
REFACTORING OBJECT-ORIENTED FRAMEWORKS

BY

WILLIAM F. OPDYKE

B.S., Drexel University, 1979
B.S., Drexel University, 1979

M.S., University of Wisconsin - Madison, 1982

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1992

Urbana, Illinois

REFACTORING OBJECT-ORIENTED FRAMEWORKS

William F. Opdyke, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1992
Ralph E. Johnson, Advisor

This thesis defines a set of program restructuring operations (refactorings) that support the

design, evolution and reuse of object-oriented application frameworks.

The focus of the thesis is on automating the refactorings in a way that preserves the behavior

of a program. The refactorings are defined to be behavior preserving, provided that their

preconditions are met. Most of the refactorings are simple to implement and it is almost trivial

to show that they are behavior preserving. However, for a few refactorings, one or more of their

preconditions are in general undecidable. Fortunately, for some cases it can be determined

whether these refactorings can be applied safely.

Three of the most complex refactorings are defined in detail: generalizing the inheritance

hierarchy, specializing the inheritance hierarchy and using aggregations to model the relation-

ships among classes. These operations are decomposed into more primitive parts, and the

power of these operations is discussed from the perspectives of automatability and usefulness

in supporting design.

Two design constraints needed in refactoring are class invariants and exclusive components.

These constraints are needed to ensure that behavior is preserved across some refactorings.

This thesis gives some conservative algorithms for determining whether a program satisfies

these constraints, and describes how to use this design information to refactor a program.

iii

To Brenda, for her encouragement and support.

iv

Acknowledgements

I thank my advisor, Prof. Ralph Johnson, for his support, guidance and patience during my

studies at the University of Illinois. I learned much from our weekly Monday working lunches

and from other feedback he gave me. I was amazed by both his insights and his stamina. He

invested his most valuable resource on my behalf: his time.

I also thank the other members of my committee. Prof. Simon Kaplan was helpful in point-

ing out places in several drafts of the thesis where clarity could be improved and claims made

more precise. His views on supporting the software design process fundamentally influenced

the approach I took in my work. Prof. Sam Kamin provided valuable insights regarding data

flow analysis. I also thank Prof. Geneva Belford and Prof. Larry Jones for their input.

I owe thanks to many others who were at the University of Illinois during my graduate

program. Prof. Mehdi Harandi and Prof. Roy Campbell provided helpful guidance early in

my graduate studies. During my early research, Peter Madany provided invaluable input from

his work on the Choices file system framework. Vince Russo was helpful in pointing me toward

Peter. Mick Murphy prototyped a front end to my refactoring prototype. Steve March provided

expert help in machine administration of my workstation.

Brian Foote was helpful at several stages of my research. Early on, he shared with me

what it was like to work with Ralph Johnson. Later, he was a good sounding board for ideas.

Throughout, he shared my liking for mushroom pizza.

I also owe thanks to several current and former members of AT&T Bell Laboratories.

Paul Zislis, my former department head at Bell Labs, was instrumental in my being selected for

AT&T’s full-time doctoral support program. I hold in highest regard his personal integrity and

concern for his staff. Warren Montgomery served at various times as supervisor and mentor.

Early on, he provided helpful advice as I considered several possible research topics. Later,

he provided words of encouragement during difficult stages of my research. Moody Ahmad,

v

John Degan, Moe Grzelakowski and Jack Wang also provided management support for my

work.

I thank Bjarne Stroustrup for his encouragement of my pursuing this area of research.

Jim Vandendorpe, Dewayne Perry and Jim Coplien reviewed parts of my thesis. Larry Mayka

provided expert advice in using Common LISP for my prototyping.

At Drexel University, Prof. James Maginnis sparked my interest in many areas of computer

science. At the University of Wisconsin, Prof. Randy Katz sparked my interest in computer

science research.

I thank those many others not named here who provided encouragement and assistance

during my graduate studies.

I thank my parents for their support. I especially appreciated my father’s words of encour-

agement, and his ability to put today’s ‘crises’ in perspective. I thank my Aunt Nancy for being

an example to me.

I am especially thankful to my wife Brenda and our children. When I began my doctoral

program, I was 32 years old, married, and the father of several preschool aged children. The

transition to graduate school was an adjustment for all of us.

I thank my children David, Andrew, Jamie and Daniel for many encouraging times together,

and for loving me more for who I am than for what I’ve done.

I am especially thankful to my wife Brenda for her support during my graduate studies.

Without her, I never would have made it through the program. As a wife and mother, she

picked up the slack and encouraged me in an extraordinary way. She deserves an award at least

as valuable as my PhD.

Finally, I am thankful to God for having granted me the skills and opportunities that made

this possible.

vi

Table of Contents

Chapter

1 Introduction . 1
1.1 The Problem . 1
1.2 A Proposed Solution . 2
1.3 Contributions . 7

2 Motivation . 9
2.1 Background: Software Reuse . 9
2.2 Background: Software Restructuring . 11
2.3 Object-Oriented Programming, Reuse and Restructuring 12

3 Refactoring Application Frameworks . 18
3.1 Object-Oriented Application Frameworks . 18
3.2 Refactoring To Generalize: Creating An Abstract Superclass 19
3.3 Refactoring To Specialize: Subclassing and Simplifying Conditionals 22
3.4 Capturing Aggregations and Reusable Components 27
3.5 Supporting Refactorings . 32
3.6 Language Features in Refactoring . 34
3.7 Summary: Importance & Complexity of Refactoring 35

4 Preserving Behavior During Refactoring . 37
4.1 Program Properties and Behavior Preservation 37
4.2 Domains of Refactorings . 43
4.3 Functions For Describing Preconditions . 46
4.4 Summary . 53

5 Low-Level Refactorings . 54
5.1 Creating a Program Entity . 56
5.2 Deleting a Program Entity . 58
5.3 Changing a Program Entity . 60
5.4 Moving a Member Variable . 72
5.5 Composite Refactorings . 74

6 Refactoring To Generalize: Creating an Abstract Superclass 79
6.1 Creating a Common Superclass . 82
6.2 Making Function Signatures Compatible . 83

vii

6.3 Adding Function Signatures to the Superclass Protocol 89
6.4 Making Function Bodies Compatible . 90
6.5 Making Variables Compatible . 93
6.6 Migrating Variables to the Superclass . 93
6.7 Migrating Common Code to the Abstract Superclass 94
6.8 Discussion . 97

7 Refactoring To Specialize: Subclassing, and Simplifying Conditionals . . . 100
7.1 Motivation . 100
7.2 Class Invariants . 102
7.3 Background: Data Flow Analysis . 104
7.4 Checking Whether a Predicate is a Class Invariant 107
7.5 Refactoring: Create Subclasses and Assign Invariants 109
7.6 Using A Class Invariant To Simplify A Conditional 111
7.7 Refactoring: Migrate & Simplify Conditionals . 113
7.8 Using A Class Invariant To Specialize Expressions That Create Instances 114
7.9 Refactoring: Specialize Expressions That Create Instances 115
7.10 Discussion . 116

8 Refactoring To Capture Aggregations & Reusable Components 119
8.1 Motivation . 119
8.2 Checking If A Variable Qualifies As A Component 121
8.3 Adding A Member Variable To The Set Of Component Variables 127
8.4 Removing A Member Variable From The Set Of Component Variables 127
8.5 Moving Members into a Component (Pointer to Aggregate Stored in Component)128
8.6 Moving Members into a Component (Aggregate Passed as Function Argument) . 135
8.7 Moving Members into Aggregate(s) . 137
8.8 Discussion: Components and Refactoring (Revisited) 140
8.9 Converting an Association, Modeled Using Inheritance, into an Aggregation . . . 142
8.10 Discussion . 146

9 Examples . 149
9.1 Generalizing & Specializing: Menu Planning Example 149
9.2 Converting to an Aggregation: Matrix Example 155
9.3 Summary . 161

10 Related Approaches . 163
10.1 CRC Approach to Designing Object-Oriented Systems 163
10.2 Designing Reusable Classes . 164
10.3 Achieving Good Style in Smalltalk Programs . 165
10.4 Demeter Project . 165
10.5 Reorganizing Generic Applications: Ithaca . 167
10.6 Managing Schema Evolution in an OODB . 169
10.7 Program Transformations . 170
10.8 Summary . 173

viii

11 Conclusions . 174
11.1 Summary of Contributions . 174
11.2 Limitations of Approach . 175
11.3 Implementation Considerations . 176
11.4 Other Areas for Future Research . 182
11.5 Summary . 184

Bibliography . 186

Vita . 197

ix

List of Figures

3.1 Creating An Abstract Superclass . 21
3.2 Simplifying Member Function optimize . 26
3.3 Superclass Converted to Component . 31

4.1 Erroneous Renaming Of Member Function F2 . 38

6.1 Refactoring The Function mapUnit . 80
6.2 Defining the Superclass Protocol . 85

7.1 Simplifying Member Function optimize . 103

8.1 Class GraphicalObject and its Subclasses . 142
8.2 GraphicalObject and ArchitecturalObject, After Refactoring 143
8.3 Migrating Members Between Aggregate and Component Classes 147

9.1 Inheritance Relationship Between Classes TwoDimensionalArray and Matrix . . . 156

11.1 Software Refactoring Process . 185

x

Chapter 1

Introduction

1.1 The Problem

Design is hard. The design of reusable software is especially hard. Reusable software usually is

the result of many design iterations. Some of these iterations occur after the software has been

reused, and the resulting changes affect not only the design of the reusable software, but also

the design of other software that is using it. Making software easier to change makes subsequent

design iterations easier, and makes the software more reusable.

Although there have been no scientific studies that validate the claim, it is nonetheless a

strongly held conclusion among many practitioners that object-oriented software is easier to

change than conventional software [79]. Some changes to object-oriented software can be made

simply by adding new subclasses or by adding new operations on existing classes, while leaving

most of the original software unchanged.

However, object-oriented software is harder to change than it might at first appear to be.

Changing an object-oriented system often requires changing the abstractions embodied in ex-

isting object classes and the relationships among those classes. This involves structural changes

such as moving variables and functions between classes and partitioning a complicated class

into several classes. When a structural change is made to a class or set of classes, corresponding

changes may also be needed elsewhere in a program, due to naming, typing and scoping (in-

heritance) dependencies. Tracking down the dependencies by hand and consistently updating

the program can be time consuming, difficult and error prone.

1

The reusability benefits of object-oriented programming can be difficult to realize without

some form of automated support for making these structural changes [59, 98].

1.2 A Proposed Solution

This dissertation describes an approach for providing automated support for the restructuring

of object-oriented programs.

People usually think about software changes either at a high level, in terms of features to be

added to a system, or at a low level, in terms of lines of code to be changed. Refactorings are

reorganization plans that support change at an intermediate level. Consider, for example, the

refactoring that moves a member function from one class to another. The reason for applying

this refactoring might be to support a new feature in the system, which will be implemented

using a class for which the member function is needed. This refactoring maps into low level

changes not only in these two classes but possibly also in other classes that invoke the member

function.

Refactorings do not change the behavior of a program; that is, if the program is called twice

(before and after a refactoring) with the same set of inputs, the resulting set of output values

will be the same. Refactorings are behavior preserving so that, when their preconditions are

met, they do not “break” the program.

While refactorings do not change the behavior of a program, they can support software

design and evolution by restructuring a program in the way that allows other changes to be made

more easily. Complicated changes to a program can require both refactorings and additions.

For example, a new feature might be added to a program by first refactoring part of a complex

class into a component class, and then using the component class in defining the new feature.

There are cases where refactorings might be applied:

1. Extracting a reusable component. For example, an industrial process control system had

served user needs well for several years. Customers require a new product to support new

process approaches, but with a user interface that is compatible with the older system.

When the older system was originally designed and implemented, it was factored such that

the user interface functions were interwoven with other, obsolete functions. Extracting

the user interface component first requires refactoring the existing software.

2

2. Improving consistency among components. For example, two components of a software

system are implemented by different project members. While these components were

initially thought to be distinct, it was later discovered that they shared a common ab-

straction. To make the design of the system easier to understand, and to reduce future

maintenance costs, it is desirable to refactor the system to make more explicit the com-

monalities between the two components.

3. Supporting the iterative design of an Object-Oriented Application Framework. An object-

oriented application framework is an abstract design of an application, consisting of an

abstract class for each major component. It is an important object-oriented technique to

facilitate design-level reuse [127]. Good frameworks are usually the result of many design

iterations and a lot of hard work, involving structural changes.

For example, the application framework for managing files in an operating system [77]

began as an implementation of only one file format. Then, it was to be extended to

handle additional file formats. Unfortunately, in the initial implementation the more

general, common abstractions were intertwined with features specific to the file format

supported. Refactoring was necessary to separate out the common abstractions in order

to improve the design of the framework and facilitate reuse.

The research described here focused on the third area; namely, in how these refactorings

can support the iterative design of object-oriented application frameworks. The other two

areas are covered as well, since as a framework matures reusable components are extracted and

consistency among components is improved.

There are several reasons why this research has focuses on refactoring object-oriented sys-

tems:

1. Compared with more traditional software development approaches, object-oriented pro-

gramming makes refactoring more feasible by making more explicit the structural infor-

mation needed to refactor a program.

2. Refactoring is especially important in object-oriented programming. Some in the object-

oriented programming culture have placed high value in designing and redesigning soft-

ware to make it more reusable [59, 98]. In some cases, the best way to improve the

3

design of a program is to re-write it. In other cases, restructuring a program (rather than

rewriting it) may be a more practical way to improve its design.

1.2.1 Dealing With the Complexities of Refactoring

There are several aspects that make refactoring object-oriented frameworks difficult:

1. There is no theory (i.e. systematically organized explanation) of how people refactor

object-oriented application frameworks and the kinds of refactorings they make.

2. Some refactoring operations require design insights that are hard to obtain by inspecting

the program to be refactored.

3. Two (conflicting) objectives of a set of refactorings are that they be both behavior pre-

serving and expressive. They should be powerful enough to handle the important program

restructuring tasks at a level that shields the user from most of the complexity. At the

same time, they should be restrictive enough to preserve the behavior of the program.

In shielding complexity from the user, the refactorings themselves become more complex.

These complexities, and the limitations in inferring design intent, make it difficult to

ensure that the intended behavior is preserved.

A tool that provides automated support for refactoring should guarantee that its operations

preserve the behavior of a program. One of the reasons why programs are not refactored is that

any change to the program runs the risk of introducing defects into the program. An important

focus of this thesis is on how to tell whether a refactoring can be applied to a program without

changing the program’s behavior. A major motivation for automating refactoring is to ensure

that defects are not introduced into a program.

A refactoring that can be applied safely to a program will not necessarily improve its design.

On the contrary, applying arbitrary refactorings to a program is more likely to corrupt the design

rather than improve it, even though the behavior of the program is preserved. A refactoring

improves design if the resultant code units correspond to meaningful abstractions that make

it easier to refine or extend the program. What abstractions are meaningful depends on the

application and on the designer. This implies that refactoring tasks, especially the most complex

tasks, require some interaction with the designer. A refactoring tool can help a designer by

4

providing the right set of refactorings, and by ensuring that each refactoring is applied correctly,

but it cannot decide which refactorings to apply. Thus, refactoring cannot be completely

automated.

To understand how people refactor programs, related research [9, 30, 59, 71, 98] was sur-

veyed, and an analysis was done of the structural changes made to the Choices file system

framework [77] over a two year period. The Choices file system framework was developed using

the C++ programming language [114]. Based on that analysis, the following set of eight basic

refactorings was compiled [85]:1

1. defining an abstract superclass of one or more existing classes

2. specializing a class by defining subclasses, and using subclassing to eliminate conditional

tests

3. changing how the whole/part association between classes is modeled, from using inheri-

tance to using an instance hierarchy of aggregates and their components

4. moving a class within and among inheritance hierarchies

5. moving member variables and functions

6. replacing a code segment with a function call

7. changing the names of classes, variables and functions

8. replacing unrestricted access to member variables with a more abstract interface

To someone interested in adding new features to an object-oriented program, some of these

refactorings may seem low level and not particularly difficult; however, these refactorings re-

quire attention to many details regarding the interrelationships of parts of a program. Some

of these refactorings employ other, more primitive refactorings. For example, defining an ab-

stract superclass may involve changing the name of members (variables and functions), splitting

functions and migrating common members to the superclass. In order to better deal with the

complexity of the refactoring process, the refactorings were organized into:

1The refactorings are described using C++ terms such as member variable and member function, which
correspond to the Smalltalk [49] term instance variable and method.

5

• a set of twenty six low-level refactorings, such as renaming a member variable. These

refactorings are defined in chapter five.

• a set of three more abstract, high-level refactorings: defining an abstract superclass, simpli-

fying conditional statements with subclassing, and several component-related refactorings.

These refactorings are detailed in chapters six through eight.

The low-level refactorings are simple enough that in most cases it is trivial to show that

they are behavior-preserving. While most of these low-level operations have little theoretical

difficulty, their implementation can be complicated. The high-level refactorings are more ex-

pressive and theoretically interesting refactorings. They are constructed using the low-level

refactorings.

1.2.2 Representing Design Intent

Some of the more powerful refactorings require an explicit representation of design intent. For

example, if a class is to be specialized by defining new subclasses, deciding what subclasses

should be added depends on the meaningful specializations for that application. Two kinds of

design information are needed for some of the high-level refactorings:

1. a class invariant, which is a predicate, defined on the values of member variables, that

is true for the lifetime of an instance of the class. Chapter seven defines refactorings

for simplifying a class by defining subclasses. In member functions of the newly created

subclasses, class invariants are used in simplifying conditional statements.

2. a list of component member variables, which is a subset of the list of member variables

defined in a class. Component member variables model a special is-part-of relationship

with the class that contains them, referred to as an aggregate class. Chapter eight defines

refactorings that involve components and the aggregate classes that contain them. Some

of these refactorings require that the components be exclusive, that is, that they not be

shared among multiple aggregate objects.

This design intent is not made explicit (or enforced) in a language such as C++; thus, a sys-

tem for supporting refactorings must be able to certify class invariants and lists of components.

6

In general, it is undecidable whether a predicate is a class invariant or whether a member vari-

able is a component. Since refactorings must be behavior preserving, it is better to mistakenly

decide that a predicate is not a class invariant (and so not be able to perform a legal refactoring)

than it is to mistakenly decide that a predicate is a class invariant and eventually perform an

illegal refactoring. Thus, a system for supporting refactorings will use conservative algorithms

for deciding whether a predicate is a class invariant or a member variable is a component. The

thesis will describe some conservative algorithms for both problems that are based on data-flow

analysis.

1.3 Contributions

The major contributions of this research are:

1. It identifies a set of program restructurings (refactorings) that people apply to object-

oriented application frameworks.

2. It shows how to automatically support refactorings in a way that preserves the behavior

of a program.

3. It defines in detail three of the most complex refactorings.

4. It defines design constraints needed in refactoring, specifically class invariants and exclu-

sive components.

The research described here helps lay the foundation for the Software Refactory [85] research

project at the University of Illinois. A refactory is a place where refactoring is performed.

Whereas a Software Factory [110] takes in a specification as the “raw materials” and produces

from them a software implementation, a Software Refactory takes in both an existing software

implementation and new specifications and uses refactoring and other techniques to produce

an improved software implementation.

The next two chapters present the motivation for restructuring object-oriented systems, and

describe the refactoring approach. Chapter four describes several issues related to preserving

behavior during refactoring. Chapter five describes the low-level refactorings. Chapters six

through eight describe the three highest level refactorings, which are the most expressive and

7

most algorithmically complex. The final three chapters provide extended examples, survey

closely related work, briefly discuss an implementation of the approach and present conclusions.

8

Chapter 2

Motivation

A software project “is capable of becoming a monster of missed schedules, blown budgets and

flawed products” [24]. One approach to achieving meaningful reductions in software costs is

to acquire an existing software system rather than developing a new one. Often, however, the

available software systems do not provide an exact fit for the problem at hand. Software that

solves a similar problem might be available, but such software may need to be changed in some

way before it can be reused. These changes may involve restructuring the software.

Object-oriented programming is often touted as promoting software reuse [45]. Sometimes

however the benefits of the object-oriented approach are overstated, and claims are made that

features can be added to an object-oriented system without disturbing the existing implemen-

tation. As this chapter will show, object-oriented software often needs to be restructured before

it can be reused.

2.1 Background: Software Reuse

The high costs of developing software motivate the reuse and evolution of existing software.

Software reuse in its broadest sense involves reapplying knowledge about one software system

to reduce the efforts of developing and maintaining another system. Closely related to software

reuse is software maintenance, where knowledge about a software system is used to develop a

version that refines or extends it.1

1Most (60%) of the activities analyzed in Osborne’s software maintenance study [80], were found neither to be
corrective (that is, diagnosing and fixing errors) nor adaptive (changing software to work with new hardware and

9

Approaches that support reuse address one or more of the following four important aspects

[19]:

1. finding a reusable component. This is usually is not as simple as finding an exact match,

but rather involves finding the most similar component.

2. understanding the component. Understanding what a component does is important in

order to use it, but developing that mental model is difficult [24, 88].

3. modifying a component or a set of components. Understanding what changes are needed

has proven to be human-intensive and few tools have proven very helpful. As will be

shown below, these modifications often involve restructuring.

4. composing the components together. The composition process can be difficult, especially

when a component has the dual purposes of being a useful independent entity and being

used to create other composite structures.

While some software reuse techniques have focused at the code level, others have focused on

design-level reuse. There are limitations on the reuse of code: it works best when the domain is

narrow and well understood and the underlying technology is very static. Sometimes the design

of software is reusable even when the code is not. However, a major problem with design-level

reuse is that there is no well-defined representation system for design.

Reuse does not happen by accident; one needs to plan to reuse software and look for soft-

ware to reuse. Reuse requires the right attitude, tools and techniques [59, 117]. Tools and

techniques to support software reuse include compositional and generational approaches [18].

The composition-based model of reuse is based on the notion of plugging components together,

with little or no modification of those components, in order to create target software systems.

The components might be code skeletons [32, 68], subroutines [32, 68, 96] or functions. The

generation-based approach, on the other hand, is aimed at reusing patterns that drive the cre-

ation of specific or customized versions of themselves. Application generators [83] and some

program transformation systems [23, 33, 43, 83] are examples of generation-based systems.

peripherals) but rather were perfective activities, where pressure was brought to bear on developers to extend
and enhance the functionality of a system. Perfective software maintenance is closely related to software reuse.

10

Software restructuring relates to each of the four important aspects of reuse listed above.

Restructuring a program can make it easier to understand the design of a program and can

assist in finding reusable components. Some restructurings modify a component to make it more

reusable; such components can be easier to compose together for an application. The following

section discusses software restructuring.

2.2 Background: Software Restructuring

Software sometimes needs to be restructured before it is reused. Arnold [3] defines software

restructuring as “the modification of software to make the software (1) easier to understand

and to change or (2) less susceptible to error when future changes are made.”

A major goal of software restructuring is to preserve or increase the value of a piece of

software. Restructuring a system may make it possible to add more features to the existing

system, or make the software more reusable in other systems. Software restructuring approaches

have become increasingly attractive as the cost of programmer time relative to computer time

has increased. Software restructuring is most often used during software maintenance, where

the lack of software structure often is most evident and expensive. However, it can also be

applied in the earlier design and development phases.

Software structure can be broadly defined as a collection of software attributes that make

sense to the perceiver [3]. Since programmers’ perceptions differ from each other, and a pro-

grammer’s perception can change over time, the notion of software structure is dynamic.

Many factors can contribute to poor software structure. These factors include an inade-

quate design methodology [14], absence of development and maintenance standards [2], buggy

optimizations [113] and expedient but poorly conceived changes made to the software system

to reflect changes in the environment in which it operates [25].

Weinberg in [123] suggests that very small changes to a software system are much more prone

to error than larger changes, because people tend to take very small changes less seriously and

are therefore less likely to test them adequately. The lower level refactorings described in this

thesis are examples of small changes that if not done carefully can lead to errors in a program.

Improving a programmer’s perception of the structure of a software system doesn’t necessar-

ily require modifying the code. Design recovery is a software reengineering approach that recre-

11

ates design abstractions from a collection of code, existing documentation, general knowledge of

the domain and heuristic reasoning [17, 34]. Design recovery has been proposed using program

structures (cliches) and graph parsing [97], a heuristic-based concept-recognition mechanism

with multiple views of program knowledge [55], and an approach using an intermediate mod-

ular interconnection language to generate design descriptions [35]. None of these approaches

involve code changes. Also, they do not directly address how to change the implementation once

the existing structure is understood; although clearly the knowledge gathered during software

reengineering should help a developer determine where changes need to be made.

Many other software restructuring approaches involve code changes. A major purpose of

these changes is to infuse the code with structure, making the flow of control in a program

more explicit. Approaches have been proposed based on code inspections and walk throughs

[42, 47], adherence to software metrics [11], maintainability measures [26] or other criteria

[29, 52, 65, 68, 78, 87, 88, 90, 112]. Many of the earliest commercial products in this area were

developed for restructuring COBOL programs [75, 82, 121].

Several techniques have been developed based on structured programming guidelines; these

include goto elimination [4, 20, 128], case statement refinement [73] and other techniques (e.g.,

[29]). Parnas [87] gives principles for partitioning a system into modules to increase its maintain-

ability. Lyons [75] and Morgan [82] describe tools that reduce gotos, remove dead (unreachable)

code, convert notes to comments, physically group I/O, and highlight looping conditions. Other

tools to support software restructuring include pretty printers and code formatters, integrated

programming environments [10, 122] and rule-based program transformation systems [91].

Software restructuring continues to be an important area of software engineering research.

2.3 Object-Oriented Programming, Reuse and Restructuring

Object-oriented programming is often touted as promoting software reuse [45]. However, it is

not a panacea. This section discusses some of the strengths of object-oriented programming

regarding reuse, and some of its limitations.

12

2.3.1 Features of Object-Oriented Systems That Support Reuse

Most object-oriented languages combine several features that support reuse: data abstraction,

class inheritance and polymorphism.

Most object-oriented languages provide data abstraction using classes. Class definitions

provide encapsulation and in some cases provide information hiding, and can often serve as

reusable components.

Class inheritance allows the operations and possibly the internal structure of a class to be

inherited and reused by its subclasses. Inheritance is sometimes used to represent specialization

hierarchies, where the subclasses are specializations of the superclass. Another common use of

inheritance is to support programming by difference; one way to reuse the existing software is

to create a subclass and represent the differences in the newly defined subclass.

Polymorphism is another powerful technique of object-oriented languages. Polymorphism

is the notion that a procedure can be invoked on an object without knowing its exact type. An

example of a polymorphic operation is an operation to find the maximal element in an array.

The operation could be defined in the array class as a series of pairwise comparisons on the

elements in the array. In an object-oriented system, this could be implemented as a series of

calls to array elements to compare themselves with another element and return the maximal

element. The operation could be defined once on the array class and then reused on arrays of

different types, as long as each type of array element understood how to compare itself with

another array element of that type.

This combination of features is supplemented in Smalltalk and some other object-oriented

languages with a sophisticated user interface and browsing facilities that help make explicit the

inheritance relationships among classes and the protocol (set of operations) supported by each

class. These features encourage the identifying and reusing of existing code rather than writing

new code from scratch.

2.3.2 Object-Oriented Application Frameworks and Reuse

While object-oriented programming makes program components more reusable, in the long run

reusing the design of an application is more important than reusing the implementation of any

one of its components. Biggerstaff and Richter note that the fundamental problem preventing

13

successful design level reuse is finding the right representation of design. Such a representation

should [16]:

• represent knowledge about implementation structures in a factored form

• permit partial specifications that can be incrementally extended

• allow flexible couplings between a design and its various interpretations

• support degrees of abstraction and precision.

An important object-oriented technique for facilitate design-level reuse is an application

framework. An application framework represents the design of an application; it consists of a set

of classes (many of which may be abstract), each representing a major component. Frameworks

capture the designs of interfaces and the way functionality is divided among components, which

Deutsch argues are the key intellectual content of software [40]. Frameworks define an external

interface that is constant across all uses of a framework, and an internal interface that is a set

of constraints on subclass code or a component object’s protocol.

A framework is a mixture of abstract and concrete classes. One of the main characteristics of

a framework is that it is designed to be refined. It can be refined by changing the configuration

of its components or by creating new kinds of components (i.e. new classes, often as subclasses

of existing classes). A mature framework will have a large class library of concrete subclasses

of each abstract class, so that most of the time an application can be plugged together from

existing components. Even when new subclasses are needed, they are easy to produce; their

abstract superclass provides their design and much of their code, and the already existing

concrete subclasses provide examples of how to subclass from the abstract superclass.

Thus, an object-oriented application framework is a representation that supports design

level reuse by representing knowledge in a factored form, permitting partial specifications, and

supporting degrees of abstraction. Furthermore, subclassing can be used in an application

framework to model various concrete representations of a common abstraction.

2.3.3 Reusing & Refactoring Object-Oriented Software

One might be tempted to conclude that an object-oriented system, once developed, can be

reused or extended simply by combining components of existing classes in different ways, by

14

adding operations to existing classes or by subclassing from existing classes. Often, however,

object-oriented software cannot be reused without first being restructuring. There are several

reasons for this [31, 59]:

1. When developing a software application, it is difficult to determine a priori what classes

embody the important concepts for that application and how they interrelate. Experience

has shown that a useful taxonomy of classes is discovered through an iterative process

of exploration. As an understanding of the application improves, the system often needs

to be restructured and the abstractions embodied in existing classes often need to be

changed.

2. Even after a system has matured through several iterations, sweeping structural changes

might still be necessary. The software system must operate in an environment that is

constantly changing, and the software system must satisfy user needs that are constantly

changing as well.

3. When attempts are made to reuse software across projects, new issues arise. A system

may need to be partitioned differently, due to organizational and other factors, in order

for a new project to reuse it. Thus, some restructuring may be needed to effect reuse.

4. Subclassing in an object-oriented system can simultaneously serve several purposes, like

code sharing, type validation and modeling generalization/specialization relationships.

It can be difficult to reconcile all of these purposes without some restructuring when a

change is proposed.

None of these issues is exclusive to object-oriented systems. The fourth issue applies to

languages that have subtypes; the other three issues apply more generally. The important

point here is that these issues do not disappear when object-oriented technology is introduced.

One of the essential difficulties in developing software is that the software must conform to

human institutions and systems that interface with it, and that those forces are constantly

changing [24].

Nonetheless, the motivation to restructure object-oriented programs is somewhat different

from the motivation for many software restructuring approaches in the past. Many of the

software restructuring techniques described earlier were motivated by the need to understand

15

and evolve unstructured or poorly structured programs. However, with object-oriented systems,

some structural information is already explicit within the class and inheritance structures; the

integrated development environments for Smalltalk and other object-oriented languages make

understanding a program structure easier by providing facilities for abstracting and browsing the

program. With object-oriented systems refactoring is needed not so much to infuse structure

into a poorly structured program, but rather to refine the design of an already structured

program, and make it easier to reuse.

The need to investigate approaches for software restructuring has been motivated by several

sources within the object-oriented community. These include work in object-oriented databases,

and research into improving the style of object-oriented programs to increase their reusability.

These efforts are briefly discussed below and further detailed in chapter ten.

Object-oriented databases require structural changes for many of the same reasons that

object-oriented programs do: users often need to view the database schema (structure) differ-

ently, and the same user may need to view the schema differently at different times. The issues

and approaches for schema evolution in object-oriented databases are discussed in [66] and the

references therein.

Several efforts have been underway to understand good style for object-oriented programs,

to support their evolution and reuse. Rochat [98] discusses the importance of good programming

style in Smalltalk and proposes several semantic and syntactic guidelines. Lieberherr and others

in the Demeter project [71] have proposed an approach for hiding the structure of a class in order

to increase maintainability. Johnson and Foote [59] propose design rules to support reusable

classes. The authors argue that restructuring an object-oriented program in line with these

guidelines will improve its reusability and maintainability.

Very recent research has investigated some of the issues involved in restructuring object

oriented programs [15, 31]. Those efforts have tended to focus on inheritance, to achieve such

goals as eliminating duplicate definitions of a variable in a program. Refactoring is much more

complex that this, however. Refactoring not only involves manipulating inheritance hierarchies

but also involves such tasks as renaming a class, splitting up classes and functions, and removing

conditional statements. Also, some refactorings involve not only inheritance hierarchies but also

instance hierarchies, where an instance of one class is a component of another class [59].

16

The following chapter introduces the set of refactorings, providing examples of the three

high-level refactorings.

17

Chapter 3

Refactoring Application

Frameworks

3.1 Object-Oriented Application Frameworks

An important object-oriented technique to facilitate design-level reuse is an application frame-

work, which is an abstract design of an application, consisting of an abstract class for each

major component. Frameworks are an emerging technique; there is still much to be learned

concerning the design, configuration, and architecture-level description of frameworks. Among

the earliest examples of object-oriented application frameworks were the Lisa Toolkit [57] and

Smalltalk Model/View/Controller [48]. More recently, several projects have been undertaken at

the University of Illinois at Urbana-Champaign to design frameworks; these include the Typed

Smalltalk (TS) optimizing compiler framework for code generation and optimization [60], the

FOIBLE framework for visual programming [58] and the Choices object-oriented operating sys-

tem. Choices, written in C++, is more than just an operating system; it is really an operating

system framework consisting of interlocking frameworks for file systems [77], virtual memory

[103], communication [129], and process scheduling [102].

Good frameworks are usually the result of many design iterations and a lot of hard work

involving structural changes [59, 85]. These changes may involve a single refactoring, or a series

of related refactorings. The following sections describe examples of several common refactorings.

They are mostly based on the analysis of changes made during the iterative design of the Choices

18

file system framework. That analysis was based on a series of twelve snapshots of the framework

covering a two-year period.

To motivate the practical importance of refactoring in designing application frameworks,

the examples presented in the chapter are real; that is, the examples describe refactorings that

were actually applied (manually) to improve application frameworks in the Choices operating

system and Typed Smalltalk projects. This has the disadvantage that the examples include

some extraneous detail and complexity, but has the advantage that the examples show how

refactorings are applied in actual design tasks.1

The relationships among classes become more explicit and their interfaces become more ab-

stract as a framework matures. A shallow (almost flat) hierarchy of classes evolves into a deeper

class hierarchy. Instance hierarchies emerge, where an instance of one class is a component of

another class [59]. Often, as instance hierarchies are defined the inheritance hierarchies also

change and become easier to understand. Refactorings to generalize and specialize classes in

an inheritance hierarchy, or to recognize and restructure instance hierarchies, can support this

maturation of an application framework.

3.2 Refactoring To Generalize: Creating An Abstract Super-

class

As the design of an application framework matures, general concepts are usually derived from

specific examples. Often, these examples are implemented in concrete classes that intertwine

the case-specific behavior with more general, common abstractions. As common abstractions

are determined, it is useful to separate these abstractions from the example-specific behavior.

One way to do this is to define an abstract superclass for a set of concrete classes, and migrate

the common behavior to that superclass. This refactoring not only clarifies the design of the

framework, but better ensures consistency by defining the abstraction in one place. The concrete

classes retain the behavior, although it is now inherited rather than being locally defined.

