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Operations Research 
March-April 1959 

BROWNIAN MOTION IN THE STOCK MARKETt 

M. F. M. Osborne 

U.S. Naval Research Laboratory, Washington 25, D.C. 

(Received February 6, 1958) 

It is shown that common-stock prices, and the value of money can be re- 
garded as an ensemble of decisions in statistical equilibrium, with properties 
quite analogous to an ensemble of particles in statistical mechanics. If 
Y=loge[P(t+tr)/Po(t)], where P(t+r) and Po(t) are the price of the same 
random choice stock at random times t+r and t, then the steady state dis- 
tribution function of Y is p(Y)=exp(-Y2/2ur2r)/ 1V2iru2r, which is pre- 
cisely the probability distribution for a particle in Brownian motion, if 0f 
is the dispersion developed at the end of unit time. A similar distribution 
holds for the value of money, measured approximately by stock-market 
indices. Sufficient, but not necessary conditions to derive this distribu- 
tion quantitatively are given by the conditions of trading, and the Weber- 
Fechner law. A consequence of the distribution function is that the ex- 
pectation values for price itself &(P) =f' P (p(Y)(dYldP) dP increases, 
with increasing time interval r, at a rate of 3 to 5 per cent per year, with 
increasing fluctuation, or dispersion, of P. This secular increase has noth- 
ing to do with long-term inflation, or the growth of assets in a capitalistic 
economy, since the expected reciprocal of price, or number of shares pur- 
chasable in the future, per dollar, increases with r in an identical fashion. 

UT IS THE PURPOSE of this paper to show that the logarithms of com- 
mon-stock prices can be regarded as an ensemble of decisions in a statisti- 

cal steady state, and that this ensemble of logarithms of prices, each varying 
with the time, has a close analogy with the ensemble of coordinates of a 
large number of molecules. We wish to show that the methods of statisti- 
cal mechanics, normally applied to the latter problem, may also be applied 
to the former. 

Although the results of this paper were first reached inductively from 
a direct examination of the data on prices, for the sake of clarity we shall 
present them, at least in part, in a deductive fashion, and compare the 

t Read before the U.S. Naval Research Laboratory Solid State Seminar, Feb- 
ruary 28, 1958. 
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146 M. F. M. Osborne 

deductions with observations on prices. The fundamental facts, as- 
sumptions, and critical points in the derivation of the properties of this 
ensemble, are given in the numbered paragraphs below. These facts and 
assumptions are sufficient, but not necessary to obtain agreement of theory 
with observation. 

1. Prices move in discrete units of H of a dollar. From this it immediately 
follows that the natural logarithms of prices also move in discrete units, approxi- 
mately 1/(8Xprice). We shall call loge-units ratio units. A ratio unit of +1.00 
corresponds to a ratio of +2.817/1. We point out for the convenience of the 
reader, that percentage changes of less than ? 15 per cent, expressed as fractions 
from unity, are very nearly natural logarithms of the same ratio. Thus 
loge[(100 + 15) /1I00] +0.15. 

2. There is a finite, integral number of transactions, or decisions, per unit of 
time. This number may vary from zero to a thousand or more per day for a 
single stock. Hence the decisions also are separated by discrete units of time. 
Observationally, the number of decisions per day may be estimated to be not more 
than the volume in round lots. It may be less, for there may be more than one 
round lot per trade. 

3. The stimulus of price in dollars, and the subjective sensation of value in the 
mind of the trader or investor, are related in accordance with the Weber-Fechner 
law. As this assumption has engendered some controversy, let us specify pre- 
cisely its meaning. The Weber-Fechner law states that equal ratios of physical 
stimulus, for example, of sound frequency in vibrations/second, or of light or 
sound intensity in watts per unit area, correspond to equal intervals of subjective 
sensation, such as pitch, brightness, or noise. The value of a subjective sensation, 
like absolute position in physical space, is not measurable, but changes or differences 
in sensation are, since by experiment they can be equated, and reproduced, thus 
fulfilling the criteria of measurability. 

The Weber-Fechner law is best applicable when there is a single domi- 
nant, or primary stimulus. Thus in comparing two sounds, or two light 
intensities, the frequency distribution (pitch or color) must be nearly the 
same, or the errors of comparison are large. Thus, in assuming the Weber- 
Fechner law, we are relegating earnings, dividends, management, etc., 
and their future outlook to positions of secondary importance. These 
factors may be important, just as the intermolecular force law is important 
in molecular problems, in determining departures from the steady state. 
For determining the steady state, we ignore them in the molecular problem, 
and we ignore their analogs in this problem also. 

The hypothesis that price and value are related by the Weber-Fechner 
law can be reached inductively from the raw data by the following rather 
simple-minded argument. Let us imagine that a statistician, trained 
perhaps in astronomy and totally unfamiliar with finance, is handed a 
page of the Wall Street Journal containing the N.Y. Stock Exchange 
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Brownian Motion in the Stock Market 147 

(NYSE) transaction for a given day. He is told that these data consti- 
tute a sample of approximately 1000 from some unknown population, 
together with some of their more important attributes or variables, eleven 
in all. The fact that these eleven were the most important, out of a much 
larger number obtainable, from annual reports, for example, might be 
inferred from the fact that this choice of eleven was published every day. 
Our statistician is asked to investigate this population, to determine if it 
is a homogeneous sample, and what relations (in the probability sense) 
exist between the variables or attributes listed for each member. 

The methods of attacking the raw data on such a problem are well- 
known, especially to biologists; we quote an astronomical reference[ 
primarily because of personal familiarity. A common first step is the 
determination of distribution functions. Casual inspection of the data 
reveals that of eleven attributes or variables listed for each member of 
the population, six, exclusive of the change, are devoted to something 
called 'price,' evidently a dominant variable even among those so important 
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Fig. 1. Distribution function of closing prices for July 31, 1956 
(all items, NYSE). 

as to be published every day. On learning that 'close' was the most recent 
data, our statistician would plot the distribution function of closing price 
alone for the 1000 members of the sample (Fig. 1). Inspection of Fig. 1 

shows that closing prices on that day were certainly not normally dis- 
tributed, but the shape suggests that logarithms of prices might be-i.e., 
Fig. 1 suggests a logarithmic-normal distribution. Figure 2 gives the 
identical data of Fig. 1 with loge price as independent variable (see refer- 
ence 1, page 9 for numerical methods). 

At this point our statistician will make a 'discovery' and answer one of 
the questions posed to him. A subsidiary maximum around logeP,4.5 
(PI$100) in Fig. 2 suggests that the population contains at least two 
sub-groups; i.e., it is not homogeneous. Re-examination of the raw data 
around Pt$100 reveals an excessive number of our sample with the 
attribute 'pfd' (preferred), and plotting the distribution function of these 
only gives Fig. 3. The remaining members of the population, the common, 
or ordinary ones is plotted in Fig. 4. This appears normal, and as a rough 
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148 M. F. M. Osborne 

test, the cumulated distribution is plotted in Fig. 6. At this stage our 
statistician can say that the population, insofar as the distribution with 
respect to price is concerned, appears to be divided into perhaps three 
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Fig. 2. Distribution function for log, on July 31, 1956 (all items NYSE). 

classes, if one can regard the two subdivisions of Fig. 3 as significant: 
a more searching examination of the data may reveal others (cf. Fig. 10). 
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Fig. 3. Distribution function of logP for preferred stocks 
(NYSE, July 31, 1956). 

