling by
itself allows small jobs to jump ahead of long jobs. We will also study how the optimal number of
servers differs for different priority classes, and how the mean response time is affected by choosing a
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non-optimal number of servers. We will also evaluate the accuracy of various existing approximations
for multiserver systems with multiple priority classes, and see that the error in the mean response
time can be as high as 50% or more.

Improving traditional task assignment policy (Chapter 5)

In Chapter 5, we consider a fundamental question in multiserver systems: “Which job should be
assigned to which server?” Specifically, we study task assignment policies in a server farm architecture
shown in Figure 1.1(a), where our objective is to minimize the mean response time. We assume that
the execution of a job cannot be interrupted and subsequently resumed; i.e., a job is run to completion
(nonpreemptive). Our model is motivated by servers at supercomputing centers and other systems,
where jobs are typically run to completion.

When service demands (job sizes) have high variability, it has been shown analytically and em-
pirically that a size-based task assignment policy, Dedicated, far outperforms other common task
assignment policies5 [65, 174]. In the Dedicated policy, some servers are designated as the “short
servers” and others as the “long servers.” Short jobs are always sent to the short servers and long
jobs to the long servers. The idea behind Dedicated is that, under highly variable service demands,
it is important to isolate short jobs from the long jobs, as having short jobs wait behind long jobs
is very wasteful. Given the extremely high variability of service demands under many computer
workloads [46, 47, 66, 113, 174], Dedicated is preferable to other policies.

However Dedicated is still not optimal. One problem is that Dedicated can lead to situations
where the servers are not fully utilized: five consecutive short jobs may arrive, with no long job,
resulting in an idle long server. This is especially likely in common computer workloads, where there
are many short jobs and just a few very long jobs, resulting in longer idle periods between the arrivals
of long jobs.

The possible low utilization of Dedicated motivates us to study a new task assignment policy, the
size-based task assignment with cycle stealing under immediate dispatching, SBCS-ID (see Figure 1.8).
The idea behind SBCS-ID is that we would like to segregate jobs by size so as to provide isolation for
short jobs, but during times when the long job server is free, we would like to steal the long server’s
idle cycles and use those to serve incoming short jobs. We will see that SBCS-ID provides significant
improvement over Dedicated.

However, under SBCS-ID, only those short jobs arriving after the long server has entered an idle
period can steal idle cycles of the long server. Hence, if a short job arrives just before the long server
enters an idle period, the short job is not eligible for stealing idle cycles of the long server.

This motivates us to study another new task assignment policy, the size-based task assignment
with cycle stealing under central queue, SBCS-CQ (see Figure 1.9). Under SBCS-CQ, arriving jobs
are held in a central queue, instead of being dispatched immediately. The central queue delays the
decision of which jobs should be processed by which server, and this enables more short jobs to utilize
the idle cycles of the long server.

Although cycle stealing is an old concept, the performance analysis of policies with cycle stealing
has eluded researchers as it involves multidimensional Markov chains. We will analyze the perfor-
mance of SBCS-ID and SBCS-CQ via DR. Our analysis shows that the short jobs can benefit by an
order of magnitude under both SBCS-ID and SBCS-CQ as compared to Dedicated, while the long

5These common task assignment policies include the round robin policy, the shortest queue policy, and the least
remaining work policy.
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Figure 1.8: The SBCS-ID policy. An arriving long job is always dispatched to the long server. An
arriving short job first checks to see if the long server is idle. If so, the short job is dispatched to the
long server; otherwise, the arriving short job is dispatched to the short server. Jobs at each server
are serviced in FCFS order.

L LL

SSS

When free,
grab long job.
If no long,
grab short job.

grab next
short job.

When free,
Short server

Long server

Figure 1.9: The SBCS-CQ policy. All jobs are held in a central queue. Whenever the short server
becomes idle, it picks the first short job in the queue to run. Whenever the long server becomes idle,
it picks the first long job in the queue. However, if there is no long job, the long server picks the first
short job in the queue.

jobs are penalized only by a small percentage. We also find that SBCS-CQ is a superior strategy
to SBCS-ID from the perspective of both the short jobs and the long jobs. We will also study the
effect of service demand variability, the effect of increasing the arrival rate of the short jobs and the
number of short servers, and the effect of stealing idle cycles of short servers.

Reducing switching costs in cycle stealing (Chapter 6)

In Chapter 6, we consider the benefit and penalty of cycle stealing in the context of a network of
workstations, where the donor (Dan) allows the beneficiary (Betty) to steal his idle cycles (recall
Figure 1.4). Although cycle stealing provides obvious benefits to the beneficiary, these benefits come
at some cost to the donor. Typically, there is a switching time, Ksw, required for the donor server
to start working on the beneficiary’s jobs, as well as a switching back time, Kba. For example, the
beneficiary’s job may have to be checkpointed and the donor’s working set memory reloaded before
the donor server can resume, delaying the resumption of processing of donor jobs. In our model, we
refer to these additional costs associated with cycle stealing as switching costs (or switching times).

Due to non-zero switching costs, the donor server’s switching may pay only when the beneficiary’s
queue length, NB, is sufficiently long, and the donor server’s switching back may pay only when the
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Figure 1.10: A threshold-based policy for reducing switching costs in cycle stealing. If NB ≥ N th
B

and ND = 0, the donor server starts switching to the beneficiary’s queue. After Ksw time, the donor
server is available to work on the beneficiary’s jobs. When ND reaches N th

D , the donor server starts
switching back to its own queue. After Kba time, the donor server resumes working on its own jobs.

donor’s queue length, ND, is sufficiently long. This motivates us to introduce a threshold-based
policy, whereby whether the donor server should switch (and switch back) is decided based on a
queue length, i.e. whether the queue length exceeds a threshold (see Figure 1.10).

Our primary goal is to understand the benefit of cycle stealing for the beneficiary and the penalty
to the donor, as a function of switching times. A secondary goal is to derive parameter settings for
cycle stealing. We seek to understand the optimal threshold values, N th

B and N th
D . More broadly,

we seek general insights into which system parameters have the most significant impact on the
effectiveness of cycle stealing.

To quantitatively understand the benefit and penalty of cycle stealing as a function of switching
times, we need to be able to analyze the mean response time under cycle stealing with switching
times. However, an exact analysis for this system is not known in the literature (even without
switching times), since it would involve multidimensional Markov chains. We will analyze the mean
response time under the threshold-based policy for reducing switching costs in cycle stealing via DR.
Our analysis yields many interesting results concerning cycle stealing.

Designing robust resource allocation policies (Chapter 7)

A common problem in multiserver systems is deciding how to allocate resources (e.g. operators,
CPU time, and bandwidth) among jobs. A good resource allocation policy that maximizes system
performance often has parameters (e.g., thresholds) that need to be tuned. Since the optimal settings
of the parameters typically depend on environmental conditions such as system loads, a resource
allocation policy whose parameters are chosen to achieve the best performance under a certain load
can provide poor performance when the load fluctuates or when the estimation/prediction of the
load is wrong.

Designing resource allocation policies that are robust against load fluctuations and misestimation
is important, since irregularity of arrival processes has been observed in various systems in various
ways, including long range dependence, self-similarity, time of day effect, and flash crowd (also known
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Figure 1.11: The Beneficiary-Donor model. Jobs arrive at queue 1 and queue 2 with average arrival
rates λ1 and λ2, respectively. Jobs have exponentially distributed service demands; however, the
running time of a job may also depend on the affinity between the particular server and the particular
queue. Hence, we assume that server 1 processes jobs in queue 1 with rate µ1 (jobs/sec), while server
2 can process jobs in queue 1 with rate µ12 (jobs/sec) and can process jobs in queue 2 with rate µ2

(jobs/sec).

as slashdot effect). Recent studies show long-range dependence or self-similarity in arrival processes
in various computer and communication systems, including the Internet [46, 114, 158, 206, 207],
supercomputing centers [183], web servers [80, 81], and MPEG streams [110]. Squillante et al. show
that correlation in arrival process can have a big impact on the system performance [183]. Time of
day effect [35] has been observed in web servers [10, 81, 80] and supercomputing centers [53, 78, 208].
Flash crowd [10] and Slashdot effects [199] refer to the phenomenon that it is not uncommon to
experience a more than 100-fold increase in demand when a site becomes popular, and these effects
are often observed in web servers.

In Chapter 7, we will design and study characteristics of various resource allocation policies
for the Beneficiary-Donor model (see Figure 1.11), which frequently comes up in the literature [4,
17, 58, 61, 71, 105, 125, 176, 181, 182, 185, 186, 205]. Whereas the standard metric for evaluating
resource allocation policies for the Beneficiary-Donor model is the (weighted) mean response time, we
choose to consider an additional metric, which we refer to as robustness. We introduce two types of
robustness: static robustness and dynamic robustness. Static robustness measures robustness against
misestimation of load. To evaluate static robustness, we analyze the mean response time of resource
allocation polices for a range of loads to see how a policy tuned for one load behaves under different
loads. Dynamic robustness measures robustness against fluctuations in load. To evaluate dynamic
robustness, we analyze the mean response time of resource allocation policies under fluctuating load.

Although various resource allocation policies in the Beneficiary-Donor model have been studied
in the literature, the majority of the prior work has investigated only the optimality of these resource
allocation policies in limiting or special cases. With respect to the analysis of mean response time,
only coarse approximations exist for most of the resource allocation policies in the Beneficiary-Donor
model, since an exact analysis would involve multidimensional Markov chains. DR allows us to
analyze the mean response time, as well as the static and dynamic robustness, of these and other
resource allocation policies.

We will see that single-threshold (resource) allocation policies have either poor mean response
time or poor static robustness. This motivates us to introduce a multi-threshold allocation policy,
whose threshold value is self-adapted to the load, and show this has significant advantage over single-
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threshold allocation policies with respect to achieving both low mean response time and good static
robustness. Surprisingly, we will find that the use of multiple thresholds offer only small advantage
over a single-threshold with respect to dynamic robustness. That is, a (single-threshold) policy that
has poor static robustness can excel in dynamic robustness.

1.3.3 Synopsis of Part III: Further discussion and conclusion

Part III is organized into two chapters. In Chapter 8, we discuss how the analytical tools developed
in Part I and the results of our analysis or lessons learned in Part II may help in designing and
operating real-world systems in general and contact centers (call centers) in particular. Chapter 9
concludes the thesis.

Applications in contact center design (Chapter 8)

In today’s competitive business, it becomes increasingly important to provide accessibility to the
company, which has a direct impact on the customers’ perception of quality, in order to acquire,
keep, and grow customers [8, 58, 123]. A contact center provides such accessibility for customers
who buy or reserve products or services and for customers who have questions, complaints, or need
for technical supports and other customer services. Although a contact center is a significant revenue
generator, its operating expenses are also huge, and human resource costs are estimated to account
for 50-75% of the total operating expenses [58, 123].

Thus, a major challenge in contact centers is determining the number of agents to be assigned
(capacity planning) such that a right level of customer satisfaction is achieved at right operational
cost. Designing good routing policies (that determine which customer is served by which agent) is
also important, since good routing policies can increase the accessibility or shorten the waiting time
without increasing the number of agents. As a result, a significant amount of research has addressed
analytical tools and simulation techniques that support capacity planning and routing policy design
at contact centers [119].

However, operations at contact centers have become increasingly complex, and the increased
complexity makes it difficult to apply existing analytical tools to capacity planning and routing policy
design at today’s contact centers. We will discuss specifically how the analytical tools developed and
lessons learned in this thesis may help in capacity planning and routing policy design at contact
centers today.
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Chapter 2

Moment matching algorithm

How can we map a general distribution into a combination of exponential distributions?

Much of queueing theory revolves around the exponential distribution, since the memoryless
nature of the exponential distribution enables an analysis via Markov chains. Unfortunately, real-
world workloads such as CPU service requirements, file sizes, durations of FTP transfers, etc. do not
have exponential distributions, but rather follow various general distributions. A way for us to deal
with workloads with general distributions is to model these general distributions by a combination of
exponential distributions, known as a phase type (PH) distribution, first introduced by M. F. Neuts
[133, 136]. The PH distribution then fits nicely into the Markov chain.

A popular approach in mapping a general probability distribution, G, into a phase type (PH)
distribution, P , is to choose P such that some moments of P and G agree. Matching the first moment
of any nonnegative distribution is possible by a single exponential distribution. Matching the first
moment is certainly important, but unfortunately it is often not sufficient, as ignoring the higher
moments can result in misleading conclusions.

Thus, it is desirable to match more moments of the input distribution G by P . Matching more
moments may be possible if we are allowed to use many exponential distributions (phases). However,
the use of many phases in the PH distribution increases the complexity of the Markov chain, and
makes its analysis hard. Matching many moments using a small number of phases may be possible
if we are allowed to use unbounded computational resources or if we limit the class of input distri-
butions. However, these limitations are not desirable. Achieving all the four desirable properties is
the challenge in designing a moment matching algorithm:

1. It is desirable that more moments of the input distribution, G, and the matching PH distribu-
tion, P , agree.

2. It is desirable that P have a small number of phases.

3. It is desirable that the algorithm be defined for a broad class of input distributions.

4. It is desirable that the algorithm have short running time.
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Figure 2.1: A PH distribution is shown as the distribution of the time until absorption in a continuous
time Markov chain. At time 0, the Markov chain is in state i with probability τi for 0 ≤ i ≤ 3, where
state 0 denotes the absorbing state. The time that the Markov chain enters the absorbing state is said
to have a PH distribution. See Section 2.2 for a more detailed explanation of the PH distribution.

2.1 Overview

In this chapter, we will design moment matching algorithms. To prove the optimality of our moment
matching algorithms with respect to the number of phases used in the solution, we will also provide
a characterization of the general probability distribution with respect to the necessary number of
phases in the approximate PH distribution. In this section, we briefly summarize these results.
Details will be provided in later sections.

2.1.1 Moment matching algorithms

A moment matching algorithm maps a general probability distribution, G, into a PH distribution, P .
A PH distribution is a combination of exponential distributions with a certain structure. Examples
of PH distributions include an exponential distribution, the convolution of exponential distributions,
and a mixture of exponential distributions. More formally, a PH distribution is defined as the
distribution of the time until absorption in a Markov chain (see Figure 2.1). Thus, essentially, a
moment matching algorithm takes a general probability distribution, G, as an input, and outputs
a Markov chain with an absorbing state together with the probability vector for the initial state,
such that some moments of the distribution of the absorption time in the Markov chain (the PH
distribution, P ) agree with those of G. By convention, when the Markov chain has n states, we say
that the PH distribution has n phases.

Key idea

The general approach in designing moment matching algorithms in the literature is to start by
defining a subset S of the PH distributions, and then map each input distributionG into a distribution
in S. The reason for limiting the solution to a distribution in S is that this narrows the search space
and thus improves the computational efficiency of the algorithm. One has to be careful in defining
the subset S, however. If S is too small, it may exclude solutions with a minimal number of phases.
Also, if S is too small, it may limit the class of input distributions, or it may limit the number of
moments that can be matched.

The key idea in our moment matching algorithm is the way that we define the subset, S, of PH
distributions, which we call EC (Erlang-Coxian) distributions. The EC distribution has only six free
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Figure 2.2: The Markov chain whose absorption time defines an n-phase EC distribution. The first
box above depicts the Markov chain that defines an Erlang-(n − 2) distribution, and the second box
depicts the Markov chain that defines a two-phase Coxian+ PH distribution.

parameters, regardless of the number of phases, which allows us to derive a closed form solution for
these parameters in terms of the moments of the input distribution. This is in contrast to the general
PH distribution, as an n-phase PH distribution has Θ(n2) free parameters. Furthermore, the class
of EC distributions is broad enough to excel in the other three desired properties. In particular, the
EC distribution allows us to match the first three moments of the input distribution, and it applies
to the broadest possible class of input distributions (almost all nonnegative distributions). Also,
the number of phases used in the output EC distribution is nearly minimal. Below, we say that
distribution G is well-represented by P if P and G agree on their first three moments.

Definition 1 A distribution G is well-represented by a distribution F if F and G agree on their
first three moments.

Figure 2.2 shows the Markov chain whose absorption time defines an n-phase EC distribution.
Here, at time zero, the Markov chain is in state 1 with probability p and in the absorbing state with
probability 1 − p. If the absorbing state is the initial state, the absorption time is zero. When the
Markov chain is in state i, it stays in the state for a random time having an exponential distribution
with rate λY , and then transitions to state i+ 1, for 1 ≤ i ≤ n− 2. (The time it takes to transition
from state 1 to state n− 1 is said to have an Erlang-(n− 2) distribution or an (n− 2)-phase Erlang
distribution, En−2). When the Markov chain is in state n−1, it stays in the state for a random time
having an exponential distribution with rate λX1, and then transitions to state n with probability
pX and to the absorbing state with probability 1 − pX . When the Markov chain is in state n, it
stays in the state for a random time having an exponential distribution with rate λX2, and then
transitions to the absorbing state. (The time it takes to transition from state n− 1 to the absorbing
state is said to have a two-phase Coxian+ PH distribution (as we will define in Section 2.2).) The
time until the Markov chain enters the absorbing state is said to have an n-phase EC distribution.

Definition 2 An n-phase EC (Erlang-Coxian) distribution is the convolution of an (n − 2)-phase
Erlang distribution and a two-phase Coxian+ distribution, where the EC distribution may have mass
probability at zero.

We now provide some intuition behind the creation of the EC distribution. We will see that
a Coxian+ PH distribution is very good for approximating a distribution with high variability. In
particular, we will see that a two-phase Coxian+ PH distribution can well-represent any distribution
that has high second and third moments. However, we will also see that a Coxian+ PH distribution
requires many more phases for approximating distributions with lower second and third moments.
The large number of phases needed implies that many free parameters must be determined, imply-
ing high computational cost to yield an exact (optimal) solution. By contrast, an n-phase Erlang
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Simple Complete Positive

number of moments matched 3 3 3
running time closed form closed form closed form
input distributions almost all PH3 all PH3 almost all PH3

number of phases ≤OPT(G)+1 ≤OPT(G)+1 ≤OPT(G)+1
possible mass probability at zero Yes Yes No
output distribution EC EC extended EC
solution Figure 2.11 Figure 2.13 Figure 2.15

Table 2.1: A summary of three closed form solutions for moment matching.

distribution has only two free parameters and is also known to have the least variability among all
the n-phase PH distributions [5, 142]. As we will see, however, the Erlang distribution is limited in
the set of distributions which it can well-represent.

By combining the Erlang distribution with the two-phase Coxian+ PH distribution, we can
represent distributions with all ranges of variability, while using only a small number of phases.
Furthermore, the fact that the EC distribution has a small number of parameters, (n, p, λY , λX1,
λX2, pX), allows us to obtain closed form expressions for these parameters that well-represent any
given distribution in PH3.

Summary of results

We present three variants of closed form solutions for the free parameters of the EC distribution:
the Simple solution, the Complete solution, and the Positive solution. Each of the three solutions
achieves slightly different goals. The Simple solution has the advantage of simplicity and readability.
For any input distribution G, the Complete solution requires the smallest number of phases among
the three solutions. The Positive solution achieves an additional property that it does not have
mass probability at zero. The Positive solution can be used to construct yet another solution,
ZeroMatching, that matches not only matches the first three moments but also the mass probability
at zero of the input distribution, as we will discuss in Section 2.9.

Table 2.1 summarizes the characteristics of the three solutions. In all the three solutions, the
first three moments of the input distribution are matched, and the parameters of the output EC
distribution are provided in closed form. Since the parameters of the solutions are given in closed
form, the running time does not depend on the number of necessary number of phases and is bounded
by some constant time.

To characterize the class of input distributions that are defined for our solutions, we introduce
set, PH3.

Definition 3 PH3 refers to the set of distributions that are well-represented by a PH distribution.

The set PH3 is quite broad, and it contains almost all the nonnegative distributions. More precisely,

Proposition 1 Set PH3 is dense in the set of all the nonnegative distributions.

The Simple and Positive solutions are defined for almost all the distributions in PH3, while the
Complete solution is defined for all the distributions in PH3. Although the Simple and Positive
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solutions are not defined for a very small subset in PH3, this is not a problem in practice, since a
distribution in the small subset can be perturbed to be moved out of the subset1.

To characterize the optimality of the number of phases used in our solutions, we define OPT(G)
as follows:

Definition 4 OPT (G) is defined to be the minimum number of phases in an acyclic PH distribution,
allowing a mass probability at zero, that well-represents a distribution G.

All of the Simple, Complete, and Positive solutions require at most OPT(G) + 1 phases, but the
number of phases in the Complete solution is always at most those in the Simple and Positive

solutions. In the definition of OPT(·), we limit our focus to the set of acyclic PH distributions.
A PH distribution is called an acyclic PH distribution if the Markov chain whose absorption time
defines the PH distribution does not have a cycle (i.e., any state is never visited more than once).
It is not clear whether restricting our search space to the set of acyclic PH distributions is limiting.
While it is theoretically possible that the minimum phase solution is cyclic, in practice we have not
been able to find a situation where the minimal solution requires cycles.

The Simple and Complete solutions can have mass probability at zero (i.e. p < 1), but the
Positive solution has no mass probability at zero. In some applications, mass probability at zero
is not an issue. Such applications include approximating busy period distributions in the analysis
of multiserver systems via dimensionality reduction (see Chapter 3) and approximating shortfall
distributions in inventory system analysis [197, 198]. However, there are also applications where
a mass probability at zero increases the computational complexity or even makes the analysis in-
tractable. For example, a PH/PH/1/FCFS queue can be analyzed efficiently via matrix analytic
methods (see Section 3.2) when the PH distributions have no mass probability at zero; however, no
simple analytical solution is known when the PH distributions have nonzero mass probability at zero.

The key idea in the design of the Positive solution is to match the input distribution by a
mixture of an EC distribution (with no mass probability at zero) and an exponential distribution.
The use of this type of distribution makes intuitive sense, since it can approximate the EC distribution
with mass probability at zero arbitrarily closely by letting the rate of the exponential distribution
approach infinity. It turns out, however, that it is not always easy (or even possible) to find a
closed form expression for the parameters of the EC distribution and the exponential distribution.
We find that in such cases the convolution of an EC distribution and an exponential distribution
leads to tractability. We refer to the output distribution of the Positive solution as an extended
EC distribution. Figure 2.3 shows the Markov chain whose absorption time defines an extended
EC distribution.

2.1.2 Characterizing phase type distributions

To prove that our moment matching algorithm results in a nearly minimal number of phases, we
need to know the minimal number of phases needed to well-represent an input distribution, G, by an
acyclic PH distribution (namely, OPT(G)). Thus, we will provide a formal characterization of the
set of distributions, S(n), that are well-represented by an n-phase acyclic PH distribution for each
n = 1, 2, 3, ....

1Likewise, the Complete and Positive solutions are not numerically stable for a small subset of input distributions,
but this is not a problem in practice, since distributions lying in the small subset can be perturbed to move out of
the subset. (In [146, 145], we also provide a version of the Complete solution that is numerically stable for all input
distributions.)
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Figure 2.3: The Markov chain whose absorption time defines an extended EC distribution.

Definition 5 Let S(n) denote the set of distributions that are well-represented by an n-phase acyclic
PH distribution for positive integer n.

Key idea

While our goal is to characterize the set S (n), this characterization turns out to be ugly. One of
the key ideas is that there is a set T (n) ⊃ S(n) which is very close to S(n) in size, such that T (n)

has a simple specification. To provide a simple specification of T (n), we define an alternative to the
standard moments, which we refer to as normalized moments:

Definition 6 Let µFk be the k-th moment of a distribution F for k = 1, 2, 3. The normalized k-th

moment mF
k of F for k = 2, 3 is defined to be

mF
2 =

µF2
(µF1 )2

and mF
3 =

µF3
µF1 µ

F
2

.

Notice the relationship between the normalized moments and the coefficient of variability CF and
the skewness γF of F :

mF
2 = C2

F + 1 and mF
3 = νF

√
mF

2 ,

where νF = µF3 /(µ
F
2 )3/2. (νF and γF are closely related, since γF = µ̄F3 /(µ̄

F
2 )3/2, where µ̄Fk is the

centralized k-th moment of F for k = 2, 3.)
Now, T (n) can be defined via normalized moments (see Figure 2.4).

Definition 7 For integers n ≥ 2, let T (n) denote the set of distributions, F , that satisfy exactly one
of the following two conditions:

(i) mF
2 >

n+ 1

n
and mF

3 ≥ n+ 2

n+ 1
mF

2 , or

(ii) mF
2 =

n+ 1

n
and mF

3 =
n+ 2

n
.

Summary of results

Figure 2.5 illustrates our characterization of general distributions as a nested relationship between
S(n) and T (n) for all n ≥ 2. Observe that S(n) is a proper subset of S(n+1), and likewise T (n) is a
proper subset of T (n+1) for all integers n ≥ 2. Formally, the nested relationship between S (n) and
T (n) is characterized in the next theorem.
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Figure 2.4: Set T (n) is depicted as a function of the normalized moments. Sets T (n) are delineated by
solid lines, which include the border, and dashed lines, which do not include the border (n = 2, 3, 32).
Here, Exp denotes the exponential distribution, and En denotes the Erlang-n distribution. Observe
that all possible nonnegative distributions lie within the region delineated by the two dotted lines:
m2 ≥ 1 and m3 ≥ m2 [96]. Also, a distribution G is in PH3 iff its normalized moments satisfy
mG

3 > mG
2 > 1 [88].

Theorem 1 For all integers n ≥ 2, S(n) ⊂ T (n) ⊂ S(n+1).

The property S(n) ⊂ T (n) is important because it will allow us to prove that the EC distribution
produced by our moment matching algorithm uses a nearly minimal number of phases. The property
T (n) ⊂ S(n+1) is important in completing our characterization of S (n). The latter property will
follow immediately from our construction of the Complete solution. Note that it is important that
the Complete solution is defined for all PH3, to prove T (n) ⊂ S(n+1).

In [147], we also provide examples of common, practical distributions in set S (n). These distribu-
tions include the Pareto distribution, the Bounded Pareto distribution (as defined in [64]), and the
uniform distribution. We show conditions under which these and other distributions are in S (n) for
each n ≥ 2.

2.1.3 Organization of this chapter

The rest of this chapter is organized as follows. Section 2.2 provides a brief tutorial on the PH
distribution. For the purpose of understanding the rest of the chapter, one only needs to understand
the definitions of the PH distribution and its subclasses. In Section 2.3, we review the state of the
art in the moment matching algorithm and characterization of S (n).

Sections 2.4-2.8 are devoted to the characterization of S (n) and three variants of moment matching
algorithms. The characterization of S (n) is covered primarily in Section 2.4. In Section 2.5, we study
properties of the EC distribution in depth. In particular, we will find that for the purpose of moment
matching it suffices to narrow down the set of EC distributions further from six free parameters to five
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Figure 2.5: Characterizing S(n) via T (n). Solid lines delineate S(n) (which is irregular) and dashed
lines delineate T (n) (which is regular – has a simple specification). Observe the nested structure of
S(n) and T (n): S(n) ⊂ T (n) ⊂ S(n+1) for all integers n ≥ 2.

free parameters, by optimally fixing one of the parameters. Section 2.6 provides the Simple solution,
Section 2.7 provides the Complete solution, and Section 2.8 provides the Positive solution.

2.2 Brief tutorial on phase type distributions

In this section, we provide a brief tutorial on the PH distribution, limiting our discussion to the
continuous time PH distribution. For the purpose of understanding this chapter, one only needs
to know the definitions of the PH distribution and its subclasses. We also provide some basic
properties of the PH distribution (e.g., its density and distribution functions), which we will need
later in Chapter 3. These properties can also be used to further study the characteristics of our
solutions (e.g., the density and distribution functions of the EC distribution).

2.2.1 Examples of PH distributions

We start by providing canonical examples of PH distributions. Here, we provide both pictorial
explanation and more formal explanation. Pictorial explanation gives intuitive understanding of the
PH distribution, and more formal explanation allows us to get used to the notation that we use later.

First, an exponential distribution is a PH distribution. Figure 2.6(a) illustrates an exponential
distribution as the absorption time in a (continuous time) Markov chain2. At time 0, we start at
state 1. We stay in this state for a random time having an exponential distribution with rate λ, and
then transition to state 0, the absorbing state. The time until we enter the absorbing state is, of
course, an exponential distribution. More formally, an exponential distribution with rate λ is the
distribution of the time until absorption into state 0 in a Markov chain on the states {0, 1} with
initial probability vector (0, 1) and infinitesimal generator:

(
0 0
λ −λ

)
.

2Throughout, a Markov chain is assumed to be a continuous time Markov chain.
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Figure 2.6: Examples of PH distributions.

Second, a convolution of two independent identical exponential distributions is a PH distribution
(i.e., the sum of two i.i.d. exponential random variables has a PH distribution); this distribution is
called an Erlang-2 distribution. Figure 2.6(b) illustrates an Erlang-2 distribution as the absorption
time in a Markov chain. At time 0, we start at state 1. After a random time having an exponential
distribution with rate λ, we transition to state 2. We stay in state 2 for a random time having
an exponential distribution with rate λ, and then transition to state 0, the absorbing state. The
time until we enter the absorbing state has an Erlang-2 distribution. More formally, an Erlang-2
distribution with parameter λ is the distribution of the time until absorption into state 0 in a Markov
chain on the states {0, 1, 2} with initial probability vector (0, 1, 0) and infinitesimal generator:




0 0 0
0 −λ λ
λ 0 −λ


 .

Third, a mixture of two exponential distributions is a PH distribution; this distribution is called
a two-phase hyperexponential distribution, H2. Figure 2.6(c) illustrates an H2 distribution as the
absorption time in a Markov chain. At time 0, we start at state 1 with probability τ1 and at state
2 with probability τ2. If we start at state 1 (respectively, state 2), we stay there for a random time
having an exponential distribution with rate λ1 (respectively, λ2), and then transition to state 0, the
absorbing state. The time until we enter the absorbing state has an H2 distribution. More formally,
an H2 distribution with parameter (τ1,τ2,λ1,λ2) is the distribution of the time until absorption
into state 0 in a Markov chain on the states {0, 1, 2} with initial probability vector (0, τ1, τ2) and
infinitesimal generator: 


0 0 0
λ1 −λ1 0
λ2 0 −λ2


 .

2.2.2 Definition of PH distribution

In general, a PH distribution is the distribution of the time until absorption into state 0 in a
Markov chain.

Definition 8 A PH distribution with parameter (−→τ ,T), PH(−→τ ,T), is the distribution of the time
until absorption into state 0 in a Markov chain on the states {0, 1, ..., n} with initial probability vector
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Figure 2.7: A three-phase PH distribution.

(τ0,−→τ ) and infinitesimal generator (
0

−→
0−→

t T

)
,

where
−→
t = −T

−→
1 and τ0 = 1 −−→τ −→1 , where

−→
1 is a column vector of 1’s.

Figure 2.7 illustrates a three phase PH distribution having parameters

−→τ = (τ1, τ2, τ3) and T =




−σ1 λ12 λ13

λ21 −σ2 λ23

λ31 λ32 −σ3


 ,

where σi =
∑
j 6=i λij for i = 1, 2, 3. Note that the initial state can be the absorption state (state 0)

with positive probability. If the initial state is the absorption state, the absorption time is zero.

2.2.3 Subclasses of PH distribution

By restricting the structure of the Markov chain, we can define a subclass of the PH distribution.
Below, we define subclasses of the PH distribution that come up in this thesis.

First, if the Markov chain whose absorption time defines a PH distribution is acyclic (i.e., any
state is never visited more than once in the Markov chain), the PH distribution is called an acyclic
PH distribution. A three-phase acyclic PH distribution is illustrated in Figure 2.8(a) as the
absorption time in a Markov chain.

An acyclic PH distribution is called a Coxian PH distribution if the Markov chain whose
absorption time defines the acyclic PH distribution has the following two properties: (i) the initial
non-absorbing state is unique (i.e., the initial state is either the unique non-absorbing state or the
absorbing state), and (ii) for each state, the next non-absorbing state is unique (i.e., the next state
is the unique non-absorbing state or the absorbing state). A three-phase Coxian PH distribution
is illustrated in Figure 2.8(b). When a Coxian PH distribution does not have mass probability at
zero (i.e., the initial state is not the absorbing state), we refer to the Coxian PH distribution as a
Coxian+ PH distribution.

An acyclic PH distribution is called a hyperexponential distribution if the Markov chain
whose absorption time defines the acyclic PH distribution has the following property: for any state,
the next state is the absorbing state. That is, a mixture of exponential distributions is a hyperexpo-
nential distribution.
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Figure 2.8: Subclasses of the PH distribution.

An acyclic PH distribution is called an Erlang distribution if the Markov chain whose absorp-
tion time defines the acyclic PH distribution has the following three properties: (i) the initial state is
a unique non-absorbing state, (ii) for each state, the next state is unique, and (iii) the sojourn time
distribution at each state is identical. That is, the sum of n i.i.d. exponential random variables has an
n-phase Erlang distribution. An n-phase Erlang distribution is also called an Erlang-n distribution.
An Erlang distribution is generalized to a generalized Erlang distribution [122] by allowing a
transition from the initial state to the absorbing state. A three-phase generalized Erlang distribution
is illustrated in Figure 2.8(c).

A mixture of Erlang distributions is called a mixed Erlang distribution [87, 88]. A mixed
Erlang distribution is illustrated in Figure 2.8(d), where an Erlang-2 distribution and an Erlang-3
distribution are mixed. A mixture of Erlang distributions with the same number of phases, is called
a mixed Erlang distribution with common order [87, 88].

2.2.4 Properties of PH distributions

Below, we summarize some of the basic properties of the PH distribution. First, the set of PH distri-
butions is quite broad and, in theory, any nonnegative distribution can be approximated arbitrarily
closely by a PH distribution.

Proposition 2 [132] The set of PH distributions is dense in the set of nonnegative distributions
(distributions with support on [0,∞)).

Observe that Proposition 1 follows immediately from Proposition 2.
Second, the set of PH distributions is closed under some operations. In particular, a mixture of

independent PH distributions is a PH distribution, and the convolution of independent PH distribu-
tions is a PH distribution.

Proposition 3 [111] Consider two PH distributions: PH(−→τ1 ,T1) with distribution function F1(·)
and PH(−→τ2 ,T2) with distribution function F2(·). A mixture of the two PH distribution, which has
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distribution function pF1(·) + (1 − p)F2(·), is a PH distribution, PH(−→τ ,T), where

−→τ = (p−→τ1 , (1 − p)−→τ2) and T =

(
T1 0
0 T2

)
.

Here, 0 denotes a zero matrix.
The convolution of the two PH distributions, PH(−→τ1 ,T1) and PH(−→τ2 ,T2), is a PH distribution,

PH(−→τ ,T), where

−→τ = (−→τ1 , τ10−→τ2) and T =

(
T1

−→
t1−→τ2

0 T2

)
.

Here,
−→
t1 = −T1

−→
1 and τ10 = 1 −−→τ1−→1 , where

−→
1 is a column vector of 1’s.

To shed light on the expression F (·) = pF1(·) + (1 − p)F2(·), consider a random variable V1 whose
distribution function is F1(·) and a random variable V2 whose distribution function is F2(·). Then,
random variable

V =

{
V1 with probability p
V2 with probability 1 − p

has distribution function F (·). Below, unless otherwise stated, we denote the (cumulative) distribu-
tion function of a distribution, X, by X(·).

Definition 9 Let VX be a random variable having a distribution X. We denote the cumulative
distribution function by X(·), namely

X(x) ≡ Pr(VX ≤ x).

Finally, the distribution function, the density function, the moments, and the Laplace transform
of a PH distribution have simple mathematical expressions.

Proposition 4 [111] The distribution function of PH(−→τ ,T) is given by

F (x) = 1 −−→τ exp(Tx)
−→
1

for x ≥ 0, where the matrix exponential is defined by exp(X) =
∑∞
i=0

1
i!X

i. The density function of
PH(−→τ ,T) is given by

f(x) = −→τ exp(Tx)
−→
t

for x ≥ 0, where
−→
t = −T

−→
1 .

Let X be a random variable with the PH(−→τ ,T) distribution. Then,

E

[
Xi
]

= i!−→τ (−T−1)i
−→
1

for i ≥ 1. The Laplace transform of PH(−→τ ,T) is given by

X̃(s) = τ0 + −→τ (sI − T)−1−→t ,

where τ0 = 1 −−→τ −→1 and I is an identity matrix.
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2.3 State of the art in moment matching algorithms

In this section, we review prior work on moment matching algorithms and characterization of the
PH distribution.

Moment matching algorithms

Prior work has contributed a large number of moment matching algorithms. While all of these
algorithms excel with respect to some of the four measures mentioned earlier (number of moments
matched; minimality of the number of phases; generality of the solution; computational efficiency of
the algorithm), they all are deficient in at least one of these measures as explained below.

In cases where matching only two moments suffices, it is possible to achieve solutions which
perform very well along all the other three measures. Sauer and Chandy [171] provide a closed form
solution for matching two moments of a general distribution with squared coefficient of variation
C2 > 0 (i.e., any distribution in PH3). They use a two-phase hyper-exponential distribution, H2,
for matching distributions with squared coefficient of variability C2 > 1, and a generalized Erlang
distribution for matching distributions with C2 < 1. Marie [122] provides a closed form solution for
matching two moments of a general distribution with C2 > 0. He uses a two-phase Coxian+ PH
distribution for distributions with C2 > 1, and a generalized Erlang distribution for distributions
with C2 < 1.

If one is willing to match only a subset of distributions, then again it is possible to achieve
solutions which perform very well along the remaining three measures. Whitt [200] and Altiok [6]
focus on the set of distributions with C2 > 1 and sufficiently high third moment. They obtain a
closed form solution for matching three moments of any distribution in this set. Whitt matches to
an H2, and Altiok matches to a two-phase Coxian+ PH distribution. Telek and Heindl [190] focus
on the set of distributions with C2 ≥ 1

2 and various constraints on the third moment. They obtain a
closed form solution for matching three moments of any distribution in this set, by using a two-phase
acyclic PH distribution with no mass probability at zero.

Johnson and Taaffe [87, 88] come closest to achieving all four measures. They provide a closed
form solution for matching the first three moments of any distribution G ∈ PH3. They use a mixed
Erlang distribution with common order. Unfortunately, this mixed Erlang distribution requires
2OPT(G) + 2 phases in the worst case.

In complementary work, Johnson and Taaffe [89, 90] again look at the problem of matching the
first three moments of any distribution G ∈ PH3, this time using three types of PH distributions: a
mixture of Erlang distributions, a Coxian+ PH distribution, and a general PH distribution. Their
solution is nearly minimal in that it requires at most OPT(G) + 2 phases. Unfortunately, their
algorithm requires solving a nonlinear programming problem and hence is computationally inefficient,
requiring time exponential in OPT(G).

Above we have described the prior work focusing on moment matching algorithms, which is the
focus of this chapter. There is also a large body of work focusing on fitting the shape of an input
distribution using a PH distribution. Recent research has looked at fitting heavy-tailed distributions
to PH distributions [55, 76, 77, 98, 162, 187]. There is also work which combines the goals of moment
matching with the goal of fitting the shape of the distribution [86, 173]. The work above is clearly
broader in its goals than simply matching three moments. Unfortunately there is a tradeoff: obtaining
a more precise fit requires more phases, and it can sometimes be computationally inefficient [86, 173].
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Figure 2.9: Set S(2) and set S(2)∗. Here, Exp denotes the exponential distribution, and E2 denotes
the Erlang-2 distribution.

Characterizing PH distributions

All prior work on characterizing S (n) has focused on characterizing S(2)∗ , where S(2)∗ is the set of
distributions that are well-represented by a two-phase Coxian+ PH distribution. Observe S(2)∗ ⊂
S(2). Altiok [6] showed a sufficient condition for a distribution to be in S (2)∗ . More recently, Telek
and Heindl [190] proved the necessary and sufficient condition for a distribution to be in S (2)∗ . While
neither Altiok nor Telek and Heindl expressed these conditions in terms of normalized moments, the
results can be expressed more simply with our normalized moments:

Theorem 2 [144, 190] G ∈ S(2)∗ iff G satisfies exactly one of the following three conditions:

(i)
9mG

2 − 12 + 3
√

2(2 −mG
2 )

3
2

mG
2

≤ mG
3 ≤ 6(mG

2 − 1)

mG
2

and
3

2
≤ mG

2 < 2,

(ii) mG
3 = 3 and mG

2 = 2, or

(iii)
3

2
mG

2 < mG
3 and 2 < mG

2 .

Figure 2.9 shows an exact characterization of set S (2) and set S(2)∗ via normalized moments. We
provide an exact characterization of set S (2) in [147]. In this chapter, we will characterize S (n), for
all integers n ≥ 2.

2.4 Characterizing phase type distributions

Set S(n) is characterized by Theorem 1: S(n) ⊂ T (n) ⊂ S(n+1) for all n ≥ 2. In this section we prove
the first part of the theorem:

Lemma 1 For all integers n ≥ 2, S(n) ⊂ T (n).
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The second part, T (n) ⊂ S(n+1), follows immediately from the construction of the Complete solution
(see Corollary 3 in Section 2.7).

We begin by defining the ratio of the normalized moments.

Definition 10 The ratio of the normalized moments of a distribution F , rF , is defined as rF =
mF

3 /m
F
2 and is also referred to as the r-value of F .

A nice property of the r-value is that it is insensitive to the mass probability at zero:

Proposition 5 Let Z be a mixture of two distributions, X and O, where where X is a nonnega-
tive distribution with µX1 > 0 and O is the distribution of the degenerate random variable V ≡ 0.
Then, rZ = rX .

Proof: Let Z(·), X(·), and O(·) be the (cumulative) distribution functions of Z, X, and O, respec-
tively. Then, there exists 0 < p < 1 such that Z(·) = pX(·) + (1 − p)O(·). Therefore, by definition,

rZ =
(pµX3 )(pµX1 )

(pµX2 )2
=

(µX3 )(µX1 )

(µX2 )2
= rX .

Below, unless otherwise stated, we denote the (cumulative) distribution function of a distribution,
X, by X(·). Below, we use the notation O repeatedly.

Definition 11 Let O denote the distribution of the degenerate random variable V ≡ 0.

Note that, using the normalized second moment and the r-value, T (n) can be redefined as the set of
distributions, F , that satisfy exactly one of the following two conditions:

(i) mF
2 >

n+ 1

n
and rF ≥ n+ 2

n+ 1
, or

(ii) mF
2 =

n+ 1

n
and rF =

n+ 2

n+ 1
.

To show S(n) ⊂ T (n), consider an arbitrary distribution, X ∈ S (n). By definition of S(n), there
exists an n-phase acyclic PH distribution, P , that well-represents X. Then X ∈ T (n) iff P ∈ T (n).
Hence, it suffices to prove that all n-phase acyclic PH distributions are in T (n). This can be shown
by proving the two properties of the Erlang-n distribution: (i) the set of Erlang-n distributions has
the least normalized second moment among all the n-phase (acyclic) PH distributions and (ii) the
Erlang-n distribution has the least r-value among all the n-phase acyclic PH distributions. Note
that the Erlang-n distribution, En, has

mEn
2 =

n+ 1

n
and rEn =

n+ 2

n+ 1
.

Property (i) of the Erlang-n distribution immediately follows from the prior work by Aldous and
Shepp [5] and O’Cinneide [142], who prove that the set of Erlang-n distributions is the unique class
of n-phase PH distributions with the least second moment among all the n-phase PH distributions
with a fixed first moment. Thus, all that remains is to prove property (ii).
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Our approach is different from Aldous and Shepp [5] and O’Cinneide [142]. Aldous and Shepp
prove the least variability of the Erlang-n distribution via quadratic variation (a property related to
the second moment), and hence it is unlikely that their approach can be applied to prove property (ii),
which relies on higher moments, in particular the r-value. O’Cinneide extends the work by Aldous
and Shepp, considering a convex function, f(·), applied to a random variable having an n-phase
PH distribution with a fixed mean. He proves, via the theory of majorization, that the expectation
of f(V ) is minimized when the random variable V has an Erlang distribution. Unfortunately, the
r-value of a distribution, G, is not an expectation of f(V ), where V is a random variable with
distribution G, for a convex function f(·). Hence, the theory of majorization does not directly apply
to the r-value.

Our proof makes use of the recursive structure of PH distributions and shows that an n-phase
Erlang distribution has no greater r-value than any n-phase acyclic PH distribution. The key idea
in our proof is that any acyclic PH distribution, P , can be seen as a mixture of the convolutions
of exponential distributions, and one of the convolutions of exponential distributions has no greater
r-value than P . This allows us to relate the minimal convolution to an Erlang distribution when
all the rates of the exponential distributions are the same. The following lemma provides the key
property of the r-value used in our proof.

Lemma 2 Let Z(·) =
∑n
i=1 piXi(·), where n ≥ 2 and Xi are nonnegative distributions with µXi

1 > 0
for 1 ≤ i ≤ n. Then, there exists i ∈ {1, ..., n} such that rZ ≥ rXi.

Proof: We prove the lemma by induction on n. Without loss of generality, we let rX1 ≥ · · · ≥ rXn .
Base case (n = 2): Let v = µX2

1 /µX1
1 and w = µX2

2 /µX1
2 . Then,

rZ − rX2 =
p2
1r
X1 + p1p2r

X1v + p1p2r
X2 w

2

v + p2
2r
X2w2

(p1 + p2w)2
− rX2

≥

(
p2
1 + p1p2v + p1p2

w2

v + p2
2w

2 − (p1 + p2w)2
)
rX2

(p1 + p2w)2

=
p1p2(w − v)2rX2

v(p1 + p2w)2
≥ 0,

where the first inequality follows from rX1 ≥ rX2 .
Inductive case: Suppose that the lemma holds for n ≤ k. When n = k + 1, Z can be seen as

a mixture of two distributions, Y (·) = 1
1−pk+1

∑k
i=1 piXi(·) and Xk+1(·). When rXk+1 ≤ rZ , the

lemma holds for n = k + 1. When rXk+1 > rZ , we have rY ≤ rZ by the base case. By the inductive
hypothesis, there exist i ∈ {1, ..., k} such that rY ≥ rXi . Thus, the lemma holds for n = k + 1.

We are now ready to prove that an n-phase Erlang distribution has no greater r-value than any
n-phase PH distribution, which completes the proof of Lemma 1. A proof of the following lemma is
postponed to Appendix A.

Lemma 3 The Erlang distribution has the least r-value among all the acyclic PH distribution with
a fixed number of phases, n, for all n ≥ 1.
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2.5 EC distribution

The purpose of this section is twofold: to provide a detailed characterization of the EC distribution,
and to discuss a narrowed-down subset of the EC distributions with only five free parameters (λY
is fixed) which we will use in our moment matching algorithms. Both results are summarized in
Theorem 3.

To motivate the theorem in this section, suppose one is trying to match the first three moments
of a given distribution, G, to a distribution, P , which is the convolution of exponential distributions
(possibly with different rates) and a two-phase Coxian+ PH distribution. If G has sufficiently high
second and third moments, then a two-phase Coxian+ PH distribution alone suffices and we need no
exponential distributions (recall Theorem 2). If the variability of G is lower, however, we might try
appending an exponential distribution to the two-phase Coxian+ PH distribution. If that does not
suffice, we might append two exponential distributions to the two-phase Coxian+ PH distribution.
Thus, if G has very low variability, we might be forced to use many phases to get the variability of
P to be low enough. Therefore, to minimize the number of phases in P , it seems desirable to choose
the rates of the exponential distributions so that the overall variability of P is minimized. One could
express the appending of each exponential distribution as a “function” whose goal is to reduce the
variability of P yet further.

Definition 12 Let X be an arbitrary distribution. Function φ maps X to φ(X) such that φ(X) =
Y ∗X, the convolution of Y and X, where Y is an exponential distribution whose rate, λY , is chosen
so that the normalized second moment of φ(X) is minimized. Also, φi(X) = φ(φi−1(X)) refers to
the distribution obtained by applying function φ to φi−1(X) for integers i ≥ 1, where φ0(X) = X.

Observe that, when X is a k-phase PH distribution, φN (X) is a (k +N)-phase PH distribution.
In theory, function φ allows each successive exponential distribution which is appended to have a

different rate. Surprisingly, however, the following theorem shows that if the exponential distribution
Y being appended by function φ is chosen so as to minimize the normalized second moment of φ(X)
(as specified by the definition), then the rate of each successive Y is always the same and is defined
by the simple formula shown in the theorem below. The theorem also characterizes the normalized
moments of φi(X).

Theorem 3 Let φi(X) = Yi ∗ φi−1(X), and let λYi be the rate of the exponential distribution Yi for
i = 1, ..., N . Then,

λYi =
1

(mX
2 − 1)µX1

(2.1)

for i = 1, ..., N . The normalized moments of ZN = φN (X) are:

mZN
2 =

(mX
2 − 1)(N + 1) + 1

(mX
2 − 1)N + 1

mZN
3 =

mX
2 m

X
3(

(mX
2 − 1)(N + 1) + 1

) (
(mX

2 − 1)N + 1
)2

+
(mX

2 − 1)N
(
3mX

2 + (mX
2 − 1)(mX

2 + 2)(N + 1) + (mX
2 − 1)2(N + 1)2

)

(
(mX

2 − 1)(N + 1) + 1
) (

(mX
2 − 1)N + 1

)2 .
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Proof: We first characterize Z = φ(X) = Y ∗X, where X is an arbitrary distribution with a finite
third moment and Y is an exponential distribution. The normalized second moment of Z is

mZ
2 =

mX
2 + 2y + 2y2

(1 + y)2
,

where y = µY1 /µ
X
1 . Observe that mZ

2 is minimized when y = mX
2 − 1, namely when

µY1 = (mX
2 − 1)µX1 . (2.2)

Observe that when µY1 is set at this value, the normalized moments of Z satisfy:

mZ
2 = 2 − 1

mX
2

and mZ
3 =

1

mX
2 (2mX

2 − 1)
mX

3 +
3(mX

2 − 1)

mX
2

.

We next characterize Zi = φi(X) = Yi ∗ φi−1(X) for 2 ≤ i ≤ N . By the above expression on mZ
2

and mZ
3 , the second part of the theorem on the normalized moments of ZN follow from solving the

following recurrence equations (where we use bi to denote m
φi(X)
2 and Bi to denote m

φi(X)
3 ):

bi+1 = 2 − 1

bi
and Bi+1 =

Bi
bi(2bi − 1)

+
3(bi − 1)

bi
.

The solutions for these recurrence equations are

bi+1 =
(b1 − 1)(i+ 1) + 1

(b1 − 1)i+ 1

Bi+1 =
b1B1 + (b1 − 1)i

(
3b1 + (b1 − 1)(b1 + 2)(i+ 1) + (b1 − 1)2(i+ 1)2

)

((b1 − 1)(i+ 1) + 1) ((b1 − 1)i+ 1)2

for all i ≥ 0. These solutions can be verified by substitution. This completes the proof of the second
part of the theorem.

The first part of the theorem on λYi is proved by induction. When i = 1, (2.1) follows from (2.2).
Assume that (2.1) holds for i = 1, ..., k. Let Zk = φk(X). By the second part of the theorem, which
is proved above,

mZk
2 =

(mX
2 − 1)(k + 1) + 1

(mX
2 − 1)k + 1

.

Thus, by (2.2),
1

λYk+1

= µ
Yk+1

1 = (mZk
2 − 1)µZk

1 = (mX
2 − 1)µX1 .

Corollary 1 If X is in set
{
F | 2 < mF

2

}
, then Z = φN (X) is in set

{
F | N+2

N+1 < mF
2 < N+1

N

}
.

Proof: By Theorem 3, mZ
2 is a continuous and monotonically increasing function of mX

2 . Thus, the
infimum and the supremum of mZ

2 are given by evaluating mZ
2 at the infimum and the supremum,

respectively, of mX
2 . When mX

2 → 2, mZ
2 → N+2

N+1 . When mX
2 → ∞, mZ

2 → N+1
N .

Corollary 1 suggests the number, N , of times that function φ must be applied to X to bring mZ
2 into

a desired range, given the value of mX
2 .
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Figure 2.10: A classification of distributions. The dotted lines delineate the set of all nonnegative
distributions G (mG

3 ≥ mG
2 ≥ 1).

Concluding remarks

Theorem 3 implies that the parameter λY of the EC distribution can be fixed without excluding the
distributions of lowest variability from the set of EC distributions. In the rest of the chapter, we
constrain λY as follows:

λY =
1

(mX
2 − 1)µX1

, (2.3)

and derive closed form representations of the remaining free parameters (n, p, λX1, λX2, pX), where
these free parameters will determine mX

2 and µX1 , which in turn gives λY by (2.3). Obviously, at
least three degrees of freedom are necessary to match three moments. As we will see, the additional
degrees of freedom allow us to accept all input distributions in PH3 and to use a smaller number
of phases.

2.6 Simple closed form solution

The Simple solution is the simplest among our three closed form solutions, and the Complete and
Positive solutions will be built upon the Simple solution. Before, presenting the Simple solution,
we first classify the input distributions. This classification is used, in particular, to determine the
number of phases used in the Simple solution.

Preliminaries

Set T (n), which is used to characterize set S (n), gives us a sense of how many phases are necessary to
well-represent a given distribution. It turns out that it is useful to divide set T (n) into smaller subsets
to describe the closed form solutions compactly. Roughly speaking, we divide the set T (n) \ T (n−1)

into three subsets, Un−1, Mn−1, and Ln−1 (see Figure 2.10). More formally,

Definition 13 We define Ui, Mi, and Li as follows:

U0 =
{
F
∣∣∣mF

2 > 2 and mF
3 > 2mF

2 − 1
}
,
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M0 =
{
F
∣∣∣mF

2 > 2 and mF
3 = 2mF

2 − 1
}
,

L0 =

{
F
∣∣∣3
2
mF

2 < mF
3 < 2mF

2 − 1

}
,

and

Ui =

{
F
∣∣∣ i+ 2

i+ 1
< mF

2 <
i+ 1

i
and mF

3 > 2mF
2 − 1

}
,

Mi =

{
F
∣∣∣ i+ 2

i+ 1
< mF

2 <
i+ 1

i
and mF

3 = 2mF
2 − 1

}
,

Li =

{
F
∣∣∣ i+ 3

i+ 2
mF

2 < mF
3 <

i+ 2

i+ 1
mF

2 and mF
3 < 2mF

2 − 1

}
,

for nonnegative integers i. Also, let U+ = ∪∞
i=1Ui, M+ = ∪∞

i=1Mi, L+ = ∪∞
i=1Li, U = U0 ∪ U+,

M = M0 ∪M+, and L = L0 ∪ L+. Further, let

Û =
{
F
∣∣∣mF

3 > 2mF
2 − 1

}
⊃ U ,

M̂ =
{
F
∣∣∣mF

3 = 2mF
2 − 1

}
⊃ M,

L̂ =
{
F
∣∣∣mF

3 < 2mF
2 − 1

}
⊃ L.

Observe that Û includes both U and borders between Ui and Ui+1, for i ≥ 0, that are not included
in U .

The sets Û , M̂, and L̂ provide a classification of distributions into three categories such that, for
any distribution X, X and φ(X) lie in the same category.

Lemma 4 Let ZN = φN (X) for integers N ≥ 1. If X ∈ Û (respectively, X ∈ M̂, X ∈ L̂), then
ZN ∈ Û (respectively, ZN ∈ M̂, ZN ∈ L̂).

Proof: We prove the case when N = 1. The lemma then follows by induction. Let Z = φ(X). By
Theorem 3, mX

2 = 1/(2 −mZ
2 ), and

mZ
3 > (respectively, =, and <)

2mX
2 − 1

mX
2 (2mX

2 − 1)
+ 3

mX
2 − 1

mX
2

> (respectively, =, and <) 2mZ
2 − 1,

where the last equality follows from mX
2 = 1/(2 −mZ

2 ).

By Corollary 1 and Lemma 4, it follows that:

Corollary 2 Let ZN = φN (X) for N ≥ 0. If X ∈ U0 (respectively, X ∈ M0), then ZN ∈ UN
(respectively, ZN ∈ MN ).

The corollary implies that for any G ∈ UN ∪MN , G can be well-represented by an (N + 2)-phase
EC distribution with no mass probability at zero (p = 1), because, for any X ∈ U0 ∪ M0, X can
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(n, p, λY , λX1, λX2, pX) = Simple(µG1 , µG2 , µG3 )
Input: the first three moments of a distribution G: µG1 , µG2 , and µG3 .
Output: parameters of the EC distribution, (n, p, λY , λX1, λX2, pX)

1. mG
2 =

µG
2

(µG
1 )2

; mG
3 =

µG
3

µG
1 µ

G
2

.

2. p =

{
1

2mG
2 −mG

3
if mG

3 < 2mG
2 − 1,

1 otherwise.

3. µW1 =
µG

1
p ; mW

2 = pmG
2 ; mW

3 = pmG
3 .

4. n =

⌊
mW

2

mW
2 −1

+ 1

⌋
.

