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Abstract
Raft is a consensus algorithm for managing a replicated

log. It produces a result equivalent to Paxos, and it is

as efficient as Paxos, but its structure is different from

Paxos; this makes Raft more understandable than Paxos

and also provides a better foundation for building practi-

cal systems. In order to enhance understandability, Raft

separates the key elements of consensus, such as leader

election and log replication, and it enforces a stronger de-

gree of coherency to reduce the number of states that must

be considered. Raft also includes a new mechanism for

changing the cluster membership, which uses overlapping

majorities to guarantee safety. Results from a user study

demonstrate that Raft is easier for students to learn than

Paxos.

1 Introduction
Consensus algorithms allow a collection of machines

to work as a coherent group that can survive the failures

of some of its members. Because of this, they play a

key role in building reliable large-scale software systems.

Paxos [10, 11] has dominated the discussion of consen-

sus algorithms over the last decade: most implementa-

tions of consensus are based on Paxos or influenced by it,

and Paxos has become the primary vehicle used to teach

students about consensus.

Unfortunately, Paxos is quite difficult to understand, in

spite of numerous attempts to make it more approach-

able. Furthermore, its architecture is unsuitable for build-

ing practical systems, requiring complex changes to cre-

ate an efficient and complete solution. As a result, both

system builders and students struggle with Paxos.

After struggling with Paxos ourselves, we set out to

find a new consensus algorithm that could provide a bet-

ter foundation for system building and education. Our ap-

proach was unusual in that our primary goal was under-

standability: could we define a consensus algorithm and

describe it in a way that is significantly easier to learn than

Paxos, and that facilitates the development of intuitions

that are essential for system builders? It was important

not just for the algorithm to work, but for it to be obvi-

ous why it works. In addition, the algorithm needed to be

complete enough to cover all the major issues required for

an implementation.

The result of our effort is a consensus algorithm called

Raft. Raft is similar in many ways to existing consensus

algorithms (most notably, Oki and Liskov’s Viewstamped

Replication [18]), but it has several novel aspects:

• Design for understandability: understandability

was our most important criterion in evaluating de-

sign alternatives. We applied specific techniques to

improve understandability, including decomposition

(Raft separates leader election, log replication, and

safety so that they can be understood relatively in-

dependently) and state space reduction (Raft reduces

the degree of nondeterminism and the ways servers

can be inconsistent with each other, in order to make

it easier to reason about the system).

• Strong leader: Raft differs from other consensus al-

gorithms in that it employs a strong form of leader-

ship where only leaders (or would-be leaders) issue

requests; other servers are completely passive. This

makes Raft easier to understand and also simplifies

the implementation.

• Membership changes: Raft’s mechanism for

changing the set of servers in the cluster uses a sim-

ple joint consensus approach where the majorities

of two different configurations overlap during tran-

sitions.

We performed a user study with 43 graduate students

at two universities to test our hypothesis that Raft is more

understandable than Paxos. After learning both algo-

rithms, students were able to answer questions about Raft

23% better than questions about Paxos.

We have implemented Raft in about 1500 lines of

C++ code, and the implementation is used as part of

RAMCloud [19]. We have also proven the correctness

of the Raft algorithm.

The remainder of the paper introduces the replicated

state machine problem (Section 2), discusses the strengths

and weaknesses of Paxos (Section 3), describes our gen-

eral approach to understandability (Section 4), presents

the Raft consensus algorithm (Sections 5-7), evaluates

Raft (Section 8), and discusses related work (Section 9).

2 Achieving fault-tolerance with replicated

state machines

Consensus algorithms typically arise in the context of

replicated state machines [21]. In this approach, state ma-

chines on a collection of servers compute identical copies

of the same state and can continue operating even if some

of the servers are down. Replicated state machines are

used to solve a variety of fault-tolerance problems in dis-

tributed systems. For example, large-scale systems that

have a single cluster leader, such as GFS [4], HDFS [22],

and RAMCloud [19], typically use a separate replicated

state machine to manage leader election and store config-
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Figure 1: Replicated state machine architecture. A consen-

sus module manages a replicated log containing state ma-

chine commands from clients. The state machines process

identical sequences of commands from the logs, so they pro-

duce the same outputs.

uration information that must survive leader crashes. Ex-

amples of replicated state machines include Chubby [1]

and ZooKeeper [7].

Replicated state machines are typically implemented

using a replicated log, as shown in Figure 1. Each server

stores a log containing a series of commands, which its

state machine executes in order. Each log contains the

same commands in the same order, so each state machine

processes the same sequence of commands. Then, be-

cause the state machines are deterministic, each computes

the same state and the same sequence of outputs.

Keeping the replicated log consistent is the job of the

consensus algorithm. As shown in Figure 1, the consensus

module on a server receives commands from clients and

adds them to its log. By communicating with the consen-

sus modules on other servers, it guarantees that every log

will eventually have the same requests in the same order,

even if some servers fail. Once commands are replicated

safely, each server’s state machine processes them in log

order, and the outputs are returned to clients. For the sys-

tem to be safe (meaning that it never behaves incorrectly),

the consensus algorithm must ensure that each state ma-

chine executes exactly the same commands in the same

order. This maintains the illusion that the servers form a

single, highly-reliable state machine.

This paper is concerned with consensus algorithms for

building practical systems. These algorithms typically

have the following properties:

• They are fully functional (available) as long as any

majority of the servers are operational and can com-

municate with each other and with clients. Thus, a

typical cluster of five servers can tolerate the failure

of any two servers. Servers are assumed to fail by

stopping; they may later recover from state on stable

storage and rejoin the cluster. (Other algorithms also

handle Byzantine failures, but these algorithms are

more complex and less efficient.)

• They are relatively efficient: in the common case, a

command can complete as soon as any majority of

the cluster has responded to a single round of remote

procedure calls; a minority of slow servers need not

impact overall system performance.

• Their safety is not affected by timing: faulty clocks

and extreme message delays can, at worst, cause

availability problems.

3 What’s wrong with Paxos?
Over the last ten years, Leslie Lamport’s Paxos pro-

tocol [10] has become almost synonymous with consen-

sus: it is the protocol most commonly taught in courses,

and most implementations of consensus use it as a starting

point. Paxos first defines a protocol capable of reaching

agreement on a single decision, such as a single replicated

log entry. We refer to this subset as single-decree Paxos.

Paxos then combines multiple instances of this protocol to

facilitate a series of decisions such as a log (multi-Paxos).

Paxos ensures both safety and liveness, and it supports

changes in cluster membership. Its correctness has been

proven, and it is efficient in the normal case.

Unfortunately, Paxos has two significant drawbacks.

The first drawback is that Paxos is exceptionally difficult

to understand. The full explanation [10] is notoriously

opaque; few people succeed in understanding it, and only

with great effort. As a result, there have been several

attempts to explain Paxos in simpler terms [11, 13, 14].

These explanations focus on single-decree Paxos; they are

still challenging, yet they leave the reader without enough

information to build practical systems. In an informal sur-

vey of attendees at NSDI 2012, we found few people who

were comfortable with Paxos, even among seasoned re-

searchers. We struggled with Paxos ourselves; we were

not able to understand the original paper [10] until af-

ter reading several simplified explanations and designing

our own alternative protocol, a process that took several

months.

We hypothesize that Paxos’ opaqueness derives from

its choice of the single-decree subset as its foundation.

