
The Hardness of the Hidden Subset Sum

Problem and Its Cryptographic Implications

Phong Nguyen and Jacques Stern

École Normale Supérieure
Laboratoire d’Informatique

45 rue d’Ulm, 75230 Paris Cedex 05
France

{Phong.Nguyen,Jacques.Stern}@ens.fr
http://www.dmi.ens.fr/~{pnguyen,stern}/

Abstract. At Eurocrypt’98, Boyko, Peinado and Venkatesan presented
simple and very fast methods for generating randomly distributed pairs
of the form (x, gx mod p) using precomputation. The security of these
methods relied on the potential hardness of a new problem, the so-called
hidden subset sum problem. Surprisingly, apart from exhaustive search,
no algorithm to solve this problem was known. In this paper, we exhibit
a security criterion for the hidden subset sum problem, and discuss its
implications on the practicability of the precomputation schemes. Our
results are twofold. On the one hand, we present an efficient lattice-based
attack which is expected to succeed if and only if the parameters satisfy a
particular condition that we make explicit. Experiments have validated
the theoretical analysis, and show the limitations of the precomputa-
tion methods. For instance, any realistic smart-card implementation of
Schnorr’s identification scheme using these precomputations methods is
either vulnerable to the attack, or less efficient than with traditional pre-
computation methods. On the other hand, we show that, when another
condition is satisfied, the pseudo-random generator based on the hidden
subset sum problem is strong in some precise sense which includes at-
tacks via lattice reduction. Namely, using the discrete Fourier transform,
we prove that the distribution of the generator’s output is indistinguish-
able from the uniform distribution. The two conditions complement each
other quite well, and therefore form a convincing picture of the security
level.

1 Introduction

In many discrete-log-based protocols, one needs to generate pairs of the form
(x, gx mod p) where x is random and g is a fixed base. ElGamal [9] and DSS [13]
signatures, Schnorr’s [18,19] and Brickell-McCurley’s [4] schemes for identifica-
tion and signature are examples of such protocols. The generation of these pairs
is often the most expensive operation, which makes it tempting to reduce the
number of modular multiplications required per generation, especially for smart-
cards. There are basically two ways to solve this problem. One way is to gener-
ate separately a random x, and then compute gx mod p using a precomputation

Michael Wiener (Ed.): CRYPTO’99, LNCS 1666, pp. 31–46, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

32 Ph. Nguyen, J. Stern

method [3,7,12]. The other way is to generate x and gx mod p together by a spe-
cial pseudo-random number generator which uses precomputations. Schnorr was
the first to propose such a preprocessing scheme [18]. The scheme had much bet-
ter performances than all other methods but there was a drawback: the ouptut
exponent x was no more guaranteed to be random, and therefore, each gen-
eration might leak information. Indeed, de Rooij [6] showed how to break the
scheme. Schnorr later proposed a modified version [19], which was also broken
by de Rooij [8].

At Eurocrypt’98, Boyko, Peinado and Venkatesan proposed new and very
simple generators [2] to produce pairs of the form (x, gx mod p), which could
reduce even further the number of necessary modular multiplications. The se-
curity of these methods apparently depended on a new problem, the so-called
hidden subset sum problem: given a positive integer M and b1, . . . , bm ∈ ZM , find
α1, . . . , αn ∈ ZM such that each bi is some subset sum modulo M of α1, . . . , αn.
The problem borrows its name from the classical subset sum problem: given
a positive integer M and b, α1, . . . , αn ∈ ZM , find S ⊂ {1, . . . , n} such that
b ≡ ∑

j∈S αj (modM). The most powerful known attack [5] against the sub-
set sum problem reduces it to a shortest vector problem in a lattice built from
b, α1, . . . , αn, M . Provided a shortest vector oracle, the method succeeds with
high probability if the density, defined as d = n/ log2 M , is small, namely less
than a constant approximately equal to 0.94. However, this method can hardly
be applied to hidden subset sums: one cannot even build the lattice since the αj’s
are hidden. Actually, apart from exhaustive search, no algorithm was known to
solve the hidden subset sum problem. And thus, according to the authors of [2],
the problem was potentially harder than the subset sum problem. Still, they
suggested high values of parameters to prevent any subset sum attack, for un-
known reasons. For these choices of parameters, the scheme was not suited for
smartcards, and the speed-up over other methods was questionable.

It was therefore natural to ask whether or not, one could select small param-
eters in order to make the scheme very efficient, without affecting the security.
More generally, Boyko et al. raised the following question: how hard is the hid-
den subset sum problem ? The present paper provides an answer. We exhibit a
security criterion for the hidden subset sum problem which is twofold. On the
one hand, we present an efficient lattice-based algorithm to solve the hidden
subset sum problem. It relies on a systematic use of the powerful notion of an
orthogonal lattice, which was introduced at Crypto’97 [14] by Nguyen and Stern
as a cryptographic tool, and subsequently used in cryptanalysis [16,15]. The al-
gorithm is very different from known lattice-based methods to solve subset sums,
but surprisingly, seems to generalize their results. More precisely, our algorithm
is expected to succeed when the density d = n/ log2 M is very small. Unfor-
tunately, this is exactly the case arising when one wants to make the scheme
practical and more efficient than other exponentiation methods, in a smart-card
environment. We have implemented the algorithm, and experiments have con-
firmed our analysis. On the other hand, we show that when the density is high,
the pseudo-random generator based on the hidden subset sum problem is strong

The Hardness of the Hidden Subset Sum Problem 33

in some precise sense. Namely, using the discrete Fourier transform, we prove
that the distribution of the generator’s output is then statistically close to the
uniform distribution. Such a result was already known (related results in [1,10]),
but our proof technique is different. Those results tend to prove that the hard-
ness of the hidden subset sum problem is measured by the density, as for the
subset sum problem.

