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Abstract

Exploits for new vulnerabilities, especially when incor-
porated within a fast spreading worm, can compromise
nearly all vulnerable hosts within a short amount of time.
This problem demonstrates the need for fast defenses which
can react to a new vulnerability quickly. In addition, a real-
istic defense system should (a) not require source code since
in practice most vulnerable systems do not have source code
access nor is there adequate time to involve the software
vendor, (b) be accurate, i.e., have a negligible false positive
rate and low false negative rate, and (c) be efficient, i.e.,
add little overhead to normal program execution.

We propose vulnerability-specific execution-based filter-
ing (VSEF) – a new approach for automatic defense which
achieves a lower error rate and wider applicability than in-
put filters and has better performance than full execution
monitoring. VSEF is an execution-based filter which filters
out attacks on a specific vulnerability based on the vulnera-
ble program’s execution trace. We present VSEF, along with
a system for automatically creating VSEF filters and a hard-
ened program without access to source code. In our system,
the time it takes to create the filter and generate the hard-
ened program is negligible. The overhead of the hardened
program is only a few percent in most cases. The false pos-
itive rate is zero in most cases, and the hardened program
is resilient against polymorphic variants of exploits on the
same vulnerability. VSEF therefore achieves the required
performance, accuracy, and response speed requirements to
defend against current fast-spreading exploits.

1. Introduction

The number of new vulnerabilities reported each year
continues to grow. According to CERT/CC, in 1995 171
new vulnerabilities were reported, while less than a decade
later in 2004 over 3700 new vulnerabilities were discov-
ered [9]. A new exploit for a single vulnerability can readily

be turned into worms which compromise hundreds of thou-
sands of machines within only a few minutes [22, 35]. Thus,
after a vulnerability is discovered it is important to quickly
develop effective mechanisms to protect vulnerable hosts so
that (1) they will not be compromised by exploits of the vul-
nerability, and (2) provide service without disruption.

The speed at which new vulnerabilities are discovered
and exploits created necessitates new defenses that meet
several goals simultaneously: (1) Fast defense development
and deployment: there is often very little reaction time, es-
pecially when the exploit comes in the form of a fast prop-
agating worm. Thus, we need to be able to develop and
deploy defense mechanisms extremely quickly after the de-
tection of a vulnerability. (2) No requirement for source
code: many vulnerable programs are commodity software
for which the source code is proprietary. To respond quickly
to new vulnerabilities, we need to be able to develop a de-
fense mechanism without access to source code, so we do
not rely on the cooperation of the software vendor. (3) High
accuracy and effectiveness: the defense mechanism should
protect against the vulnerability and should not have any un-
desirable side effect on normal execution. It should have a
low false positive rate (not blocking legitimate requests) and
a low false negative rate (even effective against polymorphic
attacks). (4) Low performance overhead: the defense mech-
anism should have low performance overhead, so a vulnera-
ble host deploying the defense mechanism can still provide
critical services with little performance degradation.

Many defense mechanisms have been proposed to pro-
tect a vulnerable host after a vulnerability has been discov-
ered. Previous work has various drawbacks and do not sat-
isfy all the above requirements. One popular approach is to
automatically generate network-based input filters to filter
out known exploits [16, 34, 18, 27, 26]. However, the accu-
racy and effectiveness of the network-based input filtering
approach is fundamentally limited to syntactic properties of
the input string and cannot take into account application-
specific semantic and context information. In particular,
there may be no syntax-based classifier to correctly distin-
guish between malicious and innocuous traffic for certain



applications or vulnerabilities due to polymorphic attacks;
and the lack of context information in network-based input
filtering can have high false positive rate for certain applica-
tions. Input filters also have difficulty recognizing seman-
tically equivalent inputs, such as alternate URL encodings,
which leads to false negatives. In the extreme case where an
input filter is used on an encrypted protocol, it must some-
how be supplied with the decryption key, which is awkward
and application-specific. Costa et. al. propose automatically
generated host-based input filters [11], which has greater
accuracy than network-based input filters, and can correctly
recognize some semantically equivalent inputs. However,
the approach still suffers difficulty when the correct classifi-
cation rule is complex and needs program state information,
or when input is encrypted. Therefore the input filtering ap-
proach is not a complete solution.

On the other hand, various host-based approaches have
been proposed which are more accurate, but fail to meet
the other requirements. For example, previous approaches
have focused on: (1) Patching: patching a new vulnerabil-
ity can be a time-consuming task—generating high qual-
ity patches often require source code, manual effort, and
extensive testing. Applying patches to an existing system
also often requires extensive testing to ensure that the new
patches do not lead to any undesirable side effects on the
whole system. (2) Binary-based full execution monitoring:
many approaches have been proposed to add protection to
a binary program. However, these previous approaches are
either inaccurate and only defend against a small classes of
attacks [6, 31, 17, 23] or require hardware modification or
incur high performance overhead when used to protect the
entire program execution [14, 27, 36, 11].

In this paper, we propose a new approach for auto-
matic defense: vulnerability-specific execution-based filter-
ing (VSEF). At a high-level, VSEF filters out exploits based
on the program’s execution, as opposed to filtering based
solely upon the input string. However, instead of instru-
menting and monitoring the full execution, VSEF only mon-
itors and instruments the part of program execution which
is relevant to the specific vulnerability. VSEF therefore
takes the best of both input-based filtering and full execu-
tion monitoring: it is much more accurate than input-based
filtering and much more efficient than full execution moni-
toring.

