
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2012; 6:658–673

Published online 23 August 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.360
RESEARCH ARTICLE

Semantically rich application-centric security inAndroid
Machigar Ongtang1, Stephen McLaughlin2*, William Enck3 and Patrick McDaniel2

1 Faculty of Information Technology, Dhurakijpundit University, Bangkok 10210, Thailand
2 SIIS Laboratory, Department of Computer Science and Engineering, The Pennsylvania State University, University Park,

PA 16802, U.S.A.
3 Department of Computer Science, North Carolina State University, Raleigh, NC 17695, U.S.A.
ABSTRACT

Smartphones are now ubiquitous. However, the security requirements of these relatively new systems and the applications
they support are still being understood. As a result, the security infrastructure available in current smartphone operating sys-
tems is largely underdeveloped. In this paper, we consider the security requirements of smartphone applications and aug-
ment the existing Android operating system with a framework to meet them. We present Secure Application INTeraction
(Saint), a modified infrastructure that governs install-time permission assignment and their run-time use as dictated by ap-
plication provider policy. An in-depth description of the semantics of application policy is presented. The architecture and
technical detail of Saint are given, and areas for extension, optimization, and improvement are explored. We demonstrate
through a concrete example and study of real-world applications that Saint provides necessary utility for applications to
assert and control the security decisions on the platform. Copyright © 2011 John Wiley & Sons, Ltd.

KEYWORDS

security; android; smartphones

*Correspondence

Stephen McLaughlin, SIIS Laboratory, Department of Computer Science and Engineering, The Pennsylvania State University,
University Park, PA 16802, U.S.A.
E-mail: smclaugh@cse.psu.edu
† http://www.android.com.
1. INTRODUCTION

Smartphones have spurred a renaissance in mobile comput-
ing. The applications running on smartphones support vast
new markets in communication, entertainment, and com-
merce. Hardware, access, and software supporting such
applications are now widely available and often surpris-
ingly inexpensive, for example, Apple’s App Store [5],
Android’s Market [14], and BlackBerry App World [25].
As a result, smartphone systems have become pervasive.

Mobile phone applications are shifting from stand-alone
designs to a collaborative (service) model. In this emerging
environment, applications expose selected internal features
to other applications and use those provided by others. In
the latter case, applications simply search and use appro-
priate providers of a service type at run time, rather than
bind itself to specific implementations during develop-
ment. This allows a rich culture of “use and extend” devel-
opment that has led to an explosion of innovative
applications. This culture is possibly best illustrated in
the Android† operating system community and is also
available in other smartphone operating systems such as
658
Access Linux Platform [3]. Furthermore, iOS (formerly
iPhone OS) has also made a step toward this application
paradigm. In particular, the recently released iOS 4 sup-
ports multitasking, which allows iPhone to run multiple
third-party applications simultaneously [6].

The security model of the Android system (and that of
many other phone operating systems) is “system-centric”.
Applications statically identify the permissions that govern
the rights to their data and interfaces at installation time.
However, the application/developer has limited ability
thereafter to govern to whom those rights are given or
how they are later exercised. In essence, permissions are
asserted as often vague suggestions on what kinds of pro-
tections the application desires. The application must take
on faith that the operating system and user make good
choices about which applications to give those permis-
sions—which in many cases is impossible because they do
not have sufficient context to do so.
Copyright © 2011 John Wiley & Sons, Ltd.

Figure 1. The PersonalShopper application finds desired items
at the discretion of the user and interacts with vendors and pay-

ment applications to purchase them.

Semantically rich application-centric security in AndroidM. Ongtang et al.
Consider a hypothetical PayPal service built on Android.
Applications such as browsers, email clients, software mar-
ketplaces, music players, and so on use the PayPal service
to purchase goods. The PayPal service in this case is an ap-
plication that asserts permissions that must be granted to
the other applications that use its interfaces. What is a legiti-
mate application? Only PayPal the application (really PayPal
the corporation) is in a position to know the answer to that
question. This is more than simply a question of which
application is making the request (which in many cases in
Android is unknowable to the application being called), but
also where, when, how, and under what conditions the re-
quest is being made. Unfortunately, Android does not pro-
vide any means for answering those questions or enforcing
a security policy based upon them. Simply put, the Android
system protects the phone from malicious applications, but
provides severely limited infrastructure for applications to
protect themselves. Based on extensive development of
Android applications, we observe three essential applica-
tion policies not available to applications in the Android
security framework [21]:

1) Permission assignment policy—Applications have
limited ability to control to whom permissions for
accessing their interfaces are granted, for example,
whitelist or blacklist applications.

2) Interface exposure policy—Android provides only
rudimentary facilities for applications to control
how their interfaces are used by other applications.

3) Interface use policy—Applications have limited
means of selecting, at run time, which application’s
interfaces they use.

This paper introduces the Secure Application INTerac-
tion (Saint) framework that extends the existing Android
security architecture with policies that address these key
application requirements.

In the Saint-enhanced infrastructure, applications pro-
vide installation-time policies that regulate the assignment
of permissions that protect their interfaces. At run time,
access of or communication between applications is sub-
ject to security policies asserted by both the caller and
callee applications. Saint policies go far beyond the static
permission checks currently available in Android by
restricting access based on run-time state, for example, lo-
cation, time, phone or network configuration, and so on.
We define the Saint framework and discuss the com-
plexities of augmenting Android with extended policy en-
forcement features and develop mechanisms for detecting
incompatibilities and dependencies between applications.

We begin our discussion with a motivating example.
2. SMARTPHONE APPLICATION
SECURITY

Figure 1 presents the fictitious PersonalShopper smartphone
shopping application. PersonalShopper tracks the items a
Security Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
user wishes to buy and interacts with payment applications
to purchase them. A user enters desired items through the
phone’s user interface (potentially by clicking on items
on a browser, media player, etc.), creating a vender inde-
pendent “shopping cart”. Users subsequently acquire items
in one of two ways. The user can direct the application to
“find” an item by clicking on it. In this case, the appli-
cation will search known online vendors or shopping
search sites (e.g., Google Product Search) to find the
desired item. Where multiple vendors provide the same
item, the user selects their vendor choice through a
menu. The second means for finding a product is by
geography—a user moving through, for example, a mall
can be alerted to the presence of items available in a
physical store by a location-based search application.
In this case, she will be directed to the brick-and-mortar
vendor to obtain the item.

Regardless of how the item is found, PersonalShopper’s
second objective is to facilitate the purchase process itself.
In this case, it works with our example checkout applica-
tions SecurePayer and TrustCheckout. PersonalShopper
accesses checkout applications and acts as an intermediary
between the buyer and the merchants to both improve the
efficiency of shopping and to protect customer privacy.
The application and the services they use will interact with
password vaults to provide authenticating credentials. Af-
ter their completion, the transactions are recorded in a per-
sonal ledger application.

Consider a few (of many) security requirements this ap-
plication suggests:

1. PersonalShopper should only use trusted payment
services. In Figure 1, it may trust SecurePayer and
TrustCheckout but does not trust other unknown
payment providers (e.g., the M-Payer provider).

2. PersonalShopper may only want to restrict the use of
the service to only trusted networks under safe condi-
tions. For example, it may wish to disable searches
while the phone is using unprotectedWiFi connection.

3. PersonalShopper may require certain versions of ser-
vice software be used. For example, the password
659

Semantically rich application-centric security in Android M. Ongtang et al.
vault application v. 1.1 may contain a bug that leaks
password information. Thus, the application would
require the password vault be v. 1.2 or higher.

4. PersonalShopper may wish to ensure transaction infor-
mation is not leaked by the phone’s ledger application.
Thus, the application wishes to only use ledgers that do
not have access to the Internet.

5. Applications providing functionality to PersonalShop-
per may also place security requirements on it. For ex-
ample, to preserve location privacy, the location-based
search application may only provide PersonalShopper
location information only where PersonalShopper
holds the permissions to access location information it-
self, for example, the phone’s GPS service.

