A CATEGORY-THEORETIC APPROACH TO THE

SEMANTICS OF PROGRAMMING LANGUAGES

Frank J. Oles

August 1982

I hereby grant permission for my thesis to be reproduced for noncommercial purposes.

Anyone who wishes to produce copies of any part or all of this thesis either for sale or for
incorporation into a work for sale must first obtain a license from me.

Frank J. Oles, Ph.D. (Frankjosepholes@aol.com (mailto:Frankjosepholes@aol.com))
February 4, 2012

A CATEGORY-THEORETIC APPROACH TO THE

SEMANTICS OF PROGRAMMING LANGUAGES

by
FRANK JOSEPH OLES

B. S., Case Western Reserve University, 1968
M. S., Cornell University, 1970

ABSTRACT OF DISSERTATION

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer and
Information Science in the Graduate School of
Syracuse University
August, 1982

ABSTRACT OF DISSERTATION

Here we create a framework for handling the seman-
tics of fully typed programming languages with imperative
features, higher-order ALGOL-like procedures, block struc-
ture, and implicit conversions. Our approach involves the
introduction of a new family of programming languages,

the coercive typed A-calculi, denoted by L in

the body of the dissertation. By appropriately choosing
the linguistic constants (i.e. generators) of L, we can
view phrases of variants of ALGOL as syntactically sugared
phrases of L.

This dissertation breaks into three parts. In the
first part, consisting of the first chapter, we supply basic
definitions and motivate the idea that functor categories
arise naturally in the explanation of block structure and
stack discipline. The second part, consisting of the next
three chapters, is dedicated to the general theory of the
semantics of the coercive typed A-calculus; the interplay
between posets, algebras, and Cartesian closed categories
is particularly intense here. The remaining four chapters
make up the final part, in which we apply the general

theory to give both direct and continuation semantics

for desugared variants of ALGOL. To do so, it is necessary
to show certain functor categories are Cartesian closed and
to describe a category I of store shapes. An interesting
novelty in the presentation of continuation semantics

is the view that commands form a procedural, rather than

a primitive, phrase type.

A CATEGORY-THEORETIC APPROACH TO THE

SEMANTICS OF PROGRAMMING LANGUAGES

by
FRANK JOSEPH OLES

B. S., Case Western Reserve University, 1968
M. S., Cornell University, 1970

DISSERTATION

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer and
Information Science in the Graduate School of
Syracuse University
August, 1982

Copyright 1982

FRANK JOSEPH OLES

ii

i

PREFACE

The aim of this work has been to explain the semantics
of fully typed languages that combine imperative capabili-
ties with ALGOL-like procedures and block structure. In
particular this approach is meant to handle in an intu-
itively satisfying way the connections among language
features such as higher-order types, implicit conversions,
identifier binding, and stack discipline. At the core of
this dissertation are the following six doctrines.

1. The collection of phrase types for a programming
language is a highly structured mathematical object whose
definition is dominated by the interaction between pro-
cedural types and implicit conversions. It is a free type
algebra generated by the poset of primitive phrase types.
(A type algebra has a category rather than a set as its
underlying object, and its structure reflects the fact
that hom functors are contravariant in their first argu-
ment and covariant in their second.)

2. By the device of incorporating the identifiers
into the signature, a desugared, fully-typed version of
ALGOL 60 is best viewed, not as a free algebra generated by
its identifiers, but rather as a free algebra generated by
what one usually views as operators (e.g., true, or, 0, 1,

+, =, etc.).

iv

3. To check a program for mismatched types is to
evaluate the application of a homomorphism to the program.

4. The meaning of a program or a program fragment,
in the context of an assignment of types to its free identi-
fiers, is a morphism in a Cartesian closed category.

5. Variable declarations should be viewed as chang-
ing, not the store of the machine, but rather the set of
stores with respect to which commands are interpreted; the
attempt to capture this intuition precisely leads to the
natural introduction of Cartesian closed categories with
non-functional morphisms.

6. The definition of functions by structural induction
represents a failure to discern underlying algebraic struc-
ture; in so far as possible a syntactic or semantic function
should be described as the unique morphism which satisfies
some universal mapping property.

The debt I owe my advisor, Prof. John C. Reynolds, is
substantial. His ideas, described in part in [61]1, [71,
and [8], have had a profound impact on this work. 1In
particular, the original suggestion that certain Cartesian
closed categories whose objects are functors have a role
to play in explaining stack discipline was his. Also, he
drew my attention to the distinction between data types
and phrase types in the course of discussing his ideas on
the relevance of posets to the proper explanation of coer-

cion. I would like also to thank Prof. F. Lockwood Morris

and Prof. Luis Sanchis. Special thanks go to A.V. Jategaonkar.
This dissertation was typed on I.B.M. Selectric type-
writers using five different kinds of type balls. Obviously,
the typists, Virginia Vedder, Barbara Merchant, and Bert
Fancher, deserve my eternal gratitude for putting this dis-
sertation into a readable form.
This material is based upon work partially supported by

National Science Foundation Grant MCS-8017577.

CONTENTS

Page
PREFACE w « 5 & w w0 & & m6 & & i @ % & @ @ » « o o B |

Chapter
I. THE UTILITY OF FUNCTOR CATEGORIES . . . =« 1
IT. TYPE ALGEBRAS . « ¢ % 4 & w w & & %6 @& = 4 28
III. SYNTAX, SUBSIITUTION, AND TYPE CHECKING . . 50
IV. THE FUNDAMENTAL THEOREM OF SEMANTICS . . . 86
V. CARTESIAN CLOSED CATEGORIES . . . +« « « = 138
VI. A CATEGORY OF STORE SHAPES . . . « . « . = 162
VII. DESUGARED ALGOL: DIRECT SEMANTICS 171
VIII. DESUGARED ALGOL: CONTINUATION SEMANTICS . 211

BIBLIOGRAPHY . ¢ =« o & o o o s & 2 s s s o« o o = 239

vi

CHAPTER I

THE UTILITY OF FUNCTOR CATEGORIES

This chapter is intended to serve as a foundation upon
which the rest of the dissertation rests. The foundational
material is of two sorts. First, there are the definitions
of terms and the descriptions of notations, familiarity
with which is essential to understanding the subsequent
work., Second, there is a comparatively informal explanation
of the connection between functor categories and the
semantics of block structure. The rest of the dissertation
is meant (1) to provide the mathematical substance associated
with this informal connection, (2) to incorporate at the
same time intuitions about implicit conversions, type check-
ing, and the algebraic nature of syntax and semantics, and
(3) to explicitly describe the semantics of a desugared
variant of an ALGOL=-like language.

We begin with some notational conventions. When X
and Y are simply sets, then X = Y denotes the set of functions
from X to Y. We write

feX~»>Y,
rather than

f: X >~ Y .

All the infixed arrows used in this work are right-associative.
Thus W > X = Y > 2 means W » (X -~ (Y - Z)). (This also

applies to the heavy arrow =, which will be defined later.)

We abhor unnecessary parentheses. Therefore for func-
tional application we write £ x rather than f£(x). Functional
application associates to the left, so that f g h x means
(((f g) h) x). Also, application binds more tightly than
anything else, so that F a x G b should be read as (F a)

x (G b). However, if a few extra parentheses really enhance
readability, we shall throw them in.

Suppose f ¢ X - Y. We write dom f for X, the domain
of £, and cod f for ¥, the codomain of f.

The function

[£ | a:b] € X U {a} » Y U {b}

is given by

[£ | a:b] x =

P S

where x € XU {a}.

Depending on the context, X means either the set of
all strings of elements of X, or the set of all functions
feF > X
where F is a finite subset of some specified set. The
notation X* denotes the set of all functions from a
specified infinite set to X; the notation X" always occurs
in conjunction with X*.

Ordered tuples are enclosed in angle brackets, e.g.

(y, z) e ¥ x Z.

Also, if £ ¢ X - Y and g ¢ X - Z, then we use angle brackets

to denote the function

(f, g € X » Y x 7

such that
(f, g») x=(f x, g x> for all =x e X.

In order to establish notation we define some familiar
category-theoretic concepts.

An ordered 6-tuple

cr 1¢?

fs]

C ={0b C, Ar C, domc, codc,

18 @ category if
(1) Ob C (the objects of C) and Ar C (the arrows of ()
are collections,

(2) dom cod, €« Ar C - O0b C,

et C
(3) °c E Ar C XOb e Ar C - Ar C , where
Ar C x5 o Ar C = {¢0,B) e Ar C x Ar C | dom,a = codCB}

(as usual, call °e composition and write a °n g

rather than °0 {a,B)),

(4) domC (o 5 B) = domc B, codc (c ° e B) = codc oy
and composition is associative,

(5) 1C e Ob C - Ar C, and

(6) for all X € Ob C, dom (lcx) — i = codc(lcx),

G
and lCX is a two-sided identity for composition.

The subscript C may be omitted if it is clear from context,
and alternative notations for lc X are lX and 1; . The
names dom and cod abbreviate domain and codomain, respectively.
Arrows are also called morphisms, and the set of arrows
o from X to Y, i.e., such that dom o = X and cod o = Y, is
denoted XAMEA X.

Set denotes the category of sets and functiomns.

A functor F consists of a domain C and a codomain

D, both of which are categories, and functions

Ob F ¢ Ob C~—0b D and Ar F € Ar C—=Ar D

such that
(1) if a ¢ X —>Y, then Ar F a e Ob F X-—5>0b F ¥,
(2) if o ¢ X=Mﬁm%Y and B € Y~—C~+Z, then
Ar F (B °0 a) = (Ar F B) °p (Ar F o), and
(3) if X € Ob C, then Ar F (lCX) = lD(Ob P X)

The collection of functors with domain C and codomain D

is denoted C -+ D. Following usual mathematical practice,
we write simply F rather than Ob F or Ar F unless there

is a need to be exceptionally precise. The most noteworthy
functor in C - C is the identity functor, which is denoted
lC and which acts as the identity function on objects and
arrows. Of course, functors may be composed in the usual
boring way so as to obtain GoF ¢ C - E from F ¢ C -~ D

and G £ D -~ E.

A natural transformation n consists of a domain F and a

codomain G, both of which are functors with identical domains

and identical codomains (say, F,G € C - D), and an

(Ob C)-indexed collection of arrows of D

nX e FX-*§_+GX, for X € 0b C

such that, for all a ¢ X‘wb—+Y, the diagram

nxX

ny

commutes in D.

Suppose C and D are categories. Of fundamental

importance in the sequel is the functor category C = D

(alternative notation: DC) whose objects are all functors
F e C ~ D, and whose morphisms are all natural transformations
between functors in C - D. Composition in C = D is defined

as follows: 1if n ¢ F_fgﬁ“* G and v € G—Egﬁrﬂ, then

(ven)X = (vX) o (nX) for all X ¢ Ob C.
We omit the details.
Each category C has an opposite category denoted g=F
and defined by
(1) ob c°®? = ob c,

(2) ar c°P = ar ¢,

(3) dom = cod

CeP € !

(4) COdcop~ = domc,

(5) for all composable pairs of arrows a and B,
aocOpB=B°Cul
(6) lcop = lc.
To each functor F ¢ C -+ D there corresponds a functor
FoP ¢ ¢°P 5 p©P

which agrees with F on objects and arrows

but has different domain and codomain.

If ¢(C,1» is an ordered pair of categories, then its
product C XCat D, also denoted CxD when the abbreviated
notation causes no confusion, is defined by

(1) Ob (CxD)

(Ob C) x (Ob D),

(2) Ar (CxP) = (Ar C) x (Ar D),

(3) domCxﬂ {o,B? (domC oy domD B,
(4) codCxD {a,R) = (codC Oy codv By,
(5) <a', B") ° 0% D (o, B) = (a' °0 O B' °D B), and

(6) lCXD {X: Yi =0 1:X; 1Y

G D
Each pair of functors F ¢ C » C' and G € D » D' determines

a product functor

FxG g€ CxC"'" ~ DxD'

which acts on objects and arrows by applying F to the first
component and G to the second.
Let C be a category, and let I be a set. We say

C has I-ary products if for each I-indexed collection

XeI>»>0b C

of objects of C there is some product diagram satisfying

the usual universal mapping property, i.e. there is an

object C and an I-indexed collection

me I + Ar ¢, where wi ¢ c-wé*>xi for all i e I

of arrows (called projections) of C such that

DeObC, aecI~>Ar C, and ail € D-FE">Xi for all i T

implies the existence of a unique

o € D-—E+ G

making the diagrams

D.
a / \\Qf
/o
i

£ et g ¥i

commute for all i € I. Of course, a category with I-ary
products may have more than one product diagram for an I-indexed
collection of objects. Our interest is mainly in categories

having I-ary products specifically given. In this situation,

the object in the distinguished product diagram for
X e I+ Ob C is denoted HI X , and the I-indexed collection
of distinguished projections arrows is written
projI ¢ I— Ar C,
so that for all i e I
projI ie Iy X Xi.

We say that C has finite products specifically given if

C has I-ary products specifically given for each finite set

I; in this instance C has a distinguished terminal object

H¢ empC ; wWhere
emp, € ¢ » Ob C

denotes the empty collection.

Binary products are usually denoted with X. We extend

the use of angle brackets from Sef to an arbitrary category
C with a distinguished binary product functor by letting

(f, g) denote the unique arrow such that

commutes, where the horizontal arrows are projections.

A category K with finite products specifically given

is a Cartesian closed category if the following three

conditions hold:
K has a distinguished terminal object K
term

(Cartl)
(note that we do not require Kterm = H¢ empK F,
(Cart2) K has a distinguished binary product functor

K, e K x K=+ K

X

(notation: K>< (X, ©» =X XK Y = X x Y)

Z £ Ob K there

(Cart3) for each ordered pair Y,

is Y = Z € 0b K and

Bp Y, B3 € (Y = 2) x ¥ —a3

such that whenever X & 0Ob K and

o £ XXY"“'“K—J"Z

there exists a unique arrow

AbK (X, ¥, Z) o € X“—E—”*(Y = 7)

making the diagram

Ab (X Y,z2) a X lY
- (Y*Z) x Y

\ g v

commute (notation:

Y = 2r &=y e KUY, 22).

It is not hard to see that, for a Cartesian closed category
K, there is a unique way to extend the definition of K,

to give a functor

K, € KP x K—= K .
Indeed, if
y P S L
B g Y Kw» Y and v e Z K~+ Z
then

K, ¢<B, v =8=wv

is the unique arrow such that

10

(B = v)x 1
(X = &) % P e (Y' = 2') x ¥Y!
|
1 x B | | ApXY',z2")
j Ap LY, Z) ¥ v
(Y = 2) XY i T S,

commutes. The functor K, is sometimes called an "internal"
hom-functor because it is reminiscent of the "external"
hom-functor

hom ¢ K°P x K+ Set

When X, Y, and 72 are understood, we write

Ab or Ab for Ab, (X, Y, 70 ("abstraction")

K K

and

Ap or ApK for ApK (Y, 2) ("application") .

Of course, Set is the most common Cartesian closed category,
and for it the internal and external hom-functors coincide.
Another easily verifiable fact about Cartesian closed
categories is that Ap is natural in its second argument.

Thus, for ¥, Z, Z' € Ob K and o ¢ Z--kw& Z' , the diagram

Ap (Y,2)

(Y = 2) xY sy
| |

(l=a)Xl% : o
‘lb 1

(Y= 2') x ¥~ Ap (Y,Z2") g

commutes. In IV.6 of MacLane [4 | an equivalent definition
of Cartesian closed category in terms of specified right

adjoints may be found.

The point of the discussion so far has been to fix
notation for some standard concepts in category theory.
Definitions of other category-theoretic terms which appear
in the sequel may be found in MacLane [4] or Arbib and

Manes [1]. We now move on to posets.

A partial order on a set X is a relation on X, i.e.,

a subset of XxX, which is reflexive, antisymmetric, and

transitive. An ordered pair
P =(0b P, Ar P)

is a poset if Ob P is a set and Ar P is a partial order on
Ob P. The assertion (x, y?) € Ar P is usually written

X< In addition the expression x<, y is also used to

Pk
denote the ordered pair (x, y) when it is true that
(X, y) € Ar P. The correct reading of X<p ¥ will be clear

from context. The poset P becomes a category if we make

the canonical definitions:

(1) domP (XiP y) = X,
(2) codp (x<p Yy) = Y,
(3) (y<p 2) o (x5 ¥) = (x S z), and

(4) 1P X = (x <p X)s
For posets P and Q, the object part of any functor

FeP~>2Q

is a monotone function, i.e. X ip y implies F x EQ F v.

Conversely, any monotone function F £ Ob P - Ob Q has a

1L

12

unique extension to a functor F ¢ P » Q. The adjectives
"faithful" and "full" in the context of posets have the
following meanings. A functor is faithful if it is injective
on objects. A functor F e P -+ Q is full if for all

X, vy £ Ob P,

b4 iP v iff F x iQ F v.

Let R be the poset whose objects are monotone functions

from P to @ and whose partial order is given by

£ <p9 iff fx Sg 9% for each x ¢ Ob P.

We may compare the canonical category derived from R
with the functor category P = Q created from the canonical
categories derived from P and Q. It is easy to see that
they are isomorphic. Indeed, the clarity of the subsequent
exposition is not harmed by writing R = P = Q and
o 5P=Q g rather than £ r 9

A predomain is a directed-complete poset, i.e. a
poset all of whose directed subsets have least upper bounds,
and a domain is a predomain that has a minimal element. The
minimal element of a domain P is denoted 1 (read "bottom")
or 1p. For predomains P and 2, a function £ ¢ Ob P - Ob O

is said to be continuous if f preserves least upper bounds

of directed subsets, i.e., for each directed subset D of P,
f{uPD) = uQ (fD). Of course, compositions of continuous
functions are continuocus, as also are identity functions.

We are thus led to Pdom, the category whose objects are

43

predomains and whose arrows are continuous functions, with
composition in Pdom being functional composition. The
category Dom is defined to be the full subcategory of Pdom
whose objects are domains. A continuous function £ ¢ P 5BE>Q
between domains is strict if it is bottom-preserving, i.e.

£

1p LQ. By taking as objects all domains and as morphisms
all strict continuous functions, we obtain Sdom, a sub-
category of Dom. 1In Chapter V we will show that both Pdom
and Dom are Cartesian closed categories; for either of them

the underlying set of P = Q is the set of continuous functions

from P to Q.

From each predomain P we may create a domain PL by
simply adding an element not already in P as a minimal element.
In most contexts the added minimal element is thought of as

an "undefined element of P."

The connection between Set and Pdom is worth exploring.
There is an obvious forgetful functor

U e Pdom —— Set

that forgets partial orders and regards continuous functions
simply as functions. For each set S, let =q be the discrete

partial order on S. We then get an embedding functor.

E € Set ——— Pdom

given by

ES = {8, :S) for S € Ob Set, Eo = 0 for o € Ar Seft.
Clearly, UoE = lSei' Also

Sge VP = ES ooy F

for all sets S and all predomains P. Thus E is a left adjoint

14

of U, and E Set (the image of E) is a full subcategory of

Pdom that is isomorphic to Setf. For completeness, we note
that E is also the right adjoint of the functor in Pdom - Seft
which assigns to each predomain its set of equivalence classes
modulo the least equivalence relation containing the partial
order. The proof is easy.

This completes our review of definitions and notations.
We now embark on an informal attack on the nature of block
structure.

An intuitive grasp of the nature of variable declarations
and of what is happening as one enters and exits from blocks
is essential to programming in an ALGOL-like language. How-
ever, a precise semantic description of the constructs in-
volved is difficult, and it is particularly difficult if one
wants semantics for block structure that mesh elegantly with
semantics for procedures.

Our goal is to outline in general terms how functor
categories can be used to explain the semantics of ALGOL-like
languages which possess

1) a rich type structure,

2) higher-order procedures, whose types may be arbitrarily
complex,

3) imperative capabilities,
and

4) Dblock structure.

The principal intuition we will try to capture is that during

the execution of a program written in a language that obeys a

15

stack discipline not only is the store changed by commands
(statements), but also the shape of the store is changed by
variable declarations during block entrances and by block
exits.

An extended description of the characteristics of the
kinds of languages in which we are interested can be found
in [6]1. We have not worked out the details of the semantics
of every language feature mentioned there, but we do know
how to deal with the most important features, and we can tell
a complete story about block structure;

For our purposes we think of a language as beginning
with the specification of a set D of data types. Let's say
int (for integer) and bool (for boolean) are elements of D.
Along with 7 we have in mind Val, an assignment of sets

(of values) to data types. Say

Val int = 7 (the set of integers)
and
Val bool = {true, false}.

Each data type 6 € D gives rise to three primitive phrase

types.
1) d&-exp (for &-expression),
2) é&-var (for S§-variable),
3) é&-acc (for Sd—-acceptor).
Another primitive phrase type is comm (for command). The

reader probably has an excellent intuitive feeling for the
nature of phrases that are assigned the phrese types §-exp,

§-var, and comm. A phrase has type §-acc if it gobbles up

16

values of type § and produces commands. Thus, if x and y

are g§-variables, then in the assignment command x := y the
§-variable y is used as a §-expression and the §-variable x

is used as a §-acceptor. (Hence, even if a language turns out
not actually to have any phrases of type §-acc, it is still
useful to introduce that phrase type in order to explain §-var.)

A complete exposition of the connections between §-exp, d-var,

and §-acc would involve us in implicit conversions, a topic
that we will take up in subsequent chapters. See also
Reynolds [8] .

The collection of all phrase types, denoted by T, cer-
tainly contains the primitive phrase types already described.
Also, for all elements 1, 8 of T, there is a phrase type
T = 0§ that is assigned to procedures accepting arguments
(i.e. having formal parameters) of type 1t and producing
results (i.e. having calls) of type 8. The use of the same
symbol for both procedural phrase types and exponentiation
in a Cartesian closed category is, of course, intentional.

An integral part of the semantics of a typed language
is the assignment to each phrase type 1T of a meaning, denoted
Mng t. Perhaps with the plan of arranging matters so that
program fragments of type T denote elements of Mng 1, one
might suppose Mng 1t is a set. However, the possible exist-
ence of nonterminating programs, which lead to an "undefined"
state, provides an inducement to partially order Mng T, where
the relation x < y means x is "more undefined" than y. For

instance, see [9]. Following this line of reasoning, a

17

command which never terminates, such as while true do noaction,
denotes the minimal element in Mng comm. The need to give
meanings to recursively defined expressions of type T causes
us to require that directed subsets of Mng 1 have least upper
bounds, i.e. that Mng T is a predomain. (Also, we generally
want Mng t to have a minimal element, but we must tread
cautiously at this point to avoid becoming overcommitted
to the use of Dom rather than Pdom. As we shall see later,
Dom is technically inadequate.)

Suppose we try only to give the semantics of programs
which do not contain block entrances and exits. We start
by positing the existence of a set S of possible stores.
Regard sets as discretely ordered predomains. Since a
command is a transformation of S that possibly may not term-
inate, and a function from S to S, is the same as a contin-

uous function from S to Sl, we expect

Mng comm = S = SL .

Here = is the internal hom functor for Pdom.

Also, for each data type §,

Mng é-exp = § = (Val §) ,
Mng {§-acc = Val § = Mng comm,

Mng &-var Mng d§-acc * Mng S-exp

In other words, a §-expression attempts to compute a value
of type ¢ from the current store, a §-acceptor uses a value
of type & to update the current store, and a 8-variable may be

used as either a d-expression or a S-acceptor. Finally, for

18

all t, 6 ¢ T, we expect

Mng (t = 6) = Mng T = Mng 6,

i.e. the predomain of meanings for the procedural phrase
type T = 6 is the predomain of continuous functions from
Mng 1t to Mng 6.

Although the approach of the preceding paragraph is
attractively comprehensible, it is inadequate for the sem-
antics of block structure because the set S is fixed through-
out the exposition. The whole point of block structure is
to permit S to vary during program execution. For instance,
if we view stores as being functions from finite sets of
locations in memory to the set of data-type values, then the
domains of those functions may be regarded as store shapes.
Variable declarations at the start of a block alter the shape
of the store by adding locations to it, whereas block exit
restores the shape of the store to its condition at block
entrance. The semantics of a language obeying a stack dis-
cipline should reflect this dynamic behavior.

Therefore, let I be the collection of all store shapes.
To each X € I, there is a set St X of stores of that shape.
Since the meaning of T € T varies with the store shape, Mng T
is not a predomain, but is rather a I-indexed collection of

predomains. For instance we might arrange matters so that

Mng comm X = St X = (St X)l ’

]

Mng §-exp X St X = (val 6)1 '

19

Mng §-acc X Val § = Mng comm X,

Mng §-var X Mng d-exp X X Mng d-acc X,
where X ¢ £, § € D.

It is important to realize that for T € T and X, Y € I
the predomains Mng t X and Mng 1t Y cannot be arbitrarily
different. After all, we want the notion of command to have
a uniform meaning for all store shapes or else the definition
of operations like ; (concatenation of commands) will be
bizarrely complicated. For instance, consider the program

skeleton

begin int-var x;

»w
I
w

begin bool-var y:

end;

end

Suppose X is the store shape corresponding to the outer block
and Y is the store shape corresponding to the inner block.
Then Mng comm X is relevant to the first occurrence of the
assignment command X := 3, while Mng comm Y is relevant to

the second occurrence. However, both occurrences are meant

20

to alter the contents of the same location. Roughly speaking,
the fact that X can be "expanded" to give Y induces a function
from Mng comm X to Mng comm Y. So it becomes important to
contemplate the notion of an expansion from a store shape X

to a store shape Y. Certainly, expangions ought to be
composable. The composition ought to be associative. For
each store shape X, there ought to be an identity expansion
which involves "doing nothing” to X. In short, we assert
that we erred in letting I be the collection of store shapes.
From now on, take I to be the category of store shapes. The
morphisms of I are called expansions. Furthermore, for each

phrase type 1T we should require that Mng 1 be a functor
Mng T € &I —— Pdom;
this will elegantly take care of how an expansion

g € x-—§+ Y

induces a function
Mng 7 0 € Mng T X §R6E'Mng T Y.

Procedural phrase types are a bit tricky. Let 1, 6 & T.
Recall that in the simpler setting the predomain of meanings
of type 17 = 0 was the set of continuous functions from Mng T
to Mng 6. One might hope that in the more sophisticated
setting, where Mng (T = 0) is to be a functor, that the set
of procedural meanings of type T = 8 in the context of a
store shape X would be the set of continuous functions from

Mng T X to Mng 6 X, i.e.

21

Mng (t = 8) X = Mng T X = Mng 6 X.

Alas, this does not define a functor because = in Pdom is
contravariant in its first argument. (For the same reason,
one cannot define a functor from Set to Set by diagonalizing
the hom functor, i.e. by letting X go to X - X.) Another
idea might be to recall that Mng Tt and Mng 6 are objects of
a functor category and to try letting Mng (t = 6) be the set
of natural transformations from Mng T to Mng 6. That's
plain nonsense, because there is no way to regard such a set
of natural transformations as a functor. We are, however,
getting closer to the heart of the matter. In Chapter V we
will prove that the functor category I = Pdom is Cartesian
closed. Therefore, the appropriate equation governing mean-

ings of procedural types is just
Mng (t = 6) = Mng T = Mng 6,

where the heavy arrow on the right is exponentiation in the
functor category I = Pdom. Further evidence of the essential
rightness of this equation will be presented at the conclusion
of this section.

The reader may wonder why we didn't engineer this dis-
cussion so as to end up with the functor category I = Dom.
Unfortunately, contrary to the ciaim in [6], it does not
appear that ¥ = Dom is a Cartesian closed category, in spite
of the fact that Dom is Cartesian closed.

This all sounds nice enough, but we have lost somewhere

the idea that phrases of type 1 should have denotations

22

which are elements of Mng T, because Mng T doesn't seem to
have any elements if it is a functor. The solution is to
reject even in the simple setting where block structure is
ignored the intuition that a phrase of type T denotes an
element of Mng t. Actually, this is a rather conventicnal
notion. In the simpler setting, complete specification of
the semantics of a language requires not only a set S of
stores, but also a function A &€ Id -+ T, where Id is the set
of identifiers. The function A has two uses. First, it is
used to assign types to free occurrences of identifiers,
enabling the type of the entire phrase to be determined.
Second, A determines a predomain E of environments by taking
E to be the product in Pdom of the Id-indexed collection

{Mng (A x) | x ¢ Id}. Thus, each element of E associates a
meaning of the right type tc each identifier. Then even in
this simpler setting we conceive of the denotation of a
phrase of type 1 as being a (continuous) function from E

to Mng t. We have thus been led to the idea that the semantics
of a phrase is a morphism in a category from an environment
object to a meaning object. We will give more details shortly,
but at least we need not worry that Mng T is a functor rather
than a set of elements.

The idea that each identifier possesses a unique phrase
type is workable in some contexts, but it is always unpalatable
because it robs the programmer of the ability to bind any
identifier to any phrase type. Furthermore, it is not in the

spirit of ALGOL-like languages since an identifier should have

23

the ability to be bound to different phrase types in different
blocks. The assignment of types to identifiers should be
dynamic. Before program execution begins, no identifier has

a type; during execution some have types, and some don't.
This leads us to introduce A, the set of phrase type assign-

ments. A phrase type assignment o is a function
o ELI—+T

where I = dom o is a finite set of identifiers. Thus,

emp,r € ¢ ¥
the phrase type assignment with empty domain, is the phrase
type assignment most appropriate to the beginning of program
execution.

Now let L be a desugared version of an ALGOL-like
language with block structure and higher-order procedures.
Without getting into the exact algebraic nature of L, we
wish to be a little more precise about what phases in L
denote. Keep in mind that for each phrase type 7 € T, Mng T is
an object of the Cartesian closed category I = Pdom, where
Z is the category of state shapes. To avoid complicated
subscripts, let K = & = Pdom. Actually in Chapters VII and
VIII we use a slightly different K, but this one is good
enough for the time being. We will use Type to stand for the
function that assigns phrase types to phrases. However, since
a phrase may contain free occurrences of identifiers, a type
can be assigned to % & L only in the context of a phrase

type assignment o & A. Hence, we see that

24

Type ¢ L - (A > T).

(Thus, it seems that we try occassionally to assign a type
to a phrase £ ¢ L in a context a £ A that does not give
types to all the free identifiers in L. This situation can
be handled by introducing a nonsense type ns € T.)

Each phrase type assignment a determines an environment
Env g, which is a functor in § » Pdom, defined by taking
the product in K of the (dom ¢) - indexed collection of
functors {Mng (ax) | X £ dom o). If X is a store shape,
then Env g X is the product in Pdem of the (dom o)-indexed
collection of predomains {Mng(ax) X | x € dom o}, which is a
"conventional environment."

Let us use Semf to stand for the function which assigns
denotations to phrases. A denotation can only be determined
in the context of a phrase type assignment and the result
will be a morphism (natural transformation) in the functor
category K. Hence, we want

1) Semf ¢ L - (A - Ar K)
and

2) for all £ ¢ L, o € A,

Semf £ o ¢ Env o —p—> Mng (Type £ o).

In particular, the denotation of a phrase £ € L in the
context of a phrase type assignment o € L and a store shape
X g Ob ¢ is a function from a "conventional environment" to

a "conventional collection of meanings," i.e.

Semf £ a X € Env a X Pdom Mng (Type £ o) X.

25

Our final topic in this section is a discussion of how
this approach lends itself to an explanation of the inter-
actions between procedures and block structure. However, we
must preface this with the definition of the functor

z 7OP

hom™ ¢ - K

The usual hom functor is

hom,. € 7P x 3 > Set.

Let
E ¢ Set —— Pdom
be the embedding functor which gives a discrete partial order

to each set. By composing, we get
op
E o homZ e I x ¥ —= Pdom.
Then curry to get
Le %P (2 = Pdom).

hom

Thus, for store shapes X and Y, homZ X Y is homZ(X,Y) =
X-E“+ Y, equipped with a discrete partial order.

Let's take a look at a phrase £ ¢ L, which in the context

of o ¢ A, has a procedural type; say
Type £ o = 1 = 0

where 1, 6 € T. Recall that we have an equality of functors:

Mng (t = 6) = Mng 17 = Mng 6.
Therefore,

Semf £ o € Env o = Mng Tt = Mng 6.

26

Suppose the procedure £ is defined in a program in a block
whose store shape is X. 1In this context, the denotation of

the procedure is
Semf £ o X € Env g X $Hdﬁ(Mng T = Mng §) X.

A peek ahead at the proof that K is a Cartesian closed category
shows that the predomain (Mng T = Mng 6#) X is obtained by

partially ordering the set of natural transformations
(homZ X) x (Mng T}HE—+ Mng 6.

Let e € Env a X be the conventional environment existing

when £ is defined. Then
Semf £ o X e ¢ (homZ X) x (Mng r}—k~+ Mng 6.

Now suppose the procedure £ is called in an interior block

whose store shape is Y. Thus, there is an expansion

g € X-§_+ Y,

The denotation of {£ constructed at the time of its definition
should be clearly connected with an element of the predomain
Mng v ¥ = Mng 6 Y, which is the proper collection of con-

ventional meanings at the time of the call. Note that

Semf £ o X e Y e (X Y) X (Mng 1 ¥)55— (Mng 6 Y).

z Pdom
Using the fact that Pdom is a Cartesian closed category we

obtain

Abpdom(Semf L o X e YY) e (XLE+ Y) —+(Mng T Y = Mng 6 Y).