We also develop the first system for automatically creat-
ing a VSEF filter for a known vulnerability given only a pro-
gram binary, and a sample input that exploits that vulnera-
bility. Our VSEF Filter Generator automatically generates
a VSEF filter which encodes the information needed to de-
tect future attacks against the vulnerability. Using the VSEF
filter, the vulnerable host can use our VSEF Binary Instru-
mentation Engine to automatically add instrumentation to
the vulnerable binary program to obtain a hardened binary

program. The hardened program introduces very little over-
head and for normal requests performs just as the original
program. On the other hand, the hardened program detects
and filters out attacks against the same vulnerability. Thus,
VSEF protects vulnerable hosts from attacks and allow the
vulnerable hosts to continue providing critical services.

Contributions. The central contribution of this paper is a
new approach for automatic defense against known vulnera-
bilities, called vulnerability-specific execution-based filter-
ing. Using the execution trace of an exploit of a vulner-
ability, our VSEF automatically generates a hardened pro-
gram which can defend against further (polymorphic) ex-
ploits of the same vulnerability. VSEF achieves three im-
portant goals: low performance overhead, fast generation,
and a low error rate. Specifically:

• Our VSEF is an extremely fast defense. In general, it
takes a few milliseconds for our VSEF to generate the
hardened program from an exploit execution trace.

• Our VSEF filtering techniques provide a way of de-
tecting exploits of a vulnerability more accurately than
input-based filters and more efficiently than full execu-
tion monitoring.

• Our techniques do not require access to source code,
and are thus applicable in realistic environments.

• We provide two VSEF filtering mechanisms for de-
tecting overwrite attacks, including buffer overflows,
double-free attacks, and format string vulnerabilities.
The first mechanism, taint-based VSEF, is the most
accurate and requires potentially a longer filter. The
second mechanism, destination-based VSEF, is more
efficient and is still highly accurate. Both mechanisms
have zero false positives in most cases, and are effec-
tive against polymorphic variants of the exploit of the
vulnerability. Note that our approach is general, and
could potentially be applied to other faults such as in-
teger overflow, divide-by-zero, etc.

• Our experiments show that the performance overhead
of the hardened program is usually only a few percent.

These properties make VSEF an attractive approach to-
ward building an automatic worm defense system that can
react to extremely fast worms.

2. Approach: Vulnerability-Specific
Execution-based Filtering

Overview. We propose a new approach for automatically
defending against just-discovered attacks, vulnerability-
specific execution-based filtering (VSEF). VSEF is based on
the observation that for a specific vulnerability only the part
of the program execution that is relevant to the exploit of
the vulnerability need be monitored. VSEF monitoring has



full context and semantic information, as opposed to input-
based filters which are limited to syntactic properties. In-
strumenting the binary to perform the vulnerability-specific
execution filtering results in a hardened binary. As a re-
sult, VSEF is much more accurate than network-based filter-
ing, and much more efficient than full execution monitoring.
The combination of accuracy and low overhead makes the
VSEF approach very attractive for automatic deployment
schemes.

The main research questions for enabling VSEF include
(1) what part of the program should we monitor/instrument,
(2) how can we detect and filter out the attack when we only
monitor/instrument part of the program, and (3) how can we
minimize the overhead of the VSEF defense. In this paper
we address these questions. In particular, we propose an
architecture that will automatically create VSEF filters and
harden the vulnerable program given an exploit execution
trace.

VSEF Architecture. Figure 1 shows the overall architec-
ture. Our architecture contains two main components: the
VSEF Filter Generator and the VSEF Binary Instrumenta-
tion Engine. To enable VSEF, we assume that a sample
exploit has been detected by some exploit detector which
outputs an exploit execution trace. The exploit execution
trace contains the information about the program execution
up to the detected exploit of the vulnerability. The exploit
execution trace can be a simple instruction trace dump of
the program execution or some more intelligent output from
the exploit detector. The VSEF Filter Generator uses the ex-
ploit execution trace to create a VSEF filter which encodes
the information needed for the monitoring to detect future
attacks on the vulnerability. The VSEF filter can then be
disseminated.

Vulnerable hosts use the VSEF Binary Instrumentation
Engine to apply a VSEF filter to a binary. The result is a
hardened binary program. The hardened program functions
like the original program for normal requests and introduces
very little overhead. The hardened program, however, de-
tects and filters out attacks against the same vulnerability.
Thus, VSEF protects vulnerable hosts from attacks and al-
lows the vulnerable hosts to continue to provide critical ser-
vices.

VSEF Requirements. The vulnerability-specific execution
filtering architecture should have the following properties:

• Robust VSEF filters. A VSEF filter should be
vulnerability-specific but exploit agnostic. For exam-
ple, it should be able to detect the sample exploit even
when a polymorphic engine has been used to encrypt
the payload [37]. Note that input filters are particu-
larly vulnerable to polymorphism, as there may not be
enough syntactic information in the input to reliably
detect polymorphic variants.

• Efficient generation of VSEF filters. Once a vulner-
ability is discovered, it often takes days or months to
prepare a suitable patch. However, fast worms may be
able to infect the entire Internet in under a few minutes.
We should be able to generate filters quickly enough to
allow an effective response to such flash events.

• Efficient detection. The vulnerability-specific execu-
tion filtering should add as little overhead as possible
to program execution.

3. Taint-based and Stack-based VSEF

In this section, we present two concrete examples of our
VSEF system: the taint-based VSEF and the destination-
based VSEF. The taint-based VSEF is based on dynamic
taint analysis and has high accuracy. The destination-based
VSEF is an optimistic version of taint-based that usually
requires fewer instructions instrumented.