1Chapter nine describes two simpler, albeit less practical, examples that show how refactorings defined in
earlier chapters can be used together.

19

Abstract classes represent the protocol of an object, which is a key part of its specification.

An object’s protocol is the set of messages that it will accept.2 Standard protocols support

interchangeable components and assist programmers in communicating with one another.

Abstract classes never have instances, and often do not have instance variables. They define

behavior in terms of a few undefined methods implemented in the subclasses. In a mature

inheritance hierarchy, the leaf classes are concrete and the classes closer to the root are more

abstract. When defining a new class, it is usually desirable to inherit from an abstract class, to

inherit the protocol but not be tied to a particular data representation.

Creating an abstract class is important but not easy. Beck observed that, among Smalltalk

researchers, useful abstractions are usually created by programmers who are willing to redo

their code several times to produce easy-to-understand and easy-to-specialize classes [86]. Cre-

ating reusable abstract classes often involves examining an existing implementation to find an

abstraction hidden in a concrete class (or classes), and reorganizing the class hierarchy to make

that abstraction explicit [59].

Consider the example, shown in Figure 3.1, of an abstract class created for the Choices file

system framework [76]. One of the central classes in that framework3 is MemoryObject [104].

A MemoryObject is a sequence of identically sized blocks. It also is responsible for maintaining

the number of blocks it contains. The key operations provided by MemoryObjects are read,

write, and size. Many parts of the file system are MemoryObjects, such as files and disks. An

Inode4 contains a description of the disk layout of a file and other information such as the file

owner, access permissions and access times [6]. In the Choices file system framework, Inode was

represented as a subclass of MemoryObject.

An early version of the Choices file system framework only supported the BSD UNIX [37]

operating system functions and formats. Thus, instances of the Inode class represented inodes

for BSD UNIX file systems. A series of changes, shown in Figure 3.1, were made to generalize

the Inode class in order to support both BSD UNIX and UNIX System V [5] file formats:

1. the Inode class was renamed to BSDInode,

2The specification of an object also includes class invariants and the relationships with other objects.
3The file system has a layered structure that is much more comprehensive than what is presented here; see

[76].
4Inode is standard UNIX (TM) operating system terminology; it is a contraction of the term index node.

20

BEFORE:

MemoryObject

Inode (BSD)

DURING:

BSDInode SystemVInode

MemoryObject
Steps 1 & 2:

AFTER:

MemoryObject

BSDInode SystemVInode

Inode

Steps 3 & 4:

Figure 3.1: Creating An Abstract Superclass

2. the SystemVInode class was added as a subclass of MemoryObject; variables and functions

were copied from the BSDInode class, and modified,

3. the Inode class was added as a subclass of MemoryObject and as an abstract superclass of

BSDInode and SystemVInode,

4. the variables and functions common to BSDInode and SystemVInode were migrated up to

their common superclass.

During the fourth step, before some of the common members could be moved, several struc-

tural modifications to the subclasses were needed. For example, over 90 percent of the code for

the mapUnit function in the SystemVInode class was the same as the mapUnit function defined

in the BSDInode class. However, the code for getting and setting a logical block number was

different between the two file system formats, hence there were a few differences in the imple-

mentation of the mapUnit functions. Before the function could be migrated to the superclass,

these differences needed to be taken out of the subclass definitions of the mapUnit function. To

handle this, the following structural changes were made:

4a) new functions were defined in each subclass to capture the differences

21

4b) in the definitions of the mapUnit function, the differing code was replaced by calls to

these functions.

4c) the subclass definitions of the mapUnit function now matched, and the function could be

migrated to the superclass.

Note that of the four steps listed above for defining the abstract class and adding System V

features, only in step two was the functionality of the system changed. The other three steps

were refactorings. Step one, where the class was renamed, was clearly needed to distinguish

the old file format from the new format, added in step two. Steps three and four added no new

features to the system, but were applied to produce an abstraction that allowed additional file

system formats to be more easily added later. The file system framework followed an evolution

typical of application frameworks: as the framework matured and reusable abstractions were

made explicit, new features such as support for the MSDOS format and support for persistent

objects were more easily integrated into the framework.

Note also that in the above example, steps three and four could have come before step two;

an abstract superclass could have been defined and some members migrated before the new

class was added. The important point here is that restructurings are a critical part of this

high-level operation, and that the refactorings can be separated from the operations that add

or change functionality in the implementation.

Chapter five defines the high-level operations for defining an abstract superclass.

3.3 Refactoring To Specialize: Subclassing and Simplifying

Conditionals

Sometimes a program contains a class that embodies a general abstraction and several different

concrete cases. In this case, the design of an application framework may be improved by

specializing; that is, by defining subclasses corresponding to the cases, and migrating case

specific behavior down to the subclasses.

Interestingly, while refactoring to specialize is different in several important ways from

refactoring to generalize (discussed in the prior section), the end results of applying these

two refactorings are very similar. Generalizing using abstract classes, and specializing using

22

subclassing, both can be used to capture a common abstraction in an abstract superclass and

capture the case-specific behavior in the subclasses.

In order to appreciate the need for this refactoring, it is important to understand the role

of subtyping for specialization. A type characterizes the behavior of its instances by describing

the operations that can manipulate those objects [53]. A program with a well-designed type

structure will minimize and localize the dependencies among types, enhancing maintainability

and extensibility. A type hierarchy is composed of subtypes and supertypes. The intuitive notion

of a subtype is one whose objects provide all the behavior of another type (the supertype) plus

something extra. Subtyping is most frequently used to model conceptual hierarchies. When

used in this way, a subtype describes a type that is more specific than a supertype; the subtype

is a specialization of the supertype [53, 74].

Inheritance can be used in several ways; some clarify the design of a framework while others

can make a framework more difficult to understand. One use of inheritance is to model the

type hierarchy - that is, represent the supertype as a superclass and a subtype as a subclass.

However, inheritance can be used in other ways. Inheritance is sometimes used to support

programming-by-difference, where the programmer develops a new class by choosing a similar

existing class, inheriting implementation from it and implementing the differences in the new

subclass. In this case, the subclass may not be a specialization of the superclass - the resulting

class hierarchy may not model any meaningful concept (other than expedient code copying)

and can be difficult to understand.

Liskov [74] argues that using inheritance to model the type hierarchy supports data abstrac-

tion, which can simplify program maintenance. Liskov notes several uses of supertyping and

subtyping in object-oriented systems, including:

• defining a supertype to capture the design insight that a set of existing types are related

• incrementally refining the design of a system by introducing subtype(s) that are refine-

ments of a common abstraction.

These two uses work together. Parnas and Clements [89] note that software systems do

not result purely from a series of monotonic refinements to an abstract specification. Rather,

software development shifts between the abstract and the concrete, and often the concrete and

abstract are intertwined. Curtis, Krasner and Iscoe draw similar conclusions from their studies

23

of the software design process [38]. Similarly, experience with object-oriented application frame-

works has suggested that, while subtyping is useful for specializing, the class being specialized

often does not start out being abstract, but rather is a concrete class that contains a reusable

abstraction.

A class sometimes embodies a general abstraction and several different concrete cases which

are candidates for specialization. Often the behavior that distinguishes the concrete examples

is encoded on the state of an object as flags, tags and conditions. As Stroustup notes in [114],

representing the behavior in this way may work fine for small programs written by a single

person, but has a fundamental weakness: it depends on the programmer manipulating the

specializations (types) in a way that cannot be checked by the compiler. Problems arise if the

programmer fails to test a type flag, or fails to include all the types in conditional statements.

Code that includes the explicit conditional tests can be large and difficult to read.

When the functions defined in a class have conditional statements that each test for the same

set of conditions, this may suggest that subclasses should be defined corresponding to those

conditions. Or, stated more precisely, when the functions defined in the class have conditional

statements that each test for the same set of conditions, a set of subclasses could be defined

each of whose corresponding abstraction implies an element in the set of conditions. In each

newly defined subclass, the functions can be simplified by replacing the conditional statements

with just the code segment for the condition corresponding to (implied by) the subclass.

There are several examples of this type of restructuring that occurred in the Typed Smalltalk

[60] project and the Choices operating system project; it was also useful in converting a program

written in the C programming language to C++.

The Typed Smalltalk (TS) project is developing an optimizing compiler for a typed version

of Smalltalk. In the TS compiler, instances of the FlowNode class, representing a basic block,

are containers of a sequence of straight line code (assignments) ending with a statement that

alters the flow of control. The ending statement in the sequence could be a return statement,

a conditional jump statement or an unconditional jump statement. As the implementation

progressed, several functions needed to test the type of the ending statement. For example,

one function tested if the ending statement was a conditional jump; if so, and the condition

was an invariant for the entire sequence represented by the FlowNode, the conditional jump

could be converted to an unconditional jump. Another function tested whether the ending

24

statement was an unconditional jump to a sequence represented by another FlowNode; if so,

the two FlowNodes could be merged and replaced by a single FlowNode.

In the early designs, it had not been clear that the type of the ending statement was an im-

portant discriminator among FlowNodes. However, as the design matured, the implementation

of FlowNode was manually refactored: FlowNode became an abstract superclass and the con-

crete subclasses UncondJumpFlowNode, CondJumpFlowNode and ReturnFlowNode were added.

The conditional statements were simplified. This refactoring made the design easier to read

and modify.

A similar refactoring was applied at several stages in the evolution of the Choices file system.

In an early version, the MSDOSEntry class defined directory entries in the MSDOS format. The

mapUnit member function included a conditional to handle the case when the file was the root

directory. A manual refactoring of the code included adding a new subclass called MSDOS-

RootEntry and streamlining the mapUnit function in the MSDOSEntry and MSDOSRootEntry

classes. Later, in the PersistentMemoryObject class there was a conditional that tested whether

or not a container attribute was null. To discriminate between the cases, a new subclass FileOb-

ject was added. These changes made the design of the Choices File System easier to understand.

Another benefit that is sometimes realized by replacing conditional tests with subclassing

is that the run time performance may improve, as reported by Russo and Kaplan [105]. They

ported a Scheme interpreter from the C-language to C++. In a traditional C implementation,

the cornerstones are a discrimination union and a procedure body that is essentially a giant

switch statement. In their C++ implementation, they distributed the switch statement over

classes representing the cases, and found that this made the code more modular and reduced

maintenance effort, while speeding up the interpreter.

Thus, subclassing, and reducing the conditional statements, may improve both the clarity of

the design and the run-time performance. While this refactoring is useful, there are complexities

with it, as illustrated in the Figure 3.2, based on the above discussion of FlowNodes in the TS

compiler.

In the example, subclasses are added corresponding to the conditions. Put another way, the

FlowNode class covered a large number of states, and the newly defined subclasses partition that

state space. While in this example it may be intuitively obvious to the programmer how the

optimize function should be simplified in each subclass, it would not be obvious to a compiler

25

BEFORE:

FlowNode:
 enum {conditional_jump, unconditional_jump,
 return_statement} final_statement;
 void optimize() {
 if (final_statement == conditional_jump)
 <code segment S1>
 else if (final_statement == unconditional_jump)
 <code segment S2>
 else if (final_statement == return_statement)
 <code segment S3>
 }

AFTER:

FlowNode

 CondJumpFlowNode:

 (class invariant:
 final_statement ==
 conditional_jump)

 void optimize() {
 <code segment S1>
 }

 UncondJumpFlowNode:

 (class invariant:
 final_statement ==
 unconditional_jump)

 void optimize() {
 <code segment S2>
 }

 ReturnFlowNode:

 (class invariant:
 final_statement ==
 return_statement)

 void optimize() {
 <code segment S3>
 }

Figure 3.2: Simplifying Member Function optimize

or a restructuring tool. In C++ there is no easy way to describe the condition (i.e. set of

states) covered by a class. For refactoring, this design information is represented as a class

invariant, which is a predicate known to be true throughout the lifetime of each instance of a

class. In refactoring, a class invariant is assigned to each subclass, and the class invariant is

used to simplify the conditional statement. In general, the problems of determining if a class

invariant holds for a class, and simplifying a conditional statement given a class invariant, are

undecidable. Fortunately, these problems are decidable for many common cases. Chapter seven

defines this refactoring.

26

3.4 Capturing Aggregations and Reusable Components

The two previous sections discussed refactorings that refine an inheritance hierarchy. Inheri-

tance is a powerful technique, but in modeling the relationships among classes it is sometimes

overused and incorrectly used. This section considers refactorings to support aggregations,

which model some whole-part associations between objects.

An aggregate object, sometimes called a composite object or a container, is made up of

components. Components are stored as member variables in the aggregate object; however, as

described below, not all member variables store component objects. One important quality of

components needed in refactoring is that a component object cannot be assigned to more than

one aggregate object at a time.

Whole-part relationships among objects are sometimes not obvious until implementation is

underway. A relationship might first be modeled using inheritance and later is refined into an

aggregation. Refactorings can help make aggregations more explicit.

The following sections describe modeling whole-part relationships, moving members between

aggregate and component classes, and converting a relationship modeled using inheritance into

an aggregation.

3.4.1 Background: Modeling Whole-Part Relationships

As Wirfs-Brock, Wilkerson and Wiener note [126], inheritance is a natural way to represent

some but not all interclass relationships. They discuss three important relationships to examine

when structuring an object-oriented system:

1. is-kind-of

2. is-analogous-to

3. is-part-of

If objects of class A are a kind of B, this suggests representing A as a subclass of B. If objects

of class A are analogous to objects of class B, this may suggest defining a common abstract

superclass that captures their commonalities. However, if an object of class A is a part of an

object of class B, inheritance is not a natural way to represent this.

27

Suppose, for example, a framework is being designed to simulate automobile design and

manufacture. The objects car, door, roof and tire are recognized to be important in this

application and classes are defined for them. These objects may share common characteristics

such as color and materials used in their manufacture, but it is unnatural to think of a tire

or a door as a specialization of an automobile - rather, they are parts of an automobile. A

mechanism is needed for representing this whole/part relationship.

The whole-part relationship is a special association between objects, often called an aggre-

gation. There are many examples [66, 126] of aggregations:

• a car and its automotive parts

• a company and its departments

• a drawing and its drawing elements

• a program and its program fragments

• a desk lamp and the parts used in its manufacture.

Several tests may indicate whether an association between objects is an aggregation [101]:

• Is one object part of the other?

• Are some operations on the “whole” applied to its “parts”?

• Are some attribute values propagated from the whole to its parts?

• Is there an intrinsic asymmetry to the association, where one object class is subordinate

to the other?

The aggregate object, sometimes called a composite object or a container, is made up of

components. The aggregate object can be treated as a unit for many operations. One asym-

metric aspect of an aggregation is that the aggregate object usually needs to know about its

components, but less often does a component need to know either about the aggregate object

that contains it, or about other components. During design, recognizing that an association be-

tween objects is an aggregation can help determine where the behavior, and the responsibilities

for maintaining information, ought to be placed.

28

As noted in [101] (p.58), the decision to use aggregation is a matter of judgement:

Often it is not obvious if an association should be modeled as an aggregation. To

a large extent this kind of uncertainty is typical of modeling; modeling requires

seasoned judgement and there are few hard and fast rules. Our experience has been

that if you exercise careful judgement and are consistent, the imprecise distinction

between aggregation and ordinary association does not cause problems in practice.

While it is common to represent the components of an aggregate object as member variables,

not all member variables necessarily represent components. For example, member variables in an

Automobile class might represent its color, age or the number of passengers it would accommo-

date. These member variables represent attributes of an automobile but are not components

of it, in the sense that a tire is a component of an automobile. Other associations between

objects that do not necessarily imply an aggregation are the depends-upon and needs-to-know-

about relationships. For example, in a project management application, an object representing

a project task may hold pointers to other task objects that depend upon its completion; when

its task completes it send messages to activate those objects. Other objects handling the user

interface may hold pointers to the task objects, so that they can query the task objects when

a status graph is requested by the user. In each of these cases, the association between objects

is different from the whole/part relationship.

There are different kinds of components. A key distinction is whether a component object

must be exclusive to one aggregate object, or whether it can be shared by several aggregate

objects. For example, in a project management application, tasks and employees are both

components of a project. While a task would probably be exclusive to one project, an employee

may be shared among several projects. Refactorings involving aggregate objects and their

components require that a component object be exclusive to one aggregate object, for reasons

described below.

3.4.2 Moving Members Between Aggregate and Component Classes

When an aggregation is recognized, it can help in partitioning behavior between classes. If the

classes are already implemented before the aggregation is recognized, the design of the system

may be improved by moving members between an aggregate object and its component(s). For

29

example, warranty information stored in the tire component may more appropriately belong in

its aggregate object (a car) if the responsibility for managing vehicle maintenance is assigned

to the car class. If the tires are components of several different (otherwise unrelated) classes5,

moving behavior out of the tire class may involve adding it to several aggregate classes, which

can be complicated.

For example, moving a variable from an aggregate class to the class of one of its components

is behavior preserving only where is a one-to-one relationship between each instance of the

aggregate class and instances of the class to which the variable is being moved. Otherwise,

if a component object were shared among more than one aggregate object then the single

new variable in the (shared) component would be replacing a set of variables, one in each of

the aggregate objects that contained the component; information could be lost and hence the

refactoring would not be behavior preserving.

In order for refactorings involving aggregates and their components to be behavior preserving,

each component must be exclusive to one aggregate object. The reasons for this are detailed in

chapter eight. Before a member variable can be designated as a component, it must be shown

that any instances assigned to it are not simultaneously assigned to another variable designated

as a component. A method for checking these constraints is described in chapter eight.

3.4.3 Converting an Association, Modeled Using Inheritance, Into an Ag-

gregation

Sometimes an aggregation is not obvious until after the implementation is underway. The

“whole” may bear some behavioral similarities to its parts, and those similarities may initially be

modeling using inheritance. A useful refactoring to support framework evolution is converting

a superclass/subclass relationship into an aggregation, as shown in Figure 3.3.

In the Choices file system, an InodeSystem managed the creation of and access to Memory-

Objects. It managed several high-level operations regarding a file system; these operations

required low level support (i.e. read and write operations) for accessing and storing pointers

to its MemoryObjects. In an early version of the file system framework, InodeSystem was de-

fined as a subclass of MemoryObject, to inherit low level operations such as read and write.

5For example, tires are used both in automobiles and in automatic baseball pitching machines; these two uses
are otherwise unrelated.

30

AFTER:

MemoryObjectMemoryObjectContainer

InodeSystem

InodeSystem

 Protected:

 MemoryObject * objectState
 MemoryObject * objectData

* * *

BEFORE:

MemoryObject

InodeSystem

DURING:

InodeSystem

 Protected:

 MemoryObject * objectState
 MemoryObject * objectData

* * *

MemoryObject

InodeSystem

Figure 3.3: Superclass Converted to Component

However, InodeSystem really represented a different abstraction from a MemoryObject. As the

design of the framework was refined, component member variables, which were instances of

the MemoryObject class, were added to InodeSystem to provide the low level support for its file

system operations. The high level operations defined in InodeSystem were changed to invoke

behavior in the new components. It was now no longer necessary for InodeSystem to inherit

the low level operations from MemoryObject. The superclass of InodeSystem was changed. The

notion of a MemoryObjectContainer was introduced. MemoryObjectContainers kept track of par-

titioning a large MemoryObject into a set of smaller MemoryObjects (i.e. a disk into a set of

files). InodeSystem was really a specialization of MemoryObjectContainer, and became one of its

subclasses.

31

Both before and after the refactorings were applied, the MemoryObject class provided op-

erations to the InodeSystem class. Before the refactoring, the services were inherited by the

InodeSystem class; later, they were provided by its components.

From a software engineering viewpoint, there are advantages in using aggregations and

components, as opposed to inheritance, to accomplish reuse. Data abstraction supports reuse

[74]. An aggregate object only sees the public interface of its components, whereas a subclass

sees the internals (i.e. a less abstract view) of its superclass. To use the terminology from the

software testing literature,6 inheritance provides a white box (or possibly a grey box) interface,

whereas the interface provided by a component to its aggregate object is more typically a black

box interface. Black box interfaces provide better encapsulation and abstraction than do white

box or grey box interfaces [59].

Thus, while inheritance plays an important role in an application framework, so too can

aggregations and components.

There are some complexities in converting a subclass/superclass relationship to an aggrega-

tion. Checks are needed to ensure that type requirements on variable assignments and function

calls are still satisfied. Previously inherited behavior may need to be copied into one of the

classes. Chapter eight describes several high-level operations involving aggregations.

3.5 Supporting Refactorings

The prior three sections focused on the three highest level refactorings: creating an abstract

superclass, subclassing and simplifying conditions, and creating aggregations and reusable com-

ponents. As noted in chapter one, the high-level refactorings are supported by a set of twenty

six low-level refactorings, which are listed below.

All but the final category of the supporting refactorings listed below are atomic; that is,

they are the most primitive refactorings. The atomic refactorings create, delete change and

move entities. The final category of less primitive (composite) refactorings support slightly

more powerful refactoring operations, such as abstracting access to a member variable.

1. Creating a Program Entity:

6In the software testing literature, black box denotes functional testing and white box denotes structural
testing. The two types of testing are compared in [13].

32

(a) creating an empty class

(b) creating a member variable

(c) creating a member function.

2. Deleting a Program Entity:

(a) deleting an unreferenced class

(b) deleting an unreferenced variable

(c) deleting a set of member functions.

3. Changing a Program Entity:

(a) changing a class name

(b) changing a variable name

(c) changing a member function name

(d) changing the type of a set of variables and functions

(e) changing access control mode

(f) adding a function argument

(g) deleting a function argument

(h) reordering function arguments

(i) adding a function body

(j) deleting a function body

(k) convert an instance variable to a variable that points to an instance

(l) convert variable references to function calls

(m) replacing statement list with function call

(n) inlining (ie inline expanding) a function call

(o) changing the superclass of a class

4. Moving a Member Variable:

(a) moving a member variable to a superclass

33

(b) moving a member variable to a subclass.

5. Less primitive (composite) refactorings:

(a) abstract access to a member variable

(b) convert a code segment to a function

(c) moving a class.

These low-level refactorings are described in chapter five.

This list, combined with the three high-level refactorings, is an elaboration of the original

list of eight refactorings described in section 1.2.1 (and in [85]). From that original list:

• the first three refactorings map to the high-level refactorings, which are implemented

using many of the low-level refactorings listed above

• the fourth refactoring (moving a class) maps to refactoring 5(e)

• the fifth refactoring (moving variables and functions) maps to refactorings 1(c), 2(c), 4(a),

and 4(b)

• the sixth refactoring (replacing code segment with function call) maps to refactoring 3(m)

• the seventh refactoring (changing names) maps to refactorings 3(a), 3(b) and 3(c)

• the eighth refactoring (abstracting variable access) maps to 5(a).

It is interesting to note that, while the list of refactorings was determined mostly from

analyzing C++ programs, many should be applicable for refactoring programs written in other

object-oriented languages. Only a small subset appear to be C++-specific.7 Applying these

refactorings to other object oriented languages is an area for future research.

3.6 Language Features in Refactoring

Below is a brief summary of the language features upon which the refactoring descriptions are

based. Chapter four discusses the related issues of the domains of refactoring and behavior

preservation.

7Three refactorings that would not apply for Smalltalk programs are 3(d),(e), and (k). These refactorings
change type, access control mode, and convert an instance variable to a variable that points to an instance.

34

A program consists of a single global function called main, and (possibly null) sets of classes,

global enumerated types and global variables.

The scope of each class is the entire program. A class has at most one direct superclass. A

class consists of a set of member variables and set of member functions. All member variables

have distinct names, as do all member functions. All variables and functions are typed. The

type of a member variable can be a class, in which case an instance of that class is embedded in

the variable’s containing class when that class is compiled. The type of a member variable can

be a pointer to a class, in which case it can be assigned an instance of that class or an instance

of one of its subclasses. A function defined in a superclass can be redefined in a subclass; all

functions that are redefined in subclasses are (using C++ terminology) virtual.

The language features covered are a major subset of C++. However, several features of

C++ and other object-oriented languages were not included here. Multiple inheritance and

overloaded member function names (where two member functions of a class can have the same

name but differ in argument types) were not included. They would have complicated the

precondition checking for refactorings, particularly as related to naming conflicts, and made

the refactoring descriptions tedious and more difficult to understand. Multiple inheritance is

not a feature in Smalltalk, nor was it used in the versions of the Choices file system analyzed

in this research. Overloaded member function names can be mapped into distinctly named

functions by concatenating function names and arguments types, as is done in some C++

compilers. Another feature of C++ not included here is type casts. Explicit type casts is

generally recognized as poor coding practice. Handling type casts would require more complex

flow analysis than is presented here and is an area for future research. Finally, C++ is an

evolving language; parameterized classes, a very recently added feature, is not included in this

analysis.

3.7 Summary: Importance & Complexity of Refactoring

Refactoring is important. As noted earlier, in the view of Deutsch [40] and others, the key

intellectual content of software is captured in the factoring of functions and in the design

of interfaces. Refactoring helps in making this intellectual content more explicit and, hence,

helps in designing reusable software. Experienced developers of object-oriented systems find

35

themselves restructuring their implementations, although they may not be consciously aware

that refactoring tasks are part of their development process.

Refactoring is complex. Much of the complexity is due to the interrelationships among

classes. For example, when a class is moved and a subclass/superclass relationship is changed

to a container/component relationship, checks and structural changes are often needed to retain

inherited behavior and satisfy type requirements on assignments and function calls. As a system

grows, doing these tasks by hand becomes more complicated, tedious and error-prone.

The following chapters describe a way to automate the process of refactoring.

36

Chapter 4

Preserving Behavior During

Refactoring

Intuitively, refactorings should preserve the behavior of a program. This chapter discusses

several topics related to behavior preservation. Section 4.1 describes several program properties

that are easily violated in refactoring. Section 4.2 defines the domains of the arguments to the

refactorings. Section 4.3 lists the functions used to describe preconditions of the refactorings;

the preconditions ensure that behavior is preserved by the refactoring.

4.1 Program Properties and Behavior Preservation

After a refactoring, a program must be syntactically correct. For example, the superclass of a

new class must be an existing class. Or, a function in a subclass that overrides a function defined

in its superclass must be type compatible with the corresponding function in the superclass.

A compiler could catch these errors. Therefore, one way to prevent these errors from

happening would be to save the current version of a program before each refactoring, apply

the refactoring without regard to these errors, and then recompile the program. If an error is

flagged, fall back to the old version.

However, there are two major problems with this approach:

1. the approach might be unacceptably slow, especially for higher level refactoring operations

that involve a series of more primitive refactorings.

37

2. more importantly, there are some errors that could change the behavior of the program

but would not be picked up by the compiler.

Consider the erroneous refactoring shown in Figure 4.1. Function F1 is a protected member

BEFORE: AFTER:

* * *
Sub1

Super:

 Protected:

 void F1(int x, int y)
 { ... }

Sub1:

 Protected:

 void F2(int x, int y)
 { ... }
 int F3(int z)
 {F1(z,3); ... }

Super

* * *
Sub1

Super

Super:

 Protected:

 void F1(int x, int y)
 { ... }

Sub1:

 Protected:

 void F1(int x, int y)
 { ... }
 int F3(int z)
 {F1(z,3); ... }

Figure 4.1: Erroneous Renaming Of Member Function F2

in class Super, while F2 is defined in class Sub1, one of its subclasses. The argument and return

types of F2 are (coincidently) the same as those of F1. In class Sub1, function F3 includes a

call to F1, which is inherited from the superclass.

A refactoring is applied, in class Sub1, to rename function F2 to F1. This renaming would

result in a syntactically correct program (it would compile cleanly). However, the behavior of

the program has probably changed. Function F3 would now call the newly renamed function

defined in its local class, rather than the function previously inherited from the superclass.

Assuming that the two functions behave differently, the behavior of function F3 program would

have changed. A compiler would not pick up this error.

Without rules for checking that these program properties are not violated, it is possible to

produce a program that either is not syntactically correct or (worse) compiles correctly but

behaves differently after the refactoring.

38

During the research prototyping, a particular set of syntactic and semantic properties of

programs (listed below) was found to be easily violated if explicit checks were not made before a

program was refactored. In the refactoring definitions, behavior preservation is argued in terms

of these program properties.1 These properties relate to inheritance, scoping, type compatibility

and semantic equivalence. Recompiling the program after refactoring could flag violations of the

first six properties, but violations of the seventh property might not be flagged. The properties

are:

1. Unique Superclass. After refactoring, a class must always have at most one direct super-

class and its superclass must not also be one of its subclasses. The focus of this research

was upon single inheritance systems, without cycles in the inheritance graph.2

2. Distinct Class Names. After refactoring, each class must have a unique name. In this

research, classes are not nested; that is, the scope of each class is the entire program.

3. Distinct Member Names. After refactoring, all member variables and functions within a

class have distinct names. However, this does allow, for example, a member function in

a superclass to be overridden in a subclass.

4. Inherited Member Variables Not Redefined. A member variable inherited from a superclass

is not redefined in any of its subclasses.

5. Compatible Signatures in Member Function Redefinition. After refactoring, if a mem-

ber function defined in a superclass is redefined in a subclass, all attributes (except the

function body) of the two functions must be compatible. All functions are (using C++

terminology) virtual, and can be overridden in subclasses. Signatures of virtual functions

in C++ are compatible only if their (return and argument) types match exactly [41].3

This allows a function defined in a superclass to be overridden in a subclass, as long as

the signatures are compatible. The ability to override inherited functions is important in

1They are similar to the properties analyzed in [9, 31]. Those efforts focused on restructurings involving
program data, while this research considers structural changes to both functions and data. The C++ language
is a semantically complicated language, supporting machine level operations such as pointer arithmetic; these
complexities make it difficult to more precisely define what behavior preservation means for C++ programs.

2Smalltalk is a language with these features, and the C++ based application framework analyzed in this
research had these features.

3Signature compatibility has different meanings in other object oriented languages such as Eiffel[79].

39

refactoring. For example, in defining an abstract class it is sometimes useful to define a

function in the superclass that does not contain a function body; the function is overridden

in subclasses, where the function body is defined.

6. Type-Safe Assignments. After a refactoring, the type of each expression assigned to a

variable must be an instance of the variable’s defined type, or (if it is a pointer variable)

possibly an instance of one of its subtypes. (In C++, subtyping is implemented using

subclassing.) ‘ This applies both to assignment statements and function calls.

7. Semantically Equivalent References and Operations. This topic is discussed below.

4.1.1 Semantically Equivalent References and Operations.

As noted above, saying that refactorings are behavior preserving is more than saying that they

produce legal programs. The versions of the program before and after a refactoring must also

produce semantically equivalent references and operations. Semantic equivalence is defined here

as follows: let the external interface to the program be via the function main. If the function

main is called twice (once before and once after a refactoring) with the same set of inputs, the

resulting set of output values must be the same.

This definition of semantic equivalence allows changes throughout the program, as long as

this mapping of input to output values remains the same. Imagine that a circle is drawn around

the parts of a program affected by a refactoring. The behavior as viewed from outside the circle

does not change. For some refactorings, the circle surrounds most or all of the program. For

example, if a variable is referenced throughout a program, the refactoring that changes its name

will affect much of the program. For other refactorings, the circle covers a much smaller area;

for example, only part of one function body is effected when a particular function call contained

in it is inline expanded. In both cases, the key idea is that the results (including side effects) of

operations invoked and references made from outside the circle do not change, as viewed from

outside the circle.

This allows for several important changes that don’t affect equivalence:

40

• expressions can be simplified and dead code removed. Conditional statements can be

simplified based on invariant conditions known when the conditional is encountered (eg.

class invariant). Variables, functions and classes can be removed if they are unreferenced.

• similarly, variables, functions and classes can be added if they are unreferenced.

• the type of a variable can be changed by a refactoring, as long as each operation referenced

on the variable is defined equivalently for its new type.

• references to a variable and function defined in one class can be replaced by references

to an equivalent variable or function defined in another class. One implication of this

is that locally defined members can be replaced by inherited members (and vice-versa)

provided that the member declarations are equivalent. In addition, references to members

of an aggregate object can be replaced by references to members of one of its exclusive

component (and vice-versa).

One very restrictive way to ensure that the program remains semantically equivalent across

a refactoring is to require that after a refactoring all references are to the same variables and

functions defined in the same classes as before the refactoring. There are a few refactorings

that this would permit, such as adding a new variable or renaming an existing one. However,

it would prevent many useful refactoring operations.

Behavior can be preserved under less restrictive conditions, when for example a class member

is moved up or down an inheritance hierarchy, or when a member is moved between an aggregate

class and a component class. When a member variable is moved from one class to another,

behavior will be preserved if there is a strict one-to-one relationship between the old variable

and new variable:

• in the new class the variable has the same type and lifetime as before,

• all references to the old variable are changed to refer to the new variable,

• the new variable is not otherwise referenced.

These preconditions are more easily checked for refactorings involving inheritance than for

refactorings involving aggregates and components, as is detailed in the later chapters.

41

Some refactorings change the size of objects or change the relative physical positions of

variables within an object. These refactorings are behavior preserving only for well behaved

C++ programs. Consider the physical layout of a class in C++, in which the variables inherited

from a superclass precede variables locally defined. The refactoring that moves a variable from

a subclass to superclass is behavior preserving as long as the program is not dependent upon

the physical ordering of variables. If a program then performs integer arithmetic with the

address of a member variable, then the behavior of the program may change when the variable

is moved. Similarly, consider the refactoring that moves a variable from an aggregate class to

a component class. In this case, the size of each class changes. If a program tests the physical

size of an object, the behavior of the program may change when the variable is moved.

The refactoring approach defined in this thesis does not apply to programs that are depen-

dent upon the physical layout and size of objects. Fortunately, most object oriented programs

are not dependent upon these features. A major attractiveness of object-oriented languages is

that they provide a level of abstraction that shields the user from the underlying representation

of objects; it is generally considered bad style to write programs that depend on this underlying

representation. Refactorings that can change the physical size and layout of objects are noted

as such in later chapters of the thesis.

4.1.2 Summary: Program Properties and Behavior Preservation

In summary, refactorings preserve the behavior of a program. This implies that refactorings

always result in legal programs that perform operations equivalent to before the refactoring. In

this thesis, behavior preservation is argued in terms of the seven program properties described

above. These properties are the ones found to be most frequently violated when refactoring

programs.

Chapter five describes the low-level refactorings. There, behavior preservation is argued

in terms of the program properties described above. Chapters six through eight describe the

high-level refactorings. Behavior preservation of those refactorings is mainly argued in terms

of the lower level refactorings used to compose it.

42

4.2 Domains of Refactorings

The arguments to refactorings are typed; the types and their attributes are defined below.

Associated with each variable and function is an attribute that indicates its scope. There

are four kinds of variables in C++: global variables, class member variables, argument variables

in a function, and variables local to a statement list of a function. Two kinds of C++ functions

are considered in this research: a single global function main() and class member functions.