Single-decree Paxos is dense and subtle: it is divided into

two stages that do not have simple intuitive explanations

and cannot be understood independently. Because of this,

it is difficult to develop intuitions about why the single-

decree protocol works. The composition rules for multi-

Paxos add significant additional complexity and subtlety.

We believe that the overall problem of reaching consensus

on multiple decisions (i.e., a log instead of a single entry)

can be decomposed in other ways that are more direct and

obvious.

The second problem with Paxos is that its architecture

is a poor one for building practical systems; this too is a

consequence of the single-decree decomposition. For ex-

ample, there is no benefit to choosing a collection of log

entries independently and then melding them into a se-

quential log; this just adds complexity. It is simpler and

more efficient to design a system around a log, where new

entries are appended sequentially in a constrained order.
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Paxos also uses a symmetric peer-to-peer approach at its

core (though it eventually suggests a weak form of leader-

ship as a performance optimization). This makes sense in

a simplified world where only one decision will be made,

but few practical systems use this approach. If a series

of decisions must be made, it is simpler and faster to first

elect a leader, then have the leader coordinate the deci-

sions.

As a result, practical systems bear little resemblance

to Paxos. Each implementation begins with Paxos, dis-

covers the difficulties in implementing it, and then devel-

ops a significantly different architecture. This is time-

consuming and error-prone. The difficulties of under-

standing Paxos exacerbate the problem: system builders

must modify the Paxos algorithm in major ways, yet

Paxos does not provide them with the intuitions needed

for this. Paxos’ formulation may be a good one for prov-

ing theorems about its correctness, but real implementa-

tions are so different from Paxos that the proofs have little

value. The following comment from the Chubby imple-

mentors is typical:

There are significant gaps between the description of

the Paxos algorithm and the needs of a real-world

system.... the final system will be based on an un-

proven protocol [2].

Because of these problems, we have concluded that

Paxos does not provide a good foundation either for sys-

tem building or for education. Given the importance of

consensus in large-scale software systems, we decided to

see if we could design an alternative consensus algorithm

with better properties than Paxos. Raft is the result of that

experiment.

4 Designing for understandability
We had several goals in designing Raft: it must provide

a complete and appropriate foundation for system build-

ing, so that it reduces significantly the amount of design

work required of developers; it must be safe under all con-

ditions and available under typical operating conditions;

and it must be efficient for common operations. But our

most important goal—and most difficult challenge—was

understandability. It must be possible for a large audi-

ence to understand the algorithm comfortably. In addi-

tion, it must be possible to develop intuitions about the al-

gorithm, so that system builders can make the extensions

that are inevitable in real-world implementations.

There were numerous points in the design of Raft

where we had to choose among alternative approaches.

In these situations we evaluated the alternatives based on

understandability: how hard is it to explain each alterna-

tive (for example, how complex is its state space, and does

it have subtle implications?), and how easy will it be for

a reader to completely understand the approach and its

implications? Given a choice between an alternative that

was concise but subtle and one that was longer (either in

lines of code or explanation) but more obvious, we chose

the more obvious approach. Fortunately, in most cases the

more obvious approach was also more concise.

We recognize that there is a high degree of subjectiv-

ity in such analysis; nonetheless, we used two techniques

that we believe are generally applicable. The first tech-

nique is the well-known approach of problem decompo-

sition: wherever possible, we divided problems into sep-

arate pieces that could be solved, explained, and under-

stood relatively independently. For example, in Raft we

separated leader election, log replication, and ensuring

safety.

Our second approach was to simplify the state space

by reducing the number of states to consider, making the

system more coherent and eliminating nondeterminism

where possible. For example, logs are not allowed to have

holes, and Raft limits the ways in which logs can become

inconsistent with each other. This approach conflicts with

advice given by Lampson: “More nondeterminism is bet-

ter, because it allows more implementations [13].” In our

situation we needed only a single implementation, but it

needed to be understandable; we found that reducing non-

determinism usually improved understandability. We sus-

pect that trading off implementation flexibility for under-

standability makes sense for most system designs.

5 The Raft consensus algorithm
Raft uses a collection of servers communicating with

remote procedure calls (RPCs) to implement a replicated

log of the form described in Section 2. Figure 2 summa-

rizes the algorithm in condensed form for reference; the

components of Figure 2 are discussed piecewise over the

rest of this section.

Raft implements consensus by first electing a distin-

guished leader, then giving the leader complete responsi-

bility for managing the replicated log. The leader accepts

log entries from clients, replicates them on other servers,

and tells servers when it is safe to apply log entries to

their state machines. Having a leader simplifies the al-

gorithm in several ways. For example, a leader can make

decisions unilaterally without fear of conflicting decisions

made elsewhere. In addition, Raft ensures that the leader’s

log is always “the truth;” logs can occasionally become

inconsistent after crashes, but the leader resolves these

situations by forcing the other servers’ logs into agree-

ment with its own. A leader can fail or become discon-

nected from the other servers, in which case a new leader

is elected.

Ensuring safety is critical to any consensus algorithm.

In Raft clients only interact with the leader, so the only

behavior they see is that of the leader; as a result, safety

can be defined in terms of leaders. The Raft safety prop-

erty is this: if a leader has applied a particular log entry

to its state machine (in which case the results of that com-

mand could be visible to clients), then no other server may
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Figure 3: Server states. Followers only respond to requests

from other servers. If a follower receives no communication,

it becomes a candidate and initiates an election. A candidate

that receives votes from a majority of the full cluster becomes

the new leader. Leaders typically operate until they fail.

apply a different command for the same log entry. Raft

has two interlocking policies that ensure safety. First, the

leader decides when it is safe to apply a log entry to its

state machine; such an entry is called committed. Second,

the leader election process ensures that no server can be

elected as leader unless its log contains all committed en-

tries; this preserves the property that the leader’s log is

“the truth.”

Given the leader approach, Raft decomposes the con-

sensus problem into three relatively independent subprob-

lems, which are discussed in the subsections that follow:

• Leader election: a new leader must be chosen when

an existing leader fails, and Raft must guarantee that

exactly one leader is chosen (Section 5.2).

• Log replication: the leader must accept log entries

from clients and replicate them faithfully across the

cluster, forcing all other logs to agree with its own

(Section 5.3).

• Safety: Section 5.4 describes how Raft decides when

a log entry has been committed, and how it ensures

that leaders always hold all committed entries in their

logs.

After presenting the consensus algorithm, this section dis-

cusses the issue of availability and the role of timing in the

system.

5.1 Raft basics

A Raft cluster contains several servers (five is a typical

number, which allows the system to tolerate two failures).

At any given time each server is in one of three states:

leader, follower, or candidate. In normal operation there

is exactly one leader and all of the other servers are fol-

lowers. Followers are passive: they issue no RPCs on

their own but simply respond to RPCs from leaders and

candidates. The leader handles all client requests (if a

client contacts a follower, the follower redirects it to the

leader). The third state, candidate, is used to elect a new

leader as described in Section 5.2. Figure 3 shows the

states and their transitions; the transitions are discussed in

the subsections below.