5. mX
2 =

(n−3)mW
2 −(n−2)

(n−2)mW
2 −(n−1)

; µX1 =
µW

1

(n−2)mX
2 −(n−3)

.

6. α = (n− 2)(mX
2 − 1)

(
n(n− 1)(mX

2 )2 − n(2n− 5)mX
2 + (n− 1)(n− 3)

)
.

7. β =
(
(n− 1)mX

2 − (n− 2)
) (

(n− 2)mX
2 − (n− 3)

)2
.

8. mX
3 =

βmW
3 −α
mX

2
.

9. u =
6−2mX

3

3mX
2 −2mX

3
; v =

12−6mX
2

mX
2 (3mX

2 −2mX
3 )

.

10. λX1 = u+
√
u2−4v

2µX
1

; λX2 = u−
√
u2−4v

2µX
1

; pX =
λX2(λX1µ

X
1 −1)

λX1
; λY = 1

(mX
2 −1)µX

1
.

Figure 2.11: An implementation of the Simple solution, defined for G ∈ PH−
3 ≡ U ∪M∪L.

be well-represented by a two-phase Coxian+ PH distribution, and hence ZN = φN (X) can be well-
represented by an (N + 2)-phase EC distribution. (Recall UN ,MN ,LN ⊂ TN+∞.) Below, it will
also be shown that for any G ∈ LN , G can be well-represented by an (N + 2)-phase EC distribution
with positive mass probability at zero (p < 1).

By Corollary 2, it is relatively easy to provide a closed form solution for the parameters (n, p, λX1,
λX2, pX) of an EC distribution, Z, so that a given distribution is well-represented by Z. Essentially,
one just needs to find an appropriate N and solve Z = φN (X) for X in terms of normalized moments,
which is immediate since N is given by Corollary 1 and the normalized moments of X can be obtained
from Theorem 3.

The Simple solution

We are now ready to present the Simple solution. The Simple solution assumes that G ∈ PH−
3 ,

where PH−
3 = U ∪M∪L. Observe PH−

3 includes almost all distributions in PH3. Only the borders
between the Ui’s, Mi’s, and Li’s are not included. Figure 2.11 shows an implementation of the
Simple solution. The solution differs according to the classification of the input distribution G.
When G ∈ U0∪M0, a two-phase Coxian+ PH distribution suffices to match the first three moments.
When G ∈ U+ ∪M+, G is well-represented by an EC distribution with p = 1. When G ∈ L, G is
well-represented by an EC distribution with p < 1.

(i) If G ∈ U0 ∪M0 (see Figure 2.12(i)), then a two-phase Coxian+ PH distribution suffices to
match the first three moments, i.e., p = 1 and n = 2 (N = 0). The parameters (λX1, λX2, pX) of
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Figure 2.12: Ideas in the Simple solution. Let G be the input distribution. (i) If G ∈ U0 ∪ M0,
G is well-represented by a two-phase Coxian+ PH distribution X. (ii) If G ∈ U+ ∪ M+, G is
well-represented by φN (X), where X is a two-phase Coxian+ PH distribution. (iii) If G ∈ L, G is
well-represented by Z, where Z has a distribution function pφN (X)(·) + (1 − p)O(·).

the two-phase Coxian+ PH distribution are chosen as follows [144, 190]:

λX1 =
u+

√
u2 − 4v

2µG1
, λX2 =

u−
√
u2 − 4v

2µG1
, and pX =

λX2(λX1µ
G
1 − 1)

λX1
, (2.4)

where

u =
6 − 2mG

3

3mG
2 − 2mG

3

and v =
12 − 6mG

2

mG
2 (3mG

2 − 2mG
3 )
. (2.5)

(ii) If G ∈ U+ ∪M+ (see Figure 2.12(ii)), Corollary 1 specifies the number of phases needed:

n = min

{
k
∣∣∣mG

2 >
k

k − 1

}
=

⌊
mG

2

mG
2 − 1

+ 1

⌋
. (2.6)

Let N = n− 2. Next, we find the two-phase Coxian+ PH distribution X ∈ U0 ∪M0 such that G is
well-represented by Z = φN (X). By Theorem 3, this can be achieved by setting

mX
2 =

(n− 3)mG
2 − (n− 2)

(n− 2)mG
2 − (n− 1)

, mX
3 =

βmG
3 − α

mX
2

, and µX1 =
µG1

(n− 2)mX
2 − (n− 3)

,

where

α = (n− 2)(mX
2 − 1)

(
n(n− 1)(mX

2 )2 − n(2n− 5)mX
2 + (n− 1)(n− 3)

)

β =
(
(n− 1)mX

2 − (n− 2)
) (

(n− 2)mX
2 − (n− 3)

)2
.

Thus, we set p = 1, and the parameters (λX1, λX2, pX) of X are given by case (i), using mX
2 , mX

3 ,
and µX1 , specified above.

(iii) If G ∈ L (see Figure 2.12(iii)), then let

p =
1

2mG
2 −mG

3

, mW
2 = pmG

2 , mW
3 = pmG

3 , and µW1 =
µG1
p
.
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Observe that p satisfies 0 ≤ p < 1. Also, since W is in M, W can be chosen as an EC distribution
with no mass probability at zero. If W ∈ M0, the parameters of W are provided by case (i),
using mW

2 , mW
3 , and µW1 , specified above. If W ∈ M+, the parameters of W are provided by case

(ii), using mW
2 , mW

3 , and µW1 , specified above. G is then well-represented by distribution Z, where
Z(·) = pW (·) + (1 − p)O(·).

Analyzing the number of phases required

The number of phases used in the Simple solution is characterized by the following theorem.

Theorem 4 The Simple solution uses at most OPT(G) + 1 phases to well-represent a distribution
G ∈ PH−

3 .

Proof: Since S(n) ⊂ T (n) (by Lemma 1), it suffices to prove that if a distribution G ∈ T (n), then at
most n+ 1 phases are needed. If G ∈ T (n) ∩ (U ∪M), then mG

2 > n+1
n . Also, if G ∈ T (n) ∩ L, then

mW
2 =

mG
2

2mG
2 − 1

>
n+ 1

n
.

Thus, by (2.6), the EC distribution provided by the Simple solution has at most n+ 1 phases.

2.7 Complete closed form solution

The Complete solution improves upon the Simple solution in the sense that it is defined for all
the input distributions G ∈ PH3. Figure 2.13 shows an implementation of the Complete solution.
Below, we elaborate on the Complete solution, and prove an upper bound on the number of phases
used in the Complete solution.

The Complete solution

Consider an arbitrary distribution G ∈ PH3. Our approach consists of two steps, the first of which
involves constructing a baseline EC distribution, and the second of which involves reducing the
number of phases in this baseline solution. If G ∈ PH−

3 , then the baseline solution used is simply

given by the Simple solution. Also, if G /∈ PH−
3 but G ∈ L̂ ∪ M̂, then it turns out that the

Simple solution could be defined for this G, and this gives the baseline solution. If G /∈ PH−
3 but

G ∈ Û , then to obtain the baseline EC distribution we first find a distribution W ∈ PH−
3 such

that rW = rG and mW
2 < mG

2 and then set p such that G is well-represented by distribution Z,
where Z(·) = pW (·) + (1 − p)O(·) (see Figure 2.14(a)). The parameters of the EC distribution that
well-represents W are then obtained by the Simple solution.

To reduce the number of phases used in the baseline EC distribution, we exploit the subset of
two-phase Coxian+ PH distributions that are not used in the Simple solution. The Simple solution
is based on the fact that a distribution X is well-represented by a two-phase Coxian+ PH distribution
whenX ∈ U0∪M0. In fact, a wider range of distributions are well-represented by the set of two-phase

Coxian+ PH distributions. In particular, if X is in set S =
{
F
∣∣∣3∈ ≤ mX

∈ ≤ ∈ and mX
3 = ∈mX

∈ −∞
}
,
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(n, p, λY , λX1, λX2, pX) = Complete(µG1 , µG2 , µG3 )
Input: the first three moments of a distribution G: µG1 , µG2 , and µG3 .
Output: parameters of the EC distribution, (n, p, λY , λX1, λX2, pX)

1. mG
2 =

µG
2

(µG
1 )2

; mG
3 =

µG
3

µG
1 µ

G
2

.

2. p =





(mG
2 )2+2mG

2 −1

2(mG
2 )2

if mG
3 > 2mG

2 − 1, and 1
mG

2 −1
is an integer,

1
2mG

2 −mG
3

if mG
3 < 2mG

2 − 1,

1 otherwise.

3. µW1 =
µG

1
p ; mW

2 = pmG
2 ; mW

3 = pmG
3 .

4. n =





⌈
mW

2

mW
2 −1

⌉
− 1 if mW

3 = 2mW
2 − 1, and mW

2 ≤ 2,
⌊

mW
2

mW
2 −1

+ 1

⌋
otherwise.

(When n = 1, set pX = 0 and λX1 = 1
µW

1
, and exit. Below, we assume n ≥ 2.)

5. mX
2 =

(n−3)mW
2 −(n−2)

(n−2)mW
2 −(n−1)

; µX1 =
µW

1

(n−2)mX
2 −(n−3)

.

6. α = (n− 2)(mX
2 − 1)

(
n(n− 1)(mX

2 )2 − n(2n− 5)mX
2 + (n− 1)(n− 3)

)
.

7. β =
(
(n− 1)mX

2 − (n− 2)
) (

(n− 2)mX
2 − (n− 3)

)2
.

8. mX
3 =

βmW
3 −α
mX

2
.

9. u =





1 if 3mX
2 = 2mX

3
6−2mX

3

3mX
2 −2mX

3
otherwise

; v =





0 if 3mX
2 = 2mX

3
12−6mX

2

mX
2 (3mX

2 −2mX
3 )

otherwise
.

10. λX1 = u+
√
u2−4v

2µX
1

; λX2 = u−
√
u2−4v

2µX
1

; pX =
λX2(λX1µ

X
1 −1)

λX1
; λY = 1

(mX
2 −1)µX

1
.

Figure 2.13: An implementation of the Complete solution, defined for G ∈ PH3.

then X is well-represented by a two-phase Coxian+ PH distribution (see Figure 2.14(a)). By exploit-
ing two-phase Coxian+ PH distributions in S ∪ U′ ∪M′, the Complete solution reduces the number
of phases used. The above ideas lead to the following solution:

(i) If G ∈ Û ∩ PH−, then the Simple solution provides the parameters (n, p, µX1, µX2, pX).
(ii) If G ∈ Û ∩ (PH−)

c
(see Figure 2.14(a)), where (PH−)

c
denotes the complement of PH−,

then let

n =
2mG

2 − 1

mG
2 − 1

, (2.7)

and

mW
2 =

1

2

(
n− 1

n− 2
+

n

n− 1

)
, mW

3 =
mG

3

mG
2

mW
2 , and µW1 =

µG1
pW

,

where pW = mW
2 /mG

2 . G is then well-represented by Z, where Z(·) = pWW (·)+(1−pW )O(·), where
W is an EC distribution with normalized moments mW

2 and mW
3 and mean µW1 . The parameters (n,

µX1, µX2, pX) of W are provided by the Simple solution. Also, set p = pW , since W has no mass
probability at zero.

(iii) If G ∈ M̂ ∪ L̂, then the Simple solution provides the parameters (n, p, µX1, µX2, pX), except
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Figure 2.14: Ideas in the Complete solution. (a) A distribution G not in PH−
3 is well-represented

by an EC distribution W mixed with O. (b) The set of two-phase Coxian+ PH distributions used
is extended.

that (2.6) is replaced by

n =





⌈
mG

2

mG
2 −1

⌉
− 1 if mG

2 ≤ 2,

2 otherwise.
(2.8)

The next theorem guarantees that parameters obtained with the reduced n are still feasible.

Theorem 5 If X is in set
{
F | 3

2 ≤ mF
2 ≤ 2 and mF

3 = 2mF
2 − 1

}
, then Z = φN (X) is in set{

F | N+1
N ≤ mF

2 ≤ N
N−1 and mF

3 = 2mF
2 − 1

}
.

Proof: By Theorem 3, mZ
2 is a continuous and monotonically increasing function of mX

2 , Thus,

N + 1

N
≤ mZ

2 ≤ N

N − 1

follows by simply evaluating mZ
2 at the lower and upper bound of mX

2 . mZ
3 = 2mZ

2 − 1 follows from
Lemma 4.

Analyzing the number of phases required

The number of phases used in the Complete solution is characterized by the following theorem.

Theorem 6 The Complete solution uses at most OPT (G) + 1 phases to well-represent any distri-
bution G ∈ PH3.

Proof: If G ∈ PH−
3 , the number of phases used in the Complete solution is at most that used

in the Simple solution, i.e. ≤ OPT(G) + 1. Thus, it suffices to prove that if a distribution G ∈
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(T (n) \T (\−∞))∩ (PH−
3 )c, then at most n+1 phases are needed (recall S (n) ⊂ T (n) by Lemma 1). If

G ∈ (T (n) \ T (n−1))∩ (PH−
3 )c ∩ Û , then mG

2 = n/(n− 1). Thus, by (2.7), the number of phases used

is n + 1. If G ∈ (T (n) \ T (n−1)) ∩ (PH−
3 )c ∩ (M̂ ∪ L̂), then the number of phases given by (2.8) is

exactly n, except for input distribution G with mG
2 ≥ 2 and rG = 3/2 (i.e. exponential distribution

possibly mixed with O) for which (2.8) gives 1. Thus, the number of phases used in the Complete

solution for G ∈ (PH−
3 )c ∩ (M̂ ∪ L̂) is OPT(G).

Theorem 6 implies that any distribution in S (n) is well-represented by an EC distribution of n + 1
phases. In the proof, we prove a stronger property that any distribution in T (n), which is a superset of
S(n), is well-represented by an EC distribution of n+1 phases, which implies the following corollary:

Corollary 3 For all integers n ≥ 2, T (n) ⊂ S(n+1).

2.8 Positive closed form solution

The Positive solution is built upon the Complete solution, but does not have mass probability
at zero. The key idea in the design of the Positive solution is to match the input distribution
either by a mixture of an EC distribution (with no mass probability at zero) and an exponential
distribution, or by the convolution of an EC distribution (with positive mass probability at zero)
and an exponential distribution. The use of these types of distributions makes intuitive sense, since
they can approximate the EC distribution with mass probability at zero arbitrarily closely by letting
the rate of the exponential distributions approach infinity. Therefore, in this section, we extend
the definition of the EC distribution and use the extended EC distribution to well-represent the
input distribution.

Definition 14 An extended EC distribution has a distribution function either of the form pX(·) +
(1 − p)W (·) or of the form Z(·) ∗X(·), where X is an EC distribution with no mass probability at
zero; Z and W are exponential distributions.

See Figure 2.3 for the Markov chain whose absorption time defines an extended EC distribution.
Note that the parameter n in an extended EC distribution denotes the number of phases in the EC
portion of the extended EC distribution. Therefore, the total number of phases in the extended EC
distribution is n+ 1.

The Positive solution

The Positive solution is defined for almost all the input distributions in PH3. Specifically, it is
defined for all the distributions in

U ∪ M̂ ∪
{
F
∣∣∣rF 6= 3

2
and mF

3 < 2mF
2 − 1

}
.

Figure 2.15 shows an implementation of the Positive solution. Below, we elaborate on the Positive
solution, and prove an upper bound on the number of phases used in the Positive solution.

When the input distribution G is in U∪M, the EC distribution produced by the Minimal solution

does not have a mass probability at zero. When G is in
{
F | mF

3 < 2mF
2 − 1 and rF > 3

2

}
, G can be
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(n, p, λY , λX1, λX2, pX , λW , λZ) = Positive(µG1 , µG2 , µG3 )

If G ∈ U ∪
{
F | mF

3 = 2mF
2 − 1

}
∪
{
F | mF

3 < 2mF
2 − 1 and mF

2 > 2 and rF > 3
2

}
,

use Complete. Otherwise,

1. mG
2 =

µG
2

(µG
1 )2

; mG
3 =

µG
3

µG
1 µ

G
2

; rG =
mG

3

mG
2

; k = b2mG
2 −mG

3

mG
3 −mG

2
c.

If mG
3 ≥ (k+1)mG

2 +(k+4)
2(k+2) mG

2 ,

2. w =
2−mG

2

4( 3
2
−rG)

; p =
(2−mG

2 )2

(2−mG
2 )2+4(2mG

2 −1−mG
3 )

; mX
2 = 2w;

mX
3 = 2mX

2 − 1; µX1 =
µG

1
p+(1−p)w ; λW = 1

wµX
1

; λZ = ∞; go to 3.

If rG <
(k+1)mG

2 +(k+4)
2(k+2) and mG

2 = 2,

2. z =
mG

3 −2 k+3
k+2

3−mG
3

; mX
2 = 2(1 + z); mX

3 = k+3
k+2m

X
2 ; µX1 =

µG
1

1+z .

λZ = 1
zµX

1
; λW = ∞; go to 3.

If mG
3 <

(k+1)mG
2 +(k+4)

2(k+2) mG
2 and mG

2 6= 2,

2. z =
mG

2 ((mG
3 −3)−2 k+3

k+2
(mG

2 −2))+mG
2

√
(mG

3 −3)2+8 k+3
k+2

(mG
2 −2)( 3

2
−rG)

2 k+3
k+2

(mG
2 −2)2

;

mX
2 = (1 + z)

(
mG

2 (1 + z) − 2
)
; mX

3 = k+3
k+2m

X
2 ; µX1 =

µG
1

1+z .

λZ = 1
zµX

1
; λW = ∞; go to 3.

3. µX2 = mX
2 (µX1 )2; µX3 = mX

3 µ
X
1 µ

X
2 .

4. (n, p, λY , λX1, λX2, pX) = Complete(µX1 , µX2 , µX3 )

Figure 2.15: An implementation of the Positive solution, defined for a distribution G ∈ U ∪ M̂ ∪{
F
∣∣∣rF 6= 3

2 and mF
3 < 2mF

2 − 1
}
.

well-represented by a two-phase Coxian+ PH distribution, whose parameters are given by (2.4)-(2.5).

Below, we focus on input distributions G ∈
{
F
∣∣∣mF

3 < 2mF
2 − 1 and rF < 3

2

}
.

We first consider the first approach of using a mixture of an EC distribution (with no mass
probability at zero), X, and an exponential distribution, W , (i.e. λZ = ∞). Let

L̂N =

{
F
∣∣∣N + 3

N + 2
mF

2 < mF
3 ≤ N + 2

N + 1
mF

2 and mF
3 < 2mF

2 − 1

}
.

Given a distribution G ∈ L̂N , we seek mX
2 , mX

3 , 0 < p < 1, and w > 0 such that

N + 2

N + 1
≤ mX

2 <
N + 1

N
(2.9)

mX
3 = 2mX

2 − 1 (2.10)

mG
2 =

pmX
2 + 2(1 − p)w2

(p+ (1 − p)w)2
(2.11)

mG
3 =

pmX
2 m

X
3 + 6(1 − p)w3

(p+ (1 − p)w)(pmX
2 + 2(1 − p)w2)

(2.12)

Note that (2.9)-(2.10) guarantee that we can find, via the Complete solution, an (N + 1)-phase EC
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Figure 2.16: Two regions in LN that input G can fall into under the Positive solution: (a) G is
well-represented by a mixture of an EC distribution X and an exponential distribution W ; (b) G is
well-represented by the convolution of an EC distribution X and an exponential distribution Z.

distribution, X, such that X has no mass probability at zero and has normalized moments mX
2 and

mX
3 . Let W be the exponential distribution with µW1 = w/µX1 . (2.11)-(2.12) guarantee that, by

choosing µX1 appropriately, G is well-represented by a distribution Y , where

Y (·) = pX(·) + (1 − p)W (·).

The following lemma provides conditions on the input distribution for which the first approach
is defined.

Lemma 5 Suppose

G ∈ L̂N and
(N + 1)mG

2 + (N + 4)

2(N + 2)
≤ rG

for N ≥ 1 (see Figure 2.16(a)). Let

w =
2 −mG

2

4
(

3
2 − rG

)

p =
(2 −mG

2 )2

(2 −mG
2 )2 + 4(2mG

2 − 1 −mG
3 )

mX
2 = 2w

mX
3 = 2mX

2 − 1.

Then, w > 0, 0 < p < 1, and conditions (2.9)-(2.12) are satisfied.

A proof of Lemma 5 is postponed to Appendix A.
The key idea behind Lemma 5 is to fix some of the parameters so that the set of equations becomes

simpler and yet there exists a unique solution. The difficulty in finding closed form solutions is that
we are given a system of nonlinear equations with high degree (2.10)-(2.12), and the solutions are
not unique. By fixing some of the parameters, the system of equations can be reduced to have a
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unique solution. We find that w given by Lemma 5 has nice characteristics. First, mX
2 leads to a

very simple expression: mX
2 = 2w. Second, with this expression of mX

2 , the expression involving rG

is significantly simplified:

rG =
2prX + 3(1 − p)w

2(p+ (1 − p)w)
.

Now, solving (2.10)-(2.12) for p and w is a relatively easy task, and p and w immediately gives
mX

2 and mX
3 . Although Lemma 5 allows us to find a simple closed form solution, the set of input

distributions defined for Lemma 5 is rather small. This necessitates the second approach of using the
convolution of an EC distribution and an exponential distribution. Note that the second approach
alone does not suffice, either. Applying the first approach to a small set of input distributions and
applying the second approach to the rest of the input distribution, in fact, lead to simpler closed
form solutions by both approaches.

Next, we consider the second approach of using the convolution of an EC distribution (with mass
probability at zero) and an exponential distribution (i.e. λW = ∞). Given a distribution G ∈ L̂N
(we assume rG 6= 3

2), we seek mX
2 , mX

3 , and z > 0 such that

mX
2 ≥ N + 2

N + 1
(2.13)

mX
3 =

N + 3

N + 2
mX

2 (2.14)

mG
2 =

mX
2 + 2z + 2z2

(1 + z)2
(2.15)

mG
3 =

mX
2 m

X
3 + 3mX

2 z + 6z2 + 6z3

(mX
2 + 2z + 2z2)(1 + z)

(2.16)

Note that (2.13)-(2.14) guarantees that we can find, via the Complete solution, an (N +1)-phase EC
distribution, X, such that X has no mass probability at zero and has normalized moments mX

2 and
mX

3 . Let Z be the exponential distribution whose first moment is µZ1 = zµX1 , where µX1 is the first
moment of X. (2.15)-(2.16) guarantee that, by choosing µX1 appropriately, G is well-represented by
the convolution of X and Z.

The following lemma provides conditions on the input distribution for which the second approach
is defined.

Lemma 6 Suppose

G ∈ L̂N and rG <
(N + 1)mG

2 + (N + 4)

2(N + 2)

for N ≥ 1 (see Figure 2.16(b)). If mG
2 = 2, we choose

z =
mG

3 − 2N+3
N+2

3 −mG
3

mX
2 = 2(1 + z)

mX
3 =

N + 3

N + 2
mX

2 .
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If mG
2 6= 2, we choose

z =

mG
2

(
(mG

3 − 3) − 2N+3
N+2(mG

2 − 2)
)

+mG
2

√
(mG

3 − 3)2 + 8N+3
N+2(mG

2 − 2)

(
3
2 − mG

3

mG
2

)

2N+3
N+2(mG

2 − 2)2

mX
2 = (1 + z)

(
mG

2 (1 + z) − 2z
)

mX
3 =

N + 3

N + 2
mX

2 .

Then, z > 0 and conditions (2.13)-(2.16) are satisfied.

A proof of Lemma 6 is postponed to Appendix A.

Analyzing the number of phases required

The number of phases used in the Positive solution is characterized by the following theorem.

Theorem 7 The Positive solution uses at most OPT(G) + 1 phases to well-represent any distri-

bution G ∈ U ∪ M̂ ∪
{
F
∣∣∣rF 6= 3

2 and mF
3 < 2mF

2 − 1
}
.

Proof: Since S(n) ⊂ T (n) (by Lemma 1), it suffices to prove that if a distribution G ∈ T (n), then
at most n + 1 phases are needed. When an input distribution G ∈ U ∪ M̂, the Positive solution
is the same as the Complete solution, and hence requires the same number of phases, which is at

most OPT(G) + 1. When G ∈
{
F
∣∣∣rF > 3

2 and mF
3 < 2mF

2 − 1
}
, the number of phase used in the

Positive solution is 2 = OPT(G). When G ∈
{
F
∣∣∣rF < 3

2 and mF
3 < 2mF

2 − 1
}
, it is immediate,

from the construction of the solution, that the Positive solution requires at most one more phase
than the Complete solution. For this G, the Complete solution requires OPT(G) phases, and hence
the Positive solution requires OPT(G) + 1 phases.

2.9 Concluding remarks

In this chapter, moment matching algorithms are proposed. Also, to prove the minimality of the
number of phases used in our moment matching algorithms, the set, S (n), of distributions that are
well-represented by an n-phase acyclic phase type (PH) distribution is characterized.

Our moment matching algorithms have broad applicability in computer science, engineering, op-
erations research, etc., where the performance evaluation or optimization in stochastic environment
is needed. For example, in this thesis, a moment matching algorithm is used to model a multiserver
system as a (multidimensional) Markov chain, as well as in a key step of the analysis of the multi-
dimensional Markov chain via dimensionality reduction. Furthermore, many optimization problems
in stochastic environment can be formulated as Markov decision problems [159] by mapping general
(input) probability distributions into PH distributions.

Our moment matching algorithms can also be used as a building block to construct a solution
with additional properties. For example, the Positive solution can be used as a building block for
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yet another solution, ZeroMatching, that not only matches the first three moments of the input
distribution but also matches the mass probability at zero. Consider a distribution G whose mass
probability at zero is q. Then, G can be expressed as a mixture of O (the distribution of a random
variable V ≡ 0) and a distribution F that does not have mass probability at zero. The Positive

solution can be used to match the first three moments of F by an extended EC distribution, E. Now,
a mixture of O and E, whose distribution function is qO(·) + (1 − q)E(·), matches the first three
moments and mass probability at zero of G. Observe that the ZeroMatching solution uses at most
OPT(G) + 1 phases.

Beyond proving the minimality of the number of phases used in our moment matching algorithms,
our characterization of set S(n) via set T (n) is found to be useful in developing our moment matching
algorithms, since the characterization of S (n) allows us to determine how close our PH distribution
is to the minimal PH distribution, and provides intuition for coming up with improved algorithms.
Another benefit of characterizing S (n) is that some existing moment matching algorithms, such as
Johnson and Taaffe’s nonlinear programming approach [90], require knowing the number of phases,
n, in the minimal PH distribution. The current approach involves simply iterating over all choices
for n [90], whereas our characterization would immediately specify n.

In developing moment matching algorithms, we have introduced various theoretical concepts such
as the normalized moments, r-value, sets S (n) and T (n), function φ, and the EC distribution, and
have proved their properties. These new concepts and their properties are found to be quite useful in
developing moment matching algorithms, and they have recently stimulated the research in this area.

For example, Bobbio, et al. [22] have recently used the normalized moments to provide exact
characterizations of sets S(n) and S(n)∗ , where S(n) is the set of distributions that can be well-
represented by an n-phase acyclic PH distribution and S (n)∗ is the set of distributions that can be
well-represented by an n-phase acyclic PH distribution with no mass probability at zero. Bobbio,
et al. use their exact characterization of S (n) to construct a minimal acyclic PH distribution that
well-represents any distribution in PH3. The PH distributions to which an input distribution is
mapped in [22], the Exp-Erlang distribution and the Erlang-Exp distribution, are similar to (but
simpler than) the EC (Erlang-Coxian) distribution and the extended EC distribution introduced in
this chapter. In fact, the EC distribution is reduced to the Exp-Erlang distribution by setting p = 1
and λX1 = λY (see Figure 2.2), and the extended EC distribution is reduced to the Erlang-Exp
distribution by setting λW = ∞, pX = 1, and λX1 = λX2 = λY (see Figure 2.3). Since the work by
Bobbio, et al. builds upon the results in this chapter, we summarize their main results in Appendix B.

In response to increased request, the closed form solutions developed in this chapter have been
largely implemented, and the latest implementation of the solutions is made available at an online
code repository:

http://www.cs.cmu.edu/∼osogami/code/.

Future directions

Our moment matching algorithms (or the ones recently proposed by Bobbio et al. [22]) by no mean
provide perfect solution for mapping a general distribution into a PH distribution. Interesting future
directions include extension to matching more moments and extension to a sequence of correlated
PH distributions. Our moment matching algorithms match the first three moments of an input
distribution, but it is desirable to match more moments. Also, a PH distribution can be used to
model a sequence of independent random variables (such as a sequence of job sizes and a sequence
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of interarrival times); however, in some applications, it is desirable to capture the correlation in
the sequence of random variables. The Markovian arrival process (see Section 3.2) generalizes the
PH distribution, and it represents a sequence of correlated PH distributions. However, how we
should map a sequence of correlated random variables into a Markovian arrival process is not well
understood (see e.g. [72] for this direction of work).

An interesting future direction in characterizing PH distributions is to characterize the set of
distributions that are well-represented by an n-phase general PH distribution, not limited to an
acyclic ones. Such a characterization could be used to prove the minimality of the number of
phases used in our closed form solutions in a stronger sense. Although our experience via numerical
experiments suggests that allowing cycles in the PH distribution does not help to reduce the number
of phases used to match the three moments, a rigorous characterization is not known to date. Note,
however, that an acyclic PH distribution has a computational advantage over a cyclic one, since the
generator matrix of the Markov chain whose absorption time defines an acyclic PH distribution is
upper triangular. Therefore, in some applications, one might prefer an acyclic PH distribution with
more phases to a cyclic PH distribution with less phases. Another interesting future direction is to
characterize the set of distribution whose first k-moments can be matched by an n-phase (acyclic or
general) PH distribution for k > 3. Such a characterization would be useful in designing moment
matching algorithms that match the first k > 3 moments of an input distribution.
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Chapter 3

Dimensionality reduction of Markov
chains

How can we analyze Markov chains on a multidimensionally infinite state space?

Markov modeling is a common approach to analyzing the performance of computer systems,
service facilities, and manufacturing systems. The performance (such as mean response time) of a
system can be analyzed by modeling the system as a Markov chain and analyzing the stationary
probabilities in the Markov chain. However, the performance analysis of a multiserver system with
multiple classes of jobs has a common source of difficulty: the Markov chain that models the sys-
tem behavior has a state space that grows infinitely in multiple dimensions. We start this chapter
by providing two simple examples of such multidimensional Markov chains (Markov chains on a
multidimensionally infinite state space).

First, consider two processors, each serving its own M/M/1 queue, where one of the processors
(the “donor”) can help the other processor (the “beneficiary”) with its jobs, during times when the
donor queue is empty. Specifically, the beneficiary jobs (respectively, donor jobs) arrive according to a
Poisson process with rate λB (respectively, λD). The service demands of these jobs have exponential
distributions with rate µB and µD, respectively. When there are no donor jobs and there are at
least two beneficiary jobs, the donor server processes a beneficiary job, and hence the beneficiary
jobs completes with rate 2µB. Figure 3.1(a) shows a Markov chain on a two-dimensionally infinite
state space (2D Markov chain) that models the behavior of this system. In this Markov chain, one
dimension tracks the number of donor jobs, and the other dimension tracks the number of beneficiary
jobs. Since the behavior of beneficiary jobs depends on the number of donor jobs (specifically, whether
there are 0 or ≥ 1 donor jobs) in the system, the 2D Markov chain cannot simply be decomposed
into two 1D Markov chains (Markov chains on a one-dimensionally infinite state space).

Next, consider an M/M/2 queue with two priority classes, where high priority jobs have pre-
emptive priority over low priority jobs. Specifically, the low (respectively, high) priority jobs arrive
according to a Poisson process with rate λL (respectively, λH). The service demands of these jobs
have exponential distributions with rate µL and µH , respectively. When there are n high priority
jobs, only max{2−n, 0} servers are available for low priority jobs. Figure 3.1(b) shows a 2D Markov
chain that models the behavior of this system. In this Markov chain, one dimension tracks the
number of high priority jobs, and the other dimension tracks the number of low priority jobs. Again,
since the behavior of low priority jobs depends on the number of high priority jobs in the system,
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Figure 3.1: Examples of multidimensional Markov chains that model multiserver systems: (a) a
multiserver system with cycle stealing and (b) an M/M/2 queue with two preemptive priority classes.

the 2D Markov chain cannot simply be decomposed into two 1D Markov chains. As we will see,
when there are m priority classes, the performance analysis of the lowest priority class involves an
mD Markov chain (Markov chain on an m-dimensionally infinite state space).

The goal of this chapter is to provide an analytical tool, which we refer to as dimensional-
ity reduction (DR), that allows us to analyze these and more complex multidimensional Markov
chains. DR reduces a multidimensional Markov chain to a 1D Markov chain, which closely approx-
imates the multidimensional Markov chain and can be analyzed efficiently. We will define a broad
class of (multidimensional) Markov chains, which we will refer to as RFB/GFB processes (recursive
foreground-background processes or generalized foreground-background processes), that allow us to
model many interesting multiserver systems with multiple classes of jobs, and then show an anal-
ysis of these Markov chains via DR. DR involves approximations, but we will show that the mean
response time computed via DR is usually within a few percent of the simulated value. DR will
enable one to analyze the performance of many multiserver systems by simply modeling them as
RFB/GFB processes.

3.1 Overview

In this section, we introduce the ideas behind DR by analyzing a particular multiserver system:
a queue with two servers and two priority classes. The description of DR in this section is quite
intuitive, with many figures and few formulas. More details and mathematical expressions that are
convenient for implementation of DR will be provided in later sections. We start with the simpler
case of exponential service demand distributions, and provide a basic idea behind DR. The full range
of ideas behind DR will be provided via an analysis for the case of (two phase) PH service demand
distributions. We also briefly discuss the class of Markov chains to which DR can be applied to.
Again, details will be provided in later sections.
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Figure 3.2: Markov chains for an M/M/2 queue with two preemptive priority classes. (a) Markov
chain for the number of high priority jobs. (b)-(d) Markov chains for the number of low priority jobs
conditioned on the number of high priority jobs.

3.1.1 Analysis of priority M/M/2 queue via DR

In this section, we introduce the basic idea behind DR by sketching an analysis of an M/M/2 queue
with two priority classes via DR. Specifically, we reduce the 2D Markov chain in Figure 3.1(b) to a
1D Markov chain that closely approximates the 2D Markov chain, such that the 1D Markov chain
can be analyzed efficiently via existing approaches.

First, observe that the performance of high priority jobs can be analyzed independently of the
low priority jobs, since the behavior of the high priority jobs is not affected by the (number of) low
priority jobs in the system. Specifically, Figure 3.2(a) shows the Markov chain that exactly models
the number of high priority jobs in the system, and an analysis of this Markov chain allows us to
calculate the mean response time of high priority jobs.

By contrast, the behavior of the low priority jobs is affected by the number of high priority jobs in
the system. Specifically, when there are no high priority jobs in the system, two servers are available
for the low priority jobs (see Figure 3.2(b) for the behavior of the low priority jobs in this case);
when there is one high priority job in the system, one server is available for the low priority jobs (see
Figure 3.2(c)); when there are more than one high priority jobs in the system, no server is available
for the low priority jobs (see Figure 3.2(d)).

Observe that the 2D Markov chain in Figure 3.1(b) consists of the Markov chains in Figure 3.2.
Specifically, each column in the 2D Markov chain corresponds to the Markov chain in Figure 3.2(a);
the first row (respectively, the second row) in the 2D Markov chain corresponds to the Markov chain
in Figure 3.2(b) (respectively, Figure 3.2(c)), and each of the other rows in the 2D Markov chain
corresponds to the Markov chain in Figure 3.2(d).

Our goal is to reduce this 2D Markov chain into a 1D Markov chain that closely approximates the
2D Markov chain. Toward this end, observe that the behavior of the low priority jobs is determined
only by whether there are 0, 1, or ≥ 2 high priority jobs. As long as there are ≥ 2 high priority
jobs in the system, the precise number of high priority jobs does not affect the behavior of the low
priority jobs. Also, observe that the infinite number of rows in the 2D Markov chain stems from the

53



Number of high priority jobs

µH

λH λH λH

H2µH2µ
0 1 2

(a) Markov chain on an infinite state space

=⇒ µH

λH λH

t1

t12

t2

2+ 2+0 1

(b) Markov chain on a finite state space

Number of high priority and low priority jobs

2µL

µHλH

λH

λH

λH

λH

λH λH

λH

λHµH µH

H2µ H2µ H2µ

H2µH2µH2µ

λL λL λL

λLλLλL

λL λL λL

λLλLλL

µL

µL µL µL

2µL

1 20

number of low priority jobs

0

1

2

3

nu
m

be
r 

of
 h

ig
h 

pr
io

ri
ty

 jo
bs

(c) 2D Markov chain
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(d) 1D Markov chain

Figure 3.3: Dimensionality reduction of 2D Markov chain.

infinite number of states (levels) in the Markov chain for the high priority jobs (Figure 3.2(a)).
This motivates us to construct a Markov chain, for the high priority jobs, that differentiates only

between 0, 1, or ≥ 2 high priority jobs (see Figure 3.3(b)). In Figure 3.3(b), the sojourn time in
states with ≥ 2 high priority jobs is approximated by a two-phase Coxian+ PH distribution, which
we introduce in Section 2.2. Below, we refer to this sojourn time in states with ≥ 2 high priority
as the “busy period” (of the high priority jobs), since all the servers are busy with serving high
priority jobs during this period. Specifically, a busy period denotes the time from when two servers
become busy until only one server is busy. We will use the moment matching algorithm developed in
Chapter 2 to well-represent (see Definition 1) the duration of the busy period by a PH distribution.

Using Figure 3.3(b) as the Markov chain for the high priority jobs, we obtain a 1D Markov chain
that models the M/M/2 queue with two priority classes (see Figure 3.3(d)). Observe that the 1D
Markov chain tracks the number of low priority jobs exactly, but differentiates only between 0, 1,
and ≥ 2 high priority jobs. Note that if the duration of the busy period is exactly matched by the
PH distribution, the behavior of the low priority jobs in the 1D Markov chain (Figure 3.3(d)) would
be exactly the same as that in the 2D Markov chain (Figure 3.3(c)). We will see that the 1D Markov
chain in Figure 3.3(d) can be analyzed efficiently via matrix analytic methods (see Section 3.2), and
this allows us to compute the mean response time of low priority jobs.
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3.1.2 Analysis of priority M/PH/2 queue via DR

Next, we introduce the full range of ideas behind DR by sketching an analysis of an M/PH/2 queue
with two priority classes via DR. We will see that the approach that we followed in the case of an
M/M/2 queue cannot simply be applied in the case of an M/PH/2 queue. In particular, we will see
that a collection of PH distributions is needed to approximate the duration of the busy period. We
assume that the service demand of high priority jobs has a two-phase Coxian+ PH distribution shown
in Figure 3.4(a), and the service demand of low priority jobs has an exponential distribution with
rate µL. As before, the low (respectively, high) priority jobs arrive according to a Poisson process
with rate λL (respectively, λH).

As in the case of an M/M/2 queue, the mean response time of high priority jobs can be analyzed
independently of low priority jobs, since the behavior of the high priority jobs is not affected by
the (number of) low priority jobs in the system. Specifically, Figure 3.4(b) shows the Markov chain
that exactly models the number of high priority jobs in the system. Here, the states with ` high
priority jobs are differentiated by the “phases” of the jobs in service (i.e., phases of the corresponding
Coxian+ PH distributions) for each `. In the figure, the numbers shown in states (circles) denote the
“phases” of the jobs in service (i.e., phases of the corresponding Coxian+ PH distributions). That is,
(1, 1) denotes that two jobs in service are both in phase 1; (1, 2) denotes that two jobs are in service,
where one job is in phase 1 and the other is in phase 2; (2, 2) denotes that two jobs in service are
both in phase 2.

As in the case of an M/M/2 queue, the behavior of the low priority jobs is determined by whether
there are 0, 1, or ≥ 2 high priority jobs in the system. By conditioning on the number of high priority
jobs in the system, the number of low priority jobs can be modeled by the same Markov chains as
in the case of an M/M/2 queue (i.e., Figures 3.2(b)-(d)).

Figure 3.4(c) shows a portion of the 2D Markov chain, where there are ` low priority jobs, that
models our M/PH/2 queue with two priority classes. Observe that each column in the 2D Markov
chain corresponds to the Markov chain in Figure 3.4(b), and each row in the 2D Markov chain
corresponds to one of the three Markov chains in Figures 3.2(b)-(d).

Again, our goal is to reduce the 2D Markov chain into a 1D Markov chain that closely approxi-
mates the 2D Markov chain. In the case of an M/M/2 queue, this dimensionality reduction is made
possible by approximating the duration of the busy period (of the high priority jobs) by a single PH
distribution (Figure 3.3(a) to Figure 3.3(b)). Unfortunately, the same approach does not work in the
case of the M/PH/2 queue, since the duration of the busy period in the M/PH/2 queue depends on
the “phase” of the job in service both at the beginning and end of the busy period (more precisely,
immediately before the busy period and immediately after the busy period). In the case of the
two-phase Coxian+ PH distribution, there are four different types of busy periods depending on the
phase of the job in service immediately before the busy period starts (phase 1 or 2) and the phase
of the job in service immediately after the busy period ends (phase 1 or 2).

Figure 3.5 shows a Markov chain on a finite state space for the high priority jobs, where the four
types of busy periods are replaced by four two-phase Coxian+ PH distributions, respectively. The
right half of the Markov chain represents the busy period, where there are ≥ 2 high priority jobs in
the system. Specifically, the two circles on the right side labeled busy period of type (i, j) represents
the busy period where the job in service at the beginning of the busy period is in phase i and the
job in service at the end of the busy period is also in phase j for 1 ≤ i, j ≤ 2.

Using Figure 3.5 as the Markov chain for the high priority jobs, we obtain a 1D Markov chain
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Figure 3.4: Markov chains for an M/PH/2 queue with two preemptive priority classes. (a) A two-
phase Coxian+ PH distribution is shown as the absorption time in a Markov chain (state 0 denotes
the absorbing state). (b) The Markov chain for the number of high priority jobs in an M/PH/2 queue
when the service demand has the two-phase Coxian+ PH distribution shown in (a); see Section 2.2.
Here, the numbers shown in states (circles) denote the “phases” of the jobs in service (i.e., phases
of the corresponding Coxian+ PH distributions). (c) The 2D Markov chain for an M/PH/2 queue
with two preemptive priority classes.
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Figure 3.5: Markov chain on a finite state space for the high priority jobs in an M/PH/2 queue
with two preemptive priority classes. Labels on the transitions to/in the busy periods are omitted
for clarity.

that models the M/PH/2 queue with two priority classes (see Figure 3.6 for a portion of the 1D
Markov chain). Observe that the 1D Markov chain tracks the number of low priority jobs exactly,
but differentiates only between 0, 1, and ≥ 2 high priority jobs. When there is one high priority job
in the system, the 1D Markov chain also tracks the phase of the high priority job in service.

Note that if the following conditions are satisfied, the behavior of the low priority jobs in the 1D
Markov chain (Figure 3.6) would be exactly the same as that in the 2D Markov chain (Figure 3.4(c)).

• The duration of the conditional busy period (the busy period conditioned on the phase of the
job in service at the beginning and end of the busy period) is exactly matched by the PH
distribution.

• The probability of experiencing each type of busy period (the probability that the phase of the
job in service at the end of the busy period is i given that the phase of the job in service at
the beginning of the busy period is j for each i and j) is exactly matched.

We will choose the four PH distributions such that the durations of the conditional busy periods
are well-represented (see Definition 1) by the PH distributions. Also, we will exactly match the
probability of experiencing each type of busy period.

3.1.3 RFB and GFB processes

We now consider the class of (multidimensional) Markov chains to which DR can be applied. We
will start with a simpler (limited) class of 2D Markov chains, which we refer to as the foreground-
background (FB) process. The FB process includes the Markov chain that models an M/PH/2 queue
with two priority classes (Figure 3.4(c)) as well as the Markov chains in Figure 3.1. We will then
discuss two types of generalization of the FB process: the recursive FB process (RFB process) and
the generalized FB process (GFB) process (see Figure 3.7). Both processes can be analyzed via
DR. The RFB process includes Markov chains on higher (m > 2) dimensions, and the GFB process
includes 2D Markov chains with fewer restrictions on their structure. In this section, we will provide
only an intuitive idea of the structure of the FB, RFB, and GFB processes. Precise definitions will
be given in Section 3.4.
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Figure 3.6: 1D Markov chain for an M/PH/2 queue with two preemptive priority classes. Labels on
the transitions in the busy periods are omitted for clarity.

Roughly speaking, an FB process consists of a foreground process and a background process,
where the behavior of the foreground process can depend on the state (e.g., number of jobs) of
the background process. For example, in the case of an M/M/2 queue with two priority classes,
the Markov chain for the high priority jobs (Figure 3.2(a)) can be seen as the background process,
and the Markov chain for the low priority jobs (Figure 3.2(b)-(d)) can be seen as the foreground
process. In general, we assume that a foreground process is a QBD process as defined in Section 3.2,
but the behavior of the foreground process can depend on the “level” (e.g., number of jobs) of the
background process1.

The RFB process generalizes the FB process to higher (m > 2) dimensions. Roughly speaking,
an RFB process consists of m processes, where the behavior of the i-th process can depend on the
state (e.g., number of jobs) of the (i − 1)-th process for 2 ≤ i ≤ m. We will see that DR can be
applied recursively to the RFB process.

The GFB process allows a background process to also depend on a foreground process. Recall the
2D Markov chain (FB process) in Figure 3.3(c) and the 1D Markov chain in Figure 3.3(d) that we
obtain via DR. Observe that the top two rows in the 2D Markov chain in Figure 3.3(c) do not have
to have any special structure so that it can be reduced to a 1D Markov chain as in Figure 3.3(d).
In the GFB process, we assume that there exists a level κ in the background process such that
the background and foreground processes behave independently of each other while the background
process is in levels ≥ κ, but the background and foreground process can have complex interaction
while the background process is in levels < κ.

1We also assume that there exists a level κ in the background process such that the behavior of the foreground
process stays the same while the background process is in levels ≥ κ. For example, in an M/M/2 queue with two
priority classes, the behavior of the low priority jobs (foreground process) stays the same while there are ≥ 2 high
priority jobs (background process is in levels ≥ 2).
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Figure 3.7: FB, RFB, and GFB processes.

3.1.4 Organization of this chapter

The rest of this chapter is organized as follows. Section 3.2 provides a brief tutorial on the QBD
process and matrix analytic methods for analyzing the QBD process. For the purpose of under-
standing the rest of the chapter, one only needs to understand the definitions of the QBD process.
In Section 3.3, we review the state of the art in the analysis of multidimensional Markov chains. In
Section 3.4, we define the FB, RFB, and GFB processes and provide many examples of multiserver
systems that can be modeled as these processes. In Section 3.5, we analyze the FB, RFB, and GFB
processes via DR. In Section 3.6, we introduce approximations in DR which reduce the computational
complexity. In Sections 3.5-3.6, we analyze the stationary probabilities is the FB, RFB, and GFB
processes. Some technical details in DR are postponed to Section 3.7. In Section 3.8, we discuss how
the stationary probabilities in the FB, RFB, and GFB processes can be translated into performance
measures such as the mean and variance of response time and queue length. In Section 3.9, we
evaluate the accuracy and running time of DR and its approximations.

3.2 Brief tutorial on matrix analytic methods

In this section, we provide a brief tutorial on the quasi-birth-and-death (QBD) process and matrix
analytic methods for analyzing QBD processes. We will also provide an overview of the Markovian
arrival process (MAP), first introduced by M. F. Neuts [135, 137]. The MAP is a generalization of
the PH distribution, and it represents a correlated sequence of PH distributions. In particular, we
will discuss how a MAP/PH/1 queue is modeled as a QBD process.

3.2.1 Quasi-birth-and-death process

Examples of QBD processes

We start by providing canonical examples of QBD processes. Here, we provide both pictorial expla-
nation and more formal explanation. Pictorial explanation gives intuitive understanding of the QBD
process, and more formal explanation allows us to get used to the notation that we use later.

First, a birth-and-death process is an example of a QBD process. Figure 3.8(a) shows an example
of a birth-and-death process. This birth-and-death process models the number of jobs in an M/M/1
queue, where jobs arrive according to a Poisson process with rate λ, and the service demand has
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Figure 3.8: Examples of QBD processes.

an exponential distribution with rate µ. In general, a birth-and-death process is a Markov chain on
the states {0, 1, 2, 3, ...}, where transitions are allowed only to the neighboring states. That is, from
state `, there are transitions only to state `− 1 and state `+ 1 for ` ≥ 1, and from state 0, there is
a transition only to state 1. Thus, the generator matrix of a birth-and-death process is of the form:

Q =




−f0 f0

b1 −(b1 + f1) f1

b2 −(b2 + f2)
. . .

. . .
. . .



, (3.1)

where f` denotes the (foreword) transition from state ` to state `+1, and b` denotes the (backward)
transition from state ` to state `− 1. In Figure 3.8(a), f` = λ and b` = µ for all `.

Figure 3.8(b) shows an example of a QBD process that is not a birth-and-death process. This
QBD process models the number of jobs in a M/Er/1 queue, where jobs arrive according to a Poisson
process with rate λ, and their service demand has an Erlang-2 distribution (as defined in Section 2.2),
which has parameters

−→τ = (1, 0) and T =

(
−µ µ
0 −µ

)
.

That is, a job is in phase 1 when it arrives. After a job in phase 1 receives service for a random
time having an exponential distribution with rate µ, the job transitions into phase 2. After a job in
phase 2 receives service for a random time having an exponential distribution with rate µ, the job
is completed.

Definition of QBD process

In general, a QBD process is a Markov chain on the state space {(i, `)|1 ≤ i ≤ n`, ` ≥ 0}, where the
state space can be divided into levels, and level ` has n` states (phases) for each `2. For example, in
Figure 3.8(b), n0 = 1 and n` = 2 for ` ≥ 1. In a QBD process, transitions are allowed only to the

2In the literature, the standard notation is “(`, i),” where the level is followed by the phase. In this thesis, we choose
(i, `), because a level (respectively, phase) corresponds to a column (respectively, row) in our figures of Markov chains.
Notice that (row,column) is a standard matrix notation.
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neighboring levels or within the same level. Thus, a QBD process has a generator matrix of the form:

Q =




L(0) F(0)

B(1) L(1) F(1)

B(2) L(2) F(2)

. . .
. . .

. . .



, (3.2)

where submatrix F(`) encodes (forward) transitions from level (column) ` to level ` + 1 for ` ≥ 0,
submatrix B(`) encodes (backward) transitions from level ` to level ` − 1 for ` ≥ 1, and submatrix
L(`) encodes (local) transitions within level ` for ` ≥ 0. Specifically, (i, j) element of F(`) is the
transition rate from state (i, `), i.e. phase i of level `, to state (j, ` + 1) for all i, j; (i, j) element of
B(`) is the transition rate from state (i, `) to state (j, ` − 1) for all i, j; (i, j) element of L(`) is the
transition rate from state (i, `) to state (j, `) for i 6= j.

For example, in Figure 3.8(b),

F(0) =
(
λ 0

)
and F(`) =

(
λ 0
0 λ

)
for ` ≥ 1,

B(1) =

(
0
µ

)
and B(`) =

(
0 0
µ 0

)
for ` ≥ 2,

L(0) = −λ and L(`) =

(
−(µ+ λ) µ

0 −(µ+ λ)

)
for ` ≥ 1.

3.2.2 Markovian arrival process

An application of the QBD process is modeling the number of jobs (queue length) in a MAP/PH/1/FCFS
queue, where jobs arrive according to a Markovian arrival process (MAP), jobs are served in the order
of their arrivals (FCFS), and their service demand has a PH distribution (as defined in Section 2.2).
A MAP is used to model a job arrival process in Chapter 7. A PH distribution can also be used to
model a job arrival process (PH renewal process), by specifying the interarrival time by the PH dis-
tribution. However, the interarrival times in a PH renewal process are i.i.d. random variables, while
some applications require capturing the correlation in the interarrival times. The MAP generalizes
the PH renewal process in the sense that the interarrival times in a MAP can be correlated.

For the purpose of understanding the later chapters, one only needs to know the definition
of the MAP and a subclass of the MAP, the MMPP (Markov modulated Poisson process). In
Appendix C, we will provide some basic properties of the MAP, so that a reader can further study
the characteristics of the MAPs that we will use.

Examples of Markovian arrival processes

We start by providing canonical examples of MAPs. Again, we provide both pictorial explanation
and more formal explanation. We will view a MAP as a point process, which is a random sequence
of “events” such as the epochs of job arrivals.

First, a Poisson process is a MAP. In a Poisson process, the intervals between consecutive events
are independent and identically distributed exponential random variables. Figure 3.9(a) illustrates
a Poisson process as the epochs of transitions in a Markov chain. When there is a transition (from a
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Figure 3.10: QBD processes for MAP/M/1 queues.

state to itself) in the Markov chain, there is an event in the Poisson process. Recall the birth-and-
death process modeling an M/M/1 queue (Figure 3.8(a)), where jobs arrive according to a Poisson
process with rate λ. At the moment of an “event” in the Poisson process, the number of jobs (or the
level of the birth-and-death process) is incremented by one.

Second, a PH renewal process is a MAP. In a PH renewal process, the intervals between con-
secutive events are independent and identically distributed with a PH distribution. Figure 3.9(b)
illustrates a PH renewal process, when the PH distribution is an Erlang-2 distribution, as the epochs
of some transitions in a Markov chain. There is a transition (thick arrow) associated with an event.
This transition corresponds the transition into the absorbing state in the Markov chain whose ab-
sorption time defines the Erlang-2 distribution (see Figure 2.6(b)). Thus, a PH renewal process has
an event when the Markov chain (for the PH distribution) transitions into the absorbing state, and
at this moment the Markov chain immediately transitions back to a initial state according to the
initial probability vector. Figure 3.10(a) shows a QBD process modeling an Er/M/1 queue, where
jobs arrive according to a PH renewal process shown in Figure 3.9(b), and their service demand has
an exponential distribution with rate µ.

More formally, consider the PH(−→τ ,T) distribution (as defined in Section 2.2). Let
−→
t = −T

−→
1 .

Matrix D = T +
−→
t −→τ , defines the generator matrix of a Markov chain. For example, the above

Erlang-2 distribution has parameters

−→τ = (1, 0) and T =

(
−λ λ
0 −λ

)
,

and hence
−→
t −→τ =

(
0
λ

)
(1, 0) =

(
0 0
λ 0

)
.
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The nonzero (i, j) element of
−→
t −→τ is a transition associated with an event. This transition can be

seen as a transition into the absorbing state followed by an instantaneous transition into a initial
state following the initial probability vector −→τ . The (i, j) element of T is a transition that is not
associated with an event for i 6= j.

Our third example, a Markov modulated Poisson process (MMPP), allows correlation between
inter-event times. Figure 3.9(c) illustrates an MMPP of order 2, MMPP(2), as the epochs of some
transitions in a Markov chain. There are transitions (thick arrows) associated with events. The
transitions between the two states are not associated with events. While the Markov chain is in state
1, events occur with rate λ1, and while the Markov chain is in state 2, events occur with rate λ2.
For example, an MMPP(2) can be seen as a job arrival process which alternates between high arrival
period (state 1) and low arrival period (state 2). During the high arrival period, the arrival rate is
λ1, and during the low arrival period, the arrival rate is λ2, where λ1 > λ2. Figure 3.10(b) shows a
QBD process modeling an MMPP(2)/M/1 queue, where jobs arrive according to a MMPP(2) process
shown in Figure 3.9(c), and their service demand has an exponential distribution with rate µ.

More formally, the Markov chain in Figure 3.9(c) has infinitesimal generator

D = D0 + D1,

where

D0 =

(
−(α12 + λ1) α12

α21 −(α21 + λ2)

)
and D1 =

(
λ1 0
0 λ2

)
.

The nonzero (i, j) element of D1 is a transition associated with an event in the MMPP(2), and the
(i, j) element of D0 (here, i 6= j) is a transition that is not associated with an event.

Definition of MAP

In general, a MAP is a point process defined by the epochs of some transitions in a Markov chain.

Definition 15 Consider a Markov chain with infinitesimal generator D = D0 + D1, where all the
off-diagonal elements of D0 and all the elements of D1 are nonnegative. The transitions associated
with D1 are called type 1 transitions. A MAP with parameters (D0,D1), MAP(D0,D1), is a point
process where an event occurs when a type 1 transition occurs in the Markov chain.

Figure 3.11 illustrates a MAP of order 2 having parameters

D0 =

(
−σ1 α12

α21 −σ2

)
and D1 =

(
λ12 λ21

λ21 λ22

)
,

where σi =
∑
j 6=i αij +

∑
j λij for i = 1, 2.. To completely specify a MAP, the initial probability

vector in the Markov chain needs to be specified. Throughout, we assume that the initial probability
vector is the same as the stationary probability vector. That is, our MAPs are stationary MAPs.