Pdom

Finally, apply this function to the specific expansion

2

connecting the shape X of the store at the time of definition

to the shape Y of the store at the time of the call, and we

obtain

Ab

Pd

0m(Sernf £ o X e Y) 0 e Mng T Y = Mng 8 Y,

a conventional meaning for the procedure at the time of call.

We have captured here two important intuitions about the

meanings of procedures:

(1)

(2)

The environment used to determine the meaning
of a procedure is not the environment existing
at the moment of the call, but is rather the
environment existing when the procedure is
defined. (An intuition described by other
approaches as well.)

The meaning of a procedure 1is also dependent on
the store existing at the moment of call, the

store existing at the moment of definition,

and the expansion connecting them.

28

CGHAPTER II

TYPE ALGEBRAS

Our aim in this chapter is the creation of mathemat-
ical objects that define collections of phrase types
assignable to meaningful program fragments. These objects
are certain "type algebras" freely generated by posets whose
elements are viewed as primitive phrase types. These free
type algegras are adequate for the subsequent discussion,
but they don't provide the final answer to the question
"What is a type?" 1In particular we don't delve into the

nature of recursively defined phrase types.

It might seem adequate to construct simply a set T
of phrase types, and, in the light of Chapter I, a semantic
description of a programming language would start by
specifying an object Mng 1 of a category (e.g. Set or
T = Pdom) for each 7 ¢ T.

This approach has an important deficiency. We wish
to study the role of implicit conversions, i.e. coercions,
in semantics. To say there is an implicit conversion from
phrase type 1 to phrase type 6 (a condition expressed
succinctly and suggestively as T < 6) means in part that
any phrase of type 1 can meaningfully replace any occurrence
of a phrase of type 6 in a program. This relation is surely

reflexive and transitive, and it is difficult to think of

23

an instance in which ik is not antisymmetric.
Thus T is not just a set, but rather is a poset. Further-
more, in giving the semantics of a language, one must give
a conversion morphism from Mng 1t to Mng 6 whenever 1 < 6.
These conversion morphisms must mesh properly with the
partial order on T. This meshing is best described by
making the poset T into a category (in the usual way that
posets become categories) and then requiring that Mng be

a functor from T to Set or I = Pdem or whatever category

is used.

We begin by establishing some notation and discussing
some construction for posets.

We use ¢ to denote both the empty set and the poset whose
underlying set of objects is empty. Similarly we use {al} to
denote both the singleton set and the singleton poset whose
sole object is a. We say that P is a subposet of ¢ (nota-
tion: P Cc Q) if Ob P € Ob Q and Ar P C Ar Q; in this case
the inclusion mapping is monotone and is consequently a func-

tor. If the inclusion functor is full, i.e. for all x, y € 0Ob
b4 fp v dIEE X EQ YV,

then P is a full subposet of Q (notation: P L Q). The inter-
section P N Q of posets P and Q is defined by Ob (P N Q) =

(ob P) N (Ob Q) and Ar (PNQ) = (Ar P) N (Ar Q). Thus

30

4 iPnQy iff x iP vy and x 5Q V.

Of course, P N Q is a subposet of both P and Q. 1If
P nQ = ¢, then the posets P and Q are disjoint.

Let <P,Q> be an ordered pair of posets. Form
P X eat Q and consider the ordered pair whose first com-
ponent is the set of objects and whose second component is
the set of arrows of P o, Q. Alas, it is not in general a

poset because
Ar (P *cat 2) ¢ ((Ob P)x(0b P)) x ((Ob Q)x(Ob Q))
which is not the same as being a subset of

(Ob (P x x (Ob (P x ({Ob P)x(Ob Q))x((Ob P)x(0Ob Q)).

cat 2 cat 2}

For posets we have an additional, and perhaps more natural,

product P X Q given by
(1) Ob (P x Q) = (Ob P} x (Ob Q), and

(2) «(x, yi)< PxQ (x', y') iff x <px' and y <9 y'.

The definition of x has an obvious generalization to more
than two factors. As categories, P Rrwop Q and P x Q are

isomorphic with the isomorphism being

I ¢ P>%at 2. = Px 0D,

the functor which is the identity function on objects, and

which on arrows satisfies I (x <p XY, ¥ EQyU = ((x,y}gpxg(x',y>).

Given two disjoint posets, the utility of connecting them

together by providing a common top, i.e., maximal element,

31

will soon be seen. So suppose P and Q are disjoint posets

and t £ (Ob P) U (Ob Q). The poset Pxt*Q is defined by

Ob (P*t*Q) = (Ob P) YV {t} VU (0Ob Q)

and
< i —

5 SPapx0 y Gff =x <pyory t e X fQY‘
Observe that one way to completely specify a functor
F e PxtxQ - C is to let F t = term where term is a terminal
object of C and to define functors in P > C and Q9 - C that
are the restrictions of F to P and Q.

The first proposition summarizes some evident properties

of full subposets.

Proposition 2.1: Suppose P L Q and P'L Q'.

(1j »°P £ oF,

(2) PxP'C QxQ

(3) If Q and Q' are disjoint, and t ¢ (Ob Q) U (Ob Q').
then Q, Q', and PxtxP' are all full subposets of Q#t*Q'.

Proof: Trivial. []

A moments thought shows that the union of two posets
P and Q cannot be defined by mimicking the definition of
their intersection because (Ar P) U (Ar Q) is not in general
a partial order on (Ob P) U (Ob Q). However, this simple-
minded approach is entirely adequate for dealing with unions
of ascending chains of posets, a matter we now take up.

Consider an ascending chain

PoEP!,EPZE---

32

of posets, which gives rise to a diagram

B Ji Js
(") Py Py P, § @

where each Ji is an inclusion mapping. We can form the

poset
Peu 1By | i elN}
by letting Ob P =u {Ob Pi | ieiN} and
Ar P = v {ar P, | ielN}. Thus
X<p ¥ iff xgpny for some iec N .
i

Of course, Pi C P for each i. Let Ki £ Pi—w» P

be the inclusion mapping, so that

Yy

Pi+l

commutes for all i. Then <P, {Ki}> is a direct limit of
the diagram (x) above, i.e., for each category C and each

N =indexed collection F, € Pi + C of functors such that

33

commutes for all i, there exists a unique functor

F ¢ P+ C such that

commutes for all i. Note that if each Pi is a full sub-
poset of Pi+1' then each Pi is a full subposet of P. Also,
iE

2. ¢ 2

0

c 9

C e

1 2

is another ascending chain of posets and
9 =u{Q, | ielN}
then
PoxQo C P1%XQ1 C P2XQy C...
is an ascending chain and
PxQ =U {P,x0Q. | iel}.

We Dbelieve that the object T containing the types
for a language having coercion among its features should be
a poset. If the language is to have a general procedure -
definition facility, then for any phrase types T and 6
there should be a type T = 6 for procedures which accept

arguments (i.e. parameters) of type 1t and produce results

(i.e. have calls) of type 6. How should =

34

interact with the partial order on T? A procedure of

type T =6 should also accept arguments of type t' if

T'<t ; the result of such a procedure can be used in a
context calling for a result of type 6' if 6<6' . Thus

if v'Ztand 6<6', then we want T = 6 < t'=6'. So = should
be antimonotone in its first argument and montone in its
second, or in category-theoretic language = is like a hom
functor in that it is contravariant in its first argument

and covariant in its second.

We have argued that Mng should be a functor:
Mng ¢ T » K,

where K is a category with appropriate structure. One
thing that K should have is a functor contravariant in its
first argument and covariant in its second; we can call

this functor =, too. We want Mng to preserve =, i.e.
Mng (t®8) = Mng T = Mng ©

for all phrase types T and 6. To see how plausible this
is, consider the case K = Sef with = equal to the ordinary
hom functor; then the set of meanings for phrases of type
=0 should be the set of functions from Mng T to Mng 6.

In order to talk about type-checking we must be able
to assign a nonsense type Tns to parseable expressions
which contain errors due to mismatched types. Since any

expression can be used in a context for which nonsense

35

suffices, the nonsense type should be the top, i.e. the
terminal object, of T. What should be the nature of
Mng Tns? Knowing that a phrase has a nonsense meaning
amounts to asserting that its meaning contains no information.
Thus Mng Tns should be a singleton set when K = Sef, and
it should be the analogue of asingleton set, i.e. a terminal
object, for other possible K.

To make everything elegant, both T and K should be
the same sort of objects, and Mng should be a homomorphism
from T to K. This serves to motivate the following defini-
tions.

An ordered triple

A = <|A|, Aot N>
is a type algebra if
(1) |A| is a category, called the carrier of A,
(2) A is a terminal object of |A|, called the nonsense

ns

object of the algebra, and

(3) A_ e |A|9Px|A| > |A

Alternative notations for A, <a,b> are a=—= b and, when

A is readily determined from context, a=>g. Cartesian

closed categories give the most accesgsible examples of

type algebras. Thus, from a Cartesian closed category K

we obtain a type algebra A by letting |A| = K, Aow = Hugpegt
and A, = KJ.

A type algebra homomorphism consists of a domain A

36

and a codomain B, both of which are type algebras, and

a functor F (notation: F € A B) such that

Type Alg
(1) F e |A| - |B],
(2) A _=B__, and

ns ns

(3) the diagram

Al
|A|OPx|A| > |A|
FOPx Fi F
|B|°Px |5 | B, I8

commutes.

For the purpose of assigning phrase types to program
fragments we need a type algebra whose carrier is a poset.
Generally we expect to start with a poset P of primitive
phrase types. For instance, we might take P to be the

poset described by the following Hasse diagram.

realﬂ bool—exp
//// \\\\ comm
real-var int-exp
///// bool-var
int-var

Here exp, var, int, bool, and comm are abbreviations for

expression, variable, integer, boolean, and command,

respectively. A complete discussion of posets such as these

37

including motivation for the structure of the Hasse diagram
above may be found in Reynolds [8]. However, the central
ideas are that variables may be coerced into expressions,
integers may be coerced into reals, boolean phrase types
cannot be coerced into real or integer phrase types, and
commands cannot be coerced into other phrase types. Of
course, P is not a type algebra since it has no procedural
types and no nonsense type. However, the following theorem
asserts that each poset P generates a free type algebra T
whose carrier is a poset. It is the free type algebra gener-
ated by the poset of primitive phrase types which provides
the phrase types for program fragments.

A few comments on this theorem are in order. In the
theorem 0 is the poset of procedural phrase types. The
theorem says that the set underlying the carrier of T
is the disjoint union of the set of primitive phrase types,
the singleton consisting of the nonsense type, and the pro-
cedural types. If 1T is a procedural phrase type, then there
are uniquely determined phrase types 6 and 6' such that
T = 06=08"' because T_, 1is injective on objects. Therefore,
if we ignore the partial order, T is a free (universal)
algebra generated by Ob P where the signature (i.e.ranked
set of operators) consists of a single operator ns of rank
0 and a single operator = of rank 2. In a different vein,
notice how easy it will be to define the type algebra

homomorphism

38

Mog e T Type Alg

we need only give the functor which is the restriction
of Mng to P.

The proof of the theorem is an exercise in the
exploitation of the properties of unions of ascending
chains of posets.

Theorem 2.2: Let P be a poset. There is a type

algebra T such that
(1) |T| is a poset, T_ e |T|°P x |T| » |T] is
a full and faithful functor, |[T| = P* Tow * 2
where 0§ is the image of T, , and
(2) T satisfies the following universal mapping property:
let K be a type algebra, let ¢ ¢ P » |K|, and let

incl € P > |T| be the inclusion functor; then there

exists a unique type algebra homomorphism

+ K such that

Tl

F

P
K |fli|

Proof: Let t be such that t ¢ Ob P, and let a be

Fel Type Alg

commutes.

such that no element of (Ob P) U{t} is an ordered triple

<a, ®x, y> whose first component is a.

We start by constructing inductively a sequence
Q0, To, 21, T1, 22, To,...
of posets such that, for all i, PﬁQi = ¢. Let
Q0 = 9.
Assuming that the sequence is constructed through Qi, let
Ty = PxtxQ..

Assuming that the sequence is constructed through Ti' let

- op
Qi+1 {a} x Ti X Ti.
We claim that

0o C 01 C 9, & ..
and

Tn ET]_ ;TQE...
Obviously 09, © 0, . Suppose

Qo_[_-o»I;Qi_lEQi

and T0 C ' C Ti—l .

It follows from Proposition 2.1 that

— E -
Ti_1 P*t*Qi_l - P*t*Qi Te

Suppose

Qo E 5§ E Q
and

To

m
M
—-{

Use Proposition 2.1 again to see

_ op op _
0. = {a} x T, x Ti_l[g{a} X Ti x Ti s

all - i=1

This proves the claim.

241

Let |T| =vu {7y | ielN} and Q =u {Q, | ieN }.

Clearly Q = {a} x |T|°P x |T|. By the choice of a,

PnQ = ¢, and, by the choice of t,

t £ (Ob P) u (Ob Q).

It is now apparent that Ob |T| is a disjoint union:

Ob |T| = (Ob P) U {t} U (0b Q) .
Also,
i S|T| B iff ¥ ETie for some i
iff 7T gpe or t=6 or T<Qi8 for some i
LEE 't fpe or t=0 or TiQ 0
Therefore, |T| = PxtxQ,

For each i, let H, ¢ 9P« T.
i i i

poset isomorphism given by
Hi<'l'r g> = <a; T, 6>

Consider the commutative diagram

e

THFXTy ss—onnd ToET,
i ;
Ho H 1

- Qi+1 be the obvious

T2 PxT, ——r

Ho

41

where the horizontal maps are inclusions. After noting that
ITIPx |T| =u{T5Px T.| ieNl,

we assert that the poset isomorphism H € |T]0px |T| -~ @

given by H<x, y> = <a, x, y> 1is the only functor such that

TePxT, e |T| Py |T|

]

1

W
jneal

9

commutes for all i. Since H is an isomorphism it is full
and faithful.

For T, 6 ¢ Ob |T|, we want the equation
T#<T, B> = <a, 1t, 9>

to hold; so define T_ e |T|%Px |T| =+ |T| so that

y
|T|%F x |7 > |7
|
L incl
op . = o
|T|7F % |T| Q

commutes, where I is the canonical isomorphism and incl
is the inclusion functor. Clearly, the image of T, is @,

and T, , being a composition of full, faithful functors,

is itself full and faithful.

42

Since t is a terminal object of |T|, we may let
T,e = t. Therefore |T| = P+«T_.*Q. This proves the first
part of the theorem.

For the second part, let K be a type algebra, and

let ® ¢ P > |K

. We will define a sequence of functors

Go, Fo, Gi, F1, G2, F>, ... such that

G, € 9~ |K| and By & Ty & | K

i i
Since @y = ¢, the functor Gy is uniquely determined.
Suppose we have constructed all functors through Gi. Recall

Ty = P*t#Q., and let F, be the unique functor satisfying

(1) Fit = Kns'

(2) the restriction of Fi to P is ¢, and

(3) the restriction of Fi to Qi is Gi‘

Suppose we have constructed all functors through Fi. By

I, ¢ Tip X Ti - T?P X Ti we mean the canonical isomorphism.

Let G. be such that
i+

1
Sy -
i+l N
f h
1
H._l
1
O
Tlpi T K:‘:-
[
E, -
1

] F
TP Ty 21, |K|%Px |K]

43

commutes. Thus for T, 6 € Ob Ti,
— op
Gi+l<a,1,e> = K=<Fi Ty Fi8>.

Next, we claim that the diagrams in the sequence

incl incl incl incl
Qo = 21 L e T1 “‘Qz "‘**‘“‘Tz
Gy / G F\ / \ Ga \ /F2
| K] | K] | K] | K]

are all commutative. The first diagram commutes because

Q¢ = ¢. Suppose all diagrams commute through

incl
Qi—l ' Ql
Gi;\l\ /G
| K]
then the commutativity of

incl
7. —m—————=T
i-1 // i
| K]

is immediate from the definitions of F. 1 and Fi' Suppose
all the diagrams through (**) commute; then from the

commutativity of all the inner diagrams in

i+l

we get commutativity of the outer triangle.
By applying the earlier remarks on direct limits of
ascending chains of posets, we see there exist unique func-

tors G and F such that for all i the diagrams

Q il L
Q. G T F
1~ .
& 8 b
K] | K]

commute. The functors G and F are related by two commutative

45

diagrams. To obtain the first diagram, note that for

each i>0 the diagram

commutes, and

Q
incl I
¢ = Qo K o (FOPxF) o1~ tom~1
TR
° K]

is trivially commutative. Therefore the composite vertical

arrow must equal G, i.e.

46

TP T| -9
' I
op |
F XF; G
OPJ' K==-
K] = [Kk]== = |K]

commutes. Also, for each i the diagram

incl /f,/,/*

commutes. Again, the composite vertical arrow must equal
G, and we get a commutative diagram
incl

0 ||

I

G /F

K]

To conclude that F is a type algebra homomorphism, there
are three conditions that must be checked. First, from the

definition of F it is clear that F ¢ |T| » |K|. Second,

47

since F extends Fo ¢ T, >~ |K| we easily compute

= = K =
F Tns Fop t -

Finally, we must verify that the outer square is

commutative in the diagram

.
[TI%%% |7] : r|T|
F
incl/
HoI /
Py Q// F ,
G
op L 4 K v
K| % |K| = > | K|

and this follows because all the inner diagrams commute.

Thus

Notice that

4

| |
P/!F
\ﬂil

commutes because F extends F, which in turn extends ¢.

Finally we must verify the uniqueness of F. Let

F' e T—=——7=— K

48

be an arbitrary type algebra homomorphism whose restric-

tion to P is @, and let

G', F', G', F', G'r F', .o
0 0 1 1 2 2

be the restrictions of F'to

respectively. We will show by induction that

G'!=G,F'=F ,G'=G,PF'=F ,G"'"=G, ...
0 0 0 1 p

0 1 1 1 2

Since Q0=¢; G' = G . Suppose all the equalities through
0 0

Gi = Gi are true. We make three observations.

(1) B¢ T = P'T = K since F' is a homomorphism.
i "ns ns ns
(2) The restriction of F; to P is the restriction
of F' to P, which is &.

(3) The restriction of Fi to Qi is the restriction of

1 . . 1] —
F' to Qi, which is Gi Gi'

By the uniqueness of the construction of Fi' we get Fi = Fi'
Now suppose all the equalities through Fi = Fi are true.
Observe that in the following diagram all inner diagrams

commute.

49

Gi+l
2 = |K|
i+l (2) 7 A
incl f/
"/
Y S
(1) Q - #
(HpL;) "L (1) Y (5) S F | -
T -~
. (3)
71 x| T] o
incl ~ F *F
Jr (4) op
ToP%Ts > K| x [K|
F1O%Py g = FOpxF.
a 1

The reasons for commutativity of various diagrams is as follows

(1) definition of H,

(] . . .]
(2) Gi+lls the restriction of F' to Qi+1,
(3) F' is a type algebra homomorphism,

(4) Fi is the restriction of F' to Ti' and

(5) definition of Vs

Thus the outer square commutes. By the definition of Gi+1'
] _ ' » =
we see that Gi+l Gi+l' Therefore all the egualities in the

sequence are valid. Since |T|= U {7, |]i eIN} and the
restriction of F' to Ti in all cases equals the restriction

of F to Ti, we conclude F' =F . []

50

CHAPTER TIII

SYNTAX, SUBSTITUTION, AND TYPE-CHECKING

In this chapter we will attempt to deal with the
essentially syntactic problems of language definition,
substitution, and type-checking.

First we must properly define the class of languages
that are the subject of this work. On an intuitive level,
a language consists of all combinations of symbols which
can be parsed. Just as a natural language has many non-
sensical or ill-defined sentences, so also a programming
language should contain nonexecutable or meaningless
expressions. This enables us to illuminate the nature of
meaningful expressions by comparing them with similar non-
sensical ones. Thus we will be able to address in general
terms the question of why the assignment command

x := 3
is meaningful in some contexts, whereas

3 :=x
is not. It is difficult to even pose this question if
3 := X is not an expression of the language. Of course, a
desirable feature of an implementation of a language is a
mechanism, generally a type-checking facility, which identifies
nonsensical programs at compile time. The final portion of
this chapter is devoted to an exposition of the view that

type-checking is nothing more than the application of a

51

simply defined homomorphism to a phrase.

For a programming language we consider an expression
to be parsable if its applicative structure can be determined.
Thus, we are led to study typed A-calculi. However, the
languages are nonstandard in the sense that in each there
is a single set of identifiers rather than a set of identifiers
for each phrase type. This serves to intensify their simil-
arity to implemented languages, particularly those of the
ALGOL family, which permit different occurrences of an
identifier in a program to have different types. Each lan-
guage is syntactically determined by three parameters:

(L) P, the poset of primitive phrase types,

(2) Id, an infinite set of identifiers, and

(3) G, a set called the generating set of the

language, whose elements are termed linguistic

constants.
These three parameters suffice for language definition, but
other parameters must be specified in order to deal with
substitution and type-checking in this chapter and with

semantics in the next. The resulting language is called a

coercive typed A-calculus.

In the remainder of this chapter we assume that the
poset P, the infinite set Id, and the set G are all fixed.
We now turn to the details of how a language L arises from
P, Id, and G.

As shown in the previous chapter, the poset P of

primitive phrase types generates a free type algebra

52

T =<|7|, T gr To>- We will use Ob |T| as the collection
of all phrase types for L. For ease of reading, we usually
write 1 € T rather than T € Ob |T|, t© < & rather than
T £|T| ®, ns rather than Tns’ and 1=8 rather than T_<t,0>.
At this point we should say a word about our notation
for one-sorted algebras. A signature I is just a ranked set;
thus each o € ¥ is assigned a rank or arity which is non-
negative integer. The elements of I are called operators,
and the set of operators of arity n is denoted En. In

this setting, a Z-algebra

A=<|A]l, {Aj | o ez}>

is formally a pair consisting of a set |A|, the carrier of

the algebra, and a collection {AG | o € £} of interpretations

of the operators in I such that
Ao e |AIT > |A],

if 0 e ¥ . We usually write x € A rather than x e |A].
Homomorphisms of I-algebras are defined in the obvious way.
For details, see Cohn [2].

From T and Id we get a signature A for ordinary one-
sorted algebras. The collection of (-ary operators of A
is Id. For each 1 € T and xelId there is a single unary
operator denoted Ax:t . Finally there is a single binary

operator denoted ap. Thus
Ap = Id, A, = {Ax:T | xeId, 1T}, A, = {apl.

The role of the 0O-ary operators is to insure that identifiers

53

are expressions. The unary operator Ax:T creates procedures
(A-expressions) designed to be meaningfully applied to argu-
ments which can be coerced into type 1. The operator ap
enables us to freely apply any expression to any other.

Let

L=<[L], {L, | weh}>

be a free A-algebra generated by G, the generating set of
linguistic constants. For example, suppose int-exp is a primitive
phrase type, xeId, and 0,1,+ are all in G. An expression

of L is

<
Lap . LAx:int—exE {Lap = Lap Tl Lx>) B

which is a desugared version of
(Ax:int-exp (l+x)) 0 .

(We are viewing + as a curried operator that applies to
an integer and returns a function from integers to integers.)
In the interest of clarity we shall use a conventional
A-calculus notation for elements of L, and we will call
attention to occurrences of this conventional notation
with emphatic brackets. Thus, if xeId, teT, £el and mel,
then
[x] stands for Lx .
[Ax:T.£] stands for L £ , and

AX:T
[£m] stands for Lap <L,m> .

An important notion in any treatment of the A-calculus

is the set of identifiers that occur free in an expression.

54

The first use we make of the algebraic structure of L
is to cast the assignment of sets of free identifiers
to expressions as a A-algebra homomorphism. Define the
A-algebra F by letting

|F| = set of finite subsets of 1Id,

and defining

Fu = {x} , where xelId,
Fap<F’ H> = F UH , where F,HeF, and
Fix:r F = F - {x} , where xeId, teT, Fef.

There are no free occurrences of any identifiers in any
linguistic constant. This leads us to define the A-algebra

homomorphism

Free ¢ L —————= F
A-ALg

to be the unique homomorphism such that, for all geG,

Free g = & .

The following theorem then shows that Free behaves exactly

as it should.

Theorem 3.1l: Free is the unique function such that

for all geG, xeId, TeT, Lel, mel the following four equations
hold:
(i) Free g=¢ ,
(ii) Free [x] = {x} ,
(iii) Free [2 m] = (Free £) U (Free m),

(iv) Free [Ax:1.£] = (Free?) - {x} .

55

Proof: According to the preceding description of
Free, (i) holds by definition and (ii)=-(iv) follow because
Free is a homomorphism. Conversely, any function satisfying
(ii)=(iv) is a homomorphism, and Free is the only homomorphism
satisfying (i). [J

The next topic to be explored is the effect on the
treatment of substitution caused by the view that a language
is a free MA-algebra. Basically substitution involves the
creation of a new phrase from an assignment of phrases to
identifiers. It is complicated by the fact that bound
occurrences of identifiers are insulated from the effects
of the substitution unless a name change is necessitated
to avoid binding an occurrence which should be free.

A phrase assignment is a function f ¢ F =+ |L| whose

domain is a finite set of identifiers, i.e., FeF. The
collection of all phrase assignments is denoted |L|*.
A particularly noteworthy phrase assignment is the empty
phrase assignment whose domain is the empty set; it is
denoted by
emp, < ¢ > |L]

Use of the empty phrase assignment to determine a function
from |L| to |L| by substitution should yield the identity
function.

A function f € Id + |L|, whose domain is the set of

all identifiers, is called a comprehensive phrase assignment.

The set of all comprehensive phrase assignments is denoted

(o]

|L]®. Each f ¢ |L|* determines a canonical £~ ¢ |L|” via

the equation

56

.
fx = 4

j
L

fx if x € dom f

[x] if x ¢ dom f .

Thus, empf resembles the identity function because, for
all =xeId,

empf x = [x] .

In order to describe the condition which determines
when a substitution involves a change of bound identifiers,
we introduce

clashset ¢ [L[*XIdX|L| - |F|

which is defined by
clashset <f,x,£> = U {Free (fmy)| y € Free £ and y#x!}

The idea is this: our intuition tells us that the sub-
stitution associated with a phrase assignment f will involve
changing the bound identifier x in [Ax:t7.£] if

x € clashset <f, x, 2 >. Note that

clashset <f,x,£> = U{Free {fmy) | v € Free[Ax:1.2]}

In the remainder of this chapter, and in the next
chapter, we assume that the set Id of identifiers comes
equipped with a function

newid ¢ |F| =+ Id

such that, for any finite set F of identifiers,

newid F £ F .

The function newid provides a mechanism for changing bound

identifiers when required.

57
Our goal is to define and illuminate a function

*
sub e [L|¥ =+ [L] + |L]

that accepts a phrase assignment and produces a sub-
stitution function which maps phrases to phrases. Cer-
tainly, three properties we expect of substitution are
that it does not change constants, it replaces phrases
consisting of a single identifier with an appropriate ex-
pression, and it acts on an application by acting on the
operator and the operand separately. The action of a
substitution function on A-expressions is more delicate.
As is well known, sometimes renaming of bound identifiers
is necessary to avoid identifier collisions. For instance,
if a phrase assignment maps y to a phrase which has x
among its free identifiers, then the result of applying
the associated substitution function to [Ax:1. [yl]
should involve changing x to another identifier. Further-
more, in our approach to substitution we opt never to do
unnecessary renaming. Thus, we expect Sub to be found
among the members of the set of functions
S €]L]* > |L] = |L] such that, for all £ € [L[* , the
following conditions hold:

(Subl) For all geG, S f g = g.

(Sub2) For all xeId, S f [x] = £ x .

(Sub3) For all £,mel

S £[4m] =01(s £ £) (s £ m] .

58

(Sub4) For all xeId, teT, Lel,

{ [x:t. (S [f | x:[x11 £) 1
if x ¢ clashset <f, x,€>
g £ [Ax:t.4] = [rz:t. (S[Ef | x:0z11¢) 1

otherwise, where

z = newid (clashset <f, x, £>).

We have a general method for defining A-algebra
homomorphisms whose domain is L. Do we expect Sub £ to be
a MA-algebra homomorphism from L to L for each f€|L[*?

The answer is no, because an affirmative answer would imply

that for xeId, teT, £Lel,
Sub £ [Ax:1.£] = [Ax:Tt.(Sub £ £)] ,

an equation at odds with (Sub4). 1In fact, the complexity
of condition (Sub4) makes it impossible to simply fix
f & |L[* and then define Sub f by induction on the structure
of its argument because Sub f [Ax:7.£] 1is not expressed
in terms of Sub £ £.

The class of functions satisfying the above four
conditions is not too bizarre, as the next proposition shows.

Proposition 3.2: Suppose S € |L|* - L] » |L]

satisfies (Subl), (Sub2), (Sub3), and (Sub4). Then S emp

is the identity function on |L].

Proof: By induction on the structure of fLel we will

* co [s's)
show that, for all £ ¢ |L| such that £ = emp, , S fL=0;

59

From this the theorem follows.

(1) Let £ g where geG. Then S f g = g by (Subl).

Il

(2) Let £ [x] where xeId. If £° = empf, then

S f[x] = £ x = empOO x = [x] by (sub2).
L

(3) Letf = [mn] where m,nel. If £% = empf,
then
S £ [mn] =01(S £ m) (S £ n)], by (Sub3)
= [mn], by the induction hypothesis.
(4) Let & = [Ax:1.m] where xeId, t1eT, mel. Suppose
£%° = empf . Then x £ clashset <f, x,m> because

clashshet <f, x, m>
= U{Free (f° y)| y & Free m, y # x}

= U{Free [yl | v € Free m, y # x}

{y | vy ¢ Free m, y # x} .

Therefore

S f [Ax:t.m] [Ax:T. (S [Ef] x:[x11 m)]

I

[Ax:t.m] ,
because of the induction hypothesis and

[£ | x:[[x]]]CD = £% = empf i

It should come as no surprise that there is a A-algebra
homomorphism connected with substitution. Its codomain,
the A-algebra H, is suggested by observing that there is a

*
one-to-one correspondence between |[L| - |L| *+ |L| and

60
|L] - |L] =+ |L|. Thus, we take the carrier of #H to be
|H] = [L]" -~ [L],

and we describe the interpretations of the operators by

the equations

o0 *
H, £ = £ x where xeId, fe|L| ,
*
Hap <h, 3> £ = [(hf) (3£)] where h,jeH, fe|L| ,
r
[Ax:t.(h [£ | x:[x]1)] ,
HAX:T B. & = ? if x £ clashset <f, %, h empL>
[rz:t. (h [£f | x:02]11)], otherwise,
*
where xeId, TeT, heH, fe|l|, and
L z = newid (clashset <f, x, h emp >)
Let

Presub e L —ijzgﬂ'H

be the unique A-algebra homomorphism such that for all

geG, Presub g is the constant function:
*
Presub g £f =g for all £ e |[L| .

Now define
*
Sub ¢ |L| = |L| - |L]|
by

Sub £f £ = Presub £ £

for all fE|L|*, Lel

61

The next theorem asserts that the substitution function
determined by a phrase assignment f depends only on the
canonical extension of f to a comprehensive phrase assignment.

Theorem 3.3: For all phrase assignments £ and j,

oo

£° = 3% implies Sub f = Sub j.
Proof: The theorem will follow if we can prove by
induction on the structure of Lel that for all phrase

(=]

assignments f and j, £

3% implies Sub f £ = Sub j¢ &
The fact that both f and j are universally quantified in
the induction hypothesis is crucial to the proof.

(1) Let £ = g where geG. Then, for all £, Jj,

Sub f g = Presub g £ = g = Presub g j = Sub j g.

(2) Let £ = [x] ﬁhere xeId. Then fCo = jm implies
Ssub f [x] = Presub [x] £ = HX F=F % = == 887 [#].

[es]

(3) Let £ = [mn] where m,nel. Then £% = j implies

Sub f [mn] = Presub [mn] £

Hap <Presub m, Presub n> £

[(Presub m £) (Presub un f)]

1l

Il

[(sub £ m) (Sub £ n)l

]

[(Sub j m) (Sub j m)1,

by the induction hypothesis,

Sub j [mn]

(4) Let £

I

[Ax:t.m] where xeId, TeT, mel.

o

Suppose £7° = j . If x ¢ clashset <f, x, Presub m empL>,

then

62

Sub £ [Ax:t.m] Presub [Ax:t.m] £

= HRX:T(Presub m) £
= [Ax:T. (Presub m [f | x:[x]]1) I
= [Ax:T.(Sub [£ | x:[x11 m) 1]
= [Ax:T.(Sub [J | x:[x11 m) 1,
because of the induction hypothesis and
[£ | x:[x117 = (3 | x:[x117,
= [Ax:T.(Presub m [J | x:[x]1) 1
= HKX:T{Presub m) J.
because clashset <j, x, Presub m empL>

= clashset <f, x, Presub m empL>,

Sub j [Ax:t.m] .