3.1. Taint-based VSEF

3.1.1. Overview

One effective method recently proposed to detect
memory-safety based attacks is dynamic taint analysis [14,
27, 36, 11]. Dynamic taint analysis marks data coming from
untrusted sources (such as the network) tainted, and then
keeps track of what data becomes tainted by untrusted input
data by inserting instrumentation instructions to propagate
the taint attribute. For example, it adds instrumentation to
each data movement instruction (mov, push, pop, etc.),
and data arithmetic instruction (add, sub, xor, etc.), so
that the result of the instruction will be marked tainted if and
only if any operand of the instruction is tainted. Dynamic
taint analysis also inserts extra instrumentation before every
point where data is used in a sensitive way (such as return
addresses, function pointers, and format strings) to ensure
that the data is not tainted. Dynamic taint analysis has been
shown to accurately detect a wide range of exploit attacks
including buffer overrun, format string, and double free at-
tacks [14, 27, 36, 11], making it one of the most compre-
hensive protection mechanisms that does not require access
to source code.

However, dynamic taint analysis requires instrumenting
many instructions. Every data movement, arithmetic, and
control transfer instructions that could potentially touch a
tainted memory location must be instrumented in order to
accurately propagate the taint attribute and detect when
tainted data is misused. Such extensive instrumentation can
add significant performance overhead — up to a factor of
30 or more in some cases [27].

We observe that when exploiting a particular vulnerabil-
ity, only a handful of instructions are involved in propagat-
ing the tainted input to the sensitive location that is over-
written. When we know what those instructions are, we
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Figure 1. VSEF architecture. Once an exploit is detected, an execution log is produced. The VSEF
Filter Generator produces a filter that recognizes execution patterns that exploit the vulnerability.
These filters can then be disseminated. The VSEF Filter Generator takes the filter and instruments
the binary to recognize execution sequences that exploit the vulnerability, the result being a hardened
binary.

can instrument only those instructions to propagate the taint
attribute, and the instruction that unsafely uses the tainted
data, and still successfully detect attacks against that vul-
nerability.

Thus, in taint-based VSEF, we automatically identify
and instrument the instruction positions that need to be in-
strumented to propagate the taint attribute and to detect the
misuse of tainted data to detect exploits of a particular vul-
nerability. As a result, taint-based VSEF can detect exploits
of the same vulnerability much more efficiently than full
execution monitoring.

3.1.2. Taint-based VSEF Filter Generation

A taint-based VSEF filter includes two parts: (1) the list
of instruction positions that we need to add instrumentation
to for taint propagation, and (2) the instruction position to
which we need to add instrumentation to detect the misuse
of tainted data. Instruction positions can be expressed as
absolute addresses, or as the name of a shared library and
offset into that library for increased portability.

The instruction position that we need to add instrumen-
tation to to detect the misuse of tainted data is simply the
instruction position where tainted data was detected being
misused. The list of instruction positions that we need to
add instrumentation to for taint propagation is the list of in-
structions that propagated the taint attribute from the origi-
nal malicious input to the point where it was detected being
misused in the exploit execution trace.

The VSEF Filter Generator can identify this list using
1) any exploit detector that can identify the tainted data
that was misused and what instruction misused it, and 2)
a log of instructions that have been executed, and the val-
ues of dynamically calculated addresses. The latter can be
logged in software, or generated efficiently using hardware

support [7, 32]. The VSEF Filter Generator examines the
trace in a backward manner to determine which instructions
propagated tainted data that reached the vulnerability detec-
tion point. It begins at the end of the trace, called the exploit
point, where the exploit was detected. The source operand
to this instruction must have been tainted by some previous
instruction in the trace (since this is an overwrite attack us-
ing tainted data); and the source operand of that instruction
must have been tainted by some other previous instruction,
etc.. The VSEF Filter Generator continues performing the
analysis recursively until it reaches the initial instructions
for reading the original untrusted input in the sample ex-
ploit.

By following the chain of tainted operations backwards,
the VSEF Filter Generator can identify the list of instruc-
tions in the execution trace which were involved in propa-
gating the taint attribute from the original untrusted input to
the exploit point. This list of instructions is used in the filter
as the list of instructions to be instrumented to propagate the
taint attribute. This calculation is an instance of flowback
analysis [5], a well studied and efficient procedure [38].

An obvious choice for the exploit detector is a taint-
based exploit detector [14, 27, 36, 11]. In particular,
TaintCheck [27] already keeps a directed acyclic graph
(DAG) of where tainted data was propagated from, and at
at what instruction points. That is, each time tainted data
is propagated, a node is generated that contains the posi-
tion of the currently executing instruction, and pointers to
nodes corresponding to each tainted operand. In this ap-
proach all the information needed to calculate the filter is
already on hand. The VSEF Filter Generator simply follows
the DAG from the point(s) where tainted data was misused
to the point(s) where it was originally input, and records all
the instruction positions on that path.



C source IA-32 assembly Taint propagation
1 struct dummy t {
2 char buf[16];
3 void (*fnptr)(void);
4 };
5
6 void vuln(struct dummy t *dummy)
7 {
8 char bigbuf[100];
9 int i = 0;
10 int count = 0;
11 void (*fnptr)(void) = NULL;
12
13 fgets(bigbuf, 100, stdin); A int $0x80 0x3a966010← stdin

B repz movsb %ds:(%esi),%es:(%edi) 0xafefea80← 0x3a966010
14 strcpy(dummy−>buf, bigbuf); C movzbl (%edx),%eax al← 0xafefea80

D mov %al,(%ecx,%edx,1) 0x80ad1b0← al
15 fnptr = dummy− >fnptr; E mov 0x10(%eax),%eax eax← 0x80ad1b0

F mov %eax,0xffffffcc(%ebp) 0xafefea64← eax
16 fnptr(); G mov 0xffffffcc(%ebp),%eax eax← 0xafefea64

H call *%eax illegal use of tainted eax
17 }

Table 1. Overwrite example: A piece of vulnerable code, and the instructions that propagated and
misused the tainted data when the vulnerability was exploited. Instruction position D is the overwrite
point, where tainted data overwrites a function pointer. Instruction position H is the exploit point,
where the tainted data is misused.