Our statistician likes to choose an independent variable (logP in this 
case) that renders the data approximately normally distributed. The 
testing of a statistical hypothesis is thereby greatly facilitated, and analo- 

This content downloaded from 129.97.58.73 on Mon, 10 Jun 2013 22:38:04 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Brownian Motion in the Stock Market 149 

gies with many other populations, also normally distributed, may be 
successfully exploited in trying to understand the new one. 

A rationale for the use of logeP in preference to P as independent vari- 
able is also given by the general statistical precept that equal intervals of 
the argument chosen as independent variable should have equal physical, 
or in this case psychological, significance, for the data to be most revealing 
(reference 1, p. 6). This choice was confirmed by the resulting 'discovery' 
of the preferred stocks. This 'equal-interval' argument implies that the 
difference in subjective sensation of profit (or loss), or change in value, 
for example, between a $10 and an $11 price for a given stock, is equal to 
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Fig. 4. Distribution function of logP for common stocks 
(NYSE, July 31, 1956). 

that for change from $100 to $110. Thus our statistician is led to hypoth- 
ecate the Weber-Fechner law, and the dominance of a single variable in the 
stimulus, from the observational procedure outlined above. 

Figure 5 gives the closing prices of common stocks on the American 
Stock Exchange (ASE) and Fig. 6 its cumulated distribution, as a rough 
test of normality. 

The introduction of the Weber-Fechner law as a working hypothesis 
now leads our statistician to examine price changes that occur in individual 
stocks, since by hypothesis the absolute level of price is of no significance, 
only changes in prices (specifically zAlogeP or the loge, of price ratios) can 
be measured by traders or investors. Histograms of these for intervals i- 

of one month are published in The Exchange. Accumulated distributions 
for intervals of a month and a year are given in Figs. 7 and 8. Note that 
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Fig. 5. Distribution function of logeP for common stocks 
(ASE, July 31, 1956). 
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Fig. 6. Cumulated distributions of logeP for NYSE and ASE 
(common stocks). 
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Brownian Motion in the Stock Market 151 

for both intervals the distributions are nearly normal in ratio units. This 
is slightly less true for percentage units in which the data was originally 
published. The effect is less noticeable in the monthly data, where the 
percentage changes are small, and hence nearly equivalent to ratio units. 

This nearly normal distribution in the changes of logarithm of prices 
suggests that it may be a consequence of many independent random 
variables contributing to the changes in values (as defined by the Weber- 
Fechner law). The normal distribution arises in many stochastic proc- 
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Fig. 7. Cumulated distributions of AlogeP=loge[P(t+r)/P(1)] for r=1 
month (NYSE common stocks). These, and also Fig. 8, may be regarded as 
distributions of S(r) for fixed M*(r). The solid line is the distribution of 
Z(r)-:M(r), transcribed from Fig. 12 for comparison. 

esses involving large numbers of independent variables, and certainly 
the market place should fulfill this condition, at least. 

4. As a fourth element in our analysis, we would like to define a 'logical' de- 
cision. As an elementary example let us suppose we must make a decision between 
course of action A, and course of action B. We know, or can estimate (in any 
sense) that course of action A has possible outcomes YA1, YA2, * * with probabilities 
sO(YA1), sO(YA2), etc., while a decision for B has possible outcomes YB1, YB2, * * with 
probabilities (P(YB,), (P(YB2), etc. Then the logical choice is to make a decision for 
A, or B, for which the expectation value, 8, of the outcome, P(YA) =2; YAi ((YAi), 

or 8(YB) = Ii YBi ((YBi) is the larger. 
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152 M. F. M. Osborne 

Evidently decision problems can be much more complicated than this 
example. They may involve several alternatives and sequences of de- 
cisions in which the estimate of the probabilities and payoffs (the Y's) 
are interrelated. The general approach is the same: to maximize-using 
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Fig. 8. Cumulated distributions of AlogeP=loge[P(t+r)/P(t)] for r=1 
year (NYSE common stocks). Data from NYSE Year Book, 1956, and 
The Exchange (February, 1957). 

the given information, estimates of probabilities, payoffs, and restraints- 
the expectation value of the end result. 

In view of our previous remarks we might illustrate the above example 
with a stock-market decision. A trader has sufficient capital to buy a 
hundred shares of a corporation, now (time t) selling at Po(t). He wishes 
to increase his capital and can choose between A, buying for future sale 
at some time t+ r, or not buying, B. The Y's refer to possible changes in 
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Browniani Motion in the Stock Market 153 

the logarithm of the price of 100 shares; i.e., YA(T) =Alog,[100 P(t)]= 
loge[P(t+-r)/Po(t)1, since by hypothesis it is this quantity that is measur- 
able in the trader's mind. There is only one YB, zero, the null change 
with probability one, a certainty. The 'logical decision' to buy or not 
buy is thus determined by whether the estimated expectation value of 
YA ( r) is positive or negative. 

We do not claim that the trader sits down and consciously estimates 
the Y's and o( Y) 's, any more than one could claim that a baseball player 
consciously computes the trajectory of a baseball, and then runs to inter- 
cept it. The net result, or decision to act, is the same as if they did. In 
both cases the mind acts unconsciously as a storehouse of information and 
a computer of probabilities, and acts accordingly. 

Now let us examine the nature of the decisions, of which the published 
prices gives a numerical measure, concerning the common-stock listings 
of NYSE. These prices represent decisions at which a buyer is willing to 
acquire stock (and sell money) and a seller is willing to dispose of stock, 
and hence buy money. There are, therefore, in each transaction two 
types of decisions being made by each participant. From what has been 
said about the anatomy of logical decisions (they need not be consciously 
logical, but this is the supposition as to how they are reached), we must 
suppose that for the buyer, his estimate of the expectation value for the 
change in value (AlogeP) for the stock is positive, while the seller's esti- 
mate of the same quantity is negative. Presumably, the reverse situation 
holds in the minds of buyers and sellers for the estimated expectation 
value for changes in the value of money (their second decision), though 
we have not yet specified how changes in the value of money are measured 
in this situation. 

In view of the equality of opportunity in bidding between buyers and 
sellers, in accordance with the regulations of the Exchange, it would appear 
that the most probable condition under which a transaction is consum- 
mated, and a price or decision is recorded, is obtained when these two 
estimates are equal and opposite, or 

ES(AlogP)s+E8(Aloge P)B=, ( 1) 

where P denotes price per share, and ES the estimate of the expectation 
value. Hence we can say that for the market as a whole, consisting of 
buyers and sellers, 

ES (AlOgeP) M-B+S = (2) 

is the condition under which transactions are most probably recorded. A 
few moments later another transaction may be recorded for the same stock 
at a slightly different price, and again equation (2) will most probably 
be applicable, and so on for succeeding transactions. One might even 
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argue that in equation (2) the symbol E for estimate could be dropped, 
since in such buying and selling the decisive estimates are definitive of 
actual value. Or to put it differently, if enough people decide and act 
on the belief that something is valuable, it is valuable at that time. 

5. The above contains a critical point in our argument; i.e., the most probable 
condition under which a transaction is recorded is given by equation (2). In 
words, this states that the contestants are unlikely to trade unless there is equality 
of opportunity to profit, whether an individual happens at the moment to be a 
buyer or a seller, of stock, or of money. The Exchanges are certainly governed 
with this end in view, but we also feel that this condition must have obtained even 
prior to any regulation, since every buyer, once having consummated his trade, 
now finds himself as a potential seller in the virtual position of his opponent, 
with whom he was so recently haggling. The converse situation applies to the 
seller, now a potential buyer. Under these circumstances it is difficult to see 
how trading could persist unless prices moved in such a way that equality of op- 
portunity most probably prevailed, and equation (2) expresses this quantitatively, 
perhaps less as an assumption than as a consequence of assumptions 3 and 4. 