]

If x ¢ clashset <f, x, Presub m empL>, then a similar
argument gives Sub f [Ax:t.m] = Sub j [Ax:t.m]. []
Our next task is to prove that the substitution function

induced by the empty phrase assignment is the identity

function on |L|. We base the proof on the obvious observation
that the identity function is a homomorphism.

Theorem 3.4: Sub emp, = 1L’

Proof: We claim Sub emp is a A-algebra homomorphism.
This is implied by the following three computations.
(1) Let xeId. Then
Sub emp, [x] = Presub [x] emp

= HX emp,;

empf X

= [x].

63

(2) Let £,mel. Then

Sub emp [£m] Presub [£m] emp

H <Presub £, Presub m> emp
ap i

[(Presub £ empL) (Presub m empL)ﬂ
= [(Sub emp £) (Sub emp m)J .
(3) Let xeId, teT, Lel. Observe that
x £ clashset <empL, X, Presub £ emp >
because
clashset <empL, X, Presub (empL>

= U {Free (emp00 y) y € Free (Presub £ emp,), y # x!}
L L

U {Free [yl | y € Free (Presub ¢ emp,), y # %}

{y | vy € Free (Presub ¢ empL), y # x}.

Thus

Sub emp [Ax:t.4£] Presub [Ax:1.4£] emp

H (Presub £) emp

AX:T
[Ax:7. (Presub £ [emp | x:[x11) 1

I

[Ax:T. (Sub [emp, | x:0x11 £) 1

TAx:t. (Sub emp | £)], by Theorem 3.3.
So Sub emp is a A-algebra homomorphism. By comparing
the actions of Sub emp and lL on generators
(Sub emp, g = Presub g emp, =g = lL g for geG), we see
Sub emp, = lL' M
Now we are ready to prove the most important theorem

on substitution.

Theorem 3.5: Sub is the unique function in

|L|* - |L| = |L| such that for all fa|L]*, conditions (Subl),

(Sub2), (Sub3) and (Sub4) are all satisfied.

64

Proof: First we will verify that the four conditions
are satisfied by Sub. In this proof let fs|L|*, geG, xeld,
Lel, mel, 1T, and z = newid (clashset <f, x, £>).

By definitiqn of Presub on generators,

(1) Sub £ g = Presub g £ = g.
Because Presub is a homomorphism,

(2) Sub f [x] = Presub [x] f = HX £

1l
Fh
e

(3) Sub f [4m]

Presub [£m] £

Hap <Presub £, Presub m> £

[(Presub £ f) (Presub m f)]
= [(Sub £ £) (Sub £ m)], and
(4) 4if x £ clashset <f, x, £>, then
Sub £ [Ax:1.£] = Presub [Ax:1.£] £

= Hlx:T (Presub £) £

[Ax:T.(Presub £ [£ | x:[x11)1,
because clashset <f, x, Presub £ empL>
= c¢lashset <f, x, £ > by Theorem 3.4
= [Ax:1. (Sub [£f | x:[x]1¢)1 .,
whereas, 1f x e clashset <f, x, £>, then

Sub f [Ax:T1.2] = H (Presub £) f

AX:T
[Az:t. (Presub £ [f | x:[z]]1)]

(here again we apply Theorem 3.4)

[xz:t. (Sub [f | x:[z]]1¢)1.
So the four conditions are satisfied by Sub.
%*
Let Sub' be any function in |L| =+ |L| » |L| satisfying

the four conditions. Define Presub' e |L| = [L|* > | L]

65

by Presub' £ £ = Sub' f€ . Using (Sub2) we see

Presub' [x] £ = Sub' £ x = iy, £ -
Thus
Presub' [x] = Hx'
Using (Sub3) we see
Presub' [£Zm] £ = Sub' £ [£m]

[(Sub' £ £) (Sub' £ m)]

[(Presub® £ f£f) (Presub' m £)]

Il

Hap <Presub' £, Presub' m> £
Thus
Presub' [£m] = Wu)<Presub‘ £, Presub' m >
Next we carry out some computations using (Sub4). There
are two cases. First suppose x ¢ clashset<f, x, £ >; then
Presub' [AX:T1.£] £ = Sub' f [Ax:T1.4£]

= [Ax:t. (Sub' [£ | =:[x]] £)]

[Ax:T1. (Presub' £ [f | x:[x]]1)]

H, ._(Presub' 2) f.

AXET
The last equality is wvalid because

Il

clashset <f, x, Presub' £ emp >

L clashset <f, x, Sub' emp, £>

= clashset <f, x, £>,
by Proposition 3.2.
Second, suppose x g clashset <f, x, £>. Let

z = newid (clashset <f, x, £>). Then

Presub' [Ax:t.4] £

Sub' £ [Ax:t.4]

Il

[Az:t. (Sub' [f | x:[2]]1 £)]

[rxz:t. (Presub' £ [f | x:[z]]1)]

H .T(Presub' £) £

AX

66

Thus

Presub' [Ax:1t.£L] = Hlx:T (Presub' £) .

Hence
Presub' e L -“E:EEQ“-+ H .
On generators the homomorphisms Presub' and Presub agree
since for geG, f5|L|*,
Presub' g £ = Sub' £ g = g = Presub g f .
Therefore Presub' = Presub and consequently Sub' = Sub. []
The next theorem tells how to compute the set of
identifiers occurring free in a phrase created by applying
a substitution function to another phrase.

*
Theorem 3.6: Let fLel. For all fe|L| ,

Free (Sub ff¢) = U {Free (f00 v) | y € Free £} -
Proof: We proceed by induction on fegl.

*
(1) Let £ = g where geG. For all fe|L| ,

Free (Sub f g) Free g, by (Subl),

¢ , by Theorem 3.1,

Il

I

U {Free (f° y) | vy € Free g }.

*
(2) Let £ = [x] where xeId. For all fe|l]| ,

Free (Sub f [x]) = Free (f° x) , by (Sub2),
= U {Free (f° y) | v = x}
= U {Free (£ vy) | v € Free [x]} ,

by Theorem 3.1.

*
(3) Lettf = [mn] where m,nel. For all fe|L]| ,

Free (Sub f [mn])

Free [(Sub £ m) (Sub f n)] , by (Sub3)

67

Free (Sub f m) U Free (Sub f n),

by Theorem 3.1 .,

I

U {Free (f" y) | v € (Free m) U (Free n)},

by the induction hypothesis,

Il

U {Free (f y) | v & Free [mnl},
by Theorem 3.1.
(4) Let £ = [Ax:1t.m] where xeId, 1T, mel. Suppose
fs]LI* and z = newid (clashset <f, x, m>). If
x ¢ clashset <f, x, m>, then
Free (Sub f [Ax:T.m])

= Free [Ax:t. (Sub [£f | x:[x]]1 m)], by (Subd4),

Free (Sub [f | x:[x]1m) - {x}, by Theorem 3.1,

]

(U {Free ([£ | x:[x11°% v) | v € Free m}) - {x},

by the induction hypothesis,

((U{Free([£ | x:ﬂxﬂ]w v)| v € Free m, y#x})
U {X}) - {X}r

because Free ([f | x:[x]]1"~ x) = Free [x] = {x},

Il

((U{Free(f~ y) | yeFree m, y#x})
U {x}) - {x}

1l

(clashset <f, x,m> U {x}) - {x}

clashset <f, x, m >

U {Free (£ y) | v € Free [Ax:Tt.m]} .
Similarly, if x € clashset <f, x, m>, then
Free (Sub f [Ax:T.m])
= Free [Az:t. (Sub [£ | x:[z]]1 m)]

Free (Sub [f | x:[2z]1 m) - {z}

Il

(U {Free ([f | x:[211°7 v) | v € Free m}) - {z}

68

= ((U {Free (ff | x:[2]1°7 y) | v € Free m, y#x})
U 4z}) = {2}

= ((U {Free (f" y) | y € Free m, y#x})
U {z}) - {2}

= (clashset <f, x, m> U {z}) - {2z}

clashset <f, x, m>, because z ¢ clashset <f, x, m>,

U {Free (£ y) | v € Free [Ax:t.m]}.

The next item on the agenda is the consideration of
the nature of type checking. To this end, we suppose that
in this and the next chapter we are given a fixed function

type € G » Ob |T|,

which assigns a type to each linguistic constant. For

instance, if bool-exp and int-exp are primitive phrase
types and true, 2, + € G, then perhaps
type true = bool-exp, type 2 = int-exp,

type + = int-exp = int-exp = int-ekp.

Exactly what role does the function type play if we attempt
to assign phrase types to all phrases of L?

The first difficulty is how do we assign phrase types
to expressions containing free occurrences of identifiers.
We expect that the type "connected" to x in [Ax:71.£] is 1,
but what is the type of [x]? At first glance, we might be
tempted to assign phrase types only to those fLel such that
Free £ = #d. This is entirely inadequate because it prevents
us from expréssing the type of an:expréssion in terms of the

types of its constituents (which possibly contain free

69

identifiers). A better idea is to assign phrase types to
expressions in the context of an assignment of types to

identifiers. Thus, the phrase type associated with [x vi

will be int-exp in the context in which x is assigned

bool-exp = int-exp and y is assigned bool-exp, whereas [x Y]
will be assigned ns = TnS (= nonsense) if x is assigned bool-exp
and y is assigned int-exp. Note our intended use of the
nonsense type: the type checker assigns nonsense to phrases

that in the context of a type assignment are meaningless, i.e.

not executable, due to mismatched types.

Thus we are led to introduce the poset A, an element

of which is a type assignment, i.e. a function

o e F>0b |T],

where F is a finite set of identifiers. Hence

ob A = (ob |T|h)".

The partial order on A is given by

o iA g iff dom B C dom «, and, for all x € dom B ,

a x < |T| B 2.

Intuitively aiAB means o has more information than B,
and o can have more information in two ways: (1) a can
have more components than R, and (2) each component of o
can have more information than the corresponding component
of B. Consistent with this intuition is the observation
that the empty type assignment, denoted

emp. £ ¢ = Ob i

which contains no information, is the maximal element of A.

70

A comprehensive type assignment is a function

ae Id > 0Ob |T| .
The collection of comprehensive type'assignments can be

made into a poset A% by letting

a iAw b iff , for all xeId, ax i|T| bx

We can write

o]

ob A = (ob |THT .

Comprehensive type assignments bear roughly the same re-
lationship to type assignments that comprehensive phrase
assignments bear to phrase assignments. If o € A, then

. . oo o -
there is a canonical a ¢ A given by

83, Hf SgE don G

L ns , otherwise .

Observe that S B implies o a® B” .
Our aim is to define and investigate a function
Type € |L| - Ob A + 0b |T|

which assigns to a phrase £ 1in the context of a type assign-
ment o an intuitively satisfying phrase type Type £ a. We
expect this function to have four properties. Since a
linguistic constant contains no identifiers we expect its
type to be independent of the type assignment. This gives

the first property.

71

(Typel) Type g ¢ = type g for all geG, ace A.

Phrase types of identifiers should be determined by the

type assignment, provided the type assignment has enough
information in it to do so. This yields the second property.
(Type2) Type [x] a = oF x for all xeId, aeA .

The third property says that for an application to make
sense in a context, the operator in that context must possess
an arrow type, and it must be possible to coerce the type

of the operand in that context into the appropriate argu-
ment (or parameter) type; then the whole phrase has the
appropriate result (or call) type.

(Type3) 6, if Type £ o = 726 and Type m o < T.

{
Type [£m] o =4
!
F
,|
{

ns, otherwise ,

for all £,mel, oacA.

Finally,lambda expressions have procedural types in which
the type of the result is computed with an altered type
assignment.

(Typed) Type [Ax:1.£] o =1 = (Type £ [a | x:11),

for all xeId, TeT, el, acA.
Of course, the four properties above suffice to
define Type £ by induction on the structure of £. However
that path fails to uncover fully the role played by A-algebras
in type checking. A more fruitful approach begins by defining

the MA-algebra E whose carrier is

el = A= |T] ,

72

the collection of functors (i.e. monotone functions) from

A to |T|. The fact that the carrier of E is the collection
of objects of the poset A = |T| will be exploited in
Theorem 3.12. The definitions of interpretations of the
operations on E are contained in the next theorem.

Theorem 3.7: Let e and f be monotone functions from

A to |T|. Let xeId and te|T| . The equations

(L E,a=a %,
(2) j_ 6 if ea = 16 and fa<t
E (.er f) o = ’

| ns otherwise,

(3) E eoa=1= (e [a | x:1]) ,

AX:T

where aecA, define monotone functions from A to [T

-

Proof: Suppose o =i B .
(1) From aw iAw BDO we get

o0 [ee]

E.a=0 x<B x=E_B&8.

(2) Suppose eB = 1 = 0 and £fB < T, so that
Eap (e,f)B = 6. Since ea < eB, Theorem 2.2 shows that ea
must be a procedural type, say ea = 1' = 6' where 1 < T'

and 6' < 6. Then fa < fB < 1T < 7', which implies

Eap (e,f) a = 6' < 8 = Eap {e,f) B, as desired.

Otherwise Eap (e,f) B = ns, and the inequality

Eap {es£) o < Eap (e,f) B is trivially true.

73

(3} Clearly [o l x:1] < [B | x:17] . Thus
Ejper € 6= 15(e [4 | x:71) < 1=(e [B | x:1]). 0
Note that among the elements of |E| = A » |T|

are the constant functions. Thus it makes sense to define

the A-algebra homomorphism

Type € L'E:E?§—+ E

to be the unique homomorphism such that, for all geG,

oA,
Type g ao = type g .
Theorem 3.8: The A-algebra homomorphism Type is
the unigue function in |[L| - (A - |T|) such that (Typel),

(Type2), (Type3d), and (Type4) all hold.

Proof: Trivial., []

It is interesting to note that approaching Type as
a A-algebra homomorphism tells us immediately that Type %,
for each /£, is monotone. This would certainly not be
obvious if we attempted to define Type by structural
induction instead of using the algebraic method we have
chosen.

The next theorem and its two corollaries show that
only the free identifiers in a phrase affect its type.

Theorem 3.9: Let £ ¢ L. For all o, B € A,

(es] fs.s]

o x =8 x , for all x € Free £,
implies

Type £ o = Type € BR.

Proof: We proceed by induction on the structure of

£ e L.

(1) Suppose £=g where geG. Then, for all a, B € A,

Type g o = type g = Type g B.
(2) Suppose £ = [x] where xeId. Recalling that

Free [x] = {x}, we let o, B € A be such that
o X = B Xx.

Then
Type [x] o = o x = 8” x = Type [x] B.
(3) Suppose £ = [mn] where m,nel. Assume that

o, B £ A satisfy

[e:s] oo

a x =B x for all x € (Free m) U (Free n)
By the induction hypothesis
Type m oo = Type m B, and Type n o = Type n B.
From condition (Type3) it is then immediate that
Type [mn] o = Type [mn] B .

(4) Suppose £ = [Ax:1t.m] where xeId, teT, mel.

Recall that Free [Ax:t.ml = (Free m) - {x}. Thus, take

o, B € A such that
o y = = y, for all ye (Free m) - {x}.
Then

[o | x:117 y =1[8 | x:7]1 w for all y € Free m.

We conclude by the induction hypothesis that

74

b

Type [Ax:Tt.m] o = T = (Type m [a | x:1])

T = (Type m [B | x:7]1)

Type [Ax:t.m] B.

Corollary 3.10: Suppose {Lel, o ¢ A, B e A, and

dom ¢ = dom B = F. If

ax = Bx, for all x e (Free £) N F ,
then
Type £ oo = Type £ B .
Proof: Let x € Free £. If x ¢ F, then
[e4] o]
0o X=X =R x=8 X ;
otherwise,
oo [ee]
o X =ns =B X .

Therefore Type £ o Type £ B . 1

Corollary 3.11: Let £ e L, oeA, x e Id, 17 € T.

If x £ Free £, then
Type £ o = Type £ [a | x:7].
Proof: Apply Theorem 3.9 with B = [a | x:1]. [

The final goal of this chapter is to obtain a satisfying
description of the type of an expression which is itself
the result of a substitution and to investigate some of its
*

consequences. To this end, we will need to define Type ,

a function which is derived from the homomorphism Type and

76

which applies to phrase assignments rather than phrases.
To avoid confusion, let's review our use of the infixed
operator + . The notation X -+ Y denotes the collection
of functions from X to Y, unless X and Y are both categories,
in which case it denotes the collection of functors from
X to Y. Therefore A + A denotes the set of monotone functions
from A to A, and |L|* + (A + A) designates the set of all
functions from the collection of phrase assignments to
A -~ A. Whereas Type accepts phrases and in an appropriate
context produces a type, the function Type* accepts phrase
assignments and in an appropriate context produces a type
assignment. Actually,

Type* £ [LI* = (A =~ A) .
If £ € |Ll* and o € A, then

Type* f o € dom £ > Ob |T|,
and

*
Type f o x = Type (fx) a , for all x € dom f .

*
We must verify that Type £ is monotone. Suppose o =y B.

Observe that

*
dom (Type £ B).

*
dom (Type f o) = dom £

For x ¢ dom £,

1

*
Type f a x Type (fx) a

| A

Type (fx) B, by the monotonicity of Type (£x),
*
= Type £ B x .

* *
Hence Type £ a iA Type f B, as desired.

77

As an aid to contemplating the statement of the next

theorem, consider the diagram

*
Type £

> A

A
T (Sub £) \\\\ 4 a
ype (Su ; P//’ Type £ ,
[T

*
where Lel, £ ¢ |L| . In particular, suppose £ = [x],
where x € Id. It is easy to see that if f maps x to [y],
where vy € Id, then the diagram commutes; whereas if f = emp

then it does not.

*
Theorem 3.12: Let £ ¢ L. For all f e |L| ,

*
Type (Sub f£¢) 5Aﬂ|T| (Type £) o (Type f£) ,
and the inequality becomes equality whenever Free £ C dom E£.

Proof: Use induction on the structure of L.

*
(1) Let £=g where geG. For all fe|L| , oacA,
Type (Sub f g) o = Type g «o
= type g

3
Type g (Type £ a),

1

as desired.
*
(2) Let £ = [x] where xeId. Suppose f € |L| and
o ¢ A. If x ¢ dom £, then

Type (Sub f [x]) o Type (fx) o , since £ x = £ x ,

*
Type £ o x

* oo
(Type £ o) x

*
Type [x] (Type £ o) .

78

If x ¢ dom £, then

Type (Sub f [x]) a Type [x] o , since £ x = [x1,

ns

| A

= (Type*for,)Oo X ;
since dom (Type* f a) = dom £,
= Type [x] (Type* f o)
Hence Type (Sub f [x]) 5A=|T| (Type [x]) o (Type* £ 4
and, upon recalling that Free [x] = {x}, we have equality
when Free [x] € dom f.
(3) Let £ = [mn] where m, n ¢ L. Let f ¢ |L1* and

o € A. We must carry out two computations. First,

Type (Sub £ [mn]) o

Type [(Sub £ m) (Sub f n)] o

g 1if Type (Sub f m) o = 10,

Type (Sub £ n) a < 1 ,

ns otherwise.

Second,

*
Type [mn] (Type £ a)

*
f g' if Type m (Type f a) =1'=60",
| x
= ? Type n (Type £ a) < 1',
{ ns otherwise.
If
* *
Type m (Type £ a) = 1'=606' and Type n(Type £ a) <T1',

then by the induction hypothesis and Theorem 2.2

(*) Type (Sub £ m)a = 126 < 1'=8' (so that t'<t and 6<6'),

79

*
(*) Type (Sub £ n) o < Type n (Type £ a)

Tl‘

| A

(*)

| A

Ty

and consequently

Type (Sub [mn] o) 0

(*) 8"

| A

*
Type [mn] (Type £ a);

Il

otherwise

(*) Type (Sub [mn] a) < ns
= Type [mn] (Type* £f o).
This gives the desired inequality. Suppose in addition that
(Free m) U (Free n) = Free [mn] C dom f£.

Then we may change all inequalities in lines marked (*) to

equalities, yielding the desired equality.

(4) Let £ = Ax:t.m where x € Id, TeT, mel. Take
%*
any £ ¢ |L|] , a € A. Let X = clashset <f, x, m> and

z = newid X. There are two relevant equations. First,
Type (Sub f [Ax:Tt.m]) o

; Type [Ax:T. (Sub [£f | x: [x]] m)] o if x £ X,
3
i Type [Az:t. (Sub [£f | x: [2z]] m)] o if x & X

-

r T = (Type (Sub [f | x:[x11 m) [a | x:1]) if x £ X,
B I T = (Type (Sub [f | x:[2z]] m) [a | z:7]) if x € X.
Second

*
Type [Ax:T1.m] (Type £ a)

*
= 1= (Type m [Type £ a | x:11).

80

On the one hand, suppose xg£X. By the induction hypothesis
Type (Sub [f | x:[x]] m) [o | x:7]
() < Type m (Type* [£ | x:0x]] [a | seai] Y
We will show that
Type m B = Type m Yy
where
B = Type* [£] x:[x]] [a [X:T] and y = [Type* f o | KT
To see this, note that the domains of B and Yy are both equal
to (dom f) U {x}. If the restrictions of B and Yy to

(Free m) N ((dom f) U {x}) are equal, then the desired

equality follows by Corollary 3.10. So let

y € (Free m) N ((dom £) U {x}). If y = x, then

By Type ([£ | x:[x]1 x) [o | x:1]

1

Type [x] [o | x:1]
=T
=9 ¥

If v # x, then

By ="Type ([f | x:[x]) y) [a | x:1]

= Type (fy) [o | x:T]
= Type (fy) a,

by Corollary 3.11 which applies since x £ X

implies x £ Free (fy),

*
= Type f a vy

Il

Y Y-

We conclude that Type m B = Type m Y. Therefore

81

Type (Sub £ [Ax:t.m]) a
= 1= (Type (Sub [f | x:[x]]1 m) [a | x:1])
(+) < 1= (Type m B)
=T = (Type m Y)
= Type [Ax:T.m] (Type* f a).
On the other hand, suppose x € X. By the induction hypothesis
Type (Sub [f | x:[z]Im) [a | z:1]
(+) < Type m (Type [£ | x:[zI] [a | z:1]).
We claim
Type m & = Type m y

where y is as before and
*
§ = Type [£ | x:[2]1] [a | zetl.

Clearly the domains of y and § are both equal to
(dom f) U {x}, and by Corollary 3.10 it suffices to show
the equality of the restrictions of y and ¢§ to
(Free m) N ((dom f) U {x}). Let y & (Free m)nN ((dom £) U {x}).
If v = x, then
§y="Type ([£ | x:[2]] x) [a | z:1]
= Type [z] [«] Z:T]
=T
2T Y e
If v # %, then
§ v =Type ([£ | x:0z011 y) [a | z:7]
= Type (fy) [o | z:T1]
= Type (fy) a,
by Corollary 3.11 which applies because

z £ X implies z ¢ Free (fy),

82

*
Type £ o ¥y
=YY -
Much as before, we get

Type (Sub £ [Ax:T.m]) o

T = (Type (Sub [f | x:ﬂéﬂ] m) [a | z:1])
(1) < 1= (Type m §)
= 1 = (Type m Yy)
= Type [Ax:T.m] (Type* £f o) s
Hence
(f) Type (Sub £ [Ax:tT.m]) 5A=[T[(Type [Ax:t.m]) o (Type* f)
Furthermore, if
(free m) - {x} = free [Xx:t.m] C dom £,
then every inequality marked (+) may be strengthened to
an equality. [

In the next proposition the expression Sub [empL] x:[vl1 £ .
has the easy reading "substitute y for x in £." It should
not be surprising that a satisfying result relating the
type of £ with the type of the phrase arising from sub-
stituting y for x in £ requires the hypothesis that y not
occur free in £ .

Procposition 3.13: Let x, vy e Id, Lel, 1 €T,

o € A. Suppose y ¢ Free £ and m = Sub [emp | x:[yll £.
Then
Type £ [o | x:1] = Type m [a | y:1]
Proof: Define the phrase assignment f e Free £ » |L|

by

83

[2] if = # x
fz =
|
L [yl if z = x .
By Theorem 3.3, Sub f = Sub [emp | x:0vy11.

Hence m = Sub £ £. By Theorem 3.12,

Type m = (Type £) o (Type* £
Observe that
Type* fla | y:1] € Free £+ |L|
is the same as the restriction of [a | x:1] to Free ¢,.

because, i1f z # x, then

Type* fla | y:1] 2 Type (fz) [a | y:T]

= Type [z] [a | y:1]
=OLOOZ

co
=la | x:71 2z,

whereas,if z = x, then

Type (£fx) [a | y:T]

*

Type f [a] v:iT] 2
= Type [yl [a | y:1]
=T

[e9]
=Ja | X711 2z .

We may now apply Theorem 3.2 to conclude

Type m [a | y:1] Type &£ (Type* £f[a | y:T])

Type £ [a | x:1].

Proposition 3.14 explores the connection between

B-reduction and the function Type. It is used in Chapter IV.

84

Proposition 3.14: Let xeId, 1T, and £,mel.

Suppose n = Sub [emp, | x:m] £ and n' =1 (Ax:t.£) ml.
Then
(1) Type n iA”|T| Type n' . and
(2) Type n o = Type n' o whenever ocA and Typema = T.
Proof: (1) Let aeA. Define the phrase assignment
£, € (Free ¢) U (dom o) U {x} = |L]|
by
[yl if y #x
| m 1E =R 4
Using Theorem 3.3, we see Sub f = Sub [emp, | x:m] .
Therefore n = Sub fOL L. Since Free £ C dom f, Theorem 3.12
gives
Type n = (Type £) o (Type* fa)'

Observe that for y € (dom a) U {x}

-~

* oy if vy # x
Type fu o v = Type (fa y) o =3
l Type m oo 1if y = x .

Hence
*®
Type £ o 2, [a | x:Type m a]

There are two cases. First suppose Type m a < T.

Then

*
Tvpe n o= Type £ (Type £ a)

| A

Type £ [o | x:Type m al

A

Type £ [a | x:7]
= Type [(Ax:T1.£) ml a

= Type n' a.

85

Second, suppose that it is not true that Type m a < T.

Then
Type n o < ns = Type [(Ax:t.£)m] o = Type n' «a.
Hence
Type n iA#IT] Type n'.
(2) Consider the proof above with the added assumption
that Type m oo = 1. It is easy to see that in this case
(Type* £fa)” =[a | %2117 .
Thus

ke
Type n o = Type £ (Type £ a)

Type £ [a | x:7]

I

Type n' a.

In
meanings
braic ro

We

assumed

86

CHAPTER IV

THE FUNDAMENTAL THEOREM OF SEMANTICS

this chapter we explore the process of assigning
to programs with the aim of uncovering the alge-

ots of programming language semantics.

continue to assume as given the wvarious entities

to exist in the last chapter. Thus, we suppose we

are given

(1)

(2)

(3)

(4)

and

{5)

P, the poset of primitive phrase types, which

determines T, the free type algebra generated

by P,

Id, the infinite set of identifiers, which with

T determines A, the language signature,

G, the generating set of linguistic constants,

which with A determines [, the coercive typed A-calculus,
newid ¢ |F| + Id, which enters into the defini-

tion of the substitution function

sub ¢ |L]|* >~ |L] ~ |L],

type € G = Ob |T|, which determines
Type € |L| - (A = |T|), the type-checking

homomorphism.

87

Furthermore, we assume we are given
(6) K, a type algebra derived in the canonical way
from its carrier |K|, which is assumed to be a

Cartesian closed category - hence,

K o= Kl oy and K, = [K]

' r

(7) mng € P -~ |K|, a functor, which gives rise by

Theorem 2.2 to a type algebra homomorphism

Mng € T T§EE~KI§+ K

and

(8) a basic semantic function

semf ¢ G >~ Ar |K|

such that, for all g ¢ G,

semf g ¢ H¢ emlel __T?T_-+ Mng (type g).

Of course, we must give some intuitively satisfying justi-
fication for calling something with the properties of semf
a semantic function. Suppose for a moment that |K| = Set.
The idea is that, for g € G, semf g gives a proper meaning
for g, i.e. an element of some set. The set to which semf
g belongs is given by the typing function. A first guess

would be

semf g € Mng (type g).

If all the Cartesian closed categories of use had objects

with a set-like structure, then this might suffice as a basis

88

for generalization. However, other kinds of Cartesian closed
categories, namely functor categories, turn out to play a
crucial role in programming language semantics. Thus we must
reformulate the condition semf g € Mng (type g). Let T = {t}
be a terminal object of Setf. The elements of any set X are

in one-to-one correspondence with the functions T + X. So we
are led to revise our notion of what a proper meaning of g

is - no longer is it an element of Mng (type g), but rather it
is a method of choosing an element of Mng (type g). More pre-

cisely, we want

semf g e T W Mng (type g) .

We have been a bit vague about what terminal object of Set
should be used as T. In a sense it is immaterial, but for
reasons of subsequent elegance it is best to use T = H¢ empP g, ¢
the set consisting of the unique 0O-tuple. Our motivation
for (8) is now complete.

It is significant that we have come to the point of view

that a semantic function assigns to a phrase a morphism of a

Cartesian closed category. The central question is how does

semf € G » Ar |K|
determine a semantic function
Semf ¢ |L| » ?

applicable to all phrases of L. The appropriate codomain

for Semf is still in question. It is not Ar |K| for much

89

the same reason that the codomain of Type is not Ob 1T 5
Just as the type of an expression cannot be determined ex-
cept in the context of a type assignment, the meaning of a
phrase requires for its complete determination something
that yields an environment, i.e. an assignment of meanings
to free identifiers.

Environments are certain product objects in |K|; they
are products of collections of objects indexed by finite

sets of identifiers. Environments are produced from type

assignments by application of the functor
Env ¢ A > |K| ,

which is defined on objects of A by

Env o = Hdomtx(Mng °o o) .

Suppose o ¥ . Then

Env (o iA B) £ Env o ~TET-+ Env B

is the unique morphism such that for all x £ dom B the

diagram

projd X

Taom « (M“g > %) == =Mng (a x)

p
Env (o < B)J !Mng (ax < Bx)
i

proj X ¥

I (Mng o B) dom B > Mng (B x)

commutes. The verification that Env is indeed a functor

is routine.

90

Note that
= Y o =
Env emp, H¢ (Mng empT) H¢ emp1K|.
Thus, the basic semantic function is such that for geG

semf g £ Env empT_TET* Mng (type 9g).

We call Env emp.- the empty environment. In a sense it

is the environment most appropriate to a phrase with no
free identifiers, such as a linguistic constant.

It is now clear that the meaning of an expression £
should be calculated in the context of a type assignment
0, which yields an environment Env o, and it should
ultimately reside in Mng (Type £ o). Hence we expect

Semf to be found among those functions
Se |L] — Ob A— ar [K]

(thus, S assigns to a phrase % an (Ob A)-indexed collection
S & of arrows of |K|) such that

(Semf0) for all & ¢ L, a ¢ A

S % a £ Env o - Mng (Type 2 o).

| K

In particular we now know the codomain of Semf:
Semf ¢ |[L| - Ob A = Ar |K|

Some elements of Ob A » Ar |K| are particularly nice;
they are natural transformations, i.e. arrows of A = |K]|.
Indeed, we shall see that for each % & L, Semf £ will

be a natural transformation:

9l

Semf £ ¢ Env ————= Mng ° (Type 2).
A= |K|

Of course, the class of functions to which Semf
belongs should have some other properties in addition to
(Ssemf(Q) above. For instance a semantic function should
give to a linguistic constant a meaning independent of
the environment. This is stated more precisely as

(Semfl) for all g € G, o € A

Env o B g . Mng (type g)
Ve
u, semf g
E
nv emp..

commutes, where u, is the unique arrow to

the empty environment.

We expect identifiers to pick the right meaning out of

an environment when this is possible. Thus,

(Semf2) for all x € Id, o € A

¢ ; : _ :
’prOJdonlax £ Env aIET* Mng (ax) if x € dom o,
S [x] o =+

[ua € Env u‘TET~+ Mng ns otherwise.

In the case of an application we want to coerce the
operand into a meaning of the right type and then apply
the operator, provided there is no error due to mismatched

types. This gives

82

(Semf3) for all &, me L, a e A

S [m] o
Env o ———2 Mng 6
A
{ Semf % a,
Semf m o) Ap({Mng T, Mng 6)
1 1xMng (T'< T)
(Mng (t=6)) % (Mng ') » (Mng (1=6)) x (Mng T)

commutes, whenever

Type % a = 1t=6, and Type m o = 1'< T,
whereas

S[2& ml] o =u_ € Env o — Mng ns,
3 K]

otherwise.

There is a fourth condition connected with the semantics
of)-expressions, but its statement requires some preliminary
groundwork.