Raft divides time into terms of arbitrary length, as

shown in Figure 4. Terms are numbered with consecu-

tive integers. Each term begins with an election, in which

terms

term 1

election normal

operation

term 2

no emerging

leader

t3 term 4

Figure 4: Time is divided into terms, and each term begins

with an election. After a successful election, a single leader

manages the cluster until the end of the term. Some elections

fail, in which case the term ends without choosing a leader.

one or more candidates attempt to become leader as de-

scribed in Section 5.2. If a candidate wins the election,

then it serves as leader for the rest of the term. In some

situations an election will result in a split vote. In this case

the term will end with no leader; a new term (with a new

election) will begin shortly. Raft ensures that there is at

most one leader in a given term.

Terms act as a logical clock [9] in Raft, and they allow

Raft servers to detect obsolete information such as stale

leaders. Each server stores a current term number, which

increases monotonically over time. Current terms are ex-

changed whenever servers communicate; if one server’s

current term is smaller than the other, then it updates its

current term to the larger value. If a server receives a re-

quest with a stale term number, it rejects the request.

Raft uses only two remote procedure calls (RPCs) for

communication between servers. RequestVote RPCs are

initiated by candidates during elections (Section 5.2), and

AppendEntries RPCs are initiated by leaders to repli-

cate log entries and to provide a form of heartbeat (Sec-

tion 5.3).

5.2 Leader election

Raft uses a heartbeat mechanism to trigger leader elec-

tion. Almost all of the servers in Raft are in follower state

at any given time, and when servers start up they begin as

followers. A server remains in follower state as long as it

receives valid RPCs from a leader or candidate. Leaders

send periodic heartbeats (AppendEntries RPCs that carry

no log entries) to all followers in order to maintain their

authority. If a follower receives no communication over a

period of time called the election timeout, then it assumes

there is no viable leader and begins an election to choose

a new leader.

To begin an election, a follower increments its current

term and transitions to candidate state. It then issues Re-

questVote RPCs in parallel to each of the other servers in

the cluster. If the candidate receives no response for an

RPC, it reissues the RPC repeatedly until a response ar-

rives or the election concludes. A candidate continues in

this state until one of three things happens: (a) it wins the

election, (b) another server establishes itself as leader, or

(c) a period of time goes by with no winner. These out-

comes are discussed separately in the paragraphs below.

A candidate wins an election if it receives votes from a
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•  Respond to RPCs from candidates and leaders. 
•  Convert to candidate if election timeout elapses without 

either: 
•  Receiving valid AppendEntries RPC, or 

•  Granting vote to candidate   

Followers (§5.2)  

•  Increment currentTerm, vote for self 
•  Reset election timeout 

•  Send RequestVote RPCs to all other servers, wait for either: 
•  Votes received from majority of servers: become leader 

•  AppendEntries RPC received from new leader: step 

down 
•  Election timeout elapses without election resolution: 

increment term, start new election 
•  Discover higher term: step down (§5.1) 

Candidates (§5.2) 

•  Initialize nextIndex for each to last log index + 1 
•  Send initial empty AppendEntries RPCs (heartbeat) to each 

follower; repeat during idle periods to prevent election 
timeouts (§5.2) 

•  Accept commands from clients, append new entries to local 

log (§5.3) 
•  Whenever last log index ≥ nextIndex for a follower, send 

AppendEntries RPC with log entries starting at nextIndex, 
update nextIndex if successful (§5.3)  

•  If AppendEntries fails because of log inconsistency, 
decrement nextIndex and retry (§5.3)  

•  Mark entries committed if stored on a majority of servers 

and some entry from current term is stored on a majority of 
servers. Apply newly committed entries to state machine. 

•  Step down if currentTerm changes (§5.5)  

Leaders 

Each server persists the following to stable storage 
synchronously before responding to RPCs: 

currentTerm  latest term server has seen (initialized to 0 
on first boot) 

votedFor  candidateId that received vote in current 

term (or null if none) 
log[]  log entries   

Persistent State 

term  term when entry was received by leader 
index  position of entry in the log 

command  command for state machine 

Log Entry 

Invoked by candidates to gather votes (§5.2). 

Arguments: 

term  candidate's term 
candidateId  candidate requesting vote 

lastLogIndex  index of candidate's last log entry (§5.4)  
lastLogTerm  term of candidate's last log entry (§5.4)  

Results: 

term  currentTerm, for candidate to update itself 
voteGranted  true means candidate received vote 

Implementation: 
1.  Return if term < currentTerm (§5.1) 

2.  If term > currentTerm, currentTerm ← term (§5.1) 

(step down if candidate or leader) 
3.  If votedFor is null or candidateId, and candidate's log is at 

least as complete as local log (§5.2, §5.4), grant vote and 

reset election timeout 

RequestVote RPC 

Invoked by leader to replicate log entries (§5.3); also used as 
heartbeat (§5.2). 

Arguments: 
term  leader's term 

leaderId  so follower can redirect clients 
prevLogIndex  index of log entry immediately preceding 

new ones 

prevLogTerm  term of prevLogIndex entry 
entries[]  log entries to store (empty for heartbeat; 

may send more than one for efficiency) 
commitIndex  last entry known to be committed 

Results: 

term  currentTerm, for leader to update itself 
success  true if follower contained entry matching 

prevLogIndex and prevLogTerm 

Implementation: 
1.  Return if term < currentTerm (§5.1)  

2.  If term > currentTerm, currentTerm ← term (§5.1)  
3.  If candidate (§5.2) or leader (§5.5), step down 

4.  Reset election timeout (§5.2)  

5.  Return failure if log doesn’t contain an entry at 
prevLogIndex whose term matches prevLogTerm (§5.3) 

6.  If existing entries conflict with new entries, delete all 
existing entries starting with first conflicting entry(§5.3) 

7.  Append any new entries not already in the log 

8.  Apply newly committed entries to state machine (§5.3)  

AppendEntries RPC 

Figure 2: A condensed summary of the Raft consensus algorithm (excluding membership changes). Section numbers such as §5.2

indicate where particular features are discussed. The formal specification [20] describes the algorithm more precisely. Initialize

nextIndex for each WHAT?

majority of the servers in the full cluster for the same term.

Each server will vote for at most one candidate in a given

term, on a first-come-first-served basis (note: Section 5.4

adds an additional restriction on votes). The majority rule

ensures that only one candidate can win. Once a candi-

date wins an election, it becomes leader. It then sends

heartbeat messages to every other server to establish its

authority and prevent new elections.

While waiting for votes, a candidate may receive an

AppendEntries RPC from another server claiming to be

leader. If the leader’s term (included in its RPC) is at least

as large as the candidate’s current term, then the candi-

date recognizes the leader as legitimate and steps down,

meaning that it returns to follower state. If the term in

the RPC is older than the candidate’s current term, then

the candidate rejects the RPC and continues in candidate
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state.

The third possible outcome is that a candidate neither

wins nor loses the election: if many followers become

candidates at the same time, votes could be split so that

no candidate obtains a majority. When this happens, each

candidate will start a new election by incrementing its

term and initiating another round of RequestVote RPCs.

However, without extra measures this process could re-

peat indefinitely without any candidate ever receiving a

majority of the votes.

Raft uses randomized election timeouts to ensure that

split votes are rare and that they are resolved quickly. To

prevent split votes in the first place, election timeouts are

chosen randomly from an interval between a fixed min-

imum value and twice that value (currently 150-300ms

in our implementation). This spreads out the servers so

that in most cases only a single server will time out; it

wins the election and sends heartbeats before any other

servers time out. The same mechanism is used to han-

dle split votes. Each candidate restarts its (randomized)

election timeout at the start of an election, and it waits

for that timeout to elapse before starting the next election;

this reduces the likelihood of another split vote in the new

election. Section 8 shows that this approach converges

rapidly.