Table 1 shows an example of code that is vulnerable to
an overwrite attack, in this case a buffer overflow that over-
writes a function pointer. The second column shows the as-
sembly instructions that are involved in propagating tainted
data to the point where it is misused. The third column
shows the actual propagation, with the data addresses as re-
solved at run time. In this example, the exploit is detected
at instruction H, where tainted data in eax is misused. The
VSEF Filter Generator traces backwards in the execution
log (or the DAG if using TaintCheck) and finds that instruc-
tion G was the last instruction to write to eax, and so on,
back to instruction A which performed a read system call.
Hence, the taint-based VSEF filter consists of position H,
where tainted data was misused, and positions A through
G, which propagated the tainted data to that point.

3.1.3. Taint-based VSEF Binary Instrumentation

The Taint-based VSEF Filter Generator instruments each
instruction in the taint-based VSEF filter to propagate taint
information, and inserts the appropriate safety check at the
exploit point. The instrumentation conceptually keeps a list
of tainted memory locations. When an instruction listed in
the VSEF executes, the added instrumentation checks to see
if any source operand is a tainted location. If so, it marks

the destination as also tainted. The Taint-based VSEF Filter
Generator inserts instrumentation at the exploit point to de-
tect if the sensitive value being used is tainted, signifying an
attack, and if so to take appropriate action. Here, we assume
the appropriate action is exiting the program. Others have
investigated other actions, such as returning an error code
and continuing execution [30, 33]. The resulting program
with the added instrumentation is the hardened binary.

When the hardened binary is run, the instrumentation
propagates the taint attribute throughout the program as
would have been done by a full taint-based exploit detector.
If the exploit point is reached, and the data being used in a
sensitive way has been marked tainted, execution is aborted.

Since the VSEF Filter Generator does not instrument
all data movement and arithmetic instructions, tainted lo-
cations are not marked untainted when overwritten with un-
tainted data by uninstrumented instructions. This could po-
tentially lead to false positives in some cases. For example,
suppose a stack-based buffer marked as tainted is popped off
the stack, and is later overwritten with a (legitimate) return
address, without being marked untainted.

We address this problem by having the hardened binary
record the value that a location takes on when it is marked as
tainted. When another instrumented instruction later checks



to see if that location is tainted, it also checks to see if it still
has the same value. If not, then it has been overwritten by
an uninstrumented instruction, and is marked as no longer
tainted. This approach adds little overhead, but there is still
some potential for false positives. If an uninstrumented in-
struction overwrites tainted data with the same value that
was already there, this heuristic will not correctly untaint
that location.

An alternative approach is to use existing memory
watch-point techniques to monitor tainted locations, and un-
taint them when other instructions write to them. On the IA-
32 architecture the debug registers can be used to monitor
up to 4 memory locations (up to 4 bytes each). We can also
use page-protection techniques (e.g., setting tainted mem-
ory pages to be read-only) to be notified of writes to tainted
memory. Moreover, when available, we can also use ECC
memory to be notified of writes to tainted memory similar
to techniques used in [28]. All of these techniques generate
a trap when the watched memory is accessed (or memory
near the watched memory), allowing our code to untaint the
watched location if it has been rewritten by untainted data.
The cost of generating traps when data is untainted can be
reduced by reducing the amount of data that gets tainted.
One way to achieve this is to modify the instrumentation of
each of the data propagation instruction in the VSEF filter,
so that it will only taint the destination when executing in
the same call-stack context as during the original exploit.
This technique comes with a trade-off of false negatives
when data is tainted by the same instructions, but in a differ-
ent context, until the alternate contexts are discovered and
added to the VSEF filter. While we are unaware of existing
mechanisms to watch for writes to processor registers, we
expect that a processor register will not remain tainted for
long before being overwritten with untainted data. Hence,
when a register becomes tainted, we can switch to moni-
toring all instructions until it becomes untainted again. We
show how to efficiently turn full taint analysis on and off at
run time in [25].

3.1.4. Analysis and Combining Filters

Performance. By design the taint-based VSEF filter can be
created with information already on hand to a Taint-based
detector. As a result, filter generation is almost instanta-
neous. The length of the filter is proportional to the number
of instructions that propagate tainted data from the input to
the exploit point. Similarly, the execution overhead of the
hardened program is proportional to this number of instruc-
tions. By design, most programs attempt to minimize un-
necessary data copying, so this will intuitively be a small
set of instructions. We verify this in our experimental re-
sults.

Note that it is likely that one or more of the instructions
that propagate tainted data in the attack belong to a com-

monly used data movement function such as strcpy or
memcpy, and hence the instrumentation will be executed
any time that function is called. In our evaluation this was
true, though we did not find it to be a performance problem.
If it were, we could use the techniques described in Sec-
tion 3.2 so that the instrumentation is only executed when
the function is called in the vulnerable context.

Accuracy. The VSEF-hardened binary has no false posi-
tives when memory watchpoint techniques are used to en-
sure locations are correctly marked untainted when written
to by uninstrumented instructions. There is nothing marked
as tainted by the instrumentation that was not actually de-
rived from untrusted input, and during detection we already
determined that the attacker should not be able to write to
the sensitive value being guarded. Note that without using
memory watchpoint support, the untaint heuristic will not
correctly untaint data if it has been overwritten by untainted
data with the same value, which could lead to false posi-
tives. However, we have not encountered any in practice
and expect them to be rare.