Let x ¢ Id. For each aeA, TeT we seek to define

P_(a,0 e (Env a)x(MngT}~“kT+ Env [a|x:T].
The idea is that Px<a,1) is the obvious isomorphism when
x ¢ dom o, and PX (a,T) changes the meaning object associated
with x from Mng (ox) to Mng T when x £ dom o. The morphism

Px(a,T) has an important role to play in the treatment of the

semantics of identifier binding. Denote by

WQE(EnV a) x(Mng T) —+ Env o

1K1

93

the projection onto the first component. For each

y € dom [a | x:1] define

Py ,a,t ¥ € (Env o) % (Mng 1) ——> Mng ([a | x:1]y)

as follows:

(1) if y = x, then

X ¢ (Env o) x (Mng 1)

Px’u’T [K[H& Mng T

is the projection onto the second component,
(2) if yv # x, then

pra'T ve (Env o) x (Mng T) TE——m+ Mng (oy)

is the composition

w proj N4
% > Env o dom. + Mng (ay) .

(Env o) x (Mng T)

Now take Px {a,7? to be the unique morphism such that

(Env o) x (mng T)

projdom[q l P i | 4

Env [o | x:T1] > Mng ([a | x:7]y)

commutes for all y € dom [a | x:7].

The following technical lemma is used in the proof of
the proposition that follows it.

Lemma 4.1: Suppose x € Id, a iA B, and T ilTl e .

For all v € dom [R | x:1], the diagram

94

pX,a;TY

(Env o) x (Mng T)

Env (a<B) X

|
Mng (1<8) | Mng ([o | x:7t] v < [B | x:0] ¥y)
s }
Py,B,0 ¥
(Env B) x (Mng ©) = =t > Mng ([B | x:8] y)
commutes.

Proof: Suppose y = x. Then the diagram becomes

(Env o) x (Mng T) ~ Mng T
Env (a<B) X

Mng (1<86)

Mng (t<8) ,

v |
(Env B) x (Mng 6) —=Mng 6

where the horizontal arrows are projections onto the second
component; this diagram commutes by the definition of the
product morphism Env (a<B) X Mng (t1<6).

Suppose v # x. By decomposing the horizontal arrows

we get
™ Projdom(xy
(Enva) x (MngT) L —Env o E— —» Mng (oy)
|
Env(aiB)X} Env (a<B) Mng (ay<By)
Mng (T<8) i
il ' pProj v
(EnvR) X (MNngf) = E > Env g — = HCIEE » Mng (By) 3

The left-hand square commutes by the definition of the product
morphism Env (a<B) x Mng (1<6), and the right-hand square
commutes by the definition of the functor Env. []

Proposition 4.2: Let x € Id. Then Px is a natural

transformation:

95

P, & (Env =) x (Mng -) — ——————= Env [- | x:-].
Ax|T|=|K]|

Proof: Suppose a iA B and T i|T1 8. We must verify

that
P o,
(Env o) x (Mng 1) ——F——————> Env [a | x:1]
Env (a<B) xMng (1<6) Env([o|x:t] <[B|x:6])
P(B,®
(Env 8) x (Mng 6) ——————— Env [B | x:61]

is a commutative diagram. We will use the fact that

Env [B | x:0] = Tgorg | xre) MR9 © [B | x:6])

together with the universal mapping property for products.

First, for each y ¢ dom [B | x:8], consider the diagram

pX,O{,Ty

(Eny a) X (Mng T)- Mng ([o | x:1] y)

Px(u,T)
pro]dom[a]x:T]Y

Env [o] x:1] Mng ([al|x:T]y

<[B|x:81y).
Env([u]x:T]E[BIX:T])

¥

PTOJqom[g |x:0] Mng ([8 | x:6]) y)

Env [B | x:0]

The inner diagram on the top commutes by the definition of
Px<a,T>enuicommutativity of the inner diagram on the bottom
follows from the definition of Env; thus, the outer compositions
are equal. Second, for each y ¢ dom [B | x:0], consider

the diagram

96

P Y
(Env o) x (Mng T) e, 1 Mng([o | x:t1] Y)
I
' |
EnV(C}LiB)XMDg(Tie); |
|
i
| Mng([a|x:T]ly
(Env B) x (Mng 8)\\ | <[B|x:6]y)
Px,8,07 ;
Px(B, 6 ‘ |
i
: ., ¥
% projdom[B[x:S]y_ . .
Env [B | x:0] >Mng ([B | x:08] ¥) .

Here, the top inner diagram commutes by the preceding lemma,
and the lower inner diagram commutes by the definition of
PX<B,8). Consequently the outer diagram commutes. By the
universal mapping property for products, the left-hand

vertical compositions in the two diagrams must be equal. []

Now let's return to the statement of the last property

that we deem desirable for the collection of those functions

S e |L| » ObA » Ar |K|
of which Semf is a member. We expect the meaning of a
A—expression in the context of a type assignment to be the
abstraction of a morphism connected with the meaning of the
body of the)l-expression in the context of the type assignment
altered to take into account the binding of an identifier to
a type. Therefore,

(Semf4) for all x ¢ Id, teT, fel, acA ,

S [Ax:71.2] a €& Env a~1K|--+ Mng (1t = (Type & [a | x:7]))

is the unique morphism such that

97

(S II)\X:T.R/]]DL)XJ-’ (Mng (1= (Type il OLiX:T] X3

(Env o) x(MngT)

1 x (MngT)
| |
|
I Ap{ MngT,
P (G,T)‘ Mng (Typef [o|x:T 1))
i S 2 [o | x:1] ¥
Env [a | x:1] - - Mng (Typell o |x:T])

commutes.
Our investigation of Semf involves two A-algebras
U and V, where U is a subalgebra of V. Take the carrier of
! to be the set of ordered pairs (T, F) such that
(1) T e A> |T| (hence, T is monotone), and
(2) F is an (Ob A)- indexed collection of arrows of
|K| satisfying for all a e A
F a.€ Env a-“lkf+ Mng (T a)
The carrier of the subalgebra U of V consists of those

(T, F¥ e |V| such that F is a natural transformation:
F € Env‘@xélkfm+ Mng o T .

(Thus, the carrier of U is the collection of objects of the

comma category (Env + A = Mng) where
A = Mng e (A= [T]) » (A= |K]|)
is the functor induced by

ypeAlyg
The significance of this observation is not completely
clear.)

Recall that A » |T| is the carrier of the A-algebra

E. We turn now to the interpretations in ! of the operators

98

in A.

Let x ¢ Id. Let

where

F o € Env a~~TET+ Mng (Ex a) , a e A,

will be defined shortly. Upon recalling that

ox if x £ dom o
Ex o =a x = {
L ns otherwise ,
we let
{ projdom X € Env u~TET~+ Mng (ox) if x € dom a,
FXDL = ‘?
{ u, € Env a"TK[‘+ Mng ns otherwise .

Let (T,) and (T', F" be in |V|. Let
v ({1, F) T, BN = L , F
ap ap ap
where
T = E { T, T%
ap ap
and

Fap a € EDV'——TET“~+ Mng (Tap a) , o € A,

will be defined below. Note that, for o = A,
o if Ta = 16 and T'a < 1T ,

ns otherwise .

99

This leads to two cases in the definition of Fap' If

acA, Ta = 16, and T'a < 1, then let Fap o be defined

by the commutative diagram

F o
Env o gE >~ Mng 6
| T
{Fa, F'o Ap(MngT, Mng6)
(Mng (To))x(Mng (T'a)) 1xMng (T OLET)__;.--=(Mng("r=>8))><(Mng T)

For other aeA, Fa o 1is the unique arrow to the nonsense

object:
Fapa =u, B Env a"TET~+ Mng ns
Let % ¢ Id; T el (T, ®» g |V|. Eet
uhx:T P B = <Ekx:'r T le:T>
where the definition of
F;\X:T o € Env a “TETma*-Mng (me:T T a) y G€ A,
follows. Recall that
Evgsg T @ =712 (T [a | x:11) -
For acA, let F, ._ o be the unique morphism in |K| such
that
(Enva) x (MngT) (F)u»{:’rab< {_(Mng(T:(T[uix:T]))) x (MngT)
| 1
|
Px<&'T)i 'Ap{MngT,Mng (T[a|x:7]))

; v

Env [a | x:1] e | 2 Mng (T [ao | x:7])

100

commutes. This completes the definition of the A-algebra

V.

Theorem 4.3: U is a subalgebra of the A-algebra V.

Proof: We must show that |U| is closed under the inter-

pretations in V of the operators in A\.
Let x ¢ Id, and consider UX = (Ex' FXL We will show
Vy € |U| by demonstrating that F_ is a natural transformation.

Suppose o 24 g, so that o x < Bm X. Consider the diagram

an =]
Enf o - ——» Mng (o X)
]
| _i
Env (0<B) ; ' Mng (ax<Bx)
! ;
Y F_B v
BAYV Breseeewee o0 T oo MAG (B X) .

If x ¢ dom B, then Bmx = ns and the fact that Mng (B8 x) is
terminal gives commutativity of the diagram. If x & dom B,
then also xe dom o, aX = o X, Rx = 87x, and commutativity

follows from the definition of Env (a<B)-.

Let (T,) and (T', F') be in |U]|, and consider

' ' i
V.ap ey By 5 AT TN (TCL}O'FCL]O)

We wish to show this is in |U|, i.e. to show %M)is natural.
To do this let a <p B- Consider what happens when T B=1 =6
and T'R < 1. Then we can write Ta = % ~ § where

T'a < T'B < 1T < T and 8 < 6. We wish to demonstrate the

commutativity of the outer square in the diagram

101

F o =
Env o s o - Mng 6
A
/|
Fo,F'o {1) Ap /
~ }//;
' 1xMng (T'o<T) A ‘<
Mng (To) xMng (T ' o) e = Mng (T=6) X Mng T
Ei 1 ;
v 3) (4) | Mng(8<6)
= |
é ¥ 1xMng (T'R<T)
Mng (TB) xMng (T"' B)- Mng (1=6) x Mng T
|
| (2)
: ,/;FB,F'B) Ap
%J/ B B v
Env B - __ﬁﬁdw_ ey g MG B 2

The interior diagrams labelled (1) and (2) commute by

definition, and the square labelled (3) commutes by the
naturality of F and F' . Let
X =Mng t , X = Mng T ;, Y = Mng (Ti%) %
Y = Mng 8 , Y=Mngé , & =Mng (6<6) ,
Z = Mng(T'8) , 2 = Mng(T'a), n = Mng (T'a < T'B),
k = Mng (T'B < 1) .
Then the interior diagram labelled (4) becomes
.~ lx(yexken) . . . Ap<(X,D .
(X=>Y) x7Z (X=Y) xX — = = Y
|
}
(y=8)xn | 8 :
'!
|
¥ 1l x g Ap (X,Y)
(X=*Y) X Z = (XY) XX ———————————% ¥

102

Equivalently, we have

5 Ap(X,Y) Ly

(R=9) %2 XN, (329 x7 LXK (R99) xx-LX Vs (§8) %K $
f
| |
(y=8) xn (5) (y=8)x1l| (6) (y=8)x1| L7 8
' t 3 Ap(X, ¥) '
(X=Y) XZm=====m== (X=2Y) XZ —F > (XY) xX =—— Bty — >Y .

Squares (5) and (6) obviously commute. Diagram (7) commutes

by the definition of y=8. Hence diagram (4) commutes, yielding
commutativity of the original diagram. In other cases

TB = ns, which automatically gives commutativity of

Fa o.
Env o — 2L Mng (Ta)
|

i
1
Env(uiAB) ‘] Mng(T{agAB)) .

. F 8
EnvV f— ap Mng (TB) .

This concludes the proof that Fap is a natural transformation.

Let x € Id, teT, (T, ¢ |U|. Let

v (T, = (§_ .. T, F Y

AXT AX:T

we aim to show LT — is a natural transformation.

Suppose o £k B. Since Mng is a type algebra homomorphism

the morphisms

and

Mng ((t = (T [a | x:7])) < (t = (T [B | x:7])))

l e
Mngt |K]|

are equal. Therefore our aim is to prove that

o
Env o »mmmﬂﬁ—f——a- Mng T = Mng (T [a | x:7])
1
l |
| 1= Mng ((T [o | x:1])
Env (0<B) i | < (T IB|=x:211))
l hx TB l
Env f ——020" o Mng T = Mng (T [8 | ®=s1])
commutes. The method of proof is based on the universal

mapping property (Cart3), with X = Env o, Y = Mng T,

Z = Mng (T [B | x:1]). Consider the diagram

Pla, 1’|
X

Env| o

Env [B

Mng ((T [o | x:1]) < (T [B | x:7]1))

103

{(1=Mng())°(th'1a))xl
(Enva) x (Mngt) ——— ool . - <. it (Mngv*Mng(T[B|x 1Y)
[A x (MngT)
(F,_ _a)xl (1) a
1. AEE _(1=Mng (...))x1
| ol
i (MngT= Mng (T[o |x:1])) x (MngT) (2)
|
| (4) Ap{MngT,
i Ap(MngT,Mng(T[a[x:T]}> Mng (T[B |x:1]))
Fla|x:T]
| x:1] =———Mng (T[a|x:1])
i Mng (...)
i nvr[a|x T] (3)
| <[B[x:1]) .
!_ F[B | x:1]) A
| x:1] — - > Mng(T [B | x:7])

104

The four small diagrams commute for the following reasons:

(1)
(2)
(3)
(4)

F

*

i)

is a functor,

is a natural transformation,

definition of F

AT

Thus the whole diagram commutes.

Next,

naturality of Ap in its second argument,

consider the diagram

((le, B)eo (Env (a<p))) x1

(Enva) x (Mngt i - > (MngT=Mng (T[B |x:1]))

f = (5) o X (MngT)

wv(aiﬁ) x1 P4 -
P A0eT) 7 (F X
X & AX:T
(7) Ap{ MngT,
\\% r/// Mng(T[B|x:T]))

Env [o|x:T] (Envg) x (MngT) (6)

Fi

s
/

Env ([o|x:T]

<[B|x:T]) /'J P(B,D

/

/

#

¥ F[B | x:1] v
Env [B | x:1] - Mng (T [B l xv%])

The reasons for the commutativity of the small diagrams is as
follows:

(5) x 1
(6)

(7)

is a functor,

definition of F

hx:TB !

naturality of Px'

So the entire diagram commutes. We finally apply the
universal mapping property (Cart3) to get commutativity of the

square in question. [

The condition (Semfl) suggests that we should use the

function

105

semf ¢ G > Ar |K|
to create
semf' € G > Ob A »~ Ar |[K| ,
where semf' is defined for g € G, o £ A by the commutative
diagram

semf' g o
Env o — e Mng (Type g o)

il
rd
u : /" semf g

ol \\ __:'J{ *
.‘/

Env empf

Now define

E & E-a ||

by

sf g = (Type g, semf' g

for g ¢ G. Extend sf to get

Sf ¢ L ——————s U
A=ALg

the unique A-algebra homomorphism such that

sf g=sfg for all g £ G .

Let

Pr, ¢ |V| » |E|] , Pr, € |V| - ObA » Ar |K|

be the functions which select the components of the elements of

is a N-algebra

|[V]. Thus Pr, (T, ¥ =T and Pr, (T, F} = F.
Proposition 4.4: The function Pr,
homomorphism:
Pty &] e E.
A--AZ g

Proof: Clear. I[I

Corollary 4.5: The diagram

Type

of N-algebra homomorphisms is commutative.

Proof: For all g e G

Type g = Pr, (Sf g)

Define the semantic function

Semf ¢ |[L| - Ob A » Ar ||

by the commutative diagram

Semf

|L| ———————————s (0b A » Ar |K|)

I A

St
\\\& ’/,/f Pr,

V]

We are now ready to present Theorem 4.6,

106

The Fundamental

Theorem of Semantics for the coercive typed A-calculus.

107

Theorem 4.6: (1) The function

Semf ¢ |L| - Ob A + Ar |K|

is the unique function satisfying conditions (Semf0),
(Semfl), (Semf2), (Semf3) and (Semf4).
(2) Furthermore, for each % ¢ |[L|, Semf & 1is a

natural transformation:

Semf ¢ ¢ Envi-]Mﬁ-Mng o (Type &) .

;[k
Proof: (1) First we will verify that Semf satisfies

the conditions. Let £ € L, o e A, g e G, m ¢ L,

e Ed, 8 T.

From Corollary 4.5 and the definition of Semf,

Sf 4 = (Type £, Semf 2).
Since Sf & e |V| , we see
Semf { o € Env a~1kI+ Mng (Type % o).
This is (Semf0). Observe
(Type g, Semf g9 = Sf g = sf g = (Type g, semf' g).
Thus Semf g = semf' g. This is (Semfl). From the equation
(Type [x], Semf [x] > = Sf [x] = UX = (EX, FX)

we get Semf [x] o = F_ 0y which is just (Semf2).

The equation

108

(Type [¢m], Semf [&m]) St [£m]

Uap {(Sf 3) (Sf m)?

(f '
Uap (({ Type ¢, Semf >
(Type m, Semf m)
= (T , F)

implies
Semf [£m] o = F o s

and this is (Semf3). Finally,

(Type [Ax:t.8], Semf [Ax:t.L]) Sf [ax:1.2]

=V, y.. (S£2)

|[R s+ Te]I (6)\x. o r

this is (Semf4). So Semf satisfies the five conditions.

Suppose S € |L| - Ob A + Ar |K| satisfies the five

conditions. By condition (Semf0), for each & e L, a € A,
S & o & Env a-mTRT+ Mng (Type £ o) .,

so that we can define

s' e |L| =~ |V]

by
S' 4 = (Type %, S L.

Using (Semf2), (Semf3), and (Semf4) it is straightforward to

109

show that S' is a homomorphism:

SR

& £ L amg
By condition (Semfl), the restriction of S' to G is sf.
Hence S' = Sf, and S = Pr, o S' = Pr, o Sf = Semf. This
proves the uniqueness of Semf.
(2) We claim that for each g € G, semf' g is a

natural transformation:

semf' g € Env-_Z;;TETthg o (Type g) .

This is a consequence of the obvious commutativity of the

interior triangles in

semf' g o

Env o = Mng (Type g o)
v d i
!.’
u, ,//semf g ”
g |
Env (a<pB) Env emp- semt ¢ & Mng (type 9)
7 I
/u semf g -
/e |
/ semf' g B : I
Env B s Mng (Type g B) .

Thus the image of sf is contained in the subalgebra U
of V. Consequently the image of Sf is contained in U. There-
fore, for each & the second component of Sf % is a natural

transformation, i.e. Semf % is a natural transformation. [I]

The next proposition explores the semantic effect of
expanding the domain of a type assignment by adding an
identifier which is not free in a phrase %. Note the role

played by the naturality of Semf & in the proof.

110

Proposition 4.7: Let 2 ¢ L, o ¢ A, T € T, x ¢ Id.

Suppose x £ Free %. Then the diagram

(Semf 2 a)fl

(Env o)X (Mng T) (Mng (Type 2 a))x (Mng T)

? w}
Px(a,T} ' Env o
|

Semf % o
| e

Semf & [a|x:T1]

.

Env] a|x:1] Mng (Type £ o)

commutes, where y is the projection onto the first component.
(Remark: The diagram makes sense by Corollary 3.11 which
insures that Mng (Type £ [o | x:71]) = Mng (Type £ a).)

Proof: The upper half of the diagram obviously commutes,
so we may turn our attention to the lower half. Denote the
restriction of o to (dom a) - {x} by B. Then

o < B and [a | x:T1] < B. It is routine to check that

(Env o) x(Mng T) o Env o
|
Px(o.,'[) Env (a<B)
Env [a | x:7] EDVEIQ]X:T]iBLyEnv B
commutes. Since a = [B8 | x:0x] , Corollary 3.1l gives

Type £ o = Type £ B .

From the naturality of Semf 2 we now get the commutativity

of

111

Env o Semf £ o >=Mng (Type £ o)
]

m
o

w
(Enva) x (MngT) Env B
. A

P (a,;k\\\\\x
X

Thus, the lower half of the diagram also commutes. [

Semf & B

» Mng (Type 2 o)

Semf §.[o|x:T]

Env [a| x:T1] » Mng (Type 2 o)

In Chapter 3 we introduced Type*, a typing function
applicable to phrase assignments; Type* was derived from
Type, the typing function applicable to phrases. Similarly
we will introduce Semf*, a semantic function that is

applicable to phrase assignments and is derived from Semf.

Let I be a finite set. It is well-known and easy to
check that the distinguished product functor HLKl for

the Cartesian closed category |K| gives rise in a natural

way to a distinguished product functor HéglKl for the
category A = |K| ; simply construct products in A = [K|
at the level of |K|. To elaborate, let

FelI-~> (A> |K|)

be an I-indexed collection of functors. Regard I as a
discretely ordered poset, so that I may be viewed as a
category. Then there is no difference between the functor
category I = |K| and the I-ary Cartesian product |k| L.

Let the functor

112

F' e A » (I = |[K]|)

be obtained from F by interchange of arguments:

F' ax =F x a .
The product of F,
Ikl e e a o ik

is defined as follows:

(1) for o e A,

A=|K| = plKl (g
HI F o HI (F' a)
and
(2) for o<, B, Hé=|K| F (a<B) is the unique
arrow in |K| such that for all x ¢ I
HLKI[{F' a) —PE9) . p' g x =F x a
!
= l
H’f'“ F (a<B) i |F'(0<B) x = F x (0<B)
{
nll rr @ BT _rr g x =F x 8

commutes.

Let f be a phrase assignment. We have a particular

interest in the (dom f)-indexed collection of functors

V £ ¢ dom £ > (A > |K]|)

given by

V £ x = Mng o (Type (£fx)) .

113

Let

(v £)' € A > (dom £ = |K|)

be the functor obtained by interchanging the arguments of

v E.

*
Proposition 4.8: Let £ ¢ |L| . Then

A= K]

dom £ (v £)

*
Env o (Type £f) =
Proof: Let o be a type assignment. If x e dom £, then

VvV €)' o x =2 vYEX &

Mng (Type (fx) a)

*
Mng (Type £ o x) .

*
Hence (V f)' o = Mng o (Type £ o). By the definition of

Env,
* *
(Env o (Type £f)) o = Env (Type £ o)
- Kl (un (TvpE E &Y
dom £ g yp
_ | K| [
_ A=K ,
T[c"lorn £ (V:£) o.

So the two functors are equal on objects.
*
Suppose o 24 B. By the monotonicity of Type £,

(Envo(Type* £f)) (a<B) = Env ((Type* £ a) iA(Type* £ g)d

From the definition of Env we obtain for each x ¢ dom f a

commutative diagram

114

*
H(.!lgxllf (Mng o (Type f a)) = HéérLf ((VE) ' o) B2 (vE) ' a x
(EnVO(TYPe*f)){OﬁiB) | (Vf)'(&jB)x
;_*
|
* L . /
Hé§$ (Mng o (Type £8)) = Hé§$f ((VE) ' B)—ELE2I (vE)' B x
Therefore
(E * _ A=K
nv o (Type f£))(a < B) =Ty "¢ (v £)(a < B),

which shows that the functors are equal on arrows. []

For each phrase assignment £ ¢ |L| , let

* *
Semf f € EnVI_K;TET”* Env o (Type £)
be the unique natural transformation such that for all

x €& dom £,

Semf (fx)

£ ; S
Env o (Type f) = Hé;&?l(v‘f)——gzgla V £ x = Mng o (Type(fx))
commutes.
We next present the basic theorem on the semantics

of substitution. Beyond its intrinsic interest, it is a

most useful tool for the investigation of the semantics

of a-, B-, and n-reduction.

115

In the statement of Theorem 4.9, Godement multiplication,
denoted by an infixed *, makes its first appearance. Godement
multiplication is nothing more than a way of combining appro-
priate functors with natural transformations to get new
natural transformations. Thus, let A, B, C, D be categories.
Suppose

F, F'e A>B, GeB~»~C, H, H' ¢ C =+ D

and
n e F'";&;:;'B“"'* F! ’ 6 E H”"”&"ﬂ:p"* H' .

We obtain natural transformations

G*neGoPF =S G o F' ,
§ * G e H o G —%p H'o G

by letting
(G * n) A = G(na) for A € Ob A,

(6 * G) B § (GB) for B &£ Ob B

For more details about Godement multiplication, see
Manes [5].

*
Theorem 4.9: Let 2 € L. For all f ¢ |L| , the

diagram

Semf (Sub £ %)
Lo WD

Env Mng o (Type (Sub £ 2))

r

1

v
Mng o (Type z)o(Type*fJ

Mng* (Type (Sub £)

*
Semf f
< (Type) (Type*£f))

|'_
|
I
|

i

*
*
Enve (Type £)SemE %) *(Type £)

116

commutes in A = |K].

Proof: We will show by induction on the structure of

*
% € L that for all £ ¢ |L| and all o € A,

_Semf (Sub f 2)a

Env « Mng (Type (Sub f 2) «)
| |
Mng ((Type(Sub £ 2)a)

E (Type 2 (Type* £ @)y
i

*
Semf £ o

D e —

' * |
* ¥ *
Env (Type £ «) semt Loype & g)Mng(Type 2(Type £ o))

commutes in |K|.

(1) Let % = g where g € G. By (Subl), Sub f g = g.

By (Typel),
*
Type g o = type g = Type g (Type £ a).

Using (Semfl) and the fact that Env emp is terminal, we

get commutativity of

Env o = Semt g o J///:; Mng (type g)
I
*
Semf f a Env emp H
. ~ ?
Y *
Semf g (Type f o) -

*
Env (Type f o)= —= Mng (type g) .

as desired.

117

(2) Let f = [x] where x ¢ Id. On the one hand, suppose
*
x £ dom £f. Since dom (Type £ o) = dom f, we are able to

use (Type2) to get

*
Type & (Type £ o) = ns

Therefore the object in the lower right corner of the square
whose commutativity is desired turns out to be terminal. Thus
commutativity is automatic in this case. On the other hand,
suppose x £ dom f. By (Sub2), Sub f [x] = £ x. By Theorem
3.12, the right-hand arrow is an identity morphism, and the

diagram whose commutativity we want may be written as

Semf (fxlwa

Env o - ~ Mng (Type (fx) a)

!

!
Semf* f a‘ {;
I
| |
|

o

Env (Type f o)

*
Semf [x] (Type £ o) . mng (Type (£x) o)

By (Semf2), the bottom arrow is the projection on the xth
component. This diagram commutes by the definition of
*
Semf £.
(3) Let & = [mn] where m, n € L. First consider the

case in which

Il
Al

* s
Type m (Type f a) = 1' = 6' and Type n (Type £ a)
Then

*
Type [mn] (Type £ o) = 6! .

By Theorem 3.12 and Theorem 2.2,

Type

Type

Since Sub £
T €1
Type

The diagram

written as

(Sub

(Sub
[mnl
< 1!

(Sub

| A

£

m)

n)

ol

o}

Sqg#g s gh=gt

=7 < T

[(sub £ m)
T, and 0

[mn])a= 6

(Sub

< 8',

f n)l

r

we see

<

e'l

which we wish to

show commutative may now be

Semf

(sub £ [mn]) «

Env o
1
\

(Semf (Subf m)a,

S

(1) 7

emf (Subf n)o?

-

118

Mng (1=0)xMng T lang(Tfﬁ);:Mng(Tﬂe)XMng T

(3) |
= Mng ((Tt=8) (4
e <(t'=0")) Mng (6<8")
® xMng (T<T")
3 =
g
a
wm

4

IMng (1'=6')xMng T'

1xMng (1'<T)

5 y

{

(2)

Mng (t'=6"')xMng t'

/ N
/ * *
/A Semf m(Type fa), Semf n(Type fa)) w\\i‘p '
/ i

Voo, N

*
Env (Type £ a).lSemf [mnl (Type £) 2=~ Mng 0 .

Interior diagrams (1) and (2) commute by (Semf3), diagram (3)

commutes by the induction hypothesis, and commutativity

119

of diagram (4) follows by the argument used to show Fap
is natural in the proof of Theorem 4.3. So the outer square

commutes, as desired. The other case is that in which

*
Type [mn] (Type £ o) = ns

The relevant diagram commutes in this case because the object

in its lower right corner is terminal.

(4) Let 2 = [Ax:t.m] where x ¢ Id, T € T, m € L.
ILet X = clashset (£, x, m and z = newid X.

First we consider the case x ¢ X. In this case

sub £ [Ax:t.m] = [Aix:t. (Sub [f | x:[x]1m)] ,

and

Type (Sub f [Ax:Tt.m])a =1 = 6,

where 6 = Type (Sub [f | x:[x]1m) [a | x:T].
Also,

Type ﬁlx:T-mH(Type* fa)=1=086" ,

where 8' = Type m [Type* f o | x:1]
By Theorem 3.12, we know (t = 6) < (t = 6'); hence,

< 6'. Our aim is to show that

Semf (Sub £ [[lxzr.m]])& -~ Mng {T = 0)

*
(‘1’) Semf f g 1 = Mng(eise)

\i'
*
Env (Type f o)

Y

4 *
SenmflAx:t.ml (Type fo) o (¢ = g7)

commutes in |K]|.

satisfy the same universal mapping property, namely,

Consider the diagram

((1=Mng (0<6"'))
o (Semf (Subf Ax:Tt.m])a)) x1

(1) A
\\QSemf(SubfﬂAx:T.mﬂ)a)Xl //

% /
\\\ (1=Mng (6<6'

N xL/
/

h Mng (T=8) xMng T
Px<a,1) '

!

(Enva)X(MpgT)

//

iy

(4) (2)

i

(+1) |
Ap{ MngT,Mngg)

i Semf (Sub[£ |x:[x]1m) l
Env[a]x:r] = MAB 0

1 .

Semf*[f|x:[x]][a|x:T]
(2]

[a]x:1]

~. Mng(6<6"')
\\" —

e,

N

Semf m

Env(Type*[f|x:ﬂxH][a|x:1]}

1
|
|

-
(Type*[f|x:ﬂxﬂ][a|x=(gj Mngg"

120

Our method is to show both composites

(Cart3) .

Mng (t=6") xMng T

Ap{Mngt,Mng8')

The interior diagrams commute for the following reasons:

(1) = is a functor,
(2) naturality of Ap in its second argument,
(3) 4dinduction hypothesis,

(4) (Semf4).

Thus, the outer square commutes.

121

Let

*
[Type f o | x:7]

B1

and

Type* [£| x:[x]] [a | x:1]

B2

We claim that B; and B, agree on Free m. If x € Free m, then

By x =1 = Type [x] [a]| x:1] = B, x.

If vy ¢ Free m and y # x, then

B1 ¥ Type (fy) a

Il

Type (fy) [o | x:T] ,

by observing x £ X (hence,

x ¢ Free (fy)) and applying Cor. 3.10,
= B2 V.

Define the type assignment

B € ((dom f) U {x}) N (Free m) - Ob |T|
by

By=8,Yy=28,Y¥ =« y € dom B
Clearly B, iA B and B, 5A B.

We claim that the diagram

* -
(Enva,) X (MngT) (semf £ o) x1

s (Env(Type? o))X (MngT)

* -
Px<a,1> _ |PX(Type:fu,T>
: ¥
Env [0 | x:1] Env B,
|
Semf*[f[x:ﬂxﬂ][a|x:T] 'Env (B1<B)
' Env (B2<8)

Env, By — Env B

122

commutes. The object in the lower right-hand corner is a

product:

| K]

Env B = HdomB

(Mng o B)

Thus, the claim will be proved if we can verify for all

y € dom B the commutativity of the outer square of the diagram

123

g aud

(9>19) aug

e r

(1bupR) x (vaud)

AN
™
\ “
N N
N
ke
% //,/
T o
% /, KON
W N | .
\ €0,
fs)} /../ ..w.Q. ~
— KA nmv/ /...,/
-\ % N
~ mv// (S) N
- % \
WA (rOy N\, ,
e LY g aug
— \ \..\
S\:- // ¥l
m.. ...1 .\.I..
o %/ N\ _\\\Amvaqum
g aug (1LBUp) x ((0 (A7) 2dAL) BUuR) // (9) ¢g Aug
; ; P
F; 3 ._.,/ \\..\. _ _
(L'03 odAL) 4 C o [rsx |][[x]:x|3] Fwss
* TxLoad Ix (0 (K3) Ju0S / o x
(LBURW) x ((0T mmw_ﬁ AUT) [1:x]|0 w>cm
¥ 1.._-/ \
N (8) \\\
Hxﬁam*mammuf;;f \\\\\\ (1'0)°g

124

In this last diagram the arrow qy is the projection

onto the first component if y # x and the projection onto
the second component if y = x. Consider each interior
diagram in turn; they all commute for reasons we will now
explain:

(5) definition of the functor Env,

(6) definition of Semf ,

(7) when y # x, x ¢ Free (fy) follows from x £ X,
and therefore commutativity follows from
Proposition 3.7; when y = x, commutativity is a
consequence of the fact that Semf [x] [a | x:7]
is the projection onto the xth component of
Envia | x:11,

(8) definition of Semf ,

(9) definition of P, Va

y Type*f O, T
*
(10) definition of PX (Type f o, T ,

(11) definition of the functor Env.

Thus, the entire diagram commutes, proving the claim.