This election process is safe, meaning that there can

be at most one leader in any given term. A candidate re-

quires a majority of the votes from the same term in order

to become leader, and each server votes for at most one

candidate per term; therefore at most one candidate can

acquire enough votes to become leader in a given term.

However, it is possible for multiple servers to believe

they are the leader at the same time, if they were elected

in different terms. Section 5.5 describes how Raft neutral-

izes all but the most recent leader.

Elections are an example of how understandability

guided our choice between design alternatives. Initially

we planned to use a ranking system: each candidate was

assigned a unique rank, which was used to select between

competing candidates. If a candidate discovered another

candidate with higher rank, it would return to follower

state so that the higher ranking candidate could more eas-

ily win the next election. We found that this approach cre-

ated subtle issues around availability, particularly when

combined with the safety issues discussed in Section 5.4.

We made adjustments to the algorithm several times, but

after each adjustment new corner cases appeared. Even-

tually we concluded that the randomized retry approach is

more obvious and understandable.

5.3 Log replication

Once a leader has been elected, it begins servicing

client requests. Each client request contains a command

that must eventually be executed by the replicated state

machines. The leader appends the command to its log as

leader

followers

1 2 3 4 5 76 8 log index

1
add

1
cmp

1
ret

2
mov

3
jmp

3
div

3
shl

3
sub

1
add

1
cmp

1
ret

2
mov

3
jmp

1
add

1
cmp

1
ret

2
mov

3
jmp

3
div

3
shl

1
add

1
cmp

1
add

1
cmp

1
ret

2
mov

3
jmp

3
div

3
shl

committed entries

3
sub

Figure 5: Logs are composed of entries, which are numbered

sequentially. Each entry contains the term in which it was

created (the number in each box) and a command for the state

machine. An entry is considered committed if it is safe for

that entry to be applied to state machines.

a new entry, then issues AppendEntries RPCs in parallel

to each of the other servers to replicate the entry. When

the leader decides that a log entry is committed, it applies

the entry to its state machine and returns the result of that

execution to the client. If followers crash or run slowly, or

if network packets are lost, the leader retries AppendEn-

tries RPCs indefinitely (even after it has responded to the

client) until all followers eventually store all log entries.

Logs are organized as shown in Figure 5. Each log en-

try stores a state machine command along with the term

number when the entry was received by the leader. The

term numbers in log entries are used to detect inconsisten-

cies between logs and to ensure the Raft safety property

as described in Section 5.4. Each log entry also has an

integer index identifying its position in the log.

In the simple case of a leader replicating entries from its

current term, a log entry is committed once it is stored on

a majority of servers (e.g., entries 1-7 in Figure 5). Sec-

tion 5.4 will extend this rule to handle other situations.

The leader keeps track of the highest index known to be

committed, and it includes that index in future AppendEn-

tries RPCs (including heartbeats) so that the other servers

eventually find out. Once a follower learns that a log entry

is committed, it applies the entry to its local state machine.

If an entry is committed, Raft guarantees that it is durable

and will eventually be executed by all of the replicated

state machines.

We designed the Raft log mechanism to maintain a high

level of coherency between the logs on different servers.

Not only does this simplify the system’s behavior and

make it more predictable, but it is an important component

of ensuring safety. Raft maintains the following proper-

ties at all times:

• If two entries in different logs have the same index

and term, then they store the same command.

• If two entries in different logs have the same index
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and term, then the logs will be identical in all pre-

ceding entries.

The first property follows from the fact that a leader

creates at most one entry with a given log index in a given

term, and log entries never change their position in the

log.

The second property is guaranteed by a simple consis-

tency check performed by AppendEntries. When sending

an AppendEntries RPC, the leader includes the index and

term of the entry in its log that immediately precedes the

new entries. The follower will not add the entries to its log

unless its log contains an entry with the same index and

term. The consistency check acts as an induction step:

the initial empty state of the logs satisfies the preceding

properties, and the consistency check preserves the prop-

erties whenever logs are extended. As a result, whenever

AppendEntries returns successfully, the leader knows that

the follower’s log is identical to its own log up through

the new entries.

During normal operation, the logs of the leader and fol-

lowers stay consistent, so the AppendEntries consistency

check never fails. However, leader crashes can leave the

logs inconsistent (the old leader may not have fully repli-

cated all of the entries in its log). These inconsisten-

cies can compound over a series of leader and follower

crashes. Figure 6 illustrates the ways in which followers’

logs may differ from that of a new leader. A follower may

be missing entries that are present on the leader (a-b), it

may have extra entries that are not present on the leader

(c-d), or both (e-f). Missing and extraneous entries in a

log may span multiple terms, but extraneous entries will

always be the last entries in the log, and missing entries

will always be after all other entries in the log (these prop-

erties are guaranteed by the AppendEntries consistency

check).

In Raft, the leader’s log is always “the truth,” so the

leader handles inconsistencies by forcing the followers’

logs to duplicate its own. This means that conflicting en-

tries in follower logs will be overwritten by values from

the leader’s log. Section 5.4 will show that this is safe.

To bring a follower’s log into consistency with its own,

the leader must find the latest log entry where the two logs

agree, delete any entries in the follower’s log after that

point, and send the follower all of the leader’s entries after

that point. All of these actions happen in response to the

consistency check performed by AppendEntries RPCs.

The leader maintains a nextIndex for each follower, which

is the index of the next log entry the leader will send to

that follower. When a leader first comes to power it ini-

tializes all nextIndex values to the index just after the last

one in its log (11 in Figure 6). If a follower’s log is incon-

sistent with the leader’s, the AppendEntries consistency

check will fail in the next AppendEntries RPC. After a

rejection, the leader decrements nextIndex and retries the

leader for

term 8

possible

followers

(a)

(c)

(b)

(e)

(d)

(f)

1 1 1 4 4 5 5 6 6 6

1 1 1 4 4 5 5 6 6

1 1 1 4

1 1 1 4 4 5 5 6 6 6 6

1 1 1 4 4 5 5 6 6 6 7 7

1 1 1 4 4 4 4

1 1 1 2 2 2 3 3 3 3 3

1 2 3 4 5 76 8 9 10 11 12 log index

Figure 6: When the leader at the top comes to power, it is

possible that any of scenarios (a-f) could occur in follower

logs. Each box represents one log entry; the number in the

box is its term. A follower may be missing entries (a-b), may

have extra uncommitted entries (c-d), or both (e-f). For ex-

ample, scenario (f) could occur if that server was the leader

for term 2, added several entries to its log and crashed before

committing any of them; it restarted quickly, became leader

for term 3, and added a few more entries to its log; before

any of the entries in either term 2 or term 3 were committed,

the server crashed again and remained down for several terms

after that.

AppendEntries RPC. Eventually nextIndex will reach a

point where the leader and follower logs match. When

this happens, AppendEntries will succeed; it will remove

any conflicting entries in the follower’s log and append

entries from the leader’s log (if any). Once AppendEn-

tries succeeds, the follower’s log is consistent with the

leader’s, and it will remain that way for the rest of the

term.