We now ask, what is the effect of the condition (2) on the distribution 
function ultimately developed for AlogeP? Our argument follows closely 
one originally given by GIBBS for an ensemble of molecules in equilibrium. 
The actual distribution function is determined by the conditions of maxi- 
mum probability (reference 3, p. 79). 

6. Assuming the decisions for each transaction in the sequence of transactions 
in a single stock are made independently (in the probability sense), then under 
fairly general conditions outlined below, we can expect that the distribution func- 
tion for Y(-r) =loge[P(t+r)/Po(t)] will be normal, of zero mean with a dispersion 
oY(r) which increases as the square root of the number of transactions. If these 
numbers of transactions (the 'volume') are fairly uniformly distributed in time, 
then oY(r) will increase as the square root of the time interval; i.e., OTY(r) will be 
of the form o--V'r, where o- is the dispersion at the end of unit time. 

7. Mathematically we may express this as follows: Suppose we have k in- 
dependent random variables y(i), i = 1, * ., , 

y(i) = Air logeP = loge[P(t +i3) /P(t + - i-1 } 6)], 

where P(t) is the price of a single stock at time t and 3 is the small time interval 
between trades.t Assume that each y(i) has the same dispersion o-(i) =o', then 
after k trades, a time -r = k3 later, we define Y(r) as 

Y(r) = Y(kH) = y y(i) =loge[P(t+r)/P(t)] =T logeP(t). (3) 

t Indices i, j in parentheses will refer to independent random variables in a 
sequence in time. As subscripts, i, j will refer to independent variables at the same 
time (different stocks). 
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Brownian Motion in the Stock Market 155 

We also have the dispersion of Y: 

0Y(T) =\/% (Y2) [8(Y)]2 

= Z = (j) 1/ko- =-s/ f (4 
Hence o- = -'/-\/6 is the dispersion developed at the end of unit time; i.e., in a 
number 1/6 of trades. 

The central limit theorem [5] assures that Y(-r) will approach a normal 
distribution for large k whatever the distribution function of the y(i). 

The above considerations have an obvious analog in the diffusion of a 
molecule undergoing collisions with its neighbors. Regardless of the 
intermolecular force law (cf. the factors ignored in hypothecating the 
Weber-Fechner law), the dispersion in the probability distribution of posi- 
tion of a particle initially (at time t) located at some point will increase 
as the square root of the time interval T after t. The phenomenon of the 
persistence of velocities, [2] which the stock market also possesses"7' does 
not alter this conclusion. 

THE OBSERVATIONAL DATA 

Let us now examine the data to see in what particulars the above expec- 
tations are fulfilled. Figures 7 and 8 support, at least approximately, the 
conclusion of normality for Y(T), at least for intervals -r =1 month and 
1 year. We would now like to estimate how the distribution function of 
Y(T) changes with the time interval r. Owing to the wealth of data, and 
for purposes of computational simplicity, we shall not evaluate o-Y(,) di- 
rectly. Instead, we shall evaluate the semi-interquartile range (s.q.r.) of 
Y(T), or one-half of the range (in ratio units) between the 25 per cent and 
75 per cent points of a sample. For a normally distributed population, 
which Figs. 7 and 8 indicate is quite closely the case here, s.q.r. = 'prob- 
able error' of Y(T) = 0.6745 Ty (,). In any event the s.q.r. has a definite 
statistical interpretation, whether the distribution is normal or not. 

To evaluate the s.q.r. we take a random sample of common stocks at 
some random starting date, t, write down the prices of each on that date 
and the prices of the same stocks at intervals r of a day, week, month, two 
months, etc., later. All of these prices are then divided by their corre- 
sponding starting (t) prices, and the ratios of each plotted for the various 
intervals. One-half of the interquartile range is obtained by taking one- 
half of the natural logarithm of the ratio of ratios from the 25 per cent to 
75 per cent point of the sample. This s.q.r. is then plotted in Fig. 9. 
Similar data on a trading-time scale, appears in Fig. 10. As can be seen 
from an inspection of these two figures for various starting dates from 
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Fig. 10. Semi-interquartile range of AlogP=loge[P(t+-r)/P(t)] for -r as 
a trading time interval, for common stocks (all data from the Wall Street 
Journal). Samples from NYSE were taken under letter Hfrom ASE under 
letter M, from Toronton under mines and oils. The utilities were the first 
20 listed by Securities Research Corporation. Starting time t, September 
21, 1956. N=20 for all samples. This data may be regarded as 0.6745 a'(, 
for an assumed normal distribution. 
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Brownian Motion in the Stock Market 157 

1924 to 1956, and intervals of one day to 12 years, the s.q.r. does indeed 
increase with the square root of the time, corresponding to a slope of H 
Even the data beginning in July 1929 is not exceptional in this regard. 
Continuity of the data from the two figures may be obtained by noting the 
shift from a trading- to calendar-time scale, which occurs mostly between 
a day and a week. Note that this measure of the dispersion of Y, 0.6745 0Y(r) 

from Figs. 9 and 10, is from a sample of N for some single interval ir. 

The years 1924-1956 were the limits of readily accessible data, pub- 
lished by F. W. Stephens and the Securities Research Corp. The random 
sampling was achieved by paging through the publications and flipping a 
coin to decide which page and common stock, of the NYSE, to select. 
The short range data of Fig. 10 were taken directly from the Wall Street 
Journal in a similar fashion. 

In order to clarify the next step, let us anticipate the results of an 
inductive analysis of the data by describing some models which have many 
of the features of our market the ensemble of 1000 or more logarithms 
of individual stock prices, as functions of the time. 

MODEL I. Let us first imagine 2000 pennies grouped in 1000 pairs. All 
1000 pairs are tossed simultaneously at intervals 3, or 1/6 tosses per unit 
time. Heads count +1, tails -1, and we record the payoff 2, 0, or -2, 
yj(i) of the jth pair (j=z 1 ... 1000) of the ith toss. We also record the 
mean of a sample N in number for each toss, m(i) = I/N Z:- yj(i), 
evidently this will be very close to zero for large N. We also record the 
cumulated sum after k tosses or after an interval r of each pair, and of the 
mean; i.e., Y(r) and M-(r) where i-=kb. We also ascribe all arbitrary 
starting point for each random walk Y(-r), which, to preserve the analogy 
with our previous notation, we shall call logPj(t) for the jth pair. We 
deliberately add and subtract this arbitrary constant, to emphasize that 
Yj(-r) is the deviation from some arbitrary starting point (c.f. Weber- 
Fechner law). 

yj ( ) 1log'Pj (t) + E i1 yj WI - logep (t) 7 (5) 
!1( k =i- J_ mi-i/N S k$ yj(i) 

M(:1/A) Z.f Y (=). (6) 

Evidently the dispersion of the Y's, o-y(T) can be computed theoretically, 
and also estimated from the data, among other methods, by a method 
similar to that above on stock prices. The dispersion of M( r), JM(r), 
since M(-r) is a single random walk, can also be computed theoretically, 
but must be experimentally obtained from samples of nonoverlapping 
intervals of duration r. 

With the above model, it is not difficult to see that oM(T)3o-y(,)/N'12 
and both 0M(r) and 0Y(r) increase with the square root of k, or the square 
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root of the time interval r if the tossing rate is constant. In this model 
M(-r) and Y( r) will both be normally distributed, for large r or equiva- 
lently large k. 