Next consider the diagram

125

((Semf ﬂkx:T.mﬂ(Type*f&))

*
(Envo_c) % (Mrigt) o (Semf fo))x1 » (Mng (126 ")) x (MngT)

{ N

(Semf*fa)xl (Semf...)x1l

! _ (13) '
E (Env(Type*fa))X(Mng j
B Ca.a)]
X

(++t) | P (Type fa,T) |

(12) X e | (14)

| ‘
¥ ‘b

Env[a | x:7] Env B, Ap{MngT,
i ; \\ Mng6 ')
| Env(B1<8) | \
| " (15)
Semf [f|x:[x] 1 v

[a]|x:T] 4Env g
/
4"/
Env(BziB}//’
’/
| S/ (16)
i ,"/'
| /S
y /
Env [322 _Hm_____.__%.-,__dgimf m B2 —————» Mng 0' P

Commutativity of interior diagram (12) has been demonstrated.
Diagram (13) commutes because x is a functor. Diagram
(14) commutes by (Semf4). The diagrams labelled (15) and
(l6) are commutative since Semf m is a natural transforma-
tion. Thus the outer square commutes.

Compare the outer squares of diagrams (tt) and (f1%).
By applying the uniqueness assertion of (Cart3) we get

commutativity of (7).

126

Finally, consider the case x e X. In the case
Sub £ [Ax:t.m] = [Az: . (Sub [£f | x:[z]] m)] ,

and this time

Type (Sub f [Ax:Tt.m]) = T1=6 ,
where 6 = Type (Sub [f | x:[zl]1 m) [a [A o (-
Again,

*
Type [Ax:t.m] (Type £ a) =1 = 8'
*

where 6' = Type m [Type f o | x:1]. By slightly altering
the argument in the preceding case, we again obtain

commutativity of (+). I[J

The next three theorems study in turn the semantics

of a-reduction, B-reduction, and n-reduction.

Theorem 4.10: Let x, y € Id, 2 ¢ L, 1 € T.

Suppose y ¢ Free £ and m = Sub [emp | x:[yl1 %.

Then

Semf [Ax:7.2] = Semf [Ay:t.m] .

Proof: Let o ¢ A. By o £ A we mean the restriction

of o to dom o - {y}. Thus o € dom o - {y} - Ob |t|. Extend

the phrase assignment [emp | x: [yl]l to

£ e (dom a) {x} » |L]

via
[z] =53 z # x

[yl def zZ = X,

127

By Theorem 3.3, Sub f = Sub [emp, | x:[yll, so that

m = Sub £ £. It is easy to see that

~

*
Type £ [a | y:t]l = [a | x:1].

Therefore

~

*
Semf £ [o | y:1] € Env [a | y:t]—— Env [a | x:1].

Using the universal mapping property that defines Px(a,T>,

it is an easy exercise to prove that

Env [a | y:1]
. >
iso

*
. ol Semf f [o | y:1]

Env o X Mng

———

~—

s S Env [o | x:T1]

commutes, where iso is the obvious isomorphism. By Proposition

3.13, we may let

6 = Type £ [a | x:1] = Type m [o | y:1];
then also 6 = Type £ [o | x:1] (by Corollary 3.11) and
T = 6 = Type [Ax:1.2] o = Type [Ay:t.m] a.

Consider the diagram

Env X ¥ Mng T

2 “ p
e
% Bt
2 — -
e y
\%? |
2 , '
* (2) Env[a[y,T]‘
{2 &? .
3,82 4
g .
N _
™ " =
% “E >
3 “\\:?) ;
[~)
|” (1) \ A ¥
EHV[QL 1 X:T]
P
D /_/"'J
i
K (5)
eodt -
A
Y o, Semf £ [a]
BR[| ===

Semf [Ay:t.m}a x 1

128

(3)

s C_)
2
>

.

The interior diagrams commute for the following reasons:

(1)
(2)
(3)
(4)
(5)
(6)

naturality of Px’
definition of Py(a T)
(Semf 4),

Theorem 4.9,

naturality of Semf £,

by earlier remarks.

Hence the outer square commutes.

get Semf [Ax:7t.L] o =

Apply

Semf [Ay:t.m] «.

(Semf 4) again to
0

=+ Mng (1=6) X Mng T

(9 buw ‘1 buy) dvy

129

Theorem 4.11: Let x ¢ Id, T ¢ T, &,m e L.

Suppose n = Sub [emp, | x:m] 2 and n' = [(Ax:T1.2)m].
Then
(Type n)

Semf n _—"

Env IMng * (Type n < Type n')

P
S

Semf n' MH“HR*

Mng o (Type n')
commutes in A = |K| .
(Remark: Thus, if Type n = Type n', it follows
that Semf n = Semf n'.)

Proof: Note that Type n < Type n' by Proposition
3.14. Let o ¢ A, 8 = Type n a,0' = Type n' a. We must

verify that

Mng 8
|
Semf n o_~ {
.w‘/
Env o . Mng (6 < 68'")
Semf n' « Mng 6
commutes. If 6' = ns, then this diagram obviously

commutes. So suppose that n' # ns. Upon recalling that

n' = [(Ax:71.2)ml, we see this can only happen if

Type m o = T , where T < T .

130

As in the proof of Proposition 3.14, the phrase assignment
£, ¢ (Free?) U (doma) U {x} - |L|

is given by

Recall that
*
Type n = (Type %) o (Type fa),
and

*
Type £, o < [o | =&t .

This implies that

*
6 = Typeno = Type & (Type £ a) ,

o
so that
* *
Semf 2 (Type fa o) € Env (Type fa a)-TK{+ Mng 6

For each y ¢ dom [a | x:T] consider the diagram

Env o
y
* s
Semf £ o/ (1, Semf m o)
o
%J
* I
Env (Type f o) (Enva) x (MngT)
Env(Type*f %gﬁ (2) Semf(fay)a B
Vs (3)
%1 \
Env [a|x:T] _ Env[o|x:T]
2 (l) XeO,T
proj proj y
1 / e

Mng ([o | x:Tly)

The interior diagrams commute for the following reasons:
(1) definition of Env,
*
(2) definition of Semf

(3) definition of Py o, T

r

that Semf (fay) o = proj y when y # x, and
Semf {faY) o = Semf m o when y = x

r

(4) definition of Px(a, T) .

By the universal mapping property for products, we see

that

Brv: o (1, Semf m a?

> (Enva) e (MngT)

* o
Semf fa o PX(u,T)

* —_—
* -
Env (Type fa a) Env (Type fyo<[a|x:T])

. Env[a|x:T]

commutes.

131

. together with observation

Finally, consider the diagram

132

Semf n' o

Mng ef;semf i —Env o e
/
f/ =
/ ~
'
(6) &
3
| Fh
| ES
I/ Q
% / 2
Semf f q/
/ :
/ Env o X Mng T
/ -
/ VAR
/ (5) G
/ / e
/ / (9) =N
/ — \f\
/ Px<a,1)¥/ A,
Vi Env[alx:T] Enva
|) ‘.\
f L* /
/ \' o N
/ g
g (8) &
!P $V/* s @\ /
Env(Type faa) . - /
. ! E’nw -~ ‘Q;7
- ‘..< 2
=T,) G
Env] a|x:1]
\\\

i
|

*
Semf £ (Type fa o)

(7)

Mng (6<6"')

{Semf [Ax:T.2]ac, |

-Mnge'

Semf m o

Mng (t=6') xMng T

(12)

1xMng (T<T)

133

We claim this diagram commutes. This follows from the
commutativity of each of the numbered subdiagrams, which
commute for the following reasons:
(5) commutativity demonstrated earlier in this proof,
(6) Theorem 4.9 ,
(7) naturality of Semf &,
(8) functoriality of Env,
(9) naturality of PX,
(L0) (Semf4),
(11) clearly commutes,

(1:2) (Semf3).

Theorem 4.12: Let x ¢ Id, 7 € T, and £ € L. Suppose

m= [ax:t.[2[x]]1], x £ Free &, and

Type 2 < A”ITI Type m

Then

Mng o Type %
Semf/_g,,,/"),rr
/

-

Env Mng * (Type & < Type m)

}M_ y

Mng o Type m

commutes in A = |K| .
(Remark: As in Theorem 4.11, we conclude that

Semf ¢ = Semf m if Type 2 = Type m.)

134

Proof: Let o € A. We can write

Type m o = 1T = 0 ,

where 6 = Type [2 [x]] [a | x:T1 1. Since
Type & a < Type m o, we can write
Type £ a = 1' = 6'

r

where T < T' and 6' < 6. Since x ¢ Free %, Corollary 3.11

tells us

Type & [o | x:t] = 1' = 6'

Combining this with 1t < t' and

Type [x] [« f X:17] = [a | X:T] X = T,
we see
6 = Type [& [x]] [o | x:1] = 8" .
Let
u:

Mng (t<t') € Mng Tlﬂ"’* Mng t' .

We must verify that

P Mng(Tt' = 8)
Semf 2 o 7

= |

Env o

Semf \\\\‘ l

H‘IO'.\\

e = L

-

Mng (t = 0)

135

commutes in |K|. We know that Semf m o is the unique
arrow in |K| such that

(Envo)X (MngT) —(SemE m o) > 1

f

»>(Mng (196)) X (MngT)
|
l
| |
]

Env [o | x:7] Egr_r_l_f_[[ﬂ, L X]l,]l[_a]__x_.r_!__;,_

Mng © '

commutes. Thus, if we can verify the commutativity of

(Enva) X (MngT) ((P72) o(Sem? 8 o) FXL » (Mng(T=8))*(Mng T)
i ,
i_ (1) e
| (Semf % a)x1 ’/,//fﬂ;l)xl
(Mng (T'=6))% (MngT)
(4) / X Ap! MngT,Mng6)
P (a,T) = X (2)
X iy
, &
g. 7’ (Mng (T'=6))X (MngT"')
| > \
& \
S/ (3)
4 2
v o
> N
%”/ e
57 e
| ~/ \?Q
| 4!3(,/ &
/ \~ |
&
\
| b \ Y

Env[cx[x;ﬂ Semfl £ [x]1 [Oﬁl}{:T] . B '8

136

then the commutativity of the triangle in question follows.
The interior diagrams (1), (2), and (3) commute for the

following reasons:

(1) -x1 is a functor,
(2) the definition of u=1 (see Chapter I),
(3) (Semf3).
The proof that (4) commutes involves a short argument.
The demonstration is based on the fact that (Semf f a) x 1

is the unique morphism such that

T Pr,a,t *
Env o <% ——(Env a)x(Mng T) Lo » Mng T
Semf £ o (semf £ o) x 1 1
M1 .\l Mo l‘
Mng (t'=8)<— (Mng(T1'=6))x(MngT) = Mng T

commutes where m; and 7w, are the indicated projections.

Consider the diagram

m P
ENV o =% (Enva) % (MngT) L ALE RS > Mng T
(5) px(a,T) (6)
Semf f o .
Env [a|x:1]
~.5
/./ \ie:?fj‘ I 1
19§>// (?}H\\ﬁ?
\§>/’ \\”&@}
4 | g
E/e{.\, (8) E (Semfl '[O‘.]X:’|E] 7 ‘-.\\\\
| Semf[x] [a]|x:T]) <. ¥
¥ T | Ty “a

Mng (1'=8) «——- (Mng(t'=6))*x(Mngt) ————————>Mng 1T .

Interior diagram (5) commutes by Theorem 4.7 and interior
diagram (6) commutes by the definition of Px(a,T) along
with the observation that Semf [x] [0 | x:1] is the
projection on the xth component. Finally, (7) and (8)
commute by the universal mapping property defining

(Semf % [0 | x:1], Semf [x] [a | x:1]). Hence the entire

137

diagram commutes, and commutativity of (4) is now immediate.

(]

138

CHAPTER V

CARTESIAN CLOSED CATEGORIES

In order to investigate the semantics of ALGOL-like
languages it is necessary to specify a Cartesian closed
category, among whose arrows are found the denotations of
program fragments. In this chapter we will establish that
certain semantically important categories are Cartesian
closed. Because of the motivation given in Chapter I, we
are particularly interested in categories whose objects are
functors.

We begin by establishing some notational conventions.
If £ is a function and X is a set of arguments to which £
may be applied, then we write

fX = {fx | x e X}.
Similarly, if F is a set of functions and x is an argument
in the domain of each function in F, then we write
Fx = {fx| £ ¢ F}.
We may even write
FXx=4{f%x | £¢& B, % & X}

A poset is a pair consisting of an underlying set and a
partial order. Routinely, a poset is viewed as a category
whose collection of objects is the underlying set. Thus,
whenever P is a poset, its underlying set may be denoted as
Ob P. |

We remarked in Chapter I that Set is a Cartesian closed

category. The point of the next two theorems is that the

139

structure of Sef as a Cartesian closed category can be extended

to Pdom, and that the result of that extension can be restricted

to Dom, so that both Pdom and Dom are Cartesian closed categories.
As a prelude to what follows note that both Pdom and Dom

are categories with finite products specifically given; the

products are constructed by partially ordering componentwise

the products in Sef of the underlying sets.

Theorem 5.1: The category Pdom is Cartesian closed.

Proof: The distinguished terminal object and the distin-
guished binary product functor for Pdom are constructed in the
obvious way from their counterparts in Sef. In particular,

ﬁMmuﬂm_ls E Sette ; a singleton set regarded as a predomain.

rm

We now turn to exponentiation. Suppose Q and R are
predomains; we will define the predomain Q ‘?ﬁﬁ;ﬁ’R = Q = R.
The underlying set of Q = R is

Ob (Q ® R) = Q — R,

Pdom
the set of continuous functions from Q to R. The partial

order for Q = R is defined by f < 0=R £' 3f g R

g € Ob Q. We must show that Q = R is directed-complete. To

f'qg for all

this end, let D be a directed subset of Q ®* R . Define the
function
dp € Ob Q——=0Ob R
by
9y 9 = UR (Dg) for all g £ Ob Q.
We claim I9p is continuous. Let X be a directed subset of Q.

Continuity of 9p follows from the computation

140
9p (UQX) = UR (D (UQX))
= UR (DX) , since every function in D is continuous,
= UR {fx | £ ¢ D, x & X}
= U, {up (dx) | x e X}
= U {gpx | % & %)
= W (gpX).
Thus

9 € 2 Tpdom

Next we claim that Ip is the least upper bound of D. Surely, if
f ¢ D then, for all q € Ob Q,

fq < Uy (D) = gyq ;
so f < 0=R gD and gp 1s an upper bound for D. If h is an arbi-

trary upper bound for D, then f < h for £ € D, which implies

Q=R
that for all g € Ob Q

=Ll
Y TR

(Dq) < Uy hq .
So 9p is indeed the least upper bound of D. This proves Q=R
is a predomain.

Application in Pdom is the usual functional application.
In more detail, suppose Q and R are predomains, and define

Ap (Q, R=2Ap £ (Q = R) x Q s =R R
by

Ap (£, @ = fq.

It is necessary to verify that Ap'is continuous. Suppose D

is a directed subset of (Q = R) x Q. Let

D, = {f | (£, ¥ ¢ D for some x & 0b Q},
Dy, = {x | (£, ® € D for some £ ¢ Ob (Q = R)}.
Then D, is a directed subset of Q= R, D, is a directed subset

2

141

u = (U u }
(Q=R) xQ P o=r P17 "@P2 r
and
L, (Ap D) = UR (D;D,)
The computation
= U
AP (Higaryxg P) = 2P {Logug Pyr gP3)

“o-r P1 (HgP2)

Ly (D4D,),

since each function in D1 is continuous

I

L. (Ap D)
shows that Ap is continuous.

Next, for predomains P, Q, and R consider the function
Ab (P,Q,R = Ab ¢ (P x Q ~p5g-—= R)>(0b P+(Ob Q + Ob R))
defined by

Ab £f pg=f£f (p, q’

where £ ¢ P x Q'“Pdomh* R, p e Ob P, g € Ob Q.

We claim that
AbE(PXQ'—P"C-{B*EI?"‘R)—?‘(PW(Q:)R))

First we will show Ab f p is continuous, where f ¢ P x Q -

el

Pdom
and p € Ob P. Let D be a directed subset of Q. Then {p} x D

is a directed subset of P % Q and

(] = U
PXQ ({P} X D) - <pr QD>-

Compute:

£ (p, LD

£ (Upo ({P} x D))

Ll
Ab £ p (QD)

|
L=

r (£ ({p} x D)), by the continuity of f
. i
= p (Ab £ p D).
So Ab £ p is continuous. Second we will show ab £ is continuous.

Let X be a directed subset of P. For all g € Ob Q,

142
X x {g} is a directed subset of P x Q and

Upxg (X x 1al}) = HoX, q).

Now the equation

Ab f dupx) =L (Ab £ X)

Q=R
follows from the observation that for all g € Ob Q

: = L
b £ U X q=fdHx, o

= £ (U (X x {a]))
=LIR (£ (X x {g})), by the continuity of £ ,
=[;P-R (Ab £ X q)

U
0=R (&b £ X) qg.
This proves the claim.
To finish the proof the Pdom is a Cartesian closed category,
for any £ ¢ P x Q-w5ggav-R consider the diagram

£ % 1
P x Q ESTRS I, R (Q =,~: R) x Q

““\\\\3‘ ‘f/,//ﬁp

R

Fh

If we take f' Ab f, then the diagram clearly commutes.
Furthermore, if f' makes the diagram commute, then by applying
the forgetful functor U & Pdom + Sef we get a commutative
diagram in the Cartesian closed category Sef, from which it
follows that £' = ab £. [

Suppose K is a Cartesian closed category, and M is a full
subcategory of K. Suppose further that the distinguished
product functors for K give objects of M when applied to
objects of M, and that the terminal object K is an object of
M. What else do we need to know about M to conclude that it,

too,is a Cartesian closed category? The answer is simple:

if, for all pairs M, M' of objects of M, M*EﬂM' is an object of

143
M, then M is a Cartesian closed category with =, Ap, and Ab
for M defined by restricting to M the corresponding entities
for K. We apply this observation in the proof of the following
theorem.

Theorem 5.2: The category Dom is Cartesian closed.

Proof: Suppose P and Q are domains. It suffices to
show that the predomain P'“_?HEEA-Q is a domain by exhibiting
a minimal element. Clearly the minimal element is given by

lpogX = Lo for all x ¢ Ob P. J

Of course, Sdom and Dom share the same distinguished
terminal object. Also, restriction of the distinguished
product functors for Dom to Sdom yields distinguished product
functors for Sdom. Perhaps surprisingly, we will show in the
next theorem that Sdom is not Cartesian closed. Note that
this is a rather strong claim because it asserts not only

that the restrictions of === ,Ap Dom’and Ab do not

Dom Dom
behave properly but also that no ; : ‘ni e
prop Yy at no other way of defining Saﬁﬁ$’
ADSdom’and AbSdom works.
As a preliminary, consider an example due to John C.

Reynolds. Let P be the domain with Hasse diagram

Tp

Lp
Let

f e P xP

_____ » P
Dom
be the strict, continuous function given by

ITP if x # (L5, 1)
f x =!
Then
AbDom fep Dom "~ (P__ﬁbm’ P)

is not strict because the computation
£ 1, p=£f{,, p>=1,p , for p € Ob P,
shows
Popom £ 4p = 1p # 1
Theorem 5.3: The category Sdom is not Cartesian

P=pP -

closed.

144

Proof: Suppose to the contrary that Sdom is Cartesian

closed with internal hom functor ?ﬁﬁﬁﬁ% , application
Apsdom' and abstraction AbSdom’

Suppose Q and R are arbitrary domains. To avoid

subscripts On subscripts, let
X =20 =§§§§$ R and Y = QO aﬁﬁﬁﬁ-R.

Let

H = Apsdom (Q; R) and K = Abpom <X; Q, R)r
so that

HEXXQ*?&Ehﬁ*RandKHEXMﬁBWY.
We claim that K H is strict. To see this, let S be a
one=-point domain, and let

ge8xX0 “ggems ®

be the constant function which maps everything to Lp-
Then the diagram

145
commutes in Sdem. For g € Ob Q, we compute as follows:
K H 1y 9 = H (LX, g?, by definition of K,

= (H o ((AbSdom (s, 0, R» g) x lo)) <J_S, (:_f)

=g (LS, q?
= 1o
= 1,9
Hence, K H lX = Ly' as desired.

Let P be any domain, and let

£ g P Q we—scmeu—ga B

Sdom

Consider the diagram

(Ab (P,Q,R}) £f) x 1 (K H) x 1
P x Q \jfom - X EX o | — - ~Y X Q
- H
£ T~ v ,/”///ipﬂom LR R

~—u R =

The left-hand triangle commutes in Sdom and the right-hand
triangle commutes in Dom. Thus the entire diagram commutes
in Dom. Consequently

Abﬂom (P,Q,R)> £ = (K H) o (Ab LP0.R) £),

Sdom
and we have expressed Abvom (P,Q,R) £ as the composition

of two strict functions, so it too must be strict. However,
we have earlier seen an example of a strict continuous
function f and domains P, Q, R (actually all are equal in

the example) such that AbD (P,Q,R? £ is not strict.

om
Therefore Sdom is not Cartesian closed. [I

In the rest of this chapter I denotes a category, and
our focus is on the functor category K = L = Pdom and its
subcategories.

In Chapter IV we discussed how a product functor such
as Hidom induces a product functor Hi. Furthermore each

terminal object of Pdom determines a terminal object in K,

146
namely the constant functor which assigns the terminal object
to each object of I.

The next theorem is nontrivial in the sense that it is
not deducible from the well-known fact (see [3]) that Z = Top
is a topos whenever Top is a topos,because Pdom is not a topos.
To see that Pdom is not a topos simply observe that in Pdom
there are arrows which are both monomorphisms and epimor-
phisms but not isomorphisms (e.g. use a nonconstant arrow
from a discrete, two-element predomain to a nondiscrete
two element predomain). This sort of thing doesn't happen
in a topos. Again, see [3].

Theorem 5.4: For any category I, the functor catedgory

K =1 = Pdom is Cartesian closed.

Proof: We have seen that distinguished products and
terminal objects in K are inherited from Pdom. Therefore,
we may turn our attention to the nature of exponentiation
in K.

By

hom, € 1P x g e— Set
we mean the usual hom functor. Thus for objects S and T
of I we have homZ {8, T) = S——§~4=T. As before, let
E € Set———= Pdom
be the embedding functor which associates a discrete partial
order with each set. Hence
E o homy € 3°P x § ——=Pdom .
Denote by
hom” ¢ %P » (2 = Pdom) = %P o K

the curried version of E ¢ hom Thus, for all objects S

2 ®

147
and S' of I, homz S 8" is the discretely ordered predomain
whose underlying set is S-—WE~4~S'.

By taking the product of homz and the identity functor on
K we obtain
Home 1, € PP % kK —= K x K
We may compose this with the distinguished binary product
functor for K, denoted
Hf e K x K — K,
getting
H§ ° (homZ X 1K) & 2P w0 K s K
The curried version of this last functor is denoted
He tP—as(k= K.
Hence if S € Ob Z and F € Ob K, then
HSF = (homZ S) Xe Fi

furthermore, if T € Ob Z, then

_ X
HSFT-= (hom~ S T) XPdom (F T).
For each pair F, F' of functors in I-——Pdom we seek to
define
F===>F' =F =F' ¢ L — Pdom.

Thus, for each object S of I we must describe a predomain
(F = F') S. The underlying set of (F = F') S is

Ob ((F= F') S) =HSF - F' = ((hom” §) x F) —p> F',
which is a set of natural transformations. The partial order
on (F= F') S is given by

NS (popryg N EE NT < poppaprp N'T for all T e Ob I.

(Note that the underlying set of the predomain H S F T’%ﬁ?%F' i
is the set H S F T'?HEHFIT’ of which both nT and n'T are mem-
bers.) We must check that this partial order is directed-

complete. Let D be a directed subset of (F = F') S. The

definition of < implies that, for each T ¢ Ob I,

(F=F')S
DT is a directed subset of H S F T ® F'T. Hence, we can

define an (Ob I)-indexed collection Vp of continuous

functions by

e [
VpT gspr-p'y (OT)-

Of course, we aim to show that v First we

= L
D (F*F')SD'

must verify that v € Ob ((F = F')S), i.e. v

D D
transformation. Let 1T & T-—-= T'., We must show that
z
VN |
(homE S T) x (FT) 2 > FUT
¢
- "
(hom™ s 1) x(FT) |F'T
. } vDT' }
(hom™ S T') X(FT') — =F'T'

commutes in Pdem. For each n € D, the commutativity of

z nT

(hom™ S T) x(FmT)-~ F'T
%

(hom™ S 1) x(FT1) P
Z 1

(hom” S T') x (FT') et Fro

implies that, whenever c ¢ S——= T and t € Ob (FT), we
x
have

NT' (te0,Ftt) = ((nT') o ((hom®> S 1) X (F1))) {0,

Il

F't (nT (o, t)).
Thus, we may write
D T" (Tec, PO £Y=F"' 1 (DT o, €)).

Now take any 0 € S—— T and t € Ob (FT), and compute:
L
((vyT') o ((hom” § T)X(F1))) (o,t)

= ' o
vDT {CoeT,FTL)

:LJHSFT.#F.T (D B') (odt, PTE)

L, 1
—LJF,T. (Fv (DT {ag;€1))

= F't (UFVT(DT<0 +£))), by the continuity of F'T,

is a natural

148

149

F'r (L.| (D T) <Grt))

HSBT=F"T

F'T (UDT(U,t))

((F'1) » (vDT)) {o,t .

proving Vo is indeed a natural transformation. Next we

will demonstrate that Vp is actually the least upper bound

of D. Let n e D. For all Te Ob £, nT £ D T; consequently

nT 5LU (D T) = vyT.

HSFT=F'T

Thus, which shows v_. is an upper bound of D.

N Z(p=F')s b’ D
Suppose | is an upper bound of D, so that for all n € D and

all T € Ob £, nT < uT. Then, for all T € Ob Z,

HSET=F'T
VpT =Y ygpreprr (PT) Sgygppeprp T
i h v_ 1is the least
Thus Vg X (F=F') S v, which demonstrates that D

upper bound of D. This completes the proof that (F = F') S
is a predomain.

Now we turn to the task of defining F = F' on morphisms

of . Let 0 ¢ S—=> S'. We must give a continuous function.
z .
(= T') © e (F>F') 8§ ——(F =F'") S8'.
5 Pdom
So take n £ ((hom™ S) X F) — F'; we must define
K
(F=F") g1 € ((homZ S') x F)y— F',
K
Let T € Ob Z. The function
(F= F')onTe ((hom®> §' T) x (FT)) —— (F'T)
Pdom

is given by

(F=F')onT(1,t) =n T te0, t?
where T ¢ 8§ 5 T and t € Ob (F T). There are a number of
points that need verification. First, we will show that the
function (F = F') o n T is continuous. Because the partial

order on the first component is discrete, each directed sub-

z

set of (hom™ S' T) X (F T) has the form {(t,t) | t eD} where

150

Te 8'—— T and D is a directed subset of F T, and for each
L

such pair 7, D we have the following computation:

(F=F') 0 nT Uggipp «t,t) | t e D} = (F = F')onT(t,U D)

= nT (To0,U FTD)
= L
HE {{ too,t) | t € D})
= uF'T (nT{({ Too,t> | £t € D}), since nT is continuous,
=W {(F=> F') onT(r,t)> | te D}.

Hence, (F=F')o n T is indeed continuous. Second, we must show

that (F =F')o n is a natural transformation. Let T &€ T~—=T"'.
%
We must demonstrate that

(homz s' T) X (FT)_LEiELLQBE“+ F'T

I

z

(hom™ S'T)*(F1) lF'T

(hOmE S'T') x (FT')LEiElE.HNI; Ll

commutes in Pdom. We will use the commutativity of

T T, .| S— |
(homZ S 1) X(FT) lF'T
|]
(hom> S T') x (FT) ik . F'T'

which is a consequence of the naturality of n. Let p € S‘"E—?T
and t € 6b (FT). Then
(F=F')o n T' (((hom> §' 1) x (FT)){ p,t)) = (F= F')o n T'(tep,Frt)
= NT' (Tepeg, F1t ?
= nT'(((homZ S 1) x (Ft)) {peo,t))
= Pt nT <peg.t))’
= F't ((F= F')onTT{p,t)),

as desired. Finally we must check that (F = F') o is continuous.

151,

Let D be a directed subset of (F = F') 8. We will show that
[] . L}

let Te O I, T € 8'"—+ T, £t € Ob (FT). Then
b

(F = F') © (L{F=F')SD)T {T,t) = (L%FﬂF')SD) T ¢(TeC, t)

LI
Chsprr:

= L%,T(DT (Too, t))

= Upig((F=F')0 D T (T, t))

III(DT)) (Teo, t)

=lJHS'FT=F'T((F = F')o DT) (1,t)

=tJ(F=F')Q' ((F = F') o D) T(t, t)

from which the desired result follows immediately.

Now that we have defined F = F' on both objects and arrows
of I, we must verify that it is a functor by showina that
F = F' preserves composition and identity arrows. Let

e 8§ -—= 8" and ¢' € S'—— S". The equalities
% L

(F = F') (0'0)

((F = F")o') o ((F =F') 0)

and

x Pdom

(& =F°1 2g Lirar')s

follow from the computations
(F = F') (do)n T (t,t) = nT {to0'oo, b
= (F=F') onT(Te0', t)

= (F =>F') o' ((F=>F')on) T(t,t)

(((F =F') ¢") o ((F=F") 0)) nT «1,t)

and
iy P)
(F = F") lS nTA{p,t)= nT (pols, t
= 1T ¢ p ot}
= (praom nT(p,t)

(F=F")S

152

where 7 & ((hom™ 8) % Fje=—= F', T& 0b I,
K

TE ST, te Ob (FI); and p € 8S——= T: This completes
b z

the definition of F = F' and the proof that it is a functor.

Given functors F, F' ¢ L —— Pdom,'we now turn to the
definition of the natural transformation
Ap = Ap (F, F"» € ((F = F'") XK F)_Rhﬁ P
Let S € Ob 2. Then
Ap S ¢ ((F = F') 8) deom(F S))Bdom F'S
is given by
Ap S (n, s) = nsS <1§, &y

where n ¢ ((homZ S) XKF)“E—+F' and s £ Ob (FS).

Some verifications are in order. First, we must check that
Ap S is continuous, i.e. if D denotes a directed subset of

((F =PF') 8) (FS), then

Pdom

Ap s(U) =UF.S(Ap S D).

((F=F')s)x (Fs)"
A consequence of the continuity of the projection mappings from
a product onto its factors is that the directed subset D gives

rise to directed subsets

D, = {n | ¢<n,s) e D}, By = {s | <n,s) € D} and D' = D, * D,
Also,

; — l ¢ . = U '
Hi(rar) sy x (rs) P (M paprysP1rt peP2 ((F=F')s)x(FS)

A routine argument establishes that the least upper bounds of

the two sets

3
Ap S D = {ns (ls, s> | ¢(n,s) e D}

Ap S D'= {ns <1g, sy | ¢n,.8 & D'}

153

are the same. Now compute:

e S (H((par)s) x(rs) P
= 2p 8§ ‘U pupiygPyr UpgDy?
(H(pagrysP1S) (1g, UpgDy?
= (Hygpgprg (P18)) (12, HpsPy
= UF'S {ns (lg, UFS {s | s ¢ D2}) | ne Dl}
= Upig {Upig 1nS (lg,s> | s € D2} | ne Dl}, by continuity,
- UF'S {ns (lg, s} | ¢(n, sYe D'}
= Uo.g (Ap s D')
=Yg @0 s D),

as desired. Second, we must verify that Ap is a natural transfor-

mation. Suppose ¢ e S -—-—+ S'. We must establish the commutati-
z
vity in Pdom of
Ap S
((F=F')8) X (FS) —>= F'S
|
((F=F')o) x(Fo) F'o
v Ap S' l
((F=F')S')%x(FS") - F'S!
Let n ¢ ((homZ S) Xx F)—— F' and s € 0Ob (FS).
K
We know that .
¥ ns
(hom™ S S)x(FS) = F'S
’ 1
(homz S o) x(Fag) E F'a
’ 4 ns'
(hom S S i) ® (Fs]) S —N F] S []

commutes in Pdem. Compute:

((Ap 8') o (((F = F') o) x (Fo)) (n,s)

I

Ap s' ((((F = F') o) x (Fg)) (n,s))

Ap 8' ((F=F') on, Fo s?

I

154
z
= (F=F') on 8" (ls. ¢ Fos)
A z
= ns <1Sl o 0, F o s)
= n8"'" (o o]_Z F o s)
Sf
X =
= nsS' (((hom™ S o) x (Fo)) (ls, s?)

= F'o (ns (1%, &)

= F'o (A&p S (n,s})

Il

((F'c) o (Ap S)) (n,s).