If desired, the protocol can be optimized to reduce the

number of rejected AppendEntries RPCs. For example,

when rejecting an AppendEntries request, the follower

can include information about the term that contains the

conflicting entry (term identifier and indexes of the first

and last log entries for this term). With this information,

the leader can decrement nextIndex to bypass all of the

conflicting entries in that term; one AppendEntries RPC

will be required for each term with conflicting entries,

rather than one RPC per entry. In practice, we doubt

this optimization is necessary, since failures happen in-

frequently and there are unlikely to be many inconsistent

entries.

With this mechanism, a leader does not need to take

any special actions when it comes to power to restore log

consistency. It just begins normal operation and the logs

automatically converge in response to failures of the Ap-

pendEntries consistency check.

This log replication mechanism exhibits the desirable

consensus properties described in Section 2: Raft can ac-

cept, replicate, and apply new log entries as long as a ma-

jority of the servers are up; in the normal case a new entry

can be replicated with a single round of RPCs to a ma-

jority of the cluster; and a single slow follower will not
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impact performance.

5.4 Safety

For Raft to be safe, it must guarantee that if a leader has

applied a particular log entry to its state machine, then

no other server will apply a different command for the

same log entry. Raft achieves this by ensuring a narrower

property, which we call the Leader Log Property: once a

log entry has been committed, that entry will be present in

the logs of all future leaders. The overall safety property

follows from the Leader Log Property because a server

cannot apply a command to its state machine unless its

log is identical to the leader’s log up through that entry

(the AppendEntries consistency check guarantees this).

Raft has two related policies that enforce the Leader

Log Property: how to choose a leader during elections,

and how to decide that a log entry is committed. This

section describes the policies and how they work together

to ensure that leaders always hold all committed entries.

Raft uses the election voting mechanism to select a new

leader whose log is as “up-to-date” as possible. When

requesting votes, a candidate includes information about

its log in the RequestVote RPC; if the voter’s log is more

up-to-date than the candidate’s, then the voter denies its

vote. This guarantees that the winning candidate’s log is

at least as up-to-date as any log in the voting majority.

Raft determines which of two logs is more up-to-date

by comparing the index and term of the last entries in the

logs. If two logs have last entries with different terms,

then the log with the later term is more up-to-date. If two

logs end with the same term, then whichever log is longer

is more up-to-date (it is a strict superset of the other log).

Given these rules for choosing leaders, Raft uses a com-

patible policy for committing log entries: a log entry may

only be considered committed if it is impossible for a

server that does not store the entry to be elected leader.

There are two interesting cases to consider, which are di-

agrammed in Figure 7. If a leader is replicating an entry

from the current term, as in Figure 7(a), the entry is com-

mitted as soon as the leader can confirm that it is stored on

a majority of the full cluster: at this point only the servers

storing the entry can be elected as leader.

However, things are more complex if a leader crashes

before committing a log entry, so that a future leader must

finish the commitment process. For example, in Fig-

ure 7(b) the leader for term 4 is replicating log index 2,

which was originally created, but not fully replicated, in

term 2. In this case it is possible for another server to

overwrite this entry: in Figure 7(b), S5 was elected leader

for term 3 (with votes from S3 and S4). It created a new

entry in its own log, but crashed before replicating that en-

try. In this situation, the leader for term 4 cannot consider

log index 2 committed even if it is stored on a majority of

the servers: S5 could still be elected leader and propagate

its own value for index 2.

1 2

1

1

1

1

1 2 3

2

2

1 2 4

3

1

1

1

1

1 2 3

2

2

1 2 4

3

1

1

1

1

1 2 3

2

2

4

4

(a) (b) (c)

Figure 7: Scenarios for commitment. In each scenario S1

is leader and has just finished replicating a log entry to S3.

In (a) the entry is from the leader’s current term (2), so it is

now committed. In (b) the leader for term 4 is replicating an

entry from term 2; index 2 is not safely committed because

S5 could become leader of term 5 (with votes from S2, S3,

and S4) and overwrite the entry. Once the leader for term 4

has replicated an entry from term 4 in scenario (c), S5 cannot

win an election so both indexes 2 and 3 are now committed.

To handle this situation, the full rule for commitment as

as follows: a log entry may only be considered commit-

ted if the entry is stored on a majority of the servers;

in addition, at least one entry from the leader’s cur-

rent term must also be stored on a majority of the

servers. Figure 7(c) shows how this preserves the Leader

Log Property: once the leader has replicated an entry from

term 4 on a majority of the cluster, it is impossible for S5

to be elected leader.

Taken together, the rules for elections and commitment

ensure that a newly elected leader stores all committed

entries in its log. Leaders never overwrite entries in their

logs, so the committed entries will be preserved through-

out the leader’s term. This ensures that the leader’s log

really is “the truth,” which has been assumed by the other

parts of the Raft algorithm.

5.5 Neutralizing deposed leaders

In Raft, it is possible for more than one server to act as

leader at the same time. This can happen if a leader be-

comes temporarily disconnected from the rest of the clus-

ter, triggering election of a new leader, then becomes re-

connected after the election has completed. The deposed

leader may continue to act as leader, accepting client re-

quests and attempting to replicate them. These log en-

tries could conflict with entries being replicated by the

new leader.

Fortunately, Raft’s term mechanism prevents deposed

leaders from taking any actions that affect the safety of the

consensus protocol. As described in Section 5.1, servers

exchange their current terms in every RPC. Any server

contacted by the new leader will store the leader’s higher

term number; this will include a majority of the cluster

before the new leader wins an election. If a deposed leader

sends an RPC to any of these servers, it will discover that

its term is out of date, which will cause it to step down.

In order for a deposed leader to commit a new log entry,

it must communicate with a majority of the cluster, which
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will include at least one server with a higher term. Thus,

the deposed leader cannot commit new log entries.

However, it is possible for a deposed leader to finish

committing an existing entry. For example, if one of the

servers voting for the new leader received a log entry from

the old leader before casting its vote, the deposed leader

could finish committing that entry using servers that are

not part of the electing majority. Fortunately, this situa-

tion is still safe. In order for the deposed leader to com-

mit a log entry after the next election completes, the entry

must be stored on at least one server that voted for the new

leader. The election rules described in Section 5.4 guar-

antee that the new leader must be one of the servers that

stores the entry, and it will commit the entry itself, so the

old leader is simply assisting the new leader. Combining

this paragraph with the previous one produces the follow-

ing rule: once a new leader has been elected, no previous

leader can commit log entries that conflict with those on

the new leader.

5.6 Follower and candidate crashes

Until this point we have focused on leader failures. Fol-

lower and candidate crashes are much simpler to handle

than leader crashes, and they are both handled in the same

way. If a follower or candidate crashes, then future Re-

questVote and AppendEntries RPCs sent to it will fail.

Raft handles these failures by retrying indefinitely; the

server will eventually restart (as a follower) and the RPC

will complete successfully. If a server crashes after com-

pleting an RPC but before responding, then it will receive

the same RPC again after it restarts. Fortunately, Raft

RPCs are idempotent so this causes no harm. For exam-

ple, if a follower receives an AppendEntries request that

includes log entries already present in its log, it ignores

those entries in the new request.

5.7 Timing and availability

One of our requirements for Raft is that safety must not

depend on timing: the system must not produce incorrect

results just because some event happens more quickly or

slowly than expected. However, availability (the ability

of the system to respond to clients in a timely manner)

is a different story: it must inevitably depend on timing.