When adding a new variable, a name collision occurs if, within the scope of the new variable,

there is a reference to a variable with the same name defined in an enclosing scope. For the

purposes of checking name collisions, the scope of a variable is as follows. The scope of a global

variable is the entire program Program. The scope of a class member variable is the class that

contains it, if the variable’s accessControlMode is private; otherwise, the containing class and

its subclasses.4 The scope of an argument variable is the function that contains it. Similarly,

the scope of a local variable is its containing block.

Functions are restricted to a single global function main() and a set a member functions for

each class.5 Functions defined in a superclass can be overridden in a subclass, as long as either

the superclass function is not referenced within the scope of the class that will override it, or

the new function is equivalent with the function it replaces.

Attributes are listed with their allowable type(s) followed by their name:

• program:

– (set of class) classes

– function globalFunctionMain6

– (set of variable) globalVariables of their arguments; the functions are argument do-

mains are defined here.

– (set of enumeratedType) globalEnumeratedTypes

4In cases where the variable’s accessControlMode is public, the variable can be referenced elsewhere in the
program, but, outside the variable’s containing class and its subclasses, references to the variable will be prefixed
with the name of the object containing the member variable.

5This restriction to a single global function was made to avoid complicating the notation of some refactorings.
A straightforward extension could allow multiple global functions.

6C++ allows multiple global functions. Here, a program consists of a single global function main, which is
not renamable. This restriction, which is not significant, was made to avoid complicating the notation of some
refactorings. A straightforward extension could allow multiple global functions.

43

• class:

– class superclass

– string name

– (set of function) locallyDefinedMemberFunctions

– (set of variable) locallyDefinedMemberVariables

– (set of variable) SetOfComponents

– predicate classInvariant

• enumeratedType:

– string name

– (set of string) enumeratedValues

• function:

– (class + program) owner

– string name

– type returnType

– (list of variable) arguments

– statement body.

– (nil + private + protected + public) accessControlMode

• variable:

– (statement + function + class + program) owner

– string name

– type type

– (set of constant) initializationArguments

– (nil + private + protected + public) accessControlMode

• type: program.classes + PrimitiveTypes.

– string name

44

• statement:

– (statement + function) owner

– (list of (statement + expression)) components

• expression: assignment + variableRef + functionCall + dynamicObjectExpression

• assignment:

– (expression + statement) owner

– variable destination

– expression source

– type type

• dynamicObjectExpression:

– class instantiatedClass

– (list of expression) parameters

• functionCall:

– (expression + statement) owner

– function calledFunction

– (list of expression) parameters

– type type

– expression prefix.7

• variableRef:

– (expression + statement) owner

– variable refdVariable

– expression prefix.8

7If calledFunction is called through the public interface of an object, this attribute contains the expression
that identifies that object; otherwise, this attribute is nil.

8If refdVariable is a member variable referenced through the public interface of an object, this attribute
contains the expression that identifies that object; otherwise, this attribute is nil.

45

• predicate: used in defining class invariants; defined in chapter six.

In the refactoring definitions, domain attributes are referenced using a dot notation. For

example, the return type of member function F would be referenced by F.returnType.

4.3 Functions For Describing Preconditions

Most refactorings are only behavior preserving under certain preconditions. For example, the

type of a variable can be changed only if assignments involving the variable would remain type

safe.

Refactorings have their preconditions described in terms of a set of functions. The functions

is defined below. There is a small set of primitive functions, followed by a larger set of non-

primitive functions. For the non-boolean functions, the return type is listed before the name.

In the preconditions of each refactoring, the function names and arguments are usually

descriptive. The definitions in this section, included for completeness, provide a level of detail

beyond what may be of interest to some readers. This section can be skipped without missing

the intent of the refactorings.

4.3.1 Boolean Primitive Functions

1. compilesP (function F, (class + program) Scope) ≡

F compiles within its Scope.9

2. convertibleToFunctionP (statement S) ≡

S can be converted to a legal function (in containingClass(S)).10

3. qualifiesAsComponentP (variable V) ≡

V qualifies as a component member variable of its containing class.11

9This is checked when adding a new function, or adding a function body to a function definition.
10S must not define local variables that are referenced outside S. There must be no branches from S to other

parts of its current function; nor may there be any branches into the middle of S (if S is a compound statement).
Functions and variables visible to S will be visible to the new function, since functions and non-local variables
visible to S would be visible to the new function since it is defined in the same class; referenced variables local
to the function but not local to S would be passed as arguments.

11This would be determined using the algorithms defined in section 8.2.

46

4. noSideEffectsP (expression E) ≡

E is known to have no side effects.

5. satisfiesClassInvariantP (expression E, class C) ≡

instances created by E satisfy the class invariant for C.12

6. semanticallyEquivalentP ((function or statement) F1, (function or statement) F2) ≡

F1 is semantically equivalent to F2.

7. subtypeP(type T1, type T2) ≡

T1 is a subtype of T2.

8. unrefdOnInstancesP(function F, class C) ≡

function F is not referenced on instances of class C.

4.3.2 Other Primitive Functions

1. firstConditionImpliedByInvariant (statement S (a conditional), predicate P)

returns the first condition in S implied by P.13

4.3.3 Non-primitive Boolean Functions

1. inheritedMemberFunctionNamedP(class C, string S) ≡

∃ member ∈ inheritedMembers(C) ∧

member.name = S.

2. matchingAttributesP(variable V1, variable V2) ≡

(V1.name = V2.name) ∧

(V1.type = V2.type) ∧

(V1.initializationArguments = V2.initializationArguments) ∧

(V1.accessControlMode = V2.accessControlMode)

3. matchingAttributesP(function F1, function F2) ≡

matchingSignatureP(F1, F2) ∧

(F1.body = F2.body).

12This would be determined using the algorithm defined in section 7.8.
13This would be determined using the algorithm defined in section 7.4.2.

47

4. matchingSignatureP(function F1, function F2) ≡

(F1.name = F2.name) ∧

(F1.returnType = F2.returnType) ∧

(F1.accessControlMode = F2.accessControlMode) ∧

length of F1.arguments = length of F2.arguments ∧

for i = 1 to (length of F1.arguments),

F1.arguments[i].type = F2.arguments[i].type.

5. memberFunctionNamedP(class C, string S) ≡

∃ F ∈

(C.locallyDefinedMemberFunctions ∪ inheritedMemberFunctions(C)) ∧

F.name = N.

6. redundantIfAddedP(function F, class C) ≡

∃ F2 ∈ (C.superclass).locallyDefinedMemberFunctions ∪

inheritedMemberFunctions(C.superclass)) ∧

F.name = F2.name ∧

matchingAttributesP(F, F2).

7. varNameCollisionP(string S, (class + function + statement) Scope) ≡

∃ collidingVar ∈ Program ∧

collidingVar.name = S ∧

Scope ⊂ scopeOf(collidingVar).

4.3.4 Other Non-primitive functions

1. (set of function) allFunctions(program P) ≡

P.globalFunctionMain
⋃

(∪class∈P.classesclass.locallyDefinedMemberFunctions)

2. (set of function) allVariables(program P) ≡

returns the set of all variables declared in P.

3. (set of functionCall) callsTo(function F1) ≡⋃
F2∈allFunctions(Program)

{FC | FC ∈ F2.statement ∧ FC.calledFunction = F1}

48

4. (set of class) classesInternallyReferencing((function + variable) X) ≡

{containingClass(ref) | (ref ∈ referencesTo(X)) ∧ (ref.prefix = nil)}

(ie the set of classes internally referencing X.)

5. (set of class) classesPubliclyReferencing((function + variable) X) ≡

{containingClass(ref) | (ref ∈ referencesTo(X)) ∧ (ref.prefix 6= nil)}

(ie the set of classes referencing X through the public interface of its containing class(es).)

6. (set of class) classesReferencing(class X) ≡

{containingClass(ref) | ref ∈ referencesTo(X)}

(ie the set of classes containing references to class X.)

7. (set of class) classesReferencing((function + variable) X) ≡

classesInternallyReferencing(X) ∪ classesPublicallyReferencing(X).

(ie the set of classes containing references to X.)

8. function collidingFunction (class C, function F) ≡

returns the function whose name would collide with F if it were added to C.

9. (nil + class) containingClass(

(variable + function + (set of statement) + expression) containedItem) ≡

if ((containingItem.owner ∈ Program.classes) ∨

(containingItem.owner = nil)), /* global function */

containingItem.owner,

else containingClass(containedItem.owner).

10. (nil + function) containingFunction(

((set of statement) + expression) containedItem) ≡

if ((containedItem.owner ∈ allFunctions(Program)),

containingItem.owner,

else containingFunction(containedItem.owner).

49

11. (set of class) directSubclassesOf(class C) ≡

{subClass ∈ P.classes | subClass.superclass = C}

12. directSuperclassOf(class C) ≡ C.superclass

13. (set of variable) expressionsAssignedTo(variable V) ≡

(∀ assignment expression ∈ scopeOf(V),

where destination = V, return source) ∪

(∀ function call ∈ scopeOf(V),

if V is an argument variable of that function,

return corresponding value passed as a parameter).

14. (set of expression) expressionsAssignedToArgument(variable argVar)

∀ functionCall ∈ callsTo(argVar.owner),

return the expression in the position corresponding to the argument.

15. (set of function) functionsCalledBy(function F) ≡

the set of all function calls in F.statement.

16. (set of function) functionsThatOverride (function F) ≡

{F2 ∈ allFunctions(P) | F2.owner ∈ subclassesOf(F.owner) ∧ F.name = F2.name}

17. (set of (variable + function)) inheritedMembers(class class1) ≡

inheritedMemberFunctions(class1) ∪ inheritedMemberVariables(class1).

18. (set of function) inheritedMemberFunctions(class C) ≡

if C.superclass=nil, return nil

else return F ∈

(inheritedMemberFunctions(C.superclass) ∪

C.superclass.locallyDefinedMemberFunctions),

where (F.accessControlMode 6= private) ∧ ∼localMemberFunctionNamed(F,C).

19. (set of variable) inheritedMemberVariables(class class1) ≡

if C.superclass=nil, return nil

50

else return V ∈

(inheritedMemberVariables(C.superclass) ∪

C.superclass.locallyDefinedMemberVariables),

where (V.accessControlMode 6= private) ∧ ∼localMemberVariableNamed(V,C).

20. (set of (function + variable)) locallyDefinedMembersOf(class class1) ≡

(class1.locallyDefinedMemberFunctions ∪

class1.locallyDefinedMemberVariables)

21. (set of variable) localVariablesIn(function F) ≡

the set of all local variables in F.statement.

22. (function + nil) memberFunctionNamed(class C, string S) ≡

F, where F ∈ (inheritedMemberFunctions(C) ∪ C.locallyDefinedMemberFunctions)

∧ F.name = S.

23. (function + nil) memberVariableNamed(class C, string S) ≡

V, where V ∈ (inheritedMemberVariables(C) ∪ C.locallyDefinedMemberVariables)

∧ V.name = S.

24. (set of(variable + function)) membersOf(class C) ≡

inheritedMemberFunctions(C) ∪ inheritedMemberVariables(C) ∪

C.locallyDefinedMemberFunctions ∪ C.locallyDefinedMemberVariables.

25. (set of (expression + variable)) referencesTo(class C) ≡

instancesOf(C) ∪

{V | (V ∈ allV ariables(Program))∧ (V.class= C)}

26. (set of functionCall) referencesTo(function F) ≡

callsTo(F)

27. (set of variableRef) referencesTo(variable V) ≡

⋃
V 2∈allV ariables(Program)

{V R | V R ∈ F2.statement ∧ V R.refdV ariable = V }

51

28. (statement + function + class + program) scopeOf((variable + function) item1) ≡

if item1.owner 6∈ Program.classes, /* Global, local or argument variable */

item1.owner,

else if item1.accessControlMode = private,

item1.owner,

else (item1.owner ∪ subclassesOf(item1.owner)).

29. (set of variable) setOfComponentVariables(class componentClass) ≡

⋃
class∈Program.classes

{V | V ∈ class.SetOfComponents ∧ V.type = C}

30. (set of class) subclassesOf(class C) ≡

the transitive closure of directSubclassesOf(C).

31. (set of class) superclassesOf(class C) ≡

the transitive closure of directSuperclassOf(C).

32. (set of variable) variablesAssigned(function F) ≡

(∀ assignment expression ∈ scopeOf(F),

where source = a call to F, return destination) ∪

(∀ function call ∈ scopeOf(V),

if a call to F is passed as a parameter,

return corresponding function argument variable).

33. (set of variable) variablesAssigned(variable V) ≡

(∀ assignment expression ∈ scopeOf(V),

where source = V, return destination) ∪

(∀ function call ∈ scopeOf(V),

if V is passed as a parameter,

return corresponding function argument variable).

34. (set of variable) variablesAssigned(dynamicObjectExpression E) ≡

(∀ assignment expression ∈ Program,

where source = E, return destination) ∪

(∀ function call ∈ Program,

52

if E is passed as a parameter,

return corresponding function argument variable).

35. (set of variable) variablesReferencedBy(function F) ≡

{V R.refdV ar | (V R ∈ F)}

4.4 Summary

Intuitively, refactorings should preserve the behavior of a program. This chapter discusses the

program properties that were found to be easily violated in refactoring. Also defined here

are the domains of the arguments to the refactorings, and the functions used for defining the

preconditions of the refactorings.

53

Chapter 5

Low-Level Refactorings

This chapter defines twenty six low-level refactorings. They support the three high-level refac-

torings, described in chapters six through eight. These refactorings are designed to be simple,

so that in most cases it is trivial to show that they are behavior-preserving. The behavior-

preserving nature of the high-level refactorings is argued in terms of these refactorings.

For completeness, the definition of each refactoring details its preconditions and argues

that it is behavior preserving. This information, included for completeness at the end of each

refactoring, provides a level of detail beyond what may be of interest to some readers. It can

be skipped without missing the intent of the refactoring.

The refactorings defined in this chapter are:

1. Creating a Program Entity:

(a) create empty class

(b) create member variable

(c) create member function.

2. Deleting a program entity:

(a) delete unreferenced class

(b) delete unreferenced variable

(c) delete member functions

54

3. Changing a program entity:

(a) change class name

(b) change variable name

(c) change member function name

(d) change type

(e) change access control mode

(f) add function argument

(g) delete function argument

(h) reorder function arguments

(i) add function body

(j) delete function body

(k) convert instance variable to pointer.

(l) convert variable references to function calls

(m) replace statement list with function call

(n) inline function call

(o) change superclass

4. Moving a member variable:

(a) move member variable to superclass

(b) move member variable to subclasses

5. Intermediate level (composite) refactorings:

(a) abstract access to member variable

(b) convert code segment to function

(c) move class

55

5.1 Creating a Program Entity

These refactorings create a new class or a new class member. Each refactoring is behavior

preserving because the entity (class or class member) it adds either is unreferenced or replaces

an identically defined, inherited member.

A. create empty class

Define a new class, with no locally defined members. If a superclass is specified as an

argument, the new class becomes its direct subclass.

Arguments: string newClassName, (optional) class superclass.

Preconditions:

1. ∀ class ∈ Program.classes,

class.name 6= newClassName.

(the name does not clash with an already existing class)

The arguments to the refactoring specify that the new class will have 0 or 1 direct super-

class, satisfying the unique superclass property (property one). The precondition ensures

distinct class names (property two). Other program properties are trivially preserved.

When a new class is created, there are no instances of it, nor are there any subclasses

that inherit from it. Therefore, the behavior of the program does not change when the

new class is added.

B. create member variable

Add an unreferenced locally defined member variable to a class.

Arguments: variable V, class C.

Preconditions:

1. ∼varNameCollisionP(V.name, C)

(the name of the new variable does not clash with an existing member or global

variable).

The precondition ensures that the new variable doesn’t collide with existing variables,

satisfying program properties three (distinct member names), four (inherited Member

56

Variables Not Redefined) and eight (semantically Equivalent References and Operations).

Other program properties trivially preserved.

Adding a new, unreferenced variable does not change the behavior of a program.1

C. create member function.

Add a locally defined member function to a class that either is unreferenced or is identical

to an already inherited function.

Arguments: function F, class C.

Preconditions:

1. ∀ memberFunction ∈ C.locallyDefinedMemberFunctions,

memberFunction.name 6= F.name.

(the function is not already defined locally)

2. ∀ F2 ∈ inheritedMemberFunctions(C),

(F2.name = F.name) ⇒

matchingSignatureP (F, F2).

(the signature matches that of any inherited function with the same name)

3. ∀ F3 ∈ functionsThatOverride(F),

matchingSignatureP(F, F3).

(the signatures of corresponding functions in subclasses match it)

4. ∀ F2 ∈ inheritedMemberFunctions(C),

(F2.name = F.name) ⇒

(∀ class ∈ C ∪ subclassesOf(C),

unrefdOnInstancesP(F2, class)) ∨

(semanticallyEquivalantP F, F2).

(if there is an inherited function with the same name, either the inherited func-

tion is unreferenced on instances of C (and its subclasses), or the new function is

semantically equivalent to the function it replaces)

1This refactoring increases the physical size of instances of the class. Programs that test the physical size of
objects could see their behavior change (see the discussion in section 4.1.2).

57

5. compilesP(F, C).

(F will compile as a member of C.)

Precondition one ensures that member names are distinct (property one). Preconditions

two and three ensure that the member function has a signature identical to any cor-

responding superclass or subclass function. By precondition four, if the new function

collides with an existing function, its function body must match the body of the func-

tion it is replacing, ensuring semantically consistent references and operations (property

seven). Other program properties are trivially preserved.

The behavior of a class is not changed when a function is added that either is unreferenced

or replaces an identically defined, inherited function.2

5.2 Deleting a Program Entity

These refactorings delete an unreferenced class or delete an unreferenced or redundant class

member. Each refactoring is behavior preserving because the entity (class or class member) it

deletes is either unreferenced or redundant. A member function is redundant if an identical

member function would be inherited from a superclass if it were deleted.

A. delete unreferenced class

Delete an unreferenced class.

Arguments: class C.

Preconditions:

1. referencesTo(C) = ∅ ∧ subclassesOf(C) = ∅.

(the class being deleted is unreferenced and has no subclasses).

The class being deleted from the program is unreferenced; thus, all program properties

are trivially preserved.

B. delete unreferenced variable

2This refactoring increases the physical size of instances of the class. Programs that test the physical size of
objects could see their behavior change (see the discussion in section 4.1.2).

58

Delete an unreferenced variable.

Arguments: variable V.

Preconditions:

1. referencesTo(V) = ∅.

(the variable being deleted is unreferenced)

The variable being deleted from the class is unreferenced; thus, all program properties

are trivially preserved.3

C. delete member functions

Delete a set of member functions from their class.

Arguments: setOf(function) functionsToDelete.

Preconditions:

1. ∀ F ∈ functionsToDelete:

(∀ ref ∈ referencesTo(F):

containingFunction(ref) ∈

functionsToDelete) ∨

∃ F2 ∈

(F.owner.superclass).locallyDefinedMemberFunctions ∨

inheritedMemberFunctions(F.owner.superclass)

∧ F2.accessControlMode 6= private

∧ matchingAttributesP(F, F2).

(either each function being deleted is redundant, or the only references to it are by

other functions that are also being deleted)

By the precondition, each function is either redundant and therefore can be deleted

without changing the behavior of the program, or is unreferenced after the set of oth-

er functions are deleted. This preserves program property seven (semantically equivalent

references and operations). Other program properties are trivially preserved.

3This refactoring decreases the physical size of instances of the class. Programs that test the physical size of
objects could see their behavior change (see the discussion in section 4.1.2).

59

5.3 Changing a Program Entity

These refactorings change the name of a class or change the attributes of a class member. They

change a class member by changing its name, access control mode or type. Other changes

include: converting an instance variable to a variable that points to an instance, converting a

variable reference to a function call, and adding or reordering function arguments.

A. change class name

Change the name of a class.

Arguments: class C, string S.

This name change is reflected throughout the program (i.e. in class and subclass dec-

larations, constructor and destructor functions, and the declarations of instances of the

class).

Preconditions:

1. ∀ class ∈ Program.classes,

class.name 6= S.

(the new name doesn’t clash with an already existing class)

The precondition ensures distinct class names (satisfying program property two). Chang-

ing the name of a class does not change its behavior (satisfying program property seven).

Other program properties are trivially preserved.

B. change variable name

Change the name of a variable.

The name change is reflected throughout its scope. The variable could be a global variable,

member variable, temporary variable or be an argument to a function. The rules of the

language determine where a variable is visible.

Arguments: variable V, string newName.

Preconditions:

1. ∼varNameCollisionP(newName, C)

(newName does not clash with an existing member or global variable).

60

The precondition ensures that the new variable doesn’t collide with existing variables,

satisfying program properties three (distinct member names), four (variable scoping) and

five (member variable redefinition). Other program properties are trivially preserved.

The new variable name does not collide with a referenced or inherited variable. Changing

the name of the variable does not change its behavior, as long as references to the variable

remain the same.

C. change member function name

Change the name of a member function and any corresponding member functions defined

in subclasses (and callers).

Arguments: function F, string newName.

Preconditions:

1. ∀ member ∈ F.owner.locallyDefinedMemberFunctions,

member.name 6= newName.

(a function with the same name is not already defined locally)

2. if F.accessControlMode 6= private,

∀ subClass ∈ subclassesOf(F.owner),

∀ member ∈ subClass.locallyDefinedMemberFunctions,

member.name 6= newName.

(if F is not private, a function with same name is not already defined locally in a

subclass)

3. ∀ F2 ∈ inheritedMemberFunctions(containingClass(F)),

(F2.name = F.name) ⇒

matchingSignatureP (F, F2).

(the signature matches that of any inherited function with the same name)

4. ∀ F2 ∈ inheritedMemberFunctions(containingClass(F)),

(F2.name = F.name) ⇒

(∀ class ∈ containingClass(F) ∪ subclassesOf(containingClass(F)),

unrefdOnInstancesP(F2, class)) ∨

(semanticallyEquivalantP F, F2).

61

(if there is an inherited function with the same name, either the inherited function

is unreferenced on instances of containingClass(F) (and its subclasses), or the new

function is semantically equivalent to the function it replaces)

5. ∀ F2 ∈ inheritedMemberFunctions(containingClass(F)),

F2.name = F.name⇒

matchingSignatureP (F, F2) ∧

(∀ ref ∈ referencesTo(F2),

containingClass(ref) = containingClass(F2)) ∨

(∀ class ∈ (containingClass(F)) ∪ subclassesOf((containingClass(F))),

instancesOf((containingClass(F))) = ∅) ∨

(semanticallyEquivalantP F, F2).

(if there is an inherited member function with the same name, the signatures match.

Also, either the inherited function is unreferenced on instances of the class that

contains F (or its subclasses), or the renamed function is semantically equivalent to

the function it replaces.)

The first three preconditions ensure that member names are distinct (property one).

Precondition three ensures compatible signatures (property six; member function redef-

inition). By precondition four, if there is an inherited function with the same name,

either the inherited function is unreferenced on instances of containingClass(F) and its

subclasses, or the new function is semantically equivalent to the function it replaces, en-

suring semantically consistent references and operations (property seven). Other program

properties are trivially preserved.

D. change type

Change the type of a set of (pointer) variables and functions (i.e. change the types of the

variables and the return types of the functions).

Arguments: setOf(variable) varsToChange, setOf(function) functionsToChange,

type newType.

Preconditions:

62

1. ∀ Var ∈ varsToChange,

∀ expression ∈ expressionsAssignedTo(variableToChange):

subtypeP(expression.type newType) ∨

expression ∈ (varsToChange ∪ functionsToChange).

(each assignment to a variable would remain type safe if its type was changed to

newType).

2. ∀ I ∈ (varsToChange ∪ functionsToChange),

∀ expression ∈ variablesAssigned(item):

subtypeP(newType, expression.type) ∨

expression ∈ varsToChange.

(each assignment of item would remain type safe if its type was changed to newType).

Preconditions one and two ensure type safe assignments (property six). Other program

properties are trivially preserved.

E. change access control mode

Change the access control mode of a member variable or function.

Arguments: (variable + function) member,

(‘private’ OR ‘protected’ OR ‘public’) newAcMode.

Preconditions:

1. if (newAcMode = private) ∧ (member.accessControlMode 6= private),

classesInternallyReferencing(member) = {containingClass(member)} ∧

classesPubliclyReferencing(member) = ∅.

(if the new mode is private, the member is only (internally) referenced, in the class

where it is defined)

2. if (newAcMode 6= private) ∧ (member.accessControlMode = private)

(a) if member is a variable:

(∀ subclass ∈ subclassesOf(member.owner),

∀ Var ∈ subclass.locallyDefinedMemberVariables,

Var.name 6= member.name).

63

(a member variable to be declared protected or public must not already be

defined in a subclass)

(b) if member is a function:

i. ∀ F2 ∈ inheritedMemberFunctions(C),

(F2.name = F.name) ⇒

(∀ class ∈ C ∪ subclassesOf(C),

unrefdOnInstancesP(F2, class)) ∨

(semanticallyEquivalantP F, F2).

(if there is an inherited function with the same name, either the inherited

function is unreferenced on instances of C (or its subclasses), or the new

function is semantically equivalent to the function it replaces)

ii. ∀ subclass ∈ subclassesOf(member.owner),

∃ F ∈ subclass.locallyDefinedMemberFunctions ∧

F.name = member.name ⇒

matchingSignatureP(F, member).

(the signature of the new function matches the signatures of functions that

would override it in subclasses)

3. if (newAcMode = protected) ∧ (member.accessControlMode = public),

classesPubliclyReferencing(member) = ∅.

(a member currently declared public but about to be declared protected must only

be (internally) referenced, in the class that contains it or in one of its subclasses).

All references to the member before the refactoring are either within the member’s scope

after the refactoring, or (if a function) may be replaced by a reference to a semantically

equivalent function, preserving semantically equivalent references and operations (prop-

erty seven). Other program properties are trivially preserved.

F. add function argument

Add a new argument to the definition of a function in its containing class (and to func-

tions that override it in subclasses). In each function call, add an argument which is a

dynamically created instance of the type of newArg.

64

This refactoring is used, for example, when making the signatures of functions in different

subclasses match.

Arguments: function F, variable newArg, newArg.type defaultValue4.

Preconditions:

1. ∀ Func ∈ (F ∪ functionsThatOverride(F)),

∼varNameCollisionP(newArg.name containingClass(Func)).

(the name of newArg doesn’t collide with another variable in an enclosing scope)

2. ∀ Func ∈ memberFunctions(F.owner.superclass),

Func.name 6= F.name.

(a member function with the same name is not defined in a superclass).

3. classesReferencing(F) ⊂ scopeOf(defaultValue).

(defaultValue is visible in all places where F is called).

By the precondition 1, there are no name collisions with the new variable in F, nor in the

corresponding functions defined in subclasses. By preconditions 2, this covers all corre-

sponding functions. The argument is unreferenced, hence property seven (semantically

equivalent references and operations) is preserved. The other program properties are triv-

ially preserved. Adding an unreferenced argument does not change the behavior of the

program.

G. delete function argument

Delete an argument from the definition of a function in its containing class and, unless it

is private, from all subclasses where it is redefined. In each function call, the argument is

removed.

Arguments: variable Arg

Preconditions:

1. referencesTo(Arg) = 0.

(the argument is unreferenced.)

4This argument can be omitted if there are no calls to F.

65

2. ∀ F ∈ (functionsThatOverride(Arg.owner)),

referencesTo(argument in corresponding position) = 0.

(the corresponding argument in each overriding function is unreferenced).

3. ∀ Func ∈ memberFunctions(Arg.owner.owner.superclass),

Func.name 6= Arg.owner.name.

(the member function containing Arg is not defined in a superclass).

4. ∀ argExpr assigned to Arg (or to the corresponding argument in each

overriding function),

noSideEffectsP(argExpr).

(the expressions passed to Arg (or to corresponding argument variables in overriding

functions) do not have side effects).

By the preconditions, Arg is not referenced, nor is the corresponding argument referenced

in overriding functions defined in subclasses. Expressions passed to Arg (in calls to its

containing function) have no side effects. Therefore, program property seven (semantically

equivalent references and operations) is preserved. The other program properties are

trivially preserved. Deleting an unreferenced argument does not change the behavior of

the program.

H. reorder function arguments

Reorder the arguments in a member function definition (in the specified class and in all

subclasses) and in all calls to that function.

Arguments: function F, (list of variable) newArgOrdering.

Preconditions:

1. ∀ function ∈ (F ∪ functionsThatOverride(F)),

∀ argument ∈ function.arguments

∀ expression ∈ argumentExpressionsInFunctionCalls

(argument, F):

66

noSideEffectsP(expression).

(the expressions assigned to the argument variables have no side effects)5

2. correspondingSuperclassMemberFunctions(F) = ∅.

(a corresponding member function is not defined in a superclass).

The function arguments (by precondition) do not have any side effects; reordering them

does not change the behavior of the function, since the ordering of arguments in all calls to

the function are similarly reordered. Thus, program property seven (semantically equiva-

lent references and operations) preserved by the preconditions; other program properties

are trivially preserved.

I. add function body

Add a function body to an existing member function (signature).

Arguments: function F, statement newFunctionBody.

Preconditions:

1. compilesP (F, where F.body = newFunctionBody), containingClass(F))

(the new function body compiles).

By precondition one, the function body compiles cleanly. Since the function is a signature

only, it is never called directly; adding a function body to it does not change the behavior

of the program. Therefore program property seven (semantically equivalent references

and operations) is preserved, as are (trivially) the other program properties.

J. delete function body

Delete a function body from an existing member function (making it a signature only).

Arguments: function F.

Preconditions:

1. callsTo(F) = ∅.

5If two argument expressions in a function call have side effects, and the side effects are not independent,
program behavior could change if the arguments were reordered. This precondition prevents this from happening.
The precondition could be relaxed to permit only one argument expression with side effects per function call, or
multiple argument expressions with side effects as long as the side effects are independent of each other.

67

By the precondition, F is never called in the program, therefore behavior is preserved when

its function body is removed. Therefore, program property seven (semantically equivalent

references and operations) preserved, as are (trivially) the other program properties.

K. convert instance variable to pointer.

This refactoring is specific to C++. C++ has two ways in which a variable Var1 can

“contain” an instance of a class Class1. The variable declaration “Class1 Var1” declares

Var1 to be a particular instance of Class1 throughout program execution. Space is stati-

cally allocated for it at compile time. Var1 can be reassigned, but can only be reassigned

an instance of Class1.

By contrast, the variable declaration “Class1* Var1” allows Var1 to point to (i.e. contain)

an instance of Class1 or an instance of any of its subclasses. This allows expressions

assigned to it to be specialized while maintaining type compatibility.

This refactoring converts a variable from its current type to become a pointer to that

type, and assigns to the variable an instance of its current type.

If the variable is a member variable, with a declaration of the form “Class1 Var1(args)”,

this refactoring changes the declaration to “Class1* Var1”, adds to the class construc-

tor the assignment: “Var1 = new Class1(args)”, and adds to the class destructor the

statement: “delete Var1”.

If the variable is a local variable, with a declaration of the form “Class1 Var1(args)”,

this refactoring changes the declaration to “Class1* Var1” and immediately following the

variable declaration adds the assignment: “Var1 = new Class1(args)”.

Expressions of the form &Var1 are changed to Var1. Expressions of the form Var1.member

are changed to Var1− >member.

Arguments: variable member variable.

Preconditions:

1. none.

Program property six (type safe assignments) is preserved by construction. Also, by

construction each reference to the variable is replaced by a semantically equivalent (but

68

not identical6) reference to a pointer variable, preserving property seven. Other program

properties are trivially preserved.7

L. convert variable references to function calls

Arguments: variable V.

Convert all references to V to calls to its accessing functions. Convert all assignments to

V to calls to its updating function.

Preconditions:

1. locallyDefinedMemberNamedP(get < V >, V.owner) ∧

locallyDefinedMemberNamedP(address of < V >, V.owner) ∧

locallyDefinedMemberNamedP(set < V >, V.owner).

(the access and update functions are already defined).

The access and update functions, by construction, behave the same as direct accesses

and updates to the variable. Therefore, replacing the variable accesses with calls to these

functions preserves property seven (semantically equivalent references and operations).

Other program properties are trivially preserved.

M. replace statement list with function call

Arguments: function F, list statementList, functionCall FC.

Replace statementList in F with the function call FC.

Preconditions:

1. classContaining(F) ⊂ scopeOf(FC.calledFunction)

(the called function is visible from the calling function).

2. semanticallyEquivalentP(statementList, FC).

(the function call is semantically equivalent to the statement list it replaces. The

abstract syntax trees must be the same, up to variable renaming.)

6See section 7.5.3 for a discussion of how variable references can be semantically equivalent but not identical.
7This refactoring can decrease the physical size of instances of the class. Programs that test the physical size

of objects could see their behavior change (see the discussion in section 4.1.2).

69

The function call, by precondition, behaves the same as the statement list it replaces.

Program property seven (semantically equivalent references and operations) is therefore

preserved; other program properties are trivially preserved.

N. inline function call

Replace a function call with the body of the called function.8

Arguments: functionCall FC.

Preconditions:

1. ∀ refdItem ∈

(variablesReferencedBy(FC.calledFunction) ∪

functionsCalledBy(FC.calledFunction)),

(scopeOf(refdItem) ⊂ FC.calledFunction) ∨

(containingClass(FC) ⊂ scopeOf(refdItem)).

(all member variables and functions referenced by the called function are reachable

from the calling function)

After checking the preconditions, this refactoring:

1. creates a statement list, equivalent to the function body in the called function, to

insert into the calling function. In creating the statement list, the names of variables

local to the called function may be changed to avoid name collisions. Each call

by value is handled by assignment statement added to the beginning of the inlined

code. Return statements are converted to branch/goto statements (at the end of the

statement list).

2. replaces the function call with the equivalent statement list.

The only problem with inlining a called function is that the function may reference private

or protected members that the calling function can’t reference. By precondition one, all

references are visible to the caller. Thus, the statement list is semantically equivalent to

the function call it replaces. Therefore, program property seven (semantically equivalent

references and operations) is preserved. Other program properties are trivially preserved.

8Issues involved in inlining functions calls are detailed in the program transformation literature [27].

70

O. change superclass

Change the superclass of a class.

Arguments: class C, class newSuperclass.

Preconditions:

1. ∀ I ∈ instancesOf(C ∪ subclassesOf(C)),

∀ Var ∈ variablesAssigned(I),

Var.type ∈ (C ∪ subclassesOf(C) ∪ newSuperclass ∪

superclassesOf(newSuperclass)).

(each assignment of item would remain type safe if its type was changed to new type).

2. ∀ member ∈ inheritedMembers(C),

memberNamedP(member.name, newSuperclass) ∧

matchingAttributesP(

member,

memberNamed(member.name, newSuperclass))

(all members currently inherited will be identically inherited from the new superclass.

This precondition is strict, but the higher level refactoring move class satisfies this

precondition by first calling other refactorings to add members as needed to the

superclass, before calling this refactoring.)

3. ∀ member ∈ locallyDefinedMembersOf(C),

if memberNamedP(member.name, newSuperclass),

(if member is a variable): matchingAttributesP(

member, memberNamed(member.name, newSuperclass))

(if member is a function): matchingSignatureP(

member, memberNamed(member.name, newSuperclass)).