A false negative is when the same vulnerability is ex-
ploited without being reported. This can occur if the tainted
input is propagated along a different code path than in the
sample exploit, or if the overwritten sensitive value is mis-
used at a different location. Note polymorphic variants cre-
ated by tools such as MetaSploit [3] will be detected from
a single filter. The reason is such polymorphic variants dif-
fer in the payload, which would be executed strictly after
the exploit point. Only an exploit that is polymorphic in the
execution path exploited could be missed. Specifically, it
would be missed if and only if different instructions propa-
gate the tainted data to the exploit point, or there is a differ-
ent exploit point. We expect that there is a relatively small
number of such possible variants for a particular vulnerabil-
ity, and that the attacker must identify them manually or by
static analysis of the vulnerable binary. Naturally, we can
apply the same static analysis techniques to preemptively
identify the other paths that should be instrumented. This is
discussed further in Section 3.3.

Combining filters. We may want to combine several differ-
ent taint-based VSEF filters. For example, a single binary
may have several vulnerabilities that are not all discovered
simultaneously. We want to harden the binary as each new
vulnerability is discovered. Another example is vulnerabil-
ities that can be exercised via several different code paths.
We want to be able to re-harden the binary as each new code
path is discovered by the detector.

We combine taint-based VSEF filters by a simple union:
any instruction listed in either of the filters should be instru-
mented. The simplicity and efficiency of combining filters
is a nice property for defense systems using our approach
since it means the system does not become complex as new



vulnerabilities and attackers are discovered.

3.2. Destination-based VSEF

Overview. We next consider an optimistic filter that focuses
on instrumenting the point where sensitive data was ille-
gitimately overwritten, rather than the point where tainted
data was illegitimately used. Conceptually, a taint-based
VSEF filter consists of a chain of data movement opera-
tions, and the instruction at the exploit point, which mis-
uses the tainted data. The taint-based VSEF filter detects
when the tainted data is misused, which is a very accu-
rate detection method. However, the actual security vio-
lation is the data movement instruction in the chain that
wrote to an illegitimate destination, copying the tainted data
to the overwrite target. We refer to this instruction as the
overwrite point. Therefore, we propose destination-based
VSEF, which monitors only the overwrite point, i.e., the
specific instruction that illegitimately wrote to a specific
destination (such as a specific function pointer). We use the
term optimistic because of cases where destination-based
VSEF may have false positives. Destination-based VSEF is
based on the idea that an overwrite attack results in the in-
struction at the overwrite point writing to a destination that
it would not normally write to. This idea is supported by
Zhou et. al. [44], who built a system that successfully de-
tects many memory faults (and overwrite attacks) by detect-
ing when an instruction writes to a destination that it hasn’t
written to during normal execution.

It is not enough to specify the overwrite point only by
the position of the instruction that performed the overwrite.
For example, suppose that the instruction that performed the
overwrite was a mov inside memcpy. Because of a bug in
the way memcpywas called, it wrote past the end of a buffer
and overwrote a sensitive value, such as a function pointer.
However, a different call to memcpy in another part of the
program may be used to intentionally copy legitimate data
to the same location. Therefore, we specify the overwrite
point as the position of the instruction that performed the
overwrite, plus the context in which it was executed, which
we call the vulnerable context. We specify the context to be
the list of return addresses on the stack, which indicates the
sequence of function calls that led to the exploit.

Destination-based VSEF Filter Generation. To generate
a destination-based VSEF filter, the VSEF Filter Genera-
tor needs to determine (1) which data movement instruction
illegitimately wrote to a sensitive location (the overwrite
point), (2) the vulnerable stack configuration when that data
movement takes place (the vulnerable context), and (3) what
destination(s) should not be overwritten by that instruction,
in that context. The VSEF Filter Generator can extract this
information from an execution log of a general purpose de-
tector, or use a specialized detector that makes this informa-

tion immediately available.
To identify the data movement instruction that performed

the illegitimate write, the VSEF Filter Generator first iden-
tifies the chain of instructions that propagated the tainted
data to the exploit point, in the same manner as to generate
a taint-based VSEF filter. The VSEF Filter Generator then
identifies which of the instructions in that taint propagation
chain is the overwrite point.

When available, the VSEF Filter Generator can use de-
bug information compiled into the program to help iden-
tify the overwrite point. Debug information can be used to
determine the allocated size of a buffer. Hence, for buffer
overflows, the VSEF Filter Generator can identify the over-
write point as a data movement instruction that calculates
an address as a base plus an offset, where the offset causes
the calculated address to point outside of the buffer that the
base pointer points to.

Debug information also provides information about the
type of each memory object. Hence, the VSEF Filter Gener-
ator can use this information to identify the overwrite point
as the the data movement instruction that caused a type vio-
lation, e.g., a string copied over a function pointer. For pro-
grams that have not been compiled with debug information,
type information can sometimes be inferred at run time. For
example, return addresses can be identified for programs
that obey normal stack conventions. It is possible to infer
the types of other locations based on how the data is used
during normal execution [8].

When neither debug information nor type information is
available, the VSEF Filter Generator identifies the overwrite
point as the last instruction in the propagation chain that
writes to a dynamically calculated memory address. Heuris-
tically this will usually be true, given the assumptions that
overwrite attacks are the result of such a memory address
taking on an unintended value, and that there are not any
other such copies that occur between the overwrite point
and the exploit point.

Using our previous example in Table 1, any of these tech-
niques correctly identifies the overwrite point as instruction
D. Using buffer size information: While the base address
used at that point points to dummy->buf, the offset causes
the calculated address to point to dummy->fnptr. Using
type information: Instruction D is the first instruction in the
chain where tainted data is written to a data type that should
not be tainted. Using neither: Instruction D is the last in-
struction in the chain to write to a dynamically calculated
address. Instructions E and G write to processor registers.
Instruction F writes to a hard-coded offset within the current
stack frame.