Therefore, Ap = Ap (F, F') is indeed a natural transformation.
Given functors F, F', F" in I —— Pdom, our task is to

define

Bb = Ab (F, F', F" & ((F X F')—> F")——(F — (F' = F"))
K Set K

Take a natural transformation ne (F x F') -—= F": we want
K
a natural transformation

Bb g F—> (E" » F"),
K

So let S e Ob Z. We must define

Abn Se FS—— (F' = F")S,

Pdom

Let s € Ob (FS); we need

Ab n S s ¢ (.homZ §) X F'—o BP",

K
Let Te Ob Z. Define
AbnSsTe (hom” S T) x (F'T) —— F"T
Pdom
by
Abn S s T(,t?) =nT (Fos,t?

where 0 e S——— T and t € 0Ob (F'T). Of course, each layer of

z
this definition requires some sort of verification. First, we

must check that Ab n S s T is continuous. Since homZ S T is

discretely ordered, an arbitrary directed subset of (homE S T)

155

x (F'T) may be described as {{o,t) | t € D} where o0 S§—— T
z
and D is a directed gsubset of F'T. The computation

AbnSsT \uHSF'T gty | e DYy =2 K B 86, U o o)

nT(F o s, UF,TD>

Il

= AT { rwos,. £y | £ D))

L
(E'T) % (F'T)

DF"T {nT (Fos, t)> | t € D}, by continuity of nT,

Il

I

UF“T {ab w88 T(0o, £) | £ & D}

demonstrates that 2Ab n S 8 T is continuous. Second, we must

check that Ab n S s is a natural transformation. Let

Te T— - T'. We need to demonstrate the commutativity of
z
AbnSsT
(homE S T)x(F'T) > FUT
| |
5 1
(hom® S 1) (F'T) - | Frr
5 | Abn S s T J
(hom™ S T")x(F'T") > F"T! "
et e S—— T and te€ Ob (F'T), compute:
z

(Bbn S s T') o ((hom> § T) x (F't))) (o,t)

Abn S s T' (((homz &) % (BYR)) ©E E))

AbnS s T' (t1e0, F'Tt)

= nT' (F (Tte0) s, F'1t)

= nT' (Ft (Fos), F'tt), because F is a functor,
= nT' (((Ft) x (F't)) (Fos, t))

= F"t (nT (Fos, t)), by the naturality of n,

= F% {(Abmn 8§ 8 T { dp &)

((F"t) o (BAbn S s T)) (o,t).

Thus Ab 1 S s 1is natural. Third, we will check that Ab n S

156

is continuous. Let D be a directed subset of FS. If

Te Ob 2, o S—> T, and t € Ob (F'T), then
b3

L
Ab n S (FSD) ™ ¢ &t

i

= nT(UFT (FoD), t), because Fo is continuous,
= nT (U(FT)X(F'T){(FUS't) | s € D})
= UF"T{nT<Fos, t) | s € D}, because nT is continuous,

= U
F“T(Ab nsDT (o, t))

= [LI (Ab n s D M){o, b

HSF'T=F"T

(L (Ab n sD)) T (o, t.

{FI:>F")S
Therefore,

Ab n S (UpgD) = Upiopeyg (AD n S D),

which shows Ab n S is continuous. Finally we must prove that

Ab n is a natural transformation. Suppose o & S——=> S'.
z
We are interested in establishing the commutativity in Pdom of

FS £2.m 8 > (F' = F")S
Fo ;(F'ﬂF")o
' Ab n S') }
FS >~ (F' = F")S'
Let se Ob (FS), Te Ob X, T &€ 8'"—— T, and te€ Ob (F'T).
Then :
LAk T BY)Y 8 [Bu)) & 4%, 3)

Ab n 8' (Fos) T (T, t?

nT (Ft (Fos), t

nT (F (t0o0) s, t), because F is a functor,

Ab n 8 s T (10, t)

157

Il

(F* = F") o (Ab iy 8§ 8) T {T,E)

(((F' = F") 0) o (Abn S)) s T (T, t),

and from this computation commutativity of the diagram above is
clear.

We now arrive at the heart of the proof that K is a Cartesian
closed category. Given functors F. F', F" in I —— Pdom, we claim
that for each natural transformation n ¢ F x F'mmE+ F" the
natural transformation Ab n € F—¢~> (F' = F") is the unique

arrow making the diagram

(Ab n) x L

FXF! RR—s (FI = FII)xFI
n\-ﬂ,_.\ B ,-Ap — Ap(B! ,F")
\\\'&‘ o v
"

commute in K. Let S e Ob I, s e Ob (FS), s' e 0Ob (F'S).
Then

(2p o ((Bb m) x 15)) s¢s, s

((3p 8) « ((&b n 8) x (15,8))) «s,8")

= 2Ap S (((&b n S) x 1§?§m)<s, s)

= Ap S{Ab n S s, s")
= Abn S s S (lg,)
Z i
= ns (FlS s, s')
= nS (s, s8'), because F is a functor.

Thus, the diagram commutes. To deal with the unigueness

assertion, suppose 6 € F—— (F = F") and the diagram
K

158

F X F' — . e (F'l - F")XF'

commutes. Let S Ob Z, s Ob (FS), Te Ob Z, 0eg § — T,
and te Ob (F'T). We compute as follows:
6 S s T (o, £t

= (F'» F") 0 (0Ss) T(1%, t), by the definition of F=F'
= (((F' = F")og) o (6S)) s T <1$, t)
= ((8T) o (Fo)) s T <lé, t), by the naturality of 6,
2
= 0T (Fos) T (lp, t)

= Ap T (6T (Fos), t), by the definition of Ap,

= ap T (((67) x 179%™ (Fos, ©))

= ((ap T o ((8T) x (15,m)) (Fos, ©
= (Ap o (6 x 1§.)) T (Fosg, t)

= nT (Fos, t), by the above diagram,

AbnSs T (o, t), by the definition of Ab n.
Therefore, 6 = Ab n, and this proves the claim. 0

The category I = Pdom is a little bit too large for the
applications to the semantics of programming languages that
we have in mind; its use would involve many annoying veri=-
fications that certain predomains are indeed domains. Thus,
we might try using I = Dom rather than I = Pdom. However, the
obvious way of showing that I = Dom is a Cartesian closed cate-

gory, i.e. by embedding it in I = Pdom, fails! We suspect

155

that, for some I, & = Dom cannot be made into a Cartesian
closed category, although we are unable at this time to
give a proof. Another idea is to use I = Sdom. This, too,
is doomed, as one can see by taking I to be the category
with one object and one arrow; then I = Sdom is isomorphic
to Sdom, which we have shown is not Cartesian closed.
Fortunately, there is another alternative, which we now
pPresent.

Let M be the full subcategory of K = I = Pdom whose
collection of objects consists of those functors which
factor through the inclusion functor J € Sdom - Pdom.
Thus a functor F e I-— Pdom is an object of M if (1)

FS is a domain for every S e Ob I, and (2) Fo is a strict
continuous function for every o € Ar IZ. The inclusion
functor J induces an embedding

L= Je L= Sdom —— I = Pdom
given by

(= J) F

J o F, for Fe Ob (£ = Sdom),
and
(Z= J) n=J * n, for ne Ar (L = Sdom).
At first glance, it might appear that the image of I = J

is M. However, this is false, because the assertion ne F—> G
M

requires that nS be a continuous function for each S e Ob I ,

whereas n g P —r——————eur (3 corre~
(=J) (=Sdom)

spondingly requires that nS be a strict, continuous function

for each S £ Ob .

160

It is easy to see that the distinguished product functors
for K give objects of M when applied to objects of M, and
that the terminal object of K is an object of M. These obser-
vations are the groundwork for the following theorem.

Theorem 5.5: The category M is Cartesian closed, with

=, Ap, and Ab defined by restricting to M the corresponding
entities for K.
Proof: Let the functors F and G be objects of M. It

suffices to show that F===—=»G is an object of M.
K
Suppose S € Ob Z. We wish to show that the predomain
(F====%G)S has a minimal element. Recall that the under-
K

lying set of this predomain is the set of natural transfor-

mations
(hom® §) X F ~—— G.
K

We attempt to define a natural transformation p in this set

by
UT(O,t) = J_GT
where Te Ob £, 0 € § ——> T, t € Ob (FT).
z
For each T € Ob I,
T € (homZ sT™ x (F T) —= GT,

Pdom
because uT is a constant function and, hence, a continuous
function. Naturality of U follows from consideration of

the diagram

6.

5 uT
(hom™ S T) x (FT) > GT
¥
(hom™ 8 1) x (FT1) GT
5 T
(hom™ S T') x (FT'") = GT'

r

where T T + T'; the diagram commutes because GT is
%

strict. (This is why the definition of M involves Sdom

rather than Dom.) Thus

L € LhomZ S} X F—— G.

K
The fact that p is minimal in (F==—=2G) S follows from
K
the minimality of uT in H F S T =——=> GT. Therefore we
Pdom
may legitimately write
= L@ s
Suppose 0 &€ S ———+ S'. We aim to show that
Z
(F=——==G) 0 is strict. (We know it is continuous.)
K
et Te §' = T, t e Ob (F T). Then
P
(F==?=4-G) O Lipsg)s T { TyED

= Lypgpyn T AEN0n HD by definition of (F::zpe) o

= lgT

L (F>G)S" T L Ttd

Hence

(F“"‘_;;” G) 0 Lipgys = L(rG)s'

We conclude F====3 G is an object of M, as desired. [
K

162

CHAPTER VI

A CATEGORY OF STORE SHAPES

So far we have been vague about the structure of I,
the category of store shapes. Obviously, the semantics of
a language can be precisely described only if I is completely
specified. There are actually a variety of choices for I.
As one approach, we may posit the existence of a set of
"locations" along with operations for creating and manipul-

n

ating "stacks of locations," which are the objects of I.
This approach has a very operational flavor. It has two
drawbacks. First, the details turn out to be very complica-
ted, and, second, we are uncomfortable with insisting at
the outset that stores are "stacks of locations." Another
candidate for I is the category of store shapes and expan-
sions described in [6]. It avoids the drawbacks of the
operational approach, but it does not seem possible to
give continuation semantics by using that category for 1I.

The point of this section is to describe a category L
that we feel is at the proper level of abstraction. There
is behind it an accessible intuition. At the same time we
can avoid unnecessary complexities that may almost be said
to be implementation-dependent (i.e., what kind of data

type values can be placed in what locations, and what do we

do with wvalues that need several locations.)

163

The basic idea is to let any set X be an object of I
(i.e. a store shape); then the set of stores corresponding
to the store shape X is just X itself. An expansion in
X TF Y is supposed to go from a "little" store shape X to
a "big" store shape Y. Part of an expansion is a "for-
getting” function ¢ € Y+ X, which allows a more complicated
store to serve as a less complicated one. Another part of
an expansion is a "replacement" function p £ X »+ (Y »> Y);

it is used when one wishes to overwrite the part of a more

complicated store that corresponds to a less complicated

store. Thus an arrow of £ is an ordered pair
(d,p) = X‘—E~+ Y,
where
¢ £ ¥ =+ X and p e X+ (Y - Y).
Furthermore, we require that an arrow (¢,p? ¢ X——= Y

z
satisfy the following three conditions:

(£1) ¢ (pxy) = x,
(22) p (¢ ¥y) ¥ = ¥y, and

(23) px(p x'"y) =p XY,

where x, x' € X and y € Y. We may read (rl) loosely as
replacing with x in y and then forgetting gives back x.
Condition (Z2) says replacing in y with part of itself
gives back y. Finally, (Z3) says only the last replacement

counts. We could obtain a larger and simpler category by

164

not imposing these three conditions on morphisms, and
all of the results of this chapter would hold, with the
exception of the theorem on the structure of morphisms.
However, the demonstrations of naturality in Chapters VII
and VIII seem to require (Z1), (Z2), and (Z3) or some
similar conditions.

In order to define composition elegantly in &
we need some notation. Suppose o € X + Y and B € W + Z.
Then

o+~ B e (¥ - W) - (X~ 2)

is given by

(o > B) £f=PRofoua,

where f € Y > W. (So » is just the ordinary hom functor
for Set.) Also, for each set X, define the diagonalization

DX for X to be

Dy € (X + (X » X)) >~ (X > X),

given by

DX fx ==~ xx

where f ¢ X - (X - X) and x & X.
Suppose

(¢, p) e X—5— Y and (¢', p') € ¥ —5— Z.
Define

(', p")old, P) e X > 2

165

by

(¢"s ') o (b, P)Y =(d o ¢', Dy o (¢" > p') © p)

Obtaining a new forgetting function by composing given
forgetting functions is not surprising. The second com-

ponent on the right-hand side is the functional composition

Vo D
X —L s (vry) 22, (25 (z+2)) —2 (3 2).

For x € X, z ¢ Z, we have

D, ((¢" = p') (p X)) z

(D, o (¢ > p') o p) x 2 7

Z

= D, (p' o (p x) o ¢') z

Il

(p' o (p x) o ¢")z z

Il

p' (p x (¢'2)) =.

Thus, we have an intuitiviely satisfying replacement function
derived from two expansions. Given that (¢,p) and (', p*)
satisfy the three conditions, it is necessary to check that
their composite also satisfies them. Let x, x' € X and

Zz € Z. For (Z1), we have

(6 o ¢") ((D, o (¢" > p') ° p) x 2z)

(6 ') (p' (p x (9' 2)) 2z)

¢ (o' (p" (p x (¢ 2)) 2zZ)

d (p x (o' 2)), by (1) for (¢',p').

X, by (£1) for (¢,p).

1l

166

For (Z2), we compute

(]

&Dz (6" = p') o p) ((p o ¢') 2)z
= (DZ o (¢' = p') o p) (¢ (o' 2)) 2z

=o' (p (¢ (¢' 2)) (o' 2)) 2z

o' (¢' 2) z, by (Z2) for (¢,p)
= 2z, by (22) for (¢', p").
Finally, for (Z3), we have
(Dy o (' > p') ° p) x ((Dy; ° (¢' »p') o p) x' 2z)
= (D, o (¢" »p') ° p) x (p' (p x' (¢' 2)) z)
= p' (px (' (p' (px" (¢' 2)) 2))) (o' (px' (¢' 2)) 2z)
=p'(px (px' (¢ 2))) (p' (p x' (¢' 2)) 2),
by (£1) for (¢', p'?,
=p"'" (px (' 2)) (p' (px' (¢' 2)) 2),
by (E3) Eor Ld, gk .
=p' (px (¢' 2)) 2, by (Z3) for (o', p') ,
= (D

g © (&' > 0") o p) x z.

Note the curious fact that both (£1) and (Z3) play roles in
the last computation.

We must check that composition in I is associative.
Suppose

(¢1: Dl) > X o Y.r (¢’2.I‘ 02) £ Y ——r Zr<¢3r 93) £ A= W.

167

First we need to verify that

both sides are in (2 -~ (2 -~ 2)) - (W > W). Let h e 2 -~ (2 - 2Z),

we W, w' & W. Then
°]
((¢3 - 03) DZ) hww

lp3 ° (Dz h) o ¢3) w ow'

= 04 (Dz h (¢3 w)) w'

1l

05 (h (¢3W)(¢3W)) w' ,

and
(95 > (D ° (65 > p3))) hww!
= (DW o (¢3 - 93) e h o ¢3) wow'
= Dy ((¢5 > p3) (B (¢5w))) w'
=Dy (05 ° (h ($5w)) © ¢5) w'
= (p3 ° (h ($3w)) ° d5) w' w'
= pgy (h (o3w) (¢5w')) w'
Therefore

03 (h {¢3W) (¢3W)) W

Il

(DWO (¢3+(DW° (¢3+03))))hwr

168

from which the desired equality follows. Now let's verify

associativity:
((¢)3l D3) o (¢'2! 02 >)] <‘r¢lrpl)

= (¢2 o ¢3r DW ° (¢3 T+ 03) o 92> o <¢1r Ol>

= <¢1 o ¢2 ° ¢3r DW ((¢2 ° ¢3) 2 (DW ° (¢3 =+ 93) o 92)) o Dl>

= <¢1 © ¢2] ¢3l DW o {¢3 -+ (DW o (¢3 - 03))) o (¢2 - 02) o Dl):
since =+ 1is a functor,
= (¢1 o ¢2 o ¢3r DW o (¢3 ok 03) e DZ 9 (¢2 > pzj © pl) ¥

by the equality demonstrated earlier,

[+]

= (¢3l‘ 03> (d)l o ¢2l DZ o (¢2 o 92) L] Ql>

[+]

= (¢3! 03> (<¢2! p2> o <¢1' pl)} 7
as desired.
The identity morphisms for X are given by

(1X’ I, & X—= X,

= L
where 1X € X - X is the identity function and Ix.a X > (X » X)
is given by IX x x' = x, for all x, x' € X. The computations

needed to prove this are very easy.

PThe morphisms in I have a mysterious quality about
them. The following theorem dispels some of the mystery.
If one knows what "split epimorphisms" are in, say, the
category of right modules over a ring, then this theorem

can be interpreted as saying the arrows in I are "split

169

surjections" in Seft.

Theorem 6.1: A morphism < Hp2 5 X =y N indooes
X
an equivalence relation ~ on Y such that

(Y,9e ¥ +X, mTe Y+ ¥Y/)

is a product in Sef of X and Y/ ., where 7 ¢ ¥ » Y/. maps
each element of Y to its equivalence class. In particular,
¢ 1is surjective.

Proof Define -~ on Y by

yl.,y2 iff, Forall s X, p & yl =p X y2 .

Then ~ 1s clearly an equivalence relation.

Consider in Setf the diagram

U.//
v

‘
X -z{=«~~qb . A L -Y/ o

z
|
¢

We must show there exists a unique function Yy making

the diagram commute. ILet z & Z. Define Yy by
Yy z=p (ad 2)y

where y € Y is any element such that 7 y = B z;
that v is well-defined is immediate from the definition

of ~. Compute:

(¢ ° v)z ¢ (v z)

¢ (p (o z) y)

I

a z, by (£ 1),

170

and

(%) = m(y z)

m(p (a z) y)
= Ty
because, for all x e X,
px (p (0 2) y) =p xy, by (23).

Hence y makes the diagram commute. Suppose also that

X € Y Y

commutes; we must show y = y'. Again, let z € Z. Then

Y z2 ~ ¥' z because
m({y z) =Bz =71 (y' z).

Therefore,

y z = p(¢ (y z)) (y z), by (£2),
= pl(a z) (v 2)
= p(a 2) (y'" z), since vy z ~ Y' 2,

= p(d (v" 2)) (v' 2)

1l

vtz by AL2) .

So vy = y', and we are done. (]

171

CHAPTER VIT

DESUGARED ALGOL: DIRECT SEMANTICS

In this chapter we will use the methods developed
earlier to describe the semantics of a desugared version
of that part of an ALGOL-like language which can be
described without continuations.

Underlying an ALGOL-like language is a first-order
data type language. Thus, there is a poset D of data
types, a collection Op of operators, and two functions

arity € Op = (Ob D)*, res € Op » Ob D.
Thus arity gives a finite sequence of data types for
each operator, thereby specifying the data types to
which an operator may meaningfully be applied, and res
gives the data type that is the result of a meaningful
application. This information amounts to a syntactic
specification of the first-order data type language.

We also have in mind a specific semantics for these
entities. Thus, we assume we are given a functor

val € D » Seft
and an appropriate interpretation for the operators in
the form of mOp' an Op-indexed collection of functions
such that for each g e Op,

m

op I € Val 61 X x Val Gn + Val ¢

where arity g =(61,"',6n) and res g = 6.

L2

For example, it may be that D is given by the Hasse
diagram
real
bool,
int

and Op, arity, and res is given by the following table

ge Op arity g = res g
true O bool
false ¢ bool
and (bool, bool) bool
0) int
i,) int
w {) real
+ { real, real) real
succ int int

It would then be reasonable for Val to take D to the diagram
IR
inclusion ; {thue, fatlse}
7
and for the interpretations of the operators,

Mop true ¢ {()} » {frue, false}

m. false e {{)} =+ {true, false}

Op

Mo and € {true, false} x {true, false} -+ {true, false}

mOp oe {OO} -~ Z

mople {O} = 7

mop T € -[()} - ﬂ}.

173

J'T' IR i
Mop * € hxR~>R

m. succe J->4,

Op
to be the obvious ones.
An important idea is that for each data type § € D,
Val § is a set of storable values.
From D we get P, the poset of primitive phrase types.
Let
Ob P = {comm}
u {8-exp | § e D}
u {8-acc | 8§ e D}
u {8-var | § e D}.

The partial order on P is given by

T < Y JfF = ',
_p'ﬁl m T

or m = 8§-exp, ™' = 8'-exp, where § < &',

D
or m =§'-acc, 7' = dJ&-acc, where § < &',

D
or m = 8§-var, n' = §'-exp, where § < &',

D
or m =6'-var, m' = é6-acc, where § < 4'.

- - D

Note that comm cannot be compared with the other primitive
phrase types. For example, if D were given by

real

bool,

then P would be

174

int=-acc real-exp

' 1 bool-acc bool-exp

R - -
. /
real-acc int-exp \\\\\ ///’ comm
N
\\\\ﬁ_ /////’ bool-var
real-var int-var

For more discussion, see Reynolds [8]. (However, unlike

Reynolds [8], we do not permit fully generic operations.
As a consequence, the §:;8,-variable construction is not
needed.)

Now P generates the free type algebra T. Recall that
Ob |T |is the disjoint union

{nsuPuilt= 0|1, 8 T}
Once we are given Id, an infinite set of identifiers, we
have A, the poset of phrase type assignments, which played
an important role in the preceding development.

We view the language L (desugared ALGOL) as a free
A-algebra generated by an appropriate set of G of linguistic
constants. Recall that we must also give

type e G > 0b T,
so that G is really a typed set of linguistic constants.

Take G to be the disjoint union of Op and Op' (to be defined

shortly). For g e Op, let
type g = $1-exp = d-exp=>... = Gn-exp = O-exp,
where arity g = (5;,...,6n> and res g = 6. So, partly

because product types are not in T, G contains curried
versions of operators in Op. As we will see, this works

out very neatly. The typed set Op' is given by the following

175

table, where § € D is a data type and T e T is a phrase

type.
ge Op' type g
skip comm
» comm = comm = COmm
=5 d—acc =» S§-exp = comm
ifthenelseT bool-exp = T = T = T
rec (T 1=) e T
T
newvar (§-var = comm) = comm

It is the presence of Op' as a subset of G that entitles us

to regard L as a desugared version of ALGOL. Intuitively,

skip is the "do nothing" command, the operator ; concatenates

commands, :=g is assignment for the data type &, ifthenelseT

is the conditional for the phrase type T, rec_ is used in

the desugared denotation of recursively defined entities (e.g.
while b do ¢

is really

ﬂreccomm [Ax:comm.[ifthenelse b [ec;x] skip]]1)

and newvar is used to desugar declarations of §-variables (e.g.

begin §-var x ; ¢ end

is really

[newvar [Ax:8-var. c]]).

To give the semantics of this language we must do three
things. First, we must give a Cartesian closed category
and its associated canonical type algebra K. Second, we

must give a functor mnge P + | K|, which by Theorem 2.2

176

can always be uniquely extended to a type algebra homomor-
phism Mng € T 'TgEEKZE‘* K. Finally, we must for each
generator ge G give its semantics, i.e.

semf g e Env empr-me~“+ Mng (type g).

By the Fundamental Theorem of Semantics, this semantic func-
tion defined on generators uniquely determines a properly
behaved semantic function defined on all program fragments.

Let I denote the category of store shapes described in
Chapter VI. Let |K| be the full subcategory of I = Pdom
whose objects are functors F e I -+ Pdom such that

(1) F S is a domain for every S € Ob I, and

(2) F (¢$,p? is a strict, continuous function for
every (¢,p) € Ar Z. In Chapter V we showed this category
is Cartesian closed. Let K denote the corresponding type
algebra. This takes care of the first, and simplest, part of
giving the semantics of L.

We next embark on the description of the meaning functor

mng € P > |K|.

Therefore we must give functors

N
mng comm

mng d&-exp
. ¢ = - Pdom, where § € D,
mng d&=-acc

mng d&-var
and we must show these functors are actually objects of |K]
by verifying conditions (1) and (2) above. Before proceding,

a definition is in order. If p € X - (Y - ¥Y), then

177

p &€ X — (Y= Y) is the strict extension of p, i.e.
4 L pdom 4

for % ¢ Xl, v £ ¥,

P Xy, if x # 1
p, Xy = 1
l L , if x =5 .
Intuitively, commands are possibly nonterminating
transformations of the store. Thus, for X e 0b I, let
mng comm X = X = Xl.

For (¢,p) € X——= Y, let
b

mng comm (¢,0» & (X= X) ——> (Y = YL)
. Pdom
be given by

mng comm (¢, cy =p (c (¢ y)) v,

where c € X ——mm— Xl and y e Y. This last equation says
Pdom

that to view a command c, defined for a "little" store, as a
command for a "big" store, do the following:
1) forget some of the "big" store via ¢,
2) apply c,
3) overwrite the "big" store using the result of c,
providing c terminates.
Note that we could almost write

mng comm {$,p) = DY o {&>p Ny

but the domains and codomains don't quite match. We must
check that mng comm (¢,0) is continuous. Suppose S is a

directed subset of X = Xi. For all y e Y,

178

mng comm {¢,p) S) y

(Umng comm X

= OL (L%ng comm X S (¢oy)) ¥

Pl (I_IXL (s (9y))) vy

(b, (s (¢y))) v,

- uInng comm Y 1

since o, is continuous,

= Uy (p, (s (dy)) W)

L
L

(mng comm {(¢,0) S y)
di

= umng — (mng comm €(¢,0? 8) y.

Therefore

mng comm {(¢,p) (LU S)

mng comm X

=ijng —— (mng comm (¢,0) S),

which implies mng comm (¢,0? is continuous. Also, we must
check that mng comm is truly a functor. It is trivial to
verify that mng comm preserves identity morphisms. Suppose

{(¢,p}) € X — Y, (o' oW € Y—— 3,
Z z

We must establish
mng comm (K¢', p' o {¢,0?) = (mng comm (¢',0 "))
o (mng comm {($,p)).

Let ce X ——r Xl and z £ Z. Then
Pdom

mng comm ((¢", p "y ©° (P,p)) c z

179

= mng comm (¢e¢', D, o (¢'»>p')ep) c 2z

= (D, ° (¢'+p")ep), (c (¢ (¢'2))) z

i . if c (¢ (¢'2)) = 1,
| Dy ((9'0") (p (¢ (¢ (6'2))))) z, otherwise,
L, 1if c (¢ (¢'2)) = 1,

L ((¢">p") (p (c (¢ (¢'2))))) z z, otherwise,
L, 1if ¢ (¢ (¢'2)) = 1,

(p' o (p (c (¢(9'2)))) = ¢') z z, otherwise,
[+ +» if ¢ (¢ (¢'2)) = 1,

L o' (p (c (¢ (¢'2))) (¢'z)) =z, otherwise,

1 e, (e (¢ (0'2))) (¢'2)) 2

= p, (mng comm (¢,0) c (¢'2z)) z

mng comm (¢, p') (mng comm (d,p? c) =z

(mng comm (¢', p"») o (mng comm {(¢,p)) c z,

as desired. A moment's thought shows that

(1) for X € Ob £, mng comm X is a domain, and

(2) for ¢(¢,p) € Ar I, mng comm ¢ ¢,p’ is strict.
Thus mng comm is an object of |K|.

Suppose ¢ € D is a data type. Our intuition about
§-expressions is that they try to produce elements of Val ¢
from the current store. Thus the functor mng é-exp € I = Pdom
is defined on an object X of I by

mng 6-exp X = X = (Val 6)l

and on an arrow ¢ ¢,P) € X —> Y by
:)

mng &-exp (¢,p (X = (Val 6)1} e {Y=(Va16)i),
Pdom

180

and
mng d-exp (¢,p ey = e (¢y) ,

where e € X ———— (Val..d)l and y € Y. Note that we use
Pdom

(Val 6%, rather than Val §, because the evaluation of an
expression does not necessarily terminate. It is clear
that if mng d-exp is a functor, then it satisfies (1) and
(2) and is therefore an object of |K|. The neatest way
to see that mng §-exp is indeed a functor is to consider
the forgetful functor
Ue &~ Pdomop,

given by

UX = X for X € ObZ, Wo,p= ¢ for (¢,p e Ar &,
and then to notice that

mng d-exp = (U -) = (Val G)L

where the heavy arrow is the internal hom functor for Pdom.
Next, we think about §-acceptors. They take elements
of vVal § (perhaps from the right-hand side of an assignment
command) and produce transformations of the store. Therefore,
for a store shape X ¢ L, let
mng é-acc X = Val ¢ = mng comm X,

and, for (¢,pde X— Y, let
&

mng dé-acc (¢ ,0 € (Vald = mng comm X) — = (Val § = mng comm Y)
Pdom

be given by

mng 6-acc (¢,pa v = mng comm ¢ ¢,p> (a v).

181

If we rewrite this definition as
mng d-acc = Val § = (mng comm -),
where the heavy arrow is the internal hom functor for Pdom,

it becomes clear that mng §-acc is a functor. Once again, it

is clear that mng 8-acc is an object of |[K].
Finally, §-variables must have in them enough structure
to be used as either d§-acceptors or §-expressions. Therefore,
let
mng S-var = mng d-acc X mng §-exp,
where the x is the distinguished binary product in |K]|.
In particular, notice that for a store shape X € Ob I
mng é-var X = mng §-acc X X mng S-exp X.
So far, we have defined mng on objects of P. Next, for

each m <, m', we must give a natural transformation

mng (m iPﬂ*) € mng T ———= mng '

| K
There are five cases, corresponding to the five kinds of
implicit conversions which comprise the arrows of P.
(1) TIf w = 7', then let mng (m iF,W) be the identity natural

transformation on the functor mng .
(2) The construction

mng S-exp = (-) = (Val 6)l

is functorial in 6. Thus, if § fﬂ §', then we obtain a

natural transformation.

mng (§-exp < §'-exp) € mng S-exp “{'{"+ mng &'-exp
K
by letting
mng (8-exp < d'exp) = (-) =(Val (6§ < §&"))

D L

182

Therefore, if X ¢ 0Ob £ and e € X ——— (Val é)l, then
Pdom

mng (d-exp < §'exp) X € X = (Val 6)i--mm~+ X = (Val 6')L
and Pdom

mng (8-exp < 8'-exp) X e = (Val (6 < 6’))l ° e.

(3) Another construction functorial in § (but contravariant!)
is
mng d-acc = Val § = (mng comm -);

hence, if § < &', then we can get a natural transformation

D
mng (§8'-acc 5? d—acc) € mng d¢'-acc "Tm(+ mng S-acc
K

by letting

mng (8'=-acc <p §-acc) = (val (6 < ¢') = (mng comm -).
In this situation, if X& Ob ¥ and a e Val 8'—— mng comm X,

Pdom -

then

mng (8'=-acc <, 8§-acc) X e mng §'-acc X —— mng d-acc X

— —F o T Pdom o

and

mng (§'-acc EP §-acc) X a= ao° Val(éd < ¢&').
. D
(4) If & < &', then define

D

mng (6-var <, §-exp) € mng §-var — > mng S-exp

4 | | K|
to be 2

mng (8=var <p §-exp) = mng (S-exp gp §'exp) o proj:
where

proj; € mng §-var = mng 6-acc X mng J-exp uu-I+ mng d§-exp
K

is the projection onto the second component.

183

(6} If 6.2 §', then define

D
mng (8'-var <p S-acc) e mng §'-var "]kr+ mng é-acc
to be
mng (&'-var ip §-acc) = mng (&8'-acc iP d-acc) e projl
where
proj1 € mng §'-var = mng §'-acc X mng 8'-exp — - + mng §'-acc

is the projection onto the first component. An easy

argument shows that wereally have defined a functor

mng € P >~ |K]|.
As we noted earlier, there is a unique type algebra
homomorphism

Mnge T » K
that extends mng.

The rest of this chapter is devoted to giving the
semantics of the generating set G of linguistic constants.
Let g € Op with arity g = <61,...,6n), res g = ¢.

We must define

semf g & Env empT*—"—~+ (Mng Sl—exp =, ..®Mng Gn—exp:Mng d—exp) .
| K]
The codomain of this natural transformation is a rather

formidable functor. However, since |K| is a Cartesian closed
category, there is a canonical bijection between

Env empT—w{—]+ (Mng 61—exp = ,.. = Mng Sn—exE = Mng &-exp)
K

and

184

(Mng Gl—exp X ... % Mng Gn-exE)-”T~“+ Mng d-exp

K|
based on repeated abstraction and the fact that the product
with a terminal object (Env empy in this case) is naturally
isomorphic to the identity. So it suffices to give the
corresponding

~

ge (Mng §;-exp X ... X Mng Sn—exp)“m——~+ Mng S-exp.
it Sk K =

For X e 0Ob %, let

g X € Mng §1-exp X X...X Mng Gn-exp X -;;;;+ Mng S-exp X

be given by
; mOp g <e1x,...,enx>1f, for all i, eix%i

~

X<81,...,en> o=

.i
g .
i 1 if, for some i, eiX = 1,
where x € X and, for each i, e; e X—— (Val 6;) .
> Pdom k

It is easy to see that g X is continuous. We must verify that

6 is a natural transformation. To this end, suppose

(¢, & X——= Y, and consider the diagram
Z .
g X
Mng 6;-exp X X ... X Mng 5n—exp X i Mg d=exXp X
Mng §i1-exp{ ¢,p) X...xMng Gn—exp (¢,pﬂ 'Mng 8-exp (¢ ,0)
v g Y v
Mng §;-exp Y X ... X Mng én—exp Y im—ie—> Mng S-exp Y.
Let ej€ X-— (Val 6;) for i =1, ..., n, and let y €Y.
Pdom
Then

(g ¥ o (Mng S1-exp (¢ ,p % ... X Mng Gn—exp (p:rp)) (el,...,en) v

= g ¥ (Mng §;-exp ¢ ¢, e1, ..., Mng én—exg (dyp? en)
=.J mopg'(el () e » v e, (¢ y)) if all e, (¢ y) # L
{1 if some e, (2 y) =1

o~

= g}{(e}_JI « » & 5 en) (¢Y)
= Mng d&-exp (¢,p? (& X (el, ceor en)) Y

= (Mng S-exp (6,0 ©° g X) (eyy wevs) ¥,

as desired.
Consider the "do nothing" command skip. We must
give

semf skip € Env emp_. ~—

——— Mng comm.
| K]

Let X Ob XZ. Recall that Env emp. X is the one-point

predomain {{)} and Mng comm X = X = X . Then

semf skip X € Env emp- X ~— - Mng comm X
Pdom
is given by
semf skip X ()x = x, for all x & X.