(each locally defined member either doesn’t clash with a member inherited from the

new superclass, or it is identical to an member inheritable from the new superclass

and therefore can be removed from the subclass when the superclass is changed.)

4. the constructor and destructor chain for the new superclass is semantically equivalent

to the chains for the current direct superclass of C.

71

After checking the preconditions, this refactoring:

1. changes the superclass attribute of C to newSuperclass

2. deletes from C any member variables identically defined in or inherited by newSu-

perclass.

Program property six (type-safe assignments) is preserved by precondition one. By pre-

conditions two and three, references to members before the refactoring will be the same,

or consistently replaced by references to members with an identical type, after the refac-

toring. By precondition four, the constructors and destructors are semantically equiv-

alent when the superclass is changed. Therefore, program property seven (semantically

equivalent references and updates) is preserved. Other program properties are trivially

preserved.

5.4 Moving a Member Variable

These refactorings move a member variable to a superclass or subclass.

A. move member variable to superclass

Arguments: variable V, class C.

Move V to class C from all subclasses where it is defined. If V.accessControlMode = public

in its current class(es), it will be public in its new class; otherwise, the access control mode

in the new class will be protected. Also, in each subclass where it is currently defined,

the local definition of the variable is removed, as it will be now be inherited from C.

This refactoring changes the relative physical ordering of variables in the class, but the

variable type and references remain the same.9

Preconditions:

1. ∀ C ∈ subclassesOf(C):

(∃ Var ∈ C.locallyDefinedMemberVariables ∧

9This refactoring changes the relative physical position of variables within instances of the class. Programs
that test the physical positions of variables could see their behavior change (see the discussion in section 4.1.2).

72

Var.name = V.name) ⇒

matchingAttributesP(Var, V).

(the variable is defined identically in all subclasses where it is defined)

2. ∀ member ∈ C.locallyDefinedMemberVariables,

member.name 6= V.name)

(the variable isn’t already defined locally in (as a private member of) the superclass).

Since (by precondition one) the variable is defined identically in all subclasses where it

is defined, replacing the local definitions in the subclasses by a definition inherited from

C will not change the behavior of the program, preserving program property seven (se-

mantically equivalent references and operations). Other program properties are trivially

preserved.10

B. move member variable to subclasses

Arguments: variable V, subclass list.

Move the member variable from its current containing class to each of its immediate

subclasses.

Preconditions:

1. referencesTo(V, containingClass(V)) = ∅

(the variable is not referenced by members of, nor referenced on instances of, con-

tainingClass(V))

2. V.accessControlMode 6= private.

(the variable is already inherited by the immediate subclasses.

After the refactoring, V will still be defined in all subclasses that currently reference it.

Therefore, program property seven (semantically equivalent references and operations) is

preserved by preconditions; other program properties are trivially preserved.11

10This refactoring changes the relative physical position of variables within instances of the class. Programs
that test the physical positions of variables could see their behavior change (see the discussion in section 4.1.2).

11This refactoring changes the relative physical position of variables within instances of the class. Programs
that test the physical positions of variables could see their behavior change (see the discussion in section 4.1.2).

73

5.5 Composite Refactorings

These refactorings build upon the other low-level refactorings, to: abstract variable access,

convert between a code segment and a corresponding function call, and perform more powerful

moving operations.

A. abstract access to member variable

Abstract access to a member variable by defining functions for accessing the value or

address of the variable, and for updating its value. Replace variable references with calls

to these functions, and (if the access control mode of the variable is public) limit access

to the variable by making it protected.

Arguments: variable V.

After checking its preconditions, this refactoring:

1. calls create member function to create the access and update functions

(named get < V >, set < V >, address of < V >)

2. calls convert variable references to function calls to replace references to V with calls

to the access and update functions.

3. if the access control mode of V is public, calls change access control mode to make

V protected.

Preconditions:

1. ∼memberNamed(get < V > containingClass(V)) ∧

∼memberNamed(set < V > containingClass(V)) ∧

∼memberNamed(address of < V > containingClass(V)).

(access to the variable has not already been abstracted)

For create member function: preconditions one through four are satisfied by precondi-

tion one of this refactoring; precondition five is satisfied because the new functions only

contain a reference to V, which remains visible within its class. For the refactoring con-

vert variable references to function calls: precondition one is satisfied by the functions

were created in the prior step. For change access control mode: since this refactoring is

74

only called if V is public, preconditions one and two are trivially satisfied; precondition

three is satisfied because after the prior step, the only reference to the variable is from

functions defined in the class.

This refactoring is constructed using behavior preserving refactorings and, since it satisfies

the preconditions of those refactorings, behavior is preserved.

B. convert code segment to function

Define a new member function, with a unique name, whose function body is equivalent

to a statement list of an existing member function. Replace that statement list in the

existing member function with a call to the new member function.

Arguments: setOf(statement) statementList.

After checking its precondition, this refactoring:

1. constructs an argument list for the new member function. The argument consists of

variables local to containingFunction(statementList) that are referenced or modified

by statementList, but which are declared within statementList. Variables modified is

statementList will be passed-by-referenced; other variables will be passed-by-value.

Then, calls create member function to create the new member function. The new

function is given a unique name.

2. calls replace statement list with function call to replace the statement list with a

call to the newly created function.

Preconditions:

1. convertibleToFunctionP(statementList).

(statementList is convertible to a legal function)

For create member function: preconditions one through four are satisfied because the

function is given a unique name; precondition five is satisfied because the new function has

the same access to global and member variables and functions as the old function, and any

variables local to the old function but not defined in statementList are passed as arguments

to the new function. For replace statement list with function call, precondition one by

75

the results of the prior step; precondition two is satisfied because, by construction, the

new function is equivalent to the statement list it replaces.

This refactoring is constructed using behavior preserving refactorings and, since it satisfies

the preconditions of those refactorings, behavior is preserved.

C. move class

Move a class (change its superclass).

Arguments: class C, class newSuperclass.

After checking the preconditions, this refactoring:

1. determines the set of inherited members that would not be (identically) inherited by

C (from newSuperclass or one of its superclasses) at its new location12; then:

(a) for each member function in the set, calls create member function to copy the

function into C

(b) for each member variable in the set:

i. if the variable is defined in any current subclass of newSuperclass, calls

move member variable to superclass to move the variable to newSuperclass.

ii. otherwise if the variable is not already a local or inherited member of newSu-

perclass, calls create member variable to add the variable to newSuperclass.

2. calls the refactoring change superclass to change the superclass of C.

Preconditions:

1. ∀ member ∈ (membersOf(C):

(a) if member is a variable ∧

∃ Var ∈ memberVariablesOf(newSuperclass) ∧

member.name = Var.name,

matchingAttributesP(member, Var).

12The current subclass of C could share a common superclass with newSuperclass; these classes may inherit
some common behavior but a virtual member function could be defined differently in those classes. Or, the
current and new superclasses may not share a common superclass and all inherited behavior would need to be
copied.

76

(b) if member is a function ∧

∃ Func ∈ memberFunctionsOf(newSuperclass) ∧

member.name = Func.name,

matchingSignatureP(member, Func).

(attributes of member variables and signatures of member functions in C will

match with its superclasses.)

2. if variables needed in the new superclass are already defined in its subclasses, those

variables are defined identically in the subclasses

3. ∀ subclassInstance ∈ instancesOf(C),

∀ variableAssignedSubclassInstance ∈ variablesAssigned(subclassInstance),

variable.type ∈ (C ∪ newSuperclass

∪ superclassesOf(newSuperclass)).

(each assignment of an instance of the class being moved would remain type safe).

For create member function: preconditions one and four are satisfied because the refac-

toring is only invoked if it is not already locally defined or inherited; precondition two is

satisfied by precondition one of this refactoring; precondition three is satisfied because the

class is moved along with its superclasses; precondition five is satisfied by construction

- this refactoring ensures that all referenced variables and functions are visible after the

move.

For move member variable to superclass: precondition one is satisfied by precondition

two of this refactoring; precondition two is satisfied by this refactoring is not invoked

when the variable is already defined in or inherited by the superclass.

For create member variable: this refactoring is only invoked if the variable does not collide

with an existing variable, thus satisfying precondition one.

For change superclass: precondition one is satisfied by precondition three of this refac-

toring; precondition is satisfied by the results of the prior steps; precondition three is

satisfied by precondition one of this refactoring.

77

This refactoring is constructed using behavior preserving refactorings and, since it satisfies

the preconditions of those refactorings, behavior is preserved.13

13This refactoring could change the physical size of instances of the class. Programs that test the physical size
of objects could see their behavior change (see the discussion in section 4.1.2).

78

Chapter 6

Refactoring To Generalize:

Creating an Abstract Superclass

This chapter focuses on creating an abstract superclass that captures the behavior common to

two classes. It can be generalized to work with any number of classes.

Casais [30] and Bergstein [15] note that a useful behavior preserving program transformation

is to move a function or variable to a common superclass from subclasses where it is identically

defined. However, as this chapter describes defining an abstract superclass involves more than

just moving up identically defined members. The important (and complex) parts of the process

come in finding the common abstraction that is often hidden behind differing vocabulary, and

achieving compatibility between the subclass implementations.1

When capturing the abstraction common to two classes, one cannot expect that the similari-

ties will already be obvious, conveniently separated from the differences, and defined identically

in both subclasses. In general, achieving compatibility between the subclasses may require

changing member names and other attributes, and splitting function bodies, before members

can be moved up to the superclass.

To illustrate some of the complexities, recall the example described in section 3.2 for cre-

ating the abstract superclass Inode, that captured the abstraction common to the BSDInode

and SystemVInode classes. The common abstraction was contained in functions that were not

1Casais [31] similarly observes that renamings and other attribute refinements are sometimes needed before
functions and variables are migrated to an abstract superclass.

79

identically defined in the two classes before the refactoring was performed. In particular, the

implementations of the mapUnit function were slightly different due to differences in the two

file formats.

As shown below in Figure 6.1, most but not all of the code for the mapUnit function in the

SystemVInode class was the same as for the mapUnit function defined in the BSDInode class.

However, the code for getting and setting a logical block number was different between the two

file system formats.

AFTER:

Inode

 Protected:

 virtual int getDirect()
 virtual void setDirect(..)
 int mapUnit(...) {
 *
 index = getDirect()
 *
 setDirect(index)
 * }

BSDInode (and SystemVInode)

 Protected:

 int getDirect() {...}
 void setDirect(..) {...}

Inode

BSDInode SystemVInode

BEFORE:

BSDInode

 Protected:

 int mapUnit(...) {
 *
 code to get
 physical block #
 (BSD specific)
 *
 code to set
 physical block #
 (BSD specific)
 * }

SystemVInode

 Protected:

 int mapUnit(...) {
 *
 code to get
 physical block #
 (SystemV specific)
 *
 code to set
 physical block #
 (SystemV specific)
 * }

Figure 6.1: Refactoring The Function mapUnit

The implementations of the mapUnit function in each subclass needed to match before they

could be replaced by a commonly inherited function in the superclass. To handle this, the

80

code that differed between the two implementations was placed into new functions getDirect

and setDirect which were added to the subclasses. Then, in both definitions of the mapUnit

function, the differing code was replaced by calls to these functions. Once the definitions of the

mapUnit function in both subclasses matched, the function was moved to the superclass.

In general, the process of defining an abstract superclass first involves creating a new class

and moving the two existing classes under it. Then, capturing the common abstraction in the

superclass is an iterative process that may involve the following steps:

• making function signatures compatible in both subclasses

• adding function signatures to the superclass protocol

• making functions bodies (and the variables referenced by them) compatible in both sub-

classes

• migrating common code and variables to the superclass.

Each of these steps is described in this chapter. The chapter closes with a discussion of how

interaction with the designer might be reduced, and other issues.

Casais [31] deals with several of the issues discussed in this chapter: renamings, refining

function signatures and variable attributes, and moving members. One important step defined

here that is not addressed by Casais [31] is how to separate out the differences between corre-

sponding functions defined in both subclasses, making them match, before migrating common

code to the superclass. That step closely relates with the other steps defined in this chapter.

There are other ways in which this work is different from [31]: it provides some heuristics

for detecting structural similarities, includes access control mode as an attribute that can be

refined, and discusses some of the tradeoffs involving user/tool interaction.

Before a function signature or variable can be added to the superclass, it must first be defined

compatibly in the subclasses. Compatibility is defined differently for the various object-oriented

languages and programming styles. The refactorings defined in this chapter require that:

• for function signatures to be compatible the names, argument types, return types and

access control modes must match

• for variables to be compatible the names, types and (for member variables) access control

modes must match.

81

For each of the refactorings described in this and the following two chapters, the description

of the refactoring is followed by sections that detail its preconditions and argue that it is

behavior preserving. As with the low-level refactorings defined in the previous chapter, these

sections (included for completeness) provide a level of detail beyond what may be of interest to

some readers. These sections can be skipped without missing the intent of the refactorings.

6.1 Creating a Common Superclass

The first important step in this process (before dealing with function signatures, common code

and variables) is to create the new abstract superclass. It is assumed here that the two classes

that share a common abstraction have already been selected by the designer2 and are sibling

classes; that is, they either share a common direct superclass or each class is the top most class

in its inheritance hierarchy. If the two classes are not sibling classes, the move class refactoring,

described in chapter five, can be applied to move one or both of the classes.

The arguments to this refactoring are:

• string absSuperclassName

• class C1, C2.

After checking its preconditions, this refactoring:

1. calls the create empty class refactoring to create the new superclass, as a sibling of the

two current classes.

2. calls the move class refactoring to move the two classes under it.

6.1.1 Preconditions

The preconditions for this refactoring are:

1. ∀ class ∈ Program.classes,

class.name 6= absSuperclassName.

(absSuperclassName does not clash with the name of an existing class)

2Section 6.8.2 discusses issues involved in automatically selecting two classes with common attributes from a
set of classes.

82

2. C1.superclass = C2.superclass

(the two classes share a common superclass).

6.1.2 Behavior Preservation

For create empty class, precondition 1 (the name of the new class doesn’t clash with an already

existing class) is satisfied by precondition 1 of this refactoring.

For move class: The preconditions are satisfied because after the move classes S1 and S2

will inherited the same members as before (satisfying precondition 1), no members need to be

locally added to the classes (satisfying precondition 2) and the superclasses (subclasses) of C1

and C2 prior to the refactoring will continue to be superclasses (subclasses) of C1 and C2 after

the refactoring (satisfying precondition 3).

This refactoring is constructed using behavior preserving refactorings and, since it satisfies

the preconditions of those refactorings, behavior is preserved.

6.2 Making Function Signatures Compatible

Functions belong in the superclass protocol if they are part of the common abstraction rep-

resented by the superclass. As noted in chapter one, determining the correct abstraction is a

design decision that cannot be entirely automated. Heuristics (such as those listed below) can

detect similarities between classes, but they are not foolproof.

Two subclasses sharing a common abstraction may have member functions that are similar

but not exactly the same. This might be expected especially if the two classes were developed

independently of each other. The name of the function in one class may be a synonym of the

function defined in the other class. Or, the functions may have the same names, but the return

types or function arguments may be slightly different. In these cases, the signatures of the

member functions in the subclasses need to be changed before they match with each other.

This does not imply, however, that detecting common abstractions must be left entirely to

the user. It is possible to automatically infer design similarities from structural similarities,

perform some primitive refactorings that make the functions more structurally similar, and add

all possible matches to the protocol of the abstract class. There are at least two shortcomings

to carrying automated support to this extreme:

83

1. A tool might detect and act upon structural matches that do not correspond to meaningful

common abstractions. The vocabulary used to name classes and class members is often

ambiguous. Terms such as length, size, age, and brightness can have different meanings in

different classes, and variables with these names may not belong in a common abstraction

even though they are defined in both classes.

If the two classes that share a common abstraction were developed independently, common

members may have different names. This suggests checking for matches on attributes other

than name. Unfortunately, members with similar attributes need not represent similar

abstractions. For example, suppose an abstract class Vehicle is created from the existing

classes Automobile and Submarine. Suppose that each class contained a function with a

single, integer argument. These functions are structurally similar, and an automated tool

could detect this similarity, rename one of the functions and define a common function in

the superclass. But, suppose that in the Automobile class, the function is called changeOil

whose argument is the number of quarts of oil needed; in the Submarine class, the function

is called submerge whose argument is the depth to which to descend. These functions

clearly don’t share a common abstraction, but automatically matching on attributes won’t

detect this.

2. Some of the structural matches may collide with other matches. Suppose a function in

one class may have a return type and argument types that match two or more functions

in the other class, all with different names. In this case, it is not clear which of several

matches should be added to the superclass. This implies that, before selecting among

these possible matches, it is necessary to check how these functions are used.

Thus, automating the detection of a common abstraction is possible but has its short-

comings. These factors suggest a middle ground, where a refactoring tool displays alternative

refactorings and lets the user select the one to perform, as shown in Figure 6.2.

In a multi-window display presented to the user, a refactoring tool could list the functions

in the superclass protocol, and list the functions defined in each subclass. In this example, a

function is defined in both the Automobile and Submarine classes for redirecting the vehicle. In

one class, the function is called shiftDirection while in the other class it is called redirect. The

arguments to the two functions are the same, but are in inverted order.

84

PROTOCOL FOR SUPERCLASS: VEHICLE

int refuel(int capacity)

SUBCLASS: AUTOMOBILE

void shiftDirection
 (direction newDirection,
 int newSpeed)

SUBCLASS: SUBMARINE

void redirect(int newSpeed,
 direction newDirection)

POSSIBLE REFINEMENTS:

in subclass automobile, consider changing the name of function
 shiftDirection to redirect
in subclass submarine, consider reordering the arguments of
 the function redirect

Figure 6.2: Defining the Superclass Protocol

The refactoring tool could generate its set of suggested changes based on the structural

similarities it detects between the classes. The tool could suggest renaming the function in one

of the classes and reordering the arguments of one function. Once these changes are made, the

signatures will be identical and the signature can be added to the superclass protocol. The

tool could suggest possible refinements in the lowest window. For example, in comparing two

functions in different classes, the return types and arguments may be the same but the function

names may be different; the tool would suggest renaming one function to match the other.

Below is a set of heuristics that can detect some structural similarities and suggest refinements.

85

For example, heuristic 2 detects the case where the a function in one subclass has the same

arguments and return types, as a function (with a different name) defined in the other subclass.

These structural similarities suggest that the two functions

These heuristics can be applied, repeatedly, to iteratively derive a superclass protocol. First,

the most obvious case is checked, where a function is identically defined in both classes. When

this occurs, the heuristic suggests adding the function signature to the superclass protocol. In

other cases, the attributes of a function in one class will be similar to but not exactly the same

as an equivalent function in the other class. The other heuristics below handle renaming (2-4),

retyping (5-6), reordering arguments (7) and changing access control mode (8), to make the

signatures of equivalent functions match.3

1. if function F1 is defined in class A

function F1 is defined in class B

the functions have the same access control mode, return type, and

arguments with the same names and types

then consider adding function F1 to the superclass protocol

(using the refactoring defined in section 6.3).

2. if function F1 is defined in class A

function F1 is not defined in class B

function F2 is defined in class B

function F2 is not defined in class A

functions F1 and F2 have arguments with the same names and

types, and have the same return type

then consider renaming function F2 in class B to F1

(using the refactoring change_member_function_name).

3. if function F1 is defined in class A

function F1 is not defined in class B

function F2 is defined in class B

3The action clauses of most heuristics suggest applying a primitive refactoring, described in chapter five. The
preconditions of those refactorings are somewhat more complex than the preconditions shown here.

86

function F2 is not defined in class A

the arguments in function F2 of class B can be arranged such

that the corresponding arguments in both functions have

types that are the same, parent/child or siblings

then consider renaming function F2 in class B to F1

(using the refactoring change_member_function_name).

4. if function F1 is defined in class A

function F1 is defined in class B

the types of their corresponding arguments and return value

are the same.

then consider changing (as needed) the argument names in function F1

of class B to match the argument names in class A,

(using the refactoring change_variable_name).

5. if function F1 is defined in class A

function F1 is defined in class B

a type of an argument (or return value) in one function

is the subtype to the type of the corresponding argument

(or return value) in another function

then consider changing child-type to parent-type

(using the refactoring change_type).

6. if function F1 is defined in class A

function F1 is defined in class B

a type of an argument (or return value) in one function

shares a common supertype with the type of the corresponding

argument (or return value) in another function

then consider changing both types to be their common ancestor

(using the refactoring change_type).

87

7. if function F1 is defined in class A

function F1 is defined in class B

the arguments in function F1 of class B can be arranged such

that the corresponding arguments in both functions have types

that are the same, parent/child or siblings

then consider reordering the arguments of F1 in class B

(using the refactoring reorder_function_arguments).

8. if function F1 is defined in class A

function F1 is defined in class B

their access control modes are different

then consider changing the least permissive mode to match

the most permissive mode,

(using the refactoring change_access_control_mode).

Heuristics such as these could be applied incrementally to make the functions conform, or

they could be chained together to find all possible matches.

For each heuristic, the name of the corresponding refactoring is shown in parentheses. This

is done here to make clear the relationships between the suggested refinements and primitive

refactorings. However, in the user interface (shown in Figure 6.2), the refactoring names are

not displayed. Rather, when the user selects an attribute to update and enters a new value,

the corresponding refactoring is automatically triggered. Such an update by the user may

be in response to a refinement suggested by the tool, or might be a refinement (such as a

renaming) based on the user’s design insight. Before the primitive refactoring is performed,

whose preconditions are checked. If the change is valid, the refactoring is performed, and the

user display is updated. When the function signatures match, the user selects to add the

function signature to the superclass protocol, in which case the refactoring described in the

next section is invoked.

These heuristics detect similarities based on a small set of structural attributes. More pow-

erful similarity detection is possible, as discussed in the artificial intelligence machine learning

literature on analogy-based systems [28, 39, 51, 64]. Analogy-based systems have very limited

power unless their analysis is based on a well-defined domain model. Such approaches are of

88

dubious value in many applications of refactoring, where the design of the application is not

well understood and is evolving.

6.3 Adding Function Signatures to the Superclass Protocol

Once the signature of a function in both subclasses match, the function signature can be added

to the superclass. The following refactoring adds a function signature to the superclass protocol.

The arguments to this refactoring are:

• the member function (F1) as defined in the first subclass (C1)

• the member function (F2) as defined in the second subclass (C2)

After checking its preconditions, this refactoring:

1. calls the create member function refactoring to add the function (signature) as a protected

member of the superclass. The function is defined as virtual in the superclass (referred

to below as ‘commonSuperclass’), allowing it to be (re)defined in the subclasses.4

6.3.1 Preconditions

The precondition for this refactoring is:

1. ∀ member ∈ commonSuperclass.locallyDefinedMemberFunctions,

member.name 6= F1.name.

(the member function is not already locally defined in the common superclass)

2. matchingSignaturesP(F1, F2)

(the signatures of the member function in both subclasses match)

6.3.2 Behavior Preservation

For create member function: precondition 1 (the member function is not already defined locally)

is satisfied by precondition 1 of this refactoring; precondition 2 (the signature is identical

4In C++, the function can be defined as a pure virtual function by assigning its value to be ‘0’ in the
superclass.

89

to that of any inherited function with the same name) is satisfied by precondition 2 of this

refactoring and the Compatible Signatures in Member Function Redefinition program property;

precondition 3 (the signatures of corresponding functions in subclasses are identical to the

signature being added to the superclass) is satisfied by precondition 2 of this refactoring and

by construction; precondition 4 (if there is an inherited function with the same name, either

the inherited function is unreferenced on instances of C (or its subclasses), or the new function

is semantically equivalent to the function it replaces) is satisfied because there are no name

collisions - the new class has no local functions or instances, and its subclasses already override

the function; precondition 5 (regarding references in the function body) is satisfied because the

function signature has no function body.

This refactoring is constructed using a behavior preserving refactoring and, since it satisfies

the preconditions of that refactorings, behavior is preserved.

6.4 Making Function Bodies Compatible

Often, in abstract classes the abstraction is represented not only by the function signatures but

also by the implementations of some functions. Often these implementations are only partial;

that is, the implementations include calls to other functions that are defined in the subclasses.

As in the mapunit example, the function bodies in the subclasses may be similar but not

identical. Before the function body can be migrated to the superclass, differences need to be

separated from the common code.

The approaches for detecting program differences involve string comparison, tree comparison

or a combination of these techniques [12]. Program differences have been studied in regard to

spelling correction [54, 109], parsing error correction [119], version storage [99] and other uses.

String comparison finds the minimum cost sequence of edit operations to convert one string

into another. The standard algorithm for string comparison is described by Wagner and Fisher

[120]. The user specifies the cost of insertion, replacements and deletion of particular elements.

Dynamic programming is used to build a cost table; then, the table is analyzed to find the

minimum cost sequence. Several refinements have been proposed [12].

String comparison algorithms have their limitations. In comparing two programs, one limi-

tation is that often there is no way to relate changes with each other. For example, if changes

90

are made at the beginning and end of a conditional statement, these changes will not be adja-

cent and string comparison approaches cannot interrelate the changes. Also, slight differences

in programming style (extra parentheses, blank lines, etc.) can result in differences flagged by

string comparison, even though the two programs may be syntactically the same. These and

other limitations have motivated several techniques involving tree comparison.

Tree comparison algorithms detect syntactic differences between programs by building syn-

tax trees and comparing the trees. Tree comparison is computationally expensive, and extensive

research has gone into reducing the cost by first limiting the analysis to a subset of “interesting

trees”, and then further reducing the search by detecting and eliminating matching subtrees.

Tree comparison algorithms are described in [94, 111, 115, 116, 124].

These techniques can be used in refactoring as follows: Suppose the function abstractable-

Function is defined in classes Class1 and Class2. A string or tree comparison algorithm is applied,

producing a set of insertion, replacements and deletion operations to get from abstractableFunc-

tion in Class1 to abstractableFunction in Class2. For each edit operation, define a new function

in both classes:

• for each insertion, define in Class2 a new function whose body contains the inserted code;

define in Class1 a new function with the same name whose body is null. Convert in Class2

the inserted code to a call to the new function; at the corresponding location within

abstractableFunction in Class1, add a call to the new function.

• for each replacement, define in Class1 a new function whose body contains the replaced

code; define in Class2 a new function with the same name whose body contains the

replacing code. In Class1, convert the replaced code to a call to the new function; in

Class2, convert the replacing code with a call to the new function.

• for each deletion, in Class1 define a new function whose body contains the deleted code;

define in Class2 a new function with the same name whose body is null. In Class1, convert

the deleted code to a call to the new function; at the corresponding location within

abstractableFunction in Class2, add a call to the new function.

Using these algorithms, the task of comparing two functions and splitting away differences

into separate functions could be automated, but there are shortcomings.

91

When a new function is defined, it should be given a descriptive name and contain related

code. Function names that are auto-generated probably won’t be descriptive. However, this is

not a major problem, as a refactoring could later be applied to change the function names and

make them more descriptive.

More importantly, when two functions are compared, a segment of contiguous code that

appears in one function but not in the other may not belong in a new function. Perhaps the

contiguous code should be divided further into several functions. Conversely, sometimes when

two functions are compared, segments of code that differ between them may be preceded or

followed by segments of related code that (coincidentally) are the same in both functions. In

order for the new functions to represent meaningful abstractions, this “common” code might

really belong together with the differing segments in those new functions. Fully automated

techniques won’t pick this up.

Rak [93] describes an approach that combines automated analysis with user interaction, for

abstracting a function (Smalltalk method) into a superclass from its subclass implementations.

A parse of each function produces a stream of tokens; the token streams are compared using

Wagner and Fisher’s string comparison algorithm to determine the difference regions. On a

display terminal, the functions implementations are displayed side-by-side, with the difference

regions highlighted. The user can expand or split the difference regions. Then, for each differ-

ence region, a new function is added to each subclass to contain the differences. Then, in the

function being abstracted, the differing code is replaced by a call to the newly created function.

This process is repeated until the function implementations are identical, at which point the

function can be migrated to the superclass.

Rak chose a string comparison approach because it was simpler to implement than the

tree comparison approaches. However, it has shortcomings. A stream of tokens representing

a difference region may cross the boundary between subtrees of the function parse, in which

case that region is not always convertible to a function. This shortcoming can be overcome

by expanding the difference region until it corresponds to a syntactically meaningful program

part.

Beckman-Davies [12] analyzed string and tree comparison approaches (and hybrid ap-

proaches) for finding program differences. That analysis showed that no approach is optimal

in all cases. Beckman-Davies further concluded that, among the approaches for finding and

92

displaying program differences to a user, an alternative should be chosen based primarily on

what seems intuitively best to that user, while minimizing computational costs and working

within the limitations of the display terminal.

6.5 Making Variables Compatible

Having created the abstract superclass and determined the function signatures, it is sometimes

necessary to add member variables to the abstract superclass. Although abstract classes often

do not have member variables, sometimes they need to be moved there. The most common

reason is that they are referenced by common code that belongs in the superclass.

As was the case with function signatures, variables defined in one subclass may be struc-

turally similar to, but not exactly match, conceptually equivalent variables in the other subclass.

For example, suppose two objects, one of each subclass, each contain a counter of references

to themselves. When the counter reaches zero, the object marks itself for deletion. However,

in one subclass the counter is called refCount while in the other subclass the counter is called

references. Before the variable is added to the superclass, the name of one of these variables

needs to be changed to match the other variable.

Structural heuristics similar to those listed in section 6.2 could detect similarities in name,

access control mode and type. In cases where the attributes of the variables differ, the following

refactorings that change variable attributes can be applied to make the variable attributes

match, provided that their preconditions are met:

• change variable name (member variable, new variable name)

• change access control mode (member variable, new access control mode)

• change type (member variable, new type).

6.6 Migrating Variables to the Superclass

This refactoring migrates a variable to the abstract superclass. The arguments to this

refactoring are:

• the member variable (V1) in one subclass (C1)

93

• the member variable (V2) in the other subclass (C2)

After checking its preconditions, this refactoring:

1. calls the move member variable to superclass refactoring to move the variable to the su-

perclass.

6.6.1 Preconditions

The preconditions for this refactoring are:

1. matchingAttributesP(V1, V2)

(the attributes of the member variables match.)

2. V1.accessControlMode 6= private

(the access control mode of each variable is not private)

6.6.2 Behavior Preservation

For move member variable to superclass: precondition 1 (the variable is defined identically in

all subclasses where it is defined) is satisfied by precondition 1 of this refactoring and and

because (by construction, from prior steps) no other subclasses are defined; precondition 2

(the variable isn’t already defined or inherited by the superclass) is satisfied by precondition

2 of this refactoring and program property four (inherited Member Variables Not Redefined),

which states that a member variable inherited from a superclass is not redefined in any of its

subclasses.

This refactoring is constructed using a behavior preserving refactoring and, since it satisfies

the preconditions of that refactoring, behavior is preserved.

6.7 Migrating Common Code to the Abstract Superclass

In this step, common code is migrated to the superclass. Before migrating the function body

to the superclass, differences between the functions are computed using one of the comparison

algorithms described in section 6.4. Variables and functions referenced by the common code

94

must be visible from the superclass before it can be moved there. The refactorings defined

earlier can be applied to move variables (and add function signatures) to the superclass.

This refactoring is applied for each function body that is to be added to the superclass. The

arguments to this refactoring are:

• the subclass implementations of the member function (F1 in C1, and F2 in C2) represented

as a list of alternating common and differing code segments.

After checking its preconditions, this refactoring:

1. for each differing code segment, this refactoring:

(a) calls the convert code segment to function refactoring to create a new function in

each subclass. The name of the new function is automatically generated and is

distinct from the name of any existing member.5

(b) calls the refactoring defined in section 6.3, to add the signature of the new function

to the superclass protocol

2. calls the add function body refactoring to add a function body to the member function

signature in the superclass

3. calls the delete member functions refactoring to delete the member function from the

subclasses.

6.7.1 Preconditions

The preconditions for this refactoring are:

1. ∃ member ∈

subclassMemberFunction1.owner.superclass.locallyDefinedMemberFunctions,

where member.name = subclassMemberFunction1.name ∧

member.functionBody = ∅.

(the function signature, but not the function body, is already defined in the superclass)

5The refactoring change member function name could later be applied to make the name more descriptive.

95

2. let setOfDifferingCodeSegments be the set of differing code segments for the two member

functions.

∀ codeSegment ∈ setOfDifferingCodeSegments

convertibleToFunctionP(codeSegment).

(each differing code segment can be converted to a legal function).

3. for each commonCodeSegment of F1 and F2,

∀ V ∈ variablesReferencedBy(commonCodeSegment),

∀ class in (C1 ∪ C2 ∪ C1.superclass)

class ⊂ scopeOf(V)

where member.name = refdVariable.name. ∨

∀ F ∈ functionsCalledBy(commonCodeSegment),

∀ class in (C1 ∪ C2 ∪ C1.superclass)

class ⊂ scopeOf(F).

(the scope of all variables and functions referenced by the common code includes the

superclass and both subclasses).

6.7.2 Behavior Preservation

For step 1-(a), a call to convert code segment to function: precondition 1 (each new function

is a legal function) is satisfied by precondition 2 of this refactoring.

For step 1-(b), a call to the refactoring defined in section 6.3: precondition 1 (the signatures

of the member function in both subclasses match) is satisfied the results of the prior step, where

each new function is created in both subclasses with the same signature; precondition 2 (the

member function is not locally defined in the superclass) is satisfied because by construction

the new function has a unique name.

For step 2, in the call to add function body: precondition 1 (all variables and functions

referenced in the function body are visible from the superclass) is satisfied by precondition 3 of

this refactoring; precondition 2 (the member function is unreferenced locally in the superclass

or the superclass is abstract) is satisfied because the superclass is abstract.

96

For step 3, in the call to delete member functions: precondition 1 (the function to be deleted

is unreferenced or redundant) is satisfied because, as a result of the prior step, the function is

redundant.

This refactoring is constructed using behavior preserving refactorings and, since it satisfies

the preconditions of those refactorings, behavior is preserved.

6.8 Discussion

6.8.1 Reducing Interaction with the Designer

Given two concrete classes, it is possible to define a higher level refactoring that automati-

cally creates a new common superclass that has no instances and which contains similarities

detectable by structural analysis, using the following algorithm:

• create the abstract superclass, as described in section 6.1

• add function signatures to the superclass - add all identical signatures to the superclass.

Going beyond exact matches, apply heuristics and refactorings described in section 6.2 to

detect functions with similar signatures, refactor them to be the same, and add them to

the superclass.

• move variables to the superclass - the same algorithm is applied as in the previous step,

but applied to member variables, as described in section 6.6.

• for all functions whose signatures are defined in the superclass, detect common code and

differing code using one of the approaches described in section 6.4. Apply the refactoring

described in section 6.8 to:

– separate differing code into new functions

– move variables and add function signatures to the superclass as referenced by the

common code, if these have not already been migrated to superclass.

– move the common code to the superclass.