Once the overwrite point has been identified, the vul-
nerable context in which it was executed can be found by
examining the calls and returns up to that point in the ex-
ploit execution trace. Alternatively, a specialized detector



such as TaintCheck can log the call-stack state along with
each tainted data propagation, so that the call-stack is al-
ready on-hand when the overwrite point is reached in the
backwards trace of the exploit execution trace. In our previ-
ous example from Table 1, the stack context at the overwrite
point (instruction D) is [main+47, vuln+68, strcpy+25].
That is, the instruction at offset 47 from the start of main
called vuln, the instruction at offset 68 from the start of
vuln called strcpy, and the instruction at offset 25 from
the start of strcpy is the mov that overwrote the function
pointer. This example demonstrates why we need to keep
track of the vulnerable context, and not just the overwrite
point instruction. Here, as in many cases, there is nothing
wrong with the instruction at the overwrite point, or even
the function it is in (strcpy). The problem is that vuln
called strcpy in an unsafe way.

The sensitive value overwritten is the destination
operand of the data movement instruction at the overwrite
point. We express this location in a robust way in our fil-
ter. For example, this can be done by denoting as an offset
from an activation record for stack-based locations, or as an
offset from a buffer allocated in a certain stack-context for
heap-based locations. In the example from Table 1, the lo-
cation is offset 16 in dummy. This is expressed as offset 16
from the buffer allocated at context [main + 14].

In the case of buffer overruns, we would ideally like to
specify that the write does not continue past the end of the
buffer, so that future exploits against the vulnerability are
not able to overwrite data in between the end of the buffer
and the data that was detected as being misused. The VSEF
Filter Generator can do this if the binary was compiled
with debug information (hence the length of the buffer is
known). When this information is not available, the VSEF
Filter Generator can still sometimes create a tighter bound
for what area should not be overwritten. For example, it rec-
ognizes when the value overwritten was the return address.
Instead of only protecting the return address, it also protects
the saved ebp, which is adjacent to the return address, and
could be overwritten without overwriting the return address.

Destination-based VSEF Binary Instrumentation. We
instrument the binary program to check that the data move-
ment instruction at the overwrite point does not write to the
sensitive destination when it is in the vulnerable stack con-
text. Our experiments in Section 4.2 show that this can be
done by instrumenting a small number of instructions- the
data movement instruction, and the call instruction corre-
sponding to each activation record in the vulnerable context.
We also show how this could be reduced to only instrument-
ing the data movement instruction by making copies of each
function in the vulnerable context.

Accuracy. When the program is run with the sample ex-
ploit, it will again reach the overwrite point, in the vulnera-

ble stack context. At that point, the instrumentation detects
that the destination address is illegitimate, signalling an at-
tack.

As with taint-based VSEF filters, exploits that automat-
ically alter their content while using the same attack vector
will still be caught. However, it is possible that an attacker
could alter the exploit so that the vulnerability is exploited
in a different vulnerable context (i.e. there may be multi-
ple functions that call the vulnerable function), or so that
it overwrites a different sensitive value. There are unlikely
to be many such possible variations, and we may be able
to find some of them automatically using static analysis.
For example, manual analysis of the vulnerable ATPhttpd
shows that there are only two contexts in which the vulner-
able function is called in an exploitable way.

We expect that most destination-based VSEF filters will
have zero false positives. There are a few cases where a
destination-based VSEF filter may have false positives, all
of which we expect to be very rare. A destination-based
VSEF could have false positives if 1) The VSEF Filter
Generator identified the wrong instruction as the overwrite
point, and hence the write to that address occurs in normal
usage. This problem should be straight-forward to detect
and fix after using the filter. 2) The instruction at the over-
write point can legitimately write to the monitored location
in the vulnerable context. This can be true if the source is
sometimes a legitimate (non-tainted) value, or if the desti-
nation isn’t always used in a sensitive way (e.g., a C union
that could be a function pointer or a string buffer). In this
case a low-false-positive destination-based VSEF filter for
that vulnerability is not possible, and a taint-based VSEF
filter should be used instead.

Combining Filters. It is straightforward to instrument a
program with multiple destination-based VSEF filters. The
instrumentation for each filter can be added independently
of the other instrumentation. In some cases multiple filters
will instrument the same instruction. Each filter can add
its own instrumentation independently, without interfering
with the other.

Performance. Destination-based VSEF allows the filter to
be created almost instantaneously. The length of the filter
(as well as the total number of instructions instrumented),
however, is bound by the depth of the call stack at the over-
write point of sample exploit, plus the address of the over-
write point, plus the identifier of the sensitive data to be
guarded. In Section 4.2 we describe how we can instrument
even fewer instructions, further improving performance.

3.3. Static analysis extensions

Our adversarial model requires filters be generated
quickly, and requires them to be small enough to distribute
rapidly. As a result, filter creation for both schemes relies



only on information already on-hand when the exploit is de-
tected. However, if we relax the speed requirement we may
be able to generate more accurate filters by performing more
analysis.

Backward slicing. The filter we create recognizes the sam-
ple exploit along with variants polymorphic in the exploit
payload. However, an exploit may be polymorphic in the
execution path followed. For example, the ATPhttpd web-
server vulnerability we investigate can be exploited along
two different code paths: one where the requested file is
found but not readable and one if the file is not found at
all. The destination-based VSEF filter generated from one
will not detect the other, because the overwrite occurs in
a different vulnerable context. In this case, the taint-based
VSEF filter for one will detect the other because the same in-
structions are involved in copying the tainted data in either
case. However, if ATPhttpd had been implemented to use
memcpy to copy the tainted data on one path, and strcpy
to copy the tainted data on the other path, then the taint-
based VSEF filter generated from one path would not detect
the other.