For example, if message exchanges take longer than the

typical time between server crashes, candidates will not

stay up long enough to win an election; without a steady

leader, Raft cannot make progress.

Leader election is the aspect of Raft where timing is

most critical. Raft will be able to elect and maintain a

steady leader as long as the system satisfies the following

timing requirement:

broadcastT ime ≪ electionT imeout≪ MTBF

In this inequality broadcastTime is the average time it

takes a server to send RPCs in parallel to every server

in the cluster and receive their responses; electionTime-

out is the election timeout described in Section 5.2; and

MTBF is the average time between failures for a single

server. The broadcast time must be an order of magnitude

less than the election timeout so that leaders can reliably

send the heartbeat messages required to keep followers

from starting elections; given the randomized approach

used for election timeouts, this inequality also makes split

votes unlikely. The election timeout must be a few orders

of magnitude less than MTBF so that the system makes

steady progress. When the leader crashes, the system will

be unavailable for roughly the election timeout; we would

like this to represent only a small fraction of overall time.

The broadcast time and MTBF are properties of the un-

derlying system, while the election timeout is something

we must choose. Raft’s RPCs typically require the recipi-

ent to commit information to stable storage, so the broad-

cast time may range from 0.5ms to 20ms, depending on

storage technology. As a result, the election timeout is

likely to be somewhere between 10ms and 500ms. Typi-

cal server MTBFs are several months or more, which eas-

ily satisfies the timing requirement.

Raft will continue to function correctly even if the tim-

ing requirement is occasionally violated. For example, the

system can tolerate short-lived networking glitches that

make the broadcast time larger than the election timeout.

If the timing requirement is violated over a significant pe-

riod of time, then the cluster may become unavailable.

Once the timing requirement is restored, the system will

become available again.

6 Cluster membership changes
Up until now we have assumed that the cluster config-

uration (the set of servers participating in the consensus

algorithm) is fixed. In practice, it will occasionally be

necessary to change the configuration, for example to re-

place servers when they fail or to change the degree of

replication. Although this can be done by taking the en-

tire cluster off-line, updating configuration files, and then

restarting the cluster, this will leave the cluster unavailable

during the changeover. In addition, if there are any man-

ual steps, they risk operator error. In order to avoid these

issues, we decided to automate configuration changes and

incorporate them into the Raft consensus algorithm.

The biggest challenge for configuration changes is to

ensure safety: there must be no point during the transi-

tion where it is possible for two leaders to be elected si-

multaneously. Unfortunately, any approach where servers

switch directly from the old configuration to the new con-

figuration is unsafe. It isn’t possible to atomically switch

all of the servers at once, so there will be a period of time

when some of the servers are using the old configuration

while others have switched to the new configuration. For

some configuration changes, such as the one shown in

Figure 8, this can result in two independent majorities.

In order to ensure safety, configuration changes must

use a two-phase approach. There are a variety of ways to
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time

CnewCold

problem: two

disjoint majorities

Server 1

Server 2

Server 3

Server 4

Server 5

Figure 8: Switching directly from one configuration to an-

other is unsafe because different servers will switch at dif-

ferent times. In this example, the cluster grows from three

servers to five. Unfortunately, there is a point in time where

two different leaders can be elected simultaneously, one with

a majority of the old configuration (Cold) and another with a

majority of the new configuration (Cnew).

implement the two phases. For example, some systems

(e.g. [15]) use the first phase to disable the old configura-

tion so it cannot process client requests; then the second

phase enables the new configuration. In Raft the cluster

first switches to a transitional configuration we call joint

consensus; once the joint consensus has been committed,

the system then transitions to the new configuration. The

joint consensus combines both the old and new configu-

rations:

• Log entries are replicated to all servers in both con-

figurations.

• Any server from either configuration may serve as

leader.

• Agreement (for elections and entry commitment) re-

quires majorities from both the old and new configu-

rations.

As will be shown below, the joint consensus allows indi-

vidual servers to transition between configurations at dif-

ferent times without compromising safety. Furthermore,

joint consensus allows the cluster to continue servicing

client requests throughout the configuration change.

Cluster configurations are stored and communicated

using special entries in the replicated log; Figure 9 illus-

trates the configuration change process. When the leader

receives a request to change the configuration from Cold

to Cnew , it stores the configuration for joint consensus

(Cold,new in the figure) as a log entry and replicates that

entry using the mechanisms described previously. Once a

given server adds the new configuration entry to its log, it

uses that configuration for all future decisions (it does not

wait for the entry to become committed). This means that

the leader will use the rules ofCold,new to determine when

the log entry for Cold,new is committed. If the leader

crashes, a new leader may be chosen under either Cold

or Cold,new, depending on whether the winning candidate

has received Cold,new. In any case, Cnew cannot make

unilateral decisions during this period.

Once Cold,new has been committed, neither Cold nor

time

Cold

Cold,new

Cnew

Cold,new entry

committed

Cnew entry

committed

leader not in Cnew

steps down here

Cold can make

decisions alone

Cnew can make

decisions alone

Figure 9: Timeline for a configuration change. Dashed lines

show configuration entries that have been created but not

committed, and solid lines show the latest committed con-

figuration entry. The leader first creates the Cold,new config-

uration entry in its log and commits it to Cold,new (a majority

of Cold and a majority of Cnew). Then it creates the Cnew

entry and commits it to a majority of Cnew. There is no point

in time in which Cold and Cnew can both make decisions in-

dependently.

Cnew can make decisions without approval of the other,

and the Leader Log Property ensures that only servers

with the Cold,new log entry can be elected as leader. It

is now safe for the leader to create a log entry describing

Cnew and replicate it to the cluster. Again, this configu-

ration will take effect on each server as soon as it is seen.

When the new configuration has been committed under

the rules of Cnew , the old configuration is irrelevant and

servers not in the new configuration can be shut down. As

shown in Figure 9, there is no time when Cold and Cnew

can both make unilateral decisions; this guarantees safety.

There are two more issues to address for reconfigura-

tion. First, if the leader is part of Cold but not part of

Cnew , it must eventually step down. In Raft the leader

steps down immediately after committing a configuration

entry that does not include itself. This means that there

will be a period of time (while it is committing Cnew)

where the leader is managing a cluster that does not in-

clude itself; it replicates log entries but does not count

itself in majorities. The leader should not step down ear-

lier, because members not in Cnew could still be elected,

resulting in unnecessary elections.

The second issue is that new servers may not initially

store any log entries. If they are added to the cluster in

this state, it could take quite a while for them to catch

up, during which time it might not be possible to com-

mit new log entries. In order to avoid availability gaps,

Raft introduces an additional phase before the configu-

ration change, in which the new servers join the cluster

as non-voting members (the leader will replicate log en-

tries to them, but they are not considered for majorities).

Once the new servers’ logs have caught up with the rest of

the cluster, the reconfiguration can proceed as described

above.

7 Clients and log compaction

This section describes how clients interact with Raft,

including finding the cluster leader and supporting lin-

10



earizable semantics [6]. It also discusses the issue of log

compaction (responsibility for which falls primarily with

the state machine).

7.1 Client interaction

This text (and more) was commented out. Clients of

Raft send all of their requests to the leader. When a client

first starts up, it connects to a randomly-chosen server. If

the client’s first choice is not the leader, that server will

reject the client’s request and supply information about

the most recent leader it has heard from (AppendEntries

requests include the network address of the leader). If the

leader crashes, client requests will time out; clients then

try again with randomly-chosen servers.