Clearly, then, skip does nothing to the current store Xx.

185

X

Obviously, semf skip X is continuous. To see that semf skip

is a natural transformation, let (¢,p? ¢ X —— ¥, 1In

consider the diagram

semf skip X

Env emp.- X ey Mg cCODN. X
1 P
{ iMng comm { ¢, P}
| semf skip Y v

Env emp, ¥ ey LG SODI X

We compute, for y € Y,

Pdom

186

(Mng comm (¢,p? o semf skip X) () y

Mng comm { ¢,0) (semf skip X (}) y

o, (semf skip X () (¢ y)) ¥y

P (¢ y) ¥

=vy.
The last equality follows from condition (Z2) in the definition
of the category I of store shapes.

We wish to give

semf ; £ Env empy ———> Mng comm = Mng comm = Mng comm,

| K]
Using the Cartesian closed category structure of lK|r 1t

suffices to define the corresponding natural transformation

sc € Mng comm X Mng comm-—T“T+ Mng comm
K

For each store shape X e 0Ob I, we must give

sc X € Mng comm X X Mng comm X-——= Mng comm X
Pdom
Recall that
Mng comm X = X = Xi. For £ € X — XL' let ng X — xl
Pdom Pdom

be the strict extension of £f. Now let

1

sc X{¢g, ¢V = ¢ i 9
where c, c¢' € X—— X . Note the order in which the commands
Pdom

are composed; it is determined by the operational rule that
says (c;c') means execute c¢ and then execute c'. (Of course,
this ig direct, not continuation, semantics.) Continuity of
sc X follows from the continuity of composition. We must
check that sc is indeed a natural transformation. Suppose

(¢,p? € X—— ¥. We wish to show that
b2

187

sc X
Mng comm X X Mng comm X ——————-——————=3 Mng comm X
Mng comm ¢ ¢,p? I
X Mng comm { ¢ p? Mng comm ¢ ¢,0?
- b sc ¥ —
Mng comm ¥ X Mng comm Y ~———+ Mng comm Y

commutes. Let ¢, c¢' € Mng comm X and y € Y. Then

(sc Y ¢ (Mng comm ¢ ¢,p> X Mng comm (¢,p?)) (c, cy

sc Y {Mng comm ($,0>c, Mng comm ($ p? c"y
= (Mng comm { ¢,p) c')l (Mng comm (¢,p> c ¥y)

={mwcmm<¢m>C'n e, (c (¢ ¥)) ¥)

L
L, if ¢ (¢ ¥y) =1
(Mng comm (¢,0> c') (p (c (¢ y)) y), otherwise

[
1
{L: if c (¢y) =1
|

o, (c¢" (¢ (p (¢ (¢ ¥)) ¥))) (p (c (¢ ¥)) y), otherwise

L, ifc (b y) =1

| o,(c' (¢ (6 ¥))) (o (c (¢ ¥)) y), otherwise, by (I1),

I L, if c(¢ y) = L or c' (c(d y)) = .,
1 p (c' (¢ (¢ ¥))) (p (c (¢ ¥)) y), otherwise
fl if ¢{¢ v) = r0r e¢' (¢ (b ¥)) = 4,

Lp (c¢'" (¢ (b v))) v, otherwise, by (Z3),

1l

p, (c¢' (c (¢)Ny

4 L

o, (sc X (e, " (dV)) v

Mng comm (¢ p (sc X {(c, c")) vy
= (Mng comm (¢, ©° sc X) (c, c" vy,
which demonstrates commutativity. ' Note the usage of the fact

that (¢,p) satisfies (Zl) and (I3).

188

Next we desire to define, for a data type ¢,

semf :=; € Env empT~~{-T+ Mng d-acc = Mng §-exp = Mng comm.
K

Because of the canonical bijection between

Env empT—~(mr+ Mng §-acc = Mng §-exp = Mng comm
K e Exp il

and

Mng §-acc X Mng ¢-exp ~~Twiﬁ+ Mng comm,
K

it is adequate to define the corresponding natural transformation

assign6 e Mng §-acc X Mng G—EEE-_TE(+ Mng comm.
Suppose X £ Ob I. We must give
assign6 X € Mng d-acc X X Mng d-exp X ——— Mng comm X.
: Pdom
Recall

Mng §-acc X = Val § = Mng comm X,
Mng S-exp X = X = (Val 6)l;

Mng comm X = X = Xl.

For ae Val §-——- Mng comm X, e € X-——> (Val 6)1'
Pdom Pdom

and x £ X, let

assigng X (a, e x = a (e x) x,
where a, is the strict extension of a. This definition
reflects the idea that (a :=6e) means get a value from
the store with e, then alter that same store with a.
The proof that assign6 X is continuous is straightforward.

We would like to check that aSSigné is a natural transformation.

Let (¢,0) € X——— Y. The diagram whose commutativity
z

we must verify is

189

assign6 X
Mng é-acc X X Mng d-exp X > Mng comm X
Mng 8-acc {¢,p)rx Mng S-exp '(_¢,p>';| Mng comm { ¢,p)
r:xssign(S ¥
Mng d-acc Y X Mng dé-exp Y ——————— Mng comm Y

Let ae Val § —= Mng comm X, e € X —— (Val é)l,
Pdom Pdom

and vy € Y. Then

(z;xss:f_gn(S Y o (Mng d-acc (¢,p?> X Mng S-exp (¢,p))) (a,e y

= assign6 Y (Mng d-acc (¢ ,p)a, Mng S-exp (¢,p & vy

I

(Mng S-acc (¢, p a)l (Mng S-exp (¢,p e y) ¥y

(Mng S§-acc (¢ p» a) (e (¢ y)) y
[Mng comm (¢, (a (e (b y))) y if e (o y) # 1

p (a (e (¢ ¥)) (o ¥)) v if e (¢ y) # 1

I 1 if e (¢ y) = 1
| o,

L if e (9 y) = 1
= p (e (¢ ¥)) (¢ ¥)) ¥y

(a

L L

= p, (assigng X (a,e (¢ y)) ¥y

= Mng comm (¢ p? (assign(S X({a,e) vy

It

(Mng comm (¢,p) o assign5 X) (a,e vy,
so that the diagram commutes.

The next generator on the list is the conditional for
type T; thus we seek

semf ifthenelseT e Env empT—I—T Mng bool-exp=Mng T ®Mng T =®Mng T,
K

and it suffices to give the corresponding natural transformation
in

Mng bool-exp X Mng T X Mng T ~]~{+ Mng T.
K

190

To do this will require some preliminary work.
Let the functor B € T » |K| be the product in the functor
category T = |K| of the constant functor 1 —— Mng bool-exp,
Mng, and Mng.
Thys £68 8 T

B 1 = Mng bool-exp X Mng T X Mng T
Shortly we will define a functor Ne T = (I = Pdom).

Our plan is to define natural transformations

Vg g BT e —> N T,
¥ = Pdom
At € N T —————> Mng T
L = Pdom
and to then obtain the desired element of B T -—— Mng T

| K]
by composition:

ATeV¥Y T € BT MTmT+ Mng T.
K

Our immediate aim is the definition of
NeT=+ (£ = Pdom)
as a composition of three functors. Note that the forgetful
functor U ¢ £ » Pdom®®, which forgets the second component
of morphisms,induces a functor
(u, = e |K| = (£ = (Pdom®® x Pdom))

such that for Fe Ob |K| € £ » Pdom and X e Ob I

(U, =) FX=(U, P X = (UX, FX (X, FX .
Next, the internal hom functor
Pdom_ ¢ Pdom®P x Pdom + Pdom

induces

(Pdom_)% € (z = (Pdom®P x Pdom)) - (3 = Pdom),

191

which is such that

(Pdom_)* G X = Pdom_ (G X),
where G e I =~ (PdomOp x Pdom) and X € Ob . Now
let N be the composition

Mng (u,= & (Pdom_)Z
T—— |K| ———— (2 = (Pdom®®P x Pdom)) ———————(Z = Pdom) ,

Thus, if 1€ T and X € Ob Z, then

I

Nt X = (Pdom,)* ((U, = (Mng 1)) X

(Pdom:,)Z (U, Mng 70 X

Pdom_ <(UX, Mng T X

Il

X ====== Mng 1T X;
Pdom

therefore N 1 X is the collection of functions from the
set of stores of shape X to the collection of conventional
meanings of type 1 for stores of shape X.

Next we will define for each store shape X e 0Ob I the

"choice function"

Y1TXe.B1t X—— N T X
Pdom
= (X = (val booll))x Mng T X X Mng 7T X——> X = Mng 1T X
Pdom

by

[t, if bx = fhaue,
Y 1 X{b, t1, t? x = \ t, if b x = galse,

[ang T X if bx = 4,

where b g€ X —— (Val bool)l and ti1, t2 € Mng T X, and x £ X.

Pdom
Here we have used the fact that Mng T X is actually a domain,

and therefore it has a minimal element LMng . X

92

It takes only a moment® thought to see that Y T X is
indeed continuous. We claim that ¥ T is a natural

transformation:

¥ §F8 B s—mmmayy T
T = Pdom
Suppose { ¢,p) € X—> Y. We must check the commutativity
X
of the diagram
¥ 1 X
(X = (Val bool)l) X Mng T X X Mng 1t X ————> X ® Mng 1 X
f .F
(¢“1)Xbmgr(¢m>XbmgT<¢mW o = Mng T {¢,0)
¥ e ¥ L
(Y = (Val bool)l) X Mg T ¥ XMg T ¥Y——>Y = Mg T 3

Take b € X -— (Val bool)l, ti € Mng T X, t, € Mng T X,
Pdom
y € Y. Then

(Y T Y o ((6 =1) xMng T (¢, x Mng T ($,0))) (b, ti1, t2) ¥

=Y 1Y {(bod, Mng T (d,0) ti, Mng T (0,p) t2? ¥

ang T {¢,0) t1 if b (¢ y) = Lrue,
[
= TMng T (d,p> t, if b (¢ y) = galse,
{ le'rY if b (¢ yv) =1L ,
{Mng (9,0 ta if b (¢ y) = true,
; N
=-iMng (0,0 t2 if b (¢ y) = gaklse,
f i =
' Mng T ($,p? LMnnglf b (¢ y) L

L

because Mng T (¢,p) is strict,

Mng T ¢¢,0 (¥ T X (b, t1, t2 > (¢ ¥))

Il

(¢ = Mng T {d,p>) (Y T X (b, t1, t22) ¥

((bp = Mng T {d,p2)e ¥ 1 X){b, t1, t2) ¥-

This proves the claim of naturality.

Finally we will define for each 17 ¢ T a'generalized

diagonalization"

193

O -l R e s 0 - il
z = Pdom

The method of definition is by induction on the structure
of T € T (There should be a better way.) Hence
we will give
(1) A m for each primitive phrase type m,
(2) A ns
(3) A& (t =08), assuming A T and A § are known.
Case la: m = comm. For Xe Ob I, let
A comm X € (X = Mng comm X) ——— Mng comm X
o S Pdom o
be given by

A comm X h x=h x x

where h ¢ X ——— Mng comm X and X £ X.
Pdom

It is very easy to see that A comm X is continuous. To check

naturality of A comm, let (¢,p? € X— Y.

z
Consider the diagram
A comm X
X = Mng comm X -+ Mng comm X
E
¢ = Mng comm (¢,0) | Mng comm ¢ ¢, p)
¥ A comm Y
Y = Mng comm Y —— s Mng comm Y.
Let h € X———— Mng comm X, v € Y. Then

Pdom
(A comm Y o (¢ = Mng comm (¢,p))) h y
= A comm Y (Mng comm (¢ p> o h o ¢) y

= (Mng comm (¢ ,p> ° h ° ¢) y ¥y

‘Mng comm (¢,p) (h (¢ y)) ¥y

194

Il

p, (h (¢) (¢ ¥)) ¥

p, (A comm Xh (¢ y)) ¥

= Mng comm ¢(¢ ,p? (A comm X h) y

=(¥ng comm ¢ ¢,p) o A comm X) h y,
which shows A comm is natural.

Case lb: 1w = 6-exp, where ¢ is a data type. For a store
shape X e Ob I, let

A S-exp X ¢ (X = Mng d-exp X) — = Mng S-exp X
Pdom

be given by
A S-exp X hx =hxx

where he X —— Mng §-exp X and x € X. Proofs of
Pdom

continuity and naturality are essentially the same as for
Case la.
Case lc: 1w = d-acc where ¢ is a data type. Let

X e Ob 2 be a store shape and let

A §-acc X £ (X = Mng 6-acc X) ———> Mng &§-acc X

Pdom

be given by

A d—acc X h v = hx vx

where h € X — = Mng §-acc X = X - —+ (vVval § = Mng comm X),
Pdom Pdom

ve Val §, and x € X. It is routine to check continuity -
of A d-acc X. To prove that A S-acc is a natural trans-

formation, let (¢,p) € X ——— Y, and consider the diagram
z

195

A d-acc X
X Mg 0-gan X esese——eneeiy Mg §=8EC A
| |
¢ = Mng d-acc (¢,p>?]Mng S§—acc (¢,p?
?
. L A §-acc Y]
¥ = Mng d6-acc Y — » Mng é-acc Y.
Let he X~— - Mng é6-acc X, veVal §, and y € Y.

Pdom
Then

(A §—acc Y o (¢ = Mng S-acc (d,0})) h v y

= A 6-acc Y (Mng d-acc (¢,p)> o h o ¢) vy

1

(Mng d-acc (¢.p) e h o ¢) y vy
= Mng S-acc (¢, (h (¢ y)) Vv y
= Mng comm (¢,p> (h (¢ y) v) y

= p, (Ad-acc Xhv (¢y))y

= Mng comm (¢,p? (A S-acc X hv) y

= Mng S-acc (¢,p? (A S-acc X h) v y
= (Mng $§-acc (¢,p? o A d-acc X) hvy .,
which proves that the diagram commutes.
Case 1ld: w = §-var where ¢ is a data type. Since

Mng &-var = Mng §-acc X Mng §-exp, it would be nice to

give
A §-var € N 6-vaxr ——— > Mng d-var
L = Pdom
in terms of
A §=aec e N f~acg ————— Mng o=ace
I = Pdom
and
A §-exp e N S-exp — - —+ Mng 6-exp .
L = Pdom

There is a natural isomorphism

196

o N §~vax —————=% N d~8c0 ¥ N §-€xp
L = Pdom

where for X & 0b Z

n Xe X = (Mng d-acc X X Mng d-exp X)

“Pdow T (X ® Mng §-acc X) x (X = Mng d-exp X)

is the obvious bijection. Thus, we may take A d§-var to
be the composite
A §-var = (A S-acc x A S-exp) o n,
where the composition takes place in I = Pdom.
Case 2: We want to define

A nse Nns ——————— Mng ns
L = Pdom

There is only one way because Mng ns is a terminal object
in Z = Pdom.
Case 3: Assume that

AtTe NT ~—————>Mng T and A Beg N § ———————— Mng 6
L = Pdom v = Pdom

are known. We will define

A (t=98)e N (t=9) —————-> Mng (T = g).
L = Pdom

(Actually, A 1T will not enter into the definition of
A (t = g). This is a curious fact, and it should be
connected with some interesting intuition.) We start with

Ap=AmKiMMgT,mMe)a m@(T*G)XDmgT'YI+MMJ&
K

Hence, for X = 0Ob Z,

Ap X € Mng (T ® 8) X X Mng 1T X—— Mng g X.
Pdom

197

From Ap we get a natural transformation

o] (T, 8*) e N ("[' = 8) w Mng T e N 0
% = Pdom
where for X e 0Ob I
(1,0 Xe (X = Mng (t =0)X) xMng 1 X —— (X = Mng 8 X)
Pdom

is given by
® (1,06 X{h,t) x = 2aAp X (h %, v,

where he X — = Mng (1 = 6) X, te€ Mng T X, and x £ X.
Pdom

(The idea is this: a function like Ap X, say
ae (UxT) = V.
induces a function
fe ((X=0U) xT) » (X >V)
via the equation

f(h,t) x=a<(h X, ©.)

To verify . that ¢ (1,867 is indeed a natural transformation,
let - (¢, € X—— Y, and consider the diagram
Z
® (1,07 X
(X = Mng (t =6) X) xMng T X ————* X = Mng 6X
i
|
(6 = Mng (T = 6)¢¢,p)*xMng T(¢,p)l i¢ = Mng 6 {¢,p)
®{T,00Y
(Y > Mng (T ®6) ¥) xMng T Y—————"—> Y = Mng 6 Y.
Let he X —— Mng (1 = 8)X, teMng 1 X, vy € ¥. Then
Pdom

compute:

(@ ¢1,82Y o ((¢ = Mng (T = 6)(d,0) X Mng T {(¢,p?) ¢(h, v ¥y

¢ (1,80Y (Mng {1t =86) (d,p} o h ¢ ¢, Mug T {(d,pY £?) ¥

Ap Y {Mng (1t =9) (d,0> (h (¢ ¥)), Mng T {(o,p)>t)

(Ap ¥ o(Mng (t = ¢) (¢,0p) x Mng T (¢,p)) ¢(h (¢ y), &

198

= (Mng 0 (¢,p) o Ap X) ¢(h (¢ v), ©,

by the naturality of Ap,

Mng 6 (¢,p> (Ap X (h (¢ y), t¥)

]

Mng 6 (¢,0) (2 (1,00 X<(h, £ (¢ y))

1

(Mng 8 (¢,0> o & (1,82X (h, £ < ¢) ¥y

Il

((¢ = Mng 6 (d,p?) @ (¢d,00X(h, D) vy
= ((¢ = Mng 06¢¢,0)) o @& (T1,90X) (h, t¥ y.
This shows that & (T1,8) is natural. Now consider the

composition of natural transformations

¢ (1,00

N (t =68) xMng T —— 4

> Ne—22 Mng g,

(This is where A 6 is used.) By using the abstraction

bijection
Abe (N (m=606) X Mng T ————* Mng g)
L = Pdom
(N (T =) ——> Mng (T = 8)),
z = Pdom
we define
A (t ®=g)e N (T =p) > Mng (T = g)
L = Pdom

by
A (t+=6) =2ab (A6 o & (1,0).

This completes the definition of A 1 for every phrase type

Do not lose sight of the fact that the purpose of all
this is to define

semf ifthenelseT

as the natural transformation which is in canonical
correspondence with

AT o ¥ T EBT —1 |+ Mng T.
K

199

Evidence that we have found the correct definition of
ifthenelseT is provided by the following theorem.

Theorem 7.1: Let T, 6 ¢ T and b, £, 4, me L.

Let o € A be such that

Type & o Type 4 oo = T =86,

Type b «a bool-exp,
Type m o = T,
Let

p =[[ifthenelse eb kR slm], and

T=~

q = [ifthenelseg b [x m] [s m]].

Then

Type p o = Type ¢ ¢ = 6, and

Semf p o Semf ¢ o

Proof: Since this theorem is peripheral to our develop-
ment, we omit the straightforward, but lengthy, proof. [J

We now take up the definition of

semf rec_€ Env empy —— - (Mng T = Mng t) = Mng T.

K|
It suffices to define the corresponding natural transformation

fixT € Mng T ® Mng T ~—— Mng T.

K]

Let Xe Ob I be a store shape. Define

fixT Xe (Mng 1 ® Mng 1) X — > Mng 1 X
Pdom
by
. _ 5
fix X N= YMng ¥ % (A, (n X) lx)
where N € hom’ X x Mng T————> Mng T (recall that

L = Pdom

200

this is the underlying set of (Mng T = Mng 1) X),
Y e (Mng t™ X= Mng 17 X) —— == Mng 1 X
Mng T X \Hng J) Pdom J

oo

isthe least fixed point function (¥ h =Un"

),
Mng 17 X =0

‘Mng T X

and AX is ‘the abstraction function for Pdom such that

Ay e ((X = X x Mng 1 X) ——+ Mng T X)
z Pdom

= (X > X ——> (Mng 17 X ® Mng T X)).
z Pdom

The domains and codomains for abstraction functions for
Pdom can be partially ordered in an obvious way to make
them predomains; it is then easy to show that abstraction
functions are continuous. From this observation a
routine argument shows that fixT is a natural transfor-
mation. We require a technical lemma.

Lemma 7.2: Let (¢,p? € X-— Y and n ¢ homZ X x
)

Mng t — = Mng 1. For each n=0, 1, 2, ...,
L = Pdom

. , Ty n
(AY (Mng T = Mng 1) (¢,p? n Y) lY) LMng Ty

= Mng T (6,00 ((B; (nX) 1030 jia

ang T X
Proof: We will use induction on n. For n = 0, the
assertion becomes

= Mng 1 (¢,p? ang T X’

ang T Y
which is true because Mng T (¢,p) is strict.
Suppose the lemma is true for n = k. Since n is a

natural transformation, we have a commutative diagram

201

n X
(X-——> X) x Mng 1T X =~ = Mng 1 X
X |
homZ X {(d,p? X Mng T (¢,p% !Mng T (¢,p?
l ny ‘
(X—= YY) xMngt¥———= Mng 1Y .
bk
Let B = Mng 1 (¢, ((A, (n X) lz)k it) .
g ! X X Mng T X
Then
Laok+1
(&, ((Mng T = Mng 1) (¢,0) n ¥) 1y) T

= A, ((Mng T = Mng 1) (¢,p> n Y) lZ B,

Y Y
by the induction hypothesis,

= (Mng 1T ® Mng 1) (¢,p> N Y (lY’ B,

by the definition of abstraction in Pdom,

]

nY<(<é$,00, B),
by the definition of exponentiation in |K/|,

(Mng T (¢,p> ° n X) (li, (A, (n X) l;‘z)k L

X Mng 17 X 7

by the commutativity of the above diagram,

> Bk
Mng T (¢,00 (N X (1l (BAy (n X) 107 1L))

Mng 1T X
- Mng T (4,0 (A, (n X 1 ((a, (1 x) 15K))
' X x X X lMng © X

_ I, k+1

= Mng 1 ¢ ¢,0 ((Ax (n X) lx) ang - X).
O

To return to the claim that fixT is a natural trans-

formation, suppose (¢,p) € X———— Z, and consider the diagram

%
in: Pdom

202

fixT X
(Mg ¢ = Mag T) X ————====¢ Mng 1T X
|
(Mng T = Mng T) (¢,p)f Mng T { ¢$,p?
v fixT Z
(Mng T ® Mng 1) Z — > Mng T Z .
Let n e homZ X x Mng T ————+ Mng t. The computation

Y = Pdom

(fixT Z o (Mng T = Mng T1) (¢,p>) 1

= fixT Z ((Mng T = Mng 1) (9,0’ n)

= Z
B YMng T2 (AZ ((Mng T = Mng 1) ¢ ¢,0) n 2) lZ)
- @ (@&, ((Mng T = Mng 1) (o, n 2) 1™ L)
n=0 4 ri / Mng T Z
= & (Mng t (9,0 ((A, (n X 19" . X
: X X Mng T X' ''

n=0
by Lemma 7.2,

i " Zyn
= Mng T (4,00 My ((Ay (0 X) 1" dypg ¢ x)

by the continuity of Mng t (¢,p) ,

= Mng 1 ¢ ¢,0) (Y (AX (n X) li))

Mng 1T X

= Mng T { ¢,p) (fixT X n)

Il

(Mng T {¢,p) o ﬁxTX)n
shows fixT is natural.

We must do some preliminary work with the category I
of store shapes before giving the semantics of newvar g for a
data type 8. We will give some definitions and three lemmas.
The functor

Newshape6 € I- =

203

is defined for X € Ob I by

Nev\.?shape(S X =X x val §

and for (¢,p? & X-— Y by
X

Newshape5 {(d,p) = (¢6’p6) e X x Val § ~E+ Y x Val ¢,
where
¢é £ Y x Val §-—= X x Val §
is given by
¢5 (y, v =(0¢ vy, V) ,

and

pg € X X vVval 6§ » (Y x vVal § - Y x Val §)

is given by

0s (x, ¥ {y, v') ={p x ¥y, V.
It is not too hard to see that (¢G’DG> satisfies (Z1)
(£2), and (Z3) and that Newshape6 really is a functor.

We will use Newshape6 to create a local store shape from a
global store shape, as must be done upon entering a block
containing a declaration of a d-variable.

We posit the existence of a specified element

init 8§ € Val ¢,
which is used as an initial value for a newly declared
variable. For each store shape X, this leads to the
de finition of
enteré X e X-——> X x Val ¢,

given for x € X by

enter(S X x =(x, init & .

204

We also have, for each store shape X,

exit. X {(x, v = x.

)
Obviously, these functions will be used upon entering and
exiting from blocks.

Lemma 7.3: Let{p,p? &€ X— > Y. Then
z

(enter(S Y -+ exit6 Y) e B P Y exit6 X.

Thus, for all xe X, ve V, y e Y,

exit6 Y (pé(x,v> (enter5 Y y)) = p[.exit(5 X{x,v) vy.

Proof: The proof is an easy computation left to the
reader. [
The (Ob I)=-indexed family exit6 of functions is inti-

mately related to a natural transformation

Exit. € 1. .-~ Newshape

§ LI I=E s’
given by
Exit(S X = (exit6 Xy Vg XeX ~E+ X x vVal ¢
where
Vs X £ X > (X x val § - X x Val §)

is defined for x, x' € X, v e Val ¢§ by

Vg X X (x', v =(x,V.
Verifications that Exit6 X is a morphism of ¥ and that Exit6
is natural are left to the reader. The utility of Exité is

that it contains the information about how to return to the
global store shape from the local store shape. There is a
way to relate enter(S to a natural transformation, but it

involves a slight change in the definition of 3y, and this

205

change would entail more complications that it is
apparently worth.

Lemma 7.4: Let (¢,pde X—-— Y. Then
z

($eipgd © Exitg X = Exitg Y o (¢,0)

Proof: The proof is straightforward. [
It is not surprising that the denotation of newvar involves
a "canomical local §-variable for each store shape X". Recall that
Mng dé-var (X x Val §) = Mng S-acc (X x Val §) X Mng d-exp(XxVal 9).
Now for Xe Ob I let
localvar, X € Mng d-var (X x Val §)

S

be

localvar5 X =(a i

§,x' €6,%
where

as € Val § —— Mng comm (X X Val &)

P& Pdom
is given for v, v' € V and x £ X by

a vix, v ={x, »,

leX
and

e X x Val § —(vVal §)

e
8, X Pdom

1

is given for x e X, v € Val § by

(s) = Vo

Note the use of condition (Z2) in the proof of the next lemma.

Lemma 7.5: Let (¢,p? € X—— Y. Then
)

Mng &-var <¢5,pd> (localvar(S X) = 1ocalvar6 ¥
Proof: We claim

Mng é&-acc (¢5,06) a@,x = as gy -
I

To see this, let ve Val 6 and (y, v") € Y e Val 6. Then

Mng d-acc <¢6’QG> ag x vV (y, vh
r

= Mng comm <¢6'OG> (v) {y, v"

as,x

= pﬁ,l (aé,X v (¢6 ¢ v) (ye ¥B

pé;l (afS,XV((b Y s V')) (y, v

pé,i (o vy, W (y, v"

(p (¢ ¥) vy, ¥
={y, v, by (Z2),

= ag viy, v,

’Y

which proves the claim .

Furthermore, we claim

Mng d&-exp (¢5,06) es,x = ©5,v"

Let (y, v € Y x Val 8. We compute:

Mng d§-exp (¢6,pa) es,x {(y, W
= efS,X (¢)5 <YI’ V))
= &5 x (¢ y, ¥

= Vv

= eé,x § ¥ W

By combining these two facts we see

Mng d§-var <¢6’06) (lc)ca.'i.'\rar(S X)

as

(Mng §-acc <¢6,p6) X Mng §-exp (¢6’pﬁ)) <a6,X y eépi

(aa,Y y eé,Y)

localvar6 XY,

desired. [

206

207

We want to define the natural transformation

semf newvar, € Env emp wi~{+ (Mng d§-var = Mng comm) = Mng comm;
K

so it suffices to define the corresponding natural

transformation
nv, € Mng d-var = Mng comm -—— Mng comm.
| K]
Thus, we must give, for X e Ob I,
nv Xe (Mng 6-var = Mng comm) X ——— Mng comm X.
Pdom
For n € homL X x Mng &-var ET_T% Mng comm (recall that this
K
is the underlying set of (Mng §-var = Mng comm) X), let

nv6 Xn
= (ex1t6 X)i ° 7 (Newshape{S X) (Ex1t6 X, localvar6X>c enterax,

where

(exit6 X)l £ (X x Vval 5)i_”mm+ X
Pdom

is the strict extension of exit(S X{ Roughly speaking, we
are saying that nv X n means enter a new block, execute
the command derived from n in the context of the new store
shape, and finally exit from the new block in a manner that
returns the store to its original shape. It is easy to see

that nv X is continuous.

We must verify that nv is a natural transformation.
Let M denote the functor Mng §-var = Mng comm. Suppose

(¢, € X— Y. Consider the commutativity of
z

208

nv, X
MX —————%—————— s Mng comm X
Mo, 02 | Mng comm ¢ ¢,p)
‘i f
M Y e e ey Mng comm Y.
NV ~¥
8
Let n e homZ X X Mng §-var “T-T+ Mng comm (the underlying
K

set of M X), and let y € Y. It is important to note that

homE X (Newshapeﬁ X) x
Mng d&-var (Newshape. X)-_

6
f *““H“H“ﬂmkgx{NBWShapeé X)

hom® (¢6:p) X Mnc comm (Newshape6 X)

|
F

Mng d-var (¢6'96)

\'s

hom2 X (Newshape6 Y) X

Mng é-var (Newshapea Y)“ﬂmﬂhhhﬁhhh

—

M (Newshape5 Y) —~—

Mng comm (¢5;96

Mng comm (I'Qew'shape(S Y)

commutes because n is a natural transformation. Then
(HV6Y°(1XM<¢):D>))HY
= nvg Y (M<(¢,p)n) ¥y

= ((exit6 Y}l
o M {d,p) n (Newshape6 Y) <Exit6 N 1ocalvar5 Y
o enterES Y) y

= ((ex1t6 Y)l
° M (Newshapeﬁ Y) <EXit6 il L (e T localvar(S Y

° enter[5 Y) v,

I

i

Il

209

by the definition of = for |K]|,
((exit(S Y}l
° 1 (Newshapea Y) <(¢6,p6) o Exit6 X]_ocalvar(S Y)
° enterLS ¥) ¥i
by Lemma 7.4,
{(exitES Y)‘L
°o M (Newshape5 Y)

z ;
((hom™ X (¢6,p6> X Mng &-var <¢6'QG)) (Ex:.t6 X, localvara X)

o enter(S Y) vy

by Lemma 7.5

((exit Y)L
°o Mng comm <¢6’06} (n {Newshape6 X) (Exit(S X, localvar6 X
° enters Y) y
((.exit6 Y)l
(pé,L (n (Newshapeé X) (Exit[5 b localvar6 X>(¢6(enter5Y v)))
(enterﬁ Y y))

pl ((exit X)l

)
(n (Newshape6 X) (Exit(S X, 1c><:alvar(S X
(¢6(enter5 X owirY) e
by Lemma 7.3,
o ((ex1t6 X}l

(n (Newshape6 X){Exit,. X, localvar6 X)(enterﬁx (¢ v))) v

§

210

= (Mng comm (¢, & o nvg X) ny,

and this proves nv g is a natural transformation.

2711

CHAPTER VIII

DESUGARED ALGOL: CONTINUATION SEMANTICS

In this chapter we expand the language given in the
preceding chapter to include goto's and labels. The main
novelties consist of the introduction of the primitive
phrase type compl (for "completion"), whose set of meanings
in the context of a store shape are what are normally
called continuations, and of the removal of comm from
the collection of primitive phrase types. Our point of
view is now that comm is just an abbreviation for the

procedural phrase type compl = compl.

As in Chapter VII we assume we are given

(1) 7D, a poset of data types,

(2) ©Op, a collection of data-type operators,
(3) arity € Op - (Ob D}* and res € Op = Ob D,
(4) Val € D + Set, a functor,

(5) mOp’ an appropriate interpretation for the

operators in Op, and

(6) Id, an infinite set of identifiers.