None of these policies are supported by the current An-
droid security system. Although some of these may be par-
tially emulated using combinations of complex application
code, code signing, and permission structures, they are
simply outside the scope of Android’s security policy. As
a consequence (and core to our extensive experience build-
ing systems in Android), applications must cobble together
custom security features on top of the rudimentary struc-
tures currently provided by the Android system. Where
possible at all, this process is ad hoc, error prone, repeti-
tive, and inexact.

What is needed is for Android to provide applications a
more semantically rich policy infrastructure. We begin our
investigation by outlining the Android system and security
mechanisms. Section 4 examines a spectrum of policies
that are potentially needed to fulfill the applications’ secu-
rity requirements, highlighting those that cannot be satis-
fied by the current Android. We then introduce goals,
design, and implementation of the Saint system.
3. ANDROID

Android is a mobile phone platform developed by the
Google-led Open Handset Alliance.{

The platform quickly became popular among the devel-
oper community for its open source nature and adoption by
telecommunications providers worldwide.

Although Android is based on Linux, the middleware
presented to application developers hides traditional OS
abstractions. The platform itself focuses on applications,
and much of the core phone functionality is implemented
as applications in the same fashion used by third-party
developers.

Android applications are primarily written in Java and
compiled into a custom byte-code (DEX). Each application
executes in a separate Dalvik virtual machine interpreter in-
stance running as a unique user identity. From the perspective
of the underlying Linux system, applications are ostensibly
isolated. This design minimizes the effects of a compromise,
{ http://www.openhandsetalliance.com/.

660 Sec
for example, an exploited buffer overflow is restricted to the
application and its data [16].

All interapplication communication passes through mid-
dleware’s binder Inter-Process Communication (IPC)
mechanism (our discussion assumes all IPC is binder
IPC). Binder provides base functionality for application
execution. Applications are composed of components.
Components primarily interact using the Intent messages.
An Intent includes two main pieces of information,
namely, the address of the receiving component and the
data to be passed to such component. Although Intent
messages can explicitly address a component in an appli-
cation by name, a more prevailing manner is to implicitly
address the Intent with action string describing what ac-
tion has occurred or what action is to be done. The action
string can be one of the Android’s predefined actions or
a developer-defined action string. Recipient components
assert their desire to receive Intent messages by defining
Intent filters specifying one or more action strings. When
the Intents are sent out, the Android middleware automati-
cally resolves for the appropriate components for handling
such event based on the declared assertion.

There are four types of components used to construct
applications; each type has a specific purpose. Activity
components interface with the user via the touchscreen
and keypad. Typically, each displayed screen within an ap-
plication is a different Activity. Only one Activity is active
at a time, and processing is suspended for all other activi-
ties, regardless of the application. Service components pro-
vide background processing for use when an application’s
Activities leave focus. Services can also export Remote
Procedure Call interfaces including support for callbacks.
Broadcast Receiver components provide a generalized
mechanism for asynchronous event notifications. Tradi-
tionally, Broadcast Receivers receive Intents implicitly
addressed with action strings. Standard action strings in-
clude events for “boot completed” and “SMS received.”
Finally, Content Provider components are the preferred
method of sharing data between applications. The Content
Provider Application Programming Interface (API) imple-
ments an Structured Query Language (SQL)-like interface;
however, the back-end implementation is left to the appli-
cation developer. The API includes support to read and
write data streams, for example, if Content Provider shares
files. Unlike the other component types, Content Providers
are not addressed via Intents but rather a content Uniform
Resource Identifier (URI). It is the interaction between ap-
plication components for which we are concerned. Figure 2
depicts common IPC between component types.

Android’s application-level security framework is
based on permission labels enforced in the middleware ref-
erence monitor [4]. A permission label is simply a unique
text string that can be defined by both the OS and third-
party developers. Android defines many base permission
labels. From an OS-centric perspective, applications are
statically assigned permission labels indicating the sensi-
tive interfaces and resources accessible at run time; the per-
mission set cannot grow after installation. Application
urity Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Figure 2. Typical Android application component IPC.

Semantically rich application-centric security in AndroidM. Ongtang et al.
developers specify a list of permission labels the application
requires in its package manifest; however, requested permis-
sions are not always granted.

Permission label definitions are distributed across the
framework and package manifest files. Each definition spe-
cifies “protection level.” The protection level can be “nor-
mal,” “dangerous,” “signature,” or “signature or system.”
Upon application installation, the protection level of
requested permissions is consulted. A permission with the
protection level of normal is always granted. A permission
with the protection level of dangerous is always granted if
the application is installed; however, the user must confirm
all requested dangerous permissions together. Finally, the
signature protection level influences permission granting
without user input. Each application package is signed by
a developer key (as is the framework package containing
OS-defined permission labels). A signature-protected per-
mission is only granted if the application requesting it is
signed by the same developer key that signed the package
defining the permission label. Many OS-defined permis-
sions use the signature protection level to ensure only appli-
cations distributed by the OS vendor are granted access.
Finally, the “signature or system” protection level operates
the same as the signature level, but in addition, the permis-
sion is granted to applications signed by the key used for the
system image.

The permission label policy model is also used to pro-
tect applications from each other. Most permission label
Figure 3. Policy tree illustrating the example policies required by app
ing platfo

Security Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
security policy is defined in an application’s package man-
ifest. As mentioned, the package manifest specifies the per-
mission labels corresponding to the application’s functional
requirements. The package manifest also specifies a per-
mission label to protect each application component (e.g.,
Activity, Service, etc). Put simply, an application may ini-
tiate IPC with a component in another (or the same) appli-
cation if it has been assigned the permission label specified
to restrict access to the target component. Using this pol-
icy and permission protection levels, application developers
can specify how other applications access its components.
For a more complete description of the Android application-
level security policy and its subtleties, see the study of Enck
et al. [13].

The permission label-based security policy stems from the
nature of mobile phone development. Manually managing ac-
cess control policies of hundreds (thousands) of potentially un-
known applications is infeasible in many regards. Hence,
Android simplifies access control policy specification by hav-
ing developers define permission labels to access their inter-
faces. The developer does not need to know about all
existing (and future) applications. Instead, the permission label
allows the developer to indirectly influence security decisions.
However, the adoption of such label-based policy has resulted
in several limitations of Android’s security framework as
introduced in Section 1.
4. APPLICATION POLICIES

We explored a myriad of applications as a means of under-
standing the appropriate set of policy expressibility. An
initial policy taxonomy is presented in Figure 3. Android
only supports a subset of the policies classes shown in
the figure, as denoted by the double-stroke boxes.

The permission-granting policy (1) regulates permis-
sion assignment. In addition to controlling permission
granting using Android’s protection level-based policy
(1.1), an application A may require signature-based policy
(1.2) to control how the permissions it declares are
lications. The double-stroke boxes indicate support by the exist-
rm.

661

Semantically rich application-centric security in Android M. Ongtang et al.
granted based on the signature of the requesting applica-
tion B (A and B may be signed by different developer
keys). Instead, the policy grants (or denies) the permission
by default with an exception list that denies (grants) the
applications signed by the listed keys. An application
may also require configuration-based policy (1.3) to con-
trol permission assignment based on the configuration
parameters of the requesting application, for example, the
set of requested permissions and application version.

The interaction policy (2) regulates run-time interaction
between an application and its opponent. An application
A’s opponent is an application B that accesses A’s
resources or is the target of an action by A, depending on
the access control rule (i.e., B is A’s opponent for rules de-
fined by A, and A is B’s opponent for rules defined by B).
Android’s existing permission-based access control policy
(2.1) provides straightforward static policy protection, as
described in Section 3. However, this policy is coarse
grained and insufficient in many circumstances. Applica-
tions may require signature-based policy (2.2) to restrict
the set of the opponent applications based on their signa-
tures. Similar to that mentioned, the default-allow and de-
fault-deny modes are needed. With configuration-based
policy (2.3), the applications can define the desirable con-
figurations of the opponent applications, for example, the
minimum version and a set of permissions that the oppo-
nent is allowed (or disallowed). Lastly, the applications
may wish to regulate the interactions based on the transient
state of the phone. The phone context-based policy (2.4)
governs run-time interactions based on context such as lo-
cation, time, Bluetooth connection and connected devices,
call state, data state, data connection network, and battery
level. Note that initially, policy types 2.2 and 2.3 may ap-
pear identical to 1.2 and 1.3; however, the former types
also place requirements on the target application, which
cannot be expressed with 1.2 and 1.3. However, 1.2 and
1.3 are desirable, because when applicable, they have no
run-time overhead.