MODEL II. Let us now consider a second ensemble consisting of 1000 
pennies and one gold piece. The payoffs of heads and tails for each coin 
are the same, as before; the payoffs for gold and copper coins may or may 
not be the same. We also form 1000 pairs from this ensemble, each pair 
having the single gold piece in common, and determine as before Yj( r) 
and M(-r). The individual random walks Y( r) are statistically identical 
with those of Model I. The difference in the two ensembles shows up in 
m(i) and in M(-r). For large N, m(i) will unambiguously reveal whether 
the gold coin came up heads or tails, and the dispersion of M(-r) for large 
N will be almost identical with that determined for the Y( r) 's, not 1j(N)112 
smaller, if o-Y(,) is determined from a sample for one interval, as in Figs. 7-10. 
M(-r) will, for large N, be almost the same as the random walk generated 
by the gold coin alone. As before, both (JY(r) and O-M(T) will increase as 
p1/2 and Y(-r), M(-r) will be normally distributed. If we should modify 
the payoff of the gold coin to a number other than that for the copper 
coins, this will show experimentally in OJM(,). 

MODEL III. In this model we modify Model II by adding a few copper 
coins, but still form 1000 groups (no longer all pairs some comprise three 
or more coins). Every group has at least one, the gold coin, in common. 
We further modify slightly the payoff of a few of the coins, increasing the 
amount of head and tail values in some, decreasing it in others, but still 
keeping them equal but opposite in sign. The payoff of the gold coin 
may be increased for some groups, decreased for others, corresponding to 
'leverage' and 'defensive' stocks. We again form the yi(j), m(j), Yj(T), 

M(T-) of these 1000 groups as before. For this case the distribution of the 
Y(-r)'s determined from a sample, as in Figs. 7-10, will not be quite normal 
since the component dispersions are not identical. However, oY(r) or the 
interquartile range of Y(-r) will increase with r112 as before, and the same 
statement will also be true for M(-r). M(-r) and m(i) still will, for large 
N, reveal rather reliably the behavior of the gold coin alone. 

Our problem is the inverse of deriving theoretically the properties of 
these models. We have the 1000 or so random walks or stock prices, and 
hence can form numerical values for Yj(r) -loge[Pj(t + -r)/Pj(t)]. We 
do not know how the Y's were generated, and we wish to examine them to 
find out which model, if any, might represent best their behavior. 

8. At this point we put forth the hypothesis, and we believe the data will 
support it, that Model II will represent the behavior of our ensemble of stock- 
market prices. The data will require small, but nevertheless detectable modifi- 

This content downloaded from 129.97.58.73 on Mon, 10 Jun 2013 22:38:04 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Brownian Motion in the Stock Market 159 

cations in the direction of Model III. The payoffs are in ratio units, not dollar 
changes, and can be estimated from the discrete nature of the process described in 
1 and 2. 

9. We further assert, exploiting the analogy of Model II with the elementary- 
decision process described for the market, that M(r) will estimate changes in the 
value of money in the minds of buyers and sellers. The value of money is not 
measurable by the Weber-Fechner hypothesis, but changes in the value of money 
should be. 

An estimate of the expectation value for changes in the value of money 
was an element common to every decision, in precisely the same sense 
that the gold coin payoff was common to every pair of Model II. Approxi- 
mately, but not exactly, this change in the value of money is given by 
changes in the ordinary stock-market indices. We should however, note 
the restriction to buyers and sellers of common stocks. We do not know 
whether M ( r) is the same for those who deal in bonds, preferred stocks, 
commodities, or wherever else money may go. 

Let us now return to the data. For our purpose the ideal index of 
stock market prices, as a function of the number of transactions from some 
arbitrary starting date would be 

logP(k) = (1/N) Do logPi(k) 

formed from N individual stock prices. However, if the number of trans- 
actions per day does not fluctuate too violently it would be sufficient to 
use, without appreciable error 

logP~)=(l/) E~: logpi(t) 

or the equivalent geometric mean 

P (t)Xe= ["M i=t1 NOt] .(7) 

Stock market indices are not computed this way either. However, there 
are numerous arithmetic averages of the type 

P(t)arith== ( I N) pi1 P(t). (8) 

We hope to show that changes in the logarithm of P(t)arith are approxi- 
mately the same as changes in logP(t) and that the dispersion of the 
changes thus computed can be corrected, approximately, to the dispersion 
of M( r) = AlogP(t) log[Pgeom(t+-r)/Pleom(t)]1 

The most comprehensive series of indices of the type (8) were computed 
by COWL8s. [71 The number of stocks, N, varied from 8 to 18 for the 
years 1831-1936, N=15 since 1897. Cowles, moreover, computed not 
the dispersion of the changes of his index, but the absolute value of per- 
centage changes for nonoverlapping intervals of r from 20 minutes to 
12 years. In other words, Cowles computed 

This content downloaded from 129.97.58.73 on Mon, 10 Jun 2013 22:38:04 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


160 M. F. M. Osborne 

Z(t, 7r) = _1 [Pj(ti +) -Pj(ti)]/ZE Pj(ti), 
(9) 

and published values of I Z(r) =(1/L) Zf j Z(ti, r) . Here L is 
the number of nonoverlapping intervals used, from 1831-1936 or less. 
From our discussion under Model I of how to compute the dispersion of 
M(1 r), and since percentages and ratio units are closely related, this 
I Z(r) is almost, but not quite, what we seek. 

1.0 1-- 73 

0 x DATA ON TRADING TIME SCALE ; H3+53 
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UJ 0'I 
SCALE XX -to0 

Li42 0 0,1 :X * +10 Iw 

>'h 0?? U D { 

HJ - 0 

:D < 4 llilt 
l 

1ti lllilllll.01llii ill 

c 0.01- 
10 10L t?3 104 io5 1o6 107 

C Hj (20.D 

1111111 I I lii I I I litI LA 11 1i I II 11 _L Li'L1 

10 10 2 03 Q04 o5 106 0 
TIME (MINUTES) 

I I I I I 111111_I I I I 111 
HR DAY WK MON YR IOYR 

(5HR) (27HR) 
TRADING TIME SCALE 

I II II I I IIH III I I tI LL 
HR~ DAY WK MON YR IOYR 

LAPSED (CALENDAR) TIME SCALE 

Fig. 11. Mean absolute value of index changes according to Cowles, in 
ratio units, as a function of time interval. The arrows A-D denote approxi- 
mate corrections to convert the data to s.q.r.=0.6745 oM(,) of a normal dis- 
tribution. 

In Fig. 11 we have converted Cowles's value of I Z( r) I to ratio units 
(assuming all percentages were positive) and plotted them. In order to 
compare this data with that of Figs. 9 and 10, we have computed the small 
corrections A, B, C, D outlined below to convert this IZ( r) I to the semi- 
quartile range of the variable M( r), assumed normally distributed. While 
these corrections are uncertain, they are small and some of them tend to 
cancel out. 

Let us first compare Z( r) with M( r): 

M(r)=(1/N) 5,1o loge[Pj(t+r)/Pj(t)] =(1/N) Ej=N Yj(r). (10) 
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In terms of Y's, Cowles's function becomes, since P(t-+Fr) ==P(t) e , 

Z ( T) E= N 
aN_ x j( - d_ Z.1) Pj(t){exp[Yj (r)]-i}J/Ej+=.. Pj(t) 

= Z, N Pj(t) Yj(T)/ZE- Pj(t)+O[Y2(T)]. 
Thus we see that, neglecting terms of order Y2, M(r) is an unweighted 
mean of the Yj's, whereas Z( r) is weighted in favor of the higher-priced 
stock at the start of the interval, t. The systematic effect of this price 
weighting (which was, to be sure, changed from time to time), we do not 
know, but can only observe that over the entire history of the Exchange, 
which Cowles sampled, the same stocks undoubtedly became high- and 
low-priced several times. If we can justifiably make the assumption that 
over the entire history of the Exchange, high-priced stocks do not behave 
systematically differently from a random sample, and can neglect terms in 
Y2, then indeed Z( r) _M( r). The mean absolute value of the Z's, which 
Cowles computed, is closely related to the dispersion. It is nearly the so- 
called 'mean error.' 