It might be that this algorithm will produce good results in practice, so that a user could

just run it and then back it out if the results weren’t what was intended. However it is likely

97

that, in order to capture in the superclass an abstraction that the user can understand and

later use to extend the system, some user interaction will be needed.

6.8.2 Other Issues

Given two classes, this chapter defines an approach for creating a common abstract superclass

that contains a set of member function signatures, and possibly a set of member variables and

the partial implementations of some functions. After refactoring, the definitions in the sub-

classes are streamlined, as some of the behavior that had been locally defined is now inherited.

The commonalities and differences between the subclasses are made more explicit.

A related issue, outside the scope of this chapter, is whether an algorithm can be defined

for selecting from a set of classes two classes that share a common abstraction. Recall from

section 6.1 that the classes that shared a common abstraction were passed as arguments to the

refactoring that created the superclass. Casais [30] describes a global reorganization scheme

that is based on recognizing classes with common attributes. Classes are automatically brought

together that share common attributes, and higher level classes are introduced to contain the

common members. One shortcoming of this approach is that in choosing classes with common

attributes it looks only for matching names. Also, its major motivation is to remove duplication

of attributes and not to model reusable design abstractions. Thus, newly defined classes may

not correspond to meaningful design abstractions and hence the design may be made less clear

by the automatic reorganization.

Inferring a common abstraction from similar names and other structural similarities is not

foolproof (as shown in section 6.2). Consider an extreme example, where two classes both

contain the variables dependencies, parts and resources, and the functions start, redirect, halt

and maintain. These classes are structurally quite similar, but if one class represents an Au-

tomobile and the other class represents a Software Project, they probably don’t share a useful

common abstraction. Frequently, attributes with the same name have very different meanings;

conversely, classes that share a common abstraction may have attributes that are named quite

differently, due to accident or history. Thus, entirely automating this process is unlikely to be

successful.

The refactorings defined here assumed that the abstract superclass was created based on the

commonalities between two classes. As noted earlier, it can be generalized to work with three

98

or more classes. In some cases it may be desirable to create an abstract superclass with only

one subclass. Confidence that a reusable abstraction has been found cannot be attained until

it has been applied to more than one concrete example in the problem domain. Nonetheless,

these refactorings can be applied to migrate behavior from a single class to its superclass.

99

Chapter 7

Refactoring To Specialize:

Subclassing, and Simplifying

Conditionals

7.1 Motivation

Sometimes the design of an object-oriented application framework can be improved by decom-

posing a large, complex class into several smaller classes. The complex class usually embodies

both a general abstraction and several different concrete cases that are candidates for special-

ization. One clue for how to decompose such a complex class is to analyze the set of flags, tags

and conditional statements contained in the class.

This chapter describes how to specialize a class by adding subclasses corresponding to the

conditions in a conditional statement. For each condition, a subclass (representing a subtype)

is created whose design abstraction implies that condition. In C++, the class protocol is not

sufficient to describe this design abstraction because it does not make explicit the invariant

conditions of a class. To represent this design information, the class protocol is supplemented

with a class invariant.

Specializing a class and simplifying conditionals involves several steps:

1. choosing a conditional whose conditions suggest subclasses

100

2. for each condition in the conditional, creating a subclass with a class invariant that

matches the condition

3. copying the body of the conditional to each subclass, and in each subclass simplifying the

conditional based on the invariant that is true for the subclass

4. specializing some (or all) expressions that create instances of the superclass. Specializing

an expression involves replacing an expression that creates an instance of the superclass

with an expression that creates an instance of one of the newly created subclass. This

can be done safely only if all instances created by the expression are known to satisfy the

invariant defined on a subclass.

Choosing the ‘correct’ conditional upon which to partition a class (step one) depends on

the abstraction that the designer intends. A tool could assist the designer in making this choice

by displaying the conditionals that appear in member functions of the class, highlighting those

conditionals that appear most frequently.

This chapter defines refactorings for steps two through four. These steps are defined here

as separate refactorings, mostly for clarity but also because they could be invoked separately.

Specializing instances can sometimes be done automatically, but in some cases an instance of the

superclass might satisfy the invariants of several subclasses. Choosing among these subclasses

may be done incorrectly without some input from the user.

The techniques defined in this chapter rely heavily on data flow analysis to check that class

invariants hold on instances of a class. Class invariants and data flow analysis are described,

respectively, in sections 7.2 and 7.3. Sections 7.4 through 7.9 describe how to use data flow

analysis to handle several important issues regarding class invariants, and define refactorings.

Section 7.10 discusses possible extensions to the subclassing algorithms defined here; other uses

of class invariants in the object oriented literature are also discussed.

This thesis specifically addresses how class invariants can be used for simplifying condition-

als in member functions of newly created subclasses. Class invariants could be applied more

generally in refactoring, which is an area for future research.

101

7.2 Class Invariants

An invariant is something that remains constant (i.e. does not change). A class invariant

is a predicate whose only free variables are member variables of the class. A class invariant

expresses general consistency constraints that apply to every instance of a class.

In general, determining if an arbitrary predicate is a class invariant is undecidable. For the

purposes of this thesis, an extremely narrow set of class invariants are considered 1 which are

of the form:

<memberVariable> == <value>

where:

memberVariable: a member variable of the class

value: an integer, or the value of an enumerated type.

For the class invariant to be correct:

• the create procedure for the class (a constructor function in C++), when applied, must

yield a state satisfying the class invariant

• the class invariant must hold throughout the remainder of the lifetime of each instance of

the class.

The algorithm for subclassing and simplifying conditionals, outlined in section 7.1, involves

class invariants at several steps. Two important problems arise regarding class invariants:

1. How can it be determined whether a predicate is a class invariant for a class?

2. Given a correct class invariant, how can it be used, to:

(a) simplify a conditional statement?

(b) specialize an expression that creates an instance of the superclass?

None of these issues is decidable, in general. However, they are decidable in some cases, as

discussed later in this chapter.

1There are decision procedures for less restrictive sets of class invariants.

102

7.2.1 Example

To illustrate how a class invariant could be used to simplify a conditional, recall the example

shown in Figure 7.1 and first presented in chapter 3. In the Typed Smalltalk (TS) compiler,

instances of the FlowNode class, representing a basic block, were containers of a sequence of

straight line code (assignments) ending with a statement that alters the flow of control. The

ending statement in the sequence could be a return statement, a conditional jump statement

or an unconditional jump statement. In the early designs, it had not been clear that the type

of the ending statement was an important discriminator among FlowNodes. However, as the

design matured, the implementation of FlowNode was manually refactored: FlowNode became

an abstract superclass and the concrete subclasses UncondJumpFlowNode, CondJumpFlowNode

and ReturnFlowNode were added.

BEFORE:

FlowNode:
 enum {conditional_jump, unconditional_jump,
 return_statement} final_statement;
 void optimize() {
 if (final_statement == conditional_jump)
 <code segment S1>
 else if (final_statement == unconditional_jump)
 <code segment S2>
 else if (final_statement == return_statement)
 <code segment S3>
 }

AFTER:

FlowNode

 CondJumpFlowNode:

 (class invariant:
 final_statement ==
 conditional_jump)

 void optimize() {
 <code segment S1>
 }

 UncondJumpFlowNode:

 (class invariant:
 final_statement ==
 unconditional_jump)

 void optimize() {
 <code segment S2>
 }

 ReturnFlowNode:

 (class invariant:
 final_statement ==
 return_statement)

 void optimize() {
 <code segment S3>
 }

Figure 7.1: Simplifying Member Function optimize

103

The value of the opcode in the ending statement is represented as the member variable

final statement in the FlowNode class. Suppose that the value of final statement is assigned in

the create procedure of the FlowNode class (and its subclasses, and that there are no assignments

to change the value of that member variable. Then, in the FlowNode example above, the

predicate assigned as the class invariant of the class CondJumpFlowNode would be:

final_statement == conditional_jump

Note that this predicate is specified in terms of a fixed value of the member variable. This

invariant could be used to simplify the conditional expression in the optimize function, removing

the conditional test and all other code except a code segment (S1 in CondJumpFlowNode, S2 in

UncondJumpFlowNode or S3 in the ReturnFlowNode class).

In general, many conditions in a conditional statement are of the form:

<memberVariable>==<value>

where value is a constant. The value of memberVariable is often set by an assignment whose

right-hand-side is either a constant or a parameter to the function containing the assignment.

In the latter case, the argument in calls to the function is likely to be a constant. These cases

are likely to make up the vast majority of conditional simplifications,2 and are easy to check.

7.2.2 Discussion

Data flow analysis techniques are both safe and powerful enough to handle some cases involving

predicates being asserted as class invariants. The following section provides background on data

flow analysis.

7.3 Background: Data Flow Analysis

A refactoring that simplifies a conditional statement can be thought of as a kind of code

optimization. Some techniques that help in optimizing code for compilers can also be applied

2Determining what percentage of conditionals are covered by these cases would require an exhaustive study of
programs, beyond the scope of this research. Software engineering studies of refactoring large programs, written
in several practical (albeit complicated) languages with several different programming styles, is an area for future
research noted in chapter 11.

104

in refactoring.3 Optimizing a program involves two tasks: analyzing the program and modifying

it. In general, the analysis step is the most difficult.

Local optimizations are changes that are applied to sequential code segments (basic blocks).

They are the easiest optimizations to implement and, until recently, compilers rarely did more

than local optimization. Examples of local optimizations are evaluating (within a basic block)

constant expressions in advance and eliminating some useless instructions.

Global optimizations are more complex than local optimizations, because they have to deal

with the flow of control across basic blocks. Refactorings that simplify conditionals can be

thought of as a kind of global optimization.

To optimize a program or a procedure within a program, it is usually necessary to determine

the sets of variables read and updated by that procedure. Unless these sets can be determined,

worst case assumptions must be made. For example, if the procedure includes a call to another

procedure, in the absence of information about the called procedure it must be assumed that

all variables visible to the called procedure will be read and updated. This assumption, while

safe, prevents many optimizations. One can expect to do better if the effects of a call are more

carefully analyzed. The analysis of the effects of a call is generally termed interprocedural data

flow analysis. [1, 44, 106]

7.3.1 Interprocedural Data Flow Analysis

A procedure or subprogram can be represented as a data flow graph of basic blocks, where

directed edges connecting the basic blocks represent the flow of control within the procedure.

The calling relationships among procedures in a program can be represented using a call graph,

where each node represents a procedure and directed arcs represent calls between procedures.

The flow of control for the entire program can be represented using a data flow graph for

each procedure and a call graph that interrelates the procedures. It is not always possible

to determine statically what sequence of basic blocks a program will execute; therefore, it is

usually assumed that all paths in each data flow graph are possible.

3Not all techniques apply in refactoring, since the motivation for refactoring is different from the motivation
for optimizing code in compilers. In compilers the optimizations are made to increase the speed or reduce the
memory size of an implementation; the resultant code is not meant to be human readable. Some compiler
optimizations restructure the code in a way that makes it more difficult to understand by a human designer. By
contrast, the motivation for refactoring is to produce a design than can be more clearly understood by a designer.

105

Two useful sets to associate with each procedure call are Def and Use. A Def set is the

set of variables that may be defined (assigned) during a call, and the Use set is the set of all

variables or named constants that may be used (read) in the call. The Def and Use sets for a

procedure can be computed from its data flow graph. The sets defined for a called procedure

can help determine what optimizations are possible in the procedures that call it.

Some data flow problems can be described as any path problems, where the analysis is

concerned with whether a property holds on one or more possible paths through a program.

Other data flow problems are all path problems, where it is necessary to determine whether a

property holds over all paths.

Some data flow problems are solved using forward flow analysis, following the direction of

flow in a program. Consider, for example, computing for a variable reference the set of assign-

ments to that variable (the reaching definitions) that may precede it without an intervening

reassignment. This analysis can be done by finding all assignments to the variable, and moving

forward through the flow graph to see if the variable reference in question can be reached.

Other data flow problems are solved using backward flow analysis, where the direction of

analysis is opposite the flow of control of the program. For example, to construct the set of

references to a variable that may follow a particular assignment (often called a definition-use

chain or du-chain), analysis can be done by finding all references to that variable, and moving

backward through the flow of control to determine if the assignment in question can be reached.

Many data flow problems can be solved by associating with each basic block or procedure

a series of “sets”:

• the Gen and Killed sets, which are (respectively) the sets of definitions that are generated

by (or invalidated by) a block. For example, if the block contained a single assignment

statement of the form:

X = 2;

then the Gen set (for variable X) would the value 2, and the Killed set (for variable X)

would be all other values of X that might have reached the block.

• the In and Out sets, which are (respectively) the sets of definitions that reach (or exit)

a block. These sets are constructed from Gen and Killed sets of blocks and the program

flow relationships between basic blocks.

106

Solving a particular problem involves defining and generating the Gen and Killed sets for

each basic block, and characterizing the problem as either an any path or all path problem,

and as either a forward flow or backward flow problem. For example, the reaching definitions

problem is an any path, forward flow problem. The Gen set for a block is defined to contain

the definitions that appear in the block and reach the end of the block. The Killed set for a

block is defined to contain the definitions that appear somewhere in the block but do not reach

the end of the block. By contrast, constructing the du-chain involves any path, backward flow

analysis. The Gen set for a block is defined to contain the set of statements that use a variable

before it is defined in that block. The Killed set for a block is defined to contain the set of

statements that use the variables after it is (re)defined in the block.

After the Gen and Killed sets have been determined for each basic block, the In and Out

sets can be determined using flow graphs and generic data flow equations such as described in

[44].

Two common approaches for solving data flow problems are iterative and structured ap-

proaches [44]. Iterative approaches [56, 118] repeatedly traverse the flow graphs until there are

no more changes. Structured solutions (e.g., [7, 67, 107]) are more complex, but have much

better worse case performance.

7.4 Checking Whether a Predicate is a Class Invariant

In general, the problem of determining whether an arbitrary predicate is a class invariant is

undecidable. The approach taken here is to restrict the language of class invariants, and apply

conservative analysis techniques. Fortunately, the language of class invariants (defined earlier,

in section 7.2) is expressive enough, and data flow analysis techniques powerful enough, to

handle some common cases. Data flow techniques are conservative; if a class invariant is shown

to be correct using data flow techniques then it is correct, but there will be cases where a

predicate is a class invariant but it cannot be verified using data flow analysis.4

4There are program analysis and verification techniques more powerful than data flow, but the analysis is
more expensive and is still not always decidable.

107

One feature of these predicates that makes them difficult to validate is that each clause

asserts a value (or range of values) of a member variable; a member variable can change its

value over time. For example, the assertion:

Y==3

may be true when an object is first initialized, but if an operation is invoked that assigns another

value to member variable Y, then the assertion no longer holds. Therefore, to determine that

a predicate holds, it must be shown that:

• the create procedure returns a state implied by the predicate

• the predicate implies the range of values that each member variable (in the predicate)

might hold after the object is created.

The first condition can be easily determined if, for all member variables referenced in the

predicate, either the create procedure assigns a constant value to each variable, or each variable

is assigned the value of an argument to the create procedure and the procedure is always called

with constant arguments.

Determining the range of values that a variable might hold after it is created requires

finding all places where it may be assigned a value, and what values may be assigned there.

Interprocedural all paths data flow analysis is a “safe” technique that can locate all assignments

that might be made to a variable.

Data flow analysis can determine where assignments to a variable are made and what

expressions are assigned to the variable. Determining whether a predicate is violated requires

knowing the value of the expressions assigned to the variable. In many common cases the

assigned value is a constant, in which case the value is known directly, or the variable is

assigned the value of another variable, in which case data flow analysis can be used to attempt

to determine the set of reaching values of that variable. Data flow analysis is less likely to work

with more complicated expressions.

Several factors influence the scope of the analysis. The access control mode of a variable

(private, protected or public) determines the range of functions that may reference the variable.

Also, if the variable is passed by reference in a function call, the function and the transitive

closure of the set of functions which might receive the argument by reference must be checked.

108

Data flow analysis is less likely to be able to detect when a predicate holds if the variable

being analyzed is part of a variant field, or pointers to the variable are passed and manipulated

using pointer arithmetic and other (dangerous) operations. Such features make it difficult or

impossible to determine where a variable is assigned. Fortunately, few object oriented languages

allow pointer arithmetic and similar operations. C++ is an exception, since it is a superset

of C. However, subclassing can eliminate the need for variant structures in C++, and C++

encourages a style that involves fewer pointer manipulations than does C.

7.5 Refactoring: Create Subclasses and Assign Invariants

The first important step in the refactoring process is to create the new subclasses, and assign

the class invariants. This refactoring creates subclasses that correspond to the enumerated

values of a member variable.

The arguments to this refactoring are:

• the class being specialized

• the member variable (enumeratedMemberVar) was enumerated values are used to create

subclasses.

After checking its preconditions, this refactoring (for each enumerated value):

1. calls the create empty class refactoring to create a subclass, whose name corresponds to

the enumerated value

2. calls the create member function refactoring to add a constructor (ie create) function to

the subclass. The constructor function establishes initial conditions implied by the class

invariant. For example, if the class invariant is:

X==3,

the constructor will assign the value 3 to member variable X.

3. assigns a predicate to the class as the class invariant.

109

7.5.1 Preconditions

The preconditions for this refactoring are:

• ∀ C ∈ Program.classes,

∀ enumVal ∈ enumeratedMemberVar.type,

C.name 6= enumVal.name.

(none of the names of the enumerated values clash with the names of existing classes).

• ∀ F ∈ (C.locallyDefinedMemberFunctions ∪ inheritedMemberFunctions(C)),

∀ enumVal ∈ enumeratedMemberVar.type,

F.name 6= enumVal.name.

(none of the names of the enumerated values clash with the names of member functions

of the superclass).

7.5.2 Behavior Preservation

For create empty class: precondition 1 (the name doesn’t clash with an already existing class)

is satisfied by precondition 1 of this refactoring.

For create member function: preconditions 1 and 2 (the name of the constructor function

doesn’t clash with an already locally defined member function, and has a compatible signature

with any inherited function with the same name) are satisfied by precondition 2 of this refac-

toring; precondition 3 (regarding subclasses of each newly defined class) is satisfied because the

newly created classes by construction have no subclasses; precondition 4 (if there is an inherited

function with the same name, either the inherited function is unreferenced on instances of C

(or its subclasses), or the new function is semantically equivalent to the function it replaces)

is satisfied by precondition 2 of this refactoring; precondition 5 (the function will compile) is

satisfied because the member variables are visible to the constructor, and the assignment is

type-correct.

The third step (attaching a predicate as the class invariant) does not change the behavior

of the program because it is design information and does not change the program source code.5

5However, by precondition 2 and the results of the prior step, at this step the class does not violate the
predicate attached as the class invariant.

110

This refactoring is constructed using behavior preserving refactorings and, since it satisfies

the preconditions of those refactorings, behavior is preserved.

7.6 Using A Class Invariant To Simplify A Conditional

Given a predicate known to be a correct class invariant, this section describes how to simplify

conditional statements in the functions defined for the class. The algorithm is:

1. for each condition in a conditional statement, reduce to true or false if possible based on

the class invariant;

2. eliminate dead code and perform other simplifications.

The first step is a special case of theorem proving and, in general, is undecidable. However,

since class invariants are of the form:

<memberVariable> == <value>

where the value is an integer or the value of an enumerated type, constant propagation and

copy propagation [44] can be used to reduce some conditions to true or false.

Constant propagation and copy propagation are applied in compilers to detect and remove

extraneous variables, and improve execution speed by replacing variable references with their

values. Constant propagation means that, for example, if the assignment:

X=3

is followed by a statement that references the variable X, and it is known that the value of X is

not reassigned by intermediate statements, then in the latter statement the reference to X can

be replaced by the value 3. Copy propagation means that, for example, if the assignment:

Y=X

is followed by a statement that references Y, and it is known that neither X nor Y are reassigned

by intermediate statements, then in the latter statement the reference to Y can be replaced by

a reference to X. There are many algorithms for simplifying expressions by performing constant

propagation and copy propagation [44].

111

These techniques can be applied for simplifying conditional statements. For a variable

referenced in a condition, an any path, forward flow analysis can be used to compute the set of

reaching definitions, that is, the set of definitions to the variable that might reach the reference.

If only one assignment to a variable can “reach” a reference to that variable, then that variable

reference can be replaced by the assigned value.

Consider how the conditions in the above FlowNode example can be automatically sim-

plified. In the class CondJumpFlowNode, constant propagation based on the class invariant

replaces references to the variable final statement with the value conditional jump, resulting in

the following code:

void optimize() {

if (conditional_jump == conditional_jump)

<code segment S1>

else if (conditional_jump == unconditional_jump)

<code segment S2>

else if (conditional_jump == return_statement)

<code segment S3>

}

Eliminating dead code and performing other simplifications is the second step in the general

algorithm. In the above example, for the class CondJumpFlowNode the first condition is trivially

true and the conditional can be reduced to code segment S1. Similarly, the conditional statement

can be reduced to a code segment in the other two subclasses. This step would be more

complicated if for example the conditional tests had side effects.

More powerful simplifications can be performed by applying constant and copy propagation

using class invariants and other program properties determinable using data flow analysis.

These techniques could be applied to simplify some conditionals that test the value returned

from a function call, if the values returned from the function could be enumerated. These

techniques can also be applied to simplify expressions other than conditional statements.

112

7.7 Refactoring: Migrate & Simplify Conditionals

In this step, the conditional statements to be simplified are separated into new functions, which

are copied into the subclasses and simplified.

This refactoring simplifies a conditional statement. It separates the conditional into a

separate function, copies it into the subclasses and, in each subclass, simplifies the conditional

based on the class invariant. The argument to this refactoring is:

• the conditional statement

After checking its precondition (which is the same as the precondition for the primitive

refactoring convert code segment to function), this refactoring:

1. calls the convert code segment to function refactoring to separate the conditional into a

separate function, assigning it a unique name

2. constructs the sets of all member functions and variables referenced by the conditional.

For each member where member.accessControlMode = private, calls

change access control mode to make it protected.

3. calls the create member function refactoring to copy the new function to each of the new

subclasses

4. if firstConditionImpliedByInvariant(conditional statement, class invariant of subclass) can

be determined:

(a) simplifies the conditional statement.

(b) eliminates all branches that test false (without side-effects) against the class invariant.

(c) converts any branch that tests false (but has side-effects) to a statement correspond-

ing to the side-effect.6

7.7.1 Preconditions

The preconditions for this refactoring are:

6If all conditions test false (without side-effects), the entire conditional statement can be eliminated. Detecting
side effects is in general difficult.

113

• convertibleToFunctionP(conditionalStatement)

(the conditional statement is convertible to a legal function)

7.7.2 Behavior Preservation

For convert code segment to function: precondition 1 (the conditional is a legal function) is

satisfied by precondition 1 of this refactoring.

For change access control mode: preconditions 1 and 3 are satisfied, since they only apply if

the access control mode is not private; precondition 2 (variables referenced in the common code

are not private variables that are redefined in subclasses) is satisfied because by construction,

before this step the variable or function is not locally defined in the subclasses.

For create member function: preconditions 1-4 (regarding name clashes and equivalence

with functions inherited from the superclass) are satisfied because in the prior step it was added

to the superclass and given a unique name, while in this step it is copied down; precondition 5

(regarding all variable and function references in the conditional are visible from the subclasses)

is satisfied by the results of a prior step.

For step 4: program property seven (semantically equivalent references and operations) is

preserved by construction - side effects of conditional tests are retained; only dead code is

removed. Other program properties are trivially preserved.

This refactoring is constructed using three behavior preserving refactorings, for which it

satisfies the preconditions, and a fourth operation which by construction is behavior preserving.

Therefore, behavior is preserved.

7.8 Using A Class Invariant To Specialize Expressions That

Create Instances

After the new subclasses have been defined, the design of a program can sometimes be improved

by specializing the expressions that create instances of the superclass; that is, replace an ex-

pression that creates an instance of the superclass with an expression that creates an instance

of a subclass.

To extend the above example involving FlowNodes, consider a class ProgramBuilder that

builds new FlowNodes. In one of its functions, the statement to create a FlowNode is:

114

newNode = new FlowNode (<list of accumulated instructions>,

unconditional_jump)

The constructor for the class Flow Node begins with an assignment of the second argument to

the member variable final statement. Thus, for this assignment statement, the second argument

passed to the constructor function corresponds to the class invariant of UncondJumpFlowNode.

Suppose that member variable final statement is never reassigned. In the above assignment, the

expression creating an instance of the superclass FlowNode can be replaced with an expression

creating an instance of the subclass UncondJumpFlowNode; that is:

newNode = new UncondJumpFlowNode (<list of accumulated instructions>)

In general, this operation cannot be done safely unless it can be determined that no instance

created by the expression violates the class invariant of the subclass. Determining this involves

finding where the instances created by this expression are initially assigned, recording the

variable initially assigned the instances and constructing a definition-use chain for that variable,

to find all places where the variable may be used. If the variable is aliased (e.g., it is passed by

reference in a function call), a definition-use chain for all variables to which it may be aliased

must also be constructed. In order to determine that the instance can be specialized, it must

be proven that none of the operations on these variables violate the class invariant defined on

a subclass.

7.9 Refactoring: Specialize Expressions That Create Instances

This refactoring specializes an expression that creates instances of the superclass with an ex-

pression that creates instances of one of its subclasses, as described in section 7.4.3.7

The arguments to this refactoring are:

• the expression that creates an instance of the superclass

• the replacing expression that creates an instance of the new subclass

7In general, determining whether an expression can be specialized is undecidable. In a program, there may be
some expressions that cannot be specialized automatically, either because determining whether the precondition
is true is undecidable, or because the instance violates the invariants of all of the subclasses.

115

After checking its preconditions, this refactoring:

1. replaces the expression with an equivalent expression that creates instances of the subclass.

7.9.1 Preconditions

The precondition for this refactoring is:

1. satisfiesClassInvariantP (expression, subclass)

(instances created by the expression do not violate the subclass invariant, as discussed in

section 7.4.3).

7.9.2 Behavior Preservation

For step one: program property six (type-safe assignments) is preserved because the variable

assigned the result of the expression must (by definition) accept an instance of the superclass

and hence will accept an instance of one if its subclasses; program property seven (semantically

equivalent references and operations) is preserved by precondition 1 of this refactoring; other

program properties trivially preserved. Thus, behavior is preserved.

7.10 Discussion

7.10.1 Possible Extensions In Subclassing

Sometimes, additional improvements can be made to the resulting implementation. If there are

no instances of the superclass remaining, unreferenced functions can then be deleted from the

(now, abstract) superclass. If there are any member variables defined in the superclass that are

only referenced in a subset of the subclasses, then they can be migrated down to the subclasses.

While the refactorings in this chapter specifically consider specializations based on the

conditions of a conditional statement, class invariants as described here can more generally be

applied for other specializations.

There are cases where the state of an instance may change in a way that violates the

invariants defined on the subclasses. Consider the TS Compiler example, discussed earlier.

Suppose that the final statement in a FlowNode could dynamically change, for example from a

conditional jump to an unconditional jump, as part of a compiler optimization. If that instance

116

were first specialized to be an instance of the CondJumpFlowNode class, then when the final

statement of the flow node is changed that instance should be changed to or replaced by an

equivalent instance of the UncondJumpFlowNode class.

The refactoring in section 7.9 disallows such an instance to be specialized, since it violates

the first precondition. There are other alternatives. One is to replace an instance of the current

subclass with an instance of a new subclass, when the state of an instance changes in a way

that violates the invariant of its class. This approach requires finding all references to the old

instance and changing them, along with copying any state information from the old instance

needed by the new instance. This approach worked in the TypedSmalltalk example but, in

general, could not be applied unless all parts a program that might point to the old instance

were known. Another alternative is to refactor, into a new component class, the behavior that

differentiates the cases for which subclasses should be created. Then, specialize the component

class and substitute components when the condition changes. In this case, the original class

is not replaced when the condition changes, but its component is replaced by a component of

another subclass. Refactorings involving components and the aggregate objects that contain

them are defined in the next chapter.

7.10.2 Other Uses of Class Invariants

The term class invariant is used in several other ways in the object-oriented literature. In

refactoring, the term class invariant is used in a manner similar to Meyer’s [79] use of the term.

Meyer describes a class invariant as a list of assertions that apply to every instance of a

class.8 His invariant rule states that, for a class invariant to be correct:

• invoking the create procedure for the class yields a state satisfying the class invariant

• every exported routine of the class, when invoked in a state satisfying the class invariant,

will yield a state satisfying the class invariant.9

In this rule:

• every class is considered to have a create procedure

8He distinguishes these from preconditions and postconditions defined on routines.
9His invariant rule also requires that, when these procedures are applied, the arguments and state satisfy the

preconditions for the procedures.

117

• the state of the object is defined by the values of its attribute fields

• the class invariant may only involve the state of an object.

This definition is similar to the above definition used in refactoring, but there is an important

difference. Meyer uses class invariants to ensure correctness at the interfaces between classes.

For these purposes, the class invariant need only hold at the points where an instance of the

class is called by another object; the class invariant need not hold at other points during the

execution of an exported routine, nor need it hold when the class calls an internal (private)

routine. By contrast, refactoring uses a class invariant to simplify the internals of the class; for

these purposes the invariant must also remain true as viewed from inside the class.

Another use of the term class invariant is made by Casais in [31]. Casais defines class

invariants as integrity constraints that must be maintained across changes to the schema (system

structure).10 These constraints include, for example, the full inheritance invariant, which states

that a class inherits all attributes from its ancestors (except those that it explicitly redefines),

and the type compatibility invariant, which states that the type of a variable redefined in a

subclass must be consistent with its domain as specified in the superclass. Invariants such as

these are important for understanding the semantics of the language being used, but they are

distinct from the constraints defined on specific classes.

In summary, in refactoring the term class invariant is used in a manner similar to Meyer’s

[79] use of the term, although in refactoring the invariant applies not only where the class calls

other classes, but also for states internal to the class.

10Casais [31] compares the Gemstone [92], Orion [9], O2 and OTGen object-oriented database systems with
respect to class invariants.

118

Chapter 8

Refactoring To Capture

Aggregations & Reusable

Components

8.1 Motivation

Inheritance is a powerful technique, but in modeling the relationships among classes it is some-

times overused and incorrectly used. Aggregations are another tool for modeling these relation-

ships.

To summarize from chapter 3, an aggregation is a special association between objects,

representing a part-whole relationship. An aggregate object, sometimes called a composite

object or a container, contains one of more parts, called components. An aggregate class is a

class containing one or more component members; a component class is a class whose instances

are components of another class.

Components are stored as member variables in the aggregate object; however, as described

in chapter three, not all member variables of an aggregate class store component objects. For

example, member variables in an Automobile class might represent its color, age, or number of

passengers; these member variables represent attributes of an automobile but are not compo-

nents of it, in the sense that an engine or left front tire is a component of an automobile.

119

An aggregate object can be treated as a unit for many operations. During design, recogniz-

ing that an association between objects is an aggregation can help determine how to partition

behavior and responsibilities among the classes. Sometimes it is not obvious that the rela-

tionship between objects is an aggregation until the code is reused; as a program is reused

the relationships between classes become more obvious. In these cases, correctly partitioning

the behavior may require moving members between aggregate classes and the classes of their

components.

An example of where such a move might be made is when the Automobile class contains a

component member variable autoEngine, which holds an instance of the class Engine. The class

Engine contains the member variable milesPerGallon which, for design reasons, really belongs

in the (aggregate) class Automobile. The refactoring described in section 8.7 defines how to

automate such a design change.

This chapter defines several refactorings involving aggregations:

• moving members from an aggregate class to the class of one of its components

• moving members from a component class to the aggregate classes that contain component

members that are instances of the component class

• converting a relationship, modeled using inheritance, into an aggregation.

Each of these refactorings requires that the components of a class be determinable. For

example, moving a member safely from an aggregate to a component class (or vice-versa),

requires that there must be a one-for-one mapping between the member being removed from

the old class and the member being added to its new class (or set of classes). For the purposes

of refactoring, an important characteristic of components is that a component object can only be

assigned to one aggregate object at a time.1 Put another way, objects assigned to one component

member variable must not simultaneously be assigned to another component member variable.

For example, in an Automobile object the same Tire object cannot be assigned as both the

leftFrontTire and rightFrontTire; similarly, it cannot be assigned to two Automobiles at the

same time.

1This definition is consistent with the meaning of exclusive composite references in object-oriented databases,
as defined by Kim [66].

120

The following section defines some algorithms for checking that a member variable qualifies

as a component member variable. The subsequent sections define the refactorings. The chapter

closes with a discussion of related issues.

8.2 Checking If A Variable Qualifies As A Component

There are several ways to determine whether a variable qualifies as a component member

variable; that is, that every object assigned to it is not also assigned to another component

variable. One common case that is trivial to check is when the variable is only directly assigned

the result of an object creation expression (i.e. by a call to the C++ new function) and its value

is not reassigned to another variable.

For example, the Choices Virtual Memory system [104] has two kinds of objects, Memory-

Objects and MemoryObjectCaches. A MemoryObjectCache is a component of a MemoryObject.

A MemoryObject does not always have a MemoryObjectCache, but once it gets one it never

changes. The code to initialize the member variable cache looks something like this:

if (cache == 0) {

cache = new MemoryObjectCache(this) }

Provided that the value of member variable cache is not assigned to another variable, it

qualifies as a component for the purposes of refactoring.

The algorithms defined below handle the more general case where the variable may not

be private to its class, or it may be assigned an object created in another (server) class. The

section is structured in four parts:

1. it describes a conservative data flow algorithm that assumes that the program contains a

single instance of the aggregate class;

2. it extends the initial algorithm to better handle cases where component objects are created

by classes other than the aggregate class;

3. it further extends the algorithm to handle the case where a program contains multiple

instances of the aggregate class;

4. finally, it discusses additional extensions that could make the algorithm more powerful.

121

The assumption in parts one and two that the program contains a single instance of the

aggregate class is very restrictive, but these parts illustrate important points. Parts three and

four describe less restrictive extensions, that build upon the analysis in the earlier parts.

8.2.1 Assumptions and Terminology

To simplify the presentation, the following assumptions are made about the program:

• all objects are created dynamically by an object creation expression (i.e. a point in the

program where the C++ new function is called), rather than being statically assigned to

a variable at compile time.

• each return statement of a function is of the form: return Vx, where Vx is a variable.

• the set of aliasing relationships are known; that is it is known which variables are aliased

to other variables. C++ reference variables (where a variable is passed by reference in

a function call) are an example of aliasing. Aliasing relationships are more difficult to

determine when pointers are passed.

All variables (global, member, argument and local) are uniquely identified. However, all

references to the same member variable, even if the references are to different instances of the

same class, will map to the same identifier.

Variables have their values set by assignment statements and (for argument variables) by

function calls. A variable (Vx) may be assigned:

1. the value of another variable (Vy).

2. a constant (Ci)

3. the return value of a function (Fj())

4. an object returned by an object creation expression (Oz)

Associated with each variable Vx is an (initially empty) setDVx of object creation expressions.

When analysis is complete, DVx will contain the set of all object creation expressions whose

return values (newly created objects) may be assigned to Vx.

RFj denotes the set of variables that appear in return statements of function Fj().