We now present two example application policies re-
lated to our motivating example, PersonalShopper, which
interacts with checkout applications, password vaults,
location-based search applications, and personal ledgers.

Install-time policy example: In our PersonalShopper
example, the location-based search application (com.
abc.lbs) wants to protect against an unauthorized leak
of location information from its “QueryByLocation”
service. Permission-granting policy can be applied when
the PersonalShopper requests the permission com.abc.
perm.getloc used to protect “QueryByLocation”. It
needs application configuration-based policy to specify that
for the permissioncom.abc.perm.getloc to be granted,
the requester must also have the “ACCESS_LOCATION”
permission.

Run-time policy example: To ensure that the checkout
application used for payment is trusted, their signatures
must be checked. The PersonalShopper needs signature-
based policy to specify that when the source “Personal
Shopper” (com.ok.shopper) starts an Activity with
662 Sec
action “ACTION_PAY”, the policy ensures resolved
applications are signed by keys in a given set.
5. SAINT POLICY

This section overviews the Saint policy primitives used
to describe the install-time policies and the interaction
policies. Saint policies are those in gray boxes in
Figure 3.

5.1. Install-time policy enforcement

Saint’s install-time policy regulates granting of application-
defined permissions. More specifically, an application de-
claring permission P defines the conditions under which
P is granted to other applications at install time. Conceptu-
ally, an application requesting the permission P can be in-
stalled only if the policy for acquiring P is satisfied. Saint
represents a substantial departure from existing Android
permission assignment. The existing Android model allows/
disallows a permission assignment based on application-
independent rules, or where such rules provide insufficient
guidance, user input. Conversely, Saint allows applications
to exert control over the assignment of permissions it declares
through explicit policy.

Depicted in Figure 4, install-time policies are enforced
by the Saint installer based on decisions made by the
AppPolicy provider, which maintains a database of all
the install and run-time policies. Upon installing an appli-
cation, the Saint-enhanced Android installer retrieves the
requested permissions from the manifest file (step a). For
each permission, it queries the AppPolicy provider (step b).
The AppPolicy provider consults its policy database, and
returns a decision based on matching rules (step c). If the
policy conditions hold, the installation proceeds; other-
wise, it is aborted. Finally, on successful installation, the
new application’s install-time and run-time polices are
appended to the AppPolicy provider’s policy database.

As shown in Table I, Saint install-time policy consists
of a permission label, an owner, and a set of conditions.
The permission label identifies the permission to be
regulated. The owner is always the application declaring
the permission. The conditions are a collection of checks
on the properties of the application requesting for it. All
checks must be true for the installation to be allowed.
The condition can check the signatures on the application
package or other permissions the application requests, that
is, the permissions it would possess if installed. The
condition check is implicitly affirmative in that it requires
the condition to be true, for example, as the accepted
developer signatures or required set of permissions.
Alternatively, it can be negated, for example, as forbidden
permissions. Only the application declaring such permission
is allowed to create the policy for it. The install-time policy
for requirement (5) of our motivating example in Section 2
is provided as a policy in Table I. Saint encodes it in
XML as follows:
urity Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

}A stateful firewall maintains ordered policies of the type {source-
address,destinationaddress,flags}, where source and destination are
IP address/ports pairs, and the flags represent the required state of
the communication, for example, whether an ongoing TCP connection
between the source and destination exists.

Linux Kernel

Applications

Android
Middleware

App A App BSAINT
Installer

SAINT
Mediator

SAINT
AppPolicy
Provider

Android's Permission Check

policy
file

apk
package

Application
Package

b c 1
2

3
4

5

a

Figure 4. Saint enforcement—Saint enhances the application installation process (a-c) with additional permission-granting policies and
mediates component IPC (1–5) to enforce interaction policies specified by both the caller and callee applications.

Table I. Example install-time and run-time policies.

Install-time policies: (permission-label) (owner) [!]cond1 [[!]
cond2]. . .[[!]condn]

(1) (com.abc.perm.getloc) (com.abc.lbs) required-permission
(ACCESS FINE LOCATION)

Permission com.abc.perm.getloc declared by com.abc.lbs only
be granted to applications with ACCESS FINE LOCATION
permission

Run-time policies: (exposejaccess) (source app, type, action)
(destination app, component) [!]cond1 [[!]cond2]. . .[[!]condn]

(1) (access) (com.ok.shopper, START ACT, ACTION PAY) (any,
any) sig:defaultdeny: except(3082019f3082. . .)

com.ok.shopper cannot start activity with ACTION PAY action to
any component in any applications unless they have signature
3082019f3082 . . .

(2) (access) (com.ok.shopper, any, any) (com.secure.password-
vault, any) min-version(1.2)

com.ok.shopper can start any interaction with any action to any
component in com.secure.passwordvault version 1.2 or higher
(3) (access) (com.ok.shopper, any, RECORD EXPENSE) (any,
any) forbid-permissions(INTERNET)

com.ok.shopper cannot start any interaction with action “RE-
CORD EXPENSE” to any component in any application with per-
mission “INTERNET”

Semantically rich application-centric security in AndroidM. Ongtang et al.
<permission-grant permission=“com.abc.perm.getloc”
owner=“com.abc.lbs”
<required-permissions>

<permission-label>
android.permission.ACCESS_FINE_LOCATION
</permission-label>

</required-permissions>
</permission-grant>

5.2. Run-time policy enforcement

Saint’s run-time policy regulates the interaction of soft-
ware components within Android’s middleware frame-
work. Any such interaction involves a caller (A)
application that sends the IPC and callee (B) application
that receives that IPC. The IPC is allowed to continue only
Security Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
if all policies supplied by both the caller and callee are
satisfied.

Depicted in Figure 4, the Saint policy enforcement
works as follows. The caller application A initiates the
IPC through the middleware framework (step 1). The IPC
is intercepted by the Saint policy enforcement code before
any Android permission checks. Saint queries the
AppPolicy provider for policies that match the IPC
(step 2). The AppPolicy provider identifies the appropriate
policies, checks that the policy conditions (application state,
phone configuration, etc.) are satisfied, and returns the result
(step 3). If the conditions are not satisfied, the IPC is blocked;
otherwise, the IPC is directed to the existing Android permis-
sion check enforcement software (step 4). Android will then
allow (step 5) or disallow the IPC to continue based on tradi-
tional Android policy.

Saint enforces two types of run-time policies: (i) access
policies identify the caller’s security requirements on the
IPC, and (ii) expose policies identify the callee’s security
requirements on the IPC. That is, access policies govern
the IPC an application initiates, and expose policies govern
the IPC an application receives. Note that the target (for ac-
cess) and source (for expose) are implicitly interpreted as
the application specifying the policy, and an application
cannot specify policy for other applications.

One can view Saint policy as being similar to a net-
work-level stateful firewall [9].} Like a stateful firewall,
Saint identifies policy by its source and destination and
checks conditions to determine if the IPC should be
allowed. In Saint, the source and destination are applica-
tions, components, Intent (event) types, or some combina-
tion thereof. Conditions are checks of the configuration or
current state of the phone. Note that unlike a firewall, all
Saint policies that match an IPC must be satisfied.
663

Semantically rich application-centric security in Android M. Ongtang et al.
Moreover, if no such policies exist, the IPC is implicitly
allowed. Thus, from a technical standpoint, Saint is a “con-
junctional default-allow policy” rather than “default deny
first match policy” [17].

As shown in Table I, Saint run-time policy consists of a
type label, source application details, destination applica-
tion details, and a set of conditions. The expose/access
label identifies the policy type. Applications must only
govern their own IPC; therefore, the specifying application
must be the destination for access polices and source for
expose polices. The source identifies the caller application
and, if applicable, the Intent. The definition of a destination
callee of a policy is somewhat more flexible.