The remainder of the paper is organized as follows. In section 2, we describe
the generators of pairs (x, gx mod p) proposed at Eurocrypt’98 in [2], and we
clarify the relationships between the security of these schemes and the hidden
subset sum problem. In section 3, we recall some facts on orthogonal lattices
from [14]. Section 4 presents our lattice-based algorithm to solve hidden subset
sum problems, and the experiments. In section 5, we discuss the hardness of the
hidden subset problem, by measuring the randomness of the generator output.

2 Fast Exponentiation with Hidden Subset Sums

Let p be a prime number, and g ∈ Z∗
p of order M . In [2], several generators

producing pairs (x, gx mod p) were proposed. The simplest generator was the
following one:
Preprocessing Step: Generate n random integers α1, . . . , αn ∈ ZM . Compute
βj = gα

j for each j and store both αj’s and βj ’s in a table.
Pair Generation: Whenever a pair (x, gx) is needed, randomly generate S ⊆
{1, . . . , n} such that |S| = κ. Compute b =

∑
j∈S αj mod M . If b = 0, stop and

start again. Compute B =
∏

j∈S βj mod p and return (b, B).
Clearly, for any output (b, B), we have B = gb mod p. The other generators

are just variants of the previous generator, using random walks. We will not
discuss those, since the security of the generators relies on the same problem.

2.1 Parameters

The scheme needs to store n elements of ZM , and n elements of Z∗
p. Recall

that for DSS [13] and Schnorr [18,19], M has 160 bits, while for ElGamal [9]
and Brickell-McCurley [4], M has at least 512 bits. Each generation requires κ
modular multiplications. When κ � n/2, we say that the underlying hidden
subset sum problem is sparse. The parameters n and κ must be sufficiently large
to prevent from birthday attacks. In [2], it was suggested to choose n = 512
and κ = 64. Comparisons with traditional precomputation methods were made,
but only in the case of 512-bit exponents. Table 1 compares the scheme with
several configurations of the simple exponentiation method with precomputation
of [12]. It shows that for a 160-bit exponent, the generator with the proposed
parameters is worse in all aspects. For a 512-bit exponent, it is better: with
similar storage, one gains 14 multiplications. But with other precomputation
methods, there is no security issue since the exponent is random. Another issue
is the viability of the scheme for low-computing-power devices. For instance,
a storage of 672 represents 42 Kbytes, which is unacceptable for a smartcard.

34 Ph. Nguyen, J. Stern

Table 1. A comparison of methods for generating pairs (x, gx mod p) where p
is a 512-bit prime. Storage requirements are in 512-bit numbers. Times are in
multiplications per exponentiation.

160-bit exponent 512-bit exponent
Method Storage Time Storage Time

Hidden subset sum generator 672 64 1024 64

Lim and Lee [12] 30 58 62 153
62 46 157 106
508 27 1020 78

Thus, the parameters proposed in [2] are rather suited for server applications. In
order to offer much better performances than other methods, one is tempted to
decrease the parameters. We will discuss possible parameters when we present
the experiments related to our attack.

2.2 Security Against Active Attacks

When the generator is used, the security seems to rely on the underlying hidden
subset sum problem. Indeed, suppose for instance that the generator is used in
Schnorr’s [19] identification scheme. Let q be a 160-bit prime dividing p − 1,
where p is a 512-bit prime.

The prover has a secret key s ∈ Z∗
q and a public key v = g−s mod p, where

g is a primitive qth root of unity. He generates a random pair (k, gk mod p)
and sends x = gk to the verifier. The verifier returns a challenge e ∈ Zq. Then
the prover sends y = k + es mod q. Finally, the verifier checks whether x =
gyve mod p. In an active attack, the verifier can issue many times the challenge
0 ∈ Zq. He thus gets many outputs of the generator, as y = k. After solving
the underlying hidden subset sum problem, he knows the hidden α1, . . . , αn. He
then issues the challenge 1 ∈ Zq, to obtain k + s mod q for some unknown k a
subset sum of the αj’s. If n and κ are not too large, he can exhaustively search
for the 0, 1-coefficients of the αj’s to disclose k, and hence the secret key s.

Conversely, if the output of the hidden subset sum generator used is cryp-
tographically pseudo-random, then the speeded-up versions of the following
schemes are secure against polynomial time adaptive attacks, provided that the
original schemes are secure: ElGamal, DSS and Schnorr signatures, Schnorr iden-
tification. (see [2]).

2.3 Security Against Passive Attacks

In [2] (Theorems 6 and 7, p.230), it was claimed that only the security against
active attacks needed to assume the hardness of the hidden subset sum problem.
However, it seems that the security against passive attacks actually relies on
the potential hardness of a slight variant of the hidden subset sum problem,

The Hardness of the Hidden Subset Sum Problem 35

which we call the affine hidden subset sum problem: given a positive integer M ,
and b1, . . . , bm, c1, . . . , cm ∈ ZM , find integers s, α1, . . . , αn ∈ ZM such that each
bi + sci is some subset sum modulo M of α1, . . . , αn.