122

DRFj
denotes the set of object creation expressions whose objects may be returned by

function Fj(); that is, DRFj
= (

⋃
Vy∈RFj

DVy). For example, if function Fj() contained two

return statements: return Vx and return Vy, then DRFj
= DVx ∪DVy .

8.2.2 Basic Algorithm: Single Instance of Aggregate Class

Associated with each assignment (assignment statement and function call) is a set of object

creation expressions that are added to DVx, where Vx is the variable on the left hand side of

the assignment. The gen sets for each assignment statement S are as follows:2 3

Assignment (S) gen[S] (added to DVx)

Vx = Vy DVy

Vx = Ci ∅

Vx = Fj() DRFj

Vx = Oz {Oz}

After DVx has been computed (using data flow techniques) for all variables in the program,

the sets of object creation expressions for aliased variables must be merged; that is, if Vx is

aliased as Vy, then: DVx = DVy = (DVx ∪DVy .)

Assuming that the program contains only a single instance of the aggregate class, at this

point it can be determined whether a variable Vc can be designated as a component variable.

It can be designated as such if all values assigned to it are not assigned to other component

variables. This is certainly true if all expressions that create objects reaching Vc do not also

create objects reaching a variable already designated as a component variable, that is:

ComponentIfSingleAggregateInstanceP(variable Vc) ≡

∀ Vy ∈ componentVariables(Program),

Vy 6= Vc ⇒

DVy ∩ DVc = ∅.

2The Killed sets are null
3In C++, the variable this referenced in a member function points to the object for which the function is

called [41]. For an assignment of the form Vx = Vy, where Vy is the variable this, add to DVx the set of all object
creation expressions that create instances of classes that define or inherit the member function containing the
assignment.

123

8.2.3 An Improvement to the Basic Algorithm

One way in which the above approach is conservative is that it does not distinguish among

objects created by the same object creation expression. Suppose there is a function Fj() (a tire

distributor) that returns a new tire with each call to it. One of the member functions of the Au-

tomobile class contains the code segment: leftFrontTire = Fj(); rightFrontTire = Fj();. With

the above algorithm, DRFj
would be added to both DleftFrontT ire and DrightFrontT ire; since

DleftFrontT ire and DrightFrontT ire would contain common object creation expressions, the above

analysis would conclude that they cannot both be designated as a component member vari-

able. However, since the variables are assigned different tires, they may qualify as component

variables.

To handle this, the data flow equations are changed to:

Assignment (S) gen[S] (added to DVx)

Vx = Vy DVy

Vx = Ci ∅

Vx = Fj() D′RFj

Vx = Oz {Oz}

This is the same as the above set, except that for a function call the set D′RFj
(rather than

DRFj
) is added to DVx.

D′RFj
is defined as follows:

• if flow analysis showed that Fj() creates and returns a new object each time it is called,4

and that Fj() does not store the object before returning it, then D′RFj
≡ the set of

object creation expression(s) contained in DRFj
, each appended with the identifier that

distinguishes one call to Fj() from another.

• otherwise, D′RFj
≡ DRFj

.

This would (in the above example) cause the expressions added to DleftFrontT ire to be distinct

from those added to DrightFrontT ire.

4Suppose that DRFj
only contains object creation expressions local to Fj(). Then, each function invocation

returns a unique object.

124

8.2.4 A Further Improvement: Handling Multiple Instances of the Aggre-

gate Object

Recall that in the above analysis, Vc (eg, leftFrontTire) in one object is not distinguished from

Vc in another object of the same class. This is not a problem if it is known that there is only

one instance of the aggregate class; that is, there is only object in the program containing Vc.

However, more often there may be more than one instance of the aggregate class. Consider

the following example:

car1 = new Automobile();

car2 = new Automobile();

temp = new tire();

car1.leftFrontTire = temp;

car2.leftFrontTire = temp;

In this case, the same tire is assigned as the left front tire of two different cars, indicating that

leftFrontTire of class Automobile cannot be designated as an (exclusive) component. However,

the above algorithms do not detect this violation, since they do not distinguish between the

leftFrontTire of car1 from the leftFrontTire or car2; flow analysis for each of the final two

assignments listed above will add Dtemp to DleftFrontT ire.

To generalize the above algorithms, a variable Vc can be designated as a component only if

both of the following conditions are true:

1. the values assigned to Vc are distinct from the values assigned to other component vari-

ables; that is, ComponentIfSingleAggregateInstanceP(Vc), defined above;

2. the values assigned to Vc in one instance of its aggregate class must also be different

from values assigned to Vc in another instance of that class (i.e. the leftFrontTire of one

Automobile must be distinct from the leftFrontTire of another Automobile).

The second condition is not decidable in general but can be determined to be true for some

common cases, where all assignments to Vc are of the following forms:

1. Vx = Oz; that is, Vc is always assigned a newly created component object

125

2. Vx = Fj(), where Fj() is known to return a different component object each time it is

invoked

3. all assignments to Vc are generated by an object creation expression in the current invo-

cation of the function containing the assignment. As noted in the prior section, reaching

definitions analysis can determine this in some cases.

8.2.5 Limitations of This Approach

One limitation of the above approach is that it doesn’t distinguish among multiple assignments

of or to the same variable. That is, for an assignment of the form: Vx = Vy, this approach adds

all of DVy to DVx, even though only a subset of the expressions in DVy might actually generate

objects (assigned to Vy) that reach the assignment of Vy to Vx.

A less conservative approach would be to distinguish among multiple assignments to a

variable. Assign a unique identifier An to each assignment, and associate with each assign-

ment An the set DVy,An , where Vy is the left-hand-side variable of the assignment. De-

fine the gen sets for each assignment to include only the reaching definitions for the right

hand side expression. For example, for the assignment Vx = Vy, the gen set is D′Vy , where

D′Vy = (
⋃
An∈ReachingDefinitionsOfVy DVy,An).

When the analysis is completed, DVy is computed as the union of the sets for all places

where the variable may be assigned; that is, DVy = (
⋃
An∈AssignmentsToVy DVy,An).

Another limitation is that the above algorithm does not handle representations other than

component member variables for denoting component/aggregate relationships. For example, in

one proposed new design for the Choices Virtual Memory system, instead of storing a component

MemoryObjectCache as a member variable of MemoryObject, a hash table has been proposed for

storing all component/aggregate relationships in one place. The above algorithms would not

handle this.

As with all data flow algorithms, the algorithms proposed here are conservative. Whether

they are powerful enough to be useful can only be learned by experience. There probably are

more powerful dataflow algorithms that could be invented for this problem, but that is not the

focus of this thesis.

126

8.3 Adding A Member Variable To The Set Of Component

Variables

This refactoring adds a member variable to the set of component variables for its class.

The argument to this refactoring is:

• the member variable (V) to be added to the component list.

After checking its precondition, this refactoring:

1. adds V to containingClass(V).SetOfComponents.

8.3.1 Preconditions

The precondition of this refactoring is:

1. qualifiesAsComponentP(member variable).

8.3.2 Behavior Preservation

This refactoring is behavior preserving because it merely annotates design information to the

program.

8.4 Removing A Member Variable From The Set Of Compo-

nent Variables

This refactoring removes a member variable from the list of component variables for its class.

the argument to this refactoring is:

• the member variable (V) to be removed from the component list.

This refactoring:

1. removes V from containingClass(V).SetOfComponents.

8.4.1 Preconditions

None.

127

8.4.2 Behavior Preservation

This refactoring is behavior preserving because it merely deletes design information from the

program.

8.5 Moving Members into a Component (Pointer to Aggre-

gate Stored in Component)

This section and section 8.6 define refactorings for moving a set of members from an aggregate

class to the class of one of its components. One issue in moving such members is whether they

can still reference members remaining in the aggregate class. The two refactorings differ in how

they handle references by a member being moved to a member that will remain in the aggregate

class. This section describes a refactoring where a pointer to the aggregate object is stored in

the component, so that references back to members of the aggregate object can be made via

this pointer. The next section describes a refactoring where the aggregate object is passed as

an argument in calls to all functions that reference members remaining in the aggregate class.

During refactoring, the new members of the component class are added before the old

members are deleted from the aggregate class. Sometimes, a component class will be a super-

class (or subclass) of an aggregate class. For example, in a user interface framework the class

Window might include components of class Sub-Window; these two classes would probably be

part of the same inheritance hierarchy. In this cases, naming conflicts could occur when the

members are added to the component class. When potential naming conflicts are detected,

the members being added to the component class are given an (automatically generated) new

name. After the refactoring is finished, the user could rename the moved members using the

change variable name or change member function name refactoring.

The arguments to this refactoring are:

• the aggregate class (C)

• the set of member variables being moved (setOfMovingVars)

• the set of member functions being moved (setOfMovingFuncs)

• the component member variable (V)

128

In this description, the class of the component member variable (ie V.type) is referred to as

componentClass.

After checking its preconditions, this refactoring:

1. makes AggregateObject a member variable of componentClass, with a type that accepts

an instance of class C:

(a) if the member variable AggregateObject is already a member of componentClass,

then:

i. if the current type of AggregateObject is not C (or a superclass of C), change type

is called to change the type of AggregateObject to be a superclass common to C

and the current type of AggregateObject.

(b) else, if AggregateObject is already a member of one or more subclasses of C:

i. for each subclass where the locally defined AggregateObject has a type that is not

C (or a superclass of C), change type is called to change the type of AggregateOb-

ject to be a superclass common to C and the current type of AggregateObject.

ii. move member variable to superclass is called to move AggregateObject to com-

ponentClass.

(c) else, create member variable is called to add the variable AggregateObject (type: the

aggregate class) as a protected member of componentClass.

2. if access to V is not already abstracted, calls abstract access to member variable to ab-

stract access in C to V.

3. in the update function (created in the previous step), adds the assignment:

AggregateObject = <‘this’, the aggregate object>

(steps two and three are needed so that all objects assigned to V will contain a pointer

to the aggregate)

4. for each variable in setOfMovingVars, calls create member variable to add an equivalent

(possibly renamed) variable as a public member of componentClass.

129

5. for each function in setOfMovingFuncs, calls create member function to add the signature

of the (possibly renamed) function as a public member of componentClass. Then, for each

function in setOfMovingFuncs, calls add function body to add the function body of each

function being moved. References to members that will remain in the aggregate class are

prefixed with AggregateObject.

6. replaces each reference to a member being moved, with a reference to its replacing member

in componentClass.

7. calls delete member functions and delete unreferenced variable to remove the now unref-

erenced members from V.

8.5.1 Preconditions

The preconditions for this refactoring are:

1. qualifiesAsComponentP(V)

(V qualifies as a component member variable of C.)5

2. ∀ F ∈ setOfMovingFuncs,

∀ referencedMember ∈ (variablesReferencedBy(F) ∪

functionsCalledBy(F)),

if referencedMember ∈ membersOf(componentClass) ∧

referencedMember 6∈ (setOfVars ∪ setOfFuncs),

referencedMember.accessControlMode = public.

(if any functions in setOfFuncs reference members remaining in componentClass, those

referenced members are public).

3. the value of componentVariable is assigned before any member ∈ (setOfMovingVars ∪

setOfMovingFuncs) is referenced; componentVariable is not reassigned. This is needed to

ensure that all references to each moving member will point to the same location at all

times. Program flow analysis would be needed to determine this.

5The requirement here is that the object assigned to V in one instance of C is not aliased as the value
assigned to V in another instance of C. This condition is implied if V qualifies as a component variable. For
further discussions, see section 8.8.

130

4. ∀ class ∈ (componentClass ∪ subclassesOf(componentClass)),

memberVariableNamed(class, AggregateObject)⇒

commonSuperclass(memberVariableNamed(class, AggregateObject), C).

(if AggregateObject is a member of componentClass or one its subclasses, the type of Ag-

gregateObject shares a common superclass with C (the aggregate class in this refactoring)).

8.5.2 Behavior Preservation: Steps 1-5

For step 1-(a): for change type: precondition 1 (assignments to the variable would remain

type safe) is satisfied because the new type would be a supertype both of C and of its current

type; precondition 2 (regarding assignments of the variable) is satisfied because by convention

the variable is only used as a reference pointer, and is not reassigned. For step 1-(b): the

preconditions of change type are satisfied for the same reasons as given for step 1-(a). For

move member variable to superclass: precondition 1 (regarding matching attributes) is sat-

isfied by the prior step (when change type is applied); precondition 2 (that the variable is

not already defined in the superclass) by the conditions of step 1-(b). For step 1-(c): for

create member variable: precondition 1 (the new variable doesn’t collide with another variable

referenced within its intended scope) is trivially satisfied because this step is invoked only when

the variable is not defined in a superclass or subclass. Also, by convention, AggregateObject is

a reserved name only used as a member variable to point to a component object’s aggregate;

therefore there will not be any local or global variables that collide with it.

For abstract access to member variable (step 2): precondition 1 (access to the variable has

not already been abstracted) is satisfied because step 2-(a) is only invoked when this condition

is true.

For the assignment added to the update function in step 3, program property seven (se-

mantically equivalent references and operations) is preserved because the statement assigns a

value to a newly created and unreferenced variable. By preconditions 7 and 8, and steps 1-(a)

and 1-(b), the variable AggregateObject will be defined in the component class and its type will

accept an instance of the aggregate class. Other program properties are trivially preserved.

For create member variable (step 4): precondition 1 (the new variable doesn’t collide with

another variable referenced within its intended scope) is satisfied because it is given a unique

name in cases where a name conflict would occur.

131

For create member function (step 5): preconditions 1 through 4 (regarding collisions with

members defined in superclasses or subclasses) is satisfied because it is given a unique name in

cases where a name conflict would occur; precondition 5 is trivially satisfied because there is

no function body.

For add function body (step 5): precondition 1 (all variables and functions referenced in the

function body are visible from the superclass) is satisfied by precondition 2 of this refactoring;

precondition 2 (the member function is not called) is satisfied because the function is newly

added to the component and is not yet referenced.

8.5.3 Behavior Preservation: Step 6 (Replacing References)

The key step in the refactoring is step 6, where references to members in the aggregate class

are replaced by references to members in the component. There are several things that might

happen that could prevent this from being done safely:

Each new member might not be visible in all places where the old member (it replaces) was

visible. However, in steps four and five the new members are public.

One or more of the functions being moved might make references to variables and functions

that are visible from the aggregate class but not from the component class. By precondition 2,

such references will be visible, provided that a pointer to the aggregate object is stored in the

component; by step 3 of this refactoring, such a pointer is assigned.6

The type of the new member might be different from the type of the old member, and hence

not support the same operations. This will not happen (by construction) since in steps 4 and

5 the new members have the same types as the members they are replacing.

Member variables in the component are referenced through a level of indirection (the com-

ponent variable); this could lead to problems:

1. if an instance of the component class if not assigned to the component variable before

a reference is made through that variable, the reference will be invalid. Precondition 3

ensures this will not happen.

6For the refactoring in the next section, such references will be visible because a pointer to the aggregate
object is passed in calls to functions that reference members not otherwise visible to the component.

132

2. if the value of the component variable changes (i.e. a new object is assigned to it) between

references made via the component variable, the references will not be consistent (i.e.

adjacent reads may not return the same value, and a read may not return the most

recently written value). Precondition 3 ensures this will not happen.

3. if two different aggregate objects use the same indirection (i.e. point through the same

component object), then updates made by one aggregate object will not be distinct from

updates made by the other aggregate object. Precondition 1 ensures that this will not

happen.

At this point, it has been argued that variables and functions will be visible to their callers

before and after the move, that the types of members will be the same, and that, despite the

level of indirection, references to the old member(s) in the aggregate class will consistently be

replaced by references to the new members in the component. Below is a more formal argument.

It considers the case of moving a single variable from an aggregate class to the class of one of

its components. It can trivially be extended to handle multiple members.

Consider a program execution trace as a series of reads and writes to memory. For behavior

to be preserved, the execution traces before and after the refactoring must be equivalent. For

the traces to be equivalent, equivalent operations must be performed on equivalent values.

Regarding equivalent operations, there is a function that maps each step in the first trace

(before the refactoring) to an equivalent set of steps in the second trace. Usually, a step in the

first trace maps to a single step in the second trace, but not always. The refactoring will add

in an extra level of indirection (the component) for some references, requiring an extra read

operation.

Regarding the values read or written, they are either numbers or addresses of objects. Al-

though equivalent values in equivalent traces will be identical if they are numbers, addresses

may not be identical since the refactoring changes the sizes of objects. Instead, there is a func-

tion that maps variables and functions in one trace to their equivalent variables and functions in

the other trace. One way to create this function is to say that the n’th new address referenced

as a value (i.e. not just as a member variable) of one trace will be mapped to the n’th new

address referenced as a value of the other.

Lemma: If traces are equivalent then equivalent locations contain equivalent values.

133

Definition: The i’th member variable of equivalent objects are equivalent except for the

variable being moved from an aggregate to a component. In this case, the variable in the

aggregate in the first trace is equivalent to the variable in the component in the second.

Theorem: Traces before and after the refactoring of moving a variable from a container to

a component are equivalent.

Proof: By induction. Base case is the empty trace. Induction step is to consider a trace of

n steps. By the lemma, after the instruction corresponding to the n’th instruction of the first

trace, equivalent locations contain equivalent values. Due to the level of indirection introduced

by moving a variable to the component, a single instruction in the old trace may map to several

instructions in the new trace, so the trace of n steps in the old trace corresponds to m (≥ n)

steps in the new trace. The n’th step might be a read, write, or a function call.

If the step does not reference the variable being moved, then in the new trace it maps to

the same instruction applied to an equivalent location in the old trace. If it is a read operation,

then by the induction assumption the location in the old trace will contain the same value as

the equivalent location in the new trace, therefore the reads are equivalent. If it is a write

operation, since the location in the old trace is equivalent to the location in the new trace, and

the values written are the same, the writes are equivalent. If it is a function call, an equivalent

function is called in each case, and the values passed in the call will be equivalent; therefore,

the function calls are equivalent. Therefore, the traces are equivalent after the n+1’st step.

If the step does reference the variable being moved, in the new trace there is a level of

indirection that will result in a set of steps in the new trace corresponding to the single step

in the old trace. However, after the indirection the address read from, written to, or branched

to in the new trace will be equivalent to the address in the old trace, and the operations and

values are equivalent, therefore the traces are equivalent after the n+1’st step.

8.5.4 Behavior Preservation: Step 7

For delete member functions (step 7): precondition 1 (the function to be deleted is unreferenced

or redundant) is satisfied because, as a result of the prior step, the function is redundant.

For delete unreferenced variable (step 7): precondition 1 (the variable being deleted is un-

referenced) is satisfied because, as a result of the prior step, the variable is unreferenced.

134

8.5.5 Behavior Preservation: Summary

Each of the steps (1-7) of this refactoring are behavior preserving, therefore the refactoring is

by construction behavior preserving.

8.6 Moving Members into a Component (Aggregate Passed

as Function Argument)

This and the prior section define refactorings for moving a set of members from an aggregate

class to the class of one of its components. This section describes a refactoring where the

aggregate object is passed as an argument in calls to all functions that reference members

remaining in the aggregate class.

The arguments to this refactoring are:

• the aggregate class (C)

• the set of member variables being moved (setOfMovingVars)

• the set of member functions being moved (setOfMovingFuncs)

• the component member variable (V)

For each member in (setOfMovingVars ∪ setOfMovingFuncs), a new name may be specified.

This is needed to avoid naming conflicts that could arise when the aggregate and component

classes share an inheritance relationship.

In this description, the class of the component member variable (ie V.type) is referred to as

componentClass.

After checking the preconditions, this refactoring:

1. for each variable in setOfMovingVars, calls create member variable to add an equivalent

(possibly renamed) variable as a public member of componentClass.

2. Let FunctionsReferringBackToAggregate be the subset of functions contained in setOf-

MovingFuncs that refer to variables and functions visible from C but not from compo-

nentClass.

135

For each function in setOfMovingFuncs, this refactoring calls create member function to

add the signature of an equivalent (possibly renamed) function as a public member of

componentClass. (For functions in FunctionsReferringBackToAggregate, an additional

argument is included, that points to the aggregate object.)

Then, this refactoring calls add function body to add the function body of the newly

created member functions. For each function in FunctionsReferringBackToAggregate, ref-

erences only visible through the aggregate object are prefixed with the name of the new

argument variable that points to the aggregate.

3. replaces each reference to a member in (setOfMovingVars ∪ setOfMovingFuncs) with a

reference to the corresponding member in componentClass. Some function calls will pass

a pointer to the aggregate object as an additional argument.

4. calls delete member functions and delete unreferenced variable to remove the unrefer-

enced members from C.

8.6.1 Preconditions

The preconditions for these refactorings are the same as preconditions 1-3 of the prior

refactoring.

8.6.2 Behavior Preservation

For create member variable (step 1): precondition 1 (the new variable doesn’t collide with

another variable referenced within its intended scope) is satisfied by precondition 3 of this

refactoring.

For create member function (step 2): preconditions 1 through 4 (regarding collisions with

members defined in superclasses or subclasses) is satisfied by precondition 3 of this refactoring;

precondition 5 (all referenced variables and functions are reachable) is satisfied by precondition

4 of this refactoring.

For add function body (step 2): precondition 1 (all variables and functions referenced in the

function body are visible from the superclass) is satisfied by precondition 4 of this refactoring;

precondition 2 (the member function is unreferenced locally in the superclass or the superclass

is abstract) is satisfied by precondition 3 of this refactoring.

136

The key step in the refactoring is step 3, where references to members in the aggregate class

are replaced by references to members in the component. Behavior is preserved in section 8.5.3

for step 5 of the prior refactoring.

For delete member functions (step 4): precondition 1 (the function to be deleted is unrefer-

enced or redundant) is satisfied because, as a result of the prior step, the function is redundant.

For delete unreferenced variable (step 4): precondition 1 (the variable being deleted is un-

referenced) is satisfied because, as a result of the prior step, the variable is unreferenced.

Each of the steps of this refactoring are preserving, therefore the refactoring is by construc-

tion behavior preserving.

8.7 Moving Members into Aggregate(s)

This refactoring adds members to an aggregate class, to replace members in one of its compo-

nents.

The arguments to this refactoring are:

• the aggregate class (C)

• the component member variable (V)

• the set of member variables in componentClass (V.type) being replaced in the aggregate

class (setOfVars)

• the set of member functions in componentClass being replaced in the aggregate class

(setOfFuncs)

After checking its preconditions, this refactoring:

1. for each variable in setOfVars, calls create member variable to add an equivalent (possibly

renamed) variable as a public member of componentClass.

2. for each function in setOfFuncs, calls create member function to add the signature of

the (possibly renamed) function as a public member of componentClass. Then, for each

137

function in setOfMovingMembers, calls add function body to add the function body of

each function being moved. References to members that remain in componentClass are

prefixed with V.

3. for instances of C, replaces each reference to a member in (setOfVars ∪ setOfFuncs) with

a reference to its replacing member in C.

4. for each member of (setOfVars ∪ setOfFuncs) that is now unreferenced,7 calls

delete member functions or delete unreferenced variable to remove it.

8.7.1 Preconditions

The preconditions for this refactoring are:

1. qualifiesAsComponentP(V)

(V qualifies as a component member variable of C.)8

2. ∀ F ∈ setOfFuncs,

∀ referencedMember ∈ (variablesReferencedBy(F) ∪

functionsCalledBy(F)),

if referencedMember ∈ membersOf(componentClass) ∧

referencedMember 6∈ (setOfVars ∪ setOfFuncs),

referencedMember.accessControlMode = public.

(if any of the functions being added to C reference members remaining in componentClass,

those referenced members are public).

3. for all instances of componentClass assigned to an instance of C, all references to (setOf-

Vars ∪ setOfFuncs) are made via V. Program flow analysis would be needed to determine

this.

7Instances of componentClass might be assigned to variables other than V. The members can not be deleted
unless they are not referenced for all instances of componentClass.

8The requirement here is that the object assigned to V in one instance of C is not aliased as the value
assigned to V in another instance of C. This condition is implied if V qualifies as a component variable. For
further discussions, see section 8.8.

138

8.7.2 Behavior Preservation

For create member variable (step 1): precondition 1 (the new variable doesn’t collide with

another variable referenced within its intended scope) is satisfied because it is given a unique

name in cases where a name conflict would occur.

For create member function (step 2): preconditions 1 through 4 (regarding collisions with

members defined in superclasses or subclasses) is satisfied because it is given a unique name in

cases where a name conflict would occur; precondition 5 is trivially satisfied because there is

no function body.

For add function body (step 2): precondition 1 (all variables and functions referenced in the

function body are visible from the superclass) is satisfied by precondition 2 of this refactoring;

precondition 2 (the member function is not called) is satisfied because the function is newly

added to the component and is not yet referenced.

The key step in the refactoring is step 3, where references to members in a component are

replaced by references to members in the aggregate class. There are several things that might

happen that could prevent this from being done safely:

Each new member might not be visible in all places where the old member (it replaces) was

visible. However, by precondition 3 all references to the old members are made via V, which

implies that all references must either be from within the aggregate object or via the aggregate

object. By steps one and two, the new members are public members of the aggregate class and

hence are visible in all places where the old members were referenced.

One or more of the functions being moved might make references to variables and functions

that are visible from the component class but not from the aggregate class. However, by

precondition 2 such references will be visible.

The type of the new member might be different from the type of the old member, and hence

not support the same operations. This will not happen (by construction) since in steps 1 and

2 the new members have the same types as the members they are replacing.

139

If two different aggregate objects (both of class C) assigned the same component object to

their member variable V, then with this refactoring some members that previously were shared

between the two aggregate objects would no longer be shared. However, by precondition 1 each

component object is exclusive to one aggregate object, so this will not happen.

At this point, it has been argued that variables and functions will be visible to their callers

before and after the move, that the types of members will be the same, and that there is a

one-for-one mapping of the old members to the new members that are replacing them.

As argued in section 8.5.3, the program traces before and after the refactoring are equivalent.

References by the members added to the aggregate, to members of componentClass not being

moved, will include an extra level of indirection (ie V). Conversely, references to the members

added to the aggregate (other than those made by the members being moved) will have a level

of indirection removed. These replacing references will be equivalent to the replaced references,

and other steps will be the same, so the program traces are equivalent before and after the

refactoring.

In step 4, the precondition for delete member functions and delete unreferenced variable is

satisfied because these refactorings are only applied if the variable (or function) is unreferenced.

Each of the steps (1-4) of this refactoring are behavior preserving, therefore the refactoring

is by construction behavior preserving.

8.8 Discussion: Components and Refactoring (Revisited)

The refactorings in sections 8.5 through 8.7 have as a precondition that the member variable

into (or out of) which members are moved must be an exclusive component, as defined in section

8.2. As noted in a footnote for each of these refactorings, a less stringent precondition would

be sufficient: that the instance assigned to the member variable in one aggregate object be

distinct from the instance assigned to the same member variable of another aggregate object

of the same type. This condition is implied if the member variable is an exclusive component,

but is nonetheless a less stringent precondition.

140

This raises a question: is the precondition regarding exclusive components perhaps too

restrictive for refactorings involving aggregates and components?

Not in general. More powerful refactorings could be written involving aggregates and compo-

nents would require other conditions implied by exclusive components. Here are two examples:

1. For cases where an aggregate object contained several components that were instances of

the same component class, a refactoring could be defined that replaced several members

in the aggregate class with a single member added to the component class.

For example, suppose the Automobile class contains the component member variables

leftFrontTire, rightFrontTire, leftRearTire and rightRearTire, all of which were assigned

instances of the Tire class. The Automobile class also contains four member variables

that record, respectively, the warranty expiration for each of the tires. The refactoring

would add a single member variable warrantyExpiration to the Tire class, replacing the

four member variables in the Automobile class that record tire warranty expirations. This

requires, however, not only that the instance assigned to each component member variable

(say, leftFrontTire) in one car be distinct from instance assigned to the same member vari-

able (leftFrontTire) in another car, but also that it be distinct from the objects assigned

to other component member variables representing tires.

2. In cases where instances of the same class are components of several different classes, a

refactoring could be defined that moves a variable out of the component class into the

class of each of its aggregate classes.

For example, while the Automobile class may hold an instance of the Engine class as a

component, the Truck class may also hold another instance of the Engine class as its

component. Moving milesPerGallon out of the Engine class means adding it to both the

Automobile and Truck classes.

For this refactoring to be behavior preserving, each instance of the component class must

be assigned to a distinct aggregate object. This is implied if the component is exclusive.

141

In summary, the precondition regarding exclusive components, while more stringent than

is necessary for the refactorings in sections 8.5 through 8.7, is nonetheless useful for these and

other more powerful refactorings that could be developed regarding aggregates and components.

8.9 Converting an Association, Modeled Using Inheritance,

into an Aggregation

8.9.1 Motivation

Consider the inheritance hierarchy shown in Figure 8.1. The class GraphicalObject defined func-

tions for displaying itself and determining whether a particular point (location) was inside the

object. Several subclasses were defined, the most recent being ArchitecturalObject. Architec-

turalObject needed the functions provided by GraphicalObject and was initially made a subclass

of it.

GraphicalObject:
 displaySelf();
 containsPointP(...);
 *
 *

GraphicalObject:
 displaySelf();
 containsPointP(...);
 *
 *

Circle Square Text ArchitecturalObject

Figure 8.1: Class GraphicalObject and its Subclasses

The designer then realized that an ArchitecturalObject may change its shape, based on

perspective or a new architectural insight. An ArchitecturalObject represents both an abstraction

and its implementation; its shape is better represented as a component.

Thus, a more desirable representation would be as shown in Figure 8.2.

This is an example of the refactoring defined in this section. Other examples are described

in sections 3.4 and 9.2.

142

GraphicalObject:
 displaySelf();
 containsPointP(...);
 *
 *

Circle Square Text

ArchitecturalObject
 GraphicalObject* shape;
 *
 *

Figure 8.2: GraphicalObject and ArchitecturalObject, After Refactoring

8.9.2 Arguments & Operations

This refactoring converts an association, modeled as a subclass/superclass relationship, into

an aggregation. All behavior inherited by the subclass/client from its superclass before the

refactoring will be delegated to a new component, which is an instance of the old superclass.

After this refactoring, the move class refactoring could be applied to move the subclass/client.

The arguments to this refactoring are:

• the superclass (Super)

• the subclass/client (Client)

In the descriptions below: the set of variables inherited by subclass/client is referred to as

setOfVars; the set of functions inherited by subclass/client is referred to as setOfFuncs.

After checking its precondition, this refactoring:

1. generates a unique name for the new component variable, and calls the refactoring

create member variable to add the component variable to subclass client

2. calls the refactoring defined in section 8.3 to qualify the newly created variable as a

component

143

3. calls the abstract access to member variable refactoring for all var ∈ setOfVars which

have not already been abstracted.

4. for each inherited member function (ie setOfFuncs ∪ the functions added in the prior

step), calls create member function to copy it into the subclass

5. ∀ var ∈ setOfVars, replace in var’s accessing and updating functions (in subclass/client)

the current function body (a reference or assignment to var) with a call to the correspond-

ing function in the new component.

6. for each remaining function copied into subclass/client in step 4, calls the refactoring

replace statement list with function call to replace the current function body with a call

to the corresponding member function of the new component.

8.9.3 Preconditions

Precondition:

1. ∀ F ∈ setOfFuncs,

∀ refdItem ∈ (variablesReferencedBy (F) ∪

functionsCalledBy(F)),

refdItem 6∈ (Client.locallyDefinedMemberFunctions ∪

Client.locallyDefinedMemberVariables).

(there are no references among the members inherited by subclass client to members

locally defined in subclass client.)

2. ∀ F ∈ setOfFuncs,

∀ refdItem ∈ (variablesReferencedBy F),

Client ⊂ scopeOf(refdItem).

(all variables referenced by setOfFuncs are visible to subclass/client (ie their access control

mode is not private).)

3. ∀ F ∈ setOfFuncs,

F.accessControlMode = public.

(all functions in setOfFuncs are public).

144

8.9.4 Behavior Preservation

For create member variable (step 1): precondition 1 (the new variable doesn’t collide with

another variable referenced within its intended scope) is satisfied because the new variable is

given a unique name.

For the refactoring defined in section 8.3 (step 2): the precondition is satisfied because

the variable qualifies as a component. The value (object) is statically assigned to it, and is

unreferenced elsewhere.

For abstract access to member variable (step 3): precondition 1 is satisfied because this

refactoring is only applied on variables that have not already been abstracted.

For create member function (step 4): precondition 1 is satisfied because the locally defined

function is redundant; preconditions 2-4 (regarding equivalent signatures and function bodies)

are satisfied because the superclass function is being copied into the class; precondition 5

(regarding references in the function body) is satisfied because the function references:

• variables whose scope includes both the superclass and subclass/client (by precondition

two of this refactoring)

• functions which are either inherited by, or are identically defined in, the subclass/client

(because the new function is identical to the previously inherited function it replaces)

For step 5: for all vars in setOfVars, the only references to the variables are by the accessing

and updating functions. Changing the function bodies to be calls to the corresponding func-

tion in the component consistently replaces all refs to vars in setOfVars with with refs to the

corresponding variables in the component. By construction, the type of each var in setOfVars

is the same as the type of the var that replaces it. Thus, as for similar refactorings described

earlier in this chapter, this step is behavior preserving.

For replace statement list with function call (step 6): precondition 1 (the called function is

visible from the calling function) is satisfied by precondition 3 of this refactoring; precondition

2 (semantic equivalence) is satisfied because it replaces the body of the function with a call to a

function (in the component) that has a semantically equivalent function body. By construction,

the two functions perform the same operations and, from the prior step, all variable references

are semantically equivalent.

Thus, each step is behavior preserving and, hence, the refactoring is behavior preserving.

145

8.10 Discussion

8.10.1 Related Work in OODB Schema Evolution

Kim [66] describes composite objects in the ORION object-oriented database system, which

are similar to aggregate objects. Orion supported composite references, which are similar to

components. ORION supported several types of composite references, one important distinc-

tion being shared and exclusive references. An object could have at most one exclusive (and

no shared) references, or any number of shared references. In refactoring, in order to avoid

information loss the key quality of a component is that it be exclusive to one aggregate object.

Thus, all components involved in these refactorings are exclusive.

8.10.2 User Interface

Section 6.2 describes a multi-window display to assist in defining the protocol for an abstract

superclass. A similar interface (see Figure 8.3) could be used in migrating members between

aggregate and component classes. The top window displays the member variables of the

aggregate class Automobile. The middle two windows display the members for two of its com-

ponent classes, Engine and Tire. In this example, the user requests to move the member variable

warrantyExpiration from the component Tire class to its aggregate class Automobile. The user

enters the request by, for example, clicking on the member to be moved, and either dragging

it from the component window to the aggregate window, or by selecting the operation from a

pop-up display.

The tool recognizes that class Automobile has four Tire components, so four variables need

to be added to the aggregate class. In the lower window, it prompts for the names of the four

new variables. Furthermore, since there is already a variable defined in class Automobile called

warrantyExpiration, the tool warns that the new variables must be named differently from it.