The destination can be an application, a component, an
Intent, or an application/Intent combination. We expand
the notion of destination to provide finer grained policy,
as applications with many interfaces frequently require
per-interface policies. For example, the security policy
governing an “add an item to my shopping cart” feature
provided by one component may be very different than
the “authorize this transaction” component policy.

Run-time policy rules specifying multiple conditions
require all conditions to be true for the IPC to proceed. A
condition is a test that returns a Boolean value. Condition
evaluation is performed by Saint including test for permis-
sion configuration, roaming state, or other application-de-
fined condition} that the application deems necessary.
Conditions may also be negated, indicating the IPC should
only proceed when the condition is not satisfied (e.g., to
blacklist configurations). For example, a reasonable policy
might prevent the phone’s Web browser from accessing
the address book or dialer. Table I provides run-time poli-
cies in response to security requirements (1), (3), and (4) of
the example in Section 2. In Saint, run-time policy (1) is
presented in XML as follows:

<interaction direction=“access”>
<source>

<application>com.ok.shopper</application>
<interaction-type name=“START_ACTIVITY/”>
<action>ACTION_PAY</action>

</source>
<destination><application>any</application></destination>
<condition>

<signatures type=“default-deny”>
<except-signature>3082019f. . .</except-signature>

</signatures>
</condition>
</interaction>
5.3. Administrative policy

An administrative policy dictates how policy itself can be
changed [8]. Saint’s default administrative policy attempts
to retain the best qualities of mandatory access control
(MAC) in Android: all application policies that are fixed
} Saint currently supports only a certain set of conditions. However,
Saint distribution can be extended to support new conditions that are
useful for application developers.

664 Sec
at installation can only change through application update
(reinstallation). In Saint, the application update process
removes of all the relevant policies and inserts those spec-
ified in the update. From a policy perspective, this is se-
mantically equivalent to uninstalling and installing an
application. We considered other administrative models
allowing the updater to modify, add, or delete policy.
However, the phone policy could unpredictably diverge
from that desired by the developer quickly where, for ex-
ample, update versions were skipped by the user.

There is a heated debate in smartphone operating sys-
tems community about whether to allow users to override
system/application policies. A purist school of thought
suggests that applications are providing MAC policies,
and therefore, nothing should be changed. This provides
the most stringent (and predictable) security but potentially
can prevent otherwise legitimate operations from occur-
ring. The second school of thought says the user is always
right, and every policy should be overrideable.

There is no one right answer to the override debate.
Hence, we introduce an infrastructure for overriding but
leave it as an OS build option. If the SaintOverride
compile flag is set, Saint allows user override to applica-
tion policy. In addition, Saint XML policy schema includes
the Override flag for each policy rule defined by the ap-
plication. If the system SaintOverride system flag and
Override flags are true, the FrameworkPolicyManager
application (see Section 6) allows the user to disable the
rule through the interface. If disabled, this rule is ignored
during policies decisions. Note that we considered allow-
ing the user to arbitrarily modify the policy (rather than sim-
ply disabling it), but this introduces a number of complex
security and usability concerns that we defer to future work.

5.4. Operational policy

Service-oriented practices usually couple security policy
with operational policy keep service interactions in control
[18,10]. The same concept applies to the use of Saint
security policy. Saint has the potential to hamper utility
by restricting access to interfaces. Detecting such incidents
is essential to be providing a useful service. Past security
measures that have prevented application behavior in an
opaque and ambiguous way have not fared well; for
example, Microsoft’s User Access Control first introduced
in Windows Vista has created widespread controversy
[29,15]. This section defines policies that express service
requirements with respect to Saint to prevent Saint from
rendering an application inefficient or inoperable.

In connection with Saint, operational policies concern
the usability of certain functionality requests (i.e., outgoing
interactions). In our environment, the operability of each
outgoing interaction is in turn governed by at most one
Saint security policy included in the application and those
imposed by other applications offering the required
functionality. Giving such one-to-one mapping, the opera-
bility of the interaction is evaluated to true if the Saint
policy rule is satisfied and the interaction is allowed.
urity Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Semantically rich application-centric security in AndroidM. Ongtang et al.
Consider a simple logical formulation of the Saint run-
time policies. The conditions supported in the system are
denoted by the set C={c1,c2, . . .,cn}. C can be further
subdivided into two sets, V and T, that is, C=V∪T. V is
the set of conditions that are invariant with respect to the
system state. Invariant conditions do not change as a
function of the normal operation of the phone. For
example, permission assignments, developer signatures,
and application version numbers are invariant. T is the set
of conditions that rely on transient system state, for exam-
ple, roaming state, battery power, and access to a 3G interface.

Recall from Section 2 that run-time policy can take the
form of the access policy pa of the caller and the expose
policy pe of the callee. A given interaction will succeed
only if the conditions of both policies are satisfied.
Logically speaking, each policy consists of zero or more
elements of C or their negation. At any given time, the sys-
tem state of the phone S is a truth assignment for Boolean

variables for each element of C. Ŝ is the set of all possible
sets of S. Let V be the subset of S relating to elements of V
(the invariant conditions). The run-time IPC decision is
therefore a simple test of satisfaction of the conjunction
of pa and pe by S, that is, S⇒pa∧peS.||

This formulation allows us to reason about the satisfia-
bility of policy at install time. There are three possible out-
comes for the install-time analysis of future IPC:
V⇒pa∧pe
|| Interfaces unprotected
cies. For the purposes
tion, WLOG, they can
TRUE.

Security Comm. Network
DOI: 10.1002/sec
(always satisfied)

∃S 2 S S⇒pj

^

(satisfiable)
∃S 2 S ⇒pa∧paj
 (unsatisfiable)
where “always satisfied” IPC will always be able to
proceed (because the invariant conditions never change),
“satisfiable” can occur under certain conditions (because
they depend on changing system state), and “unsatisfiable”
will never be allowed to occur. This last case occurs when
either rule contains an unsatisfied invariant condition, for
example, incorrect developer signature, or the two rules
conflict, for example, where the expose/access rule contains a
condition c and the other contains its negation ¬c. Note that
because of the structure of the logical expressions, this
satisfiability test can be tested in polynomial time [27].

We exploit this analysis to learn about the ability of an
application to function. Saint tests every access policy of
an application during its installation. Any rule that is unsa-
tisfiable depicts an unusable interface, which may repre-
sent a serious functional limitation, for example, imagine
a text message application that cannot use the address book.

Generally, operational policies can be implemented sep-
arately from security policies [18]. However, the availabil-
ity of each interaction can be directly derived from the
satisfiability of Saint access policy rule associated with it.
Saint policies are in essence “empty” poli-
of the logical analysis presented in this sec-
be modeled simply by the Boolean value

s 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
Therefore, we opt to include the operational policy rule
of each interaction with its corresponding Saint policy rule.
More specifically, we add FeatureRequirement op-
tion to the XML structure of each Saint policy rule. This
option specifies an operational requirement, which is one
of three possible values: NONE, AVAILABLE, and
ALWAYS. The NONE places no operational requirement.
However, the framework warns the user if any access rule
is unsatisfiable. A value of AVAILABLE requires that the
interaction can possibly occur, namely, the Saint policy
rule is satisfiable. On the other hand, a value of ALWAYS
specifies that the interaction must always occur, that is,
the rule must always be satisfied. The framework prevents
the application from being installed if its operational
requirements are not fulfilled.

The operational policy allows the system to track and
manage dependencies between applications and interfaces.
By checking the operational policies of all applications
during installation, update, and uninstallation, we can de-
tect when a change in an application will effect other appli-
cations. The system can warn the user or simply prevent
the operation from moving forward if required interfaces
become non-functional or are removed.
6. SAINT ARCHITECTURE

Saint was implemented as a modification to the Android
2.1 OS. For each of the mentioned install-time and run-
time policies, we inserted one or more enforcement hooks
into Android’s middleware layer. In this section, we de-
scribe the relevant functionality in Android and the modifi-
cations we made to enforce Saint policies. At high level,
our Saint framework consists of three main components:
Saint Installer, Saint Mediator, and Framework Policy
Manager.