Assume for instance that the generator is used in Schnorr’s signature scheme.
We keep the notations of the previous section. The public key is v = g−s mod p.
The signer generates a random pair (k, gk mod p). He computes a hash e =
h(k, m) where m is the message, and y = k + es mod q. The signature is the
pair (y, e). Notice that k = y− es mod q is a hidden subset sum, where y and e
are known and s is secret. Thus, a passive attacker is left with an affine hidden
subset sum problem with the pairs (y,−e) and the modulus q. If he can solve
this problem, he recovers the secret key s.

The previous remark can be adapted to the following schemes: Schnorr’s and
Brickell-McCurley’s identification, ElGamal and DSS signatures. For example, in
the case of DSS, a signature is of the form (a, b) where b = k−1(m+ as) mod q,
s is the secret key and m is the hash. Note that k = mb−1 + ab−1s mod q is
a hidden subset sum. But mb−1 and ab−1 are known, so this is again an affine
hidden subset sum problem, from which one can derive the secret key s.

We will see that our attack against the hidden subset sum problem can be
adapted to the affine hidden subset sum problem. It appears that the complexity
of these problems is similar.

3 Lattice Reduction and the Orthogonal Lattice

Throughout the paper, we call lattice any subgroup of Zm for some integer m.
If L is a lattice, we denote by det(L) its determinant (or volume), and Λ(L)
the Euclidean norm of a shortest non-zero vector of L. A classical result of
Minkowski states that for any integer d, there is a constant γ(d) such that for
all d-dimensional lattice L:

Λ(L) ≤ γ(d) det(L)1/d.

The smallest such constant is denoted by γd and called Hermite’s constant of
rank d. It is known that: √

d

2πe
≤ γd ≤

√
d

πe
.

As a result, it is convenient to assume that for a “random” d-dimensional lattice
L, the quantity Λ(L)/(

√
d det(L)1/d) is roughly equal to some universal constant

γ. The goal of lattice reduction is to find a reduced basis, that is, a basis con-
sisting of reasonably short vectors. In the sequel, we will not need more precise
definitions, or very precise approximations for the shortest vector. In practice,
one hopes to obtain sufficiently reduced bases thanks to reduced bases in the
sense of LLL [11], or its variants [17,20].

Let L be a lattice in Zm. The orthogonal lattice L⊥ is defined as the set of
elements in Zm which are orthogonal to all the lattice points of L, with respect to
the usual dot product. We define the lattice L̄ = (L⊥)⊥, which is the intersection

36 Ph. Nguyen, J. Stern

of Zm with the Q-vector space generated by L: it contains L and its determinant
divides the one of L. The result of [14] which are of interest to us is the following
one:

Theorem 1. If L is a lattice in Zm, then dim(L) + dim(L⊥) = m and det(L⊥)
is equal to det(L̄).

This suggests that if L is a “random” low-dimensional lattice in Zm, a reduced
basis of L⊥ will consist of very short vectors compared to a reduced basis of L.
More precisely, one expects that any reduced basis of L⊥ will consist of vectors
with norm around γ

√
m − dimLdet(L̄)1/(m−dim L). Furthermore, one can note

that computing a basis of the orthogonal lattice amounts to compute the integer
kernel of an (integer) matrix, so that:

Theorem 2. There exists an algorithm which, given as input a basis (b1, . . . ,bd)
of a lattice L in Zm, outputs a basis of the orthogonal lattice L⊥, and whose run-
ning time is polynomial with respect to m, d and any upper bound of the bit-length
of the ‖bj‖’s.
In fact, it was proved in [14] that one could directly obtain an LLL-reduced basis
of the orthogonal lattice by a suitable LLL-reduction, in polynomial time.

4 A Lattice-Based Attack

Let us first restate the hidden subset sum problem in terms of vectors. Given an
integer M , and a vector b = (b1, . . . , bm) ∈ Zm with entries in [0..M − 1], find
integers α1, . . . , αn ∈ [0..M − 1] such that there exist vectors x1, . . . ,xn ∈ Zm

with entries in {0, 1} satisfying:

b = α1x1 + α2x2 + · · ·+ αnxn (mod M) (1)

Throughout this section, we will assume that (b, M) is a correct input. That is,
there exist integers α1, . . . , αn ∈ [0..M−1], vectors x1, . . . ,xn ∈ Zm with entries
in {0, 1}, and a vector k ∈ Zm such that:

b = α1x1 + α2x2 + · · ·+ αnxn + Mk (2)

Our attack proceeds in three steps:

1. From b, we determine the lattice L̄x, where Lx is the lattice generated by
the xj’s and k.

2. From L̄x, we derive the hidden coefficients xj’s.
3. Using b, the xj ’s and M , we finally recover the weights αj’s.

Note that this attack recovers all secret data, not just the αj’s. For the sake
of simplicity, we will assume that Lx has dimension n + 1, but the attack still
applies when the dimension is less than n + 1. In other words, we assume that
the xj’s and k are linearly independent, which is a reasonable assumption since
the xj ’s are random. We now detail the three steps.

The Hardness of the Hidden Subset Sum Problem 37

4.1 Disclosing the Hidden Lattice

The first step is based on the following observation, which is a simple consequence
of (2):

Lemma 3. Let u in Zm be orthogonal to b. Then pu = (u.x1, . . . ,u.xn, u.k) is
orthogonal to the vector vα = (α1, . . . , αn, M).