A MAP(D0,D1) is called a Markov modulated Poisson process, MMPP, if D1 is diagonal.
That is, in the Markov chain that defines an MMPP, all the transitions that are associated with
events do not change the state.
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Figure 3.11: A MAP(2). Transitions shown in thick arrows (transitions with λij) are associated with
events in the MAP(2). Transitions with αij only change the state.

QBD process modeling MAP/PH/1/FCFS queue

The QBD process that models a MAP/PH/1 queue length has a compact and convenient represen-
tation when we use the notation introduced above and in Section 2.2,

Consider a simpler case of an M/PH/1 queue, where jobs arrive according to a Poisson process
with rate λ, and the service demand has a PH(−→τ ,T) distribution. The generator matrix for the
queue length can be represented as

Q̂ =




L̂(0) F̂

B̂ L̂ F̂

B̂ L̂ F̂
. . .

. . .
. . .



,

where F̂ = λÎ, B̂ =
−→
t −→τ , L̂ = T − λÎ, and L̂(0) = −λÎ. Here, Î is an identity matrix of order equal

to T, and
−→
t = −T

−→
1 .

Next, consider a MAP/M/1 queue, where jobs arrive according to a MAP(D0,D1), and the
service demand has an exponential distribution with rate µ. The generator matrix for the queue
length can be represented as

Q̌ =




Ľ(0) F̌
B̌ Ľ F̌

B̌ Ľ F̌
. . .

. . .
. . .



,

where F̌ = D1, B̌ = µǏ, Ľ = D0 − µǏ, and Ľ(0) = D0. Here, Ǐ is an identity matrix of order equal
to D0.

Finally, consider a MAP/PH/1 queue, where jobs arrive according to a MAP(D0,D1), and the
service demand has a PH(τ,T) distribution. The generator matrix for the queue length can be
represented as

Q =




L(0) F
B L F

B L F
. . .

. . .
. . .




where F = D1 ⊗ Î, B = Ǐ ⊗ −→
t −→τ , L = Ǐ ⊗ T + D0 ⊗ Î, and L(0) = D0 ⊗ Î, where ⊗ denotes the

Kronecker product. Observe that the QBD process for a MAP/PH/1 queue can be expressed as a
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“superposition” of the QBD processes for an M/PH/1 queue and a MAP/M/1 queue: specifically,
F = F̌ ⊗ Î, B = Ǐ ⊗ B̂, L = Ǐ ⊗ (L̂ − L̂(0)) + Ľ(0) ⊗ Î, and L(0) = Ľ(0) ⊗ Î.

3.2.3 Matrix analytic methods

In this section, we analyze the stationary probabilities in the QBD process via matrix analytic meth-
ods. We will also discuss how the stationary probabilities can be translated into other performance
metrics such as the mean response time. We will describe the analysis rather formally, so that a
reader can apply the methods immediately. See [111, 136, 137] for more details and intuitions behind
the analysis.

Stationary probabilities

We first discuss some key properties of the stationary probabilities in a QBD process. Consider a
simpler case of the birth-and-death process having the generator matrix shown in (3.1). Let π` be
the stationary probability that the birth-and-death process is in level ` for ` ≥ 0. Then, it is easy to
see that π` = ρ`π`−1, where ρ` =

f`−1

b`
, for ` ≥ 0. It turns out that the stationary probabilities in a

QBD process have a similar property. Let −→π` be the stationary probability vector in a QBD process
having generator matrix shown in (3.2). Here, the i-th element of vector −→π` denotes the stationary
probability that the QBD process is in phase i of level `, i.e. state (i, l). It turns out that there exists
a matrix R(`) such that −→π` = −−→π`−1R

(`) for each ` ≥ 1.
Specifically, the stationary probability vector in the QBD process is given recursively by

−→π` = −−→π`−1R
(`), (3.3)

where R(`) is given recursively via:

F(`−1) + R(`)L(`) + R(`)R(`+1)B(`+1) = 0. (3.4)

When the QBD process has an infinite number of levels, the state space of the QBD process needs
to be truncated, so that R(`) matrices can be calculated from a certain large enough integer ` = L
to ` = 1 recursively via (3.4). The truncation level L needs to be chosen carefully such that the
stationary probability that the QBD process is above level L is negligible [28].

When the QBD process repeats after a certain level, ˆ̀, (i.e., F(`) = F, L(`) = L, and B(`) = B
for all ` ≥ ˆ̀), R(`) is the same for all ` > ˆ̀, and R = R(`) (for ` > ˆ̀) is given by the minimal
nonnegative solution to the following matrix quadratic equation3:

F + RL + (R)2B = 0. (3.5)

Once R(ˆ̀+1) = R is obtained, R(`) for 1 ≤ ` ≤ ˆ̀, is given recursively via (3.4). Various approaches
for calculating R have been proposed, and in Figure 3.12 we show an algorithm for calculating R,
R(`)’s, and other relevant matrices.

Once R and R(`)’s are obtained, the stationary probability vector −→π` can be calculated recursively
from −→π0 via (3.3) for ` ≥ 1. Thus, all that remains is to calculate −→π0. Vector −→π0 is given by a positive
solution of

−→π0

(
L(0) + R(1)B(1)

)
=

−→
0 ,

3Any other nonnegative solution R
′ of (3.5) satisfies (R)ij ≤ (R′)ij for all i and j.
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Input: F, L, B, ε
Output: R, G, U

H = (−L)−1F;
K = (−L)−1B;
G = K;
T = H;
repeat
U = HK + KH;
M = (H)2;
H = (I − U)−1M;
M = (K)2;
K = (I − U)−1M;
G = G + TK;
T = TH;

until ||−→1 − G
−→
1 ||∞ ≤ ε

U = L + FG;
R = F(−U)−1;

Input: R, G, U

Output: R(`)’s, G(`)’s, U(`)’s

U(ˆ̀+1) = U

G(ˆ̀+1) = G

R(ˆ̀+1) = R

for ` = ˆ̀ to 1

U(`) = L(`) + F(`)G(`+1)

G(`) = (−U(`))−1B(`)

R(`) = F(`−1)(−U(`))−1

end

(a) repeating part (b) nonrepeating part

Figure 3.12: Algorithms for calculating R, R(`)’s, and other relevant matrices [111]. The input
matrices (R, G, and U) for part (b) are given by the output of part (a).

normalized by the equation

−→π0

∞∑

`=0

∏̀

i=1

R(i)−→1 = 1 ⇐⇒ −→π0




ˆ̀−1∑

`=0

∏̀

i=1

R(i) +




ˆ̀∏

i=1

R(i)


 (I − R)−1


−→

1 = 1,

where
−→
0 and

−→
1 are vectors with an appropriate number of elements of 0 and 1, respectively.

Translating stationary probabilities into performance measures

The stationary probabilities obtained above can be used to compute other relevant performance
measures. Specifically, we consider a QBD process modeling a MAP/PH/1 queue or other queueing
systems where level ` of the QBD process consists of the states with ` jobs in the system. We
first analyze the moments of the number of jobs in the system. The mean response time follows
immediately from the mean number of jobs in the system. We will also discuss how to compute
higher moments of response time.

First, the mean number of jobs in the system, N , is given by

E [N ] =
∞∑

`=0

`−→π`−→1
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=

ˆ̀−1∑

`=0

`−→π`−→1 +
∞∑

i=0

(ˆ̀+ i)−→πˆ̀(R)i
−→
1

=

ˆ̀−1∑

`=0

`−→π`−→1 + ˆ̀−→πˆ̀(I − R)−1−→1 + −→πˆ̀(I − R)−2R
−→
1 (3.6)

Similarly, the r-th moment of the number of jobs in the system can be computed via

E [N r] =
∞∑

`=0

`r−→π`−→1

for r ≥ 2.
The mean response time, E [T ], is given immediately from E [N ] via Little’s law:

E [T ] =
E [N ]

λ
,

where λ is the arrival rate.
Computation of higher moments of response time, T , depends on particular queueing systems.

When jobs are completed in the order of their arrivals (first-in-first-out, FIFO), a generalization of
Little’s law (distributional Little’s law) applies [63, 32]. For example, in a MAP/PH/1/FCFS queue,
jobs are completed in the FIFO order. If, in addition, the arrival process is Poisson (and some
technical assumptions are satisfied [19, 202], e.g. in an M/PH/1/FCFS queue), the r-th moment of
response time, E [T r], is given simply as a function of the first r moments of the number of jobs in
the system:

E [T r] =
1

λr
E [N(N − 1) · · · (N − r + 1)]

for r ≥ 2. For more general arrival processes, see [19, 202]. For some queueing systems including
M/PH/k queues (k ≥ 2), where jobs are served in FCFS order but not necessarily completed in FIFO
order, the distributional Little’s law does not apply. In these cases, higher moments of response time
may be computed via an analysis of passage times in a QBD process. We will elaborate on this
method in Section 3.8.

3.3 State of the art in the analysis of multidimensional Markov
chains

As multidimensional Markov chains are prevalent in the analysis of multiserver systems, several
approaches have been proposed for their analysis. A most popular approach is to simply truncate
the state space of the Markov chain and analyze the resulting Markov chain, for example, via matrix
analytic methods. By contrast, DR reduces a multidimensional Markov chain into a 1D Markov
chain, but the state space is not simply truncated. Rather, the infinite portion of the state space is
aggregated into a smaller space, capturing detailed behavior (such as the first three moments and
correlations of the sojourn time distributions in the infinite portion) of the original multidimensional
Markov chain. There are also approaches that can be applied to multidimensional Markov chains
without state space truncation; however, these approaches are limited in the class of Markov chains
to which they can be applied either due to essential restrictions or due to computational complexity.
We will see that these approaches have limitations in the analysis of the RFB and GFB processes.
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3.3.1 Approaches using matrix analytic methods

As we have seen in Section 3.2, matrix analytic methods allow an efficient evaluation of QBD processes
with a finite number of phases (1D Markov chain), but they can also be applied to more general
processes including M/G/1 and G/M/1 type processes [111, 136]. The M/G/1 (respectively, G/M/1)
type process generalizes the QBD process, and it allows transitions from level ` to any levels ≥
` − 1 (respectively, ≤ ` + 1) for each `. The M/G/1 and G/M/1 type processes can be analyzed
efficiently only when they have a finite number of phases (1D Markov chain). The tree process is
a multidimensional Markov chain that can be analyzed efficiently via matrix analytic methods, but
the class of tree processes is rather limited; specifically, the RFB and GFB processes do not appear
to be modeled as a tree process.

A popular approach in applying matrix analytic methods to multidimensional Markov chains is
to simply truncate the state space so that the resulting process becomes a 1D Markov chain (QBD
process with a finite number of phases) [61, 93, 94, 112, 138, 160, 185, 186]. For example, Green [61]
and Stanford and Grassmann [185, 186] analyze cycle stealing without switching cost (see Section 3.4)
by truncating the state space. Likewise, Kao and Narayanan [94], and Ngo and Lee [138] analyze
the preemptive priority queue with two classes (see Section 3.4) by truncating the state space. Kao
and Narayanan [93], Kao and Wilson [95], and Leemans [112] analyze the nonpreemptive priority
queue (see Section 3.4) by truncating the state space. Finally, Rao and Posner [160] analyze the 2D
Markov chain for the coupled processor model4 by truncating the state space. In general, the errors
that are introduced by ignoring portions of the state space with an infinite number of states can be
significant, especially at higher traffic intensities. Note that each of the above systems analyzed in
[61, 93, 94, 112, 138, 185, 186] by truncating the state space can be modeled as RFB or GFB process
(see Section 3.4), and hence can be analyzed via DR; the coupled processor model that is analyzed
in [160] by truncating the state space does not appear to be modeled as RFB or GFB process.

Since simple truncation of the state space can lead to erroneous conclusions [108], recently various
truncation/aggregation approaches have been proposed by Green [60], Heindl and Telek [73], and
Heindl, Zhang, and Smirni [74]. All of these works propose approaches to decompose tandem queues
by approximating the departure process from a queue, which can in general be modeled exactly as a
MAP (as defined in Section 2.2) with an infinite number of phases, by a MAP with a finite number of
phases. The truncation/aggregation approaches proposed in [60, 73, 74] are specialized for tandem
queues or networks of queues, and it is not clear how they are applied to RFB/GFB processes; on
the other hand, tandem queues do not appear to be modeled as RFB/GFB processes. Hence, DR is
complementary to the truncation/aggregation approaches proposed in [60, 73, 74].

3.3.2 Other approaches

Other analytic solution methods for multidimensional Markov chains can be classified into two ap-
proaches: the direct approach and the approach via generating functions. The direct approach solves
the equilibrium equations directly (without transforming them). This includes power series methods,
product form methods, and compensation methods. On the other hand, the approach via generating

4The coupled processor model is related to cycle stealing without switching cost (Figure 3.1(a)). In this model two
processors each serve their own class of jobs, and if either is idle it may help the other, increasing the rate of the other
processor. This help incurs no switching time and has a benefit even if only a single job is present (i.e. two processors
can work on the single job).
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functions solves the functional equation for the generating function of the stationary probabilities.
This includes uniformization methods and boundary value methods.

Power series methods express the stationary probability as a power series of a certain parameter
such as system load [21, 75, 104]. Power series methods can, in theory, be applied to any Markov
chain. However, the application of power series methods is often limited to simple Markov chains
on low dimensional state spaces due to its computational complexity. For example, Kao and Wilson
[95] analyze the nonpreemptive multiserver priority queue with two priority classes by power series
methods. They report that power series methods experience more inaccuracy as compared to matrix
analytic methods with state space truncation. Note that the nonpreemptive multiserver priority
queue with two priority classes can be modeled as a GFB process (see Section 3.4), and hence can
be analyzed via DR.

Product form methods express the stationary probability as a product of stationary probabilities
for respective dimensions (see e.g. [16, 97, 195]). Product form methods have been developed mainly
for the analysis of networks of queues, and the class of Markov chains that have product form solutions
is limited. In general, the RFB and GFB processes do not appear to have product form solutions.

Compensation methods express the stationary probability as a sum of an infinite number of
product forms [1, 2, 3]. Compensation methods apply to a large class of Markov chains on a two
dimensional grid of the first (positive) quadrant. However, an essential limitation of compensation
methods is that transitions to the “north,” “north-east,” and “east” are prohibited. Therefore,
compensation methods do not apply to RFB and GFB processes in general. It is possible to extend
compensation methods to higher dimensions, but the limitation becomes more severe in higher
dimensions [196].

Approaches via generating functions solve the functional equation for the generating function of
the stationary probabilities by uniformization [43, 100] or by reducing the functional equation to a
boundary value problem [44, 42]. Although approaches via generating functions apply to a broad
class of Markov chains on a two dimensional state space, they do not appear to be applicable to the
case of higher dimensions. For example, the FB process can, in theory, be reduced to a boundary
value problem if the foreground process repeats after a certain level. However, an RFB process
with m > 2 processes does not appear to be solvable via generating functions. Also, approaches via
generating functions often experience numerical instability. For example, Fayolle and Iasnogorodski
[51] and Konheim, Meilijson and Melkman [103] reduce the 2D Markov chain for the coupled processor
models to (Dirichlet or Riemann-Hilbert) boundary value problems, assuming that service demands
have exponential distributions. Due to complexity in the expressions, they were not evaluated in
either work. (DR does not appear to be applicable to the 2D Markov chain for the coupled processor
model, either.)

In the case of an M/M/k queue with two priority classes (preemptive or nonpreemptive), exact
solution methods have been proposed utilizing the spacial structure of this model [127]; for example,
in the case of a preemptive priority queue, there is no service completion of lower priority jobs when
there are ≥ k high priority jobs (there are no backward transitions in the foreground process while the
background process is in levels ≥ k; see Figure 3.1(b)). However, these approaches do not apply to
the RFB and GFB processes in general. Very recently, these exact solution methods are extended to
non-exponential service times by Sleptchenko [177] (not yet published) and Sleptchenko et. al. [178]
(not yet published). The Markov chain is analyzed via a combination of generating functions and
matrix analytic methods. In theory, their technique can be generalized to PH distributions, though
they evaluate only hyperexponential distributions due to the increased complexity when using more
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general PH distributions.

3.4 FB, RFB, and GFB processes

In this section, we define the foreground-background (FB) process, the recursive FB (RFB) process,
and the generalized FB (GFB) process, and provide examples of these processes. In the rest of this
chapter, we denote a matrix by a bold face letter such as X and its (i, j) element by (X)i,j , and
we use ~x to denote a vector and (~x)i to denote its i-th element. Also, we use matrix QY to denote
the generator matrix of a QBD process “characterized by parameter Y .” Here, Y may be a single
letter or number, denoting process Y or the Y -th QBD process, or Y may be a pair of numbers (i, j),
denoting the i-th QBD process of type j. Unless otherwise stated, we express QY using submatrices,

L
(h)
Y , F

(h)
Y , and B

(h)
Y , such that

QY =




L
(0)
Y F

(0)
Y

B
(1)
Y L

(1)
Y F

(1)
Y

B
(2)
Y L

(2)
Y F

(2)
Y

. . .
. . .

. . .



,

where L
(h)
Y encodes (local) transitions within level h, F

(h)
Y encodes (forward) transitions from level h

to level h + 1, and B
(h)
Y encodes (backward) transitions from level h to level h − 1, for each h (see

Section 3.2).

3.4.1 Definition of FB process

Intuitively, an FB process consists of a background (QBD) process and a foreground (QBD) process,
where the behavior (infinitesimal generator) of the foreground process can depend on the level of the
background process. Additionally, we require that there exists a level, κ, in the background process
such that the infinitesimal generator of the foreground process does not change while the background
process is in levels ≥ κ.

Consider a simpler case where the foreground and background processes are homogeneous birth-
and-death processes. The background process, B, has a fixed generator matrix, QB (see Fig-
ure 3.13(a)):

QB =




−fB fB
bB −(bB + fB) fB

bB −(bB + fB)
. . .

. . .
. . .



.

On the other hand, the generator matrix of the foreground process, F , depends on the level of the
background process. That is, when process B is in level d (i.e., when the state of B is d), the process
F evolves according to the generator matrix QF,d (see Figure 3.13(b)):

QF,d =




−fF,d fF,d
bF,d −(bF,d + fF,d) fF,d

bF,d −(bF,d + fF,d)
. . .

. . .
. . .



.
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Figure 3.13: FB process consisting of a foreground birth-and-death process and a background birth-
and-death process.

The FB process assumes that there exists a level, κ, of the background process such that QF,d = QF,κ

for all d > κ. Figure 3.13(c) shows the FB process consisting of the foreground and background
processes in Figures 3.13(a)-(b).

Recall the 2D Markov chains shown in Figure 3.1. These Markov chains are FB processes. In
Figure 3.1(a), the background process tracks the number of donor jobs, and the foreground process
tracks the number of beneficiary jobs. In Figure 3.1(b), the background process tracks the number
of high priority jobs, and the foreground process tracks the number of low priority jobs. Also, recall
the 2D Markov chain shown in Figure 3.4(c). This 2D Markov chain is an FB process, where the
background process is a QBD process (and not a birth-and-death process). Again, the background
process tracks the number of high priority jobs, and the foreground process tracks the number of low
priority jobs.

In general, an FB process is defined by a vector of generator matrices (QB, (QF,0, ...,QF,κ)).
Here, QF,d denotes the generator matrix of the foreground process when the background process is
in level d. We require that QB and QF,d satisfy the following characteristics:

• QB is a generator matrix for a QBD process; i.e., the background process is a QBD process.

• QF,d = QF,κ for all d > κ; i.e., the infinitesimal generator of the foreground process stays the
same while the background process is in levels ≥ κ.

• QF,d is a generator matrix for a QBD process for 0 ≤ d ≤ κ; i.e., given the level of the
background process, the foreground process is a QBD process.

• The order of the submatrix L
(`)
F,d is the same for all d, for each `; i.e., the state space of the

foreground process is fixed.
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3.4.2 Definition of RFB process

The RFB process generalizes the FB process to higher dimension. Intuitively, an RFB process
consists of m (QBD) processes, where the infinitesimal generator of the i-th process can depend on
the level of the (i − 1)-th process for 2 ≤ i ≤ m. Additionally, we require that there exists a level,
κi−1, in the (i − 1)-th process such that the generator matrix of the i-th process does not change
while the (i− 1)-th process is in levels ≥ κi−1.

More formally, an RFB process consisting of m processes is characterized by parameters

(Q1, (Q2,0, ...,Q2,κ1), (Q3,0, ...,Q3,κ2), ..., (Qm,0, ...,Qm,κm−1)).

Here, Qi,d denotes the generator matrix of the i-th process when the (i− 1)-th process is in level d.
We require that Qm satisfy the following characteristic:

• Q1 is a generator matrix for a QBD process; i.e., the first process is a QBD process.

Also, we require that Qi,d satisfy the following characteristics for 2 ≤ i ≤ m:

• Qi,d = Qi,κi−1 for all d > κi−1; i.e., the infinitesimal generator of the i-th process stays the
same while the (i− 1)-th process is in levels ≥ κi−1.

• Qi,d is a generator matrix for a QBD process for 0 ≤ d ≤ κi−1; given the level of the (i− 1)-th
process, the i-th process is a QBD process.

• The order of the submatrix L
(`)
i,d is the same for all d, for each `; i.e., the state space of the i-th

process is fixed.

3.4.3 Examples of RFB processes

Below, we provide illustrative examples of interesting multiserver systems whose behavior is captured
by RFB processes. In all the examples, we assume that arrival processes of jobs are Poisson processes,
and service demand distributions are exponential distributions. However, these can be generalized to
MAPs and PH distributions, respectively (and these systems can still be modeled as RFB processes).

Size-based task assignment with cycle stealing under immediate dispatching

We consider a task assignment policy in a server farm with a dispatcher (see Figure 3.14(a)), where
jobs at each server are served in first-come-first-serve order. Consider m homogeneous servers and
m classes of jobs. Class i jobs arrive at a dispatcher according to a Poisson process with rate λi
and have an exponential service time distribution with rate µi (µi < µj if i < j) for 1 ≤ i ≤ m.
We will show in Chapter 5 that the size-based task assignment with cycle stealing under immediate
dispatching, SBCS-ID, provides lower mean response time than common assignment policies. Under
SBCS-ID, class 1 jobs (largest jobs) are always dispatched to server 1. For i ≥ 2, a class i job first
checks to see if the (i− 1)-th server is idle. If so, the class i job is dispatched to the (i− 1)-th server;
otherwise, it is dispatched to the i-th server. Observe that the arrival process (of class i jobs) at
server i depends on whether server i−1 is idle or not. Below, we will model the system with SBCS-ID

as an RFB process.
Figures 3.14(b)-(e) show the Markov chains for the number of jobs at server i, conditioned on the

number of jobs at server i − 1. Specifically, Figure 3.14(b) shows the Markov chain for the number
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Figure 3.14: An example of an RFB process: Size-based task assignment with cycle stealing under
immediate dispatching. (a) The SBCS-ID policy. (b)-(e) Markov chains for the number of jobs at
each server, where Nj denotes the number of class j jobs at the server. The middle row shows the
Markov chains for server 1 ≤ i ≤ m − 1, (b) when server i − 1 has > 0 jobs (“server 0” is defined
to have > 0 jobs always), and (c) when server i − 1 has 0 jobs. The bottom row shows the Markov
chains for server m, (d) when server m− 1 has > 0 jobs, and (e) when server m− 1 has 0 jobs.
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of jobs at server i when server i − 1 has > 0 jobs, for 1 ≤ i ≤ m − 1 (“server 0” is defined to have
> 0 jobs always). Since server i− 1 has > 0 jobs, an arrival of a class i job is dispatched to server i.
Figure 3.14(c) shows the Markov chain for the number of jobs at server i when server i−1 has 0 jobs,
for 2 ≤ i ≤ m−1. Since server i−1 has 0 jobs, an arrival of a class i job is dispatched to server i−1;
hence there is no transition due to a class i job arrival. Note that there is only one Markov chain
for server 1 (Figure 3.14(b)), since the behavior (arrival and service) at server 1 is independent of
the number of jobs at the other servers. Figures 3.14(d)-(e) show the Markov chains for the number
of jobs at server m when server m− 1 has > 0 jobs and when server m− 1 has 0 jobs, respectively.
Since “class m + 1” does not exist, Figures 3.14(d)-(e) have no transitions corresponding to λm+1

and µm+1.
Now, it is easy to model the number of jobs in the system under SBCS as an RFB process. Here,

the Markov chain at server i, Qi, corresponds to the i-th process for 1 ≤ i ≤ m. Since Q1 is a finite-
phase QBD process that does not depend on other processes, it can be seen as the first process.
There are two forms of infinitesimal generators for Q2, depending on the number of jobs at server
1, i.e. depending on the level of Q1. Thus, Q2 can be seen as the second process. Likewise, Qi can
be seen as the i-th process, since its infinitesimal generator is determined by the level of Qi−1 for
2 ≤ i ≤ m. Note that the infinitesimal generator of Qi is fixed while Qi−1 is in levels ≥ 1 for all i
(i.e., κ1 = · · · = κm−1 = 1).

Preemptive priority queue

Consider an M/M/k queue with m priority classes, where class i jobs have preemptive priority over
class j jobs for 1 ≤ i < j ≤ m (i.e. class 1 has the highest priority). The behavior of class 1 jobs
is not affected by the jobs of other classes. However, the behavior of class 2 jobs depends on the
number of class 1 jobs in the system. Specifically, when there are n jobs of class 1, max{k − n, 0}
servers are available for class 2 jobs. Likewise, the behavior of class i jobs depends on the total
number of higher priority (classes ≤ i− 1) jobs for 2 ≤ i ≤ m (when there are n higher priority jobs,
max{k−n, 0} servers are available for class i jobs). We will study the performance of the preemptive
priority queue in Chapter 4. Below, we will model the preemptive priority queue as an RFB process.

As we have seen in Section 3.1, when m = 2, the number of jobs in a priority M/M/k queue can
be modeled as an FB process where the background process, B, captures the number of class 1 jobs
(high priority jobs), and the foreground process, F , captures the number of class 2 jobs (low priority
jobs). Here, the level ` of B corresponds to the state with ` high priority jobs. Note that the number
of servers available for low priority jobs (and hence the behavior of F ) is determined by the number
of high priority jobs (equivalently, the level of B).

When m > 2, the number of jobs in a priority M/M/k queue can be modeled as an “extended”
RFB process having m (QBD) processes. In the “extended” RFB process, the transitions in the i-th
process depend on the level of a process, Q̂i−1, that is equivalent to the (i− 1)-th process, Qi−1 (see
Figure 3.15(a)). Here, the only difference between Q̂i−1 and Qi−1 is how levels are defined in these
two processes. Specifically, the level of Qi−1 corresponds to the number of class i− 1 jobs, while the
level of Q̂i−1 corresponds to the total number of higher priority (classes ≤ i− 1) jobs.

Figures 3.15(b)-(c) show two equivalent QBD processes with different definitions of levels. Fig-
ure 3.15(b) is the 1D Markov chain that is reduced from a 2D Markov chain in the analysis of an
M/M/2 queue with two priority classes (high priority and middle priority) via DR. (Recall the di-
mensionality reduction from Figure 3.3(c) to Figure 3.3(d); the low priority jobs are replaced by the
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Figure 3.15: Ideas in the RFB process. (a) Relationships among m processes in the extended RFB
process. (b)-(c) Two equivalent QBD processes.

middle priority jobs in Figure 3.15(b).) In the QBD process of Figure 3.15(b), level ` consists of the
states with ` middle priority jobs. Observe that the QBD process in Figure 3.15(c) is exactly the
same as the QBD process in Figure 3.15(b) except that they have different layout of states. In the
QBD process of Figure 3.15(b), level 0 and level 1 consist of the states with 0 and 1 total jobs in the
system, respectively. For ` > 1, level ` consists of states with ≥ ` total jobs in the system. Since the
bottom two rows have states with ≥ 2 high priority jobs, the exact number of high priority jobs is
not known (and hence the total number of jobs is not known, either). However, note that the QBD
process in Figure 3.15(c) is exactly what we need in the analysis of low priority jobs in an M/M/2
queue with three priority classes (high, middle, and low). The behavior of the low priority jobs is
determined by whether there are 0, 1, or ≥ 2 higher priority (high or middle priority) jobs in the
system, and hence by the level of the QBD process in Figure 3.15(c).

In the general case of an M/M/k queue with m priority classes, it is intuitively easy to see that
there is a QBD process Q̂i−1 that is equivalent to Qi−1 such that the level of Q̂i−1 corresponds to
the total number of higher priority jobs in the system, since any event (job arrival or completion)
changes the total number of jobs (and hence the level of Q̂i−1) by 1. Since all the transitions are
between neighboring levels, the process is a QBD process. For completeness, Figure 3.16 shows the
Markov chains for the number of class i jobs conditioned on the number of higher priority (classes
≤ i− 1) jobs in the system.
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Figure 3.16: An example of an RFB process: Preemptive priority queue. Figures show Markov chains
for the number of jobs of class i (a) when there are 0 higher priority jobs, (b) when there are 1 higher
priority jobs, (c) when there are k−1 higher priority jobs, and (d) when there are ≥ k higher priority
jobs. Here, Ni denotes the number of class i jobs in the system.

3.4.4 Definition of GFB process

The GFB process is a generalization of the FB process, and is a 2D Markov chain having less restric-
tions on its structure than the FB process. Specifically, we allow the background and foreground
process to have complex interactions while the background process is in levels < κ (and as a result,
the GFB process behaves like a QBD process when the background process is in levels < κ), but
the GFB process behaves like an FB process when the background process is in levels ≥ κ (see
Figure 3.17). Recall that, in the FB process, the background process is a fixed QBD process, and
only the behavior of the foreground process is affected by the level of the background process while
the background process is in levels < κ.

Essential restrictions in the GFB process are that

• There exists a level, κ, in the background process such that each of the background and fore-
ground processes is a fixed QBD process while the background process is in levels ≥ κ.

76



QBD process

κ

B
ac

kg
ro

un
d 

pr
oc

es
s

Foreground process

FB process

Figure 3.17: The structure of the GFB process.

• There is no transition from level < κ to level > κ (i.e., any transition from level < κ to level
≥ κ is to level κ) in the background process.

Given a 2D Markov chain, if one can identify the background and foreground process that constitute
the 2D Markov chain and that satisfy the above restrictions, the 2D Markov chain can be reduced to
a 1D Markov chain via DR. However, the resulting 1D Markov chain may not be analyzed efficiently.
Thus, additionally, we require that

• Any transition in the 2D Markov chain changes the level of the foreground process by at
most one.

If a 2D Markov chain satisfy the above two requirements, the 2D Markov chain can be reduced to a
1D Markov chain via DR, and the 1D Markov chain is a QBD process. We call such a 2D Markov
chain a GFB process.

3.4.5 Examples of GFB processes

Below, we provide illustrative examples of interesting multiserver systems whose behavior is captured
by GFB processes. In all the examples, we assume that arrival processes of jobs are Poisson processes,
and service demand distributions are exponential distributions. However, these can be generalized to
MAPs and PH distributions, respectively (and these systems can still be modeled as GFB processes).

Threshold-based policy for reducing switching costs in cycle stealing

We consider two processors, each serving its own M/M/1 queue, where one of the processors (the
donor) can help the other processor (the beneficiary) while the donor’s queue is empty (see Fig-
ure 3.18(a)). There is a switching time, Ksw, required for the donor to start working on the benefi-
ciary’s jobs, as well as a switching back time, Kba. We assume that Ksw and Kba have exponential
distributions (but this can be generalized to PH distributions). Due to non-zero switching times, the
donor’s switching may pay only when the beneficiary’s queue length, NB, is sufficiently long, and the
donor’s switching back may pay only when the donor’s queue length, ND, is sufficiently long. Thus,
we consider the following threshold-based policy. If NB ≥ N th

B and ND = 0, the donor starts switch-
ing to the beneficiary’s queue. After Ksw time, the donor is available to work on the beneficiary’s
jobs. When ND reaches N th

D , the donor starts switching back to its own queue. After Kba time, the
donor resumes working on its own jobs. We will study the performance of the threshold-based policy
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Figure 3.18: An example of an GFB process: Threshold-based policy for reducing switching costs in
cycle stealing. (a) Threshold-based policy for reducing switching costs in cycle stealing. (b) Markov
chain for the number of donor jobs, ND, (background process) when ND ≥ N th

D . (c) Markov chain
for the number of beneficiary jobs (foreground process) when ND ≥ N th

D .

for reducing switching costs in cycle stealing in Chapter 6. Below, we will model the system with
this threshold-based policy as a GFB process.

The number of jobs in the above system can be modeled as a GFB process5. Here, the background
process captures the number of the donor’s jobs and the mode of the donor (whether it is at its own
queue, is switching to the beneficiary’s queue, is at the beneficiary’s queue, or is switching back to its
own queue), and the foreground process captures the number of the beneficiary’s jobs. Specifically,
level ` in the background process (respectively, foreground process) corresponds to the number of
donor jobs (respectively, beneficiary jobs) in the system.

As long as ND ≥ N th
D , the foreground and background processes can be modeled as QBD pro-

cesses, respectively. Figure 3.18(b) shows the background process when ND ≥ N th
D . Since ND ≥ N th

D ,

5In [151, 152], we analyze this system by reducing the 2D Markov chain into a 1D Markov chain but without
modeling it as a GFB process. The approach in [151, 152] requires identifying and analyzing multiple types of busy
periods for this particular system.
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Figure 3.19: An example of a GFB process: Size-based task assignment with cycle stealing under
central queue. (a) The SBCS-CQ policy. (b) Markov chain for the number of long jobs in the queue or
in service, NL, (background process) when NL ≥ 1. (c) Markov chain for the number of short jobs
in the queue or in service at the short server (foreground process) when NL ≥ 1.

the donor server is either switching back to its own queue (top row) or serving donor jobs (bottom
row). If the donor server is switching back, the donor jobs do not complete. After Kba time, switch-
ing back is completed. While the donor server is serving donor jobs, the donor jobs are completed
with rate µD. Figure 3.18(c) shows the foreground process given ND ≥ N th

D . Since the donor server
is not helping, the beneficiary jobs complete with rate µB. Observe that both Markov chains in
Figures 3.18(b)-(c) are QBD processes. Also, any transition from level < N th

D to level ≥ N th
D is (from

level N th
D − 1) to level N th

D in the background process, since ND is never incremented more than one
at a time. Further, any transition changes the level of the foreground process by at most one, since
any event (job arrival, job completion, and changes in the donor server mode) changes the number
of beneficiary jobs by at most one. Thus, these foreground and background processes constitute a
GFB process.

Size-based task assignment with cycle stealing under central queue

We consider size-based task assignment with cycle stealing under central queue (SBCS-CQ; see Fig-
ure 3.19(a)), where short jobs and long jobs arrive at the central queue according to Poisson processes
with rate λS and λL, respectively. The service demand of the short jobs (respectively, long jobs) has
an exponential distribution with rate µS (respectively, µL). We assume that jobs are nonpreemptive
(i.e., once a job receives service, it runs to completion). To prevent short jobs from waiting behind
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long jobs, we designate one server as the short server, and the other as the long server. Whenever
the short server becomes idle, it picks the first short job in the queue to run. Whenever the long
server becomes idle, it picks the first long job in the queue. However, if there is no long job, the long
server picks the first short job in the queue.

The number of jobs in the above system can be modeled as a GFB process6. Here, we define
the background process so that it tracks the number of long jobs waiting in the queue or in service
at the long server, NL, as well as whether the long server is serving a long job, short job, or none.
Specifically, level ` in the background process corresponds to NL. Also, we define the foreground
process so that level ` in the foreground process corresponds to the the number of short jobs waiting
in the queue or in service at the short server, NS . Note that whether there is a short job in service
at the long server is captured in the background process and not in the foreground process.

As long as NL ≥ 1, the foreground and background processes can be modeled as QBD processes,
respectively. Figure 3.19(b) shows the background process when NL ≥ 1. It tracks NL as well as
whether the long server is working on a long job (top row) or a short job (bottom row). If the long
server is serving a short job, the short job is completed with rate µS , but no long jobs are completed.
If the long server is serving long jobs, long jobs are completed with rate µL. Figure 3.19(c) shows
the foreground process given NL ≥ 1. Since the long server is busy, it does not pick short jobs in the
queue, but short jobs are completed with rate µS by the short server. Observe that both Markov
chains in Figures 3.18(b)-(c) are QBD processes. Also, any transition from level 0 to level ≥ 1 is to
level 1 in the background process, since NL is never incremented more than one at a time. Further,
any transition changes the level of the foreground process by at most one, since any event (job arrival,
job completion, and changes in the long server mode) changes the number of short jobs by at most
one. Thus, these foreground and background processes constitute a GFB process.

Nonpreemptive priority queue

Consider an M/M/k queue with two priority classes (high and low), where high priority jobs have
nonpreemptive priority over low priority jobs. That is, a high priority job can move ahead of all the
low priority jobs waiting in the queue, but low priority jobs in service are not interrupted by high
priority jobs.

The number of jobs in this system can be modeled as a GFB process. Here, we define the
background process so that it tracks the number of high priority jobs waiting in the queue or in
service, NH , as well as the number of low priority jobs in service. Specifically, level ` in the background
process consists of states with NH = `. Also, we define the foreground process so that it tracks the
number of low priority jobs waiting in the queue, NS . Specifically, level ` in the foreground process
is the state with NS = `. Note that the number of low priority jobs in service is captured in the
background process and not in the foreground process.

As long as NH ≥ k (there are enough high priority jobs to occupy all the servers), the foreground
and background processes can be modeled as QBD processes, respectively. Figure 3.19 shows a part
of the foreground and background processes when the number of servers k = 2. Figure 3.19(a) shows
the background process when NH ≥ 1. It tracks NH as well as the number of low priority jobs in
service. When there are n low priority jobs in service, 2 − n servers are serving high priority jobs,

6In [67], we analyze the SBCS-CQ with an additional technique to reduce mean response time, renaming of servers (see
Chapter 5). With renaming, the SBCS-CQ does not appear to be modeled as a GFB process, and in [67] we introduce
an approximation in the analysis via DR.
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Figure 3.20: An example of a GFB process: Nonpreemptive priority queue. (a) Markov chain for
the number of high priority jobs, NH , (background process) when NH ≥ 2. (b) Markov chain for the
number of low priority jobs in the queue (foreground process) when NH ≥ 2.

and high priority jobs are completed with rate (2 − n)µH for n = 0, 1, 2. Figure 3.19(b) shows the
foreground process given NH ≥ 1. Since all the servers are occupied, no low priority jobs waiting
in the queue start receiving service, and the number of low priority jobs in the queue increases with
rate λL. Observe that both Markov chains in Figures 3.18(a)-(b) are QBD processes. Also, any
transition from level < k to level ≥ k is (from level k − 1) to level k in the background process,
since NH is never incremented more than one at a time. Further, any transition changes the level of
the foreground process by at most one, since any event (job arrival, or job completion) changes the
number of low priority jobs in the queue by at most one. Thus, these foreground and background
processes constitute a GFB process.

Threshold-based policies in Beneficiary-Donor model

We consider a broad family of threshold-based (resource allocation) policies in the Beneficiary-Donor
model, as shown in Figure 3.21(a). Here, jobs arrive at queue 1 and queue 2 according to Poisson
processes with rate λ1 and λ2, respectively, and their service demands have exponential distributions.
Server 1 processes only jobs in queue 1 with rate µ1. Server 2 can process either jobs in queue 1 with
rate µ12 or jobs in queue 2 with rate µ2, and which jobs are processed by server 2 is determined by
the queue lengths (the length of queue 1, N1, and the length of queue 2, N2) and threshold values.
Figures 3.21(b)-(c) show examples of such threshold-based policies. We assume that there are a finite
number of thresholds, and the rules are enforced preemptively. That is, there exists a threshold on

queue 1, κ ≡ T
(i)
1 , such that server 2 processes jobs in queue 1 whenever N1 ≥ κ (type 1 threshold-

based policy, as shown in Figure 3.21(b)), or there exists a threshold on queue 2, κ ≡ T
(i)
2 , such

that server 2 processes jobs in queue 2 whenever N2 ≥ κ (type 2 threshold-based policy, as shown
in Figure 3.21(c)). We will study the performance of these threshold-based policies in Chapter 7.
Below, we model the Beneficiary-Donor model with the threshold-based policies as GFB processes.

The number of jobs in the system under the threshold-based policies (both type 1 and type 2)
can be modeled as a GFB process. For the type 1 threshold-based policy, we define the background
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Figure 3.21: Threshold-based policies for the Beneficiary-Donor model. (a) The Beneficiary-Donor
model. (b)-(c) show examples of threshold-based policies for the Beneficiary-Donor model: whether
server 2 works on jobs from queue 1 or queue 2 is shown as a function of the length of queue 1, N1,
and the length of queue 2, N2.

process so that it tracks the number of jobs in queue 1, including the jobs in service, N1; we define
the foreground process so that it tracks the number of jobs in queue 2, including the job in service,
N2. Specifically, level ` in the background process (respectively, foreground process) corresponds to
the state with N1 = ` (respectively, N2 = `). Likewise, for the type 2 threshold-based policy, we
define the background process as tracking N2 and the foreground process as tracking N1.

Now, it is easy to see that these foreground and background processes constitute a GFB process.
For the type 1 threshold-based policy, as long as N1 ≥ κ, the foreground and background processes
can be modeled as birth-and-death processes, respectively. Figure 3.22(a) shows the background
process when N1 ≥ κ, and Figure 3.22(b) shows the foreground process given N1 ≥ κ. Since N1 ≥ κ,
server 2 processes jobs in queue 1, and jobs are completed with rate 2µ1 from queue 1 (background
process), while there is no job completion from queue 2 (foreground process). Also, any transition
from level < κ to level ≥ κ is (from level κ−1) to level κ in the background process, since N1 is never
incremented more than one at a time. Further, any transition changes the level of the foreground
process by at most one, since any event (job arrival, or job completion) changes N2 by at most
one. Thus, these foreground and background processes constitute a GFB process. Likewise, for the
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(d) number of jobs in queue 1 when N2 ≥ κ

Figure 3.22: Examples of GFB processes: Threshold-based policies for the Beneficiary-Donor model.
The top row illustrates the GFB process for the type 1 threshold-based policy. (a) Markov chain for
the number of jobs in queue 1, N1, (background process) when N1 ≥ κ. (b) Markov chain for the
number of jobs in queue 2, N2 (foreground process) when N1 ≥ κ. The bottom row illustrates the
GFB process for the type 2 threshold-based policy. (c) Markov chain for N2, (background process)
when N2 ≥ κ. (d) Markov chain for N1 (foreground process) when N2 ≥ κ.

type 2 threshold-based policy, as long as N2 ≥ κ, the foreground and background processes can be
modeled as birth-and-death processes, respectively, as shown in Figures 3.22(c)-(d). Again, since
any event changes N1 and N2 by at most one, these foreground and background processes constitute
a GFB process.

3.5 Dimensionality reduction

In this section, we analyze the stationary probabilities in the RFB and GFB processes via DR. The
stationary probabilities can be used to derive other performance measures such as the mean response
time, as discussed in Section 3.8. In Section 3.5.1, we start by analyzing a simple FB process whose
background and foreground processes are homogeneous birth-and-death processes. In Section 3.5.2,
we analyze the FB process, which constitutes the primary part of the analysis of the RFB and GFB
processes. In Section 3.5.3, we analyze the RFB process by applying the analysis of the FB process
recursively. In Section 3.5.4, we analyze the GFB process using the analysis in Section 3.5.2.

3.5.1 Analysis of the birth-and-death FB process

In this section, we analyze a simplest FB process shown in Figure 3.13. Our goal is to reduce the
FB process (2D Markov chain) to a QBD process with a finite number of phases (1D Markov chain)
which closely approximates the FB process.

Observe that the infinite number of phases in the FB process stems from the infinite number
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Figure 3.23: An analysis of the FB process in Figure 3.13 via DR. (a) The background process in
Figure 3.13(a) is approximated by a Markov chain on a finite state space. (c) The FB process in
Figure 3.13(c) is approximated by a 1D Markov chain.

of states in the background process, B (Figure 3.13(a)). This motivates us to approximate B by a
Markov chain with a finite number of states, B̃ (Figure 3.23(a)). In process B̃, all the states in levels
≥ κ of process B is aggregated into two states labeled ≥ κ. That is, the sojourn time in levels ≥ κ,
T , is approximated by a two-phase PH distribution (as defined in Section 2.2) with parameters:

−→τ = (1, 0) and T =

(
−(β1 + β12) β12

0 −β2

)
.

We use the moment matching algorithm developed in Chapter 2 to choose the parameters of the PH
distribution so that the first three moments of T are matched. The sojourn time T is exactly the
same as the busy period in an M/M/1 queue where the arrival rate is fB and the service rate is bB.
Thus, the first three moments of T are

E [T ] =
1

1 − ρ

1

bB
, E

[
T 2
]

=
2

(1 − ρ)2
1

b2B
, E

[
T 3
]

=
6(1 + ρ)

(1 − ρ)5
1

b3B
,

where ρ = fB
bB

. The following theorem implies that two phases are sufficient to match these three
moments by a PH distribution.

Theorem 8 Let T denote the duration of an M/GI/1 busy period where service demand G has an
arbitrary distribution with finite third moment and where the job starting the busy period has size
K whose distribution is in T (n) (recall Definition 7 in Section 2.1). Then, the distribution of T is
in T (n).

A proof of Theorem 8 is postponed to Appendix A. Theorem 8 is useful in determining the sufficient
number of phases in a PH distribution to well-represent a busy period duration without explicitly
computing the moments of the busy period.
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By replacing the background process B by B̃, the 2D Markov chain (Figure 3.13(c)) is reduced
to a 1D Markov chain shown in Figure 3.23(c). More formally, the 1D Markov chain is a QBD
process, and its generator matrix, Q, is obtained via the generator matrix of B̃, Q

B̃
, as follows.

First, observe that

Q
B̃

=




−fB fB

bB −(bB + fB)
. . .

. . .
. . . fB
bB −(bB + fB) fB−→τ−→

t T



,

where
−→
t = −T

−→
1 . Generator matrix Q is then given by

Q =




L(0) F
B L F

B L
. . .

. . .
. . .



,

where F and B are (κ+ 2) × (κ+ 2) diagonal matrices,

F =




fF,0
. . .

fF,κ−1

fF,κ
fF,κ




and B =




bF,0
. . .

bF,κ−1

bF,κ
bF,κ



,

L(0) = Q
B̃
− F, and L = Q

B̃
− F − B.

In general, the stationary probabilities in the 1D Markov chain can immediately be translated into
the stationary probabilities in the foreground process. On the other hand, the stationary probabilities
in the background process needs to be analyzed independently, since its state space is aggregated in
the 1D Markov chain. Observe, however, that the background process is easy to analyze, since it is
simply a birth-and-death process without dependency on the foreground process.

3.5.2 Analysis of the FB process

In this section, we extend the analysis in Section 3.5.1 to the general FB process. As in Section 3.5.1,
once the background process is approximated by a Markov chain on a finite state space, it is straight-
forward to reduce the FB process to a 1D Markov chain. Hence, in this section, we limit our focus on
approximating the background process by a Markov chain on a finite state space; for completeness,
we formally describe the construction of the 1D Markov chain using the approximated background
process in Appendix 3.5.5. We will see that, in general, a collection of PH distributions is needed
in the approximate background process, B̃, (e.g. recall Section 3.1.2) to capture the dependency in
the sequence of sojourn times in levels ≥ κ that B has. This is in contrast to the case when the
background process is a birth-and-death process, which required only a single PH distribution in the
approximate background process, since the sojourn times in levels ≥ κ are i.i.d. in this case. Below,
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we use Qb to denote the generator matrix of B, and use B
(`)
b , L

(`)
b , and F

(`)
b to denote the submatrices

of Qb, following the convention introduced in Section 3.4
We start by specifying the properties that B̃ should have. Let Ei,j be the event that the first

state that we visit in level κ−1 is in phase j given that we transitioned from phase i in level κ−1 to
any state in level κ. (Notice that in the analysis of the M/PH/2 queue with two priority classes in
Section 3.1, each event Ei,j corresponds to the event that the phase of the job in service immediately
before a busy period starts is i and the phase of the job in service immediately after the busy period
is j.) We require that B̃ has the following key properties:

• The probability of event Ei,j in B̃ is the same as that in B for each i and j.

• The distribution of the sojourn time in levels ≥ κ given event Ei,j in B̃ well-represents that in
B (i.e. the first three moments of the two distributions agree) for each i and j.

Observe that if the second property did not involve the approximation, then the foreground process
that depends on background process B and the foreground process that depends on background
process B̃ would be stochastically equivalent. This is because the sequence of the sojourn times
between changing levels (0, 1, ..., κ−1, and ≥ κ) inB and that in B̃ would be stochastically equivalent.

To construct B̃, we first analyze the probability of event Ei,j and (the moments of) the distribution
of the sojourn time in levels ≥ κ given event Ei,j (we denote this distribution as Di,j) for each i and
j. (Notice that in the analysis of the M/PH/2 queue with two priority classes in Section 3.1, Di,j

corresponds to the distribution of the busy period duration given that the phase of the job in service
immediately before a busy period starts is i and the phase of the job in service immediately after
the busy period is j.) Let ξ be the number of phases in level κ − 1 of B (and B̃). Then, there are
ξ2 types of events Ei,j .

The probability of event Ei,j is relatively easy to analyze. Let P be a matrix of order ξ× ξ whose

(i, j) element is the probability of event Ei,j . Let E
(+)
i,h be the event that B transitions to state (h, κ)

given that the transition is from state (i, κ − 1) to any state in level κ. Also, let E
(−)
h,j be the event

that state (j, κ − 1) is the first state that B hits in level κ − 1 given that B starts in state (h, κ).
Then,

(P)i,j =
∑

h

Pr
(
E

(+)
i,h

)
Pr
(
E

(−)
h,j

)
.

Thus, all that remains is to derive Pr
(
E

(+)
i,h

)
and Pr

(
E

(−)
h,j

)
. The first quantity is derived via F

(κ−1)
b

as follows:

Pr
(
E

(+)
i,h

)
=

(F
(κ−1)
b )i,h

∑ξ
j=1(F

(κ−1)
b )i,j

,

where 0
0 is defined as 0. Let G(κ) be a matrix whose (h, j) element is Pr

(
E

(−)
h,j

)
. Then, matrix G(κ) is

obtained by the algorithm in Figure 3.12 (see Section 3.7 for an alternative algorithm and intuition).

More formally, let Let H(κ−1) be a matrix whose (i, h) element is Pr
(
E

(+)
i,h

)
. Then, matrix P is

given by
P = H(κ−1)G(κ).

Next, we analyze the moments of Di,j . Let Mr be a matrix of order ξ × ξ whose (i, j) element is
the r-th moment of Di,j for r ≥ 1. Note that Di,j is a mixture of distributions of various conditional
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passage times from level κ to level κ− 1. Specifically, let T
(κ)
i,j be the time to go from state (i, κ) to

state (j, κ− 1). Then, the distribution function of Di,j is given by

∑

h

Pr
(
E

(+)
i,h

)
Pr
(
E

(−)
h,j

)
Pr
(
T

(κ)
h,j ≤ x | E(−)

h,j

)
.

Now, let Z
(κ)
r be a matrix whose (h, j) element is the r-th moment of T

(κ)
h,j given event E

(κ)
h,j , i.e.

(Z(κ)
r )h,j =

∫ ∞

0
xrdPr

(
T

(κ)
h,j ≤ x | E(−)

h,j

)

for r = 1, 2, 3. Then,

(Mr)i,j =
∑

h

Pr
(
E

(+)
i,h

)
Pr
(
E

(−)
h,j

)
(Z(κ)

r )h,j .

More formally, let Gr be a matrix whose (h, j) element is

(Gr)h,j = Pr
(
E

(−)
h,j

)
(Z(κ)

r )h,j = (G)h,j(Z
(κ)
r )h,j .

Then,
M = HGr.

Thus, all that remains is to derive Z
(κ)
r . We can calculate Z

(κ)
r by a trivial extension of Neuts’

algorithm [134] for any r; we postpone this extension to Section 3.7.
We are now ready to construct B̃. We use the moment matching algorithm developed in Chapter 2

to approximate Di,j by a PH distribution, (−→τi,j ,Ti,j), matching the first three moments of Di,j ,
((M1)i,j , (M2)i,j , (M3)i,j), for all i and j. Let

−→
ti,j = −Ti,j~1, where ~1 is a column vector with all

elements 1 and has order equal to the number of columns in Ti,j .
Using P and (−→τi,j ,Ti,j) defined above, the generator matrix of B̃ is defined as

Q
B̃

=




L
(0)
b F

(0)
b

B
(1)
b

. . .
. . .

. . .
. . . F

(κ−2)
b

B
(κ−1)
b L

(κ−1)
b (~λ)1 · τ1 (~λ)2 · τ2 · · · (~λ)ξ · τξ

t1 T1

t2 T2
...

. . .

tξ Tξ




,

where ~λ = F
(κ−1)
b

~1,

Ti =




Ti,1

. . .

Ti,ξ


 , ti =




−→
ti,1

. . .
−→
ti,ξ


 , and

τi =




Oi−1,ξ

(P)i,1 · −→τi,1 · · · (P)i,ξ · −→τi,ξ
Oξ−i,ξ



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Figure 3.24: An analysis of the GFB process via DR.

for i = 1, ..., ξ. Here, ~1 is a column vector with all elements 1 and has order equal to the number

of columns in F
(κ−1)
b , and Os,t denotes a zero matrix of order s × t. Recall that ξ is the number of

phases in level κ− 1 of B (and B̃).

3.5.3 Analysis of the RFB process

The stationary probabilities in the RFB process can be analyzed by applying the analysis in Sec-
tion 3.5.2 recursively. Recall that, in the RFB process, the infinitesimal generator of the i-th process
depend on the level of the (i − 1)-th process for 2 ≤ i ≤ m. In Section 3.5.2, we analyzed the case
of m = 2 (the FB process).

We argue, by induction, that all the m processes that constitute the RFB process can be approx-
imated by finite-phase QBD processes (1D Markov chains) via the approach in Section 3.5.2. Then,
the stationary probabilities in the m processes can be obtained by analyzing the stationary proba-
bilities in the 1D Markov chains. By our assumption, the first process is a finite-phase QBD process
that does not depend on other processes, which proves the base case. Suppose that the i-th process
is approximated by a QBD process with a finite number of phases, Bi. The QBD process Bi typically
has an infinite number of levels. However, by the analysis in Section 3.5.2, Bi can be approximated
by a QBD process with a finite number of levels, B̃i, such that Bi and B̃i have stochastically similar
effect on the (i+ 1)-th process, Bi+1. Now, using B̃i, process Bi+1 can be approximated by a QBD
process with a finite number of phases. This completes our argument.

3.5.4 Analysis of the GFB process

Most of the techniques necessary in the analysis of the GFB process are already provided in the
analysis of the FB process. In this section, we describe how we can apply these techniques to the
GFB process, where we use a particular GFB process shown in Figure 3.25 as an example. Intuitively,
a GFB process can be reduced to a 1D Markov chain by reducing the FB portion (rows ≥ κ) of the
GFB process to a 1D Markov chain via DR as illustrated in Figure 3.24. The stationary probabilities
in the 1D Markov chain will be immediately translated into those in the foreground process. We will
need an additional technique in the analysis of the background process, since the background process
in the GFB process depends on the foreground process, and hence cannot be analyzed independently
as in the FB process.
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Figure 3.25: A GFB process: Threshold-based policy for reducing switching costs in cycle stealing,
where N th

D = 2 and N th
B = 3.

The Markov chain shown in Figure 3.25 models the number of donor and beneficiary jobs, respec-
tively, in the system under the threshold-based policy for reducing switching costs in cycle stealing
(recall Figure 3.18(a)), where N th

D = 2 and N th
B = 3. To simplify the analysis, we assume that switch-

ing times are zero7. In Figure 3.25, the number of donor jobs (background process) is tracked in the
vertical direction, and the number of beneficiary jobs (foreground process) is tracked in the horizontal
direction. A state labeled D (respectively, B) denotes that the donor server is working or staying idle
at the donor’s queue (respectively, beneficiary’s queue) in the state. Since the background process
and the foreground process are independent birth-and-death processes when the number of donor
jobs ND ≥ κ ≡ N th

D , the Markov chain is a GFB process. However, since the background process
and the foreground process have complex interaction while ND < κ, it is not an FB process.

The GFB process can be reduced to a 1D Markov chain by replacing a portion of the background
process, as is done in Section 3.5.2. Figure 3.26(a) shows a portion (ND ≥ κ ≡ N th

D ) of the background
process. In general, a background process in a GFB process has a level κ such that the background
process is a QBD process while it is in levels ≥ κ. By using the techniques that we have introduced
in Section 3.5.2, this portion of the background process can be approximated by a Markov chain on
a finite state space as in Figure 3.26(b). By replacing levels ≥ κ ≡ N th

D of the background process
(Figure 3.26(a)) by the Markov chain on a finite state space (Figure 3.26(b)), the GFB process is
reduced to a 1D Markov chain as shown in Figure 3.26(c).