6.1. Saint installer

The Saint installer is a modified version of Android’s ap-
plication installer. The installer receives the path to the
downloaded Android package (.apk) and parses the pack-
age using PackageParser and PackageManager.
During this step, we collect all package configurations nec-
essary for install-time policy evaluation, such as the
package’s signature, requested permissions, and applica-
tion version. The package’s declared permissions are also
acquired to verify this package’s application policy.

We implement Saint’s policy in a separate XML file
with name identical to the package name. We chose to ex-
press the application policy in XML to match the format of
Android’s manifest file. Including the policy into the man-
ifest file requires changes to the Android SDK and to the
installer’s package parsing function. We consider this ex-
tension as our future work.

Immediately after the package is parsed, the Saint in-
staller examines each requested permission against its
corresponding permission-granting policy queried from
665

Semantically rich application-centric security in Android M. Ongtang et al.
the AppPolicy provider. If a conflict is found, the installer
rejects the installation.

After successful installation, the installer parses the
application’s policy file to an intermediate form. By con-
sidering the application’s declared permissions obtained
during the package parsing step, the installer ensures that
each policy entry is inserted into the AppPolicy provider
only if its permission label is declared by the application.

6.2. Saint mediator

Saint’s run-time enforcement covers four critical
component interactions: starting new Activities, binding
components to Services, receiving broadcast Intents and
accessing Content Providers. For each of these interac-
tions, we cover the limitations of the existing Android se-
curity implementation and explain the necessary
modifications and authorization hooks needed to enforce
Saint policies.

Starting Activities (4.A)—As users interact with activi-
ties, they often spawn new activities for GUI elements such
as menus and dialogs. In Android, a request to start a new
activity takes the form of an Intent sent to the Activity Man-
ager Service (AMS), a key Android component that facili-
tates interactions between activities.

The AMS will then match one or more activities that
have registered for that Intent. In the event that a single
match is not found, that is, there are multiple registered ac-
tivities, the list of all such activities is displayed to the user
who chooses the correct one, for example, should a photo-
graph be sent to an email client or an album. When the des-
tination activity is known, the AMS will check if the
sending activity has the permission to start such activity.
If so, the activity is started. This possibility for multiple ac-
tivities to match an Intent represents one of the limitations
of the current Android security framework in that the reg-
istered activity has no control what component may call
it beyond the permissions needed for its Intent. The calling
activity has no control over which target activity is
Figure 5. Saint authorization hook placement. The added hooks for eac

666 Sec
selected. To allow both the source as well as the receiver
activity to influence the decision to spawn the receiver,
we add a hook that restricts the set of candidate activities
to choose from as shown in Figure 5.

Saint Hook Placement: If a single activity matches the
Intent when it is resolved by the AMS, hook (1) checks
that the conditions for both the source and destination ac-
tivity before starting the destination activity as a match
for the Intent. If multiple activities are registered for the In-
tent, it is passed to ResolverActivity for further In-
tent resolution. For each of the matched activities, hook
(2) checks the source against each potential destination be-
fore allowing it to be included in the list of user options.
Any destination activities not allowed by the current policy
are excluded from the list. The activity selected by the user
is the target activity for the Intent. There is also a small
probability that only one matched activity is found. This
match is checked by hook (3) whether it can be the target.
Then, the target activity is started through the AMS. This
time, the Intent is addressed to the specific activity and will
have only a single match. The final check is performed by
hook (1) to prevent TOCTTOU attack.

Receiving Intent Broadcasts (4.B)—A Broadcast Re-
ceiver acts as a mailbox for the application. It listens to In-
tent message broadcast by another component in the same
or different application for data exchange. To specify the
type of messages it is listening to, the Broadcast Receiver
is attached with Intent-filter(s) that describe Intent values
to be matched including the action string. Intent broadcasts
are handled by the AMS, which attempts to resolve the
broadcast receiver components registered for the Intent.
A broadcast receiver may be registered for receiving spe-
cific Intent(s) either statically at install time or dynamically
during its execution. A static Broadcast Receiver and its
permanently associated Intent-filter(s) are declared in the
manifest and are always registered with the system. In con-
trast, a dynamic Broadcast Receiver is declared as a class
in the code and is instantiated during run time. It can be
registered and unregistered any time. The Intent-filter(s)
h of the four types of component interaction are numbered (1)–(8).

urity Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Semantically rich application-centric security in AndroidM. Ongtang et al.
attached to the dynamic Broadcast Receiver is also created
at run time and thus can be changed.

Saint Hook Placement: In order to enforce Saint’s ac-
cess policies for Intent broadcasts, several authorization
hooks were inserted into this process. Hook (4) is taken
if the broadcast receiver is selected by name. In this case,
only a single check is performed for the named receiver.
If the Intent contains an action string, it can be received
by potential multiple broadcast receivers. In this case,
hooks (5) and (6) iterate over the lists of potential receivers
and perform a policy check for each one before it is
allowed to receive a message.

Accessing Content Providers (4.C)—In Android,
applications access content providers by a URI. The Con-
tent Resolver is responsible for mapping a URI to a specific
content provider and obtaining the IPC interface to the
content provider that performs the operations (query,
update, etc.). Android’s permission check is performed
by the content provider during the operation execution.
This check is inadequate to protect applications from a po-
tentially malicious content provider that has registered un-
der a particular URI.

Saint Hook Placement: To extend the enforcement to
allow the source component to be protected as well, Saint
places authorization hook (7) at the Content Resolver.
The list of registered content providers is stored by the
AMS in the form of Provider Record. Therefore, our
modified AMS provides the Provider Record that matches
the authority string to the Content Resolver. The record con-
tains information that allows application policy checking.

Binding Components to Services (4.D)—The last type
of interaction mediated by Saint is binding a component
to a service (allowing the component to access the ser-
vice’s APIs). A component binds to a service either by
specifying its name or an Intent containing an action string
to which that service has registered. Binding to services is
mediated by the AMS, which first resolves the service by
name or action string and then checks that the requesting
component has the necessary permissions to bind it.

Saint Hook Placement: We inserted a single mediation
point, (8), into the AMS to check Saint policy before the
Android permission check. Because access policies require
the source component name in the hook, we extracted the
source name from a field in the binding request. For the
other types of component interactions where the source
name was not available, we modified the execution path
up to the hook to propagate the name of the component ini-
tiating the interaction.

6.3. Condition extensibility

So far, we have covered a set of policy enforcement
mechanisms implemented by Saint. These policies are
made up of conditions based on application configuration
and phone state. Each condition requires code to be run
to inspect some aspect of either an application’s context
or the device’s state. Currently, the AppPolicy provider is
limited to the static set of implemented conditions covered
Security Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
in Section 4. Because we cannot predict the types of condi-
tions future smartphone apps may wish to check in their se-
curity policies, Saint contains a generic mechanism to
perform custom condition checks implemented by applica-
tion developers.

6.4. AppPolicy provider

The policies for both the install-time and run-time mediator
are stored in the AppPolicy provider. We embedded the
AppPolicy provider inside the middleware in a way similar
to the phone’s address book, calendar, and DRM provider,
which are included in the platform. The policy is stored in
SQLite database, which is the default database supported
by Android. The database files for the provider are located
in the system directory, for example, in the /data/system/
directory.

More importantly, the AppPolicy provider is the policy
decision point. At install time, the Saint Installer passes the
information about the package being installed to the
AppPolicy provider for the decision making using the ex-
posed verifyPermissionGrant API. The new pol-
icy is inserted using insertApplicationPolicy
API. Both API interfaces are implemented as part of
Android’s Activity API. At run time, inside the middle-
ware, the Saint mediator’s hooks consult the AppPolicy
provider for policy decision based on the information
about the source and the destination of the interaction.

To make the decision, the AppPolicy provider retrieves
all matched policies and collects all information needed to
evaluate the conditions. For interaction policy, it may need
to contact Package Manager and several system services
such as Location Service and Telephony Service, which re-
quire the caller to run under an application user identity;
thus, it cannot be accessed by the AppPolicy provider.
To address the problem, we added more functions to the
AMS, which runs under the “android” user identity, to ob-
tain the information for the AppPolicy provider.