Note that vα is independent of m, and so is the n-dimensional lattice v⊥
α . We

will see that, as m grows, most of the vectors of any reduced basis of the (m−1)-
dimensional lattice b⊥ are shorter and shorter. For such vectors u, the corre-
sponding vectors pu are also shorter and shorter. But if pu gets smaller than
Λ(v⊥

α) (which is independent of m), then it is actually zero, that is, u is orthog-
onal to all the xj ’s and k. This leads to the following condition:

Condition 4. Let (u1, u2, . . . ,um−1) be a reduced basis of b⊥. Then the first
m− (n + 1) vectors u1, . . . ,um−(n+1) are orthogonal to each xj and k.

One cannot expect that more than m− (n + 1) vectors are orthogonal, because
L̄x has dimension (n + 1). If the condition is satisfied, the (n + 1)-dimensional
lattice (u1, . . . ,um−(n+1))⊥ contains each of the xj’s and k. And one can see
that it is in fact the lattice L̄x, because they are orthogonal lattices of equal
dimension, with one containing the other. Hence, the first step is as follows:

1. Compute a reduced basis (u1, u2, . . . ,um−1) of the orthogonal lattice b⊥.
2. Compute a basis of the orthogonal lattice (u1, . . . ,um−(n+1))⊥ to obtain L̄x.

This step is correct if and only if condition 4 is satisfied. We now precise in which
case the condition is expected to hold. We first estimate the quantity Λ(v⊥

α). If
the αj’s are uniformly distributed in [0..M−1], then E(α2

j) ≈ M2/3 so that ‖vα‖
is roughly M

√
n/3 (we assume the variance is negligible). With overwhelming

probability, the gcd of all the αj’s and M is equal to 1, implying that the lattice
v̄α is exactly vα, and therefore: det(v⊥

α) = ‖vα‖ ≈ M
√

n/3. Since the αi’s are
random, the n-dimensional lattice v⊥

α may be considered as random, so that:

Λ(v⊥) ≈ γ
√

n det(v⊥
α)1/n ≈ γM1/n(n/3)1/(2n)

√
n.

We then estimate ‖pu‖ for some well-chosen vectors u. If the coordinates of the
xj’s are independently uniformly distributed in {0, 1} (the case of the actual
sparse distribution is discussed in section 4.4), and so are the αj’s in [0..M − 1],
the expectation of the square of each coordinate of α1x1 + · · ·+αnxn is roughly:

n × 1
2
× M2

3
+ (n2 − n) × 1

4
× M2

4
≈ 1

16
n2M2.

Hence E(‖k‖2) ≈ mn2/16, and we note that E(‖xj‖2) ≈ m/2. It follows that
for any u (we again assume that the variance is negligible):

‖pu‖ ≈ ‖u‖
√

n × m/2 + mn2/16 ≈ n
√

m‖u‖/4.

38 Ph. Nguyen, J. Stern

Besides, we observe that the lattice b⊥ contains a high-dimensional lattice of
small determinant. Namely, it contains by (2) the (m − n − 1)-dimensional
lattice (x1, . . . ,xn, k)⊥, which determinant is less than ‖k‖ × ∏n

j=1 ‖xj‖ ≈
n
√

m(m/2)n/2/4. Hence, the vectors of any reduced basis of (x1, . . . ,xn, k)⊥

are expected to have norm around

γ
[
(m/2)n/2n

√
m/4

]1/(m−n−1)√
m − n − 1.

Note that the expression is much smaller than γ‖b‖1/(m−1)
√

m− 1 for large M ,
as ‖b‖ ≈ M

√
n. Therefore, the first m − n − 1 vectors of any reduced basis of

b⊥ are likely to be short lattice points of (x1, . . . ,xn, k)⊥, and their expected
length is given by the previous expression. For these vectors, the approximate
length of the corresponding pu is:

[
n
√

m/4 × (m/2)n/2
]1/(m−n−1)

n
√

m(m − n − 1)/4.

And condition 4 is likely to be satisfied if and only if this length is significantly
smaller than Λ(v⊥), that is:

[
n
√

m/4 × (m/2)n/2
]1/(m−n−1)

n
√

m(m − n − 1)/4 � M1/n(n/3)1/(2n)
√

n.

For sufficiently large m and n, the condition simplifies to:√
mn(m − n − 1)/4 � M1/n (3)

The left-hand part is not large. In other words, this step is expected to succeed
if the density n/ log2(M) is very small, so that M1/n is large.

4.2 Disclosing the Hidden Coefficients

In the second step, the lattice L̄x is known. The vectors xj ’s are random and
have entries in {0, 1}, therefore these are short lattice points in L̄x. Consider a
short vector of some reduced basis of L̄x. If its entries are all in {0, 1} or {0,−1},
it is very likely to be one of the ±xj ’s. Otherwise, its entries are probably in
{0,±1}, as it must be shorter than the xj’s. To get rid of these vectors, we
transform the lattice L̄x: we double all the lattice points, and we add the vector
(1, 1, . . . , 1). The new lattice is:

L′
x = 2L̄x + Z × (1, 1, . . . , 1).

The vectors 2xi − (1, 1, . . . , 1) belong to L′
x, and their entries are ±1: they are

short lattice points. We expect that there are no shorter vectors, since there is
no obvious short combination of (1, 1, . . . , 1) with the previous parasite vectors
when doubled. In other words, the vectors ±[2xi−(1, 1, . . . , 1)] should appear in
any reduced basis of the lattice L′

x. We expect this step to succeed if our lattice
reduction algorithm provides a sufficiently reduced basis.