The 1D Markov chain reduced from a GFB process is a QBD process and its stationary proba-

7A motivation for using threshold-based policy under zero switching times may be to reduce some “cost,” such as
money and risk, involved in the switching.
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Figure 3.26: An analysis of the GFB process in Figure 3.25 via DR. (a)-(b) Levels ≥ κ of the
background process. (c) 1D Markov chain reduced from the GFB process.

bilities can be analyzed via matrix analytic methods as in Section 3.2. As in the analysis of the FB
process, the stationary probabilities in the 1D Markov chain can be immediately translated into the
stationary probabilities in the foreground process, since the state space of the foreground process is
not aggregated in the 1D Markov chain.

By contrast, levels ≥ κ + 1 of the background process are aggregated in the 1D Markov chain;
thus, the analysis of the stationary probabilities in the background process requires an additional
technique. Since levels ≤ κ of the background process are exactly tracked in the 1D Markov chain,
the stationary probabilities in this portion is given by the stationary probabilities in the 1D Markov
chain. Note, in particular, that the probability that there are ND = κ ≡ N th

D donor jobs, πκ, is
given by the stationary probability in the 1D Markov chain. Since the background process is a
birth-and-death process when ND ≥ κ ≡ N th

D (Figure 3.26(a)), the probability that there are ` jobs,
π`, is obtained recursively by

π` = ρπ`−1,
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where ρ = λD
µD

, for ` ≥ κ+ 1.
In general, the stationary probabilities in levels ≤ κ of the background process are given by the

stationary probabilities in the 1D Markov chain reduced from the GFB process. In particular, the
stationary probability vector in level κ, −→πκ, is given by analyzing the 1D Markov chain. Then, the
stationary probability vector in level ` > κ, −→π`, is given recursively by

−→π` = −−→π`−1R
(`),

for ` ≥ κ+ 1, where R(`)’s are the R matrices of the background process that can be calculated by
the algorithm shown in Figure 3.12.

3.5.5 Constructing a 1D Markov chain using an approximate background process

In Section 3.5.2, we obtain the generator matrix of an approximate background process B̃, Q
B̃

. In
this section, we derive the generator matrix of the 1D Markov chain reduced from the FB process
by replacing the background process B by B̃.

We first introduce notations for the generator matrices of the foreground process conditioned on
the level of the background process. Let Qd be the generator matrix of the foreground process, F ,
given that the background process is in level d. As the foreground process is a QBD process given
the level of B, Qd is of the form

Qd =




L
(0)
d F

(0)
d

B
(1)
d L

(1)
d F

(1)
d

B
(2)
d L

(2)
d

. . .
. . .

. . .




for 0 ≤ d ≤ κ. Recall that the generator matrix of the foreground process when the background
process is in levels > κ is the same as Qκ.

The 1D Markov chain reduced from the FB process is also a QBD process, and its generator
matrix, Q, is given by

Q =




L(0) F(0)

B(1) L(1) F(1)

B(2) L(2) . . .
. . .

. . .



,

where

F(`) =




I0 ⊗ F(`)

. . .

Iκ−1 ⊗ F
(`)
κ−1

Iκ ⊗ F
(`)
κ




B(`) =




I0 ⊗ B(`)

. . .

Iκ−1 ⊗ B
(`)
κ−1

Iκ ⊗ B
(`)
κ



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L(`) =




I0 ⊗ L(`)

. . .

Iκ−1 ⊗ L
(`)
κ−1

Iκ ⊗ L
(`)
κ




+ Q
B̃
⊗ I′`,

for each `, where Ii is an identity matrix of order equal to the number of states in level ` of B for
1 ≤ i ≤ κ − 1, Iκ is an identity matrix of order equal to the number of states corresponding to the
collection of PH distributions in B̃ (i.e., when the busy period, the sojourn time in levels ≥ κ, is
approximated by n PH distributions each with p phases, Iκ is an np × np identity matrix), and I′`
is the number of states in level ` of F for ` ≥ 0.

3.6 Approximations of dimensionality reduction

DR as introduced in Section 3.5.2 can still be computationally prohibitive, if it is used recursively
as in Section 3.5.3. In this section, we introduce two new approximations in DR, namely DR-
PI (Section 3.6.1) and DR-CI (Section 3.6.2), which can significantly reduce the computational
complexity while keeping a reasonable accuracy. The key idea in our new approximations is that
distributions Di,j (the sojourn time distribution in levels ≥ κ given event Ei,j) can be aggregated
without losing too much information. In Section 3.6.3, we will discuss the computational complexity
of DR, DR-PI, and DR-CI when they are used recursively.

3.6.1 Dimensionality reduction with partial independence assumption

DR-PI (DR with partial independence assumption) ignores the dependency that the sojourn time
in levels ≥ κ has on how the Markov chain enters levels ≥ κ (from level κ − 1). Specifically, we
assume that Di,j is independent of i. Let D′

j = Di,j for all i for each j, and let B̃′ denote the process

that is the same as B̃ except that Di,j is replaced by D′
j for all i for each j. Figure 3.27(a) shows

the Markov chain for the high priority jobs (background process) that we obtain via DR-PI in the
analysis of an M/PH/2 queue with two priority classes. (Recall the Markov chain that we obtain
via DR, Figure 3.5 in Section 3.1, where the four types of busy periods are approximated by four
PH distributions, respectively.) In DR-PI, the four types of busy periods are represented by two PH
distributions, ignoring the dependency that the duration of the busy period has on the phase of the
job in service at the beginning of the busy period.

In general, we require that process B̃′ has the following two key properties:

• The probability of event Ei,j in B̃′ is the same as that in B (and that in B̃ as well).

• We choose D′
j such that the marginal distribution of the sojourn time in levels ≥ κ in B̃′

well-represents that in B (and hence in B̃ as well).

Hence, B̃′ and B would have stochastically the same total sojourn time in levels ≥ κ in the long run
if the second property did not involve the approximation (i.e., if the marginal distribution is fitted
exactly). However, B̃′ and B have different autocorrelation in the sequence of the sojourn times in
levels ≥ κ.
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Figure 3.27: Background processes on a finite state space, obtained via (a) DR-PI and (b) DR-CI.
Labels on the transitions in the busy periods are omitted for clarity.

More formally, the generator matrix of B̃′, Q
B̃′

, is determined as follows. Let (
−→
M ′
r)j be the r-th

moment of D′
j for 1 ≤ j ≤ ξ for each r ≥ 1. We determine (

−→
M ′
r)j so that B̃ and B̃′ have the same

marginal r-th moment of the sojourn time in levels ≥ κ:

(
−→
M ′
r)j =




ξ∑

i=1

(−−→πκ−1)i · (~λ)i · (P)i,j · (Mr)i,j


/




ξ∑

i=1

(−−→πκ−1)i · (~λ)i · (P)i,j


 ,

where −−→πκ−1 denotes the stationary probability vector that B̃ is in level κ−1, which can be calculated

via matrix analytic methods as in Section 3.2. We approximate D′
j by a PH distribution, (

−→
τ ′j ,T

′
j),

matching the first three moments ofD′
j , ((

−→
M ′

1)j , (
−→
M ′

2)j , (
−→
M ′

3)j). Let
−→
tj = −T′

j ·~1 as before. Generator
matrix Q

B̃′
is then defined by

Q
B̃′

=




L
(0)
b F

(0)
b

B
(1)
b

. . .
. . .

. . .
. . . F

(κ−2)
b

B
(κ−1)
b L

(κ−1)
b τ

′

t′ T′




,

where L
(h)
b , F

(h)
b , and B

(h)
b are submatrices of Qb as defined in Section 3.5.2,

T′ =




T′
1

. . .

T′
ξ


 , t′ =




−→
t′1

. . .
−→
t′ξ


 , and

τ
′ =




(~λ)1
. . .

(~λ)ξ







(P)1,1 ·
−→
τ ′1 · · · (P)1,ξ ·

−→
τ ′ξ

...
...

(P)ξ,1 ·
−→
τ ′1 · · · (P)ξ,ξ ·

−→
τ ′ξ


 .
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Observe that the number of PH distributions used to approximate the sojourn time distributions in
levels ≥ κ is reduced from ξ2, in B̃, to ξ, in B̃′. The next approximation, DR-CI, uses only one PH
distribution.

3.6.2 Dimensionality reduction with complete independence assumption

DR-CI (DR with complete independence assumption) ignores not only the dependency that the
length of the sojourn time in levels ≥ κ has on how the Markov chain enters levels ≥ κ but also
the dependency on how it exits from levels ≥ κ (to level κ− 1). Specifically, we assume that Di,j is
independent of i and j. Let D′′ = Di,j for all i and j, and let B̃′′ denote the process that is the same
as B̃ except that Di,j is replaced by D′′ for all i and j. Figure 3.27(b) shows the Markov chain for
the high priority jobs (background process) that is obtained via DR-CI in the analysis of an M/PH/2
queue with two priority classes. In DR-CI, the four types of busy periods are represented by a single
PH distribution, ignoring the dependency that the duration of the busy period has on the phase of
the job in service at the beginning and end of the busy period.

We choose D′′ such that B̃′′ has the above two key properties that B̃′ has. The difference between
B̃′ and B̃′′ lies in the dependencies in the sequence of the sojourn times in levels ≥ κ. Observe that
the sequence of the sojourn times in levels ≥ κ is i.i.d. in B̃′′, while it has some dependencies in B̃′.

More formally, the generator matrix of B̃′′, Q
B̃′′

, is determined as follows. Let M ′′
r be the r-th

moment of D′′ for r ≥ 1. We determine M ′′
r so that B̃′′ and B have the same marginal r-th moment

of the sojourn time in levels ≥ κ:

M ′′
r =




ξ∑

j=1

ξ∑

i=1

(−−→πκ−1)i · (~λ)i · (P)i,j · (M′
r)i,j


/




ξ∑

j=1

ξ∑

i=1

(−−→πκ−1)i · (~λ)i · (P)i,j


 .

We approximate D′′ by a PH distribution, (
−→
τ ′′,T′′), matching the first three moments of D′′,

(M ′′
1 ,M

′′
2 ,M

′′
3 ). Let

−→
t′′ = −T′′ ·~1 as before. Generator matrix Q

B̃′′
is then defined by

Q
B̃′′

=




L
(0)
b F

(0)
b

B
(1)
b

. . .
. . .

. . .
. . . F

(κ−2)
b

B
(κ−1)
b L

(κ−1)
b τ

′′

−→
t′′ · −→χ T′′




,

where τ
′′ = transpose(~λ) · −→τ ′′, and −→χ is a row vector whose h-th element is

(−→χ )h =




ξ∑

i=1

(−−→πκ−1)i · (−→λ )i · (P)i,h


/




ξ∑

i=1

ξ∑

j=1

(−−→πκ−1)i · (−→λ )i · (P)i,j


 .

3.6.3 Computational complexity of DR, DR-PI, and DR-CI

When DR, DR-PI, and DR-CI are applied to an RFB process, their running times differ primarily
due to the differences in the orders of the submatrices of the generator matrix (the number of states
in each level) of the 1D Markov chain reduced from the RFB process. Below, we compare how the
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orders of the submatrices of DR, DR-PI, and DR-CI grow as the number of processes, m, increases.
For simplicity, assume that the infinitesimal generator of the i-th process is fixed while the (i− 1)-th
process is in levels ≥ κ for all i (i.e. κ = κ1 = · · · = κm−1), and that all the processes have the same
number of states, ξ, in each level.

In DR, the order of the submatrices, SDR(m), grows double-exponentially with m (i.e. O(22m
));

specifically, SDR(m) can be determined by the following recursive formula: SDR(m) = κSDR(m−1) +
(SDR(m−1))

2NPH for m > 1 and SDR(1) = ξ, where NPH is the number of phases used in a PH
distribution that approximates a (conditional) sojourn time in levels ≥ κ (there are (SDR(m−1))

2

types of sojourn times). In DR-PI, the order of the submatrices, SPI(m), grows exponentially with
m: SPI(m) = (κ+NPH)m−1ξ. In DR-CI, the order of the submatrices, SCI(m), grows exponentially
with m (but slower than SPI(m)) when κ > 1: SCI(m) = κm−1 (ξ +NPH/(κ− 1)) − NPH/(κ − 1),
and it grows linearly with m when κ = 1: SCI(m) = (m− 1)NPH + ξ.

3.7 Moments of inter-level passage times in QBD processes

Neuts’ algorithm [134, 137] is an efficient algorithm that calculates the moments of various types
of passage times in very general processes, i.e. M/G/1 type semi-Markov processes. Because of its
generality, however, the description of the algorithm in [134, 137] is sophisticated. The purpose of this
section is to make Neuts’ algorithm more accessible to general readers by re-describing his algorithm
restricted to the first three moments of inter-level passage times in QBD processes. We omit all
proofs, which are provided in detail in [134], and we instead focus on intuition and interpretation.
We include everything needed to apply Neuts’ algorithm within our solution framework, so that
general readers can apply our methodology.

Specifically, we consider a QBD process on the state space {(i, `)|1 ≤ i ≤ n`, ` ≥ 0}, which has
generator matrix Q:

Q =




L(0) F(0)

B(1) L(1) F(1)

B(2) L(2) F(2)

. . .
. . .




as defined in Section 3.2. We assume that the QBD process repeats after level ˆ̀; i.e. B(`) = B,
L(`) = L, and F(`) = F for all ` ≥ ˆ̀.

Our goal can be roughly stated as deriving the passage time required to get from state (i, `) to
level ` − 1 conditioned on the particular state first reached in level ` − 1. To state our goal more

precisely, let E
(`)
i,j be the event that state (j, `−1) is the first state reached in level `−1 when starting

in (i, `), and let T
(`)
i,j be the time to go from state (i, `) to state (j, `− 1). Then, our goal is to derive

the n`×n`−1 matrix, Z
(`)
r , where (Z

(`)
r )i,j is the r-th moment of T

(`)
i,j given event E

(`)
i,j , for each ` and

r = 1, 2, 3.
Observe that

(Z(`)
r )i,j =

∫ ∞

0
xrdPr

(
T

(`)
i,j ≤ x | E(`)

i,j

)

=

∫∞
0 xrdPr

(
T

(`)
i,j ≤ x AND E

(`)
i,j

)

Pr
(
E

(`)
i,j

) .
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Hence, it suffices to derive two quantities:

(G(`))i,j ≡ Pr
(
E

(`)
i,j

)

(G(`)
r )i,j ≡

∫ ∞

0
xrdPr

(
T

(`)
i,j ≤ x AND E

(`)
i,j

)

The rest of this section is organized as follows. In Section 3.7.1, we introduce some notations

that we will need along the way. In Section 3.7.2, we derive G(`) and G
(`)
r for each ` and r = 1, 2, 3.

(Matrix G(`) can also be obtained by the algorithm in Figure 3.12.) In Section 3.7.3, we mention
some generalizations that Neuts’ algorithm allows. In particular, we show an extension to the passage
time from level ` to level `− ψ for 1 ≤ ψ ≤ `, which we will need in Section 3.8.

3.7.1 Preliminaries

We first define the transition probability matrix, P(x), such that its (s, t) element, (P(x))s,t, rep-
resents the probability that (i) the sojourn time at state s is ≤ x AND (ii) the first transition out
of state s is to state t. (Note that state s denotes a state (i, `), where s = i +

∑`−1
`′=0 n`′ . State t is

defined analogously.) By the following Lemma, which follows from the memoryless property of the
exponential distribution, (P(x))s,t is also the product of the probabilities of events (i) and (ii).

Lemma 7 Let X1 and X2 be independent exponential random variables. Let W = min(X1, X2).
Then

Pr(W < x AND X1 < X2) = Pr(W < x) · Pr(X1 < X2)

Matrix P(x) has the same structural shape as Q, although its entries are different, and thus it can
be represented in terms of submatrices, analogous to those in Q, indicating backward transitions,
local transitions, and forward transitions, as follows:

P(x) =




L
(0)(x) F

(0)(x)

B
(1)(x) L

(1)(x) F
(1)(x)

B
(2)(x) L

(2)(x) F
(2)(x)

. . .
. . .




Specifically, the (i, j) element of L
(`)(x) is the probability that the sojourn time in state (i, `) is ≤ x

AND the first transition out of state (i, `) is to state (j, `). Likewise, the (i, j) element of F
(`)(x)

(respectively, B
(`)(x)) is the probability that the sojourn time in state (i, `) is ≤ x AND the first

transition out of state (i, `) is to state (j, `+ 1) (respectively, to state (j, `− 1)).
Next, we define the r-th moment of submatrices, B

(`)(x), L
(`)(x), F

(`)(x), as follows:

B
(`)
r ≡

∫ ∞

0
xrdB(`)(x); L

(`)
r ≡

∫ ∞

0
xrdL(`)(x); F

(`)
r ≡

∫ ∞

0
xrdF (`)(x)

for r = 1, 2, 3, and ` ≥ 0, where an integral of a matrix M is a matrix of the integrals of the

elements in M. For the repeating part, we define Br ≡ B
(ˆ̀)
r , Lr ≡ L

(ˆ̀)
r , and Fr ≡ F

(ˆ̀)
r , omitting

the superscript.
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We now define the limits as x→ ∞ of B
(`)(x), L

(`)(x), and F
(`)(x) as follows:

B
(`) = lim

x→∞B
(`)(x); L

(`) = lim
x→∞L

(`)(x); F
(`) = lim

x→∞F
(`)(x);

for ` ≥ 0. For the repeating part, we define B ≡ B
(ˆ̀), L ≡ L

(ˆ̀), and F ≡ F
(ˆ̀), omitting the

superscript.

Example

Consider the QBD process shown in Figure 3.10(b), where

F(`) =

(
λ1 0
0 λ2

)
L(`) =

(
−σ1 α12

α21 −σ2

)
B(`) =

(
µ 0
0 µ

)

for ` ≥ 1, where σ1 = λ1 + µ+ α12 and σ2 = λ2 + µ+ α21. For this QBD process,

F
(`)(x) =

(
1 − e−σ1x 0

0 1 − e−σ2x

)(
λ1
σ1

0

0 λ2
σ2

)
F

(`) =

(
λ1
σ1

0

0 λ2
σ2

)

L
(`)(x) =

(
1 − e−σ1x 0

0 1 − e−σ2x

)(
0 α12

σ1
α21
σ2

0

)
L

(`) =

(
0 α12

σ1
α21
σ2

0

)

B
(`)(x) =

(
1 − e−σ1x 0

0 1 − e−σ2x

)(
µ
σ1

0

0 µ
σ2

)
B

(`) =

(
µ
σ1

0

0 µ
σ2

)

F
(`)
r =

(
r!

(σ1)r 0

0 r!
(σ2)r

)(
λ1
σ1

0

0 λ2
σ2

)

L
(`)
r =

(
r!

(σ1)r 0

0 r!
(σ2)r

)(
0 α12

σ1
α21
σ2

0

)

B
(`)
r =

(
r!

(σ1)r 0

0 r!
(σ2)r

)(
µ
σ1

0

0 µ
σ2

)

for ` ≥ 1.

3.7.2 Moments of passage time

We will use the matrices introduced above to derive G(`) and G
(`)
r for r = 1, 2, 3. We first derive

those for the repeating part, G ≡ G(ˆ̀) and Gr ≡ G
(ˆ̀)
r . Then, G and Gr are used to derive those for

the nonrepeating part, G(`) and G
(`)
r for 1 ≤ ` < ˆ̀.

Moments of passage time in repeating part

Matrix G can be derived by the algorithm in Figure 3.12, but it is instructive to study an alternative
derivation of G. The idea is to simply iterate the following equation until it converges:

G = B + LG + FGG (3.7)
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The intuition behind Equation (3.7) should be clear: Recall that the (i, j) entry of G(`) represents
the probability that state (j, `−1) is the first state reached in level `−1, given that we start in state
(i, `). Now the right hand side of Equation (3.7) represents this same probability by conditioning
on whether the first move is a backward transition, a local transition, or a forward transition.
Specifically, the (i, j) element of B

(`) represents the probability that the first move leaving state (i, `)
is to state (j, `− 1). The (i, j) element of L

(`)G(`) represents the probability that the first transition
out of state (i, `) is to state (v, `) for some v multiplied by the probability that the the first state
reached in level `−1 is (j, `−1) when we start in state (v, `), summed over all possible v = 1, . . . , n`.
Finally, the (i, j) element of F

(`)G(`+1)G(`) represents the product of three terms: (i) the probability
that the first transition from (i, `) is to some state (v1, `+ 1) in level `+ 1, (ii) the probability that
from state (v1, ` + 1) the first state reached in level ` is some (v2, `), and (iii) the probability that
from state (v2, `) the first state reached in level `− 1 is state (j, `− 1), where the product is summed
over all possible v1 = 1, . . . , n`+1 and v2 = 1, . . . , n`. Since we are in the repeating region, all the
superscripts are equal to ˆ̀, and can be dropped by our notation.

Matrices Gr for r = 1, 2, 3 are derived in a similar manner, by using G which we have already
derived. Matrix G1 is obtained by iterating:

G1 = B1 + L1G + LG1 + F1GG + FG1G + FGG1. (3.8)

Similarly, matrix G2 is obtained by iterating:

G2 = B2 + L2G + 2L1G1 + LG2

+F2GG + 2F1(G1G + GG1) + F(G2G + 2G1G1 + GG2) (3.9)

and matrix G3 is obtained by iterating:

G3 = B3 + L3G + 3L2G1 + 3L1G2 + LG3

+F3GG + 3F2(G1G + GG1) + 3F1(G2G + 2G1G1 + GG2)

+F(G3G + 3G2G1 + 3G1G2 + GG3). (3.10)

We now give intuition behind expressions (3.8)-(3.10). The right hand side of (3.8) can be divided
into three parts: Part 0: B1, Part 1: L1G+LG1, and Part 2: F1GG+FG1G+FGG1. The (i, j)

element of Part h gives “the first moment of the distribution of T
(`)
i,j given that the first transition

out of state (i, `) is to level ` + h − 1 and event E
(`)
i,j ” multiplied by “the probability that the first

transition out of state (i, `) is to level ` + h − 1 and event E
(`)
i,j ” for h = 0, 1, 2. Part 1 consists

of two terms. The first term, L1G, is the contribution of the time to the first transition, and the
second term, LG1, is the contribution of the time it takes to reach (j, `−1) after the first transition.
Similarly, Part 2 consists of three terms. The first term, F 1GG, is the contribution of the time to
the first transition, the second term, FG1G, is the contribution of the time it takes to come back
from level ` + 1 to level ` after the first transition, and the third term, FGG1, is the contribution
of the time it takes to go from level ` to level `− 1.

The right hand sides of (3.9) and (3.10) can similarly be divided into three parts: Part 0 consists
of terms containing B or Br; Part 1 consists of terms containing L or Lr; Part 2 consists of terms
containing F or F r. The three parts of (3.9) and (3.10) can be interpreted exactly the same way
as the three parts of (3.8) except that “the first moment” in (3.8) must be replaced by “the second
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moment” and “the third moment” in (3.9) and (3.10), respectively. For example, the three terms in
Part 1 of (3.9) can be interpreted as follows. Let X be the time to the first transition and let Y be
the time it takes from level ` to level ` − 1. Then, the second moment of the distribution of these
two times is

E[(X + Y )2] = E[(X)2] + 2E[X]E[Y ] + E[(Y )2],

sinceX and Y are independent. Roughly speaking, L2G corresponds to E[(X)2], 2L1G1 corresponds
to 2E[X]E[Y ], and LG2 corresponds to E[(Y )2]. The other terms can be interpreted in the same way.

Extension to nonrepeating part

For ` < ˆ̀, G(`) and G
(`)
r are calculated recursively from ` = ˆ̀− 1 to ` = 1 as follows:

G(`) = B
(`) + L

(`)G(`) + F
(`)G(`+1)G(`)

=
(
I − L

(`) − F
(`)G(`+1)

)−1
B

(`)

G
(`)
1 = B

(`)
1 + L

(`)
1 G(`) + L

(`)G
(`)
1 + F

(`)
1 G(`+1)G(`) + F

(`)G
(`+1)
1 G(`) + F

(`)G(`+1)G
(`)
1

=
(
I − L

(`) − F
(`)G(`+1)

)−1 (
B

(`)
1 + L

(`)
1 G(`) + F

(`)
1 G(`+1)G(`) + F

(`)G
(`+1)
1 G(`)

)

G
(`)
2 = B

(`)
2 + L

(`)
2 G(`) + 2L

(`)
1 G

(`)
1 + L

(`)G
(`)
2

+F
(`)
2 G(`+1)G(`) + 2F

(`)
1 (G

(`+1)
1 G(`) + G(`+1)G

(`)
1 )

+F
(`)(G

(`+1)
2 G(`) + 2G

(`+1)
1 G

(`)
1 + G(`+1)G

(`)
2 )

=
(
I − L

(`) − F
(`)G(`+1)

)−1

(
B

(`)
2 + L

(`)
2 G(`) + 2L

(`)
1 G

(`)
1

+ F
(`)
2 G(`+1)G(`) + 2F

(`)
1 (G

(`+1)
1 G(`) + G(`+1)G

(`)
1 ) + F

(`)(G
(`+1)
2 G(`) + 2G

(`+1)
1 G

(`)
1 )
)

G
(`)
3 = B

(`)
3 + L

(`)
3 G(`) + 3L

(`)
2 G

(`)
1 + 3L

(`)
1 G

(`)
2 + L

(`)G
(`)
3 + F

(`)
3 G(`+1)G(`)

+3F
(`)
2 (G

(`+1)
1 G(`) + G(`+1)G

(`)
1 ) + 3F

(`)
1 (G

(`+1)
2 G(`) + 2G

(`+1)
1 G

(`)
1 + G(`+1)G

(`)
2 )

+F
(`)(G

(`+1)
3 G(`) + 3G

(`+1)
2 G

(`)
1 + 3G

(`+1)
1 G

(`)
2 + G(`+1)G

(`)
3 ).

=
(
I − L

(`) − F
(`)G(`+1)

)−1

(
B

(`)
3 + L

(`)
3 G(`) + 3L

(`)
2 G

(`)
1 + 3L

(`)
1 G

(`)
2 + F

(`)
3 G(`+1)G(`)

+3F
(`)
2 (G

(`+1)
1 G(`) + G(`+1)G

(`)
1 )

+3F
(`)
1 (G

(`+1)
2 G(`) + 2G

(`+1)
1 G
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1 + G(`+1)G
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2 )

+F
(`)(G

(`+1)
3 G(`) + 3G
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(`)
2 )
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.

Note that G(ˆ̀) = G and G
(ˆ̀)
r = Gr, for r = 1, 2, 3, are computed in the repeating part. The intuition

for the above formulation is the same as in the repeating part.
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3.7.3 Generalization

So far, we have derived the first passage time from level ` to level ` − 1. In this section, we extend

this to the first passage time from level ` to level ` − ψ for 1 ≤ ψ ≤ `. Let T
(`,`−ψ)
i,j be the time to

go from state (i, `) to state (j, ` − ψ), and let E
(`,`−ψ)
i,j be the event that state (j, ` − ψ) is the first

state reached in level `− ψ when starting in state (i, `), for 1 ≤ ψ ≤ `. Observe that T
(`,`−1)
i,j = T

(`)
i,j

and E
(`,`−1)
i,j = E

(`)
i,j . Then, our goal is to derive the n` × n`−ψ matrix, Z

(`,`−ψ)
r , where (Z

(`,`−ψ)
r )i,j is

the r-th moment of T
(`,`−ψ)
i,j given event E

(`,`−ψ)
i,j , for each `, r = 1, 2, 3, and 1 ≤ ψ ≤ `. Notice that

Z
(`,`−1)
r = Z

(`)
r .

Observe that

(Z(`,`−ψ)
r )i,j =

∫ ∞

0
xrdPr

(
T

(`,`−ψ)
i,j ≤ x | E(`,`−ψ)

i,j

)

=

∫∞
0 xrdPr

(
T

(`,`−ψ)
i,j ≤ x AND E

(`,`−ψ)
i,j

)

Pr
(
E

(`,`−ψ)
i,j

) .

Hence, it suffices to derive two quantities:

(G(`,`−ψ))i,j ≡ Pr
(
E

(`,`−ψ)
i,j

)

(G(`,`−ψ)
r )i,j ≡

∫ ∞

0
xrdPr

(
T

(`,`−ψ)
i,j ≤ x AND E

(`,`−ψ)
i,j

)

for 1 ≤ ψ ≤ `.

Matrices G(`,`−ψ) and G
(`,`−ψ)
r can be derived recursively from

G(`,`−1) = G(`) and G(`,`−1)
r = G(`)

r

via

G(`,`−ψ) = G(`)G(`−1,`−ψ)

G
(`,`−ψ)
1 = G(`)G

(`−1,`−ψ)
1 + G

(`)
1 G(`−1,`−ψ)

G
(`,`−ψ)
2 = G(`)G

(`−1,`−ψ)
2 + 2G

(`)
1 G

(`−1,`−ψ)
1 + G

(`)
2 G(`−1,`−ψ)

G
(`,`−ψ)
3 = G(`)G

(`−1,`−ψ)
3 + 3G

(`)
1 G

(`−1,`−ψ)
2 + 3G

(`)
2 G

(`−1,`−ψ)
1 + G

(`)
3 G(`−1,`−ψ).

Finally, we mention some other generalizations that Neuts’ algorithm allows. (i) We restricted
ourselves to the first three moments, but this approach can be generalized to any higher moments. (ii)
We restricted to QBD processes, but this can be generalized to M/G/1 type semi-Markov processes.
(iii) We restricted ourselves to the moments of the distribution of the duration of busy periods, but
this can be generalized to the moments of the joint distribution of the duration of a busy period and
the number of transitions during the busy period.

3.8 Computing various performance measures

So far, our focus has been on computing the stationary probabilities in the RFB/GFB process. In
this section, we discuss how the stationary probabilities can be used to compute other performance
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Figure 3.28: Markov chains whose stationary probabilities are computed via DR in the analysis of an
M/M/2 queue with two preemptive priority classes.

measures. In Section 3.8.1, we consider the distribution of the number of jobs in the system and its
moments. In Section 3.8.2, we consider the distribution of response time and its moments. Since the
computation of these performance measures depends on particular multiserver systems and details
of modeling, we will illustrate the approach via an example in the case of an M/M/2 queue with two
preemptive priority classes (recall Figure 3.3), and briefly discuss how this can be applied to other
multiserver systems.

Figure 3.28 shows the Markov chains whose stationary probabilities are computed via DR in
the analysis of an M/M/2 queue with two preemptive priority classes. Figure 3.28(a) shows the
background process, where state (level) ` corresponds to the state with ` high priority jobs for ` ≥ 0.

Let π
(H)
` be the stationary probability in state (level) ` of the background process. Observe that

π
(H)
` is the probability that there are ` high priority jobs in the system for ` ≥ 0. Figure 3.28(b)

shows the 1D Markov chain reduced from the 2D Markov chain (FB process), where level ` consists
of the states with ` low priority jobs for ` ≥ 0. Let −→π`(L) be the stationary probability vector in
level ` of the 1D Markov chain shown in Figure 3.28(b). Observe that −→π`(L)−→1 is the probability that
there are ` low priority jobs in the system for ` ≥ 0.

3.8.1 Distribution and moments of the number of jobs in the system

Deriving the distribution of the number of (high priority or low priority) jobs in the system and its
moments is straightforward. Let NH (respectively, NL) be the number of high priority (respectively,
low priority) jobs in the system. Then,

Pr(NH = n) = π(H)
n and Pr(NL = n) = −→πn(L)−→1

for n ≥ 0. Also, their r-th moments can be computed via

E [(NH)r] =
∞∑

`=0

`rπ
(H)
` and E [(NL)r] =

∞∑

`=0

`r−→π`(L)−→1
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for r ≥ 1. As in (3.6), the infinite summation can be reduced to a finite summation, since the QBD
processes in Figure 3.28 repeat after level ˆ̀= 2.

In general, the distribution of the number of jobs in the system that is modeled as an RFB/GFB
process can be derived similarly, as long as the number of jobs is well defined for each state. For
example, the number of jobs is well defined for each state in all the examples of RFB/GFB processes
that we have provided in Section 3.4. Also, the distribution of the number of jobs in the queue
(number of jobs that are waiting and not in service) and its moments can be computed similarly.
However, note that the error in the higher moments are larger as we will see in Section 3.9, since we
match only the first three moments of the “busy period” in DR.

3.8.2 Distribution and moments of response time

Let TH (respectively, TL) be the response time of the high priority jobs (respectively, low priority
jobs). The mean response time follows immediately from E [NH ] and E [NL] via Little’s law:

E [TH ] =
E [NH ]

λH
and E [TL] =

E [NL]

λL

where λH (respectively, λL) is the arrival rate of the high priority jobs (respectively, low priority
jobs). However, as we discussed in Section 2.2, the distributional Little’s law does not apply to per-
class response time in an M/M/2 queue with two priority classes, since (high priority or low priority)
jobs do not necessarily leave the system in the order of their arrivals. In fact, the higher moments
of response time depend on details of which low priority job is preempted when a high priority job
arrives and sees two low priority jobs in service: we assume that the low priority job that started to
receive service later is preempted by the high priority job. Below, we illustrate a way to compute
the distribution of per-class response time and its moments.

Response time of high priority jobs

We start with the simpler case of the high priority (class H) jobs. We derive the response time
of the class H jobs by conditioning on the state that an arrival sees. Recall the Markov chain in
Figure 3.28(a). By PASTA (Poisson arrivals see time averages), a class H arrival will see state ` with

probability π
(H)
` when it arrives. Let Pr(TH ≤ x | `) be the distribution function of the response

time of the class H job that sees state ` when it arrives, and E [(TH)r | `] be its r-th moment. Then
the distribution function of the response time of the class H jobs and its r-th moment are given by

Pr(TH ≤ x) =
∞∑

`=0

Pr(TH ≤ x | `)π(H)
` and E [(TH)r] =

∞∑

`=0

E [(TH)r | `]π(H)
` .

Thus, our goal is to derive Pr(TH ≤ x | `) and E [(TH)r | `] for each `.
First, observe that a tagged (class H) arrival that sees state ` will cause the system state to

change to `+1 at that moment. We remove all the λH arcs from the Markov chain in Figure 3.28(a),
so that there are no more arrivals. (Note that the behavior of the tagged arrival is not affected
by the jobs that will arrive after the tagged arrival, since class H jobs are served in FCFS order.)
This enables us to view the response time for the tagged arrival as the passage time of this modified
Markov chain from state `+ 1 to the state where the tagged arrival departs. The only complexity is
in figuring out exactly in which state the tagged arrival departs.
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Figure 3.29: Markov chains used to compute the response time in an M/M/2 queue with two pre-
emptive priority classes.

If the tagged arrival sees state ` = 0, its response time is the same as its service time, which has
exponential distribution with rate µH . If the tagged arrival sees state ` ≥ 1 (and the system state
is changed to ` + 1), the tagged arrival may depart when the modified Markov chain hits state 1
or state 0, depending on whether the tagged arrival is the last job to be completed or not. Note
that by the memoryless property of exponential distributions, the tagged arrival is the last job to
be completed with probability 1

2 . Thus, the response time of the tagged job is the passage time to
go from state ` + 1 to 0 with probability 1

2 , and the passage time to go from state ` + 1 to 1 with
probability 1

2 . Observe that the distribution of each of these passage times is simply a convolution
of independent exponential distributions, and its moments can be derived easily.

Figure 3.29(a) summarizes the above argument. The response time of a job that sees state `
upon its arrival is the passage time from state `+1 to state 0 in the Markov chain in Figure 3.29(a).
Observe that Figure 3.29(a) is obtained from Figure 3.28(a) by removing all the transitions with
λH ’s and splitting the transition from state 2 to state 1 (with rate 2µH) into two transitions, one to
state 1 and the other to state 0 (each with rate µH).

Response time of low priority jobs

Next, we derive the response time of the low priority (class L) jobs, again by conditioning on the
state that an arrival sees via PASTA. Recall the Markov chain in Figure 3.28(b). Let Pr(TL ≤ x | i, `)
be the distribution function of the response time of the class L job that sees state (i, `), i.e. phase
i of level `, when it arrives, and E [(TL)r | i, `] be its r-th moment. The distribution function of the
response time of the class L jobs and its r-th moment are then given by

Pr(TL ≤ x) =
∞∑

`=0

∑

i

Pr(TL ≤ x | i, `)(−→π`(H))i (3.11)

E [(TL)r] =
∞∑

`=0

∑

i

E [(TL)r | i, `] (−→π`(H))i. (3.12)
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Thus, our goal is to compute Pr(TL ≤ x | i, `) and E [(TL)r | i, `] for each (i, `).
Observe that a tagged (class L) arrival that sees state (i, `) will cause the system state to change

to (i, `+ 1) at that moment. We remove all the λL arcs from the Markov chain in Figure 3.28(b), so
that there are no more class L arrivals. (Note that the behavior of the tagged arrival is not affected
by the class L jobs that will arrive after the tagged arrival, since class L jobs are served in FCFS
order and we assume that the “youngest” class L job is preempted by a high priority job.) This
enables us to view the response time for the tagged arrival as the first passage time of this modified
Markov chain from state (i, `+1) to the state where the tagged arrival departs. The only complexity
is in figuring out exactly in which state the tagged arrival departs.

If the tagged arrival sees state (i, ` = 0) for some i, its response time is the passage time from
state (i, ` = 1) to (any state in) level ` = 0 in the modified Markov chain, since the tagged arrival
is the only class L job in the modified system. If the tagged arrival sees a state in level ` ≥ 1 (and
the system state is changed to level `+1), the tagged arrival may depart when the modified Markov
chain hits level 1 or level 0, depending on whether the tagged arrival is the last job to be completed
or not. We will compute the response time by conditioning on the first state in level ` = 1 that we hit
in the modified Markov chain. Note that the first state in level ` = 1 is either (0, ` = 1) or (1, ` = 1),
since there are no backward transitions in the bottom two rows in the (modified) Markov chain.

If (1, ` = 1) is the first state in level ` = 1, we must have gotten there from (1, ` = 2). This
implies that the remaining class L job is the tagged arrival, since class L jobs are served in FCFS
order and we assume that the “youngest” class L job is preempted by a high priority jobs. Thus, in
this case the response time of the tagged arrival that sees (i, `) upon its arrival is the passage time
from (i, `+ 1) to (1, ` = 1) plus the passage time from (1, ` = 1) to level 0.

If (0, ` = 1) is the first state in level ` = 1, we must have gotten there from state (0, ` = 2).
This implies that the remaining class L job is equally likely to be the tagged arrival or not by the
memoryless property of exponential distributions. Thus, in this case the response time of the tagged
arrival that sees (i, `) upon its arrival is the passage time from (i, `+1) to (0, ` = 1) with probability
1
2 , and the passage time from (i, ` + 1) to (0, ` = 1) plus the passage time from (0, ` = 1) to level 0
with probability 1

2 .
Figure 3.29(b) summarizes the above argument. The response time of a job that sees state (i, `)

upon its arrival is the passage time from state (i, `+1) to state 0 in the Markov chain in Figure 3.29(b).
Observe that Figure 3.29(b) is obtained from Figure 3.28(b) by removing all the transitions with
λL’s and splitting the transition (with rate 2µL) from state (0, ` = 2) to state (0, ` = 1) into two
transitions (each with rate µH), one to state (0, ` = 0) and the other to state 0.

The passage time from any state (i, `) to state 0 in the Markov chain in Figure 3.29(b) is a
PH distribution (as defined in Section 2.2), where state (i, `) is the initial state and state 0 is the
absorbing state. Note that the distribution function and moments of the PH distribution can be
computed via Proposition 4. In fact, by (3.11), the distribution of the response time of the low
priority jobs can be represented as a single PH distribution (a mixture of PH distributions is a PH
distribution by Proposition 3), where the initial state is (i, `) with probability (−−→π`+1)i for all i and
` ≥ 0, and state 0 is the absorbing state. To compute the distribution function of the single PH
distribution and its moments via Proposition 4, the state space of the Markov chain in Figure 3.29(b)
needs to be truncated. One can simply truncate it at some large level, or one can use DR to reduce
the 1D Markov chain into a Markov chain on a finite state space as we reduce Figure 3.4(b) into
Figure 3.5.

Alternatively, the moments of the passage time (from level ` to level 0) can be computed using
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the method provided in Section 3.7, which can be more computationally efficient than the approach
via Proposition 4. Note that there are no forward transitions in the modified Markov chain, and the
expressions in Section 3.7 are significantly simplified: specifically, matrices F

(`) and F
(`)
r are zero

matrices in the modified Markov chain for all ` and r.
In general, the mean response time in the system that is modeled as an RFB/GFB process can

be derived via Little’s law, as long as the number of jobs is well defined for each state. However, the
response time may or may not be represented as a passage time in a modified Markov chain, and its
distribution and moments may or may not be analyzed via the approach introduced in this section.
Also, the mean number of jobs in the queue (number of jobs that are waiting and not in service)
can be derived via Little’s law, but its distribution and moments may or may not be derived via an
analysis of passage times. Also, note again that the error in the higher moments may be larger, since
we match only the first three moments of the “busy period” in DR.

3.9 Validation

In this section, we numerically evaluate the accuracy and running time of DR as well as its approx-
imations, DR-PI and DR-CI, through the analysis of the preemptive priority queue (introduced in
Section 3.4) and the size-based task assignment with cycle stealing under immediate dispatching,
SBCS-ID, (introduced in Section 3.4). Note that the number of classes corresponds to the number
of processes constituting an RFB process in the analysis of both the preemptive priority queue and
SBCS-ID. Throughout we assume that the arrival process is Poisson. We will see that

• DR has a very small error in predicting the first order metric such as mean delay and mean
queue length. Specifically, the error in DR is within 3% for a range of parameters (loads, service
demand distributions, and the number of classes, m) in the analysis of both the preemptive
priority queue and SBCS-ID.

• The error in DR is slightly larger but is still small in predicting the second order metric such
as the second moment of the queue length. Specifically, the error is within 7% for a range of
parameters in the analysis of SBCS-ID.

• The error in DR-PI and DP-CI is slightly larger than DR but is still small for both the first and
second order metrics. Specifically, the error is within 6% (respectively, 10%) in predicting the
first (respectively, second) order metric for a range of parameters in the analysis of SBCS-ID.

• DR is computationally quite efficient when it is applied to 2D Markov chains, i.e. RFB processes
with m = 2 (FB processes) and GFB processes. Specifically, in the analysis of the preemptive
priority queue, the running time of DR is ≤ 0.1 seconds for up to k = 10 servers.

• The running time of DR can grow quickly as the number of processes, m, in an RFB process
increases. Specifically, in the analysis of the preemptive priority queue with k = 2 servers, the
running time of DR is within 30 seconds for up to m = 11 classes (processes); however, in the
analysis of SBCS-ID, DR becomes computationally prohibitive with m ≥ 5 classes (processes).

• DR-PI and DR-CI can reduce the running time of DR significantly. Specifically, in the analysis
of SBCS-ID, the running time of DR-CI is within 30 seconds for up tom = 20 classes (processes).
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In all our experiments below, we use the algorithm in Figure 3.12 to compute R and G matrices,
which we need in the analysis via DR, DR-PI, and DR-CI, and we set the error bound at ε = 10−6.
All the experiments are run on a 1 GHz Pentium III with 512 MB RAM, using Matlab 6 running
on Linux.

3.9.1 Accuracy of dimensionality reduction

In this section, we evaluate the accuracy of DR, DR-PI, and DR-CI. In all our experiments below, the
error in an analysis (DR, DR-PI, or DR-CI) is defined as a relative difference against simulated value:

error = 100 × (value by analysis) − (value by simulation)

(value by simulation)
(%).

Simulation is kept running until the simulation error becomes less than 1% with probability 0.95
[85, 168, 193]. More precisely, our simulation keeps generating “sample values,” where the i-th
“sample value,” vi, is computed as a sample mean of the metric of interest in the i-th run with
a large number (say ten million; this number can be different for different parameter settings) of
events, until one of the following two conditions are satisfied8: (i) i ≥ 30 and 1.96σ ≤ 0.01µ, where
µ and σ are the sample mean and the sample variance of the i “sample values,” respectively; (ii)
2 ≤ i < 30 and σ/(

√
0.05i) ≤ 0.01µ. Then, the sample mean of the i “sample values” is output as

the simulated value.
Unless otherwise stated, we approximate the “busy period” distribution by a two-phase PH

distribution. In our parameter settings, two phases are sufficient to match the first three moments
of the most of the busy periods. Even in a few cases where two phases are not sufficient, we are able
to choose a two phase PH distribution whose first three moments are very close to those of the busy
periods. Hence, using more phases to match the exact three moments does not appear to improve
the accuracy appreciably.

We first evaluate the error in DR in predicting the mean delay in the preemptive priority queue.
Here, delay of a job denotes the time the job spends waiting in the queue, i.e. delay does not include
the service time. We choose to evaluate the error in mean delay rather than the error in mean
response time (delay plus service time), since the error is larger in mean delay.

Figure 3.30 shows the error in DR in the analysis of the mean delay in the preemptive priority
queue. Column (a) shows the error in the analysis of an M/M/2 queue with four priority classes,
as a function of load, ρ. (Class 1 is not shown in the figure for clarity, but the analysis of class 1
does not involve DR, and its error is comparable to the error in classes 2-4.) The load of each class
is one-quarter of the total load, ρ, i.e. each class has the same load. The service rate of class i jobs
is set µi = αi for α = 1

4 , 1, or 4. Namely, α < 1 implies small high priority jobs, and α > 1 implies
large high priority jobs. The three rows in Figure 3.30 correspond to different values of α. Column
(b) shows the error in the analysis of an M/PH/2 queue with two priority classes. Here, we assess
the effect of C2, the squared coefficient of variability of the job size distribution (both the high and
low priority jobs), defined as the variance divided by the square of the mean. The load of each class
is fixed at 0.3, and hence the total load is ρ = 0.6. We use a two phase Coxian+ PH distribution

8The first condition is based on the assumption that the sample mean has a normal distribution when i ≥ 30, and
the second condition is based on the Chebyshev’s inequality on the sample mean. In both cases, the true variance is
assumed to equal to the sample variance.
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(a) M/M/2 with 4 priority classes (b) M/PH/2 with 2 priority classes

Figure 3.30: Accuracy of DR in the analysis of preemptive priority queues. (a) shows the error in
the analysis of an M/M/2 with four priority classes as a function of load, ρ, where the load of class
i is ρi = ρ/4 for each i. (b) shows the error in the analysis of an M/PH/2 with two priority classes
as a function of C2 of the service demands of both high and low priority jobs, where the total load is
fixed at ρ = 0.6 and the load is balanced between the classes.
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(see Section 2.2) as the job size distribution9, where the service rate of class i jobs is set µi = αi for
α = 1

4 , 1, or 4 as before.
Figure 3.30 shows that the error in DR is within 2% for all classes, for all ρ’s, for all α’s, and

for all C2’s. On average, DR tends to underestimate the mean delay only by 0.2% of the simulation.
Overall, the error in DR is quite small in predicting the first order metric (such as mean delay, mean
response time, and mean queue length). We evaluate the error in DR when it is applied to other
multiserver systems, and find that the error is within 3% in predicting the first order metric for a
range of loads, job size distributions, and other parameters (see [67, 68, 70, 151, 152, 155]).

Next, we evaluate the accuracy of DR-PI and DR-CI as well as DR in predicting the first two
moments of queue length distributions, through the analysis of SBCS-ID. We choose to evaluate
the moments of queue length distributions, rather than delay or response time distributions, since
the analysis of higher moments of delay and response time distributions are complicated, although
possible as we show in Section 3.8. Throughout, we assume that class i jobs arrive according to a
Poisson process with rate λi, and their service demand has an exponential distribution with rate µi
for 1 ≤ i ≤ m.

Figure 3.31 shows the error in DR, DR-PI, and DR-CI in predicting the first two moments of
queue length distributions. Here, we assume that the load made up of each class is fixed at 0.8 (i.e.
ρi = λi

µi
= 0.8), and µi is chosen such that class 1 jobs are the shortest and class m jobs are the

longest, specifically µi = 2i. Column (a) shows the error in the first moment, and column (b) shows
the error in the second moment. In the top row, the number of classes (and servers) is m = 4, and
all of DR, DR-PI, and DR-CI are evaluated. In the middle row, the number of servers is m = 6, and
here only DR-PI and DR-CI are evaluated, since evaluation via DR is computationally too expensive
with m = 6 (see Section 3.9.2). In the bottom row, the number of servers is m = 12, and here only
DR-CI is evaluated10. The horizontal axis shows the “server name,” where server name i denotes
the i-th server, and hence corresponds to the i-th process. Note that the scale of the vertical axis is
different between (a) and (b).

Figure 3.31 shows that the error in DR, DR-PI, and DR-CI is quite small in predicting the first
moment, and it is always within 3%. The error in the second moment is slightly larger, but it
is bounded by 6% for all of DR, DR-PI, and DR-CI. In both the first and second moments, the
error does not appear to increase appreciably as the number of classes (processes) increases. Top
two rows suggest that DR-PI tends to have only slightly larger error than DR, and DR-CI tends
to have only slightly larger error than DR-PI. The small error in DR-PI and DR-CI suggests that
the duration of the busy period of server i affects the queue length of server i + 1 primarily by
the marginal distribution of the busy period duration, and the dependency in the sequence of busy
period durations has a smaller effect.

Figure 3.32 shows how the system load affects the accuracy of RDR in predicting the first two
moments of queue length distributions. Here, the error in DR, DR-PI, DR-CI is plotted at three
different loads, ρi ≡ λi

µi
= 0.6, 0.8, or 0.9 for each i. Throughout, µi is fixed at µi = 2i. The figure

9To determine the parameters of the two phase Coxian+ PH distribution, the third moment needs to be specified
as well. Here, we choose the third moment, so that the normalized second and third moments, m2 and m3, satisfy
m3 = 2m2−1. See Section 2.5 for an intuition for this choice; in particular, the exponential distribution and the Erlang
distribution satisfy m3 = 2m2 − 1.

10Although DR-CI can be evaluated with m > 12 (see Figure 3.36), it is hard to have simulation converge with
m > 12. Note that the fraction of arrivals of jobs with the largest size is very small: on average, there is only one
arrival of a job with the largest size while there are 2m−1 arrivals of jobs with the smallest size. When m = 12, more
than 1,000,000,000 events are needed for simulation to converge.
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(a) First moment of queue length (b) Second moment of queue length

Figure 3.31: Accuracy of DR, DR-PI, and DR-CI in predicting the first two moments of the queue
length distributions, where µi = 2i and ρi = 0.8 for each i.
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suggests that the error in DR, DR-PI, and DR-CI tends to become larger at higher load. Also, the
error in DR-PI and DR-CI tends to become larger at a slightly faster rate (as the load increases)
than the error in DR. For example, when ρi = 0.6 for 1 ≤ i ≤ 4, the error in DR, DR-PI, DR-CI
is within 1% (respectively, 2%) in predicting the first (respectively, second) moment of the queue
length distribution. On the other hand, when ρi = 0.9 for 1 ≤ i ≤ 4, the error in DR is within
3% (respectively, 5%) for the first (respectively, second) moment, while the error in RDR-PI and
RDR-CI is within 4% (respectively, 7%) for the first (respectively, second) moment.

Figure 3.33 shows how the relative difference in the mean job size of each class affects the accuracy
of DR, DR-PI, and DR-CI in predicting the first two moments of the queue length distribution. Here,
the error in DR, DR-PI, DR-CI is plotted at four different job size configurations: µi = 4i, µi = 2i,
µi = 2−i, or µi = 4−i. Throughout, ρi = 0.8 is fixed for 1 ≤ i ≤ 4. Figure suggests that the error (in
predicting both first and second moments) is greater when idle cycles of the server for longer jobs
is stolen. We conjecture that this is primarily due to the fact that the busy period of server i − 1,
which is the sojourn time in levels ≥ 1 in the (i − 1)-th process, is relatively larger as compared
to the service time and interarrival time at server i if server i − 1 is serving longer jobs, and hence
the error in approximating/ignoring the distribution and dependency of the busy period has larger
effect in predicting the queue length distribution at server i. In general the error in DR, DR-PI, and
DR-CI tends to be an increasing function of α, when µi = αi. Also, the error in DR-PI and DR-CI
tends to become larger at a slightly faster rate (as α increases) than the error in DR. For example,
when α = 1

4 , the error in DR, DR-PI, and DR-CI is negligible in both the first and second moments
of the queue length distribution. On the other hand, when α = 4, the error in DR is within 3%
(respectively, 7%) in predicting the first (respectively, second) moment, while the error in DR-PI
and DR-CI is within 6% (respectively, 10%) in predicting the first (respectively, second) moment.

Finally, we study the effect of ignoring higher moments (specifically, the second and third mo-
ments) of the busy period distributions when they are approximated by PH distributions in DR,
DR-PI, and DR-CI. Figure 3.34 shows the error in DR, DR-PI, and DR-CI when the busy period
distributions are approximated by exponential distributions matching only the first moments. Other
parameter settings are exactly the same as in Figure 3.31. Overall, ignoring the variability (and the
third moment) of the busy periods can lead to as high an error as 10% in predicting the first moment
of the queue length distribution and 20% in predicting the second moment.

3.9.2 Running time of dimensionality reduction

In this section, we evaluate the running time of DR, DR-PI, and DR-CI. We measure the running
time as CPU time on a 1 GHz Pentium III with 512 MB RAM, using Matlab 6 running on Linux. In
all our experiments, we approximate the “busy period” distribution by a two-phase PH distribution.

We first discuss the running time of DR when it is applied to analyze the preemptive priority
queue, specifically an M/M/k queue with m priority classes. Figure 3.35 shows the running time (a)
as a function of the number of servers, k, and (b) as a function of the number of classes, m. Here,
we assume that all the m classes have the identical service demand distribution (the exponential
distribution distribution with rate µ), and have the identical arrival rate, λ. We choose µ and λ such
that the total load is 0.5, i.e. mλ

kµ = 1
2 . Although not shown, the running time becomes longer when

the load is higher or when the error bound ε is set smaller.
The solid line in Figure 3.35(a) illustrates the computational efficiency of the DR when it is

applied to an FB process (2D Markov chain), showing the running time of DR for two priority
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Effect of load in error

ρi = 0.6

1 2 3 4
−5

0

5

host name

er
ro

r 
(%

)

DR
DR−PI
DR−CI

1 2 3 4
−10

−5

0

5

10

host name

er
ro

r 
(%

)

DR
DR−PI
DR−CI

ρi = 0.8

1 2 3 4
−5

0

5

host name

er
ro

r 
(%

)

DR
DR−PI
DR−CI

1 2 3 4
−10

−5

0

5

10

host name

er
ro

r 
(%

)

DR
DR−PI
DR−CI

ρi = 0.9

1 2 3 4
−5

0

5

host name

er
ro

r 
(%

)

DR
DR−PI
DR−CI

1 2 3 4
−10

−5

0

5

10

host name

er
ro

r 
(%

)

DR
DR−PI
DR−CI
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Figure 3.32: Accuracy of DR, DR-PI, and DR-CI at different loads, where µi = 2i.
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Effect of job sizes in error
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Figure 3.33: Accuracy of DR, DR-PI, and DR-CI at different job size configurations, where ρi = 0.8
for each i.
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Error in matching only one moment
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Figure 3.34: Error in DR, DR-PI, and DR-CI when the busy period is approximated by an exponential
distribution matching only the first moment.
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Figure 3.35: Running time of DR, when applied to an analysis of the preemptive priority queue with
k servers and m classes (a) as a function of k and (b) as a function of m.

classes (m = 2) as a function of the number of servers, k. Recall the DR analysis of the preemptive
priority queue with two classes (m = 2), illustrated in Figure 3.3. Most of the running time is
devoted to computing the stationary probabilities in the 1D Markov chain (Figure 3.3(d)) which is
reduced from the FB process. When there are k servers, the 1D Markov chain has k + 2 states in
each level (level ≥ k), and the running time increases as the number of states in each level in the
1D Markov chain increases. As shown in the figure, the running time increases quite slowly with
the number of servers, and in fact, the running time is within 30 seconds for up to k = 89 servers.
Overall, DR is computationally efficient when it is applied to 2D Markov chains, i.e. RFB processes
with m = 2 (FB processes) and GFB processes. For most of the analysis of the 2D Markov chains
in Chapters 5-7, the running time of DR is within 0.1 seconds.

The solid line in Figure 3.35(b) shows the running time of DR as a function of the number of
classes, m, when the number of servers is k = 2. This is the running time of DR when it is applied
to mD Markov chains. Again, the running time increases gradually as m increases, and it is within
40 seconds for up to m = 12 servers (mD Markov chains). In fact, as we will see later, the running
time is bounded by a polynomial in m.