Note that it is essential to protect the API interfaces for
accessing the AppPolicy provider from malicious applica-
tions. If not protected, a malicious application could sim-
ply insert bogus policies to block legitimate IPC or delete
others. The current AppPolicy provider checks the identity
of the application that makes the API call. If the applica-
tion is not the Saint installer, the request is denied. We
foresee that it may be desirable for future applications of
Saint to allow other applications to view policy (e.g., pol-
icy viewers and system diagnostics). The current system
will be modified to either whitelist read, write, or delete
for given applications or simply check to see they have re-
ceived some other system Saint policy permission.

6.5. Framework policy manager

As mentioned in Section 3, Framework Policy Manager is
implemented as an Android application to enable the user
to override the policy if its override flag and the sys-
tem’s SaintOverride flag are true. It updates the
667

Semantically rich application-centric security in Android M. Ongtang et al.
policies in AppPolicy provider using updateApplica-
tionPolicy API implemented in Android’s Activity
API. To prevent malicious applications from updating the
policies, the identity of the application is checked to ensure
that only the Saint Installer and the Framework Policy
Manager can update the AppPolicy provider.
7. EVALUATION

Saint provides valuable enforcement for Android
application providers. We now evaluate Saint in two per-
spectives. First, we demonstrate Saint’s value-add by dis-
cussing its applicability to applications associated with
the OpenIntents collaborative project [23]. Second, we
measure Saint’s run-time performance overhead.

7.1. Policy appropriateness

Recall that Android applications primarily interact via In-
tent messages. The OpenIntents project exists to “. . . col-
lect, design, and implement open intents and interfaces to
make Android mobile applications work more closely to-
gether.” [23]. In so doing, OpenIntents provides a registry
of Intent action strings standardized by both the Android
Table II. Sample OpenIntents Intent action strings w

Intents

(1) com.funkyandroid.action.NEW_TRANSACTION:
This intent reports a financial transaction to be
recorded in an expenses or banking application

Input
Payee
Trans
Categ

(2) com.google.android.radar.SHOW_RADAR:
Display a radar like view centered around the
current position and mark the given location

Input
Latitu
Long

(3) org.openintents.action.ENCRYPT: Data
encryption functionality, which is protected by
org.openintents.safe.ACCESS_INTENTS dangerous
permission.

Input
URI t
Outp
URI t

(4) org.openintents.action.DECRYPT: Data decryption
functionality, which is protected by
org.openintents.safe.ACCESS_INTENTS
dangerous permission.

Input
URI t
Outp
URI t

(5) org.openintents.action.PICK_FILE: Pick a file through
a file manager.

Input
Title o
Text
Outp
File U

(6) android.intent.action.SEARCH: Perform a search Input
Quer

668 Sec
framework and participating OpenIntents application pro-
viders. Applications part of the OpenIntents project use
these action strings to handle events and provide services
in a consistent manner, thereby providing value-added ser-
vices to one another without requiring needless reimple-
mentation of functionality between applications. By
considering the collaboration and interaction between
these applications, we demonstrate the need for the Saint
policy framework by existing application developers.

Table II lists sample OpenIntents Intent action strings
with corresponding service caller applications, which pro-
vide the functionality and callee applications, which use
the functionality (a March 2010 survey of the OpenIntents
project revealed 55 unique Intent action strings and 31 cal-
ler and callee applications). For ease of exposition, we use
abridged action string names (e.g., SHOW_RADAR) in-
stead of the full namespace. In all cases shown in Table II,
the Activities in the listed caller and callee applications
interact to carry out the functionality. Hence, a callee is
an application that handles an Intent action. For example,
the Radar application contains an Activity that shows a ra-
dar graphical display upon handling the SHOW_RADAR
action. Similarly, a caller is an application that makes use
of functionality implemented by a callee application. For
example, the Panoramio application uses the Radar
ith service provider and consumer applications.

Important extras Applications

: Callee applications:
for a transaction Funky expenses

action amount
ory of the item
: Callee applications:
de Radar
itude Caller applications:

Panoramio
Photostream

: Callee applications:
o the file or text data to be encrypted OI Safe
ut: Caller applications:
o encrypted file or encrypted data OI Notepad

Obscura
MyBackup Pro

: Callee applications:
o the file or text data to be decrypted OI Safe
ut: Caller applications:
o decrypted file or decrypted data OI Notepad

Obscura
MyBackup Pro

: Callee applications:
f text to be displayed OI File Manager
on the button to be displayed Caller applications:
ut: Convert CSV
RI of the selected file Notepad
: Callee applications:
y string for search action Collectionista

WikiNotes

urity Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Semantically rich application-centric security in AndroidM. Ongtang et al.
application to display the user’s proximity to a landmark.
Note that we describe these interactions from the perspec-
tive of service functionality and not the underlying mecha-
nism, that is, the corresponding callee Activities “consume”
Intent action strings. To avoid confusion, we always discuss
functionality from the service functionality perspective.

The table enumerates a variety of service types: finan-
cial, location-based, cryptographic, and search functional-
ity. In the provided examples, the Intent action string
corresponds to this functionality. The listed service caller
and callee applications provide use cases upon which one
can discuss threat models and enforcement policy. The
NEW_TRANSACTION action string handled by the
Funky Expenses application provides financial ledger
functionality similar to the PersonalShopper scenario. In
this case, the callee application is trusted with financial
data. The SHOW_RADAR action string handled by the
Radar application (mentioned previously) provides loca-
tion visualization for geo-tagging applications. In this case,
the callee application is trusted with location information.

The ENCRYPT and DECRYPT action string handled
by the OI Safe application provide cryptographic function-
ality. In these cases, the callee application is trusted with
sensitive data, and it must trust caller applications with sen-
sitive data it returns. For example, OI Safe is trusted not to
release data encrypted by the OI Notepad application to the
Obscura application. The PICK_FILE action string handled
by the OI File Manager application allows the user to
graphically search for a data file on SD card. In this case,
the callee application is trusted to safely access the user’s
data and directory structure on the SD card and return the
correct file selected by the user. Finally, the SEARCH ac-
tion string is handled by the Collectionista and WikiNotes
applications for domain specific content search. In this case,
the callee applications are trusted to uphold privacy agree-
ments made with the user.

We now demonstrate how Saint policies provide protec-
tion not expressible within the Android’s existing frame-
work. We separate corresponding policies into classes based
on security goals.

Policy to Prevent Information Exposure: Caller applica-
tions frequently trust that callee applications do not expose
sensitive information. Frequently, the information exposure
perimeter is the phone itself. That is, the information should
not leave the phone. The following policy represents how an
example application, MyTrader, ensures that it uses ledger
functionality only from applications that do not have Internet
access. We use the notation presented in Table I.

“(access) (MyTrader,START_ACT,NEW_TRANSACTION) (any,any)
forbidpermission (INTERNET)”

Saint’s information exposure policies are not limited to
Internet permission checks. Saint also provides methods of
whitelisting and blacklisting applications based on various
features, for example, cryptographic signature and version
number. For instance, any application, including the malicious
ones, can offer encryption and decryption functionality. The
Security Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
caller application must prevent sending sensitive information
to malicious applications for encryption. To prevent this, the
caller application can specify that it uses only such functions
offered by the applications from the developers it trusts. This
requirement can be described in the Saint policy by specifying
the signatures on the OI Safe application (which identifies its
developer) in the set of trusted signatures. Observably, Saint
provides security while preserving the flexibility of OpenIn-
tents because the signatures on other trusted applications for
encryption/decryption operations can also be included in the
set. A Saint style policy representing how Obscura application
can restrict the use of encryption functionality only from the
applications signed by the developers that it trusts is as follows:

“(access) (Obscura,START_ACT,ENCRYPT) (any,any)
sig:default-deny:except (trusted-signature-set)”.