Such an interface could be extended to provide display entire aggregation hierarchies (ag-

gregate objects, their components and sub-components), graphs of inheritance and aggregation

hierarchies, and in inverted hierarchy where a component class could be displayed, followed by

all aggregate classes containing an instance of the component class. Precondition checking (eg:

to avoid name conflicts) could be built into the interface, as shown in Figure 8.3.

146

PROTOCOL FOR AGGREGATE CLASS: AUTOMOBILE

Engine autoEngine;
Date warrantyExpiration;
Tire leftFrontTire;
Tire rightFrontTire;

COMPONENT CLASS:
 ENGINE

int milesPerGallon; Date warrantyExpiration;

OPERATION:

COMPONENT CLASS:
 TIRE

move warrantyExpiration from Tire to Automobile

new variable names:
 (warrantyExpiration of leftFrontTire): _____________________
 (warrantyExpiration of rightFrontTire):_____________________
 (warrantyExpiration of leftRearTire): ______________________
 (warrantyExpiration of rightRearTire): _____________________

Note: new variable names must differ from warrantyExpiration
 already defined in class Automobile.

Figure 8.3: Migrating Members Between Aggregate and Component Classes

Recall that in chapter six heuristics could be applied to suggest what members that could

be migrated to an abstract superclass. Similarly, heuristics might be applied here to determine

which members should be moved and when an association modeled using inheritance should be

converted to an aggregation. However, just as in chapter six, it is unlikely that these heuristics

will be error-proof, and (as described above) a sophisticated user interface can make these

refactorings pretty easy, so heuristics are not the focus of this chapter.

8.10.3 Summary

To summarize, this chapter defines several refactorings regarding aggregations:

• qualifying a member variable as a component

147

• moving members from an aggregate class to the class of one of its components

• moving members from a component class to the aggregate classes that contain component

members which are instances of the component class

• converting a relationship, modeled using inheritance, into an aggregation.

This chapter defines how to check if a member variable qualifies as an exclusive component

for its class, which is a precondition used in these refactorings.

148

Chapter 9

Examples

This chapter describes two examples of how refactorings can be integrated to improve the design

of a program. The purpose of these examples is to clearly demonstrate how refactorings work,

and to show that refactorings are not used in isolation, but rather that sequences of refactorings

are often needed.

Chapter three described several real examples of refactorings manually applied to object-

oriented application frameworks as they evolved. Those examples motivated the importance of

refactoring in actual design tasks, but at the expense of some extraneous detail and complexity.

By contrast, the examples presented here are simpler and clearer (albeit less practical).

The Menu Planning example demonstrates the use of refactorings defined in chapters six

and seven for specializing a class and then migrating common code to a superclass. The Matrix

example demonstrates the use of refactorings defined in chapters six and eight for changing how

an interclass relationship is modeled (from inheritance to an aggregation); that example also

includes refactorings for creating an abstract superclass of related component classes.

9.1 Generalizing & Specializing: Menu Planning Example

This example demonstrates the use of refactorings defined in chapters six and seven. This meal

planning program assumes very predictable eating habits. The user specifies the days of the

week that they will be in town, and the program prints out the dinner menu for that week.

The implementation before refactoring (written in C++) is:

enum DaysInTheWeek { Monday, Tuesday, Wednesday, Thursday,

149

Friday, Saturday, Sunday};

class Date

{

protected:

DaysInTheWeek dayOfWeek;

int dayOfMonth;

public:

Date (DaysInTheWeek theDayOfWeek, int theDayOfMonth)

{dayOfWeek = theDayOfWeek;

dayOfMonth = theDayOfMonth;

};

void printDinnerMenu ()

{if (dayOfWeek == Monday)

cout << "Chicken Kiev";

else if (dayOfWeek == Friday)

cout << "Baked Flounder";

else

cout << "Stir Fried Vegetables";

}

};

main()

{

Date firstDayInTown(Monday,1),

secondDayInTown(Thursday,4),

thirdDayInTown(Friday,5);

firstDayInTown.printDinnerMenu();

secondDayInTown.printDinnerMenu();

thirdDayInTown.printDinnerMenu();

}

150

In class Date, the member variable dayOfWeek is assigned an argument of the constructor, and

is tested in a conditional statement of the member function printDinnerMenu. This conditional

test suggests that the design of the program might be refined by specializing the Date class

based on the enumerated values of the variable dayOfWeek.

The example below describes a special purpose, ultra-high level refactoring (ala macro) that

performs its specialized task by combining the refactorings defined in prior chapters. When this

ultra-high level refactoring is invoked, the refactoring tool (hereafter referred to as ‘the tool’)

specializes the class Date based on the range of values (an enumerated type) of a member variable

referenced by a conditional in the function printDinnerMenu. The refactoring is stylized, in that

it uses the values of the enumerated type to automatically determine and name the subclasses.1

It proceeds as follows:

Since the conditional tests the value of a variable whose type is the enumerated type

DaysInTheWeek, the tool creates a subclass for each value in that enumerated type. Following

the steps described in section 7.5, the tool creates seven subclasses of Date with the refactoring

create empty class, one for each day of the week. The names of the subclasses correspond to

the set of values of the enumerated type.2 The tool assigns an invariant to each subclass of the

form:

dayOfWeek=<day of the week represented by the subclass>.

The tool defines a constructor in each subclass with the create member function refactoring.

The constructor consists of an assignment that sets the value of the member variable dayOfWeek.

The tool then migrates the function printDinnerMenu down to the subclasses and simplifies

it, as described in section 7.7. For example, the refactoring redefines the printDinnerMenu

function in the subclass Monday as:

void printDinnerMenu ()

{cout << "Chicken Kiev";

}

1Other such high-level refactorings could be defined, with minor variations.
2If the user wanted different names for the classes, they could be changed later using the change class name

refactoring.

151

The tool then specializes the instances of the superclass Date, using the refactoring defined

in section 7.9.

Further refinements are possible. Since the class Date is truly abstract (it has no instances),

and since the function printDinnerMenu is unreferenced elsewhere in the class and is redefined

in all of the subclasses, the tool can delete the function from the superclass with the refactoring

delete member functions.

Several further refactorings can remove unnecessary assignments, an argument variable,

member variable and an enumerated type. These refactorings could be invoked individually by

the user or, as is assumed here, invoked automatically.

First, the tool migrates to the subclasses the body of the constructor defined in class Date.

Constructors in C++ are different from other functions, in that a superclass constructor is

not overridden by a subclass constructor; rather, when an instance of a subclass is created the

superclass constructor is first called followed by a call to the subclass constructor. One way

to think of this is that each subclass constructor begins with implicit calls to the constructors

defined in its superclasses. Behavior can be preserved by adding the code from the superclass

constructor to the front of the constructor in each direct subclass, while deleting the code from

the superclass constructor.3

For example, the constructor in the class Monday would now be:

Monday (DaysInTheWeek theDayOfWeek, int theDayOfMonth):

Date(theDayOfWeek, theDayOfMonth)

{dayOfWeek = theDayOfWeek;

dayOfMonth = theDayOfMonth;

dayOfWeek = Monday;

};

The first statement is a dead assignment, and the tool removes it. The argument the-

DayOfWeek is now unreferenced, and the tool removes it with the delete function argument

refactoring. The member variable dayOfWeek is no longer referenced in printDinnerMenu since

3Such a refactoring would be a slight variation on the inline function call refactoring.

152

the conditional test has been removed; the final assignment statement in the constructor is thus

a dead assignment and the tool removes it. Since dayOfWeek is unreferenced, the tool deletes

it with the refactoring delete unreferenced variable. Then, the tool deletes the enumerated type

DaysInTheWeek which is no longer referenced. The resulting code is now:

class Date

{

protected:

int dayOfMonth;

public:

Date (int theDayOfMonth) { };

};

class Monday : public Date

{

public:

Monday (int theDayOfMonth) : Date (theDayOfMonth)

{dayOfMonth = theDayOfMonth;

};

void printDinnerMenu ()

{cout << "Chicken Kiev";

}

};

(the remaining subclasses are similarly defined)

main()

{Monday firstDayInTown(1);

Thursday secondDayInTown(4);

Friday thirdDayInTown(5);

firstDayInTown.printDinnerMenu();

secondDayInTown.printDinnerMenu();

153

thirdDayInTown.printDinnerMenu();

}

At this point, the Date class has been specialized and the conditional test removed. Refactoring

could stop at this point.

However, by invoking two additional refactorings (described in chapter six), the implemen-

tation could be further optimized by migrating common code in printDinnerMenu function up

to the superclass:

1. the function signature of the printDinnerMenu function could be added back into the

superclass Date with the refactoring add function signature

2. common code in the subclass implementations of printDinnerMenu could be migrated

up to the superclass, using the refactoring described in section 6.4.2. As part of that

refactoring; the segments of differing code would be placed into a newly defined function,

here called mainCourse.

The printDinnerMenu function is small, and automatically splitting up such a small function

in this way would not improve the design in all cases. Thus, these latter two optimizations would

probably be manually chosen, although the tool could suggest these changes to the user.

The refactored code is now:

class Date

{

protected:

int dayOfMonth;

public:

Date (int theDayOfMonth) { };

virtual char * mainCourse() = 0;

void printDinnerMenu ()

{cout << mainCourse();

}

};

154

class Monday : public Date

{

public:

Monday (int theDayOfMonth) : Date(theDayOfMonth)

{dayOfMonth = theDayOfMonth;

};

char * mainCourse ()

{return "Chicken Kiev";

}

};

...

As a result of these refactorings:

• the design is clearer. The distinctions between days of the week are made more explicit.

Existing instances have been specialized. In subsequent uses of the tool, instances would

be specified according to the day of the week they represent.

• a conditional test, several assignments, variables and an enumerated type have been re-

moved.

• the code for printing the menu has been encapsulated in one place, away from the code

that determines the menu. To subsequently alter the means of displaying the menu, only

the printDinnerMenu defined in class Date needs to be changed.

In summary, the result of these refactorings is a cleaner design, less code and possibly faster

execution.

9.2 Converting to an Aggregation: Matrix Example

This example demonstrates the use of refactorings defined in chapters six and eight, focusing

mostly on component related refactorings. Sometimes the relationship between two classes does

155

not become clear until after implementation is underway. Consider the case where the class

TwoDimensionalArray is defined, then the Matrix class is defined as a subclass of it.[46] A matrix

is a special use of a two dimensional array, and can be thought of as a specialization of it. For

this example, matrices have a maximum of 400 cells each storing integer values.

TwoDimensionalArray

Matrix

Figure 9.1: Inheritance Relationship Between Classes TwoDimensionalArray and Matrix

The classes are defined as follows:

class TwoDimensionalArray

{

protected:

int elements[400];

int columns, rows;

public:

TwoDimensionalArray (int numberOfRows, int numberOfColumns)

{ ... };

virtual int get(int rowNumber, int columnNumber) { ... };

virtual void put (int newValue, int rowNumber,

int columnNumber)

{ ... };

};

class Matrix : public TwoDimensionalArray

{

public:

Matrix (int numberOfRows, int numberOfColumns) :

TwoDimensionalArray (numberOfRows,numberOfColumns) {};

Matrix matrixMultiply (Matrix anotherMatrix)

156

{ ... j=get(x,y); ... put(k,x,y); ...};

void rotate() { ...};

Matrix martixInverse() { ...};

};

It seemed reasonable at first to model this relationship using inheritance; the higher level

matrix operations call the lower level functions inherited from its superclass. A matrix was

thought of as a special type of two dimensional array. However, a matrix is a mathematical

abstraction that can be represented in different ways. The representation is part of the ma-

trix abstraction, but the matrix abstraction and its representation are really distinct concepts.

Operations on the abstraction should be separated from operations on its representation. For

applications where (for example) matrices are sparse, representations other than two dimen-

sional arrays are more efficient.

The refactoring defined in section 8.7 is applied to better model the relationship between

the classes Matrix and TwoDimensionalArray. During that refactoring, the tool:

1. adds an instance of the class TwoDimensionalArray as a member variable in class Matrix

as member variable matrixRepr, using the create member variable refactoring.

2. qualifies the variable matrixRepr as an exclusive component of class Matrix, as described

in section 8.3.

3. replaces all calls to the member functions get and put in class Matrix with calls to the

corresponding functions in the component.

Then, the tool changes the superclass of class Matrix, using refactoring move class.

The classes are now defined as follows:

class TwoDimensionalArray

{

protected:

int elements[400];

int columns, rows;

157

public:

TwoDimensionalArray (int numberOfRows, int numberOfColumns)

{ ... };

virtual int get(int rowNumber, int columnNumber) { ... };

virtual void put (int newValue, rowNumber, int columnNumber)

{ ... };

};

class Matrix

{

protected:

TwoDimensionalArray * matrixRepr;

public:

Matrix (int numberOfRows, int numberOfColumns)

{matrixRepr = new TwoDimensionalArray(numberOfRows,

numberOfColumns};

Matrix matrixMultiply (Matrix anotherMatrix)

{ ... j=matrixRepr->get(x,y);

... matrixRepr->put(k,x,y); ...};

void rotate() { ...};

Matrix martixInverse() { ...};

};

Note that the representation specific functions for retrieving and updating an element of the

matrix are defined in the component class TwoDimensionalArray, whereas functions more closely

related to the matrix abstraction are defined in the Matrix class. Note that in the matrixMultiply

function of class Matrix, the get and put functions are referenced through the new component.

This separation not only clarifies the design by separating functions related to the abstrac-

tion and one if its possible representations, but also allows the program to be expanded to

support multiple representations for multiple uses.

158

For some applications, the matrix is known to be sparse and representations more efficient

than two dimensional arrays can be used. The following steps extend the tool to support matrix

representations other than two dimensional arrays:

1. creating the class MatrixRepresentation as a superclass of TwoDimensionalArray, using the

refactorings create empty class and move class

2. creating a new class SparseMatrixRepresentation as a subclass of MatrixRepresentation,

using the create empty class refactoring

3. copying members from the class TwoDimensionalArray into the new class, and manually

reimplementing those operations

4. migrating common behavior to the abstract superclass, using the refactorings described

in chapter six

5. generalizing the type of the variable matrixRepr in class Matrix to be MatrixRepresentation.

The resulting inheritance hierarchies and class definitions are:

Matrix MatrixRepresentation

TwoDimensionalArray SparseMatrixRepresentation

class Matrix

{

protected:

MatrixRepresentation * matrixRepr;

public:

Matrix (int numberOfRows, int numberOfColumns)

{matrixRepr = new TwoDimensionalArray(numberOfRows,

numberOfColumns};

Matrix matrixMultiply (Matrix anotherMatrix)

159

{ ... j=matrixRepr->get(x,y);

... matrixRepr->put(k,x,y); ...};

void rotate() { ...};

Matrix martixInverse() { ...};

};

class MatrixRepresentation

{

protected:

int columns, rows;

public:

MatrixRepresentation (int numberOfRows,

int numberOfColumns);

virtual int get(int rowNumber, int columnNumber) = 0;

virtual int put (int newValue, int rowNumber,

int columnNumber) = 0;

};

class TwoDimensionalArray : public MatrixRepresentation

{

protected:

int elements[400];

public:

TwoDimensionalArray (int numberOfRows, int numberOfColumns)

{ ... };

int get(int rowNumber, int columnNumber) { ... };

void put (int newValue, rowNumber, int columnNumber)

{ ... };

};

class SparseMatrixRepresentation : MatrixRepresentation

160

{

protected:

sparseArrayElement elements[50];

/* maximum 50 elements for this sparse representation;

type sparseArrayElement defined elsewhere */

int get(int rowNumber, int columnNumber) { ... };

void put (int newValue, rowNumber, int columnNumber)

{ ... };

};

As a result of these refactorings:

• the mathematical abstraction is separated from the underlying representation

• the program defines multiple representations for Matrices, making explicit their common

features. This structure would make it easier to extend the tool with additional matrix

representations in the future.

9.3 Summary

This chapter describes two examples of how refactorings can be integrated. The first (Menu

Planning) example demonstrates the use of refactorings defined in chapters six and seven for

specializing a class and then migrating common code to a superclass. The second (Matrix)

example demonstrates the use of refactorings defined in chapters six and eight for changing

how an interclass relationship is modeled (from inheritance to an aggregation). These examples

demonstrate how refactorings must be applied together to improve the design of a tool and

support extensions.

Each refactoring checks is own preconditions and is guaranteed to preserve program behav-

ior. Therefore, it is safe to string the refactorings together. This permits trying out different

sequences of refactorings, and encourages design exploration.

It is expected that when a designer first uses a refactoring tool, they will manually apply a

small sequence of refactorings to perform limited restructuring tasks. As the designer becomes

161

more sophisticated, more complicated sequences of refactorings will be used; for a small set of

frequently needed tasks, the designer will define higher-level refactorings (ala macros).

These examples demonstrate how the designer and the tool work together in improving the

design of a program. The refactoring tool provides powerful support in performing precondition

checking and implementing the changes. However, there is no way for a refactoring tool to be

able to automatically predict what changes the designer will need and automatically do them.

Therefore, the role of the designer remains important.

162

Chapter 10

Related Approaches

This chapter focuses on several areas of closely related work. In prior chapters, generally

related work was described on the topics of software reuse, software restructuring, application

frameworks, detecting code differences, and data flow analysis. This chapter discusses several

approaches for supporting good object-oriented design style and for managing evolution of

object-oriented systems. Also described is some recent work on restructuring applied to areas

other than object-oriented systems.

10.1 CRC Approach to Designing Object-Oriented Systems

Wirfs-Brock, Wilkerson and Wiener [126] describe an approach to Object-Oriented Design fo-

cusing on classes, class responsibilities and the collaborations among classes.1 In an initial

exploratory phase, classes, responsibilities and collaborations are defined. In the subsequent

analysis phase, systems are defined, collaborations simplified, hierarchies built containing ab-

stract and concrete classes, and object protocols are defined.

While this approach is mainly targeted for the initial task analysis and system design, it

has important implications on refactoring.

They emphasize the need for iterating the design of a system before it is built. This of-

ten involves some restructuring (on paper). By contrast, refactoring supports iteration and

restructuring after (and while) the system is built.

1Other approaches to object-oriented analysis and design include [21] and [36].

163

They also note that a reusable design grows out of domain analysis, and the design must be

clear in order to be reusable. Clarity is important not only before a system is built, but during

and after it is built. While there are some general principles for improving clarity, some aspects

of clarity are dependent on the application and the designer. Changes occur over time both

to the designer’s understanding of an application and in most cases to the application itself.

Refactorings can assist in improving the clarity of a design, in light of these changes.

Since clarity is at least partly subjective, some interaction with the designer is needed during

refactoring. The clarity of a design can be compromised if refactorings are applied “blindly” to

optimize conformance to other design criteria, such as minimizing program size or minimizing

access to variables.

10.2 Designing Reusable Classes

This refactoring research directly builds on research done at the University of Illinois by John-

son and Foote to support reusable classes [59]. To improving the design of an object oriented

system, they define rules of thumbs for finding standard protocols, abstract classes and frame-

works. Related to protocols, they recommend consistent naming of related functions, replacing

case analysis with subclassing, and minimizing the size of methods and number of function

arguments. Related to abstract classes, they recommend deep and narrow inheritance hierar-

chies, minimizing direct access to variables, and using subclassing for specialization. Related

to frameworks, they recommend factoring implementation differences into subcomponents, s-

plitting complicated classes and structuring the function call hierarchy so that subfunctions

are defined in components. These rules of thumb are based mostly on experiences in Smalltalk

programming.

Johnson and Foote focused at a high level on what ought to be done, while this research

focused on how automated support could be provided. Their work described a set of high level

guidelines that can be applied manually (or possibly automatically) to improve design, while

this research precisely specifies behavior preserving abstract editing operations to automate

design refinement. For example, one of their guidelines is: “Split large classes.” This guideline

is vague. This thesis defines several ways to split up large classes: by separating abstractions

164

into abstract classes, by specializing classes using subclassing, and by defining components and

moving members into the components.

This research differs from and extends [59] in other ways. Their paper includes a set of

thirteen heuristics; this research defines a layered taxonomy of several dozen refactorings. The

refactoring taxonomy made clear that their thirteen rules of thumb were not distinct but inter-

relate. Two of their rules are: “Subclasses should be specializations.” and “Split large classes.”

(the latter, also mentioned above). Chapter seven describes an approach that exploits subclass-

ing for specialization in splitting large classes. This research also uncovered design information

that was needed to automate refactorings, and considered implementation issues.

Johnson and Foote recognized the need for this research in [59] and motivated its importance.

10.3 Achieving Good Style in Smalltalk Programs

Rochat [98] proposes several guidelines for achieving good programming style in Smalltalk.

Among the guidelines: Carefully name classes and class members. Each class and method

should have a single purpose; multi-purpose classes and methods should be split. Subclasses

should be refinements (in protocol or implementation) of their superclasses. Nested conditionals

should be replaced with multiple classes to achieve polymorphism.

Rochat concludes [98] that organizational tools are needed to support these guidelines.

These guidelines are reflected both in the supporting refactorings and most clearly in the dis-

cussion of subclassing in chapter seven of this thesis.

10.4 Demeter Project

Lieberherr and others in the Demeter project at Northeastern University have studied how

to improve the productivity of object-oriented designers and programmers[71, 69]. They have

proposed rules for bringing discipline to the object oriented design process, and have developed

a set of structures and tools, which they package as the Demeter system.

They have proposed the “Law of Demeter”, which Sakkinen in [108] summarizes as:

the methods of a class should not depend in any way on the structure of any class

except the immediate (top-level) structure of their own class. Furthermore, each

165

method should send messages to objects belonging to a very limited set of classes

only.

This style is claimed to increase information hiding, minimize coupling between classes, and

improve maintainability and comprehensibility. They have developed tools to check if programs

conform to the law.

There are some shortcomings to the Demeter approach. The Demeter researchers [72] note

that restructuring a program to make it conform with their “law” can require increasing the

number of methods and method arguments, and result in slower execution speed and poorer

readability of code. Wirfs-Brock and Wilkerson [125] argue that the law overconstrains the con-

nections between objects, and more importantly shifts the focus away from the responsibility-

driven aspects of design (where it belongs) toward the data-driven aspects. Sakkinen [108]

discusses other problems in applying the Law of Demeter.

Nonetheless, the Demeter work is an important contribution to object-oriented design style.

Abstraction is important in improving the maintainability of object-oriented systems. A refac-

toring that directly supports the hiding of variables, in line with the Demeter guidelines, is

abstract access to member variable. Another way to better encapsulate variable access is to

refactor variables into a component and limit access to the component.

Another important contribution of their work is in defining structures and tools for object-

oriented design. A class dictionary defines classes, members and inheritance relationships.

Class dictionaries can be represented graphically, where classes and members are represented

as vertices, inheritance relationships are represented using alternation edges, and class/member

relationships are represented using construction edges. There are tools for converting between

textual and graphical representations of class dictionaries, for uncovering subgraphs of related

objects called propagation patterns, and for generated C++ source code from their representa-

tions.

Bergstein [15] defined a set of object preserving class transformations that can be applied to

class dictionary graphs. He shows that all object preserving class transformations that can be

performed on class dictionary graphs can be decomposed into a small set of primitive operations:

adding or deleting a “useless” alternation, abstracting or distributing common parts and part

replacement. These changes correspond to adding or deleting an unreferenced class as a subclass

of an existing class, migrating members up or down an inheritance hierarchy, or changing the

166

type (class) of a member. Each of these changes, provide that their preconditions are met, will

preserve existing objects; that is, the set of members for each object will be unchanged by these

transformations.

These operations correspond to some of the supporting refactorings defined in chapter five,

which are frequently used to implement other refactorings. However, the refactoring approach

overall is more general and powerful. Refactorings operations that cannot be expressed in

terms of these transformations include abstracting variables, modifying functions and moving

members between component and aggregate classes. Abstracting variables is not needed in

the Demeter system, since variable references are abstracted in the code generated from their

representations. Function modifications are not supported because the data dictionary graph

is limited to supporting data modeling. Perhaps the most important difference between refac-

torings and the object preserving class transformations is that refactoring can change the set of

members in a class, as long as the overall behavior of the program is preserved. This permits

changes such as moving members between component and aggregate classes, which are not

covered in Bergstein’s approach. Extensions to Bergstein’s approach are being investigated by

the Demeter researchers[70].

10.5 Reorganizing Generic Applications: Ithaca

As part of the ITHACA (Esprit II) project, research by Casais at the University of Geneva

investigated approaches to support the evolution of a generic application, which is similar to an

application framework. As with Bergstein’s approach described above, Casais’ focus was upon

inheritance related changes.

He defines four means for supporting evolution [31]:

• tailoring, where the existing class definitions are not directly modified, but adaptations

are applied to inherited properties when deriving new subclasses. For example, when

introducing a new subclass a function inherited from its superclass may be overridden.

Or, some object-oriented languages allow a variable inherited from the superclass to be

renamed in a subclass be retain other properties.

• surgery, which are structural changes made to a particular class. These changes include

adding, removing or renaming a variable or function, or changing the type of a variable.

167

• versioning, to support configuration management of multi-person projects

• reorganization, which are more significant structural changes which may involve the in-

troduction or suppression of classes.

Adding a new, unreferenced class is an example of tailoring. Many refactorings, such as

adding a variable to a class, are examples of class surgery. The refactorings that move classes,

and the three higher level refactorings, are examples of class reorganization.

Casais’ research focuses on the final area (reorganization). His approach focuses on reuse

by inheritance. A class specification is defined as a set of properties. These properties are

either inherited or locally introduced. If classes or class “properties” (members) are arbitrarily

added to a class hierarchy, classes might inherit properties that violate their specification, or

properties may be reintroduced that could have been inherited from an existing class. Local

and global reorganization strategies are introduced. When a new class is introduced, localized

reorganizations to the class hierarchy can be applied so that the new class does not inherit

properties that are rejected in by specification. At a more global level, the same property may

appear in two otherwise unrelated classes. To avoid this duplication, the inheritance hierarchies

are globally reorganized in a way that the shared property is moved to a third class and the

two classes inherit from it.

Eliminating duplicated properties, and ensuring that the inherited behavior of a class doesn’t

violate its protocol, are useful design goals. However, these goals do not always contribute to,

and can sometimes work counter to, the more important (albeit less rigorous) goal of refactoring,

which is to improve design clarity.

Casais’ strategies sometimes, but not always, will produce what the programmer intended.

A central concept of application frameworks is that each class should correspond to a mean-

ingful abstraction. However, the reorganizations noted above can introduce classes that do not

necessarily correspond to meaningful abstractions, but rather are needed to make the mecha-

nism work. Also, there is heavy use made of multiple inheritance, which can make it difficult

to understand how inheritance hierarchies map into type specialization hierarchies.

Casais’ research makes important contributions including the characterization of changes

into the four categories listed above, his local and global reorganization strategies, and his

object model. However, as he notes in [31]:

168

Our reorganization algorithms deal exclusively with inheritance - although they

take into account a respectable number of facets associated with this mechanism.

In particular, there is no facility for splitting methods, restructuring their code, or

changing the client/server relationship between classes - for example, there is no

automatic transformation of inheritance to delegation.

These areas are addressed in the refactoring research, as Casais cites in [31]. Splitting and

restructuring functions is covered in chapter five. In chapter seven, an approach is described

for replacing inherited behavior with behavior delegated to (provided by) a component.

10.6 Managing Schema Evolution in an OODB

Work in object-oriented databases (OODBs) has been motivated by several well-known short-

comings of more conventional database technology, one being that the structural information

stored in a database schema cannot naturally model frequently useful semantic concepts, such

as generalization and aggregation relationships. Schemas evolve over time; many of the changes

made to schemas in OODBs are similar to refactorings.

Schema evolution has been studied for several OODB systems, most notably ORION [9, 66].2

Just as with refactoring, the methodology for handling schema changes has included:

• developing a taxonomy of changes

• defining a set of properties that must remain invariant across schema changes

• defining the changes in the taxonomy in a way that preserves these properties.

.

In the ORION system, a distinction is made between soft changes (those that do not require

existing instances to change their classes) and hard changes. Examples of soft changes are adding

or renaming an entity, similar to some supporting refactorings. An interesting hard change is the

partitioning of a class into several subclasses. One type of partitioning is horizontal partitioning,

a database selection operation which is analogous to specializing a class into a set of subclasses.

2Other systems include Gemstone [92], O2 and OTGen. Casais [31] compares features of these object-oriented
database systems with regard to schema evolution.

169

An existing instance is assigned to a subclass if it satisfies a “partitioning condition” which is

a kind of class invariant. Another type of partitioning is a vertical partitioning, a database

projection operation which is analogous to simplifying a complex aggregate class by defining

components and migrating members to those components. One aspect of vertical partitioning

that makes it different from migrating members to components is that, after the attributes have

been moved to the new classes, and the original class is deleted.

ORION represents aggregations as complex objects. A composite link represents a rela-

tionship between a composite object and its component. A composite link can carry special

semantics, such as the component is exclusive to one composite object. This notion of exclusive

components was applied in the refactorings described in chapter seven.

Not surprisingly, the focus of research into OODBs has been on altering and migrating

data (member variables) with less emphasis placed upon member functions. However, there are

facilities in ORION to detect when functions (methods) have been invalidated because the data

they reference has been altered due to a schema change.

Some research into OODBs has considered versioning issues and multiple inheritance, out-

side the scope of this refactoring research. Conversely, OODB research has not focused on

several topics important in refactoring, such as simplifying conditional expressions using invari-

ants, and converting an association modeled using inheritance into an aggregation.

10.7 Program Transformations

Refactorings support change by performing a type of program transformation. Research into

more ambitious forms of program transformations and automatic programming has been un-

derway for over 15 years. Early work in this area was done by Burstall and Darlington [27];

extensive work has been done by Balzer and others at USC/ISI [8], including recent work into

building an evolution transformation library[61].

This work has focused on the process of converting a formal specification into an efficient

implementation. Examples of behavior preserving transformations are:

• folding and unfolding. Folding replaces a code segment with a function call; unfolding

inline expands a function call. There are refactorings for each of these operations.

170

• abstraction. Abstraction substitutes a variable for every instance of an expression, and

defines that variable to be the value of that expression. This transformation did not arise

in the refactoring research, although there are analogous refactorings to create a function

whose body is an expression, and convert an expression to a function call.

• splitting type. This is a transformation that splits a type into subtypes, analogous to the

refactoring that specializes a class by defining subclasses.

• bubble up. This transformation moves a function out of an enclosing module and expands

its scope. Refactoring can expand the scope of a function by changing its access control

mode or by moving it to a superclass or to a component class.

Since program transformation systems begin with a formal specification rather than source

code, they can by construction avoid some of the code level complexities and dependencies that

can make refactoring source code difficult. On the other hand, it is difficult to correctly define

the input to these systems. As Balzer notes in [8], one of the chief failures in program transfor-

mation systems has been the unreadability of their specification languages. It has taken a high

level of user sophistication, both in the application domain and in the domain of specification

languages and transformations, to apply many automatic programming approaches.

Refactorings are a type of program transformation, but with an important difference from

many past transformational approaches. Those approaches usually assumed a top down process,

going from a formal, abstract specification to an implementation. In contrast, refactorings are

lower level, systematic, and are less dependent on the semantics of a program. The idea is to

raise program editing to a higher level, not to build a design language.

Software design is in many ways an informal process [63]. Studies have shown that software

designers of large systems do not proceed in a purely top down manner, but rather shift concep-

tually back and forth between high level design and low level implementation [38]. Refactorings

do not force upon a designer a rigid, top down design style. Rather, they support iterative

conceptual shifts. For example, the refactoring that defines an abstract superclass generates a

common design abstraction from low-level implementation; this design abstraction can then be

used for further low level implementation. Refactorings shield the designer from many of the

lowest level implementation details regarding program restructuring, and can make it easier to

171

shift between high level design and implementation. Furthermore, refactorings support design

without requiring the designer to be proficient in writing abstract, stylized formal specifications.

One important insight gained from research into program transformations is that while

many systems started out with the goal of fully automating the transformation process, it

became obvious that in handling non-trivial programs a transformation system required some

interaction with the user. A similar insight has been gained from the refactoring research.

10.7.1 Transforming Block Structured Languages

Griswold [52] investigated meaning preserving transformations to restructure programs written

in a block-structured programming language, to make maintaining such programs easier. The

language analyzed in this research was Scheme. From the program source, a program depen-

dency graph is created. A set of meaning preserving graph transformation rules, similar to local

compiler optimizations, are defined for manipulating statements within a block. These rules

include, for example:

• renaming a local variable

• adding a new variable to store an intermediate result

• replacing an expression with an equivalent expression (such as a variable, if the variable

has previously been assigned the value of the expression, or a function call, if the function

body is equivalent to the expression it replaces)

• converting a scaler into some nested structure (such as an array or record),

• moving an assignment into and out of a conditional block.

Like the refactoring research, this research investigated source to source program restructuring

to aid software maintenance. As Griswold notes in [52]:

The work in this thesis has focused on transformations of the syntactic constructs

of a block-structured language. For the techniques described to be widely useful

requires that they be applicable to languages with modules, classes and hierarchical

type structures.

172

Thus, his research has focused on supporting a more limited set of language features than

has the refactoring research. His work does not focus on object-oriented languages. However,

in [52] he cites our refactoring research and discusses how his approach might be applied for

object-oriented systems. He notes several complexities that inheritance causes in program

analysis and transformation; these complexities are dealt with more fully in the prior chapters

of this (refactoring) thesis.

His use of program dependency graphs and flow laws for describing source to source trans-

formations is an important contribution. One reason why he choose Scheme as a language to

analyze was because a tool was available for generating and manipulating program dependency

graphs. A valuable area for future research would be to develop and investigate the use of such

a tool for refactoring object oriented programs.

10.8 Summary

This chapter focuses on several areas of research closely related to refactoring. These areas

have included supporting good object-oriented design style, managing the evolution of object-

oriented systems, and restructuring applied to areas other than object-oriented systems.

173

Chapter 11

Conclusions

11.1 Summary of Contributions

This thesis defines a set of program restructuring operations (refactorings) specific to supporting

the design, evolution and reuse of object-oriented application frameworks. It makes several

important contributions:

1. It identifies a set of program restructurings (refactorings) that people apply to object-

oriented application frameworks.

2. It shows how to automatically support refactorings in a way that preserves the behavior

of a program.

3. It identifies a set of program restructurings (refactorings) that people apply to object-

oriented application frameworks. This set was identified by analyzing the changes made

to the Choices file system framework over a two year period, as well as a survey of related

work.

4. It shows how to automatically support refactorings in a way that preserves the behavior

of a program. Most of the refactorings are simple to implement and it is almost trivial to

show that they are behavior preserving. A small set of refactorings are much more com-

plicated. A layered hierarchy of refactorings was defined to help deal with the complexity

of the refactoring process.

174

5. It defines in detail three of the most complex refactorings: generalizing the inheritance

hierarchy, specializing the inheritance hierarchy and using aggregations to model the

relationships among classes. It decomposes these operations into more primitive parts,

and discusses the power of these operations from the perspectives of automatability and

usefulness in supporting design.