One can perform static analysis to recognize these al-
ternate code paths, and identify the additional instructions
that would need to be instrumented to detect the correspond-
ing attacks. That is, alternate data propagation paths can be
identified and instrumented in taint-based VSEF filters, and
alternate vulnerable contexts can be identified and instru-
mented in destination-based VSEF filters. Note the static
analysis is sound but imprecise, so it is possible that more
instructions will be instrumented than necessary. How-
ever, including instrumentation for potential alternate ex-
ploit paths, will result in a filter that detects future exploits
polymorphic both in the path taken and in the exploit pay-
load.

4. Implementation & Evaluation

In this section we present our implementation and exper-
imental evaluation of the taint-based and destination-based
VSEF Filter Generators and VSEF Binary Instrumentation
Engines. In our experiments we use TaintCheck [27] as the
Exploit Detector, and to record the exploit execution trace.

4.1. Taint-based VSEF

4.1.1. Implementation

As discussed in Section 2, TaintCheck already records
the information needed to produce a taint-based VSEF filter.
As the monitored program is executing it keeps a directed
acyclic graph (DAG) that represents how tainted data was
propagated, and what instructions propagated it. When an
exploit is detected, part of the output is the part of the DAG
showing how the misused tainted data was derived. We im-

Avg Time (s) Overhead

Native 121.4 -
DynamoRIO 135.05 11%
+ Taint-based VSEF filter 138.35 14%

Table 2. SQL taint-based VSEF benchmark.

Latency (ms) Overhead
Native .566 -

Valgrind 1.279 126%
+ Taint-based VSEF filter 1.360 140%
Full TaintCheck 9.797 1631%

Destination-based VSEF .585 3%

Table 3. ATPhttpd taint-based VSEF and
destination-based VSEF benchmark. (1 KB
pages)

plemented the taint-based VSEF Filter Generator by mod-
ifying TaintCheck to save the set of instruction addresses
from that part of the DAG into a separate file, along with
the instruction address where the tainted data was misused.
This file is the taint-based VSEF filter.

We also implemented the taint-based VSEF Binary In-
strumentation Engine as an extension to TaintCheck. Nor-
mally TaintCheck adds taint-propagation instrumentation to
every instruction that propagates data, which is most in-
structions. It also adds taint-assertions to every instruction
that could potentially misuse tainted data. In our extension,
TaintCheck accepts a taint-based VSEF filter as input, and
then only adds taint-propagation to the propagation instruc-
tions listed in the VSEF filter, and taint-assertion instrumen-
tation to the misuse instruction listed in the VSEF filter.

Note that our current implementation of the taint-based
VSEF Binary Instrumentation Engine is intended only as
a prototype to show the relative difference between mon-
itoring nearly every instruction, and monitoring only the
instructions in the taint-based VSEF filter. However,
TaintCheck is currently implemented on Valgrind [24] (for
Linux), and DynamoRIO [1] (for Windows). Both of these
tools are well suited for when the entire program needs to
be monitored, but they each add substantial overhead even
when no instrumentation is added. A more efficient imple-
mentation could be done using a tool such as Dyninst [2],
which is better suited for adding instrumentation to specific
points of a program. (We use Dyninst to implement the
destination-based VSEF Binary Instrumentation Engine).

4.1.2. Evaluation

We evaluate the quality and efficiency of our taint-based
VSEF using real world exploits. We have tested the ef-



fectiveness of our taint-based VSEF approach on Windows
against the SQL Slammer attack [22], and on Linux against
the ATPhttpd exploit [29].

Taint-based VSEF Filter Size. The filter generated for the
ATPhttpd exploit contains only 10 instructions that must be
instrumented. The filter for the vulnerability exploited by
the SQL Slammer worm contains 200 instructions that must
be instrumented. Note that our Windows implementation
of taint-based VSEF Filter Generator, which is based on
the less mature DynamoRIO implementation of TaintCheck,
currently adds every instruction that operates on the mis-
used tainted data to the VSEF filter, rather than refining it
to only the instructions that actually propagate the tainted
data to the point where it is misused. This refinement is
straight-forward to implement, and should reduce the filter
size by an order of magnitude. For comparison, the AT-
Phttpd VSEF filter contains 83 instructions without this re-
finement.

Taint-based VSEF Performance. The time to generate a
VSEF and use it to harden a binary is very small. For AT-
Phttpd it was 186 microseconds to generate a VSEF from
TaintCheck’s DAG, and 195 ms to use the VSEF to harden
the ATPhttpd binary. Here, we measure the performance of
the hardened Microsoft SQL Server and the hardened AT-
Phttpd server. For both tests, we issue queries to the server
process from the same machine so as to not introduce net-
work latency.

We subjected the Microsoft SQL server to the bench-
mark query described in [19]. We measured performance
when the server was run natively, and when it was run un-
der DynamoRIO with and without the taint-based VSEF in-
strumentation. Table 2 shows the results. The instrumenta-
tion added by the taint-based VSEF causes the server to run
only 14% slower than native, and only 2% slower than run-
ning under DynamoRIO alone. Again, implementing the fil-
ter refinement step for the Windows version of TaintCheck
would reduce the number of instructions instrumented, and
further reduce the taint-based VSEF overhead.

We used the Apache Flood tool [39] to measure the per-
formance of the hardened ATPhttpd server when serving 1
KB files. Results are shown in Table 3. Our results show
that the hardened server runs only 6% slower than when
running under Valgrind alone. We also ran the same bench-
mark using Valgrind to count how often the instrumented
instructions are executed. We found that the 10 instructions
instrumented by the taint-based VSEF accounted for only
32,649 of 746,419,783 instructions executed (.00437%).
This suggests that implementing the VSEF Binary Instru-
mentation Engine with more efficient instrumentation tech-
niques (such as DynamoRIO or Dyninst) should result in the
taint-based VSEF having very little performance overhead.