However, the rest of Figure 3.35 suggests that the running time of DR increases quickly when
both k and m increase. In general, the running time of DR is dominated by the time to compute the
stationary probabilities in the 1D Markov chain that tracks the exact number of lowest priority jobs

(class 1 jobs), i.e. the first (foreground) process. This 1D Markov chain has
(m+k−3

k−1

)2
types of busy

periods of higher priority jobs (jobs of classes 2 to m), and hence the 1D Markov chain has

(
m+ k − 2

k − 1

)
+ 2

(
m+ k − 3

k − 1

)2

states in each level11. That is, the number of states in each level in the 1D Markov chain is polynomial

11Observe that
(

m+k−2
k−1

)
is the number of states with at most k − 1 higher priority jobs (i.e., the number of ways to

assign at most k − 1 higher priority jobs to k homogeneous servers), and
(

m+k−3
k−1

)
is the number of states with k − 1

higher priority jobs.
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Figure 3.36: Running time of DR, DR-PI, and DR-CI, when applied to an analysis of SBCS-ID.

in k if m is constant (Θ(km)), and it is polynomial in m if k is constant (Θ(mk)); however, it is
exponential in k and m if neither k nor m is constant.

Note that, in the analysis of the preemptive priority queue, the number of different types of busy
periods of higher priority jobs in the m-th process (foreground process) does not depend on the
number of phases in the PH distributions that are used in the analysis of higher priority jobs, i.e. in
the analysis of the i-th (background) process for 1 ≤ i ≤ m− 1. However, this is not in general true
in the analysis of the RFB process. Specifically, in the analysis of SBCS-ID, the number of phases in
the PH distributions that are used in the analysis of the background processes affects the number
of different types of busy periods in the foreground processes. As a result, the running time of DR
increases more quickly as the number of classes, m, increases in the analysis of SBCS-ID. This is
exactly a situation where an approximation of DR is needed.

Figure 3.36 shows the running time of DR, DR-PI, and DR-CI as a function of the number of
classes, m, when they are applied to the analysis of SBCS-ID. In all the plots, we assume that the
load made up of each class is fixed at 0.8 (i.e. ρi ≡ λi

µi
= 0.8), and µi is chosen such that class 1

jobs are the shortest and class m jobs are the longest (“stealing idle cycles of a server for longer
jobs”; specifically, µi = 2i), or µi is chosen such that class 1 jobs are the longest and class m jobs
are the shortest (“stealing idle cycles of a server for shorter jobs”; specifically, µi = 2−i). Although
not shown, the running times of DR, DR-PI, and DR-CI tend to increase when the load is higher of
when the error bound ε is set smaller.

In both cases, the evaluation of RDR becomes prohibitive when m ≥ 5. The running time of
DR-PI also quickly grows, and its evaluation becomes prohibitive when m ≥ 8 in both cases. The
running time of DR-CI grows far more slowly than DR and DR-PI. We are able to evaluate DR-CI
for up to 21 servers in less than a minute. The running time of DR, DR-PI, and DR-CI can be
compared to the number of states in each level (phases) in the 1D Markov chain that tracks the
exact number of class 1 jobs (foreground process). In DR, the number of phases SDR(m), grows
double exponentially; specifically, SDR(m) can be determined by the following recursive formula:
SDR(m) = SDR(m−1) + 2(SDR(m−1))

2 and SDR(1) = 1. In DR-PI, the number of phases grows
exponentially: SPI(m) = 3m−1. In DR-CI, the number of phases grows linearly: SCI(m) = 2m+ 1.
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3.10 Concluding remarks

In this chapter, a new analytical approach, dimensionality reduction (DR), is proposed for analyzing
multidimensional Markov chains (Markov chains on a multidimensionally infinite state space). The
key idea in DR is in approximating an infinite portion of a Markov chain, which often corresponds
to the “busy period” of a system, by a collection of PH distributions, which match the first three
moments of the duration of the busy period conditioned on how the Markov chain enters and exits
from the busy period. As DR involves approximations, we have validated its accuracy against
simulation. Overall, we find that the error in DR is quite small: specifically, the error in DR is
within 3% (often within 1%) for the first order metric (such as mean delay and mean queue length)
and within 7% for the second order metric (such as the second moment of queue length) for a range of
parameters. To reduce the computational complexity of DR, we have introduced two approximations
of DR: DR-PI and DR-CI. Although these approximations slightly worsen the accuracy, they can
significantly reduce the running time.

DR allows us to analyze the performance of a multiserver system whose behavior is modeled as
a multidimensional Markov chain. Since it is a nontrivial task to determine whether DR can be
applied to a particular multiserver system and how, we formally define a class of multidimensional
Markov chains called RFB/GFB processes (recursive foreground-background processes or general-
ized foreground-background processes) that can be analyzed via DR. The definition of RFB/GFB
processes makes it easier to determine whether a given multiserver system can be analyzed via DR,
and our analysis of RFB/GFB processes enables one to analyze the multiserver system by simply
modeling it as an RFB/GFB process. In fact, many multiserver systems with resource sharing or
job prioritization can be modeled as RFB/GFB processes, and we will analyze the performance of
some of these multiserver systems in Part II:

• multiserver systems with multiple priority classes (see Chapter 4),

• size-based task assignment with cycle stealing under immediate dispatching, SBCS-ID, for server
farms (see Chapter 5),

• size-based task assignment with cycle stealing under central queue, SBCS-CQ, for server farms
(see Chapter 5),

• threshold-based policies for reducing switching costs in cycle stealing (see Chapter 6), and

• various threshold-based policies for the Beneficiary-Donor model (see Chapter 7).

Beyond an analysis of multiserver systems, DR and ideas in DR have broad applicability in
computer science, engineering, operations research, etc., where Markov chains on large state spaces
are involved. The ideas in DR can be used to reduce the size of the state space from infinite to finite
or from large to small. For example, many optimization problems in stochastic environment can be
formulated as Markov decision problems [159], but determining the optimal solution (optimal policy)
is often prohibitive due to a large state space. The ideas in DR may be used to reduce the size of
the state space in Markov decision processes, so that the computational complexity in solving the
Markov decision problems is reduced.

In response to increased request, DR as well as its approximations, DR-PI and DR-CI, as de-
scribed in this chapter are largely implemented, and the latest implementation is made available at
an online code repository:
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http://www.cs.cmu.edu/∼osogami/code/.

Future directions

Interesting future directions include establishing a theoretical guarantee (bound) on the accuracy
of DR-based analyses (DR, DR-PI, and DR-CI) and increasing the accuracy or DR-based analyses.
Although we validate the accuracy of DR-based analyses numerically, no theoretical guarantee is
proved. Note that the accuracy of DR-based analyses depends on how the busy period is approxi-
mated by a collection of PH distributions. The moment matching algorithm developed in Chapter 2
enables matching the first three moments of the busy period for the first time, but matching more
moments may increase the accuracy. DR can also be made as accurate as desired by setting the
“aggregation” level κ higher (recall that DR approximates the set of states in levels ≥ κ by a collec-
tion of PH distributions). Increased accuracy of DR would be particularly needed in computing the
higher moments or distribution function of various performance measures, as we have observed that
the error tends to increase for higher moments computed via DR.

Another interesting future direction is an extension of DR for analyzing more complex multiserver
systems. Although we apply DR in the analysis of the RFB/GFB processes in this chapter, the idea
in DR has a broad applicability beyond the RFB/GFB processes. Below, we provide examples of
possible extensions of DR.

For example, throughout this chapter, we assume that service demands have PH distributions,
but in some cases, they can be extended to general distributions. For example, in the analysis of the
system with threshold-based policy for reducing switching costs in cycle stealing, the donor’s service
demand and switching back time can be extended to general distributions [151, 152]. This extension
relies on a (well known) analysis of the busy period in an M/GI/1 queue with a setup time. In fact,
the idea in DR can be applied to the RFB/GFB processes with a quite broad class of background
processes. The analysis of the RFB/GFB processes relies on the analysis of the “busy period” in
a QBD process via Neuts’ algorithm; however, Neuts’ algorithm applies to a much broader class of
Markov chains, namely the M/G/1 type semi-Markov process. Fully utilizing Neuts’ algorithm, DR
could be applied to the RFB/GFB process with much less restrictions on the background process.

Restrictions on the foreground process can also be relaxed. Our restrictions on the foreground
process guarantee that the 1D Markov chains reduced from the RFB/GFB processes are QBD pro-
cesses. However, the QBD process is not the only Markov chain that allows analytical tractability.
For example, the M/G/1 and G/M/1 type processes can also be analyzed efficiently via matrix
analytic methods [111]. Thus, the restrictions on the foreground process can be relaxed accordingly.

Further, the GFB process is limited to 2D Markov chains, but this can be extended to higher
dimensions, as we extend the FB process to the RFB process. Finally, we remark that the multi-
dimensional Markov chain that we analyze via DR need not have multidimensionally infinite state
space. DR can reduce a Markov chain that have a large number of states in multiple dimensions into
a Markov chain that have a small number of states in each dimension, since matrix analytic methods
and Neuts’ algorithm apply to QBD processes with finite number of levels as well.
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Part II

Performance analysis of multiserver
systems
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Chapter 4

Configuring multiserver systems with
multiple priority classes

How many servers are best?

In this chapter, we address a fundamental problem in designing multiserver systems: how many
servers are best? Dimensionality reduction (DR) allows us to study this problem not only when
jobs are served in the order of their arrivals (FCFS) but also when there are priorities among jobs.
Results of our analysis illuminate principles on how the number of servers affects the performance
of multiserver systems.

4.1 Introduction

An important problem in designing multiserver systems is how to set up system configurations, given
a limited amount of resources and user requirements. For example, a system architect may want to
decide whether he/she should buy a few fast (but expensive) servers or many slow (but cheap) servers
to minimize mean response time, given a limited amount of budget. In this chapter, we study this
problem in particular settings: Is it preferable to use a single fast server of speed s, or k slow servers
each of speed s/k to minimize mean response time? What is the optimal k? Although our analysis
via DR extends to more general settings, taking into account the actual costs of servers as a function
of their speed, this would complicate the analysis and obscure the insights into the fundamental
nature of multiserver systems. Our goal in addressing the above problem is to illuminate principles
on how the number of servers affects the performance of multiserver systems, which are useful in
multiserver configurations.

The question of “how many servers are best” in exactly our settings has been asked by a stream of
research [120, 130, 131, 172, 175, 188], but all of this work is limited to the case where jobs are served
in the order of their arrivals (first come first served, FCFS). However, real-world systems are often
not simply FCFS, where all jobs have equal importance. Rather, there is often inherent scheduling
in the system to allow high priority jobs to move ahead of low priority jobs. For example, the high
priority jobs may carry more importance, e.g. representing users who pay more. Alternatively, high
priority jobs may simply have small service demand, since giving priority to short jobs reduces mean
response time overall. Either way, priorities are fundamental to many modern systems.
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This motivates the question of what the optimal system configuration is (a few fast servers or
many slow servers) in a setting where there are different priority classes. We specifically assume that
the high priority jobs and the low priority jobs arrive according to independent Poisson processes,
their service demands have phase type (PH) distributions (as defined in Section 2.2), and jobs within
each class are served in FCFS order. With these assumptions, the system behavior can be modeled
as a foreground-background (FB) process, as discussed in Section 3.4, and it allows us to analyze
this system via DR, for the first time.

In particular, DR allows us to address the following questions:

1. Under what conditions are multiple slow servers preferable to a single fast server? Is the optimal
number of servers sensitive to changes in the relative loads of the priority classes, changes in
the variability of the service time distributions, etc.?

2. Does the answer to “how many servers are best” differ for the different priority classes? E.g.,
does the lower priority class prefer more or fewer servers than that preferred by the higher
priority class?

3. How does the optimal number of servers in a dual priority system differ from the case when all
jobs have been aggregated into a single priority class?

4. If one chooses a non-optimal number of servers, how does that affect the overall mean response
time and the per-class mean response time?

We also compare the analysis via DR with existing approximations in the literature, and find that
the existing approximations can lead to qualitatively misleading conclusions regarding the optimal
number of servers. Since existing approximations have poor accuracy and DR becomes computation-
ally expensive as the number of servers and priority classes increases, we propose a new approximation
based on DR, which we refer to as DR-A (DR with class aggregation). DR-A allows us to efficiently
analyze the performance of multiserver systems with many priority classes. We will study the error
in the existing approximations and DR-A extensively, and find that the error in DR-A is within 5%
for a range of parameters, which is much smaller as compared to the existing approximations.

The rest of this chapter is organized as follows. In Section 4.2, we discuss prior work dealing
with our question of “how many servers are best?” In Section 4.3, we answer question 1 above in the
case of an M/PH/k/FCFS queue with a single priority class. In Section 4.4, we address all the four
questions above for the case of an M/PH/k dual-priority queue. In Section 4.5, we propose DR-A
and study the accuracy of DR-A and existing approximations.

4.2 State of the art in the optimal number of servers

The question of how many servers are best has a long history, but all the work is limited to FCFS
(single priority class). Further, the question has not been fully resolved even for the case of FCFS.
Note that the study of this question has been limited to FCFS primarily because an analysis of
multiple priority systems involves multidimensional Markov chains, and exact (or nearly exact)
analysis is known only for exponential job size distributions (see Section 3.3). In describing the
results below, we will assume that the performance metric of interest is mean response time rather
than mean delay (the time a job waits in the queue before receiving service), since in general an
infinite number of servers minimizes mean delay [34, 37] (also, Scheller-Wolf [172] shows that the
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tail of the stationary delay distribution is significantly reduced by increasing the number of servers
under highly variable service demand distributions).

As early as 1958, Morse observed that for an M/M/k/FCFS system, the optimal number of servers
is one (k = 1) [131]. In 1970, Stidham formalized and generalized the observation by Morse[188];
Stidham showed that a single server is optimal in a G/Er/k/FCFS system, namely when the service
demand has an Erlang distribution, including an exponential distribution, or is deterministic, for a
general arrival process. Stidham’s result is extended by Brumelle to the system where the service
demand is at most as variable as the exponential random variable; i.e., a single server is optimal in
a G/G/k/FCFS system where the service demand distribution has the squared coefficient variation
at most one (C2 ≤ 1) [31]. For general service demand distributions, only results for limiting cases
are known. Specifically, the work by Reiman and Simon [161] can be used to show that a single
server (k = 1) is optimal in the light traffic limit (when servers are almost always idle) [120], and the
work by Iglehart and Whitt [79] implies that a multiserver system (GI/GI/k/FCFS) and its single
server counterpart (GI/GI/1/FCFS) coincides in the heavy traffic limit (when servers are almost
always busy).

All the above work proves that a single server (k = 1) is the best for special cases. However,
Stidham also discusses that the optimality of a single server does not appear to hold for highly variable
job size distributions [188]. Very recently, Molinero-Fernandez et. al. [130] consider the question of
how many servers are best in an M/HT/k single priority system, where HT denotes a heavy-tailed
service distribution. To answer this question, they approximate a heavy-tailed distribution with a
bimodal distribution, and observe that in general multiple servers are better than a single server.

In summary, although the question of “how many servers are best?” has been addressed in a
number of papers in the context of FCFS, results are limited to special cases such as light and heavy
traffic limits and low variable and heavy tailed distributions. This motivates us to further study this
question under a wide range of loads and job size variabilities in the context of FCFS before studying
priority systems.

4.3 How many servers are best in FCFS system?

In this section, we study the question of “how many servers are best?” in an M/PH/k/FCFS queue
(single priority class) with respect to minimizing mean response time. Matrix analytic methods allow
us to evaluate the mean response time in a wide rage of loads and job size variability in this setting
(see Section 3.2), and this complements the prior work with respect to “how many servers are best”
in FCFS systems.

Figure 4.1(a) shows the optimal number of servers as a function of the load and variability of the
job size, where the job size has a two-phase PH distribution. All of our results are expressed as a
function of the variability of the job size distribution (specifically, its squared coefficient of variation,
C2)1, and the server load, ρ. While other factors, e.g. the exact form of the job size distribution,
might affect our results, we posit that load and variability be the most relevant factors. As is
proved by Stidham [188], a single server minimizes mean response time when C2 = 1 (exponential
distribution) or when C2 = 0.5 (Erlang-2 distribution). Observe, however, that under high job size

1To determine the parameters of the two phase PH distribution, the third moment needs to be specified as well.
Here, we choose the third moment, so that the normalized second and third moments, m2 and m3, satisfy m3 = 2m2−1.
See Section 2.5 for an intuition for this choice; in particular, the exponential distribution and the Erlang distribution
satisfy m3 = 2m2 − 1.
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Figure 4.1: How many servers are best in a single server (FCFS) system? (a) The optimal number
of servers as a function of the load, ρ, and the squared coefficient of variation of the job sizes,
C2. (b) Mean response time as a function of the number of servers at various job size variabilities
(C2 = 1, 4, 16, 64).

variability and/or high load, the optimal number of servers is more than 1; we prefer multiple slow
servers to a single fast server. For example, at load ρ = 0.4 and C2 = 20, we see that three servers
are best. Computations are only done for up to six servers — the level curves shown will continue
into the upper right portion of the plot if a larger number of servers is considered.

Figure 4.1(b) shows that for any particular job size variability, C2 > 1, having a larger number
of slower servers may reduce the mean response time up to a point, after which further increasing
the number of servers increases the mean response time. To understand why, note that by increasing
the number of servers (while maintaining fixed total capacity), we are allowing short jobs to avoid
queueing behind long jobs — specifically, an arriving short job is more likely to find a server free.
Thus, increasing the number of servers mitigates the impact of job size variability, hence improving
performance. If the number of servers is too high however, servers are more likely to be idle, under-
utilizing the system resources.

4.4 How many servers are best in priority system?

In this section, we study the question of “how many servers are best?” in an M/PH/k queue with two
priority classes with respect to minimizing mean response time. The M/PH/k queue with two priority
classes can be modeled as a foreground-background (FB) process, as discussed in Section 3.4, and
the analysis of the FB process via DR (see Chapter 3) provides mean response time of high priority
jobs and low priority jobs, respectively.

Throughout our evaluations, we will consider a range of load typically shown on the horizontal
axis, and a range of variability in the high priority job sizes, typically shown on the vertical axis.
When we vary the load, we vary only the arrival rates and keep the job size distributions. In all
the results shown, the size of the high priority jobs has a two phase Coxian+ PH distribution (as
defined in Section 2.2). The mean job size for the high priority jobs is held fixed at E [XH ] = 1, and
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its squared coefficient of variation is varied (C2 ≥ 1)2. On the other hand, throughout, we assume
that the size of the low priority job has an exponential distribution (C2 = 1), since the effect of its
variability is less interesting to study, as it affects only the performance of low priority jobs. We
consider three different mean sizes, E [XL], for the low priority jobs: (i) E [XL] = 1, (ii) E [XL] = 10,
and (iii) E [XL] = 1/10. Note that the mean service time changes depending on how many servers
are in the system (1 fast server or k slow servers) so that the systems are comparable. The values
specified above for E [XH ] and E [XL] are the values for the maximum number of servers used in each
plot and the mean sizes for each of the other number of servers is scaled appropriately. Finally, note
that when we compare a dual priority system with its single priority counterpart (high priority jobs
and low priority jobs are aggregated into a single class and served in FCFS order), the job size of
the single aggregate class has a PH distribution that is a mixture of the two-phase PH distribution
(for the high priority job size) and the exponential distribution (for the low priority job size).

Figures 4.2-4.4 illustrate the results of our analysis for the three cases: (i) E [XH ] = 1 and
E [XL] = 1, (ii) E [XH ] = 1 and E [XL] = 10, and (iii) E [XH ] = 1 and E [XL] = 1/10, respectively.
For each figure, column (a) shows the case where the load made up by high and low priority jobs is
equal (ρH = ρL), and column (b) shows the case where ρH < ρL. We also discuss, but omit showing,
the case where ρH > ρL. For each figure we consider both the case of dual priority classes and the
case of a single aggregate class.

Equal mean sizes

In the topmost plot of Figure 4.2(a), we see that the high priority jobs often prefer multiple servers.
This is to be expected based on our results in Section 4.3, since the high priority jobs are served in
FCFS order and are not affected by the low priority jobs.

Surprisingly, however, the second plot in column (a) shows that the number of servers preferred
by low priority jobs is much greater than that preferred by high priority jobs. Low priority jobs
prefer more servers because low priority jobs are preempted by high priority jobs and thus their
mean response time improves with more servers, which allows them to escape from the dominance of
high priority jobs. That is, multiple servers reduce the impact of prioritization on the mean response
time of low priority jobs.

The preferred number of servers with respect to the overall mean response time (the average of
all jobs, including both low and high priority jobs) is shown in the third plot in column (a), where
we see that the number of servers preferred by the overall mean, as expected, is a hybrid of that
preferred by low and high priority jobs. Note though that this hybrid is more weighted toward the
preference of low priority jobs because adding extra servers only hurts high priority jobs a small
amount, whereas adding extra servers helps low priority jobs enormously. Interestingly, the number
of servers preferred with respect to the overall mean is nearly identical to that shown for a single
aggregate class of high and low priority jobs, shown in the bottom most plot in column (a). To
understand why, observe that all jobs in this case have the same mean, and thus prioritizing in favor
of some of them over others does not affect the mean response time greatly. Even though the classes
have different variabilities, that is a smaller-order effect. This will not remain true in general.

2To determine the parameters of the two phase PH distribution, the third moment needs to be specified as well.
Here, we choose the third moment, so that the normalized second and third moments, m2 and m3, satisfy m3 = 2m2−1.
See Section 2.5 for an intuition for this choice; in particular, the exponential distribution and the Erlang distribution
satisfy m3 = 2m2 − 1.
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(i) E [XH ] = 1 and E [XL] = 1
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Figure 4.2: How many servers are best when the two priority classes have the same mean job size?
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Figure 4.2(b) shows that when the high priority jobs make up a smaller fraction of the load, the
same trends are evident, but the specific numbers are quite different. For example, the topmost plot
in column (b) shows that the number of servers preferred by high priority jobs is much fewer, since
there are fewer high priority jobs in the systems, and they benefit from a fewer but faster servers
(as many slow servers lead to low utilization). Less obvious is the fact that the number of servers
preferred by low priority jobs in column (b) is also fewer than that in column (a). This follows from
the same reasoning: the low priority jobs are strongly affected by prioritization (interruptions by
high priority jobs), and with fewer high priority jobs, there are fewer interruptions and thus fewer
servers are needed to avoid queueing behind high priority jobs.

Since both the high and low priority jobs in column (b) prefer fewer servers than in column (a),
it makes sense that their overall mean also indicates that fewer servers are desired (the third plot of
column (b)). This third plot also matches the bottom most plot in column (b) consisting of a single
aggregate class, as in column (a).

Not shown in Figure 4.2 is the case where high priority jobs comprise more of the load. In this
case, both classes prefer more servers and, therefore, the average of the two classes also prefers more
servers. The reason for this is the converse of the above situation: since the load made up by the
high priority jobs is high, large high priority jobs are likely to block other high priority jobs in a
single server system. Further, the low priority jobs are preempted more frequently by high priority
jobs and therefore also want more servers to alleviate the effect. Again the single aggregate class is
very similar to the two priority class with respect to the optimal number of servers.

High priority class has smaller mean

In Figure 4.3, we continue to hold the mean high priority job size at 1 and increase the low priority
job size to 10. Note that giving high priority jobs (smaller jobs) preference lower the overall mean
response time, in this case.

Notice that the preferred number of servers for the high priority jobs is identical to that in Figure
4.2 because the high priority job size distribution is unchanged. However, the number of servers
preferred by low priority jobs is now very different: they almost always prefer only one server. This
is explained by observing that the effect of multiple servers in reducing the impact of prioritization
on low priority jobs is small when the high priority jobs are smaller, and that a few fast servers has
an advantage over many slow servers with respect to utilization.

The overall preferred number of servers, averaged over the two priority classes, is again a hybrid
of the preferences of the two classes, but this time is biased toward the preferences of the high priority
jobs because they are in the majority, implying a preference for fewer servers than the corresponding
graph in Figure 4.2. Recall that adding servers is a way to help small jobs avoid queuing behind
larger jobs. Since we are in the case where small jobs have priority already, we do not need the
effect of multiple servers. Thus, in this case, priority classes can be viewed as a substitute for adding
more servers.

Comparing the overall preferred number of servers for the case of dual priorities with that pre-
ferred under a single aggregate class, we see that there is a significant difference in preferences. The
single aggregate class prefers many more servers. This is in contrast to the case where the high prior-
ity jobs and the low priority jobs have the same mean size (Figure 4.2). This again is a consequence
of the fact that in this case prioritization is a substitute for increasing the number of servers.

Figure 4.3(b) illustrates the same graphs for the case where the high priority jobs comprise less
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(ii) E [XH ] = 1 and E [XL] = 10
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Figure 4.3: How many servers are best when the high priority jobs have a smaller mean job size?
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of the total load. The trends are the same as in column (a); however the preferred number of servers
is significantly smaller in all figures. This follows from the same argument as that given for Figure
4.2(b). In the case where high priority jobs make up a greater proportion of the total load (not
shown), the number of servers preferred is, as before, always higher than in column (a).

High priority class has larger mean

In Figure 4.4(a), we once again hold the mean high priority job size fixed at 1 and now assume the
low priority job sizes have a mean size of 1/10. That is, we are giving priority to large jobs, which
worsen the overall mean response time.

Once again, in the topmost plot of column (a), we see that the preferred number of servers for
high priority jobs is unaffected, since the high priority mean job size distribution has not changed.
The low priority jobs, shown in the second plot of column (a), have vastly different preferences from
the prior case. Here the low priority jobs prefer a large number of servers. Because the low priority
jobs are much smaller than the high priority jobs, they want more servers in order to avoid being
blocked behind the (large) high priority jobs.

The preferred number of servers for the overall mean response time in the dual-priority system,
shown in the third plot of column (a), is again a hybrid of the preferences of the low and high priority
jobs, but this time is strongly biased toward the low priority jobs because there are more of them.
Notice therefore, that the number of servers preferred is much greater in this case. Comparing this
with the single class aggregate, we see that the single class prefers slightly fewer servers than the dual
class overall mean. Since larger jobs have higher priority in this case, the multiple servers provide a
huge benefit to (small) low priority jobs.

Figure 4.4(b) illustrates the same graphs for the case where the high priority jobs comprise less
of the total load. The trends are the same as in column (a); however the preferred number of servers
is significantly smaller in all figures. This follows from the same argument as that given for Figure
4.2(b). In the case (not shown) where high priority jobs make up a greater proportion of the total
load, more servers are preferable.

Response time as a function of the number of servers

Figure 4.5 shows the mean response time as a function of the number of servers. In column (a), the
high priority jobs have a smaller mean size, and in column (b), the low priority jobs have a smaller
mean size. The differences in the number of servers preferred by each class, which we have discussed
in the previous figures, can be read off of Figure 4.5 by observing that each of the plots in the figure
have a “U-shape” and the bottom of the “U” indicates the optimal number of servers.

The key points made in Figure 4.5 are that: (i) the mean response time of both priority classes
is sensitive to the number of servers and (ii) increasing the number of servers may reduce mean
response time up to a point, but making the number of servers too large increases mean response
time (the curve forms a “U-shape”). This figure also reinforces the prior messages that the greater
the variability of the high priority jobs, the greater the number of servers needed to mitigate this
variability, and how prioritization is performed has a large impact on the optimal number of servers
(the optimal number of servers is much larger in column (b) than in column (a)).
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(iii) E [XH ] = 1 and E [XL] = 1/10
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Figure 4.4: How many servers are best when the high priority class has a larger mean job size?
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Figure 4.5: Mean response time as a function of the number of servers. Here, ρH = ρL = 0.3 is fixed.
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Summary

To summarize the above observations, the optimal number of servers depends on the loads and job
size variabilities, and whether a few fast servers are preferable to many slow servers can be understood
by combining the following set of rules of thumb.

1. A few fast servers have an advantage over many slow servers with respect to high utilization.
When the load is lower, the difference in the utilization becomes greater, and as a result the
advantage of a few fast servers becomes greater (for both the high and low priority jobs).

2. Many slow servers have an effect of reducing the impact of job size variability on mean response
time, since they allow small jobs to avoid queueing behind large jobs. When the variability
of job sizes is higher and/or when the load is higher, this effect of many slow servers becomes
greater, and as a result the advantage of many slow servers becomes greater (for both the high
and low priority jobs).

3. Many slow servers have an effect of reducing the impact of prioritization on low priority jobs.
When the mean and/or variability of the higher priority job size are larger and/or when the
load of the higher priority job is higher, this effect of many slow servers becomes greater, and
as a result the advantage of many slow servers becomes greater (for low priority jobs).

The third rule has an interesting implication on the overall mean response time of a dual priority
system, since prioritizing small jobs has the same effect as having multiple servers in the sense that
both allow small jobs to avoid queueing behind large jobs. Thus, when small jobs have higher
priority, a smaller number of (fast) servers is more preferable. Also, since prioritizing large jobs has
the counter effect, a larger number of (slow) servers is preferable when large jobs have higher priority.

The above rules immediately provide answers to the first three questions that we have posed
in the introduction. Also, our discussion regarding Figure 4.5 provides an answer to the fourth
question. In particular, the mean response time (for both overall and per-class) can be dramatically
different for different number of servers, and in all studied cases, there exists an “optimal” number
of servers where using fewer or more servers results in worse performance under highly variable
service distributions.

4.5 New approximations for many priority classes

4.5.1 Motivation

It is interesting to compare the results of our analysis with the approximation proposed by Buzen
and Bondi (the BB approximation) [23], which is the only prior work to investigate the multiserver
system with multiple priority classes under general job size distributions. The BB approximation
uses the following intuitive framework to approximate the mean delay in a priority system, where

E

[
DM/GI/k/prio

]
is the overall expected delay (response time minus service time) under the M/GI/k

queue with priority classes.

E

[
DM/GI/k/prio

]
≈ E

[
DM/GI/1/prio

]



E

[
DM/GI/k/FCFS

]

E
[
DM/GI/1/FCFS

]


 (4.1)
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Comparison: Optimal number of servers
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Figure 4.6: Comparison of (a) DR with (b) BB with respect to the question of “how many servers
are best?” Case shown assumes the high priority jobs have a smaller mean job size (E [XH ] = 1 and
E [XL] = 10), and the load made up by high priority jobs equals that comprised by low priority jobs.

Figure 4.6 shows the optimal number of servers given by our analysis as compared with that
predicted by the BB approximation. Here, the size of the high priority jobs has a two phase PH
distribution with mean 10, and the low priority jobs have an exponential job size distribution with
mean 1, as before. To compute the mean delay via BB, the mean delay in an M/GI/k/FCFS,

E

[
DM/GI/k/FCFS

]
, is computed exactly via matrix analytic methods as before, as job sizes have a

PH distribution; the mean delay in an M/GI/1/prio, E

[
DM/GI/1/prio

]
, is calculated via a known

closed form expression [101].
Figure 4.6 shows that the BB approximation gives qualitatively misleading conclusion regarding

the optimal number of servers. As load increases, so should the optimal number of servers; an effect
not true under the BB approximation.

Since the only existing approximation, BB, leads to misleading conclusions, and computational
complexity of DR becomes high when the number of classes increases, as we have discussed in
Section 3.9, we propose a new approximation based on DR, which we refer to as DR-A (dimensionality
reduction with class aggregation). DR-A allows us to efficiently compute the mean response time
(per class and overall) of an M/PH/k queue with many priority classes. We will see that the error
in DR-A in predicting mean delay is within 5% against simulation for a range of parameters, which
is much smaller than the error in BB. We will evaluate the error in DR-A in predicting mean delay
rather than mean response time, since the error in mean delay is larger.

4.5.2 Approximations for multiserver systems with multiple priority classes

We first introduce approximations for the mean delay in an M/GI/k queue with m ≥ 2 priority
classes (class i jobs have preemptive priority over jobs of classes i + 1 to m for 1 ≤ i ≤ m − 1).
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The abovementioned BB approximation was originally derived for exponential job size distributions
[33] and was later applied to general job size distributions [23]. The BB approximation is the only
(reasonable) approximation, for general job size distributions and for an arbitrary number of priority
classes, that exists in the literature. Mitrani and King have proposed an approximation that works
for exponential job size distributions and for an arbitrary number of priority classes [129], and
this approach is also used by Nishida [140]. We refer to this approximation as MK-N. The MK-N
approximation is defined and used only for exponential job size distributions, since MK-N requires
an analysis of a multiserver queue with two priority classes, and an exact or nearly exact analysis
has been known only for exponential job size distributions. Our analysis of an M/PH/k queue with
multiple priority classes via DR allows us to extend MK-N to PH job size distributions. We refer to
the new approximation as DR-A. Below, we provide more details of the three approximations.

The Buzen-Bondi (BB) approximation

The BB approximation is based on an intuitive observation that the “improvement” of priority
scheduling over FCFS scheduling under multiple servers is similar to that for the case of a single
server:

E

[
DM/GI/k/prio

]

E
[
DM/GI/k/FCFS

] ≈
E

[
DM/GI/1/prio

]

E
[
DM/GI/1/FCFS

] ≡ scaling factor. (4.2)

Here E

[
DM/GI/k/prio

]
is the overall mean delay under priority scheduling with k servers of speed

1/k, and E

[
DM/GI/k/FCFS

]
is defined similarly for FCFS. This relation is exact when job sizes are

exponential with the same mean for all classes.
Specifically, BB analyzes the mean delay of class i jobs, E [Di], by analyzing both the mean delay

over classes 1 to i, E [D], and the mean delay of the higher priority classes (classes 1 to i−1), E [DH ],
and then using the following relation:

E [D] =
λH

λH + λi
E [DH ] +

λi
λH + λi

E [Di] ,

where λH and λi are the arrival rates of the higher priority classes and class i jobs, respectively. To
compute E [D] (respectively, E [DH ]), BB aggregates classes 1 to i (respectively, classes 1 to i−1) into
a single class and analyzes the corresponding M/GI/k/FCFS queue (e.g. via known approximations
[27, 141]), and then calibrates this result using the scaling factor in (4.2), as shown in (4.1).

The Mitrani-King-Nishida (MK-N) approximation

The MK-N approximation analyzes the mean delay of class i jobs in an M/M/k queue with m ≥ 2
priority classes by aggregating all the higher priority classes (classes 1 to i− 1). The job size distri-
bution of the aggregated class is then approximated with an exponential distribution by matching
the first moment of the distribution.

In MK-N, the job size distribution of the aggregated higher priority classes is approximated by
an exponential distribution, since the exact or nearly exact analysis of a multiserver system with two
priority classes are known only for exponential distributions. However, DR that we have developed
in Chapter 2 allows us to analyze the multiserver system with two priority classes for the case where
job sizes have PH distributions, and the moment matching algorithm that we have developed in
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Chapter 2 allows us to approximate the job size distribution of the aggregated higher priority classes
by a PH distribution matching the first three moments. This motivates us to extend the MK-N
approximation to PH distributions: DR-A.

New approximation: DR-A

The DR-A approximation analyzes the mean delay of class i jobs in an M/PH/k queue with m ≥ 2
priority classes by aggregating all the higher priority classes, as in the MK-N approximation. By
contrast to MK-N, the job size distribution of the aggregated class is approximated with a PH
distribution by matching the first three moments of the distribution. Recently, an extension of
MK-N to PH job size distributions (hyperexponential distributions, in particular) is also proposed,
independently, by Sleptchenko et. al. [194] (we propose DR-A in [204]).)

4.5.3 Comparing DR-A with BB and MK-N

We now evaluate the accuracy of DR-A, BB, and MK-N. In all figures, we assume k = 2 servers and
m = 4 priority classes. We consider both the case where each priority class has an exponential job
size distribution (C2 = 1; top half of Figure 4.7) and the case of two-phase PH job size distributions
with C2 = 8 (bottom half of Figure 4.7)3. Each class may have a different mean job size, and these
are chosen to vary over a large range, determined by parameter α. Specifically, the mean job size
of class i is set E [Xi] = α4−i, where 1

4 ≤ α ≤ 4. Thus, α < 1 implies small high priority jobs. We
equalize the load between the classes, i.e. ρi = ρ/4, where ρi is the load of class i. With these settings,
the error in mean delay is evaluated for each class of jobs, where the error of an approximation is
defined as follows:

error = 100 × (mean delay by approximation) − (mean delay by simulation)

(mean delay by simulation)
(%).

Thus, positive error means overestimation and negative error means underestimation of the approxi-
mation. Simulation is kept running until the simulation error becomes less than 1% with probability
0.95 (see Section 3.9 for more technical details of our simulation).

In evaluating the BB and MK-N approximations, we use accurate methods known to compute
their components. For example, BB relies on knowing the mean delay for the M/PH/k/FCFS queue.
We compute this delay precisely for the PH job size distribution using matrix analytic methods.
MK-N relies on being able to analyze the case of two priority classes (since m classes are reduced
to two). We analyze the two priority class case in MK-N using DR. We first discuss the accuracy of
MK-N and DR-A, and then discuss the accuracy of BB.

The MK-N and DR-A approximations

There are two sources of errors in MK-N and DR-A. The first source of error, which we call priority
error, results from ignoring the priorities among the higher priority classes. The second source, which
we call distribution error, results from the fact that the aggregated job size distribution matches only
one moment in MK-N and three moments in DR-A.

Consider first the priority error. In the case of a single server, there is no priority error. This is
because low priority jobs are excluded from service during busy periods of high priority classes, and

3The third moment of the two-phase PH distribution is chosen as before.
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Comparison of approximations for M/M/2 with 4 priority classes (C2 = 1)

ρ = 0.3

1/4 1 4
−50

−5
0
5

50

α

er
ro

r 
(%

)

MK−N
BB
DR−A

1/4 1 4
−50

−5
0
5

50

α

er
ro

r 
(%

)

MK−N
BB
DR−A

1/4 1 4
−50

−5
0
5

50

α

er
ro

r 
(%

)

MK−N
BB
DR−A

ρ = 0.8

1/4 1 4
−50

−5
0
5

50

α

er
ro

r 
(%

)

MK−N
BB
DR−A

1/4 1 4
−50

−5
0
5

50

α

er
ro

r 
(%

)

MK−N
BB
DR−A

1/4 1 4
−50

−5
0
5

50

α

er
ro

r 
(%

)

MK−N
BB
DR−A

(a) Class 2 (b) Class 3 (c) Class 4

Comparison of approximations for M/PH/2 with 4 priority classes (C2 = 8)
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Figure 4.7: Comparison of DR-A, MK-N, and BB approximations for M/PH/2 with 4 priority classes
with E [X4] = 1, E [X3] = α, E [X2] = α2, and E [X1] = α3, as a function of α. Here, the squared
coefficient of variability of the job size distributions are C2 = 1 (top two rows) or C2 = 8 (bottom
two rows) for all classes. Load is balanced among the classes. Note that MK-N does not appear for
C2 = 8, because the error is beyond the scale of the graphs for most values of α.
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its duration is the same regardless of whether or not the higher priority classes are prioritized. In
the case of multiple servers, however, priority error exists, since low priority jobs are more likely to
be present at the end of a busy period.

Next consider the distribution error. The distribution error exists even in the case of a single
server unless the first two moments of the aggregated job size distribution are matched, as the mean
delay of the lowest priority jobs, E [DL], depends on the first two moments of the job size distributions:

E [DL] =
ρH

1 − ρH
E [XL] +

λE
[
X2
]

2(1 − ρH)(1 − ρ)
, (4.3)

where ρH is the load of high priority jobs, ρ is the overall load, E [XL] is the mean size of the lowest
priority jobs, and E

[
X2
]

is the second moment of the overall job size distribution. Thus, MK-N has
the distribution error even in the case of a single server, but DR-A does not in this case. In the
case of multiple servers, matching even the first two or three moments is not sufficient in general.
This can be gleaned from recent results illustrating the sensitivity of the stability conditions for the
M/GI/k systems to the exact tail behavior of the service distribution [172, 203].

Figure 4.7 illustrates the quantitative difference in the priority and distribution errors in MK-N
and DR-A. Overall, the error in MK-N can sometimes exceed 50%, while the error in DR-A never
exceeds 5% for exponential job size distributions and never exceeds 10% for PH job size distributions.
Note that MK-N does not show up in the bottom half of Figure 4.7 (PH job sizes) because the error
is too great (usually > 50%) — approximating a mixture of PH distributions with C2 = 8 by an
exponential distribution clearly does not work. Below, we discuss the error per class in MK-N and
DR-A. (Class 1 is not discussed, since its analysis is exact via matrix analytic methods.)

For class 2 jobs (Figure 4.7, column 1), MK-N and DR-A are identical to DR and have little
error when C2 = 1. This is because we use DR in evaluating MK-N with two priority classes. When
C2 = 8, DR-A is still equivalent to DR for an M/PH/k with two priority classes, and the error for
DR is always within 5% for this case.

For class 3 (column 2), error in both MK-N and DR-A becomes apparent. Both approximations
aggregate the two higher priority classes, and when C2 = 1, the aggregated job size distribution is
a two-phase hyperexponential distribution. The hyperexponential distribution is approximated by
an exponential distribution in the MK-N approximation, while the exact two-phase hyperexponen-
tial distribution is used in DR-A. Therefore, the MK-N approximation has both priority error and
distribution error, while DR-A has only priority error when C2 = 1. We observe that the error in
DR-A (priority error only) is orders of magnitude smaller than the error in MK-N (both priority and
distribution error).

The effect of α on the error of MK-N in class 3 is significant. When α = 1 and C2 = 1, MK-N
(and DR-A) is exact, since the aggregated distribution is exponential. As α gets smaller or larger
than 1, MK-N underestimates the mean delay. This makes intuitive sense because MK-N ignores the
variability among the high priority classes, which leads to a lower mean delay estimate for the lower
priority jobs. We can also observe that the error in MK-N is smaller when the high priority classes are
small (α < 1) as compared to the case when α > 1. This is because when α is large, approximating
the aggregated higher priority classes by an exponential distribution results in ignoring huge jobs
in class 1, and ignoring huge jobs leads to a great underestimation in the mean delay of the low
priority class.

The effect of α on the error of DR-A in class 3 is much smaller than the effect on MK-N. When
α = 1 and C2 = 1, DR-A is exact as is MK-N. When α = 1 and C2 = 8, DR-A does not have
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distribution error but does have priority error. However, as for class 2, priority error is very small
in this case as well. For all ρ’s and C2’s, DR-A tends to slightly overestimates the mean delay for
α < 1, and it tends to slightly underestimates for α > 1. This is explained by reasoning about
the busy periods made up of the high priority classes, during which both servers are serving jobs of
class 1 or 2. When smaller jobs have priority, more larger jobs are left at the end of a busy period.
Since larger jobs are less likely to be balanced between two servers, one of the servers will likely
become free sooner, which allows the lower priority class to get service sooner. When larger jobs
have priority, both servers are likely to become free at a similar time as low priority (smaller) jobs
can fill in the gaps. This causes the lower priority jobs to wait longer before they get service at
either server. When α < 1, smaller jobs have priority, but DR-A ignores the priority and the busy
period estimated by DR-A is longer, which in turn yields overestimation of the mean delay. The
underestimation for α > 1 can be explained analogously.

Continuing with class 3, we see that the load does not significantly affect the class 3 error, but
at higher load the error in MK-N is slightly larger and the error in DR-A is slightly smaller. This
implies that the priority error is smaller and the distribution error is larger at higher load. The
priority error is due to the error in estimating the busy period of the higher priority jobs, and at high
load the busy period is long and the relative difference between priority scheduling and FCFS with
respect to the length of the busy period is smaller. Larger distribution error at higher loads can be
explained through an analogy to the case of a single server. Recall equation (4.3), the mean delay
of the lower priority class in an M/PH/1 queue with two priority classes. The distribution error in
this case corresponds to the error in the second moment of the job size, E

[
X2
]
, and the term with

the error,
λE[X2]

2(1−ρH)(1−ρ) , increases as the load, ρ, approaches 1.

For class 4 (column 3), we observe that the error has a similar trend as in class 3. The only
difference is that the aggregation in DR-A is no longer exact for class 4, even when C2 = 1; however,
we still see that DR-A always has a small error. We conclude that the priority error is small regardless
of the load and the relative sizes among the classes, but ignoring the variability among the job sizes
of higher priority classes (aggregated) can lead to significant error.

The BB approximation

The BB approximation is based on the assumption that the “improvement” of priority scheduling
over FCFS is similar between a single server system and a multiserver system, specifically (4.2).
However, our study in Section 4.4 implies that the improvement can be quite different, since prior-
itizing small jobs has the same effect as having multiple servers. Figure 4.7 illustrates the error in
BB quantitatively.

In rows 1-2 of Figure 4.7, the job sizes have exponential distributions. In this case, for all classes,
BB is exact when all the classes have the same mean size (α = 1), but it underestimates the mean
delay when the higher priority classes are small (α < 1) or large (α > 1). This can be explained as
follows. BB is based on the observation that the “improvement” of priority scheduling over FCFS
under multiple servers is similar to the case of a single server (recall equation (4.2)). When all the
classes have the same mean, priority scheduling provides the same mean delay as FCFS, regardless
of the number of servers; hence (4.2) is exact, and so is BB. When high priority classes are small,
priority scheduling improves the mean delay over FCFS because it allows small jobs to avoid waiting
behind large jobs. However, the improvement under multiple servers is smaller than in the case of
a single server, because having multiple servers also allows small jobs to avoid waiting behind large
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jobs under FCFS. Since BB assumes that the improvement is the same, it underestimates the mean
delay. When class 1 is larger than class 2, prioritizing class 1 worsens the mean delay. However, the
penalty due to prioritization under a single server is smaller than under multiple servers, since with
a single server FCFS also forces large jobs to block small jobs, but multiple servers often allow small
jobs to avoid waiting behind large jobs under FCFS. Again, since BB assumes that the improvement
is the same, it underestimates the mean delay.

We can also observe that the error in BB is smaller under high load than low load (ρ = 0.3,
row 1). This is because under high load single server systems and multiserver systems behave
similarly. Overall, the error in BB can be as high as 50% under low load (ρ = 0.3) and 20% under
high load (ρ = 0.8).

For non-exponential job size distributions, BB is no longer exact even when all classes have
the same job size distributions, as shown in Figure 4.7 rows 3-4. For C2 = 8, preemptive priority
scheduling and FCFS yield different mean delay. For example, for job size distributions with de-
creasing failure rate, low priority jobs with longer remaining time are more likely to be preempted by
higher priority jobs, which can improve the overall mean delay. However, this improvement differs
between single server systems and multiserver systems. BB therefore can yield error in predicting
the mean delay.

4.6 Concluding remarks

In this chapter, a fundamental nature of multiserver systems is studied, in particular with respect
to how the number of servers affects the performance of multiserver systems. DR allows us to study
this problem not only when jobs are served in the order of their arrivals (FCFS) but also when there
are priorities among jobs, whose analysis involves multidimensional Markov chains. Note that an
advantage of DR is that the job size can be modeled as a PH distribution, and this allows us to
study the impact of job size variability on the performance.

Our analysis illuminates principles on the performance (mean response time, in particular) of
multiserver systems as compared to single server systems, which can be characterized primarily by
three rules of thumb.

(i) A single server system has an advantage over multiserver systems with respect to utilization,
and this relative advantage becomes greater at higher load.

(ii) A multiserver system has an advantage over single server systems with respect to reducing the
impact of job size variability on the mean response time, and this advantage becomes greater
at higher load and at larger job size variability.

When jobs are served in FCFS order, the mean response time of single server and multiserver
systems can be qualitatively characterized primarily by the above two rules. In particular, the
rules characterize how the optimal number of servers is affected by the load and job size variability.
However, the above two rules are not sufficient to characterize the mean response time when there
are priorities among jobs, since

(iii) A multiserver system has an advantage over a single server system with respect to reducing
the impact of prioritization on low priority jobs, and this advantage becomes greater when the
mean and/or variability of the higher priority job size are larger and/or when the load of the
higher priority job is higher.
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We find that these three rules quantitatively characterize the mean response time under single and
multiserver systems. In particular, these rules well characterizes how the optimal number of servers
(per class or overall) is affected by the load and the mean and variability of the job size of each class.

In fact, the third rule has an important implication in designing scheduling policies in multi-
server systems. Namely, prioritizing small jobs to improve mean response time is not as effective in
multiserver systems as in single server systems.

We have also proposed an approximate analysis, DR-A, of the (per class or overall) mean response
time in an M/PH/k queue with many (m > 2) priority classes. DR-A is based on DR, but as opposed
to the two approximations that we have introduced in Section 3.6 (DR-PI and DR-CI), its running
time does not grow as the number of priority classes, m, increases. The accuracy of DR-A as well
as two existing approximations (BB and MK-N) is evaluated against simulation, and the results are
discussed extensively. We find that the error in DR-A is within 5% for a range of loads and job
size variabilities, while the error in BB and MK-N can be as high as 50%. Since BB is based on
the assumption that the effect of priority is similar between a single server system and a multiserver
system, the error in BB can also be explained by the above observation that prioritizing small jobs
to improve mean response time is not as effective in multiserver systems as in single server systems.

In this chapter, we primarily limit our discussion to “how many servers are best?” However,
the analysis of M/PH/k queue with m priority classes via DR has a broad applicability in capacity
planning of multiserver systems with multiple priority classes. For example, in [204], we study the
impact of system tasks on the performance of user tasks in the context of dependability systems,
where systems tasks have higher priority than user tasks for the purpose of fault recovery, fault
isolation, fault masking, intrusion detection, virus checking, etc.

The results in this chapter can be used to infer how the performance is affected by changing the
number of servers or by prioritizing some of the jobs, in more complex multiserver systems. For
example, in the rest of the thesis, we consider multiserver systems consisting of multiple queues and
multiple servers, where each server behaves differently from another. We typically assume that there
are no priorities within each queue, and there is only a single server of each type. By contrast, the
model that we have studied in this chapter has multiple homogeneous servers and a single queue
where some jobs have priority over other jobs. The results in this chapter can be used to infer how
the mean response time is affected in the systems studied in the rest of the thesis when there are
priorities within each queue and there are multiple servers of each type.
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Chapter 5

Improving traditional task assignment
policies

Which job should be assigned to which server?

In this chapter, we consider a fundamental problem of task assignment in a server farm: which job
should be assigned to which server? We propose the size-based task assignment policies with cycle
stealing, SBCS-ID and SBCS-CQ, and analyze their performance via DR, which we have developed in
Chapter 3. Our analysis shows that SBCS-IC and SBCS-CQ can provide an unbounded benefit over
traditional task assignment policies with respect to mean response time.

5.1 Task assignment in server farms

Distributed servers have become increasingly common because they allow for increased computing
power while being cost-effective and easily scalable. In a distributed server system, jobs (tasks)
arrive and must each be dispatched to exactly one of several host machines for processing. The
rule for assigning jobs to host machines is known as the task assignment policy. The choice of the
task assignment policy has a significant effect on the performance perceived by users. Designing a
distributed server system thus often comes down to choosing the “best” possible task assignment
policy for the given model and user requirements. While devising new task assignment policies is
easy, analyzing even the simplest policies can prove to be difficult. Many of the long standing open
questions in queueing theory involve the performance analysis of task assignment policies.

In this chapter, we consider the particular model of a distributed server system in which hosts
are homogeneous and the execution of jobs is nonpreemptive (run-to-completion), i.e. the execution
of a job cannot be interrupted and subsequently resumed. We consider both the case where jobs
are immediately dispatched upon arrival to one of the host machines for processing (the immediate
dispatching model), and the case where jobs are held in a central queue until requested by a host
machine (the central queue model). The immediate dispatching of jobs is sometimes crucial for
scalability and efficiency, as it is important that the router not become a bottleneck. On the other
hand, the central queue model allows us to delay the decision of where to assign jobs, and this can
lead to better utilization of resources and lower response time of jobs.

The immediate dispatching and central queue models with the nonpreemptive assumption are
motivated by servers at supercomputing centers, where jobs are typically run to completion. The
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schedulers at supercomputing centers typically only support run-to-completion within a server ma-
chine for the following reasons. First, the memory requirements of jobs tend to be huge, making
it expensive to swap out a job’s memory for timesharing [52]. Also, many operating systems that
enable timesharing for single-processor jobs do not facilitate preemption among several processors
in a coordinated fashion [157]. Our models are also consistent with validated stochastic models
used to study a high volume web sites [82, 184], studies of scalable systems for computers within an
organization [166], and telecommunication systems with heterogeneous servers [24].

5.2 State of the art in task assignment policies

Below, we provide an overview of the literature on task assignment policies in both the immedi-
ate dispatching model and the central queue model, limiting our discussion to nonpreemptive task
assignment policies.

By far the most common task assignment policies used in the immediate dispatching model are
Random and Round-Robin. The Random policy assigns an incoming job to each server with probability
1/k, where k is the number of servers, while the Round-Robin policy assigns jobs to servers in a cyclic
order. Random and Round-Robin are simple, but they neither maximize utilization of the hosts, nor
minimize mean response time.

In the immediate dispatching model, the Shortest-Queue policy has been shown to be optimal
under various constraints and objective functions under the conditions that the service demand has
an exponential distribution and job sizes are not known a priori [49, 106, 124, 192, 209]. Under
the Shortest-Queue policy, incoming jobs are immediately dispatched to the host with the fewest
number of jobs.

In the central queue model, the M/G/k/FCFS policy has been proven to minimize mean re-
sponse time and maximize utilization under the condition that the service demand has an ex-
ponential distribution and job sizes are not known a priori [210]. The M/G/k/FCFS policy holds
all jobs at the central queue, and when a host becomes free, it receives a job from the central
queue in the order of their arrivals (first come first served, FCFS). The M/G/k/FCFS policy is prov-
ably identical to the Least-Work-Remaining policy in the immediate dispatching model [64]. The
Least-Work-Remaining policy assumes that the jobs sizes are known a priori, and it sends each job
to the host with the least total remaining work.

While policies like Shortest-Queue and M/G/k/FCFS perform well when job sizes have an expo-
nential distribution (or distribution with increasing failure rate), they perform poorly when the job
size distribution has higher variability [106, 201]. In such cases, it has been shown analytically and
empirically that the Dedicated policy far outperforms these other policies with respect to minimiz-
ing mean response time [65, 174]. In the Dedicated policy, some hosts are designated as the “short
hosts” and others as the “long hosts.” Short jobs are always sent to the short hosts and long jobs
to the long hosts. Observe that the Dedicated policy is defined for both the immediate dispatching
model and the central queue model, and the two models are identical under the Dedicated policy.
The Dedicated policy is popular in practice (e.g. Cornell Theory Center) where different host ma-
chines have different duration limitations: 0–1/2 hour, 1/2 – 2 hours, 2 – 4 hours, etc., and users
must specify an estimated required service demand for each job. The Dedicated policy performs
well when job sizes have high variability because it isolates shorts jobs from the long jobs, as waiting
behind the long jobs is costly. The Dedicated policy is also popular in supermarkets and banks,
where an “express” queue is created for “short” jobs.
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The Dedicated policy requires to know job sizes upon their arrivals; however, even when the
job size is not known, a policy similar to Dedicated, known as the TAGS policy (task assignment by
guessing size) works almost as well when job sizes have high variability. Like Dedicated, the TAGS

policy significantly outperforms other policies that do not segregate jobs by size [64].

5.3 Task assignment with cycle stealing

Motivation for Cycle Stealing

While the Dedicated policy may be preferable to the M/G/k/FCFS and Shortest-Queue policies for
highly variable job sizes, it is clearly not optimal. One problem is that Dedicated leads to situations
where the servers are not fully utilized: five consecutive short jobs may arrive, with no long job,
resulting in an idle long host. This is especially likely in common computer workloads, where there
are many short jobs and just a few very long jobs, resulting in longer idle periods between the arrivals
of long jobs.

Ideally we would like a policy which combines the variance reducing benefit of the Dedicated

policy with the high utilization property of M/G/k/FCFS and Shortest-Queue. Hereby, we would
segregate jobs by size to provide isolation for short jobs, but when the long job host is free, we
would steal the long host’s idle cycles to serve excess short jobs. This would both decrease the mean
response time of the short jobs, and enlarge the stability region of the overall system. Specifically,
for systems where the short host is much more heavily loaded, granting the short jobs limited access
to the long partition may be the difference between an overloaded system and a well behaved one.
We grant the short jobs access to the long host only when the long host is free, so we don’t starve
the long jobs, causing them undue delay. Nonetheless, because jobs are not preemptive, there will
still be a penalty to a long job which arrives to find a short job serving at the long host.

Specifically, we propose the following two size-based task assignment policies with cycle stealing.

Size-based task assignment with cycle stealing under immediate dispatching (SBCS-ID):
The SBCS-ID policy (see Figure 5.1(a)) is defined for the immediate dispatching model. There is a
designated short job host and a designated long job host. An arriving long job is always dispatched
to the long job host. An arriving short job first checks to see if the long job host is idle. If it is idle,
the short job is dispatched to the long job host. If the long job host is not idle (either working on
a long job or a short job), then the arriving short job is dispatched to the short job host. Jobs at a
host are serviced in FCFS order.