Policy to Prevent Information Misuse: An application
developer may also wish to ensure it does not inadvertently
misuse information. For example, consider the SHOW_-
RADAR Intent action string. The Intent takes latitude
and longitude information as input. The application devel-
oper may wish to ensure that it does not misuse location in-
formation by passing it to an application that does not have
permission to read location information. The following ex-
ample policy allows Panoramio application to prevent such
a misuse by avoiding leakage of user’s locations.

“(access)(Panoramio,START_ACT,SHOW_RADAR)(any,any)
required-permission (ACCESS_FINE_LOCATION)”.

Policy to Ensure Separation of Duty: Android allows
third-party applications to implement and extend certain
“system”-level functionality. To do so, Android assigns as-
sociated permissions with the dangerous protection level.
Although users may desire such applications to be installed,
application developers (and users) may desire a separation
of duty when initiating communication with a callee appli-
cation. The following example enables MyTrader applica-
tion to ensure that it uses ledger functionality only from
the applications that do not have the SET_PREFERRED_
APPLICATIONS permission, which would allow them to
change the default handler without the user’s knowledge.

“(access) (MyTrader,any,NEW_TRANSACTION) (any,any)
forbid-permission
(SET_PREFERRED_APPLICATIONS)”

Policy to Protect Access to Functionality: Occasionally,
callee applications want to restrict access to their function-
ality. As an example, OI Safe application defines ACCES-
S_INTENT permission, which by its description allows the
applications to encrypt and decrypt text, and access the
passwords they have stored in OI Safe. In other words,
the caller applications need to hold this permission to use
such functions. The ACCESS_INTENT permission has
dangerous protection level that requires user confirmation.
However, it can be generously granted by the user. Allow-
ing malicious applications to have this permission and gain
669

Table III. Example scenarios for Saint’s performance overhead.

Test case Without
Saint (ms)

With
Saint (ms)

Overhead (ms)
(%Overhead)

Semantically rich application-centric security in Android M. Ongtang et al.
access to such functionality can introduce vulnerability.
For instance, it potentially permits the malicious applica-
tions to obtain passwords set by other applications by issu-
ing get password requests. Although access to the
passwords is allowed only if the requesting applications’
package names are included in the passwords’ allow lists,
the package names are not good authentication tokens. A
malicious application can name itself as another legitimate
package. It can be installed if the legitimate one is not in-
stalled on the phone. As a result, it can potentially access
the password of some other applications. Saint policy can
provide better protection by allowing the OI Safe applica-
tion to place more restrictions on how the ACCESS_IN-
TENT permission is granted. For instance, it can specify
in the Saint policy the set of developers it trusts to use its
functions as identified by the developer keys used to sign
their applications. As an example, because OI Safe trusts
OI Notepad, Obscura, and MyBackup Pro to use its func-
tions, it includes the signatures on these applications in
its set of trusted signature. This permission-granting policy
is expressed as follows:

“(ACCESS_INTENT) (IOSafe) sig:default-deny:except(trusted-
signature-set)”.

Policy to Ensure Trusted Service: Applications use util-
ity functions offered by other applications to assist their
operations. For instance, applications can use OI File Man-
ager to select their files. Similarly, they can use search
functions provided by Collectionista. In these scenarios,
the applications must be able to trust that the returned
and displayed results are correct. An alternative is to en-
sure that they actually use the functions provided by the
trusted applications. Similar to the prevention of informa-
tion exposure, the applications can specify the set of
trusted sources of applications by identifying the developer
keys used to sign them. As an example, the trusted devel-
opers of the applications for selecting file can be Google
and the developers of OI File Manager and Astro File
Manager, whereas for searching, they can be Google and
the developers of Collectionista and OpenSearch. The sig-
natures of the trusted developers for each action can be
specified in the policy associated with it. The policies that
allow an example application, MyApp, to ensure that it
uses trusted select file functionality and search service
can be as follows:

“(access) (MyApp,START_ACT,PICK_FILE) (any,any)
sig:default-deny:except
(trusted-signature-set-for-select-file)”.

“(access) (MyApp,START_ACT,SEARCH) (any,any) sig:default-
deny:except
(trusted-signature-set-for-search)”.
Start activity 533�69 562�83 29�14 (5�46%)
Start activity for result 477�20 506�73 29�53 (6�19%)
Broadcast intent 306�51 335�96 29�45 (9�61%)
Bind service 284�48 314�26 29�78

(10�47%)
Access content provider 293�55 323�21 29�66

(10�10%)
7.2. Performance evaluation

This section considers the implications of Saint’s run-time
policy enforcement for performance. We first perform
macrobenchmarks to consider the human time-scale impact
670 Sec
of Saint mediation. These show practically no human de-
tectable slowdown between a phone running full Saint pol-
icy and one running a baseline Android installation without
Saint. The overheads are then further broken down using
microbenchmarks to evaluate the overhead of using
SQLite to store and search Saint policies and the cost of re-
trieving phone state. All experiments were repeated until
the 95% confidence interval was less than two orders of
magnitude of the mean. It is worth mentioning for the sake
of completeness that we used third-party software to in-
crease the amount of available storage on the G1 [2] and
to maintain compatibility with the Android 2.1 platform
[1]. Neither of these impact Saint’s performance.

Our experimental set-up involves the use of a simple in-
house benchmark that exercises each operation a minimum
of 120 times. The benchmark was run with Saint config-
ured for the developer signature test policy described in
Section 5.

7.2.1. Macrobenchmarks.
In this section, we measure the affects of Saint on each

of the four mediated operations: activity creation, intent
broadcast, service binding, and content provider access.
Table III shows the execution time of the scenarios when
an activity in a caller application performs five main types
of interaction with a callee application. There are 20 Saint
policies of different types on the system. Both the caller
and the callee application have their policies restricting
the accepted signatures.

We observe that the run-time overhead of Saint is
slightly under 30ms, which accounts for 5–10% of the ex-
ecution time. We consider this overhead acceptable be-
cause it should not be detected by human users and only
occurs during cross-components interaction. Note that for
both types of starting Activity, our execution time excludes
the time the screen window is composed and set visible. As
a result, our reported time (for both the system with and
without Saint) is slightly smaller than the time reported
by the Android’s Logcat tool.

7.2.2. Microbenchmarks.
For each of the interaction scenarios in Table III, our

microbenchmarking reveals the underlying overhead of
Saint operations as detailed in Figure 6. Most of the cost
results from SQLite database operations, namely, database
urity Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

0

5

10

15

20

25

30

Start
Activity

Start Activity
for Result

Broadcast
Intent

Bind
Service

Access
Provider

La
te

nc
y

(m
s)

Interaction Type

Saint Microbenchmark

Others
Move Cursor Next
Skip Unmatched Condition
Check Signature
Read Record
Close Cursor
Move Cursor First
Query DB
Open DB

Figure 6. Microbenchmark reveals underlying cost of Saint execution.

Table IV. Performance overhead of obtaining information for
policy evaluation.

Information Average latency (ms)

Application information
Requested permissions 0�330
Signatures 0�4
Context information
Data connection type 0�233
Call state 3�333
Data state 3�433
Roaming state 0�311
Location 2�967
Time 14�4

Semantically rich application-centric security in AndroidM. Ongtang et al.
query (11�58ms), record reading (10�67ms), and database
cursor operations (5�741ms).

The overhead incurred by Saint can be divided into two
portions: (i) the cost from set-up operations, which consist
of processing the interaction information, establishing and
closing the AppPolicy database connection, and searching
for policy statements matching the requested interaction;
(ii) the cost from policy evaluation operations, which is
composed of retrieving and processing the policies and
obtaining necessary information for condition evaluation.

For each transaction, the one-time set-up cost is rela-
tively fixed irrespective of the total number of policies in
the system and the number of policies to be evaluated.
For example, our experiment with the database containing
up to 100000 policies showed that the overhead from data-
base query is relatively stable at under 12ms. Other major
one-time database operations incur approximately 5–6ms.