We first diverge from Chapter VII by changing P,
the poset of primitive phrase types. At first, the change
appears superficial: comm is just replaced by compl.

Thus

212

Ob P = {compl}
U {8-exp | § € D}
U {8-acc | § € D}

U {8-var | § ¢ D} ,

and the partial order on P is described in exactly the
same way as was the partial order on the poset of primitive
phrase types in Chapter VII.

As before, P generates T, a free type algebra, and

Ob T is the disjoint union
{ns} VPU{t=901]7, 6 T}.

Throughout this chapter we consider comm to be an abbrevia-

tion for compl = compl. So all the phrase types from

Chapter VII, and more, are available to us. In a sense,
we have added the "square root" of comm to the type
algebra; we leave it to some algebraist to formalize
that intuition.

Again, the language L is a free A-algebra generated
by a typed set G of linguistic constants with typing
function

type ¢ G - Ob T.

As before, G is the disjoint union of Op and Op'.

Op and the restriction of type to Op are the same as in
Chapter VII. However, we add two new linguistic constants,
halt and goto, to Op', so that Op' is given by the following

table, where § ¢ D and 1 ¢ T.

213

g € Op' type g
skip comm

comm = comm = comm

d—acc = §-exp = comm

é
ifthenelseT bogl=exXp = T %' = T
rec, (t=1)=1
newvar . (d=var = comm) = comm
halt compl
goto compl = comm

Intuitively, halt is the completion to which well-
formed programs, which are commands, are applied when they
are executed. The constant goto takes a completion
("label value") and turns it into a command; the resulting
command when applied to another completion ignores it and
passes control to the completion to which the goto was
applied.

To see how to desugar blocks with label definitions,

some discussion is necessary. Regard

let x:T be m in n

as syntactic sugar for
[(Ax:T.n) m] ,

and regard
letrec x:1 be m in n
as syntactic sugar for

[(Ax:T.n) (recT (Ax:t.m))] .

214

Multiple letrec's can now be desugared (see Reynolds [6]).
For instance, regard

letrec x.:7T be m, &

171 1
X2:T2 be m2
in n
as
letrec Xq3Tq be (letrec X531, be m, in ml)
in (letrec X,iT, be m, in n).
The block with label definitions
(cO ; El:cl 7 Ez:c2 Pos & W % £n:an) .

which has phrase type comm = compl = compl may be regarded

as
Ae:compl. letrec El:compl be ﬂcl £2ﬂ &
Ezzcomgl be [az £3ﬂ &

En:comgl be ﬂcn el
in ﬂco Elﬂ .
(Intuitively, e denotes the "normal" exit from the block.
The labels El, T Kn are "used" if commands of the form
goto Ei are executed during execution of the block.)

Hence, a block such as

(¢ ; AL:skip)

that contains a single label, which is used via the goto £

command to accomplish an "abnormal" exit from the block, may

215

be desugared by means of the following sequence of steps:
(¢ ; AL:skip) ,
Ae:compl. (letrec L:compl be [skip e] in [c¢ £2]),
re:compl. (letrec L:compl be e in [ec £]),
Ae:compl. (let £:compl be e in [c¢ £1),
Ae:compl. ((AL:compl. [c £] e),

AM:compl. [c 2] .

The method by which one proceeds from one step to the next
above is rather informal. (This indicates that more work
needs to be done on the nature of desugaring.) As long as
we are being informal, when ¢ contains no occurrences of
£, we can add the step

c

to the above list.

The semantics of this language L involves specifying

(1) a type algebra K derived from a Cartesian closed
category,

(2) a functor mng € P + |K|, which serves to give
meaning objects for each primitive phrase type,
and which extends to a uniquely defined type
algebra homomorphism Mng ¢ T ?QEQKE@‘* K,

(3) for each g € G, an arrow of |K|

semf g & Env empTmeﬁT-—» Mng (type g).
In this chapter we will use the same type algebra K

as was used in Chapter VII. Thus, K is the type algebra

canonically associated with the Cartesian closed category

216

|K|, the full subcategory of I = Pdom whose collection of
objects consists of those functors which give domains when
applied to store shapes and which give strict, continuous
functions when applied to expansions.

Turning now to the definition of mngeP > |K| .
we assume that we are given (0, a domain of "outputs".
The minimal element of 0 is to be viewed as the undefined
output. Perhaps 0 might be the flat poset consisting of
1 and all strings of data type values. Then again, perhaps
not. We do not need to be more explicit about the story
of 0.

We must give functors

mng compl, mng §-exp, mng §-acc, mng §-var € I > Pdom,
where § ¢ D, and show they are objects of |K|

Let

mng compl = (U =) = 0 ,

where U ¢ Z——= PdomOp is the forgetful functor which
forgets the second component of an expansion. Thus, for a
store shape X £ 0Ob Z,

mng compl X = X = 0 ,

the set of continuations (functions from stores to outputs)
appropriate to the store shape X. Since 0 is a domain,

X = 0 is a domain, and mng compl applied to store shapes
yields domains.

Suppose ($,p) € X-E~+ Y. Then

mng ComEl<¢fp>=¢:’lOEX:O-ﬁ'abﬂa—> Y = (.

217

Iet v € Y. The computation
(0 = 1y) L1y p Y
= (g ° 1359 ° 0 ¥
= dly=0 (¢ v)
0
= tys0 Y
shows that mng compl (¢,p) is strict. Hence mng compl is

an object of |K

Suppose § € D; then mng §-exp € I » Pdom is defined

just as in Chapter VII, i;e.

mng é-exp = (U -) = (val §)
so that for X € Ob &,

mng §-exp X = X = (Val_ﬁ)l

(This leads to the idea that a completion is an "output
expression," but we will say no more about this intuition.)
Next we will define mng &-acc for § € D. Since we

can't talk about Mng comm until the definition of mng is

complete, we introduce

Cmd = mng compl = mng compl ,

where the heavy arrow is the internal hom functor in |K

Mimicking Chapter VII, let
mng 6-acc € I > Pdom
be

mng 8§-acc = vVal § = (Cmd -) ,

where this heavy arrow is exponentiation for Pdom. Hence,

for X ¢ Ob I,
mng §-acc X = Val § = Cmd X
Just as in Chapter VII, mng §-acc is an object of |K]|.
For § € P, the definition of mng &§-var follows the
pattern laid down in the last chapter. Thus
mng ¢§-var = mng d&—-acc x mng d§-exp ,

. Thus, for a store

where X is the binary product in |K

shape X,
mng 6-var X = mng d6-acc X X mng d-exp X.

The definition of mng on primitive phrase types
(objects of P) is now complete. To define mng on implicit
conversions between primitive phrase types (arrows of P),
we may use the definition for the corresponding entity in
Chapter VII, taking care to make the trivial change of
using Cmd rather than mng comm. This fully defines
mng € P >~ |K| and also defines Mng ¢ T-?QEEEEQQ K , the
type algebra homomorphism whose restriction to P is mng.

The final item on the agenda is giving the semantics

of the generating set G of linguistic constants.

218

First of all, semf g where g ¢ G is a data type operator

(i.e. g € Op) can be defined the same way as in Chapter VII.

The discussion there carries over verbatim.

219

Next, consider skip. We must give
semf skip € Env empT"TET+ Mng comm

where Mng comm = Mng compl = Mng compl. By using the Cartesian
closed category structure of |K|, it suffices to give the

corresponding natural transformation

skp € Mng comEl"*TKT+ Mng compl.

The obvious definition is

HR = ang compl”
On the list of generators we next find ;. We wish

to give

r

semf ; ¢ Env empf“TkT4+Mng comm = Mng comm = Mng comm,
which we do by giving the corresponding natural transformation

sc € Mng comm X Mng comm X Mng comEl-TET+ Mng compl.

(Recall that Mng comm = Mng compl = Mng compl.) Let

denote the application arrow. Take sc to be such that

sc
Mng comm % Mng comm X Mng compl = Mng compl
““\\ P)f
l b'e Ap “"-\.Nx w e AP

~
-~

ki TR 5
Mng comm X Mng compl

220

commutes. There is a deep difference here between direct and
continuation semantics. Here the second command is applied
first. Curiously, regarding comm as a procedural phrase

type has made it possible to give the semantics of ; in a
way that involves many fewer verification arguments than in
Chapter VII. We are making strong and efficient use of the
connection between ; and application in a Cartesian closed
category.

Suppose § € D. We will define

semf =5 € Env empThTETM* Mng d-acc ® Mng §-exp ¥ Mng comm
by defining the corresponding natural transformation

assign, € Mn é—écc X Mng ¢§-exp X Mng compl-—T—7tMng compl.

gn; g g P g P 'TET* g p

Let X € Ob I be a store shape. We seek
assigng X € (val § = Mng comm X)x(X= (Val §))x(X=0)p o= (X=0)
Suppose a g Val S “pgomr Mng comm X, e e X Pdom (Val 6)L

and k ¢ X'ﬁ&&ﬁ'o° Let a denote the strict extension of a.

For each x £ X, note that
a, (e x) ¢ hom” X x Mng gg@gif“TfT*Mng compl .
Therefore, we may define
assigng X ¢a, e, k) € X =gy
by

assign, X (a, e, k) x = aL (e x) X (li, k) x, where x ¢ X.

6

Note the two occurrences of x on the right-hand side of the

221

equation, indicating that the store used to produce a value
is the store to be altered by the assignment command. The
proof that assign(S X is continuous is straightforward. We

must prove that assign6 is a natural transformation, so

suppose (¢, p) € X-—Emﬂ+Y, and consider the diagram
assigns X
(val § = Mng comm X)X(X:(Valé)l)X(X¢O)- =~ (X = 0)
’ l
(1=Mng comm<{¢,p)% (¢p=1)x(¢=1)] | ¢=1
; i
| |
Y assigné Y A
(Val § = Mng comm Y)X(Y=(Va16)l)X(Y:O)~~*~*—m_w—ﬁ*(Y = 0) .

For y £ Y, compute:

(assign5 Y o ((1L = Mng comm{¢,p))x(¢=1)x(¢=1))) (a,e, k) y

= assign{S Y (Mng comm (¢,p? o a, € o ¢, k o ¢} y
= (Mng comm { ¢,p?) o a)l ((e o ¢) yv) Y (1%, ko ¢ vy

(Mng comm (¢,p) o a) ((e o ¢) y) Y (1L, ko ¢y,

because Mng comm (¢,p} is strict,

Il

Mng comm (¢,p) (a, (e (¢y))) Y (1y, k o ¢) y

Il

a (e (¢y)) Y ((d,p, kK o ¢) ¥y,

since Mng comm = Mng compl = Mng compl ,

Il

a (e (4y)) X (1g , k) (4y),
by the naturality of a (e (¢ v))

= assign. X (a, e, k) (¢ y)

0
(¢ = 1) (assign6 X (a, e, k)) y

((¢p = 1) o assign(S X) (a, e, k) vy,

and this proves assign(S is natural.

222

In this chapter we take a different approach to the
semantics of ifthenelseT, where 17 ¢ T. As before, we seek

to define for each 1 & T
semf ifthenelseT e Env empT~TET*Mng bool-exp=Mng T = Mng T = Mng T,
and we do this by defining the corresponding

condT € Mng bool-exp x Mng T X Mng T-TETﬁang i A

However, at this point the treatment diverges from that in
the last chapter.
We first take up how to define condTée when conde

is known. Let

e Mng (1=0) x Mng (t=6) X Mng 1~177>Mng (1=6) X Mng T

Tforgetl’ "forget2 | K|

denote the projections obtained by forgetting the appropriate

Mng (t=8) factor in the domain.

Let
Ap £ Mng (1=6) x Mng T |K|rMng 6
be the application arrow in |K|. Then
Ap°ﬁforgetl’ Ap°“forget2 € Mng(T:e)XMng(Tﬁe)angTuTKT# Mng © -

From the universal mapping property for products we obtain

(Ap o Ap o

Tforgetl ' TTforget2)

Mng (t=6) X Mng(71=0) x Mng Tm*Mng 6 x Mng 0.

so that the diagram

Now d i !
w define cond =8

223

Mng bool=-exp x Mng (1t=0) xMng (T=6) XMng T-MMHMMKHEM
cond!
W

|
|
|
I -

lX(Ap°ﬂforqetl'gp°“forget2ﬁ Jmfﬂa-Mng ®
I _—cond
/ﬂ' e 8
Mng bool-exp X Mng 6 x Mng 6 -
commutes in |K|. Thus assuming that cond, is known, we

8

can define

condT € Mng bool—exEXMng(T=e)XMng(T=B)WTET*Mng T = Mng ©

=f
to be the abstraction of

c:ond,'{z>e € Mng bool-exp X Mng(T=6)ang(T=e)XMngT‘|K[Mng 0.

So to define condT for all phrase types 1, it suffices

to define cond1T for primitive phrase types m. We now proceed

to do this.
(1) m = compl. Let X € Ob I be a store shape. Define
cond X e

compl

Mng bool-exp X X Mng compl X X Mng compl X g ey Mng compl X

by
[k, x if b x = taue
cond__ l}{(b, kg k2) ;»x:==‘| k, x if b x = {alse
l
L & 1E bx= 41,
ky & X 57 e) ¢ B OB

where b € X 57— (Val bool) , k;, k, Pdom

The proof that cond X is continuous is routine.

compl

224

We must check that condC is a natural transformation,

ompl
so let (¢,ple X—=—Y be an expansion and consider the

3
diagram
cond 1 X
(X=(Val bool))x(X=0)x(X=0) sonp. (x=0)
‘ |
($=1) x (6=1) x (¢=1) | | ¢=1
l cond 1 ¥ :
(Y= (Val bool))x(¥=0)x(¥=0). somp- L (Y=0) .
For v € Y, compute:
(cond o1 Ye((6=1)x (9=1)x (9=1))) (b, ki, k,) ¥
= condcom 1 Y (bog¢, klo¢, k20¢) 3%
{ ky (¢ y) if b(¢ y) = Zrue
= % k, (¢ ¥) if b(¢y) = fakse
[L X 2 b(¢ yv) = L

Il

Condcom 1 X (Db, kl’ k2) (¢ v)

(cond
[

ompl X (Br K s Ky) e)y

2

Il

((¢ = 1) o cond X) (b, kl, k2) Y 4

compl

so the diagram commutes, and condC is indeed natural.

ompl

(2) m = d-exp where § € V. For X € Ob I, define

cond £

X
d-exp
Mng bool-exp X x Mng §-exp X X Mng §-exp X-ﬁgaaa Mng d-exp X

by

225

| el x if b x = trhue
|

conda_ex X (b, e e2> X = 4 e, X if b x = galse
|
i L if b x = L

where b ¢ X_«ﬁagah(Val bool)i r €17 €5 € X-§EEE+(Va15)l,

x € X. The necessary verifications for cond are com-

§—exp
pletely parallel to those for cond

compl
(3) @ = S-acc where 6 ¢ D. Note that the remarks

made earlier make it clear that condcomm = Condcomplﬁcompl

is defined. Suppose X € Ob I is a store shape. We can
define

Condé—acc X €

Mng bool-exp X X Mng &-acc X X Mng §-acc X-ﬁaga-Mng d=acc X

by

cond X (b, a;r a) v = cond X (b, a
comm

5 v, a, v)

é—acc 1 2

where b ¢ x-ﬁagﬁh(Val bool)l, a, € vVal éﬂﬁagﬁthg comm X

ajs
and v € Val §. It is easy to see that Condﬁ-acc X is con-

tinuous. To see that cond

is a natural transformation,
d—acc

let (¢p,p? € X-“E*'Y and consider the commutativity of the

diagram

226

(X=(Val bool)l)x(Val § = Mng comm X)x(Val § = Mng comm X)
&3
= "‘

\

\ condﬁ—acc X

vVal § = Mng comm X

(¢=1)*x(1 = Mng comm ¢ ¢,p?)%x (1l = Mng comm ¢ ¢,p?))

(0/¢) umod BUW « T

(Y= (val bool)l)x(Val § = Mng comm Y)x(Val § = Mng comm Y)
.

\\
S
.,

,
™,

cond,__. .Y \\\\\
S v

vVal § = Mng comm Y.

To establish this, we compute

(cond Yo ((¢=1)x(1=Mng comm ¢ ¢,p)) x

d—acc

(1L »> Mng comm ¢,p))) (b, ay a2) v

cond Y{be¢, Mng comm (d,p) o a

r —— Mng comm (¢,p) o a

lf

cond Y (bo¢, Mng comm (¢,p? (a

comm 1

v)),

= Mng comm ¢ ¢,p? (condcomm X by a; vr oa,

by the naturality of cond 4
comm

Mng comm { ¢,p? (cond X (b, > V)

§—-acc R g g

17 a2>) v

1

(Mng comm ¢ ¢,p? o cond X (b, a

§—acc

Il

(1 » Mng comm ¢ ¢,p?) (cond X (b, a

§—-acc 1’ a2>) W

17 a2) Ve

((1 = Mng comm (¢,p?) o condé_acc X) (b, a

Hence condﬁ—acc is a natural transformation.

(4) m™ = §-var where § € P. Recall that
Mng é-var = Mng d6-acc X Mng §-exp-

The projection onto the first (respectively second) compon

of Mng 6-var induces a projection

Ts—acc € Mng bool-exp x Mng é-var X Mng §-var

"“TET% Mng bool-exp x Mng §-acc x Mng d-acc

(respectively

V), Mng comm (¢,p)(a,

227

2) v

v))

ent

228

(i € Mng bool-exp x Mng ¢§-var x Mng §-var

d-exp
-TET* Mng bool-exp x Mng d§-exp X Mng d&-exp) .

and T with

We may compose the projections . S S=exp

condﬁ_acc and condé_exp_ Let the natural transformation

cond € Mng bool-exp X Mng d6-var x Mng d&-var

§d-var
7T Mng d-acc % Mng d-exp
| K] ==
be

, cond °

= teondy_ace ° Ms-ace §—exp T§-exp

cond
§=var

the arrow satisfying the obvious universal mapping property.
This finishes the definition of semf ifthenelseTr where

T % 15

The semantics of rec_ is the same for both continuation
semantics and direct semantics. The definition of semf rECT,

where T ¢ T, given in Chapter VII can be used here verbatim.

In Chapter VII we defined some objects related to the
category of & of store shapes. Some of these entities,
which were used in giving direct semantics for newvar g,
are again useful for giving continuation semantics for
newvarS. In fact, it is only the definition of the semantics
of newvar g that seems to require properties (zl), (Z2),
and (Z3); the semantics of the other linguistic constants
can be given with $et°P as the category of store shapes
(thus omitting the second component p of the arrows

(¢,p?) of £). 1In this chapter, the following objects are

229

defined exactly as they were in Chapter VII:

(1) the functor Newshape(S € L = I, which is such

that; for X = Ob %,

Newshape6 X =X x val &,

(2) the functions

enter6 X e X+ X xVal §,

exit6 X e XxvVvVal § - X
used upon entering and exiting from blocks
(recall that enter{5 X x =4{(x, init §’ and
exit(S X{x, v = X),
and

(3) the natural transformation

Ex:r_t(5 £ lz-"Egg* Newshape(S '

which is such that for X ¢ Ob &,

Exity X = (exits X, vg X) e X~ X x Val &.

J pX

Furthermore, Lemma 7.3 and Lemma 7.4 are still wvalid.

However, for continuation semantics, the notion of
"canonical local §-variable for a store shape X" needs re-
vision. For X e Ob I let

localvar, X € Mng §-var (X x Val §)

9

be

Il
-~
W
®

locr:xlvar(S X

230

where
amx e Val § ﬁggﬁ# Mng comm (X x Val §), and
es,x € X x Val 6'3&35“;(Val 6);
are defined below. Let eG,X be given by
e (%, v) = v

§,X
where x € X, Vv € Val 6§ (just as in Chapter VII).

For v ¢ Val 8§, we must give a natural transformation

as y V€ homZ (X x Val §) x Mng compl —T?T*Mng compl.
¥

Hence, for a store shape Y € Ob I, let
aG,X v ¥ e (X xVal § '—“-'Z“'%“Y) x (Y = 0) -?'&O‘m-* (Y = 0)

be given by

a v Y{(d,p?, k> v =k (p (exita X (¢ y), v) ¥y).

§,X

The idea behind the definition is that we apply the continua-
tion k to an altered state derived from y by assigning v
to the canonical local §-variable. Verification that

as x V Y is continuous is routine. We must verify that
r

ag x Vv is a natural transformation. Suppose that
r

(¢' , pe Y

5 -7, Consider the diagram

a[5 % v Y

(X x Val 5—~E~—Y)><(Y=-O) 4 > (Y = 0)
f i
|

hom” (XxVal§){ ¢',p' Ix(¢'=1)] 1¢'=1

1]
A a6 X v Z i

(X x val & w-i-«--.--»z)><(z=ro) 4 — (2 = 0)

231

For (¢,p) € X x vVal 6*Em¥Y, k € Y-ﬁagﬁrﬂ, z € %, we have

(a(S X vV Z o (hOmz (Xxvalﬁ)((b',p') (q)u = l))) <<¢rp>’ Y &
= aﬁ,Xv ZACo",0") o {d,p)s kK o ¢') z
= aé,X Vv Z{{¢p o ¢," DZ o (¢' - p!) o p), k o ¢|> -

= (ko ¢")((D, o (¢' > p') o p)exity X ((¢ o ¢') 2z), V) 2)

1l
‘;
o

¢") (D, ((p" > p') (p Cexits X (¢ (¢' 2)), VI))) 2)

Q

= (ko ¢") ((D, (0" o p Cexity X (¢ (' 2)), V) o ¢")) 2)
= (ko ¢")((p's pCexity X (¢ (¢' 2)), V) o ¢') z 2)

= (ko ¢")(p" (o (Cexits X (¢ (¢' 2)), V) (4" 2)) 2)

k (" (p' (p <e:~:it(S X (¢ (o' 2)), v) (¢' z)) z))

k (D {exit, X (¢ (¢' z)), v} (CP' 239 3 by [@l I

8
= aG,X v YAK(d, p), kK) (&' 2zZ)
i 1
= (aé’K v Y{ b, p)r K) o ¢') z

(¢" = 1) (a(S'X Vv Y ((d,p), k) 2z

((p" = 1) o as x VYY) (Lodopdy kI 2z,

which shows that the diagram commutes, and as ¢y V is a
¥

natural transformation.

232

Of course, it 1is necessary to prove a modified version
of Lemma 7.5. Recall that (¢6’DG> is another notation
for Newshape6 (¢,p) when (¢,p) € X-“Em*Y. Note the use
of property (Z2) in the proof.

Lemma 8.1: Let (¢,p) € XHME“*Y. Then

X) = localvar Y.

Mng §-var (¢6’Dé) (localvar 5

¢

Proof: Since

Mng §-var = Mng §—-acc x Mng §-exp,

localvar6 X = <a6,X g eG,X) , and
localvar6 Y = <a6,Y : eé'Y) i

it suffices to show
Mng ¢&-acc (¢6,96) aa'x = a@,Y , and

Mng d§-exp <¢6'96> ea,x = eﬁ,Y)

Let v € Val g, 2 € Ob &, (¢', p') € ¥ x Val 6—fu&Z'

ke z~5355»o and z ¢ Z. Observe that if we let ¢' z = (y, W)

then we can carry out the following computation:

Ps (exit(S X (¢6 (¢' 2)), v (o' 2)

Ps (exits X {¢6 {y, w)), v) {y, w)

Il

05 (exitﬁ XA v, W), V)Y, W)

p6<¢ Ve V) LYy, W)

(p (¢ V) vy, V)

233

:'(y; V) by (z2),

<exit6 Yy, w) , V)

(exit5 ¥ (0% z2)}s V) =

Thus,

Mng §-acc (¢6,05> a v Z{{p",p"), k) 2z

6,X

= Mng comm <¢6’pé) (v) Z{$p"yp'), k) 2z

R %

= aﬁéiv Z((",p") o <¢U,pé>, kY =z,
since Mng comm = Mng compl = Mng compl ,
— o] T L} o
= a5 ¢y VI Ldsoo 9"y Dyo (6" > p")epg) s k) oz

=k ((DZo(¢'+p')o pé)(exit6 X ({cpES o ¢')z), v) z)
=k (D, ((¢'»p")(pg Cexity X (95 (¢' 2)), V))) 2)

=k (D, (p'o pﬁ<exit X (¢6(¢' z)), v) o ¢') 2z2)

Z 8

=k ((p' o °s {exit6 X (¢6(¢' z}Y), v)» o ¢') z z)
=k (p' (96 (exitCS X (¢5(¢' z)), v (¢' z)) z)

=k (p' (exit6 Y (¢' z), v) z),
by the preceding computation,

aéﬁfv Z Loy p'¥; k)Y Z .

This demonstrates

Mngd-acc (¢6,p5> aS,X = aG,Y .

The proof of the other equation is very simple and can

be found in the proof of Lemma 7.5. [J

234

We are now ready to give the semantics of newvar g,

where § € P. The aim is to give

semf newvar, e Env empT-—T?T’(Mng §=var=Mng comm)=Mng comm,
and we do this by giving the corresponding

nv, € (Mng §-var = Mng comm) x Mng comEl*TET‘Mng compl.
Hence, for X £ 0b &, let

nv, X € (Mng 6-var = Mng comm) X x (X = 0)=5—= (X = 0)

8 Pdom
be given by
rm'(S ¥ ¢ Ty
s . z " :
= n(XXValS)(Ex:.t6 X, localvar{5 X>(Xxvala)(lXXVa16’ k ex:.t6 X)

° enter(S Xii

i _ —e e
where n ¢ hom™ X x Mng §-var IK[*‘Mng comm and k & X Pdom 0.
Think of n as telling how to construct a command out of a

§=variable. Then nvsx(r“ k) means enter a new block, execute

a command constructed with n from the canonical local §-variable,

then continue with k o exit(3 X (i.e. exit from the block and

continue with k). It is straightforward to show that nv . X

is continuous. We turn our attention to showing that A is

a natural transformation. Suppose (¢,p) € X-"Ej*Y}

The following technical lemma is useful.

Lemma 8.2: Let (¢,p) € X=5>Y and k ¢ X*-an;'o.

Then

a5

Mng compl (¢6'p6>(k ° exit5 X) =k o ¢ o exit6 X

Proof: Both sides of the equation are elements of
Y x vVal § ?HEE_O' Suppose v € Y and v € Val §. The desired

equality follows from the computation

Mng compl (¢6'p6) (k o exit(S X) {y, v
= (k o exitﬁ X o ¢5) Cy, v
= k (exit(S X {¢6 {y, v)))
= k (exit6 XAy, v))
=k (¢ vy)

=k (¢ (exit, Y <y, v)))

$

= (k o ¢ o exit(S Y) (y, v} .

We are interested in the commutativity of

nv6 X
(Mng 6-var = Mng comm) X x (X = 0) — ——— f = 0
| |
| |
!
(Mng &-var = Mng comm){ d,p)x(¢ = 1)l ¢ =1
|
l' nv & x
(Mng &var = Mng comm) Y x (Y = () ————= Y % 41

Let n ¢ homz X x Mng 6—var*TET*“Mng comm, k € X‘gazﬁ'o and

y € Y. Then

(nv, Y o ((Mng é-var = Mng comm){¢p,0? (¢ =1)))¥n, k) y

§

= nv, Y((Mng §-var = Mng comm){¢,0 >n, ke d) y

9

I

1

Mng (§-var=Mng comm){ ¢,p) n

X

236

(Yxval §){ Exit. Y, 1ocalvar6 V')

$

(Y x Val 6)<1YXVa16' k o ¢ o e:-(lt‘S Y)(enter6 Y y)
n (¥ x val fS](Exit(S Y o (d,p?, 10(:‘atlvar(S Y)
z .
(Y x vVal 6}(1YXVa16' k o ¢ o e:»«:J.t(S Y)(enter6 Y V)
by the definition of = in |K]|,
n (¥ x val 6)<(¢6,p) ° Exit6 X, localvar(S Y)
z .
(Y x Val G)<1YXVa16’ Ko ¢ o exit; Y){enter6 Y yv),
by Lemma 7.4 ,
n (¥ x val §)

((homE X (¢6,p5)XMng 6-var<¢‘5,p(s>}<Exit6 X, localvar

L

Yxvald’ i<k

(Y x val §)(1

by Lemma 8.1,

5 X))

¢ o exit6 Y)(enter, Y vy),

S

Mng comm <¢6,DS)(H(X x Val 5)(ExitES X, localvarrS X))

z

Yxvalés’ g e

(Y x Vals§)(1

¢ o exit, Y)(enter, Y y),

by the naturality of n,

n (X x val §)(Exit. X,

$
((¢6:106); k o ¢ o eXlt(S
because Mng comm

n (X x Valé)(Exité

((homz(XXValé)(¢6,p6)ang

(enter ., Y v),

S

localvar

5 X)¥(Y x val §)

Y)(enter6 ¥ v ,

Mng compl = Mng compl,

X, localvarfS X)X (Y x val §)

comgl(¢6,p6))(lixvalé,k > exit X))

by Lemma 8.2,

237

= Mng compl (¢6,p5)

(n (XxValg§)(Exit Z

X>{Xxvala)<lXxValé

X, localvar Ko exitéx))

§ S

(enter(S Y yv) .,

by the naturality of n(XXValé)(Exitﬁx, localvar6 XYy

z
XXValé'k

(n (XxvVals){ Exit X, localvar6X>(XxVa16)<l ° exit6 X)oqg

)
(enter6 Y y)

z

Xxvals X)

n(X x val <S)<Exit‘5 X, localvar, X)) (XxvVald§)(1l ko exit

o §

(ps(enter, Y y))

2 koexit, X

n(XXValG)(EXitsx, localvar X)(XXValﬂ)(1XXVa16r 3

(enter6 X (¢ v)),

because (¢6 (enter(S Y y))
= o8y, init 8) = (¢ y, init §) = enterg X (¢ V),

= nvg X (n, k) (¢ y)

(nv'(S X{n, k) o ¢) vy

(¢ = 1) (nv

5 X &ny, k)) y

Il

((¢p = 1) o nv X) {n, k) v,

and this shows the diagram commutes. Hence nv is a
natural transformation.

The semantics of halt are provided by
semf halt € Env empT*TEr*’Mng compl .

We assume there is some element of 0 denoting normal program
termination; call it endexecute £ 0. Then for a store

shape X, let

238

semf halt X € Env empT:xﬁaa?X = ()
be given by
semf halt X () x = endexecute, for all x e X.

It is trivial to see that semf halt is a natural transformation.

(We remark that some other kinds of linguistic constants,
such as output statements, must be given if we are to have
programs that do more than either print a program termination
message or run on indefinitely without giving output. See
Reynolds [7 1. We cannot delve more deeply into these matters
without exploring the story of 0.)

The last linguistic constant whose semantics we must give
is goto. We want

semf goto £ Env empT—TET*-Mng compl = Mng comm;

therefore we will give the corresponding natural transformation

jump € Mng compl x Mng comEl-—TET*Mng compl

Just let jump be the projection onto the first component.
Thus goto interrupts the flow of control by sending control
to its argument, rather than following the "normal" flow
(represented by the second component of the domain of jump).

After newvar the semantics of goto are mercifully brief.

(Sl'

239

BIBLIOGRAPHY

Arbib, M.A., and Manes, E.G., Arrows, Structures, and
Functors - The Categorical Imperative, Academic
Press, New York (1975).

Cohn, P.M., Universal Algebra, D. Reidel Pub. Co.,
Dordrecht (1981).

Goldblatt, R., Topoi, The Categorial Analysis of Logic,
North-Holland, Amsterdam (1979).

MacLane, S., Categories for the Working Mathematician,
Springer-Verlag, Berlin (1971).

Manes, E.G., Algebraic Theories, Springer-Verlag
(1976) .

Reynolds, J.C., "The Essence of Algol," Proc. Inter-
national Symposium on Algorithmic Languages,
North-Holland (1981).

Reynolds, J.C., "Semantics of the Domain of Flow
Diagrams," Journal ACM 24, pp. 484-503 (1977).

Reynolds, J.C., "Using Category Theory to Design
Implicit Conversions and Generic Operators,"
Lecture Notes in Computer Science 94, Springer-
Verlag, Berlin, pp. 211-258.

Scott, D.S., "The Lattice of Flow Diagrams,"” Symposium
on the Semantics of Algorithmic Languages,
Springer-Verlag, Berlin, pp. 311-366 (1971).

BIOGRAPHICAL DATA

Name: Frank Joseph Oles

Date and Place of Birth: December 15, 1946
Kronberg, Germany

Elementary School: Maplewood School
Sylvania, Ohio

Stranahan School
Sylvania, Ohio

Grove Patterson School
Toledo, Ohio

Monac School
Toledo, Ohio
Graduated 1957

Junior High School: Washington Junior High School
Toledo, Ohio

Jefferson Junior High School
Toledo, Ohio
Graduated 1960

High School: Whitmer Senior High School
Toledo, Ohio
Graduated 1964

College: Case Western Reserve University
Cleveland, Ohio
B.S. 1968

Graduate School: Cornell University
Ithaca, New York
M.S. 1970

Syracuse University
Syracuse, New York

240