The SBCS-ID algorithm is an improvement over Dedicated for the short jobs. However, only
those short jobs arriving after the long host has entered an idle period can steal long cycles; if a
short job arrives just before the long host enters an idle period, the short job is not eligible for
running during the idle partition. This is the motivation behind our next cycle stealing algorithm.

Size-based task assignment with cycle stealing under central queue (SBCS-CQ): The
SBCS-CQ policy (see Figure 5.1(b)) is defined for the central queue model. Whenever the short
job host becomes idle, it picks the first short job in the queue to run. Whenever the long job host
becomes idle, it picks the first long job in the queue. However, if there is no long job, the long
host picks the first short job in the queue. In SBCS-CQ, we introduce a minor technique that can
slightly improve mean response time. Whereas in SBCS-ID the short and long hosts are designated
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Figure 5.1: Size-based task assignment with cycle stealing.

in advance, in SBCS-CQ we allow renaming of hosts; i.e. if the long host is working on a short job, and
the short host is idle, then the long host is renamed the short host and vice versa. Thus in SBCS-ID,
there could be one short in front of one long job in the system with an idle (short) server, while this
could not happen under SBCS-CQ.

Modeling and analysis

We assume that the service demand of the short jobs, XS , has a phase type (PH) distribution (see
Section 2.2), and the service demand of the long jobs, XL, has another PH distribution. Thus, we
do not require that the exact service demand of jobs be known in advance. Rather, we assume that,
based on some information such as the owner of a job and the CPU requirement specified by a user,
we can classify jobs into “short” jobs that are likely to be short and “long” jobs that are likely to
be long. We will consider three scenarios: the expected size of “short” jobs is shorter than that of
“long” jobs, “short” jobs and “long” jobs have an identical job size distribution, and a pathological
case where the expected size of “short” jobs is longer than that of “long” jobs.

Throughout, we assume that the short jobs (respectively, long jobs) arrive according to a Poisson
process with rate λS (respectively, λL), although the analysis via dimensionality reduction (DR) al-
lows an extension to Markovian arrival processes (see Section 2.2), as we have discussed in Chapter 3.
We define the load of the short jobs as ρS = λSE [XS ] and the load of the long jobs as ρL = λLE [XL].

With the above assumptions, the system with SBCS-ID can be modeled as an FB process, and
the system with SBCS-CQ (without renaming) can be modeled as a GFB process, as discussed in
Section 3.4, and the analysis of these processes via DR provides mean response time of the short jobs
and the long jobs, respectively, under SBCS-ID and SBCS-CQ. The system with SBCS-CQ with renaming
does not appear to be modeled as a GFB process, and in [67], we analyze its performance via DR
with a certain independence assumption (some random variables with dependency are assumed to
be independent); however, this approximation is validated against simulation, which shows that the
error is within 2% in almost all cases, and within 8% in all cases (large error occurs at high load)
[67]. All the details of the analysis of the SBCS-ID and SBCS-CQ, used to generate the results in
Section 5.4, are provided in [67, 68]. In particular, we derive a closed form expression for the mean
response time of the long jobs under SBCS-ID via a virtual waiting time analysis in [68], as shown in
the following theorem.

Theorem 9 Let TL represent the response time of the long jobs under SBCS-ID, and let T̃L(s) denote
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it’s Laplace transform. Then,

T̃L(s) =
s+ λS − X̃S(s)λS

s− λL + X̃L(s)λL
· π0 · X̃L(s)

E [TL] =
ρL

1 − ρL

E
[
X2
L

]

2E [XL]
+

ρS
1 + ρS

E
[
X2
S

]

2E [XS ]
+ E [XL]

E

[
T 2
L

]
=

ρL
1 − ρL

E
[
X3
L

]

3E [XL]
+

ρS
1 + ρS

E
[
X3
S

]

3E [XS ]
+

ρL
1 − ρL

E
[
X2
L

]

E [XL]
(E [TL] − E [XL])

+2E [XL]E [TL] + E

[
X2
L

]
− 2E [XL]2 ,

where

π0 =
1 − ρL
1 + ρS

.

Here, π0 represents the fraction of time that the long server is idle.

We postpone the proof of this theorem to Appendix A.

5.4 Performance of task assignment with cycle stealing

In this section we will study the results of our analysis of SBCS-ID and SBCS-CQ. Recall that the
motivation behind cycle stealing is to improve the performance of the short jobs without inflicting
too much penalty on the long jobs. However, some penalty to the long jobs is inevitable, since our
model is nonpreemptive. In order to evaluate these benefits and penalties we compare with the
Dedicated policy.

5.4.1 Summary of results

Our analysis of SBCS-ID and SBCS-CQ via DR will lead to the following conclusions:

• Both SBCS-ID and SBCS-CQ can provide an unbounded benefit, over Dedicated, to the short
jobs while the long jobs are not penalized much by having their idle cycles stolen. The un-
bounded benefit is due to the increased stability region: SBCS-ID and SBCS-CQ can provide
finite mean response time while Dedicated leads to infinite mean response time.

• SBCS-CQ is a superior policy to SBCS-ID from the perspective of both the short jobs and the
long jobs.

• When the “short” jobs have shorter expected size than the “long” jobs, SBCS-ID and SBCS-CQ

typically improves upon Dedicated with respect to the overall mean response time even at low
load, ρS (with an unbounded benefit at high load). However, when the “short” jobs have longer
expected size than the “long” jobs (pathological case), cycle stealing can worsen the overall
mean response time at low load, ρS (although they can still provide an unbounded benefit at
high load).

• The service demand variability of the long jobs has a surprisingly small effect on the mean
response time of the short jobs under SBCS-ID but has a much larger effect under SBCS-CQ.
Observe that when the long jobs have more variable sizes, long server provides more irregular
help to the short jobs, which we expect worsens the response time of the short jobs.
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We first characterize the stability regions under Dedicated, SBCS-ID, and SBCS-CQ in Section 5.4.2.
In Section 5.4.3, we study the mean response time under these policies.

5.4.2 Stability

Under the Dedicated policy, the queues are stable iff ρL < 1 and ρS < 1. The stability region
becomes wider under SBCS-ID and SBCS-CQ, as is characterized in the next theorem.

Theorem 10 Under SBCS-ID, the queues are stable iff

ρL < 1 and ρS <
1 − ρL +

√
(1 − ρL)2 + 4

2
.

Under SBCS-CQ, the (central) queue is stable iff ρL < 1 and ρS < 2 − ρL.

Proof: We first consider the stability conditions for SBCS-ID. Let ρ̂L (respectively, ρ̂S) denote the
load at the long server (respectively, short server). The queues are stable iff ρ̂L < 1 and ρ̂S < 1.

We first deduce ρ̂L. The PASTA (Poisson arrivals see time averages) principle implies that the
fraction of the short jobs that are dispatched to the long server is 1 − ρ̂L, assuming ρ̂L < 1. Thus,

ρ̂L = ρS(1 − ρ̂L) + ρL ⇐⇒ ρ̂L =
ρS + ρL
1 + ρS

.

We therefore have the constraint that

ρ̂L =
ρS + ρL
1 + ρS

< 1 ⇐⇒ ρL < 1.

Next we deduce ρ̂S . The PASTA principle implies that the fraction of the short jobs that are
dispatched to the short server is ρ̂L, assuming ρ̂L < 1. Thus,

ρ̂S = ρS · ρ̂L.

We therefore have the constraint that

ρS · ρS + ρL
1 + ρS

< 1 ⇐⇒ ρS <
1 − ρL +

√
(1 − ρL)2 + 4

2
.

The stability conditions for SBCS-CQ follow immediately via the law of large numbers. The long
jobs (the number of the long jobs in the central queue) are stable iff ρL < 1, and the short jobs are
stable iff ρS < 2 − ρL.

The restriction on ρS for stability under each of the three task assignment policies is shown in
Figure 5.2 as a function of ρL (ρL < 1 is necessary for all the three policies). Observe the advantage
of cycle stealing in extending the stability region. When ρL is near zero, ρS can be as high as about
1.61 (golden ratio) under SBCS-ID and close to 2 under SBCS-CQ.
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Figure 5.2: Stability region for Dedicated, SBCS-ID, and SBCS-CQ.

5.4.3 Mean response time

Figure 5.3 illustrates the benefit to the short jobs and the penalty to the long jobs under SBCS-ID

and SBCS-CQ for three job size configurations: (a) “short” jobs are (10 times) shorter in expectation,
(b) “short” jobs and “long” jobs are indistinguishable, and (c) “short” jobs are (10 times) longer in
expectation. Here, we assume that both the short jobs and the long jobs have exponential distribu-
tions. The mean response time of the short jobs (respectively, long jobs) is plotted as a function of
ρS in the top row (respectively, bottom row). In this figure, we fix ρL = 0.5, and consider the full
range of ρS . Recall from Section 5.4.2 that Dedicated leads to instability when ρS ≥ 1. However for
SBCS-CQ, ρS is allowed as high as 2−ρL, and for SBCS-ID, ρS is allowed as high as some intermediate
value shown in Figure 5.2, which is not as high as 2 − ρL and yet is higher than Dedicated.

Figure 5.3(a) (top row) shows that the short jobs benefit tremendously from cycle stealing. For
ρS > 0.8, the mean improvement of cycle stealing algorithms over Dedicated is over an order of
magnitude. As ρS → 1, the mean response time under Dedicated goes to infinity, whereas it is 5.3
under SBCS-ID and 4.3 under SBCS-CQ. This shows the huge benefit that short jobs obtain by being
able to steal idle cycles from the long host.

Figure 5.3(a) (top row) shows that the improvement of SBCS-CQ over SBCS-ID is also vast. As
ρS → 1.28, the mean response time under SBCS-ID goes to infinity whereas it is approximately 15.5
under SBCS-CQ. This follows as under SBCS-ID only new short arrivals can benefit from idle cycles,
whereas under SBCS-CQ waiting short jobs may benefit.

Figure 5.3(a) (bottom row) shows that the penalty imposed on the long jobs by cycle stealing
is relatively small. The penalty increases with ρS , but even when ρS = 1, the penalty to the long
jobs is only 2.5% under SBCS-CQ and 3.0% under SBCS-ID. This is in contrast to the unbounded
improvement for the short jobs.

Figure 5.3(b) shows the case when the short jobs and the long jobs are indistinguishable, and
Figure 5.3(c) shows the pathological case where the “short” jobs have longer expected size than the
“long” jobs. We see that trends are similar to column (a), with only the absolute magnitude of the
numbers growing. Specifically, when the “short” jobs are longer or when the “long” jobs are shorter,
both the benefit to the “short” jobs and the penalty to the “long” jobs become greater. Greater
penalty to the “long” jobs is to be expected since a “long” job may get stuck behind a “short” job
whose size is in fact ten time longer in expectation. Greater benefit to the “short” jobs may be
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How longs suffer from cycle stealing – ρL = 0.5
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Figure 5.3: Mean response time of short jobs and long jobs under Dedicated, SBCS-ID, and SBCS-ID.
Job sizes have exponential distributions.

explained as a counter effect to the greater penalty to the “long” jobs. Specifically, when the “long”
jobs are shorter, the busy period of the “long” server is shorter, which allows the “long” server to
help the “short” jobs more frequently (although the duration of the help is also shorter); at the
beginning of the busy period, the “long” server may be serving the “short” jobs, and this implies
that “short” jobs may utilize more nonidle cycles of the “long” server.

One interesting observation is that the penalty to the long jobs appears lower under SBCS-CQ

than under SBCS-ID. At first this seems quite contrary, since under SBCS-CQ more cycles are given
to the short jobs; thus it is reasonable to expect the long jobs should suffer more. The reason this
is not true is that under SBCS-CQ the servers are re-namable. Thus a long job arriving to find both
servers serving short jobs need only wait for the first of the two servers to free up under SBCS-CQ.

Figure 5.4 illustrates the percentage improvement of the SBCS-ID and SBCS-CQ over the Dedicated
with respect to the overall mean response time. The percentage change (in overall mean response
time) against the Dedicated is plotted as a function of ρS for SBCS-ID and SBCS-CQ. In the top row
(respectively, bottom row), ρL = 0.5 (respectively, ρL = 0.8) is fixed. Namely, in the top row, the
parameter settings are exactly the same as in Figure 5.3, while ρL is set higher in the bottom row.
Again, three columns correspond to three job size configurations.

Figure 5.4(a) shows that SBCS-ID and SBCS-CQ improves upon Dedicated with respect to the
overall mean response time throughout the range of load, ρS , for both low ρL (top row) and high
ρL (bottom row). As ρS becomes higher, the improvement over Dedicate becomes greater. At

148



Percentage improvement over Dedicated – ρL = 0.5

0 0.5 1 1.5
−100

−80

−60

−40

−20

0

pe
rc

en
ta

ge
 c

ha
ng

e 
(%

)

ρ
S

SBCS−ID
SBCS−CQ

0 0.5 1 1.5
−100

−80

−60

−40

−20

0

pe
rc

en
ta

ge
 c

ha
ng

e 
(%

)

ρ
S

SBCS−ID
SBCS−CQ

0 0.5 1 1.5
−100

−50

0

50

pe
rc

en
ta

ge
 c

ha
ng

e 
(%

)

ρ
S

SBCS−ID
SBCS−CQ

Percentage improvement over Dedicated – ρL = 0.8
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(a) E [XS ] = 1 and E [XL] = 10
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Figure 5.4: Percentage change in the overall mean response time of SBCS-ID and SBCS-CQ against
Dedicated. Job sizes have exponential distributions.

ρS = 1, Dedicated becomes unstable, and the percentage change in the overall mean response time
is −100% for both SBCS-ID and SBCS-CQ, which still provide finite overall mean response time at
ρS = 1. (In fact, although not clear from the figure, the overall mean response time under SBCS-ID
is slightly worse (within 0.1%) than that under Dedicated at very low load (ρS ≤ 0.2). By contrast,
the overall mean response time under SBCS-CQ is always lower than that under Dedicated with these
parameter settings.)

Figure 5.4(b) shows that SBCS-CQ improves upon Dedicated with respect to the overall mean
response time for all ρS , for both low ρL (top row) and high ρL (bottom row), even if the short jobs
and long jobs are indistinguishable. Again, the improvement over Dedicate becomes greater as ρS
becomes higher. On the other hand, the overall mean response time under SBCS-ID is slightly worse
(within 5%) than that under Dedicated at low load (specifically, ρS < 0.4 for ρL = 0.5 (top row) and
ρS < 0.65 for ρL = 0.8 (bottom row)). This makes intuitive sense, since SBCS-ID sends more jobs
to the server with higher load if ρS < ρL. Overall, as long as ρS ≥ ρL, both SBCS-ID and SBCS-CQ

provides significant improvement over Dedicated, and this improvement becomes greater at higher
ρS and becomes unbounded at ρS ≥ 1.

Figure 5.4(c) shows that when the “short” jobs are longer than the “long” jobs (in the pathological
case), the overall mean response time under both SBCS-ID and SBCS-CQ can be higher than that under
Dedicated, but for high enough ρS , SBCS-ID and SBCS-CQ can still provide unbounded benefit over
Dedicated. In the figure, SBCS-CQ improves upon Dedicated if ρS > ρL for both low ρL (top row)
and high ρL (bottom row). (The advantage of SBCS-CQ does not necessarily occur exactly at ρS > ρL.
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For example, when ρL ≤ 0.3, SBCS-CQ improves upon Dedicated for all ρS). On the other hand,
SBCS-ID improves upon Dedicated only at high ρS , but again the improvement of both SBCS-ID

and SBCS-CQ becomes greater at higher ρS and becomes unbounded at ρS ≥ 1.
Figure 5.4 shows that at higher ρL (bottom row), both the benefit to the short jobs and the

penalty to the long jobs are reduced, and overall the improvement (or disimprovement) of SBCS-ID
and SBCS-CQ over Dedicated becomes smaller. This is to be expected, as there are fewer idle cycles
to steal at higher ρL.

Figure 5.5 considers the effect of increasing the service demand variability of the long jobs. The
parameter settings are the same as in Figure 5.3 and the top row of Figure 5.4, except that two
curves are shown for each of Dedicated, SBCS-ID, and SBCS-CQ, corresponding to the case where
the long jobs have a (two phase) PH distribution with C2

L = 8 and the case where the long jobs have
an exponential distribution1.

Theorem 9 implies that when C2
L is increased from 1 to 8, the mean response time of the long jobs

under SBCS-ID and under Dedicated increases by the same amount, and this can also be verified in
the middle row of Figure 5.5. The figure also suggests that the the mean response time of the long
jobs under SBCS-CQ increases by approximately the same amount as Dedicated. Closer examination
shows that the difference in the increase in the mean response time of the long jobs between SBCS-CQ

and Dedicated is only at most 0.4% in (a), at most 0.03% in (b), and at most 2.8% in (c), and the
difference appears to be larger when the error in the analysis of SBCS-CQ against simulation is larger.
Since the mean response time of the long jobs is higher with higher C2

L, the percentage penalty of
the long jobs is therefore considerably lessened when C2

L is increased.
The top row of Figure 5.5 shows that increasing long job size variability has surprisingly little

impact on the mean response time of the short jobs under SBCS-ID when ρS < 1, although there
is a noticeable impact when ρS > 1 and the “short” jobs are shorter than the “long” jobs (column
(a)). We would have expected the opposite: that shorts would prefer less variable long job sizes
because that means less variable long busy periods and more regular help. In fact, this expectation
better applies to SBCS-CQ: the mean response time of the short jobs under SBCS-CQ increases more
significantly by increasing long job size variability. This makes intuitive sense, since the short jobs
rely on the help from the long server more under SBCS-CQ than under SBCS-ID.

To summarize, we have seen that short jobs are tremendously helped by cycle stealing, and
that SBCS-CQ offers greater improvements to short jobs than SBCS-ID. We have also seen that,
provided that “short” jobs are no longer than “long” jobs, the penalty of cycle stealing on long jobs
is negligible. This penalty is greater under SBCS-ID than under SBCS-CQ. Thus, SBCS-CQ is always
superior to SBCS-ID, and both are typically far better than Dedicated.

5.5 Concluding remarks

In this chapter, size-based task assignment policies with cycle stealing, SBCS-ID and SBCS-CQ, are
proposed, and their mean response time is analyzed via dimensionality reduction (DR), as the analysis
of SBCS-ID and SBCS-CQ involves multidimensional Markov chains. Under SBCS-ID and SBCS-CQ,
short jobs are processed by one server (short server) and long jobs are processed by another server

1To determine the parameters of the two phase PH distribution, the third moment needs to be specified as well.
Here, we choose the third moment, so that the normalized second and third moments, m2 and m3, satisfy m3 = 2m2−1.
See Section 2.5 for an intuition for this choice; in particular, the exponential distribution and the Erlang distribution
satisfy m3 = 2m2 − 1.
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Effect of increasing long job size variability on long performance
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Figure 5.5: Effect of variability in long job size on the mean response time.
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(long server), but when there are no long jobs, the long server also processes short jobs, i.e. short
jobs can steal idle cycles of the long server. DR allows us to quantify the benefit and penalty of cycle
stealing, and provides insights into good task assignment policies.

Our analysis shows that the short jobs can benefit immensely from cycle stealing, while long
jobs experience only a small penalty. Also, we find that holding jobs at a central queue (SBCS-CQ)
provides more benefit of cycle stealing to the short jobs with a smaller penalty to the long jobs than
immediately dispatching jobs upon their arrivals (SBCS-ID). Thus, overall, SBCS-CQ is a superior
policy to SBCS-ID. In fact, SBCS-ID often provides an unbounded benefit over the Dedicated policy
(without cycle stealing), and SBCS-CQ often provides an unbounded benefit over SBCS-ID. The un-
bounded benefit stems from the increased stability region under SBCS-ID and SBCS-CQ. We provided
the necessary and sufficient conditions for the stability under these policies.

We also consider the case where the “short” jobs are indistinguishable from the “long” jobs, and
the pathological case where the “short” jobs are longer than the “long” jobs. Our analysis shows
that SBCS-ID and SBCS-CQ can still provide an unbounded benefit over Dedicated when the load of
short jobs is high, but the benefit diminishes as the load becomes lower. In fact, when the load of
short jobs are low, cycle stealing (especially, SBCS-ID) can worsen the overall mean response time.
However, since the performance improvement is most needed at high load, SBCS-ID and SBCS-CQ

may still have a practical use even in the pathological case.
An advantage of the analysis via DR is that the job sizes can be modeled as a PH distribution.

This allows us to study the impact of job size variability on performance. In particular, we study the
impact of the variability of the long job sizes on the mean response time of the short jobs. We find
that the impact is surprisingly small under SBCS-ID, but larger under SBCS-CQ. Another advantage
of the analysis via DR is that it allows us to evaluate the mean response time accurately for a wide
range of loads. This is in contrast to heavy traffic approximations, which becomes more accurate at
higher loads. We have seen that the benefit and penalty of cycle stealing are quite different at low
load and high load. Specifically, when the load of the short jobs is low, cycle stealing can worsen
the mean response time. It would be interesting to see whether heavy traffic approximations can
capture this.

In this chapter, we limit our discussion to a system with two homogeneous servers, but the
analysis via DR can be extended to heterogeneous servers and multiple servers in various ways. For
example, in [68], we study SBCS-ID with multiple short servers that independently receives short
jobs and steal idle cycles of the long server. We find that the benefit of cycle stealing reduces as
the number of short servers increases, but the most reduction comes from the first additional short
server. In [68], we also extend Theorem 9 and Theorem 10 to the case of multiple short servers.
Also, in Chapter 3, we show that SBCS-ID with m classes of jobs and m servers can be modeled as
an RFB process, and validated the analysis via DR against simulation. These analysis will be useful
in practice to decide, for example, how many servers are needed and how much capacity is needed
for each server to guarantee certain mean response time, when SBCS-ID is used in real systems.
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Chapter 6

Reducing switching costs in cycle
stealing

When does cycle stealing pay, and how much?

In this chapter, we study fundamental problems regarding the benefit and penalty of cycle steal-
ing, where the “donor” server can help the “beneficiary” server when there are no donor’s jobs.
Dimensionality reduction (DR) allows us to analyze the mean response time of donor’s jobs and ben-
eficiary’s jobs under a wide range of parameter settings. Results of our analysis illuminate principles
on the general benefits of cycle stealing and the design of cycle stealing policies.

6.1 Motivation

Since the invention of networks of workstations, systems designers have touted the benefits of allowing
a user to take advantage of machines other than her own, at times when those machines are idle. This
notion is often referred to as cycle stealing. Cycle stealing allows such a user, Betty, with multiple
jobs, to offload one of her jobs to the machine of a different user, Dan, if Dan’s machine is idle,
giving Betty two machines to process her jobs. When Dan’s workload resumes, Betty must return to
using only her own machine. We refer to Betty as the beneficiary, to her machine as the beneficiary
machine/server, and to her jobs as beneficiary jobs. Likewise, we refer to Dan as the donor, to his
machine as the donor machine/server, and to his jobs as donor jobs.

Although cycle stealing provides obvious benefits to the beneficiary, these benefits come at some
cost to the donor. For example, the beneficiary job may have to be checkpointed and the donor’s
working set memory reloaded before the donor server can resume, delaying the resumption of pro-
cessing of donor jobs. Furthermore, there is also some wasted time for the beneficiary who may
experience various remote execution costs, and must wait for her working set memory to be loaded
into the donor machine before she can use the donor machine. In our model we refer to these
additional costs associated with cycle stealing as switching costs (or switching times).

A primary goal of this chapter is to understand the benefit of cycle stealing for the beneficiary and
the penalty to the donor, as a function of switching times. A secondary goal is to derive parameter
settings for cycle stealing. In particular, given non-zero switching times, cycle stealing may pay only
if the beneficiary’s queue is “sufficiently” long. We seek to understand the optimal threshold on
the beneficiary queue when switching to help, and the optimal threshold on the donor queue when
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Figure 6.1: A threshold-based policy for reducing switching costs in cycle stealing.

switching back. More broadly, we seek general insights into which system parameters have the most
significant impact on the effectiveness of cycle stealing.

6.2 Threshold based policy for reducing switching costs in cycle
stealing

Specifically, we assume there are two queues, the beneficiary queue and the donor queue, with
independent arrival processes and service time distributions operating as M/PH/1/FCFS queues
(see Figure 6.1). Jobs arrive at rate λB (respectively, λD) at the beneficiary (respectively, donor)
queue and have service demand XB with a phase type (PH) distribution GB (respectively, XD with
a PH distribution GD). The load made up by beneficiary (respectively, donor) jobs is denoted by
ρB (respectively, ρD) where ρB = λBE [XB] and ρD = λDE [XD].

To reduce the switching costs associated with cycle stealing, we consider the following threshold-
based policy. If there are no donor jobs (ND = 0), and if the number of the beneficiary jobs, NB,
is at least N th

B , the donor transitions into the switching state, for a random amount of time, Ksw,
having a PH distribution. After Ksw time, the donor server is available to work on the beneficiary
queue and the beneficiary queue becomes an M/GB/2/FCFS queue. When the number of donor
jobs, ND, reaches N th

D (either during Ksw, or during the time the donor is helping the beneficiary),
the donor transitions into a switching back state, for a random amount of time, Kba, having a PH
distribution. After the completion of the switch back, the donor server resumes working on its own
jobs until the donor queue is empty. The donor server cannot work on any job while the donor is in
the switching or switching back state.

A few details are in order. First, in the above model, the donor server continues to cooperate
with the beneficiary even if there is no beneficiary work left for it to do — the donor server can
switch back only when a donor job arrives. Second, we assume that if the donor server is working on
a beneficiary job and a donor job arrives, that beneficiary job is returned to the beneficiary queue
and will be resumed by the beneficiary server as soon as that server is available. The work done on
the job is not lost (i.e. preemptive resume). Our performance metric throughout is mean response
time (overall and for each class of jobs), where the response time of a job is the time from when the

154



job arrives until it completes service. We assume the first three moments of the service times are
finite, and queues are stable.

Our model deals with switching times in a general way, making the results both applicable to a
shared-memory multiprocessor architecture and to a network of workstations (NOW). Our switching
times, Ksw and Kba, can be viewed as the time for switching between job types in a shared-memory
multiprocessor architecture. In a NOW, there is an additional overhead incurred from migrating jobs
from one server to another, where jobs which have not started running require negligible overhead,
whereas migrating a “running” job (in progress) requires high overhead, since all of its state must be
migrated with it. Our model captures this notion in that the switching back time, Kba, can be viewed
as the time incurred for preempting an already running job and returning it to the beneficiary.

Analysis

With the above assumptions, the system under the threshold-based policy for reducing switching
costs in cycle stealing can be modeled as a GFB (generalized foreground-background) process, as
discussed in Section 3.4. An analysis of the GFB process via dimensionality reduction (DR) provides
mean response time of the beneficiary jobs and the donor jobs, respectively. In fact, the donor job
size, XB, and the switching back time, Kba, can be extended to general distributions, as we show in
[152]. All the details of the analysis to generate the results in Section 6.4 are provided in [152]. In
particular, the mean response time of donor jobs has an alternative derivation via an M/GI/1 queue
with generalized vacations [57], as shown in the following theorem:

Theorem 11 The mean response time of donor jobs, E [TD], is given by

E [TD] = E [XD] +
λDE

[
X2
D

]

2(1 − ρD)
+

(
N th
D (N th

D − 1) + 2N th
D λDE [Kba] + λ2

DE
[
K2
ba

])
p

2λD
(
(N th

D + λDE [Kba])p+ (1 − p)
) ,

where

p =
PNth

D −1

PNth
D −1 + P0

(6.1)

where P0 is the probability that the donor server is at the donor queue and the number of donor jobs
is zero; PNth

D −1 is the probability that the donor server is either at the beneficiary queue or in the

process of switching to the beneficiary queue and the number of donor jobs is N th
D − 1.

Note that P0 and PNth
D −1 can be calculated via the limiting probabilities in the 1D Markov chain

reduced from the GFB process in the analysis of the mean response time of the beneficiary jobs
via DR.

6.3 State of the art in cycle stealing

There has been no previous analytical work on the performance of cycle stealing with switching
times and thresholds. The analysis of cycle stealing without switching times and thresholds under
exponential job size distributions has been studied by Green [61] and Stanford and Grassmann
[185, 186]. Since the analysis of cycle stealing involves 2D Markov chains even without switching
times and thresholds, in [61, 185, 186], the 2D Markov chains are analyzed by truncating the state
space (and the resulting 1D Markov chains are analyzed by matrix analytic methods (Section 3.2)).
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Despite the lack of analytical study, cycle stealing has been implemented and used in various
systems, including networks of workstations (NOWs). Below, we review cycle stealing mechanisms
in NOWs, classifying them into three types, depending on the behavior when an idle workstation is
reclaimed by its owner. Other computer systems with cycle stealing are also discussed briefly.

In the first type of cycle stealing mechanism, the jobs that have been running on an idle server are
killed when the idle server is reclaimed by its owner. Butler [139] is a representative implementation
of this type of cycle stealing. This cycle stealing model is also studied by Bhatt et. al. [20] and
Rosenberg [163, 164, 165], who consider a theoretical problem of optimal cycle stealing strategy.
This type of cycle stealing is the most conservative in that the cost (time) required for the owner to
reclaim his idle machine is smallest. However, in this model, all the work that has been done on the
idle workstation is lost on reclaiming.

In the second type of cycle stealing, the job that have been running on an idle workstation is thus
migrated to other idle workstations, while keeping the state of the job. The cycle stealing model
that we study in this chapter is close to this type. Condor [115, 116], Sprite [48], and Benevolent
Bandit [54] are representative implementation of this type of cycle stealing1. A disadvantage of the
first two types of cycle stealing mechanisms is that they cannot efficiently make use of short idle
periods, and this is a motivation for the next mechanism.

In the third mechanism, the jobs that have been running on an idle workstation are preempted
but keep staying on the workstation when the idle workstation is reclaimed by its owner. This
mechanism for networks of workstations is implemented as Stealth Distributed Scheduler [109] and
Linger-Longer [170]. Awerbuch et. al. [13] consider a problem of optimal policies in this mechanism.

Cycle stealing is also popular in Internet computing, which allows one to steal idle cycles of per-
sonal computers at home. Internet computing is used for the purpose of searching extraterrestrial
intelligence, protein folding research, cancer research, AIDS research, finding large prime numbers,
etc. Systems that support Internet computing include Javelin [41]. Other concepts related to load
balancing or cycle stealing include dynamic resource allocation, which dynamically assign resources
among multiple applications at data centers [9, 39, 38], and content distribution networks [107] such
as Akamai. Adaptive parallelism is also related to cycle stealing; it dynamically reallocates processors
to parallel applications, depending on the availability of the processors. Representative implementa-
tions of adaptive parallelism includes Piranha [36] and ATLAS [15]. More generally, the concept of
using multiple systems as a single resource is studied in the context of grid computing [14, 40, 56].
System implementations towards facilitating grid computing includes AppLeS [18], Legion [62], and
MOL [59].

6.4 Results

6.4.1 Summary of results

Our analysis yields many interesting results concerning cycle stealing. While cycle stealing obviously
benefits the beneficiary jobs and hurts the donor jobs, we find that when ρB ≥ 1, cycle stealing is
profitable overall even under significant switching times, as it may ensure stability of the beneficiary
queue. For ρB < 1, we define load-regions under which cycle stealing pays. We find that in general

1Other systems that support process migration include Charlotte [11], Accent [211], Mach [128], Emerald [91],
Tue [179], and Locus [191].
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the switching time is only prohibitive when it is large compared with E [XD]. Under zero switching
times, cycle stealing always pays.

Two counterintuitive results are that when ρB < 1, the mean response time of the beneficiary
jobs is surprisingly insensitive to the switching time, and also insensitive to the variability of the
donor job size distribution. Even when the variability of the donor job sizes is very high, and donor
help thus is very bursty, the beneficiary jobs still enjoy significant benefits.

Our analysis also allows us to investigate characteristics of the beneficiary and donor side thresh-
olds, N th

B and N th
D , both with respect to their impact on stability and their impact on mean response

time. With respect to beneficiary stability, we find that N th
B has no effect, while increasing N th

D

increases the stability region. Donor stability is not affected by either threshold. With respect to
overall mean response time, we find that mean response time is far more sensitive to changes in N th

D

than to changes in N th
B . We find the optimal value of N th

B tends to be well above 1. The reason is
that increasing N th

B does not appreciably diminish beneficiary gain, but it does alleviate donor pain.
We find that the optimal setting of N th

B is an increasing function of ρB, ρD, and switching times.
By contrast, we find that the optimal value of N th

D is often close to 1, provided ρB < 1. Increasing
N th
D significantly hurts the donor, although it may provide significant help to the beneficiary if ρB is

high. We find that the optimal N th
D is not a monotonic function of ρD, but is an increasing function

of ρB and switching times.

6.4.2 Stability

In this section we derive stability conditions for cycle stealing with switching times and thresholds.
We find for example that the stability condition for the donor jobs remains ρD < 1, regardless
of whether the donor jobs experience switching times. By contrast, the stability region for the
beneficiary jobs can be significantly below 2− ρD, specifically because the switching time erodes the
beneficiary stability region. Also, interestingly, the value of N th

B does not affect the stability region
of either the donor or beneficiary jobs. By contrast, increasing N th

D increases the stability region of
the beneficiary jobs; however it has no effect of the stability region of the donor jobs.

Theorem 12 The donor queue is stable iff ρD < 1.

Proof: It makes intuitive sense that the donor queue is stable iff ρD < 1 regardless of the switching
times and threshold values, since the donor would never switch if the donor queue was persistently
backlogged. Below, we prove sufficiency more formally. The necessity of ρD < 1 is trivial.

Assume ρD < 1. Let BD denote the length of a busy period at the donor queue. We first consider
the case of N th

B = 0. A busy period at the donor queue is started by a switching time Kba and N th
D

donor jobs. As ρD < 1, the mean length of a busy period is

E [BD] =
N th
D E [XD] + E [Kba]

1 − ρD
<∞.

In this case BD clearly has a proper limiting distribution, and hence the donor is stable. Next we
consider the case of N th

B > 0. In this case E [BD] is smaller than in the case of N th
B = 0 because there

will be donor busy periods in which the donor server has not left the donor queue, implying (i) there
is no switching back time, and (ii) the busy period is started by only one donor job.

Before we derive the stability condition on ρB, we prove a lemma allowing us to assume N th
B = 0.
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Lemma 8 If the beneficiary queue is stable at N th
B = 0, then it is stable at N th

B = n, ∀ 0 ≤ n <∞.

Proof: Intuitively, the stability of the beneficiary queue is independent of N th
B , since N th

B would be
irrelevant when the beneficiary queue was continuously backlogged.

More formally, let L
(n)
B (t) denote the number of beneficiary jobs at time t given N th

B = n ≥ 1.

Consider a new process L̂
(n)
B (t) in which the number of jobs at time t = 0 is n, instead of 0 as in the

original process, and no service is given by either server to a beneficiary job if there are ≤ n jobs

present at the beneficiary queue. Note that L̂
(n)
B (t) stochastically dominates L

(n)
B (t). Also, along any

sample path, L̂
(n)
B (t) will be equal to n + L

(0)
B (t). Therefore, if L

(0)
B (t) is proper, so too is L̂

(n)
B (t) and

hence L
(n)
B (t).

We now prove the stability condition on ρB.

Theorem 13 The beneficiary queue is stable iff

ρB < 1 +
max(1 − ρD, 0)

∑Nth
D

i=0 (N th
D − i) (−λD)i

i! K̃
(i)
sw(λD)

N th
D + λDE [Kba]

, (6.2)

where K̃sw(s) is the Laplace transform of Ksw and K̃
(i)
sw(s) is its i-th derivative. In particular, when

Ksw is exponentially distributed, the condition is expressed by the closed form:

ρB < 1 +
max(1 − ρD, 0)

{
N th
D − q

1−q
(
1 − qN

th
D

)}

N th
D + λDE [Kba]

, (6.3)

where

q =
λDE [Ksw]

1 + λDE [Ksw]
.

Proof: We first prove sufficiency. By Lemma 8, we can assume N th
B = 0. Let F denote the fraction

of time that the donor server helps the beneficiary. Then the strong law of large numbers can be used
to show that the necessary and sufficient condition for stability of the beneficiary jobs is ρB < 1+F .
If ρD ≥ 1, F = 0. Thus we assume ρD < 1 and derive F using renewal reward theory.

Let a renewal occur every time the donor queue becomes empty (see Figure 6.2). Recall N th
B = 0.

By renewal-reward theory, the fraction of time donor helps beneficiary is F = E[R]

E[Y ]
, where R denotes

the total time that donor helps beneficiary (reward) during the renewal cycle, and Y denotes the
length of the renewal cycle. Observe that there may be any number of donor arrivals ranging from
0 to N th

D during Ksw and we switch back only after the N th
D arrival.

Let S denote the sum of the service times of N th
D donor jobs and BS+ba denote the length of the

busy period started by these jobs of total size S plus Kba. Then, as ρD < 1,

E [Y ] = N th
D E [ID] + E [BS+ba] =

N th
D

λD
+
N th
D E [XD] + E [Kba]

1 − ρD
,

where ID is the interarrival time for donor jobs.
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Figure 6.2: A renewal cycle of the donor queue under the threshold-based policy for reducing switching
costs in cycle stealing.]

To compute E [R], we condition on the number of donor jobs arriving during Ksw. If there are i
arrivals, then the mean time spent helping is the time until there are (N th

D − i) more donor arrivals,
(N th

D − i)E [ID]. Let pi denote the probability that there are i donor jobs arriving during Ksw. Then,

pi =
(−λD)i

i!
K̃(i)
sw(λD).

Using pi, E [R] is now derived as follows:

E [R] =

Nth
D −1∑

i=0

(N th
D − i)

1

λD
pi.

Thus, ρB < 1 + F is equivalent to (6.2). When Ksw is exponentially distributed, pi = qi(1 − q),
where q = λD/(λD + µsw). Therefore,

E [R] =
1

λD

{
N th
D − q

1 − q
(1 − qN

th
D )

}
.

Thus, ρB < 1 + F is equivalent to (6.3).
Above, we have proved the necessary and sufficient condition for N th

B = 0. By Lemma 8, this is
also the sufficient condition for N th

B > 0. Now, we prove necessity for N th
B > 0. When N th

B > 0, the
donor server does not necessarily help the beneficiary even when it is available for help. Therefore,
there are two types of renewal periods. In the first type of renewal period, the donor server helps
the beneficiary, i.e. R > 0. In this case, E [Y ] is the same as for N th

B = 0, and E [R] for N th
B > 0 is

at most E [R] for N th
B = 0. In the second type of renewal period, the donor server does not help the

beneficiary, i.e. R = 0. (In this case E [Y ] can be smaller than that for N th
B = 0.) The fraction of

time, F , that the donor server helps the beneficiary can be expressed as F = F1 + F2, where F1 is
the fraction of time that the donor server helps the beneficiary and the renewal period is type 1, and
F2 is the fraction of time that the donor server helps the beneficiary and the renewal period is type
2. In fact, F2 = 0. Therefore, F = F1 ≤ E [R] /E [Y ]. This proves the necessity for N th

B > 0.

Note that the right hand side of (6.2) is an increasing function of N th
D ; in terms of stability, the

larger N th
D , the more stable the beneficiary queue. In particular, when N th

D = 0, (6.2) is ρB < 1; as
N th
D → ∞, (6.2) becomes ρB < 2 − ρD.

Figure 6.3 shows the stability condition for beneficiary jobs as a function of ρD when Ksw is
exponentially distributed. In case (i), we set E [XD] = 1 and E [Ksw] = E [Kba] = 1. The region
below each line satisfies the stability condition. As N th

D increases as high as 100, the effect of
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Figure 6.3: Stability region for the threshold-based policy for reducing switching costs in cycle stealing.
Switching times are denoted by K ≡ Ksw = Kba.

switching overhead becomes negligible, and the stability condition approaches ρB < 2 − ρD. In case
(ii), we set E [XD] = 1 and E [Ksw] = E [Kba] = 10. The switching time is large, and there is little
benefit at moderate or high ρD in terms of stability, unless N th

D is large. However, there is still large
benefit at low ρD. In case (iii), we set E [XD] = 10 and E [Ksw] = E [Kba] = 1. The stability region
is larger; when N th

D = 1, the stability region is almost the same as that of N th
D = 10 in case (i). This

is intuitive: when E [XD] = 10 and N th
D = 1, the expected amount of donor work when the donor

switches back is the same as that when E [XD] = 1 and N th
D = 10.

6.4.3 Mean response time

In this section, we study the mean response time of the beneficiary jobs and the donor jobs, analyzed
via DR. Throughout we will use the term “gain” to denote the improvement (drop) in mean response
time experienced by beneficiary jobs under cycle stealing, as compared with dedicated servers (with-
out cycle stealing), and the term “pain” to refer to the increase in mean response time experienced
by donor jobs under cycle stealing as compared with dedicated servers:

gain =
E [TB]Dedicated

E [TB]CS
and pain =

E [TD]CS

E [TD]Dedicated
,

where E [TB]Dedicated refers to the mean response time of beneficiary jobs under dedicated servers and
E [TB]CS refers to the mean response time of beneficiary jobs under cycle stealing. E [TD]Dedicated and
E [TD]CS are defined similarly. Observe that both pain and gain have been defined to range from 1 to
∞, where infinite gain corresponds to the situation where the mean response time under dedicated
is infinite while it is finite under cycle stealing. In Figures 6.4-6.7, we fix the threshold values as
N th
B = N th

D = 1 and study the effect of other parameters, and in Figures 6.8-6.9 we study the effect
of the threshold values.

Benefits of cycle stealing: wide range ρB

Cycle stealing is always a win when ρB ≥ 1, but does not pay when ρB ≤ 0.5.

Figure 6.4 shows the mean response time for beneficiary jobs (rows 1 and 3) and donor jobs (rows
2 and 4) as a function of ρB, where ρD is low-to-medium (ρD = 0.5; top half) and medium-to-high
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Figure 6.4: The mean response time for beneficiary jobs and donor jobs as a function of ρB under
cycle stealing and dedicated servers. In all figures XB and XD are exponential with mean 1; switching
times (K ≡ Ksw = Kba) are exponential with mean 0 or 1 as labeled.
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(ρD = 0.8; bottom half). When ρB ≥ 1 (and ρD < 1), cycle stealing can provide infinite gain to
beneficiary jobs over dedicated servers, with comparatively little pain for the donor jobs. This is
because the stability region for the beneficiary jobs under cycle stealing is much greater than under
dedicated servers. While factors such as increased switching times and increased ρD do increase
the mean response time of the beneficiary jobs, the gain is still infinite, and these factors are less
important. We also see that the mean response time of donor jobs is bounded by the mean response
time for an M/GI/1 queue with setup time Kba. When ρB ≤ 0.5, there is so little gain to the
beneficiary jobs that cycle stealing with non-zero switching overhead does not pay. We therefore
primarily focus the rest of the results section on the remaining case: 0.5 < ρB < 1.

Benefit of cycle stealing: .5 < ρB < 1.0

For .5 < ρB < 1, cycle stealing has regions of high gain and low pain and also regions
where the reverse is true. These regions depend on job sizes, switching times, and loads.

In Figure 6.5, we categorize performance into these gain/pain regions and also look at the overall
mean response time (averaged over both beneficiary and donor jobs) to determine whether cycle
stealing is “good” or “bad” overall. In general under higher ρB and lower ρD, cycle stealing is
“good” overall, because the gain of the beneficiary jobs is so high in this region. We will find that
when the switching times are short, cycle stealing leads to high gain and low pain. However long
switching times can reverse this effect. More important than the absolute switching times are the
switching times relative to the mean donor job size. We will find that the mean response time of
the donor jobs is sensitive to the switching times, while surprisingly the mean response time of the
beneficiary jobs is far less sensitive.

Figure 6.5 shows the gain of beneficiary jobs and the pain of donor jobs, where .5 < ρB < 1.
The odd-numbered columns of Figure 6.5 divide the (ρB,ρD) space into regions of beneficiary gain
and donor pain (low, mid, and high). We define low gain as a gain of 1.1 or less; mid gain as a
gain of between 1.1 and 1.5; and high gain as a gain of over 1.5. Pain regions are defined similarly.
While odd-numbered columns of Figure 6.5 consider the beneficiary and donor mean response time
individually, the even-numbered columns of Figure 6.5 look at the overall mean response time and
ask whether cycle stealing is “good” or “bad” with respect to the overall mean response time. The
effect of mean job sizes is considered in Figure 6.5, where job sizes are exponential with mean 1 or 10.

Consider first row 1 in Figure 6.5. Under zero switching time (a)-(b), all regions are low pain
regions (in fact zero pain), and higher ρB yields higher gain for the beneficiary jobs. Non-zero
switching times (c)-(d) create only slightly reduced gain for the beneficiary jobs, but they create
pain for the donor jobs. When ρD is very low, the pain appears high, but this is primarily due to the
fact that “pain” is relative to the mean response time under dedicated servers, which is clearly low
for small ρD. Although not shown, we have also investigated longer switching times, and these lead
to the same trend of slightly less gain for beneficiary jobs and significantly more pain for donor jobs.

We now consider the effect of changes in job sizes. Row 2 of Figure 6.5 differs from row 1 only
in XD, which now has mean 10. The effect of this change is dramatic: now a switching time of 1
has almost no effect on either beneficiary jobs or donor jobs. This makes sense since the setup time
experienced by donor jobs is now relatively small compared to their size. Row 3 in Figure 6.5 differs
from row 1 only in XB, which now has mean 10. Comparing these rows, we see the increase in E [XB]
has a surprisingly small effect on both beneficiary jobs and donor jobs, as compared with increasing
E [XD]. This is because the donor still experiences the setup time, which has the same mean size
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Figure 6.5: The gain of beneficiary jobs and pain of donor jobs ((a) and (c)) and the effect of cycle
stealing on the overall mean response time relative to dedicated servers ((b) and (d)). In (a) and
(c), solid lines delineate high/mid/low gain regions, and dashed lines delineate high/mid/low pain
regions. XB and XD have exponential distributions, and their means are as labeled. Switching times
are exponential with mean 0 or 1 as labeled, where K ≡ Ksw = Kba.
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Gain of beneficiary jobs & pain of donor jobs (E [XB] = E [XD] = 1, C2
D = 8)
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Figure 6.6: The gain of beneficiary jobs and pain of donor jobs ((a) and (c)), and the effect of cycle
stealing on the overall mean response time relative to dedicated servers ((b) and (d)). In (a) and
(c), solid lines delineate high/mid/low gain regions, and dashed lines delineate high/mid/low pain
regions. XB has an exponential distribution; XD has a PH distribution with C2

D = 8. The means
of XB and XD are as labeled. Switching times are exponential with mean 0 or 1 as labeled, where
K ≡ Ksw = Kba.

as the donor job. We can conclude that cycle stealing is most effective when the switching time is
small relative to the size of the donor jobs.

Focusing on columns 2 and 4 of Figure 6.5, which depict the effect on overall mean response
time, we see that, for all rows, when the switching time is zero, cycle stealing always overwhelms
the dedicated policy. When switching time is non-zero, cycle stealing is a good idea provided ei-
ther ρB is high, or the switching time is short compared to XD. These trends continue for longer
switching times.

Effect of donor job size variability

For .5 < ρB < 1, variability of donor job sizes has very little effect on beneficiary mean
response time.

For .5 < ρB < 1, we find variability of donor job sizes has very little effect on beneficiary mean
response time. This finding surprised us; we expected the beneficiary to gain far less from the bursty
help of a donor with irregular (highly variable) job sizes.

It seems intuitive that when donor job sizes are made more variable, two things should happen.
(i) The donor pain should drop. This is because the donor mean response times will be higher
overall, and so the relative pain will appear diminished. (ii) The beneficiary gain should drop. This
is because high variability in the donor job sizes implies high variability in the length of the donor
busy periods, which implies that the donor’s visits to the beneficiary queue will be more irregular.
Sporadic help should be inferior to regular help for the beneficiary. Figure 6.6 shows that hypothesis
(i) is in fact true, while hypothesis (ii) is surprisingly false, at least for ρB < 1. Comparing Figure 6.5
row 1 (XD has low variability: C2

D = 1) with Figure 6.6 (XD has high variability: C2
D = 8), we see

that there is no discernible difference in beneficiary performance.
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Effect of donor job variability on beneficiary jobs
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Figure 6.7: (a) The mean response time of the beneficiary jobs under different donor job size vari-
ability; (b) the “impact” of donor job size variability on the mean response time of the beneficiary
jobs (the vertical axis is shown in the log scale). We fix ρD at 0.5, and ρB varies from 0 to the
stability condition of 1.5. Switching time is zero; XD and XB have mean 1.

To study this effect more closely, we next increase the variability in donor job sizes further. Fig-
ure 6.7(a) shows the mean response time of the beneficiary jobs when C2

D is 1, 8, or 50. Figure 6.7(b)
shows the “impact” of C2

D on the mean response time of the beneficiary jobs, where the “impact”
is defined to be the mean response time of the beneficiary jobs when C2

D > 1 (specifically, two cases
where C2

D = 8, 50 are shown) relative to the mean response time of the beneficiary jobs when C2
D = 1.

In Figure 6.7, switching times are set zero, ρD is fixed at 0.5, and ρB is varied from 0 to ρmax
B . As

observed in Figure 6.6, the effect of the variability of XD on the mean response time of XB is small
at ρB < 1, and negligible at ρB < 0.75, when C2

D = 8, although this effect increases slightly when
C2
D. When ρB > 1 the effect of variability in donor sizes can be significant. A critical factor seems

to be whether the beneficiary queue is stable in isolation; when this is not the case, high variability
in donor visits leads to prolonged intervals of instability, which inflates the mean response time.

This is the same phenomenon seen in other related models studied by Borst, Boxma and van
Uitert [25] and by Borst, Boxma and Jelenkovic [26] as well as in Chapter 5. Borst, Boxma and van
Uitert study the coupled processor model, where two processors each serve their own class of jobs,
and if either is idle it may help the other, increasing the rate of the other processor. This help incurs
no switching time and has a benefit even if only a single job is present (i.e. two processors can work
on the single job). They find that if a processor has a load less than one, it is “insulated” from the
heavy-tail of the other, as long periods without cooperation will not lead to large backlogs. This is
not the case if the load is greater than one, as the queue now must rely on help to be stable. Borst,
Boxma and Jelenkovic study the generalized processor sharing, where n classes of jobs can share a
processor with arbitrary weights. Using probabilistic bounds, they show that different service rates
can either insulate the performance of different classes from the others or not, again depending on
whether the non-cooperative load is larger than one.
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Effect of thresholds

The thresholds N th
B and N th

D have very different effects.

In this section, we study the effect of threshold settings on performance. We will see that increas-
ing N th

B helps alleviate donor pain given nonzero switching time, without appreciably diminishing
beneficiary gain. Thus, the optimal value of N th

B tends to be well above 1. By contrast, increasing
N th
D increases beneficiary gain substantially (by increasing their stability region), but also increases

donor pain. Overall, the impact of changes in N th
D is more dramatic than the impact of changes

in N th
B .

Figure 6.8 shows the mean response time for beneficiary jobs (rows 1 and 3) and the mean
response time for donor jobs (rows 2 and 4) as a function of ρB for different threshold values. In the
top half of the figure we study the effect of changing N th

B from 1 to 10 as we hold N th
D fixed at 1. In

the bottom half of the figure we study the effect of changing N th
D from 1 to 10 as we hold N th

B fixed
at 1. Throughout, XB and XD are exponential with mean 1, Ksw and Kba are exponential with
mean 0 or 1, and we fix ρD = 0.5.

As N th
B is increased from 1 to 10, Figure 6.8 shows only slightly higher response times for the

beneficiary jobs. Recall that increasing N th
B does not change the beneficiary stability region, although

the beneficiary queue is helped less frequently. In fact, under longer switching times, the effect of
raising N th

B on beneficiary mean response time is even more negligible, since the decreased frequency
of helping beneficiary jobs is counteracted by the positive benefit of wasting less time on switching.
We also see that increasing N th

B creates less penalty for the donor, as the donor does not have to
visit the beneficiary queue as frequently. Observe that when the switching times are nonzero, the
donor mean response time is always bounded above by the mean response time for a corresponding
M/GI/1 queue with setup time Kba, and this bound is tight for all N th

B values as ρB reaches its
maximum, since the beneficiary queue always exceeds N th

B in this case. We conclude that N th
B has

somewhat small impact; however higher values of N th
B are more desirable for the system as a whole

under longer switching time.
By contrast increasing N th

D from 1 to 10 has dramatic effects. In general (assuming non-zero
switching time) increasing N th

D can drastically improve beneficiary response time. This result is not
obvious, since increasing N th

D allows the donor to spend more time at the beneficiary queue before
leaving, but also means that when the donor leaves the beneficiary queue, the donor will be absent
for a longer time (since more time is needed to empty the donor queue). Another positive effect of
increasing N th

D is less switching overall. In the end, it is the enlargement of the stability region due
to higher N th

D which substantially improves the beneficiary response time when the switching times
are large and beneficiary load is high. When switching times are very short, increasing N th

D only
slightly worsens the mean response time for beneficiary jobs, as beneficiary jobs experience longer
intervals between help. In all cases evaluated, increasing N th

D results in much higher mean response
times for donor jobs, since, for N th

D > 1, the donor job arriving at an empty queue must wait for
another N th

D − 1 jobs to arrive before being served. We conclude that increasing N th
D can have large

impact, positive for the beneficiary jobs, but negative for the donor jobs. Thus setting N th
D is much

trickier than N th
B .

Finally we seek to determine good values for the thresholds, N th
B and N th

D , as a function of the
system parameters. Above, we have already observed some characteristics of N th

B . (i) Increasing
N th
B leads to lower gain for the beneficiary jobs and lower pain for the donor jobs. (ii) Perhaps less

obvious, the relative drop in gain for the beneficiary jobs is slight compared to the drop in pain for
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Effect of N th
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Figure 6.8: The mean response time for beneficiary jobs and donor jobs as a function of ρB. Graphs
show the case of (i) N th

B = N th
D = 1, (ii) N th

B = 10 and N th
D = 1, and (iii) N th

B = 1 and N th
D = 10.

XB and XD are exponential with mean 1. Switching times are exponential with mean 0 or 1 as
labeled, where K ≡ Ksw = Kba. ρD = 0.5.
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Figure 6.9: Optimal values of N th
B and N th

D with respect to overall mean response time, where XB

and XD have an exponential distribution with mean 1.

the donor jobs. This points towards choosing a higher value of N th
B . Thus, if the switching time

is zero, the optimal N th
B is 1 (or 0), since there is never any pain for the donor jobs. Figure 6.9

(a) and (b) show optimal values of N th
B for minimizing overall mean response time (over all jobs)

as a function of ρB and ρD under various switching times when N th
D = 1. The numbers on the

contour curves show the optimal N th
B at each load. For clarity we only show lines up to N th

B = 14.
The following additional characteristics of N th

B are implied by the figure: (iii) the optimal N th
B is an

increasing function of ρD and a decreasing function of ρB; (iv) increasing the switching time increases
the optimal N th

B .
Figure 6.9 (c) and (d) show optimal values of N th

D for minimizing overall mean response time
when N th

B = 1. First observe that (i) under low ρD or low ρB the optimal N th
D is 1. When ρD is low

and N th
D > 1, the pain for donor jobs is so huge that the optimal N th

D is always 1. When ρB is low,
the beneficiary gains little from increasing N th

D , while the donor can have nonnegligible pain, which
increases with N th

D ; hence the optimal N th
D is always 1. The following characteristics of N th

D are also
implied by the figure: (ii) the optimal N th

D is not a monotonic function of ρD, but is an increasing
function of ρB; (iii) increasing the switching time increases the optimal N th

D . Note that although
the range of the optimal values of N th

D is smaller than N th
B in Figure 6.9, Figure 6.8 tells us that the

performance effect of changing N th
D on the mean response time of both beneficiary jobs and donor

jobs is more significant than changing N th
B .

6.5 Concluding remarks

In this chapter, the performance of a threshold-based policy for reducing delay in cycle stealing is
studied via dimensionality reduction (DR), as its analysis involves multidimensional Markov chains.
DR allows us to evaluate the mean response time under a wide range of parameter settings, and this
leads to many insights into the characteristics and performance of cycle stealing.

Our analysis shows that cycle stealing can provide unbounded benefit even under high switching
costs. The unbounded benefit stems from the increased stability region under cycle staling, and
we have provided the necessary and sufficient condition for the stability under the threshold-based
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policy for reducing delay in cycle stealing. Interestingly, we find that the beneficiary side threshold,
N th
B , does not affect the stability region, but increasing the donor side threshold, N th

D , increases the
stability region. We also find that the impact of changes in N th

D on mean response time is more
dramatic than the impact of changes in N th

B

Switching times (both Ksw and Kba) also affect the stability region (of the beneficiary jobs), and
they also have a significant impact on the mean response time when the beneficiary is overloaded
without cycle stealing (ρB ≥ 1). However, when ρB < 1, we find that whereas the mean response time
of the donor jobs is still sensitive to the switching times, the mean response time of the beneficiary
jobs is far less sensitive.