Cowles's data have been corrected to ratio units (assuming all per- 
centages were positive) and plotted in Fig. 11. His data follow a slope 
42, or square-root-of-time diffusion law very nicely indeed. The data 

have been plotted twice; once on a trading-time scale (as Cowles gives it) 
and once on a calendar time scale. Evidently the trading-time scale is 
the significant one, since the data are more nearly continuous on that 
basis, whereas on the basis of calendar time, there is a shift in the two 
plots, mostly between intervals of less than a day to a week, corresponding 
to the difference between a 5- to 24-hour day, and a 5- (or 5/1T) to 7-day 
week. 

For comparison, the solid lines of Figs. 9 and 10 are transcribed from 
Fig. 11 for the appropriate time scale. It is not at all obvious that these 
lines should agree with the data as well as they do, since Figs. 9, 10, and 
11 refer to apparently quite different measurements. Figures 9 and 10 
give the relative diffusion of stocks with respect to their median, or 'center 
of gravity,' while Fig. 11 represents the increasing fluctuation, with time 
interval, of the center of gravity itself. This agreement is precisely what 
one would expect, however, if stock price changes were generated by 
Model II. 

This agreement in the diffusion rates of Y( r) and M ( r) rZ( r) suggests 
that the distribution functions of Y and Z should be very similar. Ex- 
amples of the distribution function of Y (from a sample for a fixed interval) 
are given in Figs. 7 and 8. As a typical example of an arithmetic average, 
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we have taken the Dow industrial index and evaluated the distribution 
function of its monthly changes (Z) in ratio units from 1925 to 1956. 
The cumulated distribution is given in Fig. 12, which is also drawn on 
Fig. 7, for comparison. Evidently the distributions are quite comparable. 
Both show approximately the same dispersion, both are nearly normal 
with a slight excess corresponding to the smaller slope at 5 per cent and 
95 per cent extremes. A part of this excess in Fig. 12 may be due to the 
linear weighting, and the neglected 0 (y2) terms in comparing Z and M. 

If we admit the approximate assumption, from Fig. 12, that ZOIM is 
distributed normally, then we can compute the corrections denoted by 
the arrows A, B, C, D, in Fig. 11, which would convert Cowles's absolute 
percentage changes to a semiquartile range, or 'probable error' for M. 

If we have a variable Z, normally distributed about a mean Zo;Oy 
and if, as is the case here, Zo is small compared to the dispersion of the dis- 
tribution, then approximately 

ozO 

I Z-Z0 1zi -zoj p(Z) dZ. (12) 

In other words, to convert Cowles's deviation from zero (Fig. 11) to an 
absolute deviation from the mean, we subtract off the shift from zero to 
mean, Zo, times the fraction of the population lying in this range. This 
turns out to be negligible for all intervals less than a year. However, as 
an extreme example, let us suppose both Zo and I Z = +0.4 in ratio units, 
corresponding to a 50 per cent secular advance in the average over a ten- 
year period, a figure also of the order of the s.q.r. of Y (one-fourth of the 
population) for this interval (see Figs. 9 and 11). In this case I Z-Zo I 

t0.4 - (14) 0.4 = 0.3. The reduction corresponding to this hypothetical 
case corresponds to arrow A of Fig. II. 

The above correction is to some extent compensated by the conversion 
of Cowles's percentages to ratio units. Positive and negative percentages 
and ratio units are nearly equivalent when small, but not when large, 
corresponding to the larger time intervals. The data in Fig. 11 assumed 
that all percentages were positive. The opposite extreme, assuming all 
were negative, would have little effect except for the longer time intervals. 
As an extreme case, the ten-year point (+51.64 per cent) corresponds to 
0.416 ratio units; -51.64 per cent would correspond to 0.708 ratio units, 
as indicated by arrow B in Fig. 11. This is one effect of the O(y2) term 
neglected in (11). 

Under the assumption of a normal distribution, the absolute deviation 
from the mean is V\2/7r/0.6745 larger than the s.q.r., or 'probable error.' 
The displacement C on Fig. 11 corresponds to this reduction, applicable to 
all of Cowles's data. 
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Brownian Motion in the Stock Market 163 

Finally, we have to estimate the effect of the linear weighting with re- 
spect to price, noted in equation (11). The analysis necessary to deter- 
mine the relation of the dispersion or s.q.r. of Z to that of M unambiguously 
rejects Model I in favor of Model II. 

Starting with equation (6) let us first assume that the YF(r) are inde- 
pendent with respect to j. Then we have 

CM (r) _[32( )] {[M1(r)] }2 = (1/N2) j_ OYi(Tr). (13) 

The assumption of the independence of the Yj(r) is not the same as that 
previously mentioned, that sequences of decision on the same stock are 
independent, but assumes also that simultaneous decisions on different 
stocks are independent. This corresponds to Model I, for which each 
Yj(-r) (or pair of coins) has no random variable in common with any 
other. 

If, moreover, all the Y( r) have the same variance o-(), then 

0 M (r) =,Y ('r) / -\/V ( 14) 

Under the same assumptions and neglecting 0 (y2) in (11), 

2zT 
2 

Brie ,1pj2(t)l [EweA1 pj(t)]2n 

0,Z(r) = (oY(T)/x/N)]P2(t)/P(t)2]l/2 (15) 

where the bar now refers to arithmetic averages of sample prices at a given 
time t. The factor [P2(t)/P(t)2]12 we estimate from Fig. 1 less the preferred 
stock, as a typical example, to be 1.16, corresponding to displacement D. 
This small reduction applies to Cowles's data for all time intervals. 

In deriving uM(r), oz(,), and their approximate equivalence, the assump- 
tion preceding equation (13), a property of Model I, is most emphatically 
rejected. o y(r) can be evaluated from the s.q.r. in Figs. 9 and 10. The 
above equations (14) and (15) indicate that oz(,) or oMm() are both 
ro-T)/VN, where N is the number of stocks in the sample, say 15 as an 
average figure for Cowles's data. This would reduce 0z(,) tO?M(,) to 
(1/3.9) UY r) which as Figs. 9 and 10 show is most definitely not the case. 
o-M(,) and o-y(,) are in fact very nearly equal. Arrow E shows the expected 
reduction in Cowles's data, because of their V/15 factor. 

Thus an assumed sampling of one variable, yi(j), as in Model I (one in 
the sense that all the copper coin pairs were supposed to generate statisti- 
cally identical random variables), fails to represent the data. Let us next 
assume we are sampling two variables. One variable, sj(i), we assume 
varies, corresponding to the copper coins, independently in time and from 
one stock (or coin) to the next; the second, m*(i), corresponding to the 
gold coin, is common to all stocks (or pairs of coins) at a given time, t, but 
may vary independently from one value of t to another. So we have 
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yj(i) =m*(i) +s(i), and form, as before the sums, or random walks, 
Yj( r) =M*(-r) +Sj( r), j= 1-1000. We carry through the above deriva- 
tion with assumed independence of the sj and that m* is independent of 
sj. We are now trying to fit our data to Model II. Evidently M(-r), a 
mean of a sample of size N of Yj(r) will estimate M*(-r) accurately, and 
we find, in fact 

2 2(r (16 
CM (r)-S = CM + (JE(T) IN . (1 

The N now makes the second terms of equations (15) and (17) quite 
negligible by comparison to the first term. The adequacy of Cowles's 
data on Z in representing the market variable M*, or its estimate, the 
sample mean, M [from equations (10) and (11)1, within the errors denoted 
by A to D is still maintained. 