Raft provides at-least-once semantics for clients, but

the state machine can filter duplicate commands for

exactly-once semantics. The problem arises when a client

fails to get a response to a request, and it retries the

request repeatedly until it eventually completes. If the

first attempt was committed but the leader crashed be-

fore responding to the client, the retry will cause the state

machine command to be duplicated in the log. So that

the state machine can filter these duplicated commands,

clients assign unique serial numbers to every command.

Then, the state machine tracks the latest serial number

processed for each client, along with its associated out-

put. If it receives a command whose serial number has

already been executed, it responds immediately without

re-executing the request.

Read-only operations in Raft require extra precautions

so that they do not return stale information. These oper-

ations are not serialized into the log, so if the leader has

been deposed but does not yet know it, it could return in-

formation that was already stale when the request was sent

(this violates linearizability [6]). Raft’s solution is for the

leader to reconfirm its leadership (for example, by send-

ing heartbeat messages to a majority of the cluster) before

responding to read-only requests. Alternatively, the leader

could rely on the heartbeat mechanism to provide a form

of lease [5], but this would rely on timing for safety (it

assumes bounded clock skew).

7.2 Log compaction

To keep the log from growing without bound, the nec-

essary information from the log must be extracted and

those log entries discarded periodically. In Raft, the nec-

essary information is just the current state machine state

and the current cluster configuration (for cluster member-

ship changes; see Section 6). Snapshotting is a common

and simple approach used in Chubby and ZooKeeper: all

current information is rewritten in a more compact snap-

shot, then the entire log up to that point is discarded. This

is easily done in parallel with normal operation to avoid

affecting availability.

Raft supports snapshotting as follows: at any time, a

server may snapshot the committed prefix of its log, then

discard this log prefix. Servers do this independently

without coordination. Discarding log entries opens up the

possibility that a leader may not be able to replicate a log

entry to a follower that has fallen too far behind (if it has

already discarded the log entry that follower needs next).

Instead, the leader sends that follower its latest snapshot,

along with the index and term of last log entry covered by

the snapshot. Followers discard their logs and load in the

snapshot upon receiving a current snapshot from a current

leader. They use the last index and term of the snapshot

for subsequent AppendEntries consistency checks.

8 Implementation and evaluation
We have implemented Raft as part of a replicated

state machine that stores configuration information for

RAMCloud [19] and assists in failover of the RAMCloud

coordinator. This implementation includes the consensus

mechanism described in Section 5 and the configuration

change mechanism of Section 6, but not all of the features

described in Section 7 (log compaction is not yet imple-

mented). The Raft implementation contains roughly 1500

lines of C++ code, not including tests, comments, or blank

lines. The source code is freely available [16].

The remainder of this section evaluates Raft using three

criteria: understandability, correctness, and performance.

8.1 Understandability

To measure Raft’s understandability, we conducted an

experimental study using CS students at two universi-

ties. We recorded a video lecture of Raft and another of

Paxos, and created corresponding quizzes. Upper-level

undergraduate and graduate students from an Advanced

Operating Systems course and a Distributed Computing

course each watched one video, took the corresponding

quiz, watched the second video, and took the second quiz.

About half of the participants did the Paxos portion first

and the other half did the Raft portion first in order to

account for both individual differences in performance

and experience gained from the first portion of the study.

We compared participants’ scores on each quiz to deter-

mine whether participants showed a better understanding

of Raft.

We tried to make the comparison between Paxos and

Raft as fair as possible. The experiment favored Paxos in

Concern Steps taken to mitigate bias Materials for review

Equal lecture quality Same lecturer for both. Paxos lecture based on and improved from existing

materials used in several universities. Paxos lecture is 14% longer.

videos

Equal quiz difficulty Questions grouped in difficulty and paired across exams. quizzes

Fair grading Used rubric. Graded in random order, alternating between quizzes. rubric, grade assignments

Table 1: Concerns of possible bias against Paxos in the study, steps taken to counter each, and additional materials available.
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Figure 10: A scatter plot of 43 participants’ grades compar-

ing their performance on each exam. Points above the diago-

nal (33) represent participants who scored higher on the Raft

exam.

two cases: 15 of the 43 participants reported having some

prior experience with Paxos, and the Paxos video is 14%

longer than the Raft video. As summarized in Table 1, we

have taken steps to mitigate potential sources of bias and

have made all of our materials available for review [17].

On average, participants scored 4.9 points higher on the

Raft quiz than on the Paxos quiz (out of a possible 60

points, the mean Raft score was 25.7 and the mean Paxos

score was 20.8); Figure 10 shows their individual scores.

A paired t-test states that, with 95% confidence, the true

distribution of Raft scores has a mean at least 2.5 points

larger than the true distribution of Paxos scores. Account-

ing for whether people learn Paxos or Raft first and prior

experience with Paxos, a linear regression model predicts

scores 11.0 points higher on the Raft exam than on the

Paxos exam (prior Paxos experience helps Paxos signifi-

cantly and helps Raft slightly less). Curiously, the model

also predicts scores 6.3 points lower on Raft for people

that have already taken the Paxos quiz; although we don’t

know why, this does appear to be statistically significant.

We also surveyed participants after their quizzes to see

which algorithm they felt would be easier to implement

or explain; these results are shown in Figure 11. An over-

whelming majority of participants reported Raft would be

easier to implement and explain (33 of 41 for each ques-

tion). However, these self-reported feelings may be less

reliable than participants’ quiz scores, and participants

may have been biased by knowledge of our hypothesis

that Raft is easier to understand.

8.2 Correctness

We have developed a formal specification and a proof

of safety for the consensus mechanism described in Sec-

tion 5. The formal specification [20] makes the informa-

tion summarized in Figure 2 completely precise using the

TLA+ specification language [12]. It is about 400 lines

long. It specifies the actions each server may take, and

the conditions which enable these actions. This is useful
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Figure 11: Using a 5-point scale, participants were asked

(left) which algorithm they felt would be easier to implement

in a functioning, correct, and efficient system, and (right)

which would be easier to explain to a CS graduate student.

on its own for anyone implementing Raft and also serves

as the subject of the proof.

The safety proof shows invariants that hold in every

state of every execution that the specification allows. Its

main lemma states that a leader only marks a log entry

committed if every subsequent leader must also have this

entry. (Safety follows easily from this lemma.) We have

an informal proof [20] for Raft which is relatively pre-

cise and complete (about 9 pages or 3500 words long).

We also have a mechanically-checked version of the main

lemma and other portions of the proof using the TLA

proof system [3]. However, this version relies on invari-

ants whose proofs have not been mechanically checked

(for example, we have not proven the type safety of the

specification).

8.3 Performance

The performance of Raft is equivalent to other consen-

sus algorithms such as Paxos. The most important case

for performance is where an established leader is repli-

cating new log entries. Raft is optimal in this situation.

The leader must complete a single round-trip RPC to any

half of the followers in the cluster before responding to

the client and passing the command to the local state ma-

chine (along with the leader, this constitutes a majority).

No algorithm can ensure the basic properties of consensus

without at least this many messages. If multiple clients

are making requests simultaneously, the leader can opti-

mize performance by batching several log entries in a sin-

gle AppendEntries RPC or by issuing overlapping Appen-

dEntries RPCs to the same follower. Importantly, these

optimizations do not affect the basic properties of Raft.