An advantage of the analysis via DR is that the job sizes can be modeled as a PH distribution.
This allows us to study the impact of job size variability on performance. In particular, we study
the impact of the variability of the donor job sizes on the mean response time of the beneficiary jobs.
We find that the impact is surprisingly small when ρB < 1. This is in parallel to our findings in
Chapter 5, where we find that the variability of the long job sizes has a surprisingly small impact
on the mean response time of the short jobs under SBCS-ID (size-based task assignment with cycle
stealing under immediate dispatching).

In this chapter, we limit our discussion to a particular multiserver system, but the analysis via
DR can be extended to other multiserver systems in various ways. For example, we do not need
to require that the donor switches back immediately when N th

D is reached; we can allow the donor
to first complete the beneficiary job in progress. Completing the beneficiary job obviates the need
for checkpointing the job; however it sometimes reduces system performance, particularly when
beneficiary jobs have higher variability than donor jobs. We found that this change has almost no
effect on performance, even under long switching times (see [150]). It is also easy to generalize our
analysis to the case where the beneficiary requires a “switching time” before it can resume a job that
the donor started, and to the case where the donor must complete the beneficiary job in progress
before it switches back.

Another interesting case is where servers function as both beneficiaries and donors (two way
cycle stealing), as in [180]. Since the two way cycle stealing does not appear to be modeled as a
GFB process, DR does not allow us to analyze this model. In [180], the state of each processor is
assumed to be stochastically independent and identical to the state of the other processors; i.e. a
multidimensional Markov chain is decomposed into 1D Markov chains. In theory, the analysis of
the two way cycle stealing can be reduced to a boundary value problem (see Section 3.3), but this
leads to a complex expression whose evaluation often experiences numerical instability. It would be
interesting to pursue how computational approaches such as DR can be applied to an analysis of the
two way cycle stealing.
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Chapter 7

Designing robust resource allocation
policies

How to design robust resource allocation policies?

In this chapter, we study robustness of resource allocation policies. DR allows us to evaluate the
mean response time of a broad class of threshold-based policies under a wide range of load conditions,
and this leads to lessons useful in designing robust resource allocation policies.

7.1 Introduction

A common problem in multiserver systems is deciding how to allocate resources (e.g. operators, CPU
time, and bandwidth) among jobs so as to maximize system performance, e.g. with respect to mean
response time or throughput. Since good parameter settings typically depend on environmental
conditions such as system loads, an allocation policy that is optimal in one environment may provide
poor performance when the environment changes, or when the estimation of the environment is
wrong. In other words, the policy may not be robust. In this chapter, we design several multiserver
allocation policies, quantifying their performance with respect to mean response time and robustness,
and providing insights into which types of policies perform well in different operating environments.

7.1.1 Static and dynamic robustness

We consider a multiserver model that consists of two servers and two queues (Beneficiary-Donor
model), as shown in Figure 7.1. Jobs arrive at queue 1 and queue 2 according to Poisson processes
(or Markov modulated Poisson processes, as defined in Section 3.2) with average arrival rates λ1

and λ2, respectively. Jobs have exponentially distributed service demands; however, the running
time of a job may also depend on the affinity between the particular server and the particular
job/queue. Hence, we assume that server 1 (beneficiary server) processes jobs in queue 1 (type 1
jobs) with rate µ1 (jobs/sec), while server 2 (donor server) can process type 1 jobs with rate µ12,
and can process jobs in queue 2 (type 2 jobs) with rate µ2. We define ρ1 = λ1/µ1, ρ2 = λ2/µ2, and
ρ̂1 = λ1/(µ1 + µ12(1 − ρ2)). Note that ρ2 < 1 and ρ̂1 < 1 are necessary for the queues to be stable
under any allocation policy, since the maximum rate at which type 1 jobs can be processed is µ1,
from server 1, plus µ12(1 − ρ2), from server 2.
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Figure 7.1: The Beneficiary-Donor model.

The Beneficiary-Donor model has a wide range of applications in service industries such as call
centers and repair facilities. For example, in call centers, the donor server may be a bilingual operator,
and the beneficiary server may be a monolingual operator [58, 105, 176, 185, 186], or the donor server
may be a cross-trained or experienced operator who can handle all types of calls, and the beneficiary
server may be a specialized operator who is only trained to handle a specific type of calls [58, 176].
(See also Chapter 8) In a repair facility, the donor server may be a technician who can handle jobs
of any difficulty, and the beneficiary server may be a technician with limited expertise [61].

We design and evaluate allocation policies for the Beneficiary-Donor model with respect to three
objectives. First, as is standard in the literature, we seek to minimize the overall weighted mean
response time, c1p1E [R1] + c2p2E [R2], where ci is the weight (importance) of type i jobs, pi =
λi/(λ1 + λ2) is the fraction of type i jobs, and E [Ri] is the mean response time of type i jobs, for
i = 1, 2. Here, response time refers to the total time a job spends in the system. Below, we refer to
overall weighted mean response time simply as mean response time.

In addition to mean response time, we consider an additional metric, robustness, introducing two
types of robustness: static robustness and dynamic robustness. Static robustness measures robustness
against misestimation of load; to evaluate static robustness, we analyze the mean response time of
allocation polices for a range of loads to see how a policy tuned for one load behaves under different
loads. Dynamic robustness measures the robustness against fluctuations in load; to evaluate dynamic
robustness, we analyze the mean response time of allocation policies under Markov modulated Poisson
processes, where arrivals follow a Poisson process at each moment, but the arrival rate changes
over time.

7.1.2 State of the art in resource allocation policies for the Beneficiary-Donor
model

There has been a large amount of prior work on the Beneficiary-Donor model, the majority of which
has focused on proving the optimality of allocation policies in limiting or special cases. With respect
to calculating mean response times, only coarse approximations exist for most of the allocation
policies in our model. By contrast, dimensionality reduction (DR) developed in Chapter 3 allows us
to analyze these and other allocation policies with respect to mean response time, as well as static
and dynamic robustness.

One common allocation policy is the cµ rule [45], which biases in favor of jobs with high c (high
importance) and high µ (small expected size). Applying the cµ rule to our setting, server 2 serves
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type 1 jobs (rather than type 2 jobs) if c1µ12 > c2µ2, or queue 2 is empty. The cµ rule is provably
optimal when server 1 does not exist [45] or in the fluid limit [125, 182]. However, Harrison as well as
Squillante et. al. have shown that cµ rule may lead to instability even if ρ̂1 < 1 and ρ2 < 1 [71, 181]
More recently, Mandelbaum and Stolyar as well as van Mieghem have introduced and analyzed the
generalized cµ rule. However, in our model, the generalized cµ rule reduces to the cµ rule and hence
has the same stability issues [121, 126].

In light of this instability, Squillante et. al. and Williams have independently proposed a threshold-
based policy that, under the right choice of threshold value, improves upon the cµ rule with respect
to mean response time, guaranteeing stability whenever ρ̂1 < 1 and ρ2 < 1 [181, 205]. We refer to
this threshold-based policy as the T1 policy, since it places a threshold value, T1, on queue 1, so that
server 2 processes type 1 jobs only when there are at least T1 jobs of type 1, or if queue 2 is empty.
The rest of the time, server 2 works on type 2 jobs. This “reserves” a certain amount of work for
server 1, preventing server 1 from being under-utilized and server 2 from becoming overloaded, as
can happen under the cµ rule. Bell an Williams prove the optimality of the T1 policy for a model
closely related to ours in the heavy traffic limit [17].

However, studies by Ahn et. al. and Meyn suggest that the T1 policy is not optimal in general
[4, 125]. Ahn et. al. characterize the optimal policy with respect to minimizing the total holding cost
until all the jobs in the system at time zero leave the system, assuming that there are no arrivals
after time zero. They find that the optimal policy is in general a “flexible” T1 policy that allows

a continuum of T1 thresholds, {T (i)
1 }, where threshold T

(i)
1 is used when the length of queue 2 is

i. Meyn obtains, via a numerical approach, the optimal allocation policy in the Beneficiary-Donor
model when both queues have finite buffers. Although not proven, the optimal policy appears to be
a “flexible” T1 policy in the Beneficiary-Donor model.

All of the work above investigates a class of allocation policies that are optimal in limiting or spe-
cial cases. In contrast, there has been little work on the analysis and evaluation of the mean response
time of general allocation policies in our model, and no work evaluating robustness. Complicating
this problem is the fact that the analysis involves 2D Markov chains; i.e., the Markov chains need to
track both the number of type 1 jobs and the number of type 2 jobs. Hence, only approximate anal-
yses exist for most of allocation policies in our model. For example, Squillante et. al. derive a coarse
approximation for the mean response time of the T1 policy under Poisson arrivals based on vacation
models [181]. The mean response time of other simple allocation policies (in more general models)
such as (idle) cycle stealing, where server 2 works on type 1 jobs when queue 2 is empty, have also
been analyzed (with approximation) either by matrix analytic methods with state space truncation
[61, 185, 186] or by approximate solutions of a 2D Markov chain via state space decomposition [176].

7.1.3 Summary of results

A wide range of threshold-based allocation policies for the Beneficiary-Donor model can be analyzed
via DR by modeling the system as GFB processes, as discussed in Section 3.4. This allows us to
analytically study static and dynamic robustness as well as mean response time of these allocation
policies. In particular, DR allows us to evaluate the mean response time under the T1 policy,
proposed by Squillante et. al. and Williams [181, 205], for which only coarse approximations exist.
Our analysis will lead to the following conclusions.

• We first consider single-threshold policies, and study which queue should control the single
threshold. We find that it is better to determine when help is provided based on the beneficiary
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queue length (the T1 policy) rather than the donor queue length for all the cases that we study
(not just in the heavy traffic limit, as proved in [17]).

• Surprisingly, we find that the use of multiple thresholds improves upon the T1 policy only by
a small amount with respect to mean response time, although the optimal allocation policy
appears to be a “flexible” T1 policy, which uses an infinite number of thresholds [4, 125].

• We introduce two types of robustness: static robustness and dynamic robustness, and analyt-
ically study a wide range of threshold-based allocation policies with respect to both types of
robustness via DR. Surprisingly, we will see that policies that excel in static robustness do not
necessarily excel in dynamic robustness.

• Specifically, we find that an allocation policy with multiple thresholds can experience signifi-
cant benefit over allocation policies with a single threshold with respect to static robustness.
Illustrating this, we introduce the adaptive dual threshold (ADT) policy, which places two
thresholds on queue 1, and show this has significant advantage over single-threshold allocation
policies with respect to static robustness. The ADT policy operates like a T1 policy, but the
threshold value is self-adapted to the load.

• In contrast to this, we find that multiple thresholds surprisingly offer only small advantage
over a single threshold with respect to dynamic robustness.

The rest of this chapter is organized as follows. Section 7.2 discusses single-threshold allocation
policies, including the T1 policy. Section 7.3 discusses multiple threshold allocation policies, including
the ADT policy. In Sections 7.2-7.3, we evaluate the policies with respect to mean response time
and static robustness. In Section 7.4, we shift our interest to dynamic robustness.

7.2 Static robustness and mean response time of single-threshold
allocation policies

In this section, we analytically study the mean response time and static robustness of two single
threshold allocation policies: the T1 policy and the T2 policy. The T1 policy places a threshold, T1,
on queue 1, whereby server 2 serves type 1 jobs whenever the length of queue 1 is at least T1. Thus,
under T1, the beneficiary queue (queue 1) has control. The T2 policy places a threshold, T2, on
queue 2, whereby server 2 serves type 1 jobs whenever the length of queue 2 is below T2. In the T2
policy, the donor queue (queue 2) has control. Our analysis will show that the T1 policy is superior
to the T2 policy with respect to minimizing mean response time, but that the T2 policy is superior
with respect to static robustness.

7.2.1 Single-threshold allocation policies: T1 and T2

The T1 and T2 policies are formally defined as follows:

Definition 16 Let N1 (respectively, N2) denote the number of jobs at queue 1 (respectively, queue
2). The T1 policy with parameter T1 is characterized by the following set of rules, all of which are
enforced preemptively (preemptive-resume):
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Figure 7.2: Figure shows whether server 2 works on jobs from queue 1 or queue 2 as a function of
N1 and N2 under (a) the T1 policy with parameter T1 and (b) the T2 policy with parameter T2.

• Server 1 serves only its own jobs.

• Server 2 serves jobs from queue 1 if either (i) N1 ≥ T1 or (ii) N2 = 0 & N1 ≥ 2. Otherwise,
server 2 serves jobs from queue 2.

To achieve maximal efficiency, we assume the following exceptions. When N1 = 1 and N2 = 0, the
job is processed by server 2 if and only if µ1 < µ12. Also, when T1 = 1 and N1 = 1, the job in queue
1 is processed by server 2 if and only if µ1 < µ12 regardless of the number of type 2 jobs.

Definition 17 The T2 policy with parameter T2 is characterized by the following set of rules, all of
which are enforced preemptively (preemptive-resume):

• Server 1 serves only its own jobs.

• Server 2 serves jobs from queue 1 if N2 < T2. Otherwise server 2 serves jobs from queue 2.

When N1 = 1 and N2 = 0, we allow the same exception as in the T1 policy.

Below, the T1 policy with parameter t1 is also denoted by the T1(t1) policy, and the T2 policy with
parameter t2 is also denoted by the T2(t2) policy.

Figure 7.2 shows the jobs processed by server 2 as a function of N1 and N2 (a) under the T1
policy and (b) under the T2 policy. Note that the T1(1) policy is the cµ rule when c1µ12 > c2µ2,
and the T1(∞) policy is the cµ rule when c1µ12 < c2µ2; thus the cµ rule falls within the broader
class of T1 policies.

7.2.2 Stability under single-threshold allocation policies

We first consider the stability conditions for the T1 and T2 policies. In the T1 policy, higher T1

values yield the larger stability regions, and in the limit as T1 → ∞, the queues under the T1 policy
are stable as long as ρ̂1 < 1 and ρ2 < 1. In contrast, the T2 policy guarantees stability whenever
ρ̂1 < 1 and ρ2 < 1 for any finite T2. The T2 policy clearly dominates the T1 policy in this respect.
The stability conditions under the T1 and T2 policies are illustrated in Figure 7.3.

More formally, the necessary and sufficient conditions for the stability under the T1 and T2
policies are given by the following theorems.
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Figure 7.3: Stability conditions for the T1 policies, T1(1) and T1(5), and for the T2 policy. Upper
bounds on ρ2 are plotted as functions of ρ1.

Theorem 14 Under the T1 policy with parameter T1 < ∞, queue 1 is stable if and only if λ1 <
µ1 + µ12. Stability of queue 2 is given by the following conditions:

• For 1 < T1 <∞, queue 2 is stable if and only if

ρ2 <





1−ρT1
1

1−ρT1
1 +

(1−ρ1)ρ
T1
1

1−ρ1+µ12/µ1

if ρ1 6= 1,

T1
T1+λ1/µ12

if ρ1 = 1.

(7.1)

• For T1 = 1, if µ1 ≥ µ12, queue 2 is stable if and only if equation (7.1) holds with T1 = 2.

• For T1 = 1, if µ1 < µ12, queue 2 is stable if and only if

ρ2 <
1

1 + ρ1+λ1/µ12

1−ρ1+µ12/µ1

.

Proof: We prove only the case when T1 > 1 and ρ1 6= 1. The case when T1 = 1 or ρ1 = 1 can be
proved in a similar way. Let N = (N1, N2) be the joint process of the number of jobs in queue 1 and
queue 2, respectively. The expected length of a “busy period,” during which N1 ≥ T1, is finite if and
only if λ1 < µ1 + µ12. This proves the stability condition for queue 1.

Based on the strong law of large numbers, the necessary and sufficient condition for stability of
queue 2 is ρ2 < F , where F denotes the time average fraction of time that server 2 processes jobs
from queue 2 given N2 > 0. Below, we derive F . Let Ñ = (Ñ1, Ñ2) be a process in which Ñ behaves
the same as N except that it has no transition from Ñ2 = 1 to Ñ2 = 0. Consider a semi-Markov
process of Ñ1, where the state space is (0,1,2,...,T1 − 1,T+

1 ). The state n denotes there are n jobs in
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queue 1 for n = 0, 1, ..., T1 − 1, and the state T+
1 denotes there are at least T1 jobs in queue 1. The

expected sojourn time is 1/λ1 for state 0, 1/(λ1+µ1) for states n = 1, ..., T1−1, and b = 1/(µ1+µ12)
1−λ1/(µ1+µ12)

for state T+
1 , where b is the mean duration of the busy period in an M/M/1 queue with arrival rate

λ1 and service rate µ1 +µ12. The limiting probabilities for the corresponding embedded discrete time
Markov chain are πn = (1 + ρ1)ρ

n−1
1 π0 for n = 1, ..., T1 − 1 and πT+

1
= ρT1

1 π0, where

π0 =
1 − ρ1

(1 + ρT1−1
1 )(1 − ρ1) + (1 + ρ1)(1 − ρT1−1

1 )
.

As server 2 can work on queue 2 if and only if Ñ1 < T1, the fraction of time that server 2 can work
on queue 2 is

F =
π0/λ1 + (1 − π0 − πT+

1
)/(λ1 + µ1)

π0/λ1 + (1 − π0 − πT+
1

)/(λ1 + µ1) + bπT+
1

=
1 − ρT1

1

1 − ρT1
1 +

(1−ρ1)ρ
T1
1

1−ρ1+µ12/µ1

.

The following corollary is an immediate consequence of Theorem 14.

Corollary 4 Under the T1 policy, the stability region increases with T1 (i.e., the right hand side of
equation (7.1) is an increasing function of T1).

Theorem 15 Under the T2 policy with T2 <∞, queue 1 is stable if and only if ρ̂1 < 1, and queue 2
is stable if and only if ρ2 < 1.

Theorem 15 can be proved in a similar way as Theorem 14.

7.2.3 Mean response time of single-threshold allocation policies

In this section, we characterize the performance of the T1 and T2 policies. In particular, we will
find that

• The characteristics of the T1 policy are quite different depending on whether queue 2 prefers
type 1 or type 2 (c1µ12 ≤ c2µ2 or c1µ12 > c2µ2). Specifically, the optimal T1 threshold
is typically finite when c1µ12 > c2µ2, and typically infinite when c1µ12 ≤ c2µ2, where the
optimality is with respect to minimizing mean response time.

• The optimal T2 threshold for the T2 policy is typically small.

• The mean response time under the T1 policy is at least as low as that under the T2 policy for
all the cases that we study.

Case 1: c1µ12 ≤ c2µ2

We first consider the case where c1µ12 ≤ c2µ2, where server 2 “prefers” to run its own jobs in a cµ
sense. In this case, we will see that the T1(∞) policy typically minimizes mean response time in
the class of T1 policies, and the T2(1) policy typically minimizes mean response time in the class of
T2 policies. Note that the T1(∞) policy and the T2(1) policy are identical, and they also coincide
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with the policy of following the cµ rule when c1µ12 ≤ c2µ2. Note also that if T1 = ∞ minimizes
the mean response time of the T1 policy, T1 = ∞ is the optimal choice with respect to both mean
response time and stability region, since T1 = ∞ maximizes the stability region of the T1 policy
(see Corollary 4). Likewise, if T2 = 1 minimizes the mean response time of the T2 policy, T2 = 1 is
the optimal choice with respect to both mean response time and stability region, since the stability
region of the T2 policy is independent of its parameter T2 (see Theorem 15).

In fact, when c1 = c2 (and c1µ12 ≤ c2µ2), the following theorems hold (the theorem may extend
to the case of general c1 and c2 with c1µ12 ≤ c2µ2, but the general case is not proved).

Theorem 16 If c1 = c2 and c1µ12 ≤ c2µ2, the mean response time of the T1 policy is minimized at
T1 = ∞.

Proof: Due to Little’s law, it is sufficient to prove that the number of jobs completed under the
T1(∞) policy is stochastically larger than those completed under the T1 policy with T1 <∞ at any
moment. Let N inf(t) = (N inf

1 (t), N inf
2 (t)) be the joint process of the number of jobs in queue 1 and

queue 2, respectively, at time t when T1 = ∞. Let Nfin(t) = (Nfin
1 (t), Nfin

2 (t)) be defined analogously
for T1 <∞. With T1 = ∞, server 2 processes type 2 jobs as long as there are type 2 jobs, and thus
N inf

1 (t) is stochastically larger than Nfin
1 (t) for all t. Consequently, the number of jobs completed by

sever 1 is stochastically smaller when T1 < ∞ than when T1 = ∞ at any moment, since server 1 is
work-conserving.

As long as server 2 is busy, the number of jobs completed by sever 2 is stochastically smaller
when T1 <∞ than when T1 = ∞, since µ12 ≤ µ2. Also, using coupling argument, we can show that
the system with T1 = ∞ has server 2 go idle (both queues empty) earlier (stochastically) than the
T1 <∞ system. Thus, when server 2 is idle the number of jobs completed by the T1 = ∞ system is
stochastically larger. Thus, the number of jobs completed (either by server 1 or by server 2) under
the T1(∞) policy is stochastically larger than that completed under the T1 policy with T1 < ∞.

Theorem 17 If c1 = c2 and c1µ12 ≤ c2µ2, the mean response time of the T2 policy is minimized at
T2 = 1.

Theorem 17 can be proved in the same way as Theorem 16: in the proof of Theorem 17, the T1
policy with parameter T1 = ∞ is replaced by the T2 policy with parameter T2 = 1, and the T1
policy with parameter T1 <∞ is replaced by the T2 policy with parameter T2 > 1.

Further, even when c1 6= c2 (and c1µ12 ≤ c2µ2), our analysis of the T1 and T2 policies via DR
shows that the T1(∞) policy minimizes mean response time in the class of T1 policies, and the T2(1)
policy minimizes mean response time in the class of T2 policies, for all the cases we have considered.
Figure 7.4 shows a subset of such numerical analyses, where c1µ12 and c2µ2 are chosen to be the
critical case: c1µ12 = c2µ2. In the top half, c1 = 1 and c2 = 4, and in the bottom half, c1 = 4
and c2 = 1. Different columns correspond to different µ1’s. In each plot, mean response time is
evaluated at three loads, ρ̂1 = 0.8, 0.9, 0.95, by changing λ1. Although figures are not shown, when
c1µ12 < c2µ2, the mean response time under non-optimized T1 and T2 policies becomes much higher
than the optimized T1 and T2 policies (T1(∞) and T2(1)), as compared to the case of c1µ12 = c2µ2.
This makes intuitive sense, since non-optimized policies have a bias toward jobs with smaller cµ
values (less important and/or larger jobs).
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Mean response time of T1 and T2: c1µ12 = c2µ2 = 1 and c1 6= c2
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(a) c1µ1 = 1
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(b) c1µ1 = 1
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(c) c1µ1 = 4

Figure 7.4: The mean response time under the T1 policy as a function of T1 (rows 1 and 3) and the
mean response time under the T2 policy as a function of T2 (rows 2 and 4) when c1µ12 = c2µ2 = 1
and c1 6= c2. Here, ρ2 = 0.6 are fixed.
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Case 2: c1µ12 > c2µ2

In the rest of this chapter, we limit our attention to the case of c1µ12 > c2µ2, where server 2 “prefers”
to run type 1 jobs in a cµ sense. Note that condition c1µ12 > c2µ2 is achieved when type 1 jobs
are smaller than type 2 jobs, when type 1 jobs are more important than type 2 jobs, and/or in
the pathological case when type 1 jobs have good affinity with server 2. (These, in addition, may
motivate user of the Beneficiary-Donor model, giving smaller or more important jobs better service.)
We will see that, for the T1 policy, the optimal T1 threshold is typically finite when c1µ12 > c2µ2, in
contrast to the cµ rule. For the T2 policy, we will see that the optimal T2 threshold is usually small,
but not necessarily T2 = 1.

Figure 7.5 shows the mean response time under the T1 policy as a function of T1 (rows 1 and 3),
and the mean response time under the T2 policy as a function of T2 (rows 2 and 4) when c1µ12 > c2µ2

(and c1 = c2). Throughout, c1µ12 = 1 is fixed, and we set c2µ2 = 1
16 in the top half, and c2µ12 = 1

4 in
the bottom half. Again, different columns correspond to different µ1’s. In each plot, mean response
time is evaluated at three loads, ρ̂1 = 0.8, 0.9, 0.95, by changing λ1

In Figure 7.5 (rows 1 and 3), we see that optimal T1 is finite and depends on environmental
conditions such as load (ρ̂1) and job sizes (µ1). By Theorem 14, a larger value of T1 leads to a larger
stability region, and hence there is a tradeoff between good performance at the estimated load,
(ρ̂1, ρ2), which is achieved at smaller T1, and stability at higher ρ̂1 and/or ρ2, which is achieved at
larger T1. Note also that the curves have sharper “V shapes” in general at higher ρ̂1 and/or smaller
c2µ2, which complicates the choice of T1, since mean response time quickly diverges to infinity as T1

becomes smaller. Also, when ρ2 is lower (and thus ρ1 is higher for a fixed ρ̂1), the optimal T1 tends
to become smaller, and hence the tradeoff between low mean response time at the estimated load
and stability at higher loads is more significant. This makes intuitive sense, since at lower ρ2, server
2 can help more.

In Figure 7.5 (rows 2 and 4), we see that the mean response time of the T2 policy is minimized
at a small T2, as in the case of c1µ12 ≤ c2µ2. However, in contrast to the case of c1µ12 ≤ c2µ2,
the optimal T2 is not necessarily 1 when c1µ12 > c2µ2. Also, observe that the mean response time
under the optimized T2 policy can be much higher than that under the optimized T1 policy. This
difference becomes larger when µ1 is smaller (or µ12 is larger), since the type 1 jobs are better served
by server 2 and the optimized T1 policy can give more bias toward the type 1 jobs than T2 policies.

Although figures are not shown, we find that the above findings also hold when c1 6= c2 (and
c1µ12 > c2µ2). That is, the value of the cµ product primarily determines the qualitative behavior of
the T1 policy, and individual values of c and µ have smaller effect.

7.2.4 Static robustness of single-threshold allocation policies

We next study static robustness of the T1 and T2 policies by evaluating the mean response time of
these policies under a range of loads. In particular, we examine how a policy (T1 or T2) tuned for
a certain load behaves at other loads.

Figure 7.6 (top row) highlights static robustness of the T1 policy, plotting the mean response
time of two T1 policies as a function of ρ1 (only λ1 is changed) in column (a) and as a function of
ρ2 (only λ2 is changed) in column (b). For example, in column (b), T1 = 3 is the optimal threshold
when ρ2 = 0.4. However, if it turns out that ρ2 = 0.8 is the actual load, then the T1(3) policy leads
to instability (infinite mean response time), while the T1(19) policy minimizes mean response time.
Thus, choosing a higher T1 (=19) guarantees stability against misestimation of ρ2, but results in worse
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Mean response time of T1 and T2: c1µ12 > c2µ2
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(c) c1µ1 = 4

Figure 7.5: The mean response time under the T1 policy as a function of T1 (rows 1 and 3), and
the mean response time under the T2 policy as a function of T2 (rows 2 and 4), when c1µ12 > c2µ2.
Here, c1 = c2 = 1, c1µ12 = 1, and ρ2 = 0.6 are fixed.
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Static robustness: T1 policy
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Static robustness: T2 policy
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Static robustness: T1 vs. T2
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Figure 7.6: Static robustness of single-threshold allocation policies is illustrated by plotting their
mean response time as functions of (a) ρ1 (ρ2 = 0.6 is fixed) and (b) ρ2 (ρ1 = 1.15 is fixed). Here,
c1 = c2 = 1, c1µ1 = c1µ12 = 1, and c2µ2 = 1

16 are fixed. Bottom row compares the mean response
time under the “optimized” T2 policy and two T1 policies.
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performance at the estimated load. Similar observation holds for stability against misestimation of
ρ1 (see column (a)), although the T1 policy appears to have more stability against misestimation of
ρ1 than against misestimation of ρ2. Overall, we conclude that the T1 policy optimized at a lower
load is poor with respect to static robustness. While it is possible to tune the T1 policy for higher
loads (by choosing a larger T1), this would degrade mean response time at lower loads.

Figure 7.6 (middle row) illustrates the static robustness of the T2 policy, plotting the mean
response time of three T2 policies as functions of ρ1 and ρ2, as in the top row. In both columns (a)
and (b), the T2(2) policy minimizes the mean response time in the class of T2 policies for a range of
loads. That is, T2 = 2 is the optimal choice for these parameter settings (c1, c2, µ1, µ2, µ12) regardless
of the loads (λ1, λ2). Recall that the T2 policy is optimized at small T2 values (T1 = 1 or 2) for a
wide range of parameter settings (see Figures 7.4-7.5). Since the T2 policy has the widest possible
stability region regardless of its T2 value, its mean response time is not very sensitive to the changes
(or misprediction) in loads for a wider range of load, as compared to the T1 policy with parameter
T1 <∞. In this sense, the T2 policy has more static robustness than the T1 policy.

However, Figure 7.6 (bottom) shows that the mean response time under the optimized T2 policy,
T2(2), can be much higher than that under the T1 policy optimized at each load, which is in parallel
to our previous findings (see Figure 7.5). For example, in column (b), the mean response time
under T2(2) is twice as high as that under T1(3) when ρ2 = 0.4, and the mean response time under
T2(2) is eight times as high as that under T1(19) when ρ2 = 0.8. Only at very high ρ2, the mean
response time of T2(2) becomes lower than that of T1(19). Similar observation holds for column (a)
as well. We conclude that the T2 policy performs worse than the T1 policy with respect to mean
response time.

7.3 Static robustness and mean response time of multi-threshold
allocation policies

The tradeoff between the low mean response time of the T1 policy and good static robustness of the
T2 policy motivates us to introduce multi-threshold allocation policies: T1T2 and ADT policies. The
T1T2 policy places a threshold on each queue, while the ADT policy places two thresholds on queue
1 as well as a threshold on queue 2. We will study how the mean response time and static robustness
of these multi-threshold allocation policies compare to that of the single-threshold allocation policies.

7.3.1 T1T2 policy

One might argue that the stability or static robustness issue of the T1 policy with small optimal T1

is resolved simply by placing an additional threshold, T2, on queue 2, so that whenever the length
of queue 2, N2, exceeds T2, server 2 works on type 2 jobs regardless of the length of queue 1, thus
preventing queue 2 from becoming unstable. We refer to this policy as the T1T2 policy. Surprisingly,
we will see that the T1T2 policy improves upon static robustness of the T1 policy only slightly. Since
the T1T2 policy generalizes the T1 policy (by setting T2 = ∞, the T1T2 policy is reduced to the
T1 policy), one might also expect that the mean response time of the optimized T1T2 policy could
be strictly better than that of the optimized T1 policy as long as T2 < ∞. This surprisingly turns
out to be largely false; the mean response time of the optimized T1T2 policy does not appreciably
improve upon that of the optimized T1 policy.

The T1T2 policy is formally defined as follows:
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Figure 7.7: Figure shows whether server 2 works on jobs from queue 1 or queue 2 as a function of
N1 and N2 under the T1T2 policy with parameters (T1, T2).

Definition 18 The T1T2 policy with parameters (T1, T2) operates as the T1 policy with parameter
T1 if N2 < T2; otherwise, it operates as the T2 policy with parameter T2.

Figure 7.7 shows the jobs processed by server 2 a function of N1 and N2 under the T1T2 policy.
Below, the T1T2 policy with parameters (t1, t2) is also denoted by the T1T2(t1, t2) policy.

The stability region of the T1T2 policy is the same as that of the T2 policy; i.e. the T1T2 policy
has the widest possible stability region regardless of its parameters (T1, T2). This makes intuitive
sense, since a T1T2 policy behaves like a T2 policy at high load. The following theorem can be
proved in a similar way as Theorem 14.

Theorem 18 Under the T1T2 policy with parameters (T1, T2) where T2 < ∞, queue 1 is stable if
and only if ρ̂1 < 1, and queue 2 is stable if and only if ρ2 < 1.

Figure 7.8 (top row) shows the mean response time under the T1T2 policy with various T2 values
(a) as a function of ρ1 (b) as a function of ρ2. In column (a), T1 = 3 and T2 ranges over 1, 40, and
100. In column (b), T1 = 5 and T2 ranges over 1, 10, and 100. Figure 7.8 (bottom row) compares
the mean response time under the T1T2 policy with a “good” T2 value (T2 = 40 in column (a),
and T2 = 10 in column (b)) with that under two T1 policies studied in Figure 7.6. Note that the
parameter settings are exactly the same as in Figure 7.6. The T1T2 policy with parameters (3,T2)
studied in column (b) is designed to provide a wider stability region with similar mean response time
to the optimized T1 policy at ρ2 = 0.4. Recall that the T1 policy achieves its lowest mean response
time, given ρ2 = 0.4, when T1 = 3 (Figure 7.6). Likewise, the T1T2 policy with parameters (5,T2)
studied in column (a) is designed to provide a wider stability region with similar mean response time
to the T1(5) policy.

Figure 7.8 shows that when T2 is too large (respectively, too small), the T1T2 policy with
parameters (T1, T2) behaves like the T1 policy with parameter T1 (respectively, the T2 policy with
parameter T2). Specifically, by comparing the T1T2(3,100) policy and the T1(3) policy in column
(b), we observe that the T1T2 policy with parameters (3,100) behaves like the T1(3) policy. Further,
by comparing the T1T2(3,1) policy in column (b) and the T2(1) policy shown in the middle row
of Figure 7.6(b), we observe that the T1T2 policy (3,1) behaves like the T2(1) policy. Similar
observation holds for column (a) as well.
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Figure 7.8: Static robustness of the T1T2 policy is illustrated by plotting their mean response time
as functions of (a) ρ1 (ρ2 = 0.6 is fixed) and (b) ρ2 (ρ1 = 1.15 is fixed). Here, c1 = c2 = 1,
c1µ1 = c1µ12 = 1, and c2µ2 = 1

16 are fixed. The top row shows the mean response time under the
T1T2 policy with various (T1, T2) threshold values, and the bottom row compares the mean response
time under the “optimized” T1T2 policy and two T1 policies.

When T2 is chosen appropriately, the T1T2 policy has a slight advantage over the T1 policy.
The bottom row of Figure 7.8(b) shows that when ρ2 = 0.4, the mean response time under the
T1T2(3,10) policy is comparable to that under the T1(3) policy. For higher ρ2 (specifically, ρ2 > 0.6),
the T1T2(3,10) policy provides lower mean response time than the T1(3) policy, hence being more
robust. However, the range of load for which the T1T2(3,10) policy provides low response time is
limited. For example, when ρ2 = 0.8, the mean response time under the T1T2 policy with parameters
(3,T2) with any value of T2 (the top row of Figure 7.8(b)) is significantly higher than the T1(19)
policy. Again, similar observation holds for column (a) as well.

The inadequacy of the T1T2 policy is primarily due to the fact that the T1T2 policy operates
like the T2 policy at higher load, but the mean response time of the T2 policy is typically poor at
any load as compared to the optimized T1 policy. This motivates us to introduce a new policy, the
ADT policy.
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Figure 7.9: Figure shows whether server 2 works on jobs from queue 1 or queue 2 as a function of

N1 and N2 under the ADT policy with parameters (T
(1)
1 , T

(2)
1 , T2).

7.3.2 The adaptive dual threshold (ADT) policy

The key idea in the design of the ADT policy is that, in contrast to the T1T2 policy, the ADT
policy is always operating as a T1 policy, but unlike the standard T1 policy, the value of T1 adapts,
depending on the length of queue 2, to provide static robustness. Specifically, the ADT policy

behaves like the T1 policy with parameter T
(1)
1 if the length of queue 2 is less than T2 and otherwise

like the T1 policy with parameter T
(2)
1 , where T

(2)
1 > T

(1)
1 .

We will see that the ADT policy, unlike the T1T2 policy, is far superior to the T1 policy with
respect to static robustness, due to the dual thresholds on queue 1. In addition, one might also
expect that the mean response time of the optimized ADT policy will significantly improve upon
that of the optimized T1 policy, since the ADT policy generalizes the T1 policy (the ADT policy is

reduced to the T1 policy by setting T
(1)
1 = T

(2)
1 ). However, this turns out to be largely false, as we

see below. Formally, the ADT policy is characterized by the following rule.

Definition 19 The ADT policy with parameters (T
(1)
1 , T

(2)
1 , T2) operates as the T1 policy with pa-

rameter T
(1)
1 if N2 ≤ T2; otherwise, it operates as the T1 policy with parameter T

(2)
1 .

Below, the ADT policy with parameters (t
(1)
1 , t

(2)
1 , t2) is also denoted by the ADT(t

(1)
1 , t

(2)
1 , t2) policy.

Figure 7.9 shows the jobs processed by server 2 under the ADT policy as a function of N1 and
N2. At high enough ρ̂1 and ρ2, N2 usually exceeds T2, and the policy behaves similar to the T1

policy with parameter T
(2)
1 . Thus, the stability condition for the ADT policy is the same as that

for the T1 policy with parameter T
(2)
1 . The following theorem can be proved in a similar way as

Theorem 14.

Theorem 19 The stability condition for the ADT policy with parameters (T
(1)
1 , T

(2)
1 , T2) is given by

the stability condition for the T1 policy with parameter T
(2)
1 (Theorem 14).

Static robustness of the ADT policy

Figure 7.10 illustrates static robustness of the ADT policy, showing the mean response time under
the ADT policy (a) as a function of ρ1 and (b) as a function of ρ2. For comparison, the mean
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response time under two T1 policies are plotted with dotted lines. The parameter settings in the
middle row are exactly the same as those in Figure 7.6. In the top and bottom rows, only the value
of c1µ1 is changed, as labeled.

Figure 7.10 shows that the ADT policy with parameters (T
(1)
1 , T

(2)
1 , T2) achieves at least as low

mean response time as the better of the two T1 policies, one with parameter T
(1)
1 and the other

with parameter T
(2)
1 , throughout the range of ρ1 and ρ2, if T2 is chosen appropriately. In plotting

Figure 7.10, we found “good” T2 values manually by trying a few different values so that the ADT
policy provides low mean response time throughout the range of load, which took only a few minutes.

Observer that if T2 is set too low, the ADT policy behaves like the T1 policy with parameter T
(2)
1 ,

degrading the mean response time at lower loads, since T
(2)
1 is larger than the optimal T1 in the T1

policy at lower loads. If T2 is set too high, the ADT policy behaves like the T1 policy with parameter

T
(1)
1 . This worsens the mean response time at higher loads.

Static robustness of the ADT policy can be attributed to the following. The dual thresholds
on queue 1 make the ADT policy adaptive to misestimation of load, in that the ADT policy with

parameters (T
(1)
1 , T

(2)
1 , T2) operates like the T1 policy with parameter T

(1)
1 at the estimated load and

like the T1 policy with parameter T
(2)
1 at a higher load, where T

(2)
1 > T

(1)
1 . Thus, server 2 can help

queue 1 less when there are more type 2 jobs, preventing server 2 from becoming overloaded. This
leads to the increased stability region and improved performance.

Figure 7.10 makes an additional point about the effect of c1µ1. When c1µ1 is smaller (top row),
the difference in the stability regions of the two T1 policies becomes smaller, and the difference in the
mean response times of the two T1 policies at low loads becomes larger. Thus, the benefit of the ADT
policy over the T1 policy becomes smaller at smaller c1µ1, since the T1 policy with smaller T1 can
provide low mean response time with only a slightly reduced stability region. This makes intuitive
sense, since in the limit as c1µ1 → 0, the Beneficiary-Donor model reduces to a single (donor) server
with two queues, where the policy following the cµ rule is provably optimal [45]. Also, when c1µ1

is larger (bottom row), the difference in the stability region of the two T1 policies becomes larger,
and the difference in the mean response times of the two T1 policies at low loads becomes smaller.
Again, the benefit of the ADT policy over the T1 policy becomes smaller at larger c1µ1, since the
T1 policy with larger T1 can provide a wide stability region with only a slightly high mean response
time at lower loads. This makes intuitive sense, since the jobs in queue 1 are much better served by
server 1 and the help from server 2 becomes negligible when c1µ1 is much larger than c1µ12. Thus,
the ADT policy is most effective when c1µ1 and c1µ12 are comparable and c1µ12 > c2µ2, where the
T1 policy with 1 < T1 < ∞ provides lower mean response time than T1(1) and T1(∞) but suffers
from static robustness.

Mean response time of the ADT policy

We have already seen the benefits of the ADT policy when the load is not exactly known (static
robustness). One might also expect that, even when the load is known exactly, the ADT policy
might significantly improve upon the T1 policy with respect to mean response time. Earlier work of
Ahn et al. and Meyn provides some support for this expectation [4, 125]. For example, Meyn shows
via numerical examples that, in the case of finite buffers for both queues, the policy that minimizes

mean response time is a “flexible” T1 policy which allows a continuum of T1 thresholds, {T (i)
1 },

where threshold T
(i)
1 is used when the length of queue 2 is i [125]. The ADT policy can be seen as
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Figure 7.10: Static robustness of the ADT policy is illustrated by plotting the mean response time
as functions of (a) ρ1 (ρ2 = 0.6 is fixed) and (b) ρ2 (ρ1 = 1.15 is fixed). Here, c1 = c2 = 1,
c1µ1 = c1µ12 = 1, and c2µ2 = 1

16 are fixed. For comparison, the mean response time under two T1
policies are also shown.
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Figure 7.11: Comparison of the ADT policy with the T1 policy with respect to the mean response
time. The percentage change (%) in the mean response time of the (locally) optimized ADT policy
over the optimized T1 policy at each given load is shown as a function of ρ2 (0% corresponds to the
T1 policy optimized at each load). Here, c1 = c2 = 1, c1µ1 = c1µ12 = 1, and ρ1 = 1.15 are fixed.

an approximation of a “flexible” T1 policy, using only two T1 thresholds.
To evaluate the benefit of the ADT policy, we compare it over a range of ρ2 against the T1 policy

optimized for the given ρ2. Since the search space of the threshold values for the ADT policy is large,
we find locally optimal threshold values, which are found to be optimal within a search space of ±5
for each threshold. We measure the percentage change in the mean response time of ADT versus T1:

E [RADT ] − E [RT1]

E [RT1]
× 100 (%), (7.2)

where E [RX ] denotes the mean response time in policy X ∈ {T1,ADT}.
Figure 7.11 shows the percentage reduction in the mean response time of the locally optimized

ADT policy over the T1 policy optimized at each ρ2, as a function of ρ2. The parameter settings
are exactly the same as those in Figure 7.6(b). Figure 7.11 shows that, surprisingly, the benefit of
the ADT policy is quite small with respect to mean response time under fixed Poisson arrivals; the
improvement of the ADT policy is larger at moderately high ρ2 and at smaller c2µ2 value, but overall
the improvement is typically within 3%. We conjecture that adding more thresholds (approaching
the flexible T1 policy) will not improve mean response time appreciably, given the small improvement
from one to two thresholds. Thus, whereas the ADT policy has significant benefits over the simpler
T1 policy with respect to static robustness, the two policies are comparable with respect to mean
response time.

7.4 Dynamic robustness of threshold based policies

We have seen, in Section 7.3.2, that the mean response time of the optimized ADT policy is similar
to that of the optimized T1 policy, although the ADT policy has greater static robustness. Note
that this observation is based on the assumption of Poisson arrivals. Consider, to start, an alternate
scenario, in which the load at queue 2 fluctuates. For example, a long high load period (e.g., ρ1 = 1.15
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and ρ2 = 0.8) is followed by a long low load period (e.g., ρ1 = 1.15 and ρ2 = 0.4), and the high
and low load periods alternate. The T1 policy with a fixed threshold value must have a high mean
response time either during the high load period or during the low load period (recall Figure 7.6).
On the other hand, the ADT policy may provide low mean response time during both high and
low load periods, since the T1 threshold value is self-adapted to the load (recall Figure 7.10). In
this section, we study the mean response time of the ADT policy when the load fluctuates, or the
dynamic robustness of the ADT policy.

We use a Markov modulated Poisson process of order two (MMPP(2)), as defined in Section 3.2,
as an arrival process. An MMPP(2) has two types of periods, which we denote as the high load
period and the low load period. The duration of each type of period has an exponential distribution,
which can differ in each type of period. During the high (respectively, low) load period, the arrival
process follows a Poisson process with rate λH (respectively, λL), where λH > λL.

Figure 7.12 shows the percentage change in the mean response time of the (locally) optimized
ADT policy over the optimized T1 policy, when arrivals at queue 1 follow a Poisson process and
arrivals at queue 2 follow an MMPP(2). The arrival rates in the MMPP(2) are chosen such that the
load during the high load period is ρ2 = 0.8 and the load during the low load period is ρ2 = 0.2, 0.4,
or 0.6, while ρ1 = 1.15 is fixed throughout. Other parameter settings are the same as in Figure 7.11.
We choose the horizontal axis to be the expected number of type 2 arrivals during a high load period,
and the three lines (solid, dashed, and dotted) to be different expected number of type 2 arrivals
during a low load period. Note that since there are less frequent arrivals during a low load period,
having the same number of arrivals during the high and low load periods implies that the low load
period is longer. Thus, the number of arrivals during each period is an indicator of how frequently
the load changes, which we find to be an important parameter in studying dynamic robustness. The
threshold values of the optimized T1 policy and the (locally) optimized ADT policy are chosen such
that the overall weighted mean response time is minimized for each given arrival process.

The first thing to notice in Figure 7.12 is that the improvement of the ADT policy over the
T1 policy is smaller when the duration of the high and low load periods is shorter, or equivalently
when there are less arrivals in each period. This makes intuitive sense, since the MMPP(2) reduces
to a Poisson process when the high and low load periods alternate infinitely quickly, and under
the Poisson process, the optimized T1 policy and the optimized ADT policy provide similar mean
response time (Section 7.3.2).

However, even when the durations are longer, the performance improvement of the ADT policy
over the T1 policy is comparatively small (3 to 25%). This is mainly because the mean response time
of the jobs arriving during the high load period tends to dominate the overall mean response time
for two reasons: (i) the response time of jobs arriving during the high load period is much higher
than that of jobs arriving during the low load period, partially due to the fact that any reasonable
allocation policy (such as the optimized T1 policy and the optimized ADT policy) can provide low
mean response time at low load, and (ii) assuming that a low load period and a high load period
have the same duration, there are more arrivals during a high load period. Since the T1 policy with
a fixed T1 threshold can provide low mean response time for the jobs arriving during the high load
period, it can provide low overall mean response time. (Of course, if there were many more arrivals
during the low load period than the high load period, the T1 threshold would be adjusted.)

It is only when the jobs arriving during the high load period and the jobs arriving during the
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Figure 7.12: Dynamic robustness of the ADT policy and the T1 policy. The percentage change (%) in
the mean response time of the (locally) optimized ADT policy over the optimized T1 policy for each
given MMPP(2), shown as a function of the expected number of arrivals during a high load period,
E [NH ], and during a low load period, E [NL]. A negative percentage indicates the improvement of
ADT over T1. Here, c1 = c2 = 1, c1µ1 = c1µ12 = 1, and ρ1 = 1.15 are fixed.
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low load period have roughly equal contribution to the overall mean response time 1 that the ADT
policy can have appreciable improvement over the T1 policy. For example, Figure 7.12 suggests that
the ADT policy can provide a mean response time that is 20-30% lower than that of the T1 policy,
when the number of arrivals during a low load period is (∼ 10 times) larger than that during a high
load period.

In addition (not shown), we find that when arrivals at queue 1 follow an MMPP(2) or when
arrivals at both queues follow MMPP(2)’s, the improvement of the ADT policy over the T1 policy
tends to be smaller than when only arrivals at queue 2 follow an MMPP(2). Overall, we conclude that
the ADT policy has appreciable improvement over the T1 policy only when there are more arrivals
during the low load period than during the high load period, giving them comparable importance.

7.5 Concluding remarks

In this chapter, the performance of a wide range of threshold-based (resource) allocation policies for
the Beneficiary-Donor model is studied via dimensionality reduction (DR), as their analyses involves
multidimensional Markov chains. DR allows us to evaluate the mean response time under a broad
class of threshold-based policies under a wide range of load conditions, for the first time, and we find
surprising conclusions.

We first consider single threshold policies, T1 and T2, and find that the T1 policy is superior with
respect to (overall weighted) mean response time. That is, the threshold for resource allocation is
better determined by the beneficiary queue length (queue 1) than by the donor queue length (queue
2), in all cases studied.

We then compare single threshold policies to a multiple threshold policy, the adaptive dual
threshold (ADT) policy, with respect to mean response time, assuming that the load is fixed and
known. We find that when the threshold value is chosen appropriately, the mean response time of
the T1 policy is at worst very close to the best mean response time achieved by the ADT policy.
This is surprising, since the optimal policy appears to have infinitely many thresholds, but evidently
the improvement these thresholds generate is marginal.

We next study static robustness, where the load is constant, but may have been misestimated.
We find that the ADT policy not only provides low mean response time but also excels in static
robustness, whereas the T1 policy does not. The increased flexibility of the ADT policy enables it to
provide low mean response time under a range of loads. Hence, when the load is not exactly known,
the ADT policy is a much better choice than the T1 policy.

Finally, and surprisingly, our analysis shows that this improvement in static robustness does not
necessarily carry over to dynamic robustness, i.e. robustness against load fluctuation. We observe
that when the load is fluctuating, the T1 policy, which lacks static robustness, can often provide low
mean response time, comparable to ADT. This can occur for example because the mean response
time of jobs arriving during the high load period may dominate the overall mean response time.

The results in this chapter have implications to the multiserver systems studied in previous
chapters. For example, in Chapter 5, we have proposed size-based task assignment policies with
cycle stealing, SBCS-ID and SBCS-CQ, but these task assignment policies can be improved upon by
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a threshold-based policy, whereby the server for long jobs processes short jobs when the number of
long jobs is below a threshold value, as in the T1 policy, or by a more complex threshold-based policy
like the ADT policy. In designing such threshold-based task assignment policies, lessons learned in
this chapter would be useful.

Also, robustness is more or less a common issue in resource allocation policies that have param-
eters to be tuned. For example, in Chapter 6, we have studied a threshold-based policy for reducing
switching costs in cycle stealing, but the optimal threshold values depend on loads. When these
resource allocation policies are used where the load is not known, it would be important to study the
robustness of these allocation policies and to design robust allocation policies based on the lessons
learned in this chapter.
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Part III

Further discussion and conclusion
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Chapter 8

Applications in contact center design

In this chapter, we discuss how the analytical tools developed in Chapters 2-3 (dimensionality re-
duction (DR) and moment matching algorithms) and the results of our analysis or lessons learned in
Chapters 4-7 may be used in designing contact centers (or call centers) today. Although we discuss
the specific example of contact center design, the analytical tools developed and lessons learned in
this thesis may be applied similarly to designing other real-world systems as well.

8.1 Motivation

In today’s competitive business, even high-tech products can be quickly reduced to commodities that
are difficult to differentiate through features, functions, or price. As a result, it becomes increasingly
important to provide accessibility to the company, which has a direct impact on the customers’
perception of quality, in order to acquire, keep, and grow customers [8, 58, 123]. A contact center
(or call center) provides such accessibility for customers who buy or reserve products or services and
for customers who have questions, complaints, or need for technical supports and other customer
services. Since contact centers are the critical element of customer relationship management (CRM),
they are ubiquitous in PC companies, banks, airline companies, rent-a-car companies, hotels, and
credit-card companies, etc.

Although a contact center is a significant revenue generator, its operating expenses are also
huge, and human resource costs are estimated to account for 50-75% of the total operating expenses
[58, 123]. As a result, a significant amount of research has addressed analytical tools and simulation
techniques that support capacity management at contact centers [119].

However, operations at contact centers have become increasingly complex, and the increased
complexity in the operations makes it difficult to apply existing analytical tools to support capacity
management. For example, new technology for communication has become available, and a mere
“call” center is transformed to a contact center that support various communication channels, in-
cluding telephones, e-mails, and chat. Also, advancement of information technology such as data
mining and information retrieval enables one to identify customers of high value and to give priority
to these customers. Further, more and more specialized products and services are created and sold,
and particular customers need to be served by particular agents.

Analytical tools developed and lessons learned in this thesis may be useful in supporting capacity
management at contact centers with these complex operations, and for other purposes in contact
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Figure 8.1: Contact center architecture [58].

center operations. In this chapter, we will provide an overview of contact center operations (Sec-
tion 8.2), and discuss how the results in this thesis may be applied in designing contact centers today
(Section 8.3).

8.2 Overview of contact center operation

In this section, we provide a brief overview of operations at contact centers. For a more comprehensive
tutorial and survey of the literature, see [58, 119].

A contact center is a complex integration of computers, human operators (agents), telephone and
packet networks, and their equipment. Contact centers can be classified into three types, depending
of whether they handle inbound traffic, outbound traffic, or both inbound and outbound traffic, and
their scale can vary from a few agents to thousands of agents. Figure 8.1 illustrates an example of a
large scale contact center (“call” center, in particular) that handles inbound calls [58].

Consider a customer calling a contact center via a toll-free number. The telephone company that
provides the toll-free service connects the call via the public telephone network to a private automatic
branch exchange (PABX) of the contact center. Here, the PABX is connected to the public telephone
network through multiple telephone lines, called trunk lines. If there is a free trunk line, the call is
connected to the PABX; otherwise, the caller receives a busy signal.

The calls connected to the PABX are routed either to an (interactive) voice response unit (VRU)
or to an automatic call distributor (ACD), possibly depending on the dialed number and/or the
caller’s ID (number). If a call is routed to the VRU, the caller hears an automatic response and
performs self-service by pushing buttons (dialing) or by speaking to the VRU. Some customers
complete service at the VRU, and others who request connection to an agent are routed to the ACD.

An automatic call distributor (ACD) is a specialized router that is designed to route calls to
individual agents at the contact center. At the ACD, various information is available both on the
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caller and on the agent, and the information is used to route a caller to an agent. The caller’s
information such as the caller ID and the record of interaction at the VRU may be used to identify
the customer, and this allows the ACD to retrieve more information, such as their language, priority,
and the type of requested service, from a customer data server. Agents log into the ACD at their
terminals when they start working, and their login ID can be used to retrieve full information on
types and levels of their skills. Computer-telephone integration (CTI) is a middleware that closely
ties computer systems, including the customer data server and the terminals at the agents, and
telephone networks. CTI enables sophisticated routing at the ACD. In addition, CTI can be used to
automatically display a caller’s information on an agent’s workstation screen.

Based on the caller information as well as the information and availability of agents, the call may
be connected to an agent, or may be held on in a queue. A waiting customer may abandon the call
before being served, or may eventually be connected to an agent.

8.3 Towards efficient contact center operation

An objective of contact centers is to provide high customer satisfaction at low operational cost.
Customer satisfaction is achieved by providing high accessibility or short waiting time, as well as by
providing a high quality interaction of agents with customers [58]. Operational cost is dominated
(50-75%) by human resources [58, 123]; thus reducing the number of agents is quite effective in
reducing the operational cost. However, since fewer agents implies longer waiting time, which also
causes a higher abandon rate, contact centers trade off high customer satisfaction and low opera-
tional cost. Thus, a major challenge in contact centers is determining the number of agents to be
assigned (capacity planning) such that the right level of customer satisfaction is achieved at the
right operational cost. Designing good routing policies at the automatic call distributor (ACD) is
also important, since good routing policies can increase the accessibility or shorten the waiting time
without increasing the number of agents.

In this section, we discuss how the results (analytical tools developed and lessons learned) in this
thesis may be used in capacity planning and routing policy design at contact centers. In Section 8.3.1,
we briefly review management of contact centers (see also Figure 8.2), including capacity planning
and routing policy design. In Section 8.3.2, we discuss how the results in this thesis may be used in
capacity planning. In Section 8.3.3, we discuss how the results in this thesis may be used in designing
routing policies.

8.3.1 Overview of contact center management

An enormous amount of operational data can in theory be collected (measurement) at the (interac-
tive) voice response unit (VRU) and the automatic call distributor (ACD). In practice, only summary
statistics of such data are often stored, for example at the granularity of 30 minutes, in order to re-
duce the necessary storage space. The summary statistics usually include the number of arrivals
and abandoned jobs, average service time, agents’ utilization, and the distribution (percentiles) of
waiting time in the queue [58].

The collected data are used to estimate the arrival process, service time distribution, and distri-
bution of the time a customer is willing to wait, for each “type” of calls [29]. The history of these
estimates are then used to forecast future arrivals, service times, and the time willing to wait [30, 118].
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Figure 8.2: A flow of routing policy design and capacity management/planning at a contact center.