The Hardness of the Hidden Subset Sum Problem 39

4.3 Recovering the Hidden Weights

Now that k and the xj’s are known, equation (2) reads as a modular linear
system:

b = α1x1 + α2x2 + · · ·+ αnxn (mod M)

The only unknowns are the αj’s. If m is sufficiently large, this system is likely
to have a unique solution. One way to solve this system is to use an orthogonal
lattice. Denote by xi,j the j-th coordinate of xi. Also denote by bi the i-th
coordinate of b. Let m′ ≤ m. Consider the lattice L generated by the rows of
the following matrix:




b1 x1,1 x2,1 . . . xn,1 M 0 . . . 0

b2 x1,2 x2,2 . . . xn,2 0 M
. . .

...
...

...
. . .

...
...

. 0
bm′ x1,m′ x2,m′ . . . xn,m′ 0 . . . 0 M




We note that L⊥ must contain a point of the form (−1, α1, . . . , αn, ?, . . . , ?),
since the αj’s satisfy the system. It follows that in any basis of L⊥, there exists
a linear combination (of the basis elements) for which the first coordinate is
equal to −1. Such a combination can easily be computed from an extended gcd
algorithm applied to the list formed by the first coordinate of each basis element.
The element obtained is of the form (−1, β1, . . . , βn, ?, . . . , ?). Clearly, the vector
(β1, . . . , βn) modulo M satisfies the first m′ solutions of the system. If m′ is
sufficiently large, it must be the unique solution (α1, . . . , αn). Hence, in order
to solve the system, it suffices to compute a basis of the orthogonal lattice L⊥,
which can be done in polynomial time.

4.4 Sparse Hidden Subset Sums

If the hidden subset sum is sparse, that is κ � n/2, the condition (3) gets slightly
better. Indeed, when one picks at most κ weights in each subset sum, one can
show that E(‖k‖2) ≈ mκ2/16 and E(‖xj‖2) ≈ mκ/n. It follows, after a few
computations, that the attack is expected to succeed if:

[
κ
√

m/4×√
m(mκ/n)n/2

]1/(m−n−1)

κ
√

m(m − n − 1)/4 � M1/n(n/3)1/(2n)
√

n.

For sufficiently large m and n, the condition simplifies to:

κ
√

m(m − n − 1)/4 � M1/n
√

n (4)

4.5 Affine Hidden Subset Sums

In the case of affine hidden subset sums, equation (2) becomes:

b + sc = α1x1 + α2x2 + · · ·+ αnxn + Mk (5)

40 Ph. Nguyen, J. Stern

Only b, c and M are known. The attack can be adapted as follows. Clearly,
lemma 3 remains correct if we take for u a vector orthogonal to b and c. Step 1
thus becomes:

1. Compute a reduced basis (u1, u2, . . . ,um−2) of the orthogonal lattice (b, c)⊥.
2. Compute a basis of the orthogonal lattice (u1, . . . ,um−(n+1))⊥ to obtain L̄x.

The difference with the hidden subset problem is that, this time, the vector k
can be much bigger, due to the presence of s. More precisely, we have s ≈ M/2
and ‖c‖ ≈ M

√
m/3, so that ‖k‖ ≈ M

√
m/12. In the appendix, we discuss how

to modify the previous arguments to explain why the condition is still expected
to be satisfied. Loosely speaking, when u is short, the vector pu cannot be
guaranteed to be short, but all its entries except the last one are short, which
suggests it cannot be a non-zero vector of v⊥

α . Step 2 remains unchanged. And
in step 3, we solve a similar linear system which is induced by (5). Therefore, the
only difference when attacking affine hidden subset sums is that the underlying
condition is less likely to be satisfied.

4.6 Experiments

We implemented our attack using the NTL [21] library version 3.1 developed by
V. Shoup. We used two reduction algorithms: the LLL [11] algorithm to compute
orthogonal lattices, and Schnorr’s [17] Korkine-Zolotarev reduction algorithm
with blocksize 20 to obtain better reduced bases. The implementation is fast:
when m ≤ 300 and M is no larger than 512 bits, the attack performed in less
than 15 minutes on a 333MHz Ultrasparc-IIi. Heuristically, our attack works
when the density is much smaller than 1, but only experiments can tell us what
is exactly the limit. We stress that our implementation has not been optimized,
which means that it might be possible to go a little bit further than what we
obtained. For instance, one might try improved reduction algorithms such as [20].
In all our experiments, the attack worked as soon as step 1 was correct.

We first experimented the attack on hidden subset sums. If M is a 160-bit
number (resp. 512-bit) , the attack works up to n ≈ 45 (resp. 90) with m ≈ 90
(resp. 200). We were not able to attack larger values of n, even with larger
values of m (up to 400). For affine hidden subset sums, results are not as good:
if M is a 160-bit number (resp. 512-bit), the attack works up to n ≈ 35 (resp.
60) with m ≈ 90 (resp. 150). These results show that the conditions of validity
for the attack which we gave previously are quite pessimistic. In particular, it
appears that the attack is effective against small values of n, which are required
in a smartcard environment. Analyzing table 1, we find that in the smartcard
case, the HSS generator cannot be more efficient than the method of LL [12] for
160-bit and 512-bit exponents.