At this point we should like to distinguish between the dispersion of 
oY(r) as defined and determined by the data for a sample of Yj's of size N 
for a single time interval r (as in Figs. 7-10) or a dispersion for Y deter- 
mined by taking a single Yj(t) and determining this dispersion from N 
nonoverlapping intervals of length r (the method we used for determining 
JM(r)). So far as Model I is concerned, either method would give the same 
result, but this is not the case for Model II. The first method gives for 
Model II, 0S(r), and it is so identified on Figs. 9 and 10. The second 
method would give V\/(72(r) +oJ *(r) as in (21). Model II is a nonergodic 
ensemble; that is, a sample of N members over a single interval r, has 
properties different from that given by one member sampled for N separate 
intervals of length r. 

This does not yet explain why Us(r), now identified as being determined 
by Figs. 9 and 10, happens tobe so nearly equal to JM(,)f-MI*(,) (Fig. 11 with 
corrections). Returning to our Model II, we had no way of knowing in 
advance that the allowed payoffs of the copper and gold coins should be 
the same, but the data, within the limits of rather uncertain errors, tells 
us that this is indeed the case. 

It should now be plausible why we identify the market variable, or 
-M*(-r), if we wish to preserve conventional ideas on sign, with changes 
in the value of money, corresponding to the variable generated by our 
gold coin. As we saw from our discussion of the recorded decisions, an 
estimate of the expectation value for changes in the value of money was an 
element common to every decision (of opposite sign to that concerning 
stock), in exactly the same sense that the payoff of the gold coin was an 
element common to every random variable of Model II. It is also ex- 
ceedingly plausible, as the data indicate is the case, that M( r) and S( r) 
should have the same distribution function and diffuse in the same way. 
To put it another way, the NYSE is a market for money in exactly the 
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same sense that it is for the securities of any given corporation. Cer- 
tainly for the era covered by Cowles's data, a dollar represented a share in 
the assets of Fort Knox in exactly the same sense that a stock certificate 
of General Motors represented a share in the assets of that corporation. 
Under condition of trading in statistical equilibrium, why should these 
changes in value not diffuse in the same way? 

The above analysis of the variance of Y(-r) =loge[P(t+ r)/P0(t)j about 
its median or mean led to the discovery of two variables S and M* being 
sampled in our data, and that Yj(r) should be expressed as S(r) +M*( r), 
which for simplicity we have approximated as independent, as in Model II. 
One might reasonably ask whether or not a closer examination of the data 
might not reveal still other variables. That is to say, should not Model II 
be modified in the direction of Model III? The answer to this question 
is undoubtedly 'yes.' One could hardly claim that the data on 1000 or 
more random time series could significantly support not more than two 
significantly different variables. However, the determination of just how 
many and which ones, or combination of them, are significantly independ- 
ent, would be an exceedingly tedious task. Such an analysis could be 
performed and would undoubtedly confirm much that is common knowl- 
edge. We give a very simple example below: 

Figure 10 gives the s.q.r. for several groups of stocks which, on the 
basis of common knowledge, might be expected to behave in a significantly 
different way. Evidently the utilities diffuse at a significantly smaller 
rate than a random sample from ASE or NYSE, which in turn diffuse less 
rapidly than the mines and oils from the Toronto Exchange. All, however, 
follow approximately a VT diffusion law corresponding to a slope of hi. 
Note that the data for NYSE extends the range of Fig. 9 down to one day, 
when the shift from trading time to calendar time is taken into account. 
The data from NYSE and ASE are not significantly different; to the 
author a rather surprising result. 

Aside from the direct evidence of Fig. -10, close examination of the data 
of Figs. 7 and 8 gives indirect evidence for the presence of more than two 
distinguishable variables in the data. The plots of Figs. 7, 8, and 12 are 
not precisely straight; there is a systematic flattening of the curves at the 
upper and lower ends corresponding to a larger 'tangential dispersion' in 
the data at these limits. The slope corresponds to the 'nearest fitting' 
dispersion in such a plot. Now, if we are sampling a population consisting 
of several different components, all with the same mean (cf. the gold coin) 
those components with the larger dispersion will always dominate the data 
at the extremes of the distribution function, which is precisely what the 
above effect shows. To put the argument another way, if one could 
imagine a stock exchange in which the only equities traded were public 
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utilities, and Canadian mines and oils, in any mix, then the distribution 
function of AlogeP, similar to Figs. 7 and 8, would in its extremes be 
dominated by the latter, and show to an exaggerated degree the flattening 
just noticeable in Figs. 7 and 8. This shows that the assumption of the 
equality of the ot's preceding equation (3) and implied for Model II, cannot 
be rigorously correct. 

The flattening in Fig. 12 may be due in part to the 'mathematical 
errors' introduced by the use of arithmetic averages and the different dis- 
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Fig. 12. Cumulated distribution function of the monthly changes Z(&) 
in the Dow Industrial Index, 1915 to 1956.75, in ratio units. The top scale 
is for the separate intervals 1915-1936 and 1936-1956.75 

persons in its components. To the extent that there is a contribution to 
the flattening over and above these, it would reflect a change in the payoff 
of the gold coin, or correspondingly in the dispersion or diffusion rate of 
money. The data covers the period 1916-56, during which time there 
have been some changes made in the definition of a dollar. Hence, such 
an effect should not be surprising, and it would be interesting to try to 
pinpoint the dates of change by careful analysis of short-range data. The 
two intervals noted on Fig. 12 have, in fact, slightly different slopes. 

Our interpretation of the data on logP in terms of Model II led us to 
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Brownian Motion in the Stock Market 167 

suppose proportionality between r, the time interval between observations, 
and k, the corresponding index denoting the number of elapsed transac- 
tions; i.e., r= kU While this may be approximately true 'on the average' 
it is certainly not true in detail. The 'volume' does vary from one day 
to the next, hence presumably also the number of transactions, unless we 
make the most unlikely assumption that the number of round lots per 
trade varies in just such a way as to keep the transaction rate constant. 
It is a matter of common observation that the volume tends to be larger 
when the market as a whole (i.e., all stock prices), heaves up or down 
most rapidly, or in terms of our model, the volume and hence transaction 
rate, tend to be larger when absolute values, I M( r) I, are large. Now, 
if the transaction rate is large, so also will be the diffusion rate; hence this 
effect should show up in our data if we were to plot the semi-interquartile 

d _ 

0, I 7 T7 I I-r IF I V~~~~~~~~~~~~~~~~~~~~ 

C W O Xx X X X XZ ~~~~X XX X X X i 
a X ~~~~~ x x x x L III~~~~~~X X X 

te9 X Xl 27 52E30 X-9.6 

< PROBABILITY BY CHANCE < 0. 

Fig.~~~~~~ /2lA 

LOGe P 

0| 
Fi.13. Test for the dependence of o-s~f on | M f . The semi-inter- 

qulartile range of zAiogeP is 0.6745 ?ST and the median of zAlog P is zM. 
X is measured in months. 

range of AlogeP (from Figs. 7 and 8) against the corresponding median of 
zAlogeP from the same data. Since both of these are already known to 
increase with T, we have divided them by this factor, r112, SO that data 
over intervals of all length will be comparable. This is done in Fig. :18 
which shows a small but significant dependence in the sense expected; i.e., 
when the reduced semi-interquartile range is large, so also is the reduced 
absolute displacement of the market as a whole. The numbers at the 
c orner of Fig. 13 refer to a chi-square test for significance of the dependence 
from a 2 X 2 contingency table about the medians of the graph. 5] This 
effect accounts, at least in part, for the scatter of the points in Figs. 9 and 
10 around a straight line of slope Gi 

Our discussion of the equality of the estimated expectation values for 
buyers and sellers, for Ye AlogeP led us to believe that the dispersion for 
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Y should increase as the square root of the time interval. This was amply 
confirmed by the data. Closer examination of Cowles's data, which 
approximated the dispersion of the mean of a sample of Y, suggested that 
Y should be expressed as the sum of two variables nearly independent, Y= 
S+M*, where the M* was common to all stocks at a given time, the S 
independent for each stock. Each of them obeyed the same diffusion law 
and corresponded to decisions on the value of stock, and the value of 
money. We have thus satisfactorily accounted for the slopes of the lines 
in Figs. 9 and 11, but we have not accounted for their absolute values, 
say the intercept for r= one day. 

This intercept can be derived, at least in order of magnitude, from 
the discrete intervals of price and time in which equities are traded, men- 
tioned under paragraphs 1 and 2 at the beginning of this paper. 

Let us approximate our condition &AlogeP=0 by supposing that there 
are just two possible changes of AlogeP at each trade, up or down an 
amount h; h itself is unspecified at the moment. It might be the log- 
arithmic unit corresponding to Adg point; i.e., 1/(8Xprice), or it might be 
the spread/price. At the end of k transactions, the semi-interquartile 
range for AlogeP is, by the binomial distribution 

s.q.r. AlogeP =0.6745 /k h. (17) 

On a typical trading day, there are say 2 X 06 shares traded, or 2 x i04 
round lots. For 1000 issues traded this implies 120 round lots per issue, 
or between 10 to 20 transactions per individual issue, if we can suppose 
that the majority of transactions are for one- and two-round lots. 

Applying these figures to a typical, or median, stock price of $40, if h 
corresponds to 1/(8 Xprice), 

s.q.r. = 0.6745 /15 ?45/8.40 = 9.3 X 103 or 6.6 X 10i3. 

However, if h corresponds to the spread, estimated to be 5'~ point for a 
typical $40 stock, then 

s.q.r. = 0.6745 /15 5/2.40 7.7 X 10 2 or 3.7 X 1012 

The range corresponding to these two possibilities is plotted in Figs. 9 and 
10. Evidently a &A-point minimum change represents the dispersion 
developed at the end of one day better than our estimated typical spread. 
However, we do not claim more than order of magnitude accuracy for the 
above calculation. The spread would have given a better fit had we 
supposed more round lots per trade. For the Canadian mines and oils, a 
diffusion rate based on spread might well be closer to the observation, and 
generally speaking individual decisions have to be based on a spread, not 
necessarily 3 point. 
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THE STEADY-STATE DISTRIBUTION FUNCTION 

Let us summarize the results of the above analysis of the data analyti- 
cally. Y(r) =log,[P(t+r)/Po(t)] can be expressed as the sum of two 
independent random variables. Y(r) - M(r) +S(r). Po(t) is the price 
of a random stock at a random time, t, P(t+r) its price r later. M, the 
market or money variable is common to all stocks, S varies independently 
from one stock to the next. In the above, and what follows, we no longer 
distinguish between M* and its estimate M from a sample. 

The probability distribution of M is 

p(M) dM =dMexp( M2/2oM%)/V2rom2r. (18) 

Likewise, the distribution of S is 

p(S) dS =dS exp (S2/2os 27 )N/V2iS2r (19) 

If r is measured in years, ?X2(T) -M2T and the variance developed at the 
end of unit time, or one year, is _M2 = 0.0485, from Fig. 11, and similarly 
for the variance of S at the end of unit time, O2 = 0.0485 from Figs. 9 and 
10. Thus we have taken uSs-aM, though the value for (TM is more uncer- 
tain, because of approximations in the reduction of the data. This numeri- 
cal value corresponds to a s.q.r. of 0.148 at r =1 year, from fitting a line 
of slope Hi~ to all the data. 

The joint probability distribution of M and S is 

{V(M, S) dM dS=-(M) p(S) dM dS. (20) 

The probability distribution of Y alone is 

s0(Y) dY=dYf _iP(MS-Y-M)dM =-00 ~~~~~~~(21) 
:=dY exp(- Y2/2 27/)/V\/2r2r, 

where o- = a 2 + 0 Note that in this form the variance of Y, a2r is the 
sum of the variances of S and M, since Y refers to a random stock S, at a 
random time interval (for M). ISYT was the variance of Y from a sample 
for a single time interval, as determined in Figs. 9 and 10. This distinc- 
tion was noted following equation 16. The joint distribution of Y and 
M is 

f(Y, M) dY dM=-<(M) p(S- Y-M) dY dM 

-=dY dM exp[- (1 -pM){M2/oM T (22) 

-2 PYM YM/oyamr + Y2/c72}]/27ruaM TV\1-PM. 
Here 

2 _ 2/ ( 2M +s2), 2 2+ 2 (23) 
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This is in a form that should be familiar to most biologists, and expresses 
mathematically facts, obvious to the casual student of the stock market. 
There is a variable M called 'the market' which swings (is correlated with) 
the prices (Y) of all stocks up and down quite independently of circum- 
stances peculiar to a given stock. The correlation coefficient between the 
market changes and the price of a stock selected at random is p1/2 = 

0.707, for 0M - as. This corresponds very roughly, in trader's parlance, 
to a 'sensitivity index' of unity. [4] 

LONG-TERM PRICE BEHAVIOR 

Equation (21) has some rather interesting implications for the long 
term behavior of stock market prices, and when considered in conjunction 
with equation (20) it can be used to estimate the risks and degree of suc- 
cess of some elementary random investment strategies. 

Equation (21) gives the probability distribution of Y=loge(P/Po) 
where Po Po(t), i.e., of a randomly selected stock at a random time t, and 
P -P(t+r), the price of the same stock r later. 

The probability distribution of P itself is, from equation (21) 

F(P) dP==p[Y=loge(P/Po)](dY/dP) dP 
2 2~~~~~(4 = exp - [loge(P/Po) 12/2J_2T} dP/P 274)2,* 

The expectation value of P itself is 

8(P) A PF(P) dP==Po exp(? o2) Po(1+ r2T). (25) 

The variance of P is 

P= (P2)-[8(P)]2=Po2 (exp2o-27-expo2_r). (26) 

For r small the dispersion is o-(p1Po a -%--. Thus we see that the expecta- 
tion value of log P does not change with r, but the expectation value of 
P itself does. At time t+r, the expected value has increased by 
4 Po(t)JTr, or not quite 5 per cent a year, using the numerical values for 

o- from equations (19)-(21). This discovery was first published by E. C. 
Smith and others have confirmed it. [7] 

This increase appears to be a quite satisfactory return for a random 
investment, or buyer's strategy-i.e., buy at random and throw it in the 
box. The difficulty with this strategy is shown in equation (26), which 
shows that the dispersion of P increases at a faster rate than &(P). Hence, 
one can never establish even a modest confidence interval around the mean 
to obtain, say an 80 per cent chance in any one transaction of realizing a 
profit. The median of this distribution is still Po so that one-half of such 
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investment choices result in a loss, which is more than compensated (in 
dollars of price, not logeP) by those which give a gain. 