Forecasting allows capacity planning via a queueing analysis. Assuming that a routing policy
at the ACD is given, a contact center can be modeled as a (multiserver) queueing system, where
the ACD has queues of calls that are to be served by servers (agents). An analysis of the queueing
system allows us to determine the number of agents (of each type and level of skill) to be assigned
for each time slot (e.g. half an hour), and it also provides lessons and guidelines that are useful in
designing a routing policy at the ACD. Simulation may/should be used for fine tuning the number
of agents to be assigned. In Sections 8.3.2-8.3.3, we will elaborate on capacity planning and routing
policy design.

Once the number of agents to be assigned for each time slot is given, an assignment of individual
agents to the time slots can be determined. In determining the assignment, one usually needs to
solve an integer program (IP), so that various constraints are satisfied. We study a similar problem
in the context of nurse scheduling in [154]. The solution to the IP provides the working schedule of
each agent, and it can also be used for hiring and planning training. For example, if there are no
feasible solutions (satisfying all the constraints), new agents need to be hired, or some existing agents
need to be trained for new skills. The contact center operates following the assignment schedule,
and the operational data will be measured, which in turn provides feedback to capacity planning and
agent assignment.

8.3.2 Capacity planning

The goal of capacity planning is to determine the number of agents to be assigned at each time slot so
that a desired customer satisfaction (e.g. short waiting time and low abandon rate) is achieved at low
operational cost (fewer number of agents), given the forecasted future arrivals, service times, time a
customer is willing to wait, as well as the routing policy at the automatic call distributor (ACD). As
we have seen in Section 8.3.1, capacity planning consists of (iterations of) modeling, analysis, and
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simulation.
When a contact center is operated in a simple manner, for example when calls are served by

homogeneous agents in the FCFS order, the contact center can be modeled in such way that it can
be analyzed efficiently and accurately, and such analytical methods are found to be quite useful in
capacity planning at contact centers [58]. Analytical methods not only quickly provide the number
of agents to be assigned, but also allow us to study the performance under a wide range of parameter
settings, which is useful in designing routing policies as we will see in Section 8.3.3.

Recently, however, it has become popular to prioritize calls (value-based routing) and to route
particular calls to particular agents (skill-based routing). Under value-based or skill-based routing,
a contact center can be modeled as a multidimensional Markov chain, for which only coarse approx-
imations exist in the literature. Below, we discuss how the analytical tools developed in this thesis
can support modeling and analysis in capacity planning at contact centers today.

Modeling

A first step in capacity planning at a contact center is to model the contact center as a queueing
model. In modeling a contact center, it is desirable that (i) the queueing model well captures the
behavior of the contact center, (ii) the queueing model can be analyzed efficiently, and (iii) the
modeling can be done easily and quickly. Property (i) is important, since a more precise queueing
model provides a more accurate number of agents to be assigned. This can significantly reduce the
necessary iterations of simulation. Properties (ii)-(iii) are important so that modeling and analysis
does not become a bottleneck in capacity planning. An efficient analysis also helps in designing good
routing policies, as we will see in Section 8.3.3.

A popular approach in modeling a contact center is to map the forecasted interarrival time,
service time, and time a customer is willing to wait to phase type (PH) distributions (as defined in
Section 2.2), so that the resulting queueing model can be analyzed as a Markov chain. The moment
matching algorithms developed in Chapter 2 can be used exactly for this purpose. Recall the four
desired properties that our moment matching algorithm has. Each of the four properties is desirable
specifically in contact center modeling. Specifically, our moment matching algorithm can match the
first three moments of the input distribution (and is defined for a broadest possible class of input
distributions). This allows the queueing model to better capture the behavior of the contact center, as
compared to existing moment matching algorithms that match only two moments. Also, the matching
PH distribution provided by our moment matching algorithm has at most OPT(G)+1 phases. This
makes the state space of the queueing model (and the corresponding Markov chain) small, which in
turn allows an efficient evaluation of the Markov chain. Further, our moment matching algorithm
has short running time (closed form solutions are provided), which allows easy and quick modeling.

Analysis

An analysis of a queueing model of a contact center can often be reduced to an analysis of a Markov
chain. However, in the contact centers with value-based or skill-based routing, the analysis of the
queueing model often involves a multidimensional Markov chain to which existing analytical tools do
not apply. Dimensionality reduction (DR) developed in Chapter 3 allows us to analyze (efficiently
with high accuracy) some of the multidimensional Markov chains that model the contact centers
with a value-based or skill-based routing.
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For example, in Chapter 4, we have studied a multiserver system with multiple priority classes.
This multiserver system with multiple priority classes can model a contact center with a value-based
routing, where customers with higher priority are allowed to jump ahead of customers with lower
priority. For example, big spenders or big investors may have higher priority at contact centers
[8, 29]. In Chapter 4, we have considered “how many servers are best?” given a fixed total capacity.
However, in capacity planning at contact centers, they would be interested in questions such as “what
is the minimum number of agents so that the mean waiting time is less than a minutes?” DR can
be used to answer such questions as well.

In Chapter 7, we have studied the Beneficiary-Donor model (see Figure 7.1), which can model
a contact center with a skill-based or value-based routing. For example, the donor server may be
a bilingual agent, and the beneficiary server may be a monolingual agent [58, 105, 176, 185, 186].
Instead, the donor server may be a cross-trained or experienced agent who can handle all types of
questions, and the beneficiary server may be a specialized agent who are trained to handle a specific
type of questions [8, 58, 176]. Alternatively, customers served by the beneficiary server may have
higher priority, and the donor server contributes to maintaining an adequate service level of the high
priority customers; conversely, customers served by the donor server may have higher priority, and
the excess capacity of the donor server may be used to help the (otherwise overloaded) beneficiary
server [58]. In Chapter 7, we fixed the number of donor and beneficiary servers, and studied the mean
response time and robustness of a wide range of threshold-based policies. However, DR applies to
the Beneficiary-Donor model with an arbitrary number of donor and beneficiary servers (the running
time increases with the number of servers), and allows us to determine the number of beneficiary
and donor agents to be assigned at a contact center with a skill-based or value-based routing.

8.3.3 Routing policy design

A goal of a routing policy is to provide high accessibility or short waiting times with a fixed number
of agents. Thus, in designing and choosing a routing policy, it is important to understand the
performance (e.g. mean waiting time) under various routing policies under various parameter settings.
An efficient analysis of queueing models is useful in evaluating the performance of various routing
policies by changing various parameters such loads and service time variability, as the running time
of simulation is too long.

For example, in Chapters 5-7, we have repeatedly seen the effectiveness of resource sharing such
as cycle stealing. Specifically, cycle stealing can significantly improve upon the Dedicated policy
(without cycle stealing) with respect to mean response time. In contact centers, particular customers
are often served by particular agents, e.g. due to the skill level of the agents, as discussed above.
However, the effectiveness of cycle stealing suggests that training some of the agents and allowing
them to serve multiple types of customers, can significantly improve mean response time.

In Chapter 7, we have studied a more sophisticated type of resource sharing towards minimizing
mean response time. Specifically, we have studied a broad class of threshold-based policies for the
Beneficiary-Donor model, and found that a single-threshold policy (the T1 policy) can improves upon
cycle stealing, but the improvement of a multi-threshold policy over the T1 policy is only marginal.

In Chapter 7, we have also studied robustness of the threshold-based policies for the Beneficiary-
Donor model. Specifically, we find that the T1 policy excels in static robustness (robustness against
misestimation of load) but lacks dynamic robustness (robustness against fluctuations in load), while
a multi-threshold policy (the ADT policy) excels in both static and dynamic robustness. Such lessons

202



are useful in choosing an appropriate routing policy for a contact center. Specifically, if future loads
can be forecasted with high accuracy, the T1 policy is sufficient, as it can provide low mean response
time and excels in static robustness; otherwise, the ADT policy is a better choice.

Also, in Chapter 4, we have studied the impact of the variability in service demand and the
impact of prioritization in multiserver systems. Specifically, we find that the impact of service
demand variability on mean response time can be much higher when the number of servers is small
(i.e. at small contact centers). Also, we find that the impact of prioritization on the mean response
time of lower priority jobs can be much higher at small contact centers. These lessons suggest that
smaller contact centers may not want to prioritize high priority customers if their service demand
has very high variability, since it can significantly worsen the mean response time of low priority
customers. Also, if the variability of the service demand is high, a smaller contact center may
instead want to prioritize those customers whose service times are more likely to be short.

In Chapter 5, we have proposed a size-based task assignment policy with cycle stealing under
central queue (SBCS-CQ), which combats the impact of service demand variability. Under SBCS-CQ,
customers whose service times are expected to be short (“short” customers) are routed to the “short”
agent, and other customers (“long” customers) are routed to the “long” agent. This prevents the
short customers waiting behind a long customer. Further, under SBCS-CQ, when there are no long
customers to be served, the long agent serves short customers. This increases the utilization of the
long agent. In contact centers, service demand may be estimated based on the record of interaction at
the (interactive) voice response unit (VRU) and the customer information available at the customer
data server, as well as the history of measured service demands.
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Chapter 9

Conclusion

In this thesis, new analytical tools for performance evaluation of multiserver systems are developed.
The new analytical tools allow us to analyze the performance of various resource allocation policies
for multiserver systems for the first time. Our analysis leads to many insights and lessons that
are useful, for system designers, in capacity planning and designing resource allocation policies for
multiserver systems. In particular, our analysis shows a tremendous benefit of resource allocation
policies with resource sharing or cycle stealing, when these resource allocation policies are designed
carefully. Further, principles and guidelines are provided for designing these resource allocation
policies.

9.1 Analytical tools developed

We have first proposed moment matching algorithms, which can be used to model a multiserver sys-
tem as a (multidimensional) Markov chain for analyzing the performance of the multiserver system.
Also, to prove the minimality of the number of phases used in our moment matching algorithms, the
set, S(n), of distributions that are well-represented by an n-phase acyclic phase type (PH) distribution
is characterized.

In developing moment matching algorithms, we have introduced various theoretical concepts such
as the normalized moments, r-value, sets S (n) and T (n), function φ, and the EC distribution, and
have proved their properties. These new concepts and their properties are found to be quite useful
in developing moment matching algorithms, and they have recently stimulated the research in this
area. For example, Bobbio, et al. [22] have recently used the normalized moments to provide exact
characterizations of sets S(n) and S(n)∗ , where S(n) is the set of distributions that can be well-
represented by an n-phase acyclic PH distribution and S (n)∗ is the set of distributions that can be
well-represented by an n-phase acyclic PH distribution with no mass probability at zero. Bobbio,
et al. use their exact characterization of S (n) to construct a minimal acyclic PH distribution that
well-represents any distribution in PH3.

We have also proposed a new analytical tool, dimensionality reduction (DR), for analyzing mul-
tidimensional Markov chains (Markov chains on a multidimensionally infinite state space). The key
idea in DR is in approximating an infinite portion of a Markov chain, which often corresponds to the
“busy period” of a system, by a collection of PH distributions, which match the first three moments
of the duration of the busy period conditioned on how the Markov chain enters and exits from the
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busy period. As DR involves approximations, we have validated its accuracy against simulation.
Overall, we find that the error in DR is quite small: specifically, the error in DR is within 3% (often
within 1%) for the first order metric (such as mean delay and mean queue length) and within 7%
for the second order metric (such as the second moment of queue length) for a range of parameters.
To reduce the computational complexity of DR, we have introduced two approximations of DR: DR-
PI and DR-CI. Although these approximations slightly worsen the accuracy, they can significantly
reduce the running time.

DR allows us to analyze the performance of a multiserver system whose behavior is modeled as
a multidimensional Markov chain. Since it is a nontrivial task to determine whether DR can be
applied to a particular multiserver system and how, we formally define a class of multidimensional
Markov chains called RFB/GFB processes (recursive foreground-background processes or general-
ized foreground-background processes) that can be analyzed via DR. The definition of RFB/GFB
processes makes it easier to determine whether a given multiserver system can be analyzed via DR,
and our analysis of RFB/GFB processes enables one to analyze the multiserver system by simply
modeling it as an RFB/GFB process. In fact, many multiserver systems with resource sharing or
job prioritization can be modeled as RFB/GFB processes:

• multiserver systems with multiple priority classes (Chapter 4),

• size-based task assignment with cycle stealing under immediate dispatching, SBCS-ID, for server
farms (Chapter 5),

• size-based task assignment with cycle stealing under central queue, SBCS-CQ, for server farms
(Chapter 5),

• threshold-based policies for reducing switching costs in cycle stealing (Chapter 6), and

• various threshold-based policies for the Beneficiary-Donor model (Chapter 7).

DR allows us to analyze these multiserver systems with high accuracy for the first time.
Beyond an analysis of multiserver systems, our moment matching algorithms and DR as well as

the ideas used in these tools have broad applicability in computer science, engineering, operations
research, etc. For example, many optimization problems in stochastic environment can be formulated
as Markov decision problems [159] by mapping general (input) probability distributions into PH
distributions via our moment matching algorithms. The ideas in DR may then be used to reduce
the size of the state space in the Markov decision processes from infinite to finite or from large to
small, so that the computational complexity in solving the Markov decision problems is reduced.

In response to many requests, our moment matching algorithms and DR as well as its approx-
imations, DR-PI and DR-CI, as described in this thesis are largely implemented, and the latest
implementation is made available at an online code repository:

http://www.cs.cmu.edu/∼osogami/code/.

9.2 Lessons learned in the analysis of multiserver systems

DR is then applied to the performance analysis of various multiserver systems, whose analysis involve
multidimensional Markov chains. In this thesis, we primarily study fundamental natures of multi-
server systems via DR, but DR also has a broad applicability in capacity planning of multiserver
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systems, as discussed in Chapter 8. Our analysis illuminates principles of the performance of multi-
server systems, and provides lessons and guidelines that are useful in designing resource allocation
policies in multiserver systems. Note that an advantage of DR is that it allows us to study the
performance of multiserver systems under a wide range of environmental conditions. (For example,
an arrival process can be modeled as a Markovian arrival process (MAP), service demand can be
modeled as a PH distribution, and the performance can be analyzed with high accuracy under a
wide range of loads, not just heavy traffic limits.) This allows us to study, for example, the impact
of service demand variability on the performance, and robustness of resource allocation policies.

Impact of service demand variability and prioritization in multiserver systems

In the study of “how many servers are best?” in multiserver systems with multiple priority classes,
we find that the performance of a multiserver system can be quite different from its single server
counterpart. We find that the variability of service demand and prioritization of jobs can have a much
larger impact on mean response time in single server (or a-few-server) systems than in multiserver
(or many-server) systems. Specifically, we find that the mean response time in single server and
multiserver systems can be characterized primarily by three rules of thumb.

(i) A single server system has an advantage over multiserver systems with respect to utilization,
and this relative advantage becomes greater at higher load.

(ii) A multiserver system has an advantage over single server systems with respect to reducing the
impact of job size variability on the mean response time, and this advantage becomes greater
at higher load and at larger job size variability.

When jobs are served in FCFS order, the mean response time of single server and multiserver systems
can be characterized primarily by the above two rules. However, the above two rules are not sufficient
when there are priorities among jobs, since

(iii) A multiserver system has an advantage over a single server system with respect to reducing
the impact of prioritization on the mean response time of low priority jobs, and this advantage
becomes greater when the mean and/or variability of the higher priority job size are larger
and/or when the load of the higher priority job is higher.

We find that these three rules well characterize how the optimal number of servers is affected by job
size variability and prioritization.

These rules have important implications in designing resource allocation or scheduling policies in
multiserver systems. Namely, combating the variability of service demand (e.g. by prioritizing small
jobs) is important in designing resource allocation policies for single server (or a-few-server) systems,
but prioritizing small jobs is not as effective in improving mean response time in multiserver (or
many-server) systems.

We have also studied the impact of the variability in the donor job (“long” job in SBCS-ID and
SBCS-CQ) sizes on the mean response time of the beneficiary jobs (“short” jobs in SBCS-ID and
SBCS-CQ) under various systems with cycle stealing, where the donor server processes the beneficiary
jobs when there are no donor jobs. Note that variable donor job sizes imply irregular help from the
donor server. We find that the impact of donor job size variability is surprisingly small, but this
impact can increase when the beneficiary jobs rely more on the help from the donor server.
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Benefit and penalty of cycle stealing

In this thesis, various resource allocation policies with cycle stealing (resource sharing in general)
are introduced, and their performance is analyzed via DR. These policies include the threshold-
based policy for reducing switching costs in cycle staling (Chapter 6), the task assignment with cycle
stealing under immediate dispatching (SBCS-ID; Chapter 5), the task assignment with cycle stealing
under central queue (SBCS-CQ; Chapter 5), and the threshold-based policies for the Beneficiary-Donor
model (Chapter 7).

Although cycle stealing provides obvious benefits to the beneficiary jobs (“short” jobs in SBCS-ID

and SBCS-CQ), these benefits come at some cost to the donor jobs (“long” jobs in SBCS-ID and
SBCS-CQ). For example, the donor jobs may suffer from switching costs or may suffer from the
nonpreemptive beneficiary jobs stealing cycles of the donor server. DR allows us to quantify the
benefit and penalty of cycle stealing under a wide range of parameter settings, and this leads to
insights into good resource allocation policies.

Our analysis shows that cycle stealing can provide unbounded benefit overall (to the beneficiary
jobs in particular) over the dedicated policy (without cycle stealing). The unbounded benefit stems
from the increased stability region under cycle staling, and we have provided the necessary and
sufficient conditions for stability under all the resource allocation policies with cycle stealing studied
in this thesis. These stability conditions are often nontrivial. For example, under the threshold-
based policy for reducing switching costs in cycle staling, we find that the beneficiary side threshold,
N th
B , does not affect the stability region, but increasing the donor side threshold, N th

D , increases the
stability region.

The mean response time of donor jobs is sensitive to the switching times, and large switching
times can result in a significant penalty to the donor jobs. Switching times also diminish the benefit
of cycle stealing to the beneficiary jobs. We find that switching times have a significant impact on
the mean response time when the beneficiary is overloaded without cycle stealing (ρB ≥ 1), but the
mean response time of the beneficiary jobs is far less sensitive when ρB < 1.

Our analysis shows that long jobs experience only a small penalty under both SBCS-ID and
SBCS-CQ. We also consider the case where the “short” jobs are indistinguishable from the “long”
jobs, and the pathological case where the “short” jobs are longer than the “long” jobs. Our analysis
shows that SBCS-ID and SBCS-CQ can still provide an unbounded benefit over Dedicated when the
load of short jobs is high, but the benefit diminishes as the load becomes lower. In fact, when the load
of short jobs is low, cycle stealing (especially, SBCS-ID) can worsen the overall mean response time.

Exploring robustness of resource allocation policies

The applicability of DR under a wide range of load conditions allows us to evaluate resource allocation
policies not only with respect to mean response time but also with respect to robustness. We have
introduced two types of robustness measures: static robustness (robustness against misestimation
of load) and dynamic robustness (robustness against fluctuations in load). The study of resource
allocation policies for the Beneficiary-Donor model with respect to both mean response time and
robustness provides us with lessons that are useful in designing good resource allocation policies.

The study of single-threshold allocation policies, T1 and T2, reveals the tradeoff between low
mean response time at an estimated load versus static robustness. Specifically, the T2 policy provides
good static robustness, but its mean response time is high. On the other hand, the T1 policy
optimized for an estimated load provides low mean response time at the estimated load, but it can
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lead to instability at higher loads (poor static robustness). While it is possible to tune the T1 policy
for the higher load, this would degrade the mean response time at the estimated load.

The tradeoff between low mean response time and static robustness in single-threshold allocation
policies motivates us to propose the adaptive dual threshold (ADT) policy. We find that the ADT
policy not only provides low mean response time but also excels in static robustness. The ADT
policy operates as a T1 policy, but its threshold value is self-adapted to the load. This flexibility
allows the ADT policy to provide low mean response time under a range of loads. Hence, when the
load is not exactly known, the ADT policy is a better choice than the T1 policy. However, we find
that the advantage of the ADT policy over the T1 policy with respect to mean response time (under
a given load) is quite small (the improvement is usually less than 5%). This may be surprising, since
the optimal policy appears to have infinitely many thresholds.

Surprisingly, our analysis shows that poor static robustness does not necessarily imply poor
dynamic robustness. For example, we observe that even when the load is fluctuating, the T1 policy,
which lacks static robustness, can often provide low mean response time.

9.3 Future directions

The moment matching algorithms and DR proposed in this thesis by no means provide perfect
solutions for the performance evaluation of multiserver systems. Below, we discuss interesting future
directions for research along the lines of this thesis.

Interesting future directions in moment matching algorithms include the extension to matching
more moments and extension to approximating a correlated sequence of random variables. Specifi-
cally, our moment matching algorithms match the first three moments of an input distribution, but
it may be desirable to match more moments. Also, a PH distribution can be used to model a se-
quence of independent random variables; however, in some applications, it is desirable to capture the
correlation in the sequence of random variables. The Markovian arrival process (MAP) can represent
a sequence of correlated PH distributions. However, how we should map a sequence of correlated
random variables into a MAP is not well understood (see e.g. [72] for this direction of work).

In designing moment matching algorithms that match more moments, it would be helpful to
characterize the set of distributions whose first k-moments can be matched by an n-phase PH distri-
bution for k > 3. This will extend our characterization of set S (n), the set of distributions that are
well-represented by an n-phase acyclic PH distribution. It would also be useful to extend this charac-
terization to the general PH distribution, including cyclic PH distributions. Such a characterization
could be used to prove the minimality of the number of phases used in our closed form solutions in a
stronger sense. Although our experience via numerical experiments suggests that allowing cycles in
the PH distribution does not help to reduce the number of phases used to match the three moments,
a rigorous characterization is not known to date.

Interesting future directions in DR include establishing a theoretical guarantee on the accuracy of
DR and extending DR. Although we validate the accuracy of DR against simulation, no theoretical
guarantee is proved. It is desirable to establish theoretical bounds on the error in DR. Also, although
we apply DR in the analysis of the RFB/GFB processes in this thesis, the idea in DR has a broad
applicability beyond the RFB/GFB processes, and DR can be extended in various ways. Below, we
list possible extensions of DR. It would be interesting to pursue these possible extensions and apply
them to the analysis of more complex multiserver systems.
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For example, throughout this thesis, we assume that service demands have PH distributions,
but in some cases, they can be extended to general distributions. For example, in the analysis of
the threshold-based policy for reducing switching costs in cycle stealing, the donor’s service demand
and switching back time can be extended to general distributions, as we show in [151, 152]. This
extension relies on a (well known) analysis of the busy period in an M/GI/1 queue with a setup time.

In fact, the idea in DR can be applied to the RFB/GFB processes with a quite broad class of back-
ground processes. The analysis of the RFB/GFB processes relies on the analysis of the “busy period”
in a QBD process via Neuts’ algorithm; however, Neuts’ algorithm applies to a much broader class
of Markov chains, namely the M/G/1 type semi-Markov process. Fully utilizing Neuts’ algorithm,
DR can be applied to the RFB/GFB process with much less restriction on the background process.

Restrictions on the foreground process can also be relaxed. Our restrictions on the foreground
process guarantee that the 1D Markov chains reduced from the RFB/GFB processes are QBD pro-
cesses. However, the QBD process is not the only Markov chain that allows analytical tractability.
For example, the M/G/1 and G/M/1 type processes can also be analyzed efficiently via matrix
analytic methods [111]. Thus, the restrictions on the foreground process can be relaxed accordingly.

Further, the GFB process is limited to 2D Markov chains, but this can be extended to higher
dimensions, as we extend the FB process to the RFB process. Also, we remark that the multidi-
mensional Markov chain need not have multidimensionally infinite state space. DR can reduce a
Markov chain that has a large number of states in multiple dimensions into a Markov chain that has
a smaller number of states in each dimension, since matrix analytic methods and Neuts’ algorithm
apply to QBD processes with a finite number of levels as well.

Finally, an essential restriction in DR is that the background process must be independent of the
foreground process while the background process is in levels ≥ κ, although the foreground process
can depend on the background process all the time. Unfortunately, it is not at all clear how DR
can be extended to the symmetric case where the foreground and background processes depend on
each other all the time. For example, two way cycle stealing, where two servers function as both
beneficiaries and donors, does not appear to be modeled as a GFB process, since the foreground and
background processes depend on each other all the time. In theory, the analysis of two way cycle
stealing can be reduced to a boundary value problem (see Section 3.3), but this leads to a complex
expression whose evaluation often experiences numerical instability. It would be interesting to pursue
how computational approaches such as DR can be applied to an analysis of two way cycle stealing.
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Appendix A

Proofs

Proof of Lemma 3

We prove the lemma by induction on n.
Base case (n = 1): Any one-phase PH distribution is a mixture of O and an exponential distri-

bution, and the r-value is always 3
2 .

Inductive case: Suppose that the lemma holds for n ≤ k. We show that the lemma holds for
n = k + 1 as well.

Consider any (k + 1)-phase acyclic PH distribution, G, which is not an Erlang distribution. We
first show that there exists a PH distribution, F1, with rF1 ≤ rG such that F1 is the convolution of
an exponential distribution, X, and a k-phase PH distribution, Y . The key idea is to see any PH
distribution as a mixture of PH distributions whose initial probability vectors, −→τ , are base vectors.
For example, the three-phase PH distribution, G, in Figure 2.1, can be seen as a mixture of O and the
three 3-phase PH distribution, Gi (i = 1, 2, 3), whose parameters are ~τG1 = (1, 0, 0), ~τG2 = (0, 1, 0),
~τG3 = (0, 0, 1), and TG1 = TG2 = TG3 = TG. Proposition 5 and Lemma 2 imply that there exists
i ∈ {1, 2, 3} such that rGi ≤ rG. Without loss of generality, let rG1 ≤ rG and let F1 = G1; thus,
rF1 ≤ rG. Note that F1 is the convolution of an exponential distribution, X, and a k-phase PH
distribution, Y .

Next we show that if F1 is not an Erlang distribution, then there exists a PH distribution, F2,
with no greater r-value (i.e. rF2 ≤ rF1). Let Z be a mixture of O and an Erlang-k distribution, Ek,
(i.e. Z(·) = pO(·)+(1−p)Ek(·)), where p is chosen such that µZ1 = µY1 and mZ

2 = mY
2 . There always

exists such a Z, since the Erlang-k distribution has the least m2 among all the PH distributions (in
particular mEk

2 ≤ mY
2 ) and m2 is an increasing function of p (mZ

2 = mEk
2 /(1 − p)). Also, observe

that, by Proposition 5 and the inductive hypothesis, rZ ≤ rY . Let F2 be the convolution of X and
Z, i.e. F2(·) = X(·) ∗ Z(·). We prove that rF2 ≤ rF1 . Let y = µY1 /µ

X
1 . Then,

rF1 =

(
rX(mX

2 )2 + 3mX
2 y + 3mY

2 y
2 + rY (mY

2 )2y3
)

(1 + y)
(
mX

2 + 2y +mY
2 y

2
)2

≥

(
rX(mX

2 )2 + 3mX
2 y + 3mZ

2 y
2 + rZ(mZ

2 )2y3
)

(1 + y)
(
mX

2 + 2y +mZ
2 y

2
)2 = rF2 ,

where the inequality follows from µZ1 = µY1 , mZ
2 = mY

2 , and rZ ≤ rY .
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Finally, we show that an Erlang distribution has the least r-value. F2 is the convolution of X
and Z, and it can also be seen as a mixture of X and a distribution, F3, where F3(·) = X(·) ∗Ek(·).
Thus, by Lemma 2, at least one of rX ≤ rF2 and rF3 ≤ rF2 holds. When rX ≤ rF2 , the r-value of
the Erlang-(k + 1) distribution, rEk+1 , is smaller than rF2 , since rEk+1 < rX ≤ rF2 . When rX > rF2

(and hence rF3 ≤ rF2), rEk+1 ≤ rF3 ≤ rF2 can be proved by showing that rF3 is minimized when
µX1 = µEk

1 /k. Let y = µX1 /µ
Ek
1 . Then,

rF3 =

(
rEk(mEk

2 )2 + 3mEk
2 y + 6y2 + 6y3

)
(1 + y)

(
mEk

2 + 2y + 2y2
) ,

where rEk = (k + 2)/(k + 1) and mEk
2 = (k + 1)/k. Therefore,

∂rF3

∂y
=

2k(k + 1)(6ky2 + 6ky + k − 1)(
k+1
k + 2y + 2y2

)
(
y − 1

k

)
.

Since k > 1, rF3 is minimized at y = 1/k.

Proof of Lemma 5

It is easy to check, by substitution, that conditions (2.10)-(2.12) are satisfied. It is easy to see
0 < p < 1, since mG

3 < 2mG
2 − 1. Also, mX

2 ≥ N+2
N+1 implies w > 0. Thus, it suffices to prove that

condition (2.9) is satisfied.
We first consider the first inequality of condition (2.9). The assumption on rG in the lemma gives

3

2
− rG ≤ 3

2
− (N + 1)mG

2 + (N + 4)

2(N + 2)
=
N + 1

N + 2
· 2 −mG

2

2
.

Therefore, since 3
2 > rG, it follows that

mX
2 = 2w =

2 −mG
2

2
· 1

3
2 − rG

≥ N + 2

N + 1
.

We next consider the second inequality of condition (2.9). We begin by bounding the range of
mG

2 for G considered in the lemma. Condition G ∈ L̂N implies mG
2 ≥ N+2

N+1 . Also, if mG
2 > 2, then

by the assumption on rG in lemma,

rG ≥ (N + 1)mG
2 + (N + 4)

2(N + 2)
>

2(N + 1) + (N + 4)

2(N + 2)
=

3

2
.

This contradicts rG < 3
2 . Thus, mG

2 ≤ 2. So far, we derived the range of mG
2 as N+2

N+1 < mG
2 ≤ 2.

We prove mX
2 < N+1

N in two cases: (i) N+1
N ≤ mG

2 ≤ 2 and (ii) N+2
N+1 ≤ mG

2 < N+1
N . (i) When

N+1
N ≤ mG

2 ≤ 2,

mX
2 =

2 −mG
2

2
(

3
2 − rG

) . <
2 − N+1

N

2
(

3
2 − N+2

N+1

) =
N + 1

N
.
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The inequality follows from mG
2 < N+1

N and rG ≤ N+2
N+1 . (ii) When N+2

N+1 ≤ mG
2 < N+1

N ,

mX
2 =

2 −mG
2

2
(

3
2 − rG

) . < 2 −mG
2

2

(
3
2 − 2mG

2 −1

mG
2

) = mG
2 <

N + 1

N
.

The inequality follows from

rG =
mG

3

mG
2

<
2mG

2 − 1

mG
2

,

which follows from G ∈ L̂N .

Proof of Lemma 6

For each case, it is easy to check, by substitution, that conditions (2.14)-(2.16) are satisfied. Below,
we prove condition (2.13) and z > 0.

We begin with the first case, where mG
2 = 2. It is easy to see (2.13) is true if z > 0, since

mX
2 = 2(1 + z) > 2 >

N + 2

N + 1
.

Further, z > 0 if 2N+3
N+2 < mG

3 < 3, which is true by G ∈ LN , rG < 3
2 , and mG

2 = 2.

Below, we consider the second case, where mG
2 6= 2. We first prove z > 0 by showing that z is

the larger solution of the two solutions of a quadratic equation that has a unique positive solution.
Observe that

mG
3 (mX

2 + 2z + 2z2)(1 + z) = mX
2 m

X
3 + 3mX

2 z + 6z2 + 6z3 (by (2.16))

⇐⇒ mG
3 m

G
2 (1 + z)3 =

N + 3

N + 2
(mX

2 )2 + 3z(mX
2 + 2z + 2z2) (by (2.14) and (2.15))

⇐⇒ mG
3 m

G
2 (1 + z)3 =

N + 3

N + 2
(1 + z)2

(
mG

2 (1 + z) − 2z
)2

+ 3z(1 + z)2mG
2 (by (2.15))

⇐⇒ mG
3 m

G
2 (1 + z) =

N + 3

N + 2

(
mG

2 (1 + z) − 2z
)2

+ 3zmG
2

Thus, z is a solution of the following quadratic equation: f(z) = 0, where

f(z) ≡ N + 3

N + 2
(mG

2 − 2)2z2 −mG
2

(
(mG

3 − 3) − 2
N + 3

N + 2
(mG

2 − 2)

)
z − (mG

2 )2
(
rG − N + 3

N + 2

)
.

Since the coefficient of the leading term, N+3
N+2(mG

2 − 2)2, is positive and f(0) < 0, there exists a
unique positive solution of f(z) = 0.

Second, we show mX
2 ≥ N+2

N+1 . We consider two cases: (i) mG
2 ≥ 2 and (ii) mG

2 < 2. Case (i) is

easy to show. Suppose mG
2 ≥ 2. Observe that by (2.15),

mX
2 = z

(
(mG

2 − 2)z + 2(mG
2 − 1)

)
+mG

2 .

Thus, if mG
2 ≥ 2, then mX

2 ≥ mG
2 ≥ N+2

N+1 . Below, we consider case (ii).
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Suppose mG
2 < 2. Observe that

mX
2 = −(2 −mG

2 )z2 + 2(mG
2 − 1)z +mG

2 ,

again by (2.15). Thus, mX
2 ≥ N+2

N+1 iff 0 < z ≤ z∗, where z∗ is a larger solution, x, of the following
quadratic equation: χ(x) = 0, where

χ(x) = −(2 −mG
2 )x2 + 2(mG

2 − 1)x+mG
2 − N + 2

N + 1
.

That is,

z∗ ≡
mG

2 − 1 +
√

N+2
N+1m

G
2 − N+3

N+1

2 −mG
2

. (A.1)

Thus, it suffices to show f(z∗) ≥ 0. Since χ(z∗) = 0, we obtain (z∗)2 as a linear function of z∗:

(z∗)2 =
2(mG

2 − 1)z∗ +mG
2 − N+2

N+1

2 −mG
2

.

By substituting this (z∗)2 into the expression for f(z∗), we obtain

f(z∗) =
N + 3

N + 2
(2 −mG

2 )2
(

2(mG
2 − 1)z∗ +mG

2 − N+2
N+1

2 −mG
2

)

−mG
2

(
2
N + 3

N + 2
(2 −mG

2 ) − (3 −mG
3 )

)
z∗ − (mG

2 )2
(
rG − N + 3

N + 2

)

=

(
3mG

2 − 2
N + 3

N + 2
(2 −mG

2 ) −mG
2 m

G
3

)
z∗ + 2

N + 3

N + 2
mG

2 − N + 3

N + 1
(2 −mG

2 ) −mG
2 m

G
3

>

(
3mG

2 − 2
N + 3

N + 2
(2 −mG

2 ) − (mG
2 )2

(
(N + 1)mG

2 + (N + 4)

2(N + 2)

))
z∗

+2
N + 3

N + 2
mG

2 − N + 3

N + 1
(2 −mG

2 ) − (mG
2 )2

(
(N + 1)mG

2 + (N + 4)

2(N + 2)

)

=
2 −mG

2

2(N + 2)

(
(N + 1)(mG

2 )2 + 3(N + 2)mG
2 − 4(N + 3)

)
z∗

−(N + 1)mG
2 − (N + 2)

2(N + 1)(N + 2)

(
(N + 1)(mG

2 )2 + (2N + 6)mG
2 − 4(N + 3)

)

where the inequality follows from the assumption on rG in the lemma. By substituting (A.1) into
the last expression, we obtain

f(z∗) = g(mG
2 ) + h(mG

2 )

√
(N + 2)mG

2 − (N + 3)

N + 1
,

where

g(mG
2 ) ≡ (N + 1)2(mG

2 )2 − (N − 3)(N + 2)mG
2 − 4(N + 3)

2(N + 1)(N + 2)

h(mG
2 ) ≡ (N + 1)(mG

2 )2 + 3(N + 2)mG
2 − 4(N + 3)

2(N + 2)
.
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Since

g′(mG
2 ) = 2(N + 1)2

(
mG

2 − N + 2

N + 1

)
+ (N + 2)(N + 5) > 0

for N+2
N+1 ≤ mG

2 < 2, g(mG
2 ) and h(mG

2 ) are increasing functions of mG
2 in the range of N+2

N+1 ≤ mG
2 < 2.

Since

g(
N + 2

N + 1
) =

2

(N + 1)2(N + 2)
> 0 and h(

N + 2

N + 1
) =

2

N2 + 3N + 2
> 0,

we have g(mG
2 ) ≥ 0 and h(mG

2 ) ≥ 0 for N+2
N+1 ≤ mG

2 < 2. This implies f(z∗) ≥ 0.

Proof of Theorem 8

We will prove that if the distribution of K is in T (n), the distribution of T is in T (n) for n ≥ 2.
When ρ = 0, B = K; thus, the theorem follows immediately.

Below, we assume 0 < ρ < 1. The first three moments of T are

E [T ] =
E [K]

1 − ρ

E

[
T 2
]

=
E
[
K2
]

(1 − ρ)2
+

ρ

(1 − ρ)3
E [K] E

[
G2
]

E [G]

E

[
T 3
]

=
E
[
K3
]

(1 − ρ)3
+

3ρ

(1 − ρ)4
E
[
K2
]
E
[
G2
]

E [G]
+

ρ

(1 − ρ)4
E [K]E

[
G3
]

E [G]
+

3ρ2

(1 − ρ)5
E [K] (E

[
G2
]
)2

(E [G])2
,

where ρ is the load of the M/G/1 queue. Let t2 ≡ E[T 2]
(E[T ])2

and t3 ≡ E[T 3]
(E[T ])3

. Observe that if t2 >
n+1
n

and t3 − n+2
n+1 t

2
2 ≥ 0, then the distribution of T is in T (n).

Thus, it suffices to prove that t2 >
n+1
n and t3 − n+2

n+1 t
2
2 ≥ 0, given that the distribution of K is

in T (n). First, t2 >
n+1
n is easy to prove:

t2 = k2 +
ρ

1 − ρ
g2

E [G]

E [K]
> k2 >

n+ 1

n
,

where k2 =
E[K2]
(E[K])2

and g2 =
E[G2]
(E[G])2

. Below, we prove that t3 − n+2
n+1 t

2
2 ≥ 0. Note that

t3 = k3 +
3ρ

1 − ρ
g2k2

E [G]

E [K]
+

ρ

1 − ρ
g3

(
E [G]

E [K]

)2

+
3ρ2

(1 − ρ)2
g2
2

(
E [G]

E [K]

)2

,

where k3 =
E[K3]
(E[K])3

and g3 =
E[G3]
(E[G])3

. Thus,

t3 −
n+ 2

n+ 1
t22

= k3 −
n+ 2

n+ 1
k2

2 +
n− 1

n+ 1

ρ

1 − ρ
g2k2

E [G]

E [K]
+

ρ

1 − ρ
g3

(
E [G]

E [K]

)2

+
2n+ 1

n+ 1

ρ2

(1 − ρ)2
g2
2

(
E [G]

E [K]

)2

> k3 −
n+ 2

n+ 1
k2

2 ≥ 0.
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L

Λt+   tt

Figure A.1: Virtual waiting time analysis: relationship between W (t) and W (t + ∆t), when (a)
W (t) ≥ ∆t and (b) 0 ≤W (t) < ∆t.

Proof of Theorem 9

Let W (t) be the virtual waiting time for the queue of long jobs at time t. That is, a long job arriving
at time t would wait W (t) before it starts being processed. By the PASTA (Poisson arrival sees
the time average) principle, the virtual waiting time W is equal in distribution to the waiting time.
Therefore, it suffices to analyze the virtual waiting time W for the derivation of the response time
of long jobs.

The following steps allow us to obtain the moments of W = limt→∞W (t):

(i) Set up a differential equation for W̃ (t, s), the Laplace transform of W (t).

(ii) Let t → ∞; then, dW̃ (t,s)
dt → 0, because the queue reaches the stationary state. Now, W̃ (s) is

obtained as a function of π0.

(iii) Evaluate W̃ (s = 0) to obtain π0.

(iv) Differentiate W̃ (s) to obtain moments of W .

(i) We first set up a differential equation for W̃ (t, s). For this purpose, we carefully examine the
relationship between W (t) and W (t + ∆t). First, suppose W (t) ≥ ∆t (see Figure A.1(a)). Since
the long server is always busy between t and t+ ∆t, only long jobs could arrive at the queue. Since
the arrival process is Poisson with rate λL, the probability of having a job arrival in time ∆t is
λL∆t+ o(∆t). Any such arrival will have service time XL. Therefore,

W (t+ ∆t) =





W (t) − ∆t w/ prob. 1 − λL∆t+ o(∆t),
W (t) +XL − ∆t w/ prob. λL∆t+ o(∆t),
something else w/ prob. o(∆).
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Next, suppose 0 ≤ W (t) < ∆t (see Figure A.1). Let a random variable ε be the fraction of time
that the long server was idle during (t, t+ ∆t) given that there were no arrivals during this interval.
Let a random variable εL be the fraction of time that the long server was busy during this interval
given that there was a long job arrival. Let a random variable εS be the fraction of time that the
long server was busy during the interval giving that there was a short job arrival. Then,

W (t+ ∆t) =





0 w/ prob. 1 − (λL + λSε)∆t+ o(∆t),
W (t) +XL − εL∆t w/ prob. λL∆t+ o(∆t),
XS − εS∆t w/ prob. λSε∆t+ o(∆t),
something else w/ prob. o(∆).

Note that 0 ≤ ε, εL, εS ≤ 1.
Based on the above observation, the Laplace transform W̃ (t + ∆t, s) of W (t + ∆t) is obtained

as follows:

W̃ (t+ ∆t, s) ≡ E

[
e−sW (t+∆t)

]

=

∫ ∞

x=0
E

[
e−sW (t+∆t)|W (t) = x

]
dPr(W (t) ≤ x)

=
(
1 + (s− λL + λLX̃L(s))∆t

)
W̃ (t, s) +

∫ ∆t

x=0+
O(∆t)dPr(W (t) ≤ x)

+
(
−λS + X̃S(s)λS − s

)
∆tPr(W (t) = 0) + o(∆t).

Thus, we obtain the next formula.

W̃ (t+ ∆t, s) − W̃ (t, s)

∆t
=

(
s− λL + λLX̃L(s)

)
W̃ (t, s) +

∫ ∆t

x=0+
O(1)dPr(W (t) ≤ x)

+
(
−λS + X̃S(s)λS − s

)
Pr(W (t) = 0) +

o(∆t)

∆t
.

Letting ∆t→ 0 in the above formula, we obtain a differential equation for W̃ (t, s).

dW̃ (t, s)

dt
=

(
s− λL + λLX̃L(s)

)
W̃ (t, s) +

(
−λS + X̃S(s)λS − s

)
Pr(W (t) = 0).

(ii) Let t → ∞. Then, dW̃ (t,s)
dt → 0 because the queue reaches the stationary state. Let W̃ (s) ≡

limt→∞ W̃ (t, s). Then, W̃ (s) is obtained as a function of π0 = Pr(W (t) = 0):

W̃ (s) =
s+ λS − X̃S(s)λS

s− λL + X̃L(s)λL
π0.

(iii) Next, we will obtain π0 by evaluating W̃ (s) at s = 0. Note that the Laplace transform Z̃(s)
of a probability distribution Z always has the property Z̃(0) = 1.

1 = W̃ (0) =
1 + E [XS ]λS
1 − E [XL]λL

π0.
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The second equality follows from the L’Hopital’s rule. Therefore,

π0 =
1 − λLE [XL]

1 + λSE [XS ]
.

(iv) The moments of waiting time, and subsequently response time, are easily obtained by differ-
entiating W̃ (s) and evaluating at s = 0. In particular, the n-th moment of W is

E [Wn] = W̃ (n)(0).

Proof of Theorem 11

The donor queue can be seen as an M/GI/1 queue with generalized vacations, where a vacation
starts when the number of donor jobs becomes zero and ends when the donor server starts working
on donor jobs. In an M/GI/1 queue with generalized vacations, the mean response time has the
following expression [57]:

E [T ] = E [XD] +
λDE

[
X2
D

]

2(1 − ρD)
+

E [A(A− 1)]

2λDE [A]
, (A.2)

where A denotes the number of jobs that arrive during a vacation period. Observe that the first
two terms constitute the mean response time in a corresponding M/GI/1 queue (without vacation).
Therefore, it suffices to analyze E [A] and E [A(A− 1)].

There are two types of vacations, depending on how the vacation ends. The first type of vacation
ends when a donor job arrives at an empty donor queue while the donor server is staying at the
donor queue. In this case, A = 1. The second type of vacation ends when a donor job arrives at a
donor queue with N th

D − 1 jobs while the donor server is staying at the beneficiary queue or in the
process of switching to the beneficiary queue. In this case, A = N th

D +B, where B is the number of
donor job arrivals during Kba. Let p be the probability that a vacation is of the second type. Then,

E [A] = (N th
D + λDE [Kba])p+ (1 − p) (A.3)

E [A(A− 1)] =
(
N th
D (N th

D − 1) + 2N th
D λDE [Kba] + λ2

DE

[
K2
ba

])
p. (A.4)

All that remains is to derive p. Observe that the first type of vacation starts when a donor job arrives
while the donor server is at the donor queue and the number of donor jobs is zero. Also, observe that
the second type of vacation starts when a donor job arrives while the donor server is either at the
beneficiary queue or in the process of switching to the beneficiary queue and the number of donor
jobs is N th

D − 1. Since the arrival process is Poisson, p is given by the expression (6.1). The theorem
now follows from (A.2)-(A.4).
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Appendix B

Moment matching algorithm by
Bobbio, Horváth, and Telek

In this section, we summarize the recent results by Bobbio et al. [22] on characterization of PH
distributions and moment matching algorithms, which build upon our results in Chapter 2. Recall
that S(n) denotes the set of distributions that are well represented by an n-phase acyclic PH distri-
bution (Definition 5). Bobbio et al. provide exact conditions for a distribution G to be in set S (n)

(see Theorem 21) as well as exact conditions for G ∈ S (n)∗ (see Theorem 20), where S(n)∗ is defined
as follows:

Definition 20 Let S(n)∗ denote the set of distributions that are well-represented by an n-phase
acyclic PH distribution with no mass probability at zero for positive integer n.

Further, Bobbio et al. provide a closed form solution for mapping any G ∈ PH3 to a minimal-phase
acyclic PH distribution without mass probability at zero1 (see Theorem 22). As we define the EC
distribution and map an input distribution to an EC distribution in Chapter 2, Bobbio et al. also
define a subset of PH distributions, and map an input distribution to a PH distribution in the subset.
Specifically, Bobbio et al. map an input distribution to an Erlang-Exp distribution (see Figure B.1)
or an Exp-Erlang distribution (see Figure B.2).

Theorem 20 [22] A distribution G is in set S (n)∗ iff its normalized moments mG
2 and mG

3 satisfy
the following conditions:

mG
2 ≥ n+ 1

n

and

mG
3 lower bound:

{
ln ≤ mG

3 if n+1
n ≤ mG

2 ≤ n+4
n+1

n+1
n mG

2 < mG
3 if n+4

n+1 ≤ mG
2

mG
3 upper bound:

{
mG

3 ≤ un if n+1
n ≤ mG

2 ≤ n
n−1

mG
3 <∞ if n

n−1 < mG
2 ,

1In [22], Bobbio et al. also provide a closed form solution for mapping any G ∈ PH3 to a minimal-phase general
acyclic PH distribution, which can have mass probability at zero (i.e. the number of phases used is OPT(G)).

231



λY λY λY

Erlang (n−1)

λX state
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p

1−p

n−11 n

Figure B.1: The Markov chain whose absorption time defines an Erlang-Exp distribution.

λX λY λY λY

Erlang (n−1)

1 2p
n

state
absorbing

1−p

Figure B.2: The Markov chain whose absorption time defines an Exp-Erlang distribution.

where ln and un are defined as follows:

ln =
(3 + an)(n− 1) + 2an

(n− 1)(1 + anpn)
− 2an(n+ 1)

2(n− 1) + anpn(nan + 2n− 2)

un =
1

n2mG
2


2(n− 2)(nmG

2 − n− 1)

√

1 +
n(mG

2 − 2)

n− 1
+ (n+ 2)(3nmG

2 − 2n− 2)




where

pn =
(n+ 1)(mG

2 − 2)

2mG
2 (n− 1)


 −2

√
n+ 1√

4(n+ 1) − 3nmG
2

− 1




an =
mG

2 − 2

pn(1 −mG
2 ) +

√
p2
n +

pnn(mG
2 −2)

n−1

Theorem 21 [22] A distribution G is in set S (n) iff its normalized moments mG
2 and mG

3 satisfy
the following conditions:

mG
2 ≥ n+ 1

n

and

mG
3 lower bound:

n+ 2

n+ 1
mG

2 ≤ mG
3

mG
3 upper bound:

{
mG

3 ≤ un if n+1
n ≤ mG

2 ≤ n
n−1

mG
3 <∞ if n

n−1 < mG
2 ,

where un is the same as in Theorem 20.
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Theorem 22 [22] Let G be a distribution in S (n)∗ \ S(n−1)∗. If mG
2 ≤ n

n−1 or mG
3 ≤ 2mG

2 − 1, then
G is well-represented by the Erlang-Exp distribution with the following parameters:

λX =
ap+ 1

µG1

λY =
λX(n− 1)

a

a =
(bmG

2 − 2)(n− 1)b

(b− 1)n

p =
b− 1

a

b =
2(4 − n(3mG

2 − 4))

mG
2 (4 + n− nmG

3 ) +
√
nmG

2 c

c = 12(mG
2 )2(n+ 1) + 16mG

3 (n+ 1) +mG
2 (n(mG

3 − 15)(mG
3 + 1) − 8(mG

3 + 3))

If mG
2 > n

n−1 and mG
3 > un−1, then G is well-represented by the Exp-Erlang distribution with the

following parameters:

λX =
a+ p

µG1

λY =
λX(n− 1)

a

a =
2(f − 1)(n− 1)

(n− 1)(mG
2 f

2 − 2f + 2) − n

p = (f − 1)a,

and f is given by the following steps2:

K1 = n− 1

K2 = n− 2

K3 = 3mG
2 − 2mG

3

K4 = mG
3 − 3

K5 = n−mG
2

K6 = 1 +mG
2 −mG

3

K7 = n+mG
2 − nmG

2

2f is a solution for the fourth order equation c4f
4 + c3f

3 + c2f
2 + c1f + c0 = 0, where

c4 = m
G
2 (3m

G
2 − 2m

G
3 )(n − 1)2

c3 = 2m
G
2 (mG

3 − 3)(n − 1)2

c2 = 6(n − 1)(n − m
G
2 )

c1 = 4n(2 − n)

c0 = n(n − 2).
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K8 = 3 + 3(mG
2 )2 +mG

3 − 3mG
2 m

G
3

K9 = 108K2
1

(
4K2

2K3n
2mG

2 +K2
1K2K

2
4n(mG

2 )2 + 4K1K5(K
2
5 − 3K2K6nm

G
2 )

+
√
−16K2

1K
6
7 + (4K1K3

5 +K2
1K2K2

4n(mG
2 )2 + 4K2nmG

2 (K4n2 − 3K6mG
2 +K8n)2

)

K10 =
K2

4

4K2
3

− K5

K1K3mG
2

K11 =
2

1
3

(
3K2

5 +K2(K3 + 2K4)nm
G
2

)

K3K
1
3
9 m

G
2

K12 =
K

1
3
9

2
7
3 3K2

1K3mG
2

K13 =
√
K10 +K11 +K12

K14 =
6K1K3K4K5 + 4K2K

2
3n−K2

1K
3
4m

G
2

4K2
1K

3
3K13mG

2

K15 = − K4

2K3

K16 =
√

2K10 −K11 −K12 −K14

K17 =
√

2K10 −K11 −K12 +K14

K18 = 36K3
5 + 36K2K4K5nm

G
2 + 9K1K2K

2
4n(mG

2 )2

−
√

81(4K3
5 + 4K2K4K5nmG

2 +K1K2K2
4n(mG

2 )2)2 − 48(3K2
5 + 2K2K4nmG

2 )3

K19 = − K5

K1K4mG
2

− 2
2
3 (3K2

5 + 2K2K4nm
G
2 )

3
1
3K1K4mG

2 K
1
3
18

− K
1
3
18

6
2
3K1K4mG

2

K20 = 6K1K3K4K5 + 4K2K
2
3n−K2

1K
3
4m

G
2

K21 = K11 +K12 +
K5

2nK1K3

K22 =

√√√√3K2
4

4K2
3

− 3K5

K1K3mG
2

+

√
4K2

21 −
nK2

mG
2 K

2
1K3

f =





K13 +K15 −K17 if un−1 < mG
3 <

3mG
2

2

K19 if mG
3 =

3mG
2

2

−K13 +K15 +K16 if mG
3 >

3mG
2

2 and K20 > 0
K15 +K22 if K20 = 0
K13 +K15 +K17 if K20 < 0.
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Appendix C

Properties of Markovian arrival
processes

Below, we summarize some of the basic properties of the MAP. First, the set of MAPs is quite broad
and, in theory, any stationary point process can be approximated arbitrarily closely by a MAP.

Proposition 6 [12] The set of MAPs is dense in the set of all the stationary point processes.

Second, the set of MAPs is closed under some operations. In particular, a superposition of two
independent MAPs is a MAP.

Proposition 7 [117] A superposition of two independent MAPs, MAP(C0,C1) and MAP(D0,D1)
is a MAP, MAP(E0,E1), where

E0 = C0 ⊗ D0 and E1 = C1 ⊗ D1.

Here, ⊗ denotes the Kronecker product.

Third, the average rate of events and the marginal distribution of the inter-event time of a MAP
have simple mathematical expressions.

Proposition 8 [117, 92] The average rate of events (the number of events in a unit time) in a MAP
is called the fundamental rate of the MAP. The fundamental rate of MAP(D0,D1) is given by

λ =
−→
θ D1

−→
1 ,

where
−→
θ is the stationary probability vector in the Markov chain with infinitesimal generator D =

D0 + D1 (i.e.,
−→
θ D = 0 and

−→
θ
−→
1 = 1).

The marginal distribution of the inter-event time of the above MAP is a PH(
−→
φ ,D0) distribution,

where
−→
φ =

−→
θ D1

λ
,

which is the stationary probability vector immediately after the event. Note the difference between
PH(

−→
φ ,D0) and PH(

−→
θ ,D0). PH(

−→
θ ,D0) is the distribution of the time from an arbitrary epoch,

i.e., the excess of the inter-event time.
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Since the marginal distribution of the inter-event time in a MAP is a PH distribution, its moments,
density function, and distribution function can be calculated via Proposition 4.

The variability of a point process can be characterized by the covariance of the inter-event times
or the index of dispersion for intervals. The index of dispersion for intervals, IDI(·), of a MAP is
defined by

IDI(i) =
V ar(Si)

i/λ2
,

where Si is the sum of the first i inter-event times of the MAP. Observe that IDI(i) is the ratio of the
variance of Si to the corresponding variance of a Poisson process with the same rate. The MAP have
a convenient mathematical expressions for the covariance and the index of dispersion for intervals.

Proposition 9 [7, 92] Consider MAP(D0,D1) with the fundamental rate λ. Recall the vectors,
−→
θ

and
−→
φ , of the MAP defined in Proposition 8. The covariance between the two inter-event times

separated by i− 1 events of the MAP is given by

λ−1−→θ
(
(−D0

−1D1)i −−→
1
−→
φ
)

(−D0)−1−→1 .

The IDI(·) of the above MAP is given by

IDI(i) = 2λ
−→
θ
(
I + D0

−1D1 +
−→
1
−→
φ
)−1

(−D0)−1−→1 − 1

−2

i
λ
−→
θ
(
I − (−D0

−1D1)i
) (

I + D0
−1D1 +

−→
1
−→
φ
)−1

(−D0
−1D1)(−D0)−1−→1 .

Finally, a MAP can be translated into a counting process, i.e., the number of events by time t, Nt.
The MAP has a simple z-transform of Nt, and this leads to a convenient mathematical expression
for the index of dispersion for counts, which characterizes the variability of a MAP via the variability
of Nt. The index of dispersion for counts, IDC(·), of the MAP is defined by

IDC(t) =
V ar(Nt)

E [Nt]
.

Observe that IDC(t) is the ratio of the variance of Nt to the corresponding variance of a Poisson
process with the same rate.

Proposition 10 [7] Let Nt be the number of events by time t in MAP(D0,D1). Recall vectors,
−→
θ

and
−→
φ , and the fundamental rate λ of the MAP defined in Proposition 8. Let P (i, t) be the probability

that Nt = i. The z-transform of P (·, t), P̂ (z, t) ≡∑∞
i=0 z

iP (i, t), is given by

P̂ (z, t) = exp((D0 + zD1)t).

for |z| ≤ 1, t ≥ 0.
The IDC(·) of the above MAP is given by

IDC(t) = 1 − 2λ+
2

λ

−→
θ D1

−→
d − 2

λt
−→c
(
I − eDt

)−→
d ,

where
−→c =

−→
θ D1(

−→
1
−→
θ − D)−1 and

−→
d = (

−→
1
−→
θ − D)−1D1

−→
1 .
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