However, there is quite a gap between the largest parameters that our attack
can handle and the parameters suggested in the scheme. When M1/n is very
small, even very short vectors can be orthogonal to vα, so that step 1 is highly
unlikely to succeed. This is for instance the case with n = log2 M . For such a

The Hardness of the Hidden Subset Sum Problem 41

n, our attack cannot even exploit the sparsity of the subset sums, and the best
attack remains the birthday attack. It follows that if one is willing to pay with
storage by choosing a sufficiently large value of n to foil the attack, then one
can choose a small κ to reduce significantly the computation time. This does
not seem to be very useful in the 160-bit case, as LL’s method offers very good
performances. But it improves the situation for 512-bit exponents. Hence, the
hidden subset sum generator appears to be useful only for server applications,
with exponents of at least 512 bits.

5 The Randomness of the Hidden Subset Sum Generator

We analyze the distribution of the output of the hidden subset sum generator,
and discuss its implications on the security of the scheme. For fixed M , the
distribution is exponentially close (with respect to n) to the uniform distribution.
We provide a proof in two cases: when the 0, 1-coefficients are balanced, and
when they are not. It was pointed out to us that such results were already
known (technical result in [1], and a particular case is treated in [10]), but since
our proof is quite different, we include it in appendix B. Our technique is based
on the discrete Fourier transform, which might be of independent interest. The
following result is proved in the extended version of [1] (Lemma 1, p12):

Theorem 5. There exists a c > 0 such that for all M > 0, if α1, . . . , αn are
independently and uniformly chosen from [0..M − 1], then the following holds
with probability at least 1 − 2−cn:

M−1∑
a=0

∣∣∣∣∣∣P

 n∑

j=1

xjαj = a


 − 1

M

∣∣∣∣∣∣ ≤ 2−cn
√

M,

where P refers to a uniform and independent choice of the xj’s in {0, 1}.
This means that for fixed M , with overwhelming probability on the choice of
the αi’s, the distribution of the hidden subset sum generator is statistically close
to the uniform distribution. And the result remains valid when one considers a
polynomial number of samples instead of just one sample. More precisely, it is
well-known that if for some distributions D1 and D2, the statistical difference of
D1 and D2 is less than ε, then the statistical difference of Dm

1 and Dm
2 is less than

mε, where the notation Dm means picking m elements independently at ran-
dom from D. For instance, it can be proved by introducing hybrid distributions
consisting of k elements picked from D1 and m− k picked from D2.

Thus, for a fixed M , with overwhelming probability on the choice of the αi’s,
the distribution obtained by picking independently at random a polynomial num-
ber (in n) of outputs of the hidden subset sum generator corresponding to the
αi’s is statistically close to the uniform distribution. In particular, a polynomial-
time adversary cannot distinguish the two distributions. But a successful attack
against a scheme (for instance, DSS) using the hidden subset sum generator

42 Ph. Nguyen, J. Stern

would serve as a distinguisher for those distributions, assuming that the un-
derlying scheme is unbreakable. Note that it was the case of our lattice-based
attack.

Hence, the hidden subset sum generator is provably secure in this sense when
the density is high. But this not very interesting from a practical point of view.
Because when the density is high and the 0, 1-coefficients are balanced, the
scheme does not save over the obvious square-and-multiply generator. However,
for the moment, we do not know what happens precisely with the actual distri-
bution of the generator, that is, when the subset sums are sparse. Our technique
is able to deal with the case of unbalanced coefficients (see section B.2), but we
are unable to extend it to the sparse distribution. Maybe the technique of [1]
will be more useful.

6 Conclusion

Boyko et al. proposed several methods to produce simple and very fast meth-
ods for generating randomly distributed pairs of the form (x, gx mod p) and
(x, xe mod N) using precomputation. For discrete-log-based schemes, the secu-
rity of these generators against active attacks relied on the presumed hardness
of the hidden subset sum problem. We showed that the security against passive
attacks relied on a variant of this problem, which we called the affine hidden sub-
set sum problem. We provided a security criterion for these problems, based on
the density. On the one hand, we presented an effective lattice-based algorithm
which can heuristically solve these problems when the density is very small. Ex-
periments have confirmed the theoretical analysis, and show that the practical
interest of the proposed schemes is marginal. When applied to protocols such as
DSS, ElGamal, or Schnorr, the proposed methods cannot be significantly more
efficient on smartcards than traditional exponentiation methods based on pre-
computation, without being vulnerable to attacks. On the other hand, we showed
that when the density is high, the distribution of the output of the generator was
exponentially close to the uniform distribution, which provides undistinguisha-
bility against polynomial-time adversaries. The two conditions complement each
other, but there is still a gap. It would be interesting to reduce the gap, either
by improving the attack, or the hardness results. In particular, it would be nice
to obtain a hardness result of practical interest for the actual hidden subset sum
generator which uses sparse subset sums.

Acknowledgments. We would like to thank the anonymous referees for their
helpful comments.

References

1. M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th ACM STOC,
pages 99–108, 1996. Extended version at http://www.eccc.uni-trier.de/eccc/.

The Hardness of the Hidden Subset Sum Problem 43

2. V. Boyko, M. Peinado, and R. Venkatesan. Speeding up discrete log and factoring
based schemes via precomputations. In Proc. of Eurocrypt’ 98, volume 1403 of
LNCS, pages 221–235. Springer-Verlag, 1998.

3. E. Brickell, D.M. Gordon, K.S. McCurley, and D. Wilson. Fast exponentiation
with precomputation. In Proc. of Eurocrypt’92, volume 658 of Lecture Notes in
Computer Science, pages 200–207. Springer-Verlag, 1993.

4. E. F. Brickell and K. S. McCurley. An interactive identification scheme based on
discrete logarithms and factoring. Journal of Cryptology, 5(1):29–39, 1992.