6. It defines design constraints needed in refactoring, specifically class invariants and exclu-

sive components. These constraints are needed to ensure behavior is preserved across some

refactorings. The thesis discusses how to analyze a program to determine if it satisfies

these constraints, and how to use this design information to refactor a program.

11.2 Limitations of Approach

There are several limitations of this approach:

1. It requires behavior preservation at every step. There are cases where states of temporary

inconsistency might be desirable, for example when replacing one algorithm with another.1

2. The description of refactoring in this thesis is limited by the features in the underlying

programming language being refactored. The strict inheritance relationship among types,

a feature of C++, limits type substitution, generalizing and specializing. Multiple inher-

itance is not incorporated into the refactoring approach defined here, nor are language

features such as automatic type conversion (casts in C++).

3. The power of this approach is also limited by the program analysis techniques used. The

undecidability of the basic problem REQUIRES that any ‘solution’ be conservative. The

algorithms presented in this thesis can almost certainly be improved upon. However,

an improved solution will still be conservative; there will still be cases in which valid

refactorings will be disallowed.

4. The practical utility of this approach is not known. A valuable contribution could be made

by software engineering studies of refactoring large programs written in several practical

1Refactorings can, however, be applied to localize behavior within a class or small set of classes and thereby
better encapsulate such changes.

175

(albeit complicated) languages with several different programming styles. Automated

refactoring should probably be most valuable when applied to large programs, but global

program analysis may be expensive when applied to these programs.

11.3 Implementation Considerations

Experimental research is needed, studying the role of refactoring in large, multi-person software

developments. Software process studies are needed, to better understand the role of refactoring

in concept prototyping, design refinement, implementation and maintenance tasks.

This section discusses some of the issues that would arise in implementing a practical refac-

toring system. This discussion is based on lessons learned from the prototype built as part of

this research.

A practical refactoring system would have several requirements. Since refactorings are be-

havior preserving program restructuring operations, a practical refactoring system must provide

a program representation that is rich enough to support precondition checking and perform con-

sistent updates. This chapter discusses techniques for parsing a program, and for generating

and maintaining cross reference information. To support design exploration, a system must

also be flexible and fast. Finally, for a refactoring tool to be useful, it must integrate well with

the organization targeted to use it.

11.3.1 Explicitly Representing the Structure of a Program

A textual representation of program source is not rich enough to support refactoring. Consider,

for example, the refactoring that changes the name of a member function, defined in chapter

five. This refactoring changes not only the function definition but also changes all places where

the function is called. Depending on the access control mode of the member function, it may be

referenced in its containing class, its subclasses and other places that reference an instance of one

of those classes. This refactoring must change the function name in all these places. However,

there are cases where a name substitution should not be made. The same name may be used

elsewhere in the program to refer to a variable or possibly even to a class; distinguishing these

cases requires an analysis of the program syntax. Or, a different function with the same name

176

may be defined in another, unrelated class; distinguishing this case requires type information.

A simple textual scan and replacement approach cannot make these distinctions.

Rather, a program representation is needed for refactoring that makes structural information

explicit, and that supports automated analysis, better than program source. This structural

information is needed not only to execute a refactoring, but also to check the preconditions that

determine if the refactoring is valid. For example, precondition checking for the refactoring that

changes the name of a member function involves collecting the sets of member functions defined

on a class and its superclasses. This requires syntax analysis and type information.

An abstract syntax tree, annotated with type and reference information, is a representation

can be used to refactor programs.

11.3.2 Software Refactoring Process

Current programming practice usually involves maintaining and updating programs in source

code form. In order to integrate refactoring into such environments, program source must first

be converted to an abstract syntax tree representation before refactoring, and the updated

program source must be regenerated from the representation after refactoring. Figure 11.1 (at

end of chapter) shows the stages in the refactoring process. Within a refactoring system, a

parser creates a syntax tree representation of the program source. The parse trees are passed

to the refactorer, which first analyzes the trees and adds type and cross-reference information.

Then the refactorer manipulates the representation based on commands from the user (a human

doing design or possibly a higher level program). Finally, a pretty printer is called to print the

refactored code.

The approach that we used to build the prototype was to write a simple parser from C++

into Lisp forms using a YACC-compatible specification of C++ developed by Roskind [100].

A Common Lisp [62] program, making extensive use of the Common Lisp Object System

(CLOS) facilities, used the output of the parser to build a complex structure representing

the program. Each program part was represented as an aggregation, where the aggregate

object corresponded to the root node of the parse tree and the child nodes were represented

as components. Many components were themselves the root of a sub-tree, whose children were

represented (recursively) as components. Each node in the tree was an instance of one of the

(CLOS) classes defined in the refactorer corresponding to the significant non-terminals defined

177

in the grammar. The refactorings were implemented as Common Lisp functions. A crude code

regenerator, used mostly for debugging, was implemented as a CLOS generic output function,

distributed among the classes.

Using an object-oriented approach to represent the parse tree as an aggregate object made

the factoring of some functions easy. Many of the operations on for example a class definition

involve traversing the entire tree representing the class, but only a few nodes were modified in

the process. These operations were defined as CLOS generic functions, defined on all classes

representing nodes in the tree. For most classes, these functions just consisted of calls to the

corresponding functions in the components; the interesting modifications were encapsulated

within the classes of the nodes being changed.

11.3.3 Generating and Maintaining Cross References

Refactoring one part of a program often requires changing other parts of the program that refer

to it. It is sometimes necessary (especially during precondition checking) to find all references to

a variable, function or class being changed. A refactoring system must detect these “backward

references” (that is, references to the variable, function or class), and consistently change the

program. If, for example, the refactoring that moves a variable from an aggregate class to

the class of one of its components. The refactoring involves adding a new variable to the

component class, deleting it from the aggregate class and changing references to the variable.

When refactoring is finished, it is essential that no references to the old, deleted variable be left

dangling in the system.

References made by a variable, function or class are most naturally resolved when that

object is loaded; however, there are several approaches for handling references to these parts of

a program.

At one extreme, this cross reference information can be precomputed and stored in a

database, which is updated as the program structure changes. At the other extreme, cross

reference information can be generated as needed by traversing the program structure.

Precomputing the cross reference information has the advantage of making cross reference

lookup (queries) easy, but making updates to this cross reference information can be hard.

Several tools have been developed to create these tables from C++ source code [50, 81]; tools

have also been developed for other object oriented languages. However, refactorings change

178

program structure, and almost every refactoring requires the cross reference database to be

updated. These database changes can be costly and complex.

At the other extreme, generating the cross reference information as needed from the program

structure has the advantage that the resulting cross reference information is always up to date.

When a program is refactored, there is no need to also update a separate structure that records

cross-reference information. However, tree traversals can be costly for large programs, and since

cross reference information is needed at several points in most refactorings, for a large program

this approach is probably unacceptably slow.

Approaches corresponding to these two extremes were tried in this research. The first

approach made extensive use of a cross reference database. When the program was read in

to the refactorer, several tables of semantic information were generated and stored within a

special object called the global information manager. During refactoring, when the structure

of the program was constantly changing, it was difficult to maintain consistency between the

tables and the implementation.

Then, a second approach was tried, where this information was generated dynamically. The

only reference information stored within the global information manager was the list of classes

and global declarations (functions and enumerated types). Later, when a refactoring needed to

know for example all references to a member variable, the global information manager generated

the set by traversing the relevant parse trees. Compared to the earlier approach, this approach

to handling cross reference information was simpler to implement and debug; working with

small examples there were no noticeable performance penalties.

A practical refactoring system would need a method for handling cross reference information

that falls somewhere between these two extremes. The cost of repeated tree traversals could

be prohibitive if the program being refactored is large (eg: a million lines of code). One way to

reduce the number of tree traversals needed would be to “cache” within a referenced object the

set of objects (representing parts of the program) that might refer to it, as this information is

often needed during refactoring. The cache of backward references to, for example, a variable

could be implemented as (pointers to) the set of functions that might reference the variable.2

The cache would contain a superset of all true backpointers; in other words, it would point to all

2The cache could, alternatively, be engineered to contain pointers to the classes or expressions that might
reference the variable.

179

the functions that reference the variable, plus possibly some functions that no longer reference

the variable. Since the set of backpointers is a superset of the set of true backpointers, the

cache only needs to be updated when references to the variable are added to the program (not

when they are deleted). The cache could be cleaned up when an attempt is made to find all

references to the variable; pointers to functions that no longer reference the variable would be

removed from the cache.

Clearly, for large programs the representation(s) used will influence how expensive it is to

refactor the program. One way to achieve some efficiencies in maintaining consistency between

multiple program representations is described by Griswold [52]. His restructuring of Scheme

programs used an abstract syntax tree (AST) representation, and a program dependency graph

(PDG) which recorded data flow and control flow dependencies. PDG updates were expensive.

The AST announced three events as the program was restructured: insert, delete and change.

The ‘AST-PDG consistency’ component received these events, and determined the updates

needed to the PDG. A ‘lazy consistency’ strategy was applied, where updates to the PDG were

cached and not actually applied to the PDG until after a transformation was completed and a

new transformation was about to begin. Such techniques may apply for a practical refactoring

system.

11.3.4 Supporting Design Exploration

As noted at the start of this thesis, design is hard. Designing reusable software involves cre-

ativity and exploring design alternatives. Speed and clarity of the user interface are important

in a refactoring tool that supports design exploration. A refactoring tool that is too slow will

“get in the way” and discourage trying out alternative designs. Ideally, a refactoring should

execute instantaneously. Also, since a major purpose of refactoring is to make the design on

the system clearer, and since clarity is in part subjective, it is important that a refactoring tool

make clear to the user the effects of an operation. Since alternatives are sometime explored

and then discarded, it is also useful to provide a mechanism that is flexible and can undo the

effects of a refactoring.

Refactoring a large program could be very slow if it required repeatedly generating cross

reference information that involved exhaustive tree traversals. As noted above, there are ways

that a system could be engineered to reduce the cost of these queries. Fortunately, due to

180

technology advances, issues of processing speed and memory size are becoming less of a concern

than in the past. Performance issues will be better understood as practical refactoring systems

are implemented and used.

Clarity in the user interface is important because, as discussed earlier, many refactoring

tasks (especially the more complex refactorings) require some user interaction for the results to

be useful. Rak [93] describes an interface for refactoring Smalltalk methods and migrating code

to a common superclass; his approach is described and extended in chapter six. User interface

issues regarding refactoring process is an area for future research.

Several approaches can be applied to “undo” the effects of a refactoring. Checkpointing,

logging and traditional change management techniques can be applied to roll back the effects

of changes. In some cases a refactoring (or short sequence of refactorings) can be applied to

undo the effects of an immediately prior refactoring.

In summary, a practical refactoring system that supports design exploration needs to be

fast, clear and flexible.

11.3.5 Other considerations

The value of a refactoring tool to an organization will be measured by how well it can help

that organization develop software in the relevant application domains. While the refactorings

described in this thesis are domain independent, the choice of refactorings to apply to a program

will be motivated by the user’s understanding of the domain and the state of the program.

There are several implications that an application domain can have on refactoring. If the

application has a well defined vocabulary of synonyms, this can make similarity detection easier

when creating a common superclass. On the other hand, naming conventions may restrict the

allowable renamings. Higher level refactorings may be definable that incorporate domain specific

concepts. This implies that a refactoring system should be extensible.

As with any software development tool, it must integrate well with the software development

process of the organization that is targeted to use it. The set of refactorings may need to be

extended to handle programming styles that, while unusual or non-standard, are nonetheless

used in the organization. A refactoring tool must integrate well with other tools that support

change management and other software development tasks in an organization [31, 85].

181

Large software organizations are often resistant to change; changing the names, behavior,

interrelationships and responsibilities of objects can have political as well as technical implica-

tions. Refactorings need to be prudently applied in these cases.

11.3.6 Some Promising Approaches

There has been research on automating the production of program development environments,

and the systems that are produced include the same parts (ie parsers, program transformers, and

pretty printers) as a refactory. The most well-known of these systems for generating program

development environments are the (Cornell) Synthesizer Generator [95], GANDALF [84] and

CENTAUR [22]. Ideally, these systems could be used to generate the software refactory. They

have built in facilities for generating parsers that convert source into abstract syntax trees

and pretty printers that convert abstract syntax trees into source, and provide other support

such as language directed editing and version management. The refactorings themselves are

transformations of the parse tree that are much more complex than the simple tree manipulation

primitives supported by these systems, but each system has facilities (e.g., action routines

in GANDALF and LeLisp functions in CENTAUR) for building upon the system provided

primitives.

Early in our research we analyzed CENTAUR, which is one of the most advanced of the

program development environments. The language for writing complex tree manipulations was

a form of Lisp, so is sufficiently powerful to write any kind of program transformation. However,

the overhead of learning to use CENTAUR, and of converting our grammar into a form it could

handle, did not seem to be worth the benefits it might provide for our research.

It seems likely that these or other program development environment generators would be

suitable for building a production version of the refactory. The time to learn to use such a tool

would be amortized over a much longer project life-time, so if it made the rest of the project

easier then it would pay off to use it.

11.4 Other Areas for Future Research

There are several other research areas that need further investigation:

182

1. A more rigorous / complete model of objects and their relationships, with more precise

descriptions of the type specifications of classes and a more rigorous proof of behavior

preservation, would be a valuable contribution.

2. Program analysis techniques more powerful than data flow could be studied for checking

program properties such as class invariants and exclusive components. Class invariants

with more complicated properties could be studied (for example, length(x), where x is a

member variable representing a list).

3. The set of refactorings could be extended to handle additional features of some object

oriented languages, such as multiple inheritance and parameterized types. The approach

could also be extended to handle additional features more specific to C++, such as type

casts, overloaded function names within a class, and a more powerful handling of pointers.

4. User interface approaches could be studied for assisting a user in making refactoring

related design decisions, and reflecting the effects of a refactoring operation.

5. The relationships of refactoring and version management are unclear and should be stud-

ied. These two mechanisms of supporting change are probably closely related. Refactor-

ings might serve as atomic elements for logging, undo, and recovery. Also, refactoring is

made more complicated if operations must be consistently applied to multiple versions of

a system.

6. Research is needed into dynamic program analysis (reflection) and refactoring.

Some program properties cannot always be proven invariant using conventional static

analysis techniques, but can more easily be preserved dynamically. For example, conven-

tional static analysis techniques may not correctly determine that a variable can safely be

designated as an exclusive component; this limits the use of some refactorings requiring

this as a precondition. Dynamically, however, there is a way to ensure that all instances

assigned to a particular variable are not already assigned to another component: associate

with each instance a tag listing its aggregate(s), and check this tag when assigning an

instance as a component. If the instance cannot be assigned as a component, create a

replacement or request it from a client/server. Other program properties may also be

easier to preserve dynamically than to prove statically. Refactoring an already running

183

system adds complications however; for example, what should be done to instances of

classes that were created before the classes were refactored?

11.5 Summary

This chapter summarizes the contributions of this research, lists several limitations, discussions

implementation issues and suggests several areas for future research.

184

PROGRAM TO BE
REFACTORED

REFACTORED
PROGRAM

PARSER

USER

REFACTORING COMMANDS

UPDATES DISPLAYED

PRINT COMMANDS

REFACTORER

PRETTY
PRINTER

Figure 11.1: Software Refactoring Process

185

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 1986.

[2] E. Allman and M. Stonebraker. Observations on the evolution of a software system.

Computer, 15(6):27–32, June 1982.

[3] Robert S. Arnold. An introduction to software restructuring. Tutorial on Software

Restructuring (Robert S. Arnold, ed.), 1986.

[4] E. Ashcroft and Z. Manna. The translation of “goto” programs in “while” programs. In

Proceedings of the 1971 IFIP Congress, pages 250–260. North-Holland, 1971.

[5] AT&T. UNIX System V User Reference Manual. AT&T, 1984.

[6] Maurice J. Bach. The Design of the UNIX Operating System. Prentice Hall, 1986.

[7] B. S. Baker. An algorithm for structured programs. Journal of the ACM, 24(1):98–120,

1977.

[8] Robert Balzer. A fifteen-year perspective on automatic programming. In Software

Reusability - Volume II: Applications and Experience, pages 289–311, 1989.

[9] Jay Banerjee and Won Kim. Semantics and implementation of schema evolution in object-

oriented databases. In Proceedings of the ACM SIGMOD Conference, 1987.

[10] D. R. Barstow, H. E. Shrobe, and E. Sandewall. Interactive Programming Environments.

McGraw-Hill, 1984.

[11] V. Basili. Tutorial on Models and Metrics for Software Management and Engineering.

IEEE Computer Society Press, 1980.

186

[12] Carol Sue Beckman-Davies. Finding Program Differences Based on Syntactic Tree Struc-

ture. PhD thesis, University of Illinois at Urbana-Champaign, 1989.

[13] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1983.

[14] G. D. Bergland. A guided tour of program design methodologies. Computer, 14(10):18–37,

October 1981.

[15] Paul L. Bergstein. Object-preserving class transformations. In Proceedings of OOPSLA

‘91, 1991.

[16] Ted Biggerstaff and Charles Richter. Reusability framework, assessment, and directions.

Tutorial: Software Reuse - Emerging Technology (Will Tracz, ed.), 1988.

[17] Ted J. Biggerstaff. Design recovery for maintenance and reuse. IEEE Computer, pages

36–49, July 1989.

[18] Ted J. Biggerstaff and Alan J. Perlis (eds). Software Reusability - Volume I: Concepts

and Models. Addison-Wesley Publishing Company, Inc., 1989.

[19] Ted J. Biggerstaff and Charles Richter. Reusability framework, assessment, and directions.

In Software Reusability - Volume I: Concepts and Models, pages 1–19, 1989.

[20] C. Bohm and G. Jacopini. Flow diagrams, turing machines, and languages with only two

formation rules. Communications of the ACM, 9(5):366–371, May 1966.

[21] Grady Booch. Object-Oriented Design. Benjamin/Cummings, 1990.

[22] P. Borras and D. Clement. Centaur: the system. In Proceedings of the ACM SIG-

SOFT/SIGPLAN Software Engineering Symposium on Practical Software Development

Environments, pages 14–24, 1988.

[23] James M. Boyle. Abstract programming and program transformation - an approach to

reusing programs. In Software Reusability - Volume I: Concepts and Models, pages 361–

414, 1989.

[24] Frederick P. Brooks. No silver bullet - essence and accidents of software engineering.

IEEE Computer, pages 10–19, April 1987.

187

[25] P. J. Brown. Why does software die? Infotech State of the Art Report, 8(7):32–45, 1980.

[26] K. Burns. Using automated techniques to improve the maintainability of existing software.

In DSSD User’s Conference/6 - Maintenance, pages 33–39, 1981.

[27] R. M. Burstall and J. Darlington. A transformation system for developing recursive

programs. Journal of the ACM, 24(1):44–67, 1977.

[28] M. H. Burstein. Concept formation by incremental analogical reasoning and debugging.

Machine Learning: An Artificial Intelligence Approach (R.S. Michalski, J. G. Carbonell

and T. M. Mitchell, eds), 2:351–370, 1986.

[29] R. Canning. Rejuvenate your old systems. EDP Analyzer, 22(3):1–16, March 1984.

[30] Eduardo Casais. Reorganizing an Object System, pages 161–189. Centre Universitair

d’Informatique, Universite de Geneve, 1989.

[31] Eduardo Casais. Managing Evolution in Object Oriented Environments: An Algorithmic

Approach. PhD thesis, University of Geneva, 1991.

[32] Michael J. Cavaliere. Reusable code at the hartford insurance group. In Software Reusabil-

ity - Volume II: Applications and Experience, pages 131–142, 1989.

[33] Thomas E. Cheatham. Reusability through program transformations. In Software

Reusability - Volume I: Concepts and Models, pages 321–336, 1989.

[34] Elliot J. Chikofsky. Reverse engineering and design recovery: A taxonomy. IEEE Software,

pages 13–17, January 1990.

[35] Song C. Choi and Walt Scacchi. Extracting and restructuring the design of large systems.

IEEE Software, pages 66–71, January 1990.

[36] Peter Coad and Ed Yourdon. OOA - Object-Oriented Analysis. Prentice-Hall, 1990.

[37] Department of Electrical Engineering Computer Science Division and Computer Science.

UNIX Programmer’s Manual, 4.2 Berkeley Software Distribution, Virtual VAX-11 Ver-

sion. University of California at Berkeley, August 1983.

188

[38] Curtis, Krasner, and Iscoe. A field study of the software design process for large systems.

Communications of the ACM 31:11, pages 1268–1287, 1988.

[39] N. Dershowitz. Programming by analogy. Machine Learning: An Artificial Intelligence

Approach (R.S. Michalski, J. G. Carbonell and T. M. Mitchell, eds), 2:395–424, 1986.

[40] L. Peter Deutsch. Design reuse and frameworks in the smalltalk-80 system. In Software

Reusability - Volume II: Applications and Experience, pages 57–72, 1989.

[41] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.

Addison-Wesley Publishing Co., Reading, MA, 1990.

[42] M. Fagan. Design and code inspection to reduce errors in program development. IBM

Systems Journal, 15(3):182–212, 1976.

[43] Martin S. Feather. Reuse in the context of a transformation-based methodology. In

Software Reusability - Volume I: Concepts and Models, pages 337–360, 1989.

[44] Charles N. Fischer and Jr. Richard J. LeBlanc. Crafting a Compiler. Benjamin Cummings,

1988.

[45] Gerhard Fischer. Cognitive view of reuse and redesign. IEEE Software, 4(4):60–72, 1987.

[46] Brian Foote. An Object-Oriented Framework for Reflective Meta-Level Architectures.

Ph.D. thesis in preparation, University of Illinois at Urbana-Champaign.

[47] D. Freedman and G. Weinberg. Handbook of Walkthroughs, Inspections and Technical

Reviews (3rd Edition). Little Brown, 1982.

[48] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison-

Wesley, Reading, Massachusetts, 1984.

[49] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.

Addison-Wesley, Reading, Massachusetts, 1983.

[50] J. E. Grass and Y. F. Chen. The C++ Information Abstractor. In Usenix C++ Conference

Proceedings, pages 265–278, San Francisco, CA, April 1990.

[51] R. Greiner. Learning by understanding analogies. Artificial Intelligence, 35:81–125, 1988.

189

[52] William G. Griswold. Program Restructuring as an Aid in Software Maintenance. PhD

thesis, University of Washington, 1991.

[53] Daniel C. Halbert and Patrick D. O’Brien. Using types and inheritance in object-oriented

programs. IEEE Software, pages 71–79, September 1987.

[54] Patrick A. V. Hall and Geoff R. Dowling. Approximate string matching. Computing

Surveys, 12(4):381–402, December 1980.

[55] Mehdi T. Harandi and Jim Q. Ning. Knowledge-based program analysis. IEEE Software,

pages 74–81, January 1990.

[56] M. S. Hecht and J. D. Ullman. Flow graph reducability. SIAM J. Computing, 1:188–202,

1972.

[57] Apple Computer Inc. Lisa Toolkit 3.0. Apple Computer, 1984.

[58] William A. Jindrich. Foible: A framework for visual programming languages. Master’s

thesis, University of Illinois at Urbana-Champaign, 1990.

[59] Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented

Programming, 1(2):22–35, 1988.

[60] Ralph E. Johnson, Justin O. Graver, and Lawrence W. Zurawski. TS: An optimizing

compiler for Smalltalk. In Proceedings of OOPSLA ‘88, pages 18–26, November 1988.

printed as SIGPLAN Notices, 23(11).

[61] W. Lewis Johnson and Martin Feather. Building an evolution transformation library. In

Proceedings of the 12th International Conference on Software Engineering, pages 238–247,

1990.

[62] Guy L. Steele Jr. Common LISP: The Language (2rd Edition). Digital Press, Bedford,

MA, 1990.

[63] Simon M. Kaplan. Coed: Conversation-oriented software environments. In Proceedings

of IFIP Conference on Human Facors in Information Systems, Scharding, Austia., June

1990.

190

[64] S. T. Kedar-Cabelli. Purpose-directed analogy. In Proceedings Seventh Annual Conference

of the Cognitive Science Society, Irvine, CA, August 1985.

[65] B. W. Kernighan and P. J. Plauger. Elements of Programming Style. McGraw-Hill, 1974.

[66] Won Kim. Introduction to Object-Oriented Databases. MIT Press, 1990.

[67] S. R. Kosaraju. Analysis of structured programs. Journal of Computer and System

Sciences, 9(3):232–255, 1974.

[68] Robert G. Lanergan and Charles A. Grasso. Software engineering with reusable designs

and code. In Software Reusability - Volume II: Applications and Experience, pages 187–

196, 1989.

[69] Karl Lieberherr. Concepts of Object-Oriented Data Modeling and Programming. ACM,

1991. Presented as Tutorial No. 16 at OOPSLA ’91.

[70] Karl Lieberherr, Walter J. Hursch, and Cun Xiao. Object-extending class transformations

(draft). Technical report, College of Computer Science, Northeastern University, 360

Huntington Ave., Boston MA 02115, 1991.

[71] Karl J. Lieberherr and Ian M. Holland. Assuring good style for object-oriented programs.

IEEE Software, pages 38–48, September 1989.

[72] Karl J. Lieberherr, Ian M. Holland, and A. Riel. Object-oriented programming: An

objective sense of style. In Proceedings of OOPSLA ‘88, pages 323–334, September 1988.

[73] R. C. Linger, H. D. Mills, and R. J. Witt. Structured Programming: Theory and Practice.

Addison-Wesley, 1979.

[74] Barbara Liskov. Data abstraction and hierarchy. In Addendum to the Proceedings of

OOPSLA ‘87, 1987.

[75] M. J. Lyons. Salvaging your software asset (tools based maintanance). In Proceedings of

the National Computer Conference 1981, pages 337–341. AFIPS Press, 1981.

[76] Peter W. Madany. An Object-Oriented Framework for File System. Ph.D. thesis in

preparation, University of Illinois at Urbana-Champaign.

191

[77] Peter W. Madany, Roy H. Campbell, Vincent F. Russo, and Douglas E. Leyens. A Class

Hierarchy for Building Stream-Oriented File Systems. In Proceedings of the 1989 European

Conference on Object-Oriented Programming, Nottingham, UK, July 1989.

[78] J. Martin and C. McClure. Software Maintenance: The Problem and Its Solution.

Prentice-Hall, 1983.

[79] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[80] Ware Meyers. Interview with wilma osborne. IEEE Software, 5(3):104–105, 1988.

[81] Scott Meyers Moises Lejter and Steven P. Reiss. Support for Maintaining Object-Oriented

Programs. In Proceedings of the 1991 Conference on Software Maintenance, pages 171–

178, Sorrento, Italy, October 1991.

[82] H. W. Morgan. Evolution of a software maintenance tool. In Proceedings of the 2nd

National Conference on EDP Software Maintenance, pages 268–278. US Professional De-

velopment Institute, 1984.

[83] James M. Neighbors. Draco: A method for engineering reusable software systems. In

Software Reusability - Volume I: Concepts and Models, pages 275–294, 1989.

[84] David et al. Notkin. The Journal of Systems and Software Special Issue: The GANDALF

Project. Elsevier Science Publishing Co., May 1985.

[85] William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in designing application

frameworks and evolving object-oriented systems. In Proceedings of Symposium on Object-

Oriented Programming Emphasizing Practical Applications (SOOPPA), September 1990.

[86] Tim O’Shea, Kent Beck, Dan Halbert, and Kurt J. Schmucker. Panel on: The learnability

of object-oriented programming systems. In Proceedings of OOPSLA ‘86, pages 502–504,

November 1986. printed as SIGPLAN Notices, 21(11).

[87] D. L. Parnas. Designing software for ease of extension and contraction. Communications

of the ACM, 15(12):1053–1058, December 1972.

[88] D. L. Parnas. Designing software for ease of extension and contraction. IEEE Transactions

on Software Engineering, 5(2):128–138, March 1979.

192

[89] David L. Parnas and P. C. Clements. A rational design process: How and why to fake it.

In Proceedings of International Joint Conference on Theory and Practice ov Software De-

velopment (TAPSOFT), 1985. Reprinted in IEEE Transactions on Software Engineering

SE-12:2, February, 1986.

[90] D. L. Parnass, P.C. Clements, and D.M. Weiss. The modular structure of complex sys-

tems. In Proceedings of the 7th International Conference on Software Engineering, pages

408–417, 1984.

[91] H. Partsch and R. Steinbruggen. Program transformation systems. Computing Surveys,

15(3):199–236, September 1983.

[92] D. Jason Penney and Jacob Stein. Class modification in the gemstone object-oriented

dbms. In Proceedings of OOPSLA ‘87, 1987.

[93] Edward J. Rak. Two redesign tools for smalltalk. Master’s thesis, University of Illinois

at Urbana-Champaign, 1990.

[94] Thomas W. Reps. Incremental evaluation for attribute grammars with unrestricted move-

ment between tree modification. Acta Informatica, 25(2):155–178, 1988.

[95] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator: A System for Con-

structing Language-Based Editors. Springer-Verlag, 1989.

[96] John R. Rice and Herbert D. Schwetman. Interface issues in a software parts technology.

In Software Reusability - Volume I: Concepts and Models, pages 125–140, 1989.

[97] Charles Rich and Linda M. Wills. Recognizing a program’s design: A graph-parsing

approach. IEEE Software, pages 82–89, January 1990.

[98] Roxanna Rochat. In search of good smalltalk programming style. Technical Report

CR-86-19, Tektronix, 1986.

[99] Marc J. Rochkind. The source code control system. IEEE Transactions on Software

Engineering, SE-1(4):364–370, December 1975.

193

[100] James A. Roskind. YACC compatible C++ grammar (and Related Tools). 516 Latania

Palm Drive; Indialantic FL 32903 USA. Author can be reached by email at jar@ileaf.com

or uunet!leafusa!jar. Software available via ftp from several sites.

[101] James et al Rumbaugh. Object-Oriented Modeling and Design. Prentice Hall, 1991.

[102] Vince Russo, Gary Johnston, and Roy H. Campbell. Process Management in Multipro-

cessor Operating Systems using Class Hierarchical Design. In Proceedings of OOPSLA

’88, San Diego, Ca., September 1988.

[103] Vincent Russo and Roy H. Campbell. Virtual Memory and Backing Storage Management

in Multiprocessor Operating Systems using Class Hierarchical Design. In Submitted to

OOPSLA ’89, 1989. Also available as University of Illinois Technical Report.

[104] Vincent F. Russo. An Object-Oriented Operating System. PhD thesis, University of Illinois

at Urbana-Champaign, 1991.

[105] Vincent F. Russo and Simon M. Kaplan. A c++ interpreter for scheme. In Proceed-

ings of the USENIX C++ Workshop, pages 95–108, 1988. Also Technical Report

No. UIUCDCS–R–88–1461, Department of Computer Science, University of Illinois at

Urbana-Champaign.

[106] Barbara Ryder. Paper on incremental data flow ananysis. In Conference Record of the

Seventeenth Annual ACM Symposium on Principles of Programming Languages, 1990.

[107] Barbara G. Ryder and Marvin C. Paull. Elimination algorithms for data flow analysis.

ACM Computing Surveys, 18(3):231–276, September 1986.

[108] Markku Sakkinen. Comments in the law of demeter and c++. SIGPLAN Notices, pages

38–44, December 1988.

[109] David Sankoff and Joseph B. Kruskal. Macromolecular sequences. In Time Warps,

String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison (D.

Sankoff and J. Kruskal, eds), pages 45–53, 1983.

[110] Walt Scacchi. The USC system factory project. ACM SIGSOFT Software Engineering

Notes, 14(1):61–82, January 1989.

194

[111] Stanley M. Selkow. The tree-to-tree editing problem. Information Processing Letters,

6(6):184–186, December 1977.

[112] B. Shneiderman and G. Thomas. An architecture for utomatic relational database system

conversion. In ACM Transactions on Database Systems, pages 235–257, June 1982.

[113] M. J. Spier. Software malpractice - a distasteful experience. Software - Practice and

Experience, 6:293–299, 1976.

[114] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Com-

pany, 1986.

[115] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the ACM, 26(3):422–433,

July 1979.

[116] Walter F. Tichy. Tools for software configuration management. In Proceedings of the In-

ternational Workshop on Software Version and Configuration Control (J. F. H. Winkler,

ed), pages 1–20, 1988.

[117] Will Tracz. Tutorial: Software Reuse - Emerging Technology. IEEE Computer Society,

1988.

[118] V. Vyssotsky and P. Wegner. A graph theoretical fortran source language analyzer.

Manuscript, AT&T Bell Laboratories, Murray Hill, NJ, 1963.

[119] Robert A. Wagner. Order-n correction for regular languages. Communications of the

ACM, 17(5):265–268, 1974.

[120] Robert A. Wagner and Michael J. Fisher. The string-to-string correction problem. Journal

of the ACM, 21(1):168–173, January 1974.

[121] S. Warren. Map: A tool for understanding software. In Proceedings of the 6th International

Conference on Software Engineering, pages 28–37. IEEE Computer Society, 1982.

[122] A. I. Wasserman. Tutorial: Software Development Environments. IEEE Computer Soci-

ety, 1981.

[123] G. M. Weinberg. Kill that code! Infosystems, pages 48–49, August 1983.

195

[124] Reinhard Wilhelm. A modified tree-to-tree correction problem. Information Processing

Letters, 12(3):127–132, June 13 1981.

[125] Rebecca Wirfs-Brock and Brian Wilkerson. Object-oriented design: A responsibility-

driven approach. In Proceedings of OOPSLA ‘89, pages 71–75, October 1989.

[126] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented

Software. Prentice-Hall, 1990.

[127] Rebecca J. Wirfs-Brock and Ralph E. Johnson. A survey of current research in object-

oriented design. Communications of the ACM, September 1990.

[128] E. Yourdon. Techniques of Program Structure and Design. Prentice-Hall, 1975.

[129] Jonathan Zweig and Ralph Johnson. Conduits: A communication abstraction in c++.

In Proceedings of the USENIX C++ Workshop, pages 191–203, 1990.

196

Vita

William F. Opdyke attended Drexel University in Philadelphia, Pennsylvania, where he received
bachelor of science degrees in computer science and in commerce and engineering sciences,
both in 1979. While attending Drexel University he completed computer related cooperative
education work assignments at IBM and Sun (Oil) Co. After graduating from Drexel University,
he worked for two years in a software quality assurance organization at Sperry Univac.

Dr. Opdyke joined AT&T Bell Laboratories in 1981. He received an MS degree in Com-
puter Sciences from the University of Wisconsin - Madison in 1982, supported under AT&T’s
graduate study program. Then, at Bell Labs he helped plan the evolution of switched digital
telecommunications services, and investigated the application of knowledge-based and relat-
ed technologies to assist in very large scale software developments. He was approved for the
doctoral support program in 1988.

Dr. Opdyke pursued his doctoral research under the supervision of Prof. Ralph E. Johnson.
He received his PhD from the University of Illinois at Urbana-Champaign in 1992.

Dr. Opdyke is currently a Member of Technical Staff at AT&T Bell Laboratories. His
research interests include object-oriented programming and design, software restructuring and
application modeling using object-oriented frameworks.

197