Taint-based VSEF Accuracy. We verified that the hard-

ened ATPhttpd and Microsoft SQL server were able to suc-
cessfully defend against the original exploit. For ATPhttpd,
we also created synthetic polymorphic variants of the ex-
ploit by replacing the code in the request with randomly
generated bytes. We verified that the hardened ATPhttpd
successfully detected these modified versions of the exploit,
thus demonstrating that our taint-based VSEF approach is
effective against polymorphic variants of the sample exploit.

During our benchmarks, neither hardened server had
false positives. We also sent the ATPhttpd server several
anomalous requests that exercise similar code paths as the
exploit, without actually exploiting the server. The hard-
ened ATPhttpd correctly did not identify these as attacks.

4.2. Destination-based VSEF

4.2.1. Implementation

We implemented the destination-based VSEF Binary In-
strumentation Engine using Dyninst [2], a binary instrumen-
tation tool. Unlike Valgrind and DynamoRIO, Dyninst per-
forms static rewriting of the target binary. Instructions are
instrumented by overwriting them with jumps to trampo-
line functions that call our instrumentation code, and then
execute the overwritten instruction before returning. This
approach was chosen to avoid the run-time overhead of dy-
namic binary rewriting. Dyninst and our destination-based
VSEF Binary Instrumentation Engine run on both Linux
and Windows.

The destination-based VSEF filter consists of the ad-
dress of the overwrite point, the activation records on the
stack when the overwrite point was executed in the origi-
nal exploit, and the normalized address of the data that was
overwritten. Given the exploit execution trace generated by
TaintCheck, the destination-based VSEF filter is generated
using the algorithm from Section 3.2 to identify which in-
struction is the overwrite point, and pulling the rest of the
information from the exploit execution trace in a straight-
forward manner. We assume the most difficult scenario,
in which no debug or type information is available to help
identify the overwrite point.

We observe that the overwrite instruction is usually a
mov instruction, which is usually too small to be overwrit-
ten by a jump instruction by Dyninst. Dyninst handles this
case by instead overwriting it with a 1 byte instruction to
generate a trap, which causes the operating system to deliver
a signal to the process, and the instrumentation code to be
executed by the signal handler.1 This is undesirable, since
this is a relatively expensive process. We observe that in
many cases, the instrumented mov is called frequently (i.e.,

1Dyninst version 5, which is currently under development, uses a dif-
ferent method to insert instrumentation which should mostly eliminate the
need to use traps. Unfortunately, we were not able to test this version at
the time of writing.



it may be in strcpy), but usually not in the vulnerable
context. Therefore we address this problem by only having
the instrumentation be used when the function is called in
the vulnerable context. The most efficient way to do this is
by copying the functions that make up the vulnerable con-
text, and rewriting the corresponding call instructions so
that the instrumented mov is only used in the vulnerable
context. In cases where this is infeasible, we can dynam-
ically enable or disable the mov instrumentation when the
vulnerable context is entered or left.

We currently implement the latter approach. We imple-
mented the VSEF Binary Instrumentation Engine to instru-
ment the call instruction corresponding to each activation
record in the vulnerable context. This instrumentation in-
crementally tracks which of the activation records of the
vulnerable context are currently on the stack. The instru-
mentation for the last call of the vulnerable context dy-
namically adds or removes the instrumentation at the over-
write point when the vulnerable context is entered or left.
Note that if we instrumented only this call instead of each
call in the vulnerable context, the instrumentation would
need to walk the stack every time that call was executed
to see if it was in the vulnerable context, which would result
in a higher performance cost.

The instrumentation at the overwrite point checks
whether the instruction is about to write to the protected
location. If so, an attack is detected.

4.2.2. Evaluation

We evaluate the quality and efficiency of our destination-
based VSEF using the ATPhttpd exploit.2

Destination-based VSEF Filter Size. The filter generated
for the ATPhttpd vulnerability consists of the addresses of
12 instructions (the mov that causes the overwrite, and the
11 call instructions corresponding to the vulnerable con-
text), and a range of offsets from the vulnerable stack frame
to protect. The ATPhttpd exploit overwrote the return ad-
dress, so in this case we are protecting the return address,
which is located at offsets 4 to 7 in the vulnerable stack
frame. (In our implementation, we recognize this case and
extend the range to 0 to 7 to also protect the frame pointer).
To clarify, if we were protecting data inside the stack frame
(such as a local variable storing a function pointer), this off-
set would be negative.

Destination-based VSEF Performance. It takes a negligi-
ble amount of time to create a destination-based VSEF fil-
ter from TaintCheck’s log, and to use the destination-based
VSEF Binary Instrumentation Engine to harden the vulner-

2At the time of writing, the Windows implementation of TaintCheck
does not log the correct information to create a destination-based VSEF, so
we were unable to evaluate our destination-based VSEF for the Microsoft
SQL server exploit. However, doing so would be straight-forward.

able binary. Here, we measure the performance of the hard-
ened ATPhttpd server.

As in Section 4.1, we evaluate the performance of the
hardened ATPhttpd server using the Apache Flood tool to
measure the time to serve requests for 1 KB files. Our re-
sults are shown in Table 3. Our results show that the server
runs only 3% slower than when the server is run without
instrumentation.

We also used Valgrind to count how often the instru-
mented instructions are executed during the benchmark.
The 12 instrumented instructions accounted for 6,070 of
746,465,052 instructions executed(.000813%).

Destination-based VSEF Accuracy. We verified that the
hardened ATPhttpd server was able to successfully defend
against the original exploit. As in the taint-based VSEF ex-
periment, we also verified that server was able to defend
against polymorphic variations of the exploit, and that it cor-
rectly did not identify similar but non-exploiting requests as
attacks.

5. Deployment and Applications