5. M.J. Coster, A. Joux, B.A. LaMacchia, A.M. Odlyzko, C.-P. Schnorr, and J. Stern.
Improved low-density subset sum algorithms. Computational Complexity, 2:111–
128, 1992.

6. P. de Rooij. On the security of the Schnorr scheme using preprocessing. In Proc.
of Eurocrypt’91, volume 547 of LNCS, pages 71–80. Springer-Verlag, 1991.

7. P. de Rooij. Efficient exponentiation using precomputation and vector addition
chains. In Proc. of Eurocrypt’94, volume 950 of Lecture Notes in Computer Science,
pages 389–399. Springer-Verlag, 1995.

8. P. de Rooij. On Schnorr’s preprocessing for digital signature schemes. Journal of
Cryptology, 10(1):1–16, 1997.

9. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory, 31:469–472, 1985.

10. R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure
as subset sum. Journal of Cryptology, 9(4):199–216, 1996.

11. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

12. C.H. Lim and P.J. Lee. More flexible exponentiation with precomputation. In
Proc. of Crypto’94, volume 839 of Lecture Notes in Computer Science, pages 95–
107. Springer-Verlag, 1994.

13. National Institute of Standards and Technology (NIST). FIPS Publication 186:
Digital Signature Standard, May 1994.

14. P. Nguyen and J. Stern. Merkle-Hellman revisited: a cryptanalysis of the Qu-
Vanstone cryptosystem based on group factorizations. In Proc. of Crypto’97, vol-
ume 1294 of LNCS, pages 198–212. Springer-Verlag, 1997.

15. P. Nguyen and J. Stern. Cryptanalysis of a fast public key cryptosystem presented
at SAC ’97. In Proc. of SAC ’98, LNCS. Springer-Verlag, 1998.

16. P. Nguyen and J. Stern. The Béguin-Quisquater server-aided RSA protocol from
Crypto ’95 is not secure. In Proc. of Asiacrypt ’98, volume 1514 of LNCS, pages
372–379. Springer-Verlag, 1998.

17. C.-P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. The-
oretical Computer Science, 53:201–224, 1987.

18. C.P. Schnorr. Efficient identification and signatures for smart cards. In Proc. of
Crypto’89, volume 435, pages 239–252. Springer-Verlag, 1990.

19. C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4:161–174, 1991.

20. C.P. Schnorr and H.H. Hörner. Attacking the Chor-Rivest cryptosystem by im-
proved lattice reduction. In Proc. of Eurocrypt’95, volume 921 of LNCS, pages
1–12. Springer-Verlag, 1995.

21. V. Shoup. Number Theory C++ Library (NTL) version 3.6. Can be obtained at
http://www.shoup.net/ntl/.

A The Condition for Affine Hidden Subset Sums

We explain why the modified step 1 of the attack is still expected to succeed
against affine hidden subset sums when the density is very small. This time, the

44 Ph. Nguyen, J. Stern

vector k is long:
‖k‖ ≈ M

√
m/12.

Therefore, we no longer know a high-dimensional sublattice of (b, c)⊥ with small
determinant. Still, we can hope that the first vectors of a reduced basis of (b, c)⊥

will have norm around (‖b‖ × ‖c‖)1/(m−2)
√

m− 2 ≈ (mM2/3)1/(m−2)
√

m− 2
which is small for large m. But the explanations of section 4.1 regarding condi-
tion 4 are no longer convincing, because pu cannot be guaranteed to be short,
even if u is very short (which it is). Recall that

pu = (u.x1, . . . ,u.xn, u.k).

All the dot products u.xj’s are still small, but the last coordinate u.k might
be large, since k is long. However, we still expect that pu cannot be a non-zero
vector of v⊥

α if u is very short, because most of its coordinates are very small.
To see this, let A be a bound for all the |u.xi|’s, and B a bound for the last

coordinate |u.k|. Denote by S the set of all vectors (y1, . . . , yn+1) ∈ Zn+1 where
all the yi’s are positive with yn+1 ≤ B and the remaining yi’s are less than
A. There are AnB vectors in S. Now, consider the dot product of an element
of S with vα. This dot product is in absolute value less than (nA + B)M , so
that there are most 2(nA + B)M different possible values. It follows by the
pigeon-hole principle that if AnB > 2(nA + B)M , there must be a collision,
that is, there must exist two distinct vectors z1 and z2 in S that have the same
dot product with vα, which yields by difference an non-zero orthogonal vector
to vα. The first n entries of this vector are less than A in absolute value, and
the last entry is less than B in absolute value. This vector might be pu. But
if AnB � 2(nA + B)M , one does not expect any collision, and therefore pu is
unlikely to be a non-zero vector orthogonal to vα. The parameter B has limited
influence on this condition, it is the value of A which is preponderant. In other
words, when u is short, pu is not necessarily short, but all its entries except
the last one (which corresponds to k) are small. This makes a small bound for
A and a large one for B, and therefore, the condition AnB � 2(nA + B)M is
nevertheless satisfied when the density is small.

B A Fourier Analysis of the Hidden Subset Generator

We compare the distribution of the output of the hidden subset sum genera-
tor with the uniform distribution, in two cases: when the 0, 1-coefficients are
balanced, and when they are not.