The circumstance that the dispersion increases faster than the mean is 
not altered by using other sampling schemes; i.e., by either diversification 
in stock (which would cut down the contribution of os to up) or by spacing 
the purchases in time, or diversification in the market variable, M, such 
as the monthly investment plan. To achieve complete diversification in 
M or time, one must use nonoverlapping intervals, which is only achieved 
in part by such schemes as dollar averaging. 

One should not suppose that the secular increase in time of stock market 
prices, indicated by equation (25), has anything to do with long-term 
inflation, or the growth of assets in a capitalistic economy. This may be 
economic heresy, but the evidence, coupled with the argument below, 
seems to support this point of view. We suspect rather that the evidence 
for inflation or deflation, if they exist, might be found by examining the 
skewness, or third moment of the distribution of AlogP, but this is only 
a conjecture. 

The above discussion of equations (21) and (25) referred essentially to a 
buyer's strategy, the buyer being an individual who has money, and who 
makes decisions involving risk, with the expectation of acquiring more 
money. Equations (23) and (24) offer identical opportunities to the seller, 
or individual who has stock and makes decisions involving risk with the 
expectation of acquiring more shares. 

In equation (24) F(P) dP was the probability distribution of the number 
of dollars per share, to be expected from a sale in the future (at t+r). 
Hence, let W = I1/P be the number of shares acquired per dollar to be ex- 
pected from a purchase in the future. The probability distribution of 
W is 

H(W) dW = F(P-l/W) JdP/dWf d W 

exp[- (logeW/Wo)2/2oT2r] d W/W/27ry2r, (27) 

WO 17 /Po0 

which is identical in form to the distribution function for P. Hence every- 
thing we have said concerning the expected profit in dollars, the secular 
advance in prices, and their increasing fluctuation for the buyer who sells 
in the future holds with equal force for seller, who by holding his capital as 
cash can expect to acquire more shares by a purchase in the future. Equa- 
tions (25) and (26) hold for W as well as P unchanged. 

A NUMERICAL EXAMPLE 

A simple numerical example may illustrate the symmetry of the op- 
portunities presented, and the essential points. Let us suppose shares of 
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corporation X are currently selling (time, t) at $100 per share. It is 
estimated by both buyer and seller that at time t+Fr in the future there is 
a fifty-fifty chance that X will sell at either Ad~ or twice (in general r or 
1/r) its present price; i.e., the expected change in log0P is zero. The 
buyer, who has $10,000 and would like more, can decide between holding 
his money, or buying 100 X's for future sale at time t+ r, in which case 
the expected amount of his capital is [(31)50+(12)200]100 =$12,500. 
The expected amount of his capital for holding it is $10,000, his present 
capital times one, a certainty. 

The seller who has 100 shares and would like more, can either hold it or 
sell and buy later. In the latter case the expected number of shares is 

(?) (10,000/50) + (/) 10,000/200 - 125 

If, contrary to the hypothesis of the Weber-Fechner law, buyer and 
seller measure their gains by number of shares and numbers of dollars, 
then the logical decision of the buyer would be to buy, and the seller to 
sell, and both would legitimately expect to come out ahead in re-acquiring 
what they originally possessed. Both have to take a genuine risk. Both 
could not gain as a result of the same single trial, but both could expect 
to do so for repeated, independent (hence not overlapping-in-time) trials. 

Under the hypothesis of the Weber-Fechner law, gains are measured by 
changes in logarithm of price, or logarithm of the number of shares. In 
this case, the expected gain of each is zero. Under these conditions there 
is what might be called 'indifference in the first order of decision' or log- 
arithms of price changes are in a 'steady state of indifference' or statistical 
equilibrium between buyer and seller. Whether or not they actually trade 
under these circumstances may well be determined by the secondary 
condition previously neglected in connection with the Weber-Fechner 
law. These secondary conditions correspond, in the language of statistical 
mechanics, to the intermolecular forces that determine the nature of col- 
lisions, and of small departures from the steady state. 

This example illustrates almost all of the fundamental conclusions of 
this paper. It shows the essence of risk-taking consequent to the expec- 
tation of a gain, how the gain should be measured, and the symmetrical 
properties of the stock market as a market both for stocks and money, as 
a fair meeting ground between buyers and sellers. 

REFERENCES 

1. R. J. TRUMPLER AND H. F. WEAVER, Statistical Astronomy, University of Cali- 
fornia Press, Berkeley, 1953. 

2. S. CHAPMAN AND T. G. COWLING, The Mathematical Theory of Non- Uniform 
Gases, Cambridge University Press, 1939. 

This content downloaded from 129.97.58.73 on Mon, 10 Jun 2013 22:38:04 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Brownian Motion in the Stock Market 173 

3. R. C. TOLMAN, The Principles of Statistical Mechanics, Clarendon Press, Oxford, 
1938. 

4. R. D. EDWARDS AND J. MAGEE, JR., Technical Analysis of Stock Trends, Stock 
Trend Service, Springfield, Massachusetts, 3rd Ed., 1954. 

5. A. M. MOOD, Introduction to the Theory of Statistics, McGraw-Hill, New York, 
1950. 

6. A. COWLES AND H. E. JONES, Econometrica 5, 280 (1937). 
7. C. H. DICE AND W. J. EITMAN, The Stock Market, McGraw-Hill New York, 

1952. 

This content downloaded from 129.97.58.73 on Mon, 10 Jun 2013 22:38:04 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 145
	p. 146
	p. 147
	p. 148
	p. 149
	p. 150
	p. 151
	p. 152
	p. 153
	p. 154
	p. 155
	p. 156
	p. 157
	p. 158
	p. 159
	p. 160
	p. 161
	p. 162
	p. 163
	p. 164
	p. 165
	p. 166
	p. 167
	p. 168
	p. 169
	p. 170
	p. 171
	p. 172
	p. 173

	Issue Table of Contents
	Operations Research, Vol. 7, No. 2 (Mar. - Apr., 1959), pp. 145-278
	Brownian Motion in the Stock Market [pp.  145 - 173]
	A Queuing System with Service-Time Distribution of Mixed Chi-Squared Type [pp.  174 - 179]
	Some Differential Games of Tactical Interest and the Value of a Supporting Weapon System [pp.  180 - 196]
	Statistical Data Useful for the Operation of a Baseball Team [pp.  197 - 207]
	An Approach to Linear Programming under Uncertainty [pp.  208 - 216]
	A Vulnerability Model for Weapon Sites with Interdependent Elements [pp.  217 - 225]
	The Distribution and Effects of Fallout in Large Nuclear-Weapon Campaigns [pp.  226 - 248]
	Optimum Properties for Defense Strategy of Equal Attack against All Targets [pp.  249 - 255]
	Letters to the Editor
	An Inventory Model for Repair Parts-Approximations in the Case of Variable Delivery Time [pp.  256 - 258]
	Flood's Assignment Model for Small Kill Levels [pp.  258 - 260]
	Errata: The Value of Irreducibles in the Planning of Service Systems [p.  260]

	The Analysts' Bookshelf
	untitled [pp.  261 - 262]
	untitled [pp.  262 - 263]
	untitled [pp.  263 - 264]
	untitled [pp.  264 - 265]
	untitled [p.  266]
	untitled [pp.  266 - 267]
	untitled [p.  267]
	untitled [p.  267]
	The Periodicals and Some Notes Thereon [pp.  268 - 272]
	Books Received [pp.  272 - 273]

	Back Matter [pp.  274 - 278]