In contrast to the set-up cost, the overall cost of policy
evaluation increases with the number of matched policies
(which are to be evaluated). Each policy evaluation
involves several database operations to drop irrelevant con-
ditions. These operations require a total execution time of
approximately 5�6ms. In addition, it also involves check-
ing policy conditions. Such condition check overhead
depends on the content of policy which reflects the type
of condition information to be retrieved. Table IV shows
the execution time associated with each type of condition
information currently supported by Saint. Using our exper-
imental set-up as an example, our experiment involves two
matched policy records; each requires checking of signatures
on the application. Therefore, each matched policy incurs
about 6ms overhead (5�6+4ms), resulting in approximately
12-ms policy evaluation overhead.
8. RELATED WORK

Much of the recent work in cell phone security has centered
around validating permission assignment at application
Security Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
installation. For example, the Kirin [12] enforces install
policies that validate that the permissions requested by
applications are consistent with the system policy. Kirin
does not consider run-time policies and is limited to simple
permission assignment. Conversely, the Application Secu-
rity Framework [22] offered by the Open Mobile Terminal
Platform recommends a certificate-based mechanism to de-
termine the application’s access rights based on its origin.
Symbian offers a stricter regimen in the Symbian-signed
program [28]. In this program, Symbian essentially
vouches for applications and prevents unsigned applica-
tions from accessing “protected” interfaces. The MIDP
2.0 security model regulates sensitive permissions such as
network access or file system access based on protection
domain defined by Mobile Information Device Profile
(MIDP) implementator (e.g., manufacturers and network
providers) [20].

Systems for run-time policy are less developed. The
Linux Security Module framework has been frequently
used to protect Linux phones. For example, the trusted
mobile phone reference architecture [30] realized the
Trusted Mobile Phone specification using an isolation tech-
nique developed for mobile phone platform. Muthukumaran
671

Semantically rich application-centric security in Android M. Ongtang et al.
et al. [19] applied SELinux security policies to Openmoko
to ensure the integrity of the phone and trusted applica-
tions. In a related work, Rao and Jaeger [24] developed a
MAC system for smartphones, which uses input from mul-
tiple stakeholders to dynamically create the policies run-
time permission assignment. The Windows Mobile. NET
compact framework uses security-by-contract [26] that
binds each application to a behavioral profile enforced at
run time. This technique was further explored as a means
for safely executing potentially malicious code [11]. Tech-
niques such as system call interposition have also been ex-
plored for Windows Mobile [7]. None of these systems
allow applications to place context-sensitive policies on
both the interfaces they use and those that use their
interfaces.
9. CONCLUSION

In this paper, we present the Saint framework. Saint
addresses the current limitations of Android security
through install-time permission-granting policies and run-
time interapplication communication policies. We pro-
vided operational policies to expose the impact of security
policy on application functionality and to mange depen-
dencies between interfaces. Driven by an analysis of many
applications, our investigations have provided an initial
taxonomy of relevant security contexts. Lastly, we demon-
strated the usefulness of Saint through a case study on
OpenIntents project and showed that Saint incurs only
small performance overhead and thus is practical for real-
world application.

A most pressing need to drive real-world adoption of
Saint is the integration of more applications and the poli-
cies they require into the system. We seek to extend the
Saint policies to protect the phone “system” services and
the cellular network, as well as integrate its interfaces with
widely used security infrastructures, for example, public
key infrastructure and enterprise systems. Through ongo-
ing feature enhancement and user study, we hope to transi-
tion Saint from a research system to a viable framework for
the many millions of phones that will soon run Android.
REFERENCES

1. Android Community Rom based on Donut tree. http://
www.cyanogenmod.com/, March 2010.

2. Sapphire-port-dream: Haykuro’s custom ROMS for the
G1. http://code.google.com/p/sapphire-port-dream/,
March 2010.

3. ACCESS Co., Ltd. ACCESS Linux Platform. http://
www.access-company.com/products/platforms/linux/
alp.html, July 2010.

4. Anderson JP. Computer security technology planning
study, volume II. Technical Report ESD-TR-73-51,
Deputy for Command and Management Systems, HQ
672 Sec
Electronics Systems Division (AFSC), L. G. Hanscom
Field, Bedford, MA, October 1972.

5. Apple Inc. Apple App Store. http://www.apple.com/
iphone/appstore/, June 2009.

6. Apple Inc. iOS 4. http://www.apple.com/iphone/ios4/,
July 2010.

7. Becher M, Hund R. Kernel-level Interception and
Applications on Windows Mobile Devices. Technical
Report TR-2008-003, Reihe Informatik, 2008.

8. Becher M. Computer Security: Art and Science.
Addison-Wesley: Reading, MA, 2003.

9. Cheswick W, Bellovin S, Ruben A. Firewalls and Inter-
net Security: Repelling the Wily Hacker. Second edition,
ACM Books / Addison-Wesley: Boston, MA, 2003.

10. Davies J. Oracle White Paper—Oracle SOA Suite
11g. Technical report, Oracle Corporation, January
2009.

11. Desmet L, Joosen W, Massacci F, Naliuka K,
Philippaerts P, Philippaerts F, Vanoverberghe D. A
flexible security architecture to support third-party
applications on mobile devices. In Proceedings of
ACM Workshop on Computer Security Architecture,
2007; 19–28.

12. Enck W, Ongtang M, McDaniel P. On lightweight mo-
bile phone application certification. In Proceedings of
ACM CCS, ACM: New York, NY, November 2009.

13. Enck W, Ongtang M, McDaniel P. Understanding
Android security. IEEE Security & Privacy Magazine
January/February 2009; 7(1): 50–57.

14. Google Inc. Android Market. http://www.android.
com/market/, June 2009.

15. Gruener W. Microsoft: UAC isn’t broken, you just
don’t get it. http://www.tgdaily.com/software-features/
41346-updated-microsoft-uac-i snt-broken-you-just-dont-
get-it, February 2009.

16. Independent Security Evaluators. Exploiting android.
http://securityevaluators.com/content/case-studies/
android/index.jsp.

17. McDaniel P, Prakash A. Methods and limitations of
security policy reconciliation. In IEEE Symposium on
Security & Privacy, May 2002; 73–87.

18. Microsoft Corporation. Application Architecture for.
NET Designing Applications and Services. Microsoft
Corporation: Redmond, WA, 2002.

19. Muthukumaran D, Sawani A, Schiffman J, Jung BM,
Jaeger T. Measuring Integrity on Mobile Phone Sys-
tems. In Proceedings of ACM SACMAT, June 2008.

20. Nokia Forum. Midp 2.0: Tutorial on signed midlets
v.1.1. July 2005.

21. Ongtang M, McLaughlin S, Enck W, McDaniel P.
Semantically rich application-centric security in Android.
In Proceedings of Annual Computer Security Applica-
tions Conference (ACSAC 2009), December 2009.
urity Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Semantically rich application-centric security in AndroidM. Ongtang et al.
22. Open Mobile Terminal Platform (OMTP). OMTP Ap-
plication Security Framework V.2.2. pages 1–46, 2008.

23. OpenIntents. Openintents. http://www.openintents.
org/en/, March 2010.

24. Rao V, Jaeger T. Dynamic mandatory access control
for multiple stakeholders. In Proceedings of ACM
SACMAT, ACM: New York, NY, June 2009.

25. Research In Motion Ltd. Blackberry AppWorld. http://
na.blackberry.com/eng/services/appworld/, June 2009.

26. S3MS. Security of Software and Services for Mobile
Systems. http://www.s3ms.org/index.jsp.

27. Schaefer TJ. The complexity of satisfiability problems.
In STOC ’78: Proceedings of the tenth annual ACM
Security Comm. Networks 2012; 6:658–673 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
symposium on Theory of computing, ACM: New York,
NY, 1978; 216–226.

28. Symbian Ltd. Symbian Signed. https://www.symbian-
signed.com, August 2008.

29. Yegulalp S. Windows Vista: Inside User Account
Control (UAC). http://searchsecurity.techtarget.com.
au/tips/22940-Windows-Vista-Insid e-User-Account-
Control-UAC-, April 2007.

30. Zhang X, Aciiçmez O, Seifert JP. A trusted mobile
phone reference architecture via secure kernel. In Pro-
ceedings of the ACM Workshop on Scalable Trusted
Computing, ACM: New York, NY, November 2007;
7–14.
673