B.1 The Basic Case

Let M be an integer, and let α1, . . . , αn be independently and uniformly chosen
from [0..M − 1]. We first investigate the basic case where a linear combination

n∑
j=1

xjαj (mod M)

The Hardness of the Hidden Subset Sum Problem 45

is produced with the xj’s independently and uniformly chosen from {0, 1}. We
use the Fourier transform over the abelian group ZM . The characters χk(t) =
e

2πikt
M form an orthonormal basis of L2(ZM), endowed with the uniform proba-

bility measure and therefore any element f of L2(ZM) can be recovered from its
Fourier coefficients f̂(k) = 1

M

∑M−1
q=0 f(q)e−2πikq/M , through the inverse Fourier

formula:

f =
M∑

k=0

f̂(k)χk.

We now evaluate the expectation of each χk with respect to the image prob-
ability of the product probability over {0, 1}m induced by the transformation:
(x1, . . . , xn) 7−→ ∑n

j=1 xjαj. We get for k 6= 0:

E(χk) = E
(
e2πik

Pn
j=1 xjαj/M

)
=

n∏
j=1

1
2

(
1 + e2πikαj/M

)
.

Since |1 + eiθ|2 = (1 + cos θ)2 + sin2 θ = 2 + 2 cos θ, it follows that:

M−1∑
k=1

|E(χk)|2 =
M−1∑
k=1

n∏
j=1

1 + cos (2πkαj/M)
2

.

We estimate this expression, with respect to a uniform choice of the αj’s in
[0..M − 1]:

Lemma 6. Let k be an integer in [1..M−1]. If α is a random integer uniformly
chosen from [0..M − 1] then:

E [cos(2kπα/M)] = E [sin(2kπα/M)] = 0.

Proof. Let θ = 2kπ/M . By definition, the two expectations are respectively the
real and imaginary part of: E = 1

M

∑M−1
α=0 eiαθ. But since k ∈ [1..M − 1], the

complex eiθ is an M -th root of unity different from 1. Therefore the geometric
sum is actually equal to zero, which completes the proof. ut

Corollary 7. Let ε > 0. If the αj’s are independently and uniformly chosen
from [0..M − 1], then the following holds with probability at least 1 − ε:

M−1∑
k=1

n∏
j=1

1 + cos (2πkαj/M)
2

≤ M2−n

ε
.

Proof. Denote by X the left-hand random variable. By independence of the αj’s,
the previous lemma shows that:

E(X) =
M−1∑
k=1

n∏
j=1

1
2
≤ M

2n
.

And the result follows by Markov inequality. ut

46 Ph. Nguyen, J. Stern

Now assume that the αj’s satisfy the inequality of the previous proposition for
some ε > 0. Then:

M−1∑
k=1

|E(χk)|2 ≤ M2−n

ε
.

This in turn means that f − f̂(0) =
∑M

k=1 f̂(k).χk has expectation bounded
by ||f ||.√M2−n/ε, where ||f || denotes the L2-norm of f with respect to the
uniform probability on ZM . This reads:

|E(f) − f̂(0)| ≤ ||f ||.
√

M2−n/ε,

and establishes a bound on the difference between the expectation E(f) and the
expectation of the same function f taken over the uniform probability on ZM .

Applying to a given event X, and using corollary 7, we obtain:

Theorem 8. Let ε > 0. If α1, . . . , αn are independently and uniformly chosen
from [0..M − 1], then the following holds with probability at least 1 − ε: for
any subset X of ZM with uniform probability δ, the probability δ′ of X with
respect to the image probability of the product probability over {0, 1}m induced
by the transformation (x1, . . . , xn) 7−→ ∑n

j=1 xjαj, differs from δ by an amount
bounded by: √

δM2−n/ε.

B.2 The Case of Unbalanced Coefficients

We now assume that the coefficients xj’s are unbalanced and chosen according to
a distribution where zeros are more likely to appear. We consider the probability
ditsribution on {0, 1} where one receives probability p and zero 1 − p and we
endow {0, 1}n with the product probability Pp. It is easy to show that the results
of the previous section go through mutatis mutandis. The main difference is that
the expectation of χk becomes

n∏
j=1

(1 − p) + pe
2πikαj

M

An easy computation shows that this amounts to replacing the term 1
2 [1 +

cos (2πkαj/M)] by (1 − p)2 + 2p(1 − p) cos(2πkαj/M) + p2 in the expression
of |E(χk)|2. Lemma 6 shows that the cosine term has zero mean, with respect
to a uniform choice of αj from [0..M − 1]. It follows that the previous term has
expectation equal to (1 − p)2 + p2. We finally get:

Theorem 9. Let ε > 0. If α1, . . . , αn are independently and uniformly chosen
from [0..M − 1], then the following holds with probability at least 1 − ε: for any
subset X of ZM with uniform probability δ, the probability δ′ of X, with respect
to the image probability of Pp induced by the transformation (x1, . . . , xn) 7−→∑n

j=1 xjαj, differs from δ by an amount bounded by
√

δM((1 − p)2 + p2)n/ε.

	Introduction
	Fast Exponentiation with Hidden Subset Sums
	Parameters
	Security Against Active Attacks
	Security Against Passive Attacks

	Lattice Reduction and the Orthogonal Lattice
	A Lattice-Based Attack
	Disclosing the Hidden Lattice
	Disclosing the Hidden Coefficients
	Recovering the Hidden Weights
	Sparse Hidden Subset Sums
	Affine Hidden Subset Sums
	Experiments

	The Randomness of the Hidden Subset Sum Generator
	Conclusion
	The Condition for Affine Hidden Subset Sums
	A Fourier Analysis of the Hidden Subset Generator
	The Basic Case
	The Case of Unbalanced Coefficients