We used the Raft implementation to measure the per-

formance of Raft’s leader election algorithm and answer

two questions. First, does the election process converge

quickly? Second, what is the minimum downtime that

can be achieved after leader crashes?

To measure leader election, we repeatedly crashed the

leader of a cluster of 5 servers and timed how long it took

to detect the crash and elect a new leader (see Figure 12).

To generate a worst-case scenario, the servers in each trial

had different log lengths, so some candidates were not el-

igible to become leader. Furthermore, to encourage split
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Figure 12: The time to detect and replace a crashed leader.

The top graph varies the amount of randomness in election

timeouts, and the bottom graph scales the minimum election

timeout. Each line represents 1000 trials (except for 100 tri-

als for “150-150ms”) and corresponds to a particular choice

of election timeouts; for example, “150-155ms” means that

election timeouts were chosen randomly and uniformly be-

tween 150ms and 155ms. The measurements were taken on

a cluster of 5 servers with a broadcast time of roughly 15ms

(results for a cluster of 9 servers are similar).

votes, our test script triggered a synchronized broadcast of

heartbeat RPCs from the leader before terminating its pro-

cess (this approximates the behavior of the leader repli-

cating a new log entry prior to crashing). The leader was

crashed uniformly randomly within its heartbeat interval,

which was half of the minimum election timeout for all

tests. Thus, the smallest possible downtime was about

half of the minimum election timeout.

The top graph in Figure 12 shows that a small amount

of randomization in the election timeout is enough to

avoid split votes in elections. In the absence of random-

ness, leader election consistently took longer than 10 sec-

onds in our tests, implying many split votes. Adding just

5ms of randomness helps significantly, resulting in a me-

dian downtime of 287ms. Using more randomness im-

proves worst-case behavior: with 50ms of randomness the

worst-case completion time (over 1000 trials) was 513ms.

The bottom graph in Figure 12 shows that downtime

can be reduced by reducing the election timeout. With

an election timeout of 12-24ms, it takes only 35ms on

average to elect a leader (the longest trial took 152ms).

However, lowering the timeouts further violates Raft’s

timing requirement: leaders have difficulty broadcasting

heartbeats before other servers start new elections. This

can cause unnecessary leader changes and lower overall

system availability. We recommend using a conservative

election timeout such as 150-300ms; such timeouts are

unlikely to cause unnecessary leader changes and will still

provide good availability.

9 Related Work

Raft is quite different from Paxos. As already dis-

cussed, Raft is based on a coherent log rather than a col-

lection of relatively independent decisions, and it uses a

strong form of leadership whereas Paxos is mostly peer-

to-peer with a weak notion of leaders. These differences

make Raft simpler than Paxos; for example, Raft can

record the entire state of a log with two numbers (last

log index and last log term), whereas Paxos must main-

tain independent state for each incomplete decision. Raft

also uses a different mechanism than Paxos for changes

in cluster membership; the Paxos mechanism will not

work in Raft because it could result in deadlocks where

no leader can be elected because the cluster is not up-to-

date, and the cluster cannot be updated without a leader.

Although Raft is easier to understand than Paxos, it

provides all the same benefits. Raft’s replicated log is

equivalent to multi-decree Paxos. Raft survives the same

set of failures as Paxos (fail-stop crashes of any minor-

ity of the servers). And Raft has the same performance

as Paxos: both systems require one round of RPCs to

commit a new entry in the common case and both require

three rounds of RPCs, starting from a cold start, to commit

the first entry and notify the entire cluster of its commit-

ment. Furthermore, an efficient implementation of Raft

followed naturally from the algorithm described here; in

contrast, Paxos implementations require numerous opti-

mizations beyond the base algorithm to achieve efficiency

and liveness [2].

Of existing consensus algorithms, the one most similar

to Raft is Viewstamped Replication [18] (VR). VR was

published before Paxos, but it has received much less at-

tention (this may be because VR’s consensus mechanism

was intertwined with an implementation of distributed

transactions). The VR algorithm was recently updated

to focus on the consensus mechanism and eliminate dis-

tributed transactions [15]. The new version of VR was

developed at the same time we were independently de-

signing Raft.

Raft is similar in many ways to the updated version of

VR. Both use a distinguished leader and both have distinct

mechanisms for leader election and replication. The VR

notion of view is similar to that of a term in Raft; their logs

have similar structure and the systems use similar mecha-

nisms for basic replication.

However, VR and Raft use different approaches for

elections, restoring log consistency, and configuration

changes. Changing leaders in VR is more complex: in-

stead of electing a leader with a sufficiently up-to-date log

as in Raft, VR must transfer the most up-to-date log to the

new leader during view changes; it applies optimizations

to reduce the transfer overhead. The largest difference

is in the area of configuration changes. VR implements

configuration changes with an additional protocol that re-
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quires three new message types, additional state, and sev-

eral modifications to the mechanisms for replication and

leader election. Furthermore, the VR approach requires

the system to stop processing client requests during con-

figuration changes. Raft’s mechanism is simpler because

it piggybacks on the existing consensus mechanism; the

only addition is the notion of joint consensus (checking

two majorities instead of one). Raft can continue process-

ing client requests during configuration changes.

VR contains several performance optimizations not

present in Raft, such as the ability to operate without

synchronous writes to disk, and a witness mechanism to

reduce the load on followers. Raft does not currently

include similar optimizations, but the VR mechanisms

could be incorporated into Raft.

The two best-known implementations of replicated

state machines are Chubby [1, 2] and ZooKeeper [7, 8].

Chubby’s consensus algorithm is based on Paxos but ap-

pears to have some similarities to Raft, including a mas-

ter replica (similar to a leader) and epochs (similar to

terms); the details of its algorithm have not been pub-

lished. ZooKeeper’s consensus mechanism, Zab, has been

published in more detail [8]. It uses epochs in a fashion

similar to Raft terms, and it employs a leader. Zab is de-

signed to operate across a broader state space than Raft

(e.g., a new leader can be elected without storing all of

the committed entries), but these generalizations add to its

complexity. Zab does not include a mechanism for cluster

reconfiguration.

10 Conclusion
Algorithms are often designed with correctness, effi-

ciency, and/or conciseness as the primary goals. Although

these are all worthy goals, we believe that understandabil-

ity is just as important. None of the other goals can be

achieved until developers render the algorithm into a prac-

tical implementation, which will inevitably deviate from

and expand upon the published form. Unless developers

have a deep understanding of the algorithm and can create

intuitions about it, it will be difficult for them to retain its

desirable properties in their implementation.

In this paper we addressed the issue of distributed con-

sensus, where a widely accepted but impenetrable algo-

rithm, Paxos, has challenged students and developers for

many years. We developed a new algorithm, Raft, which

we have shown to be more understandable than Paxos.

We also believe that Raft provides a better foundation for

system building. Furthermore, it achieves these benefits

without sacrificing efficiency or correctness. Using un-

derstandability as the primary design goal changed the

way we approached the design of Raft; as the design pro-

gressed we found ourselves reusing a few techniques re-

peatedly, such as decomposing the problem and simplify-

ing the state space. We believe that these techniques not

only improved the understandability of Raft but also made

it easier to convince ourselves of its correctness.
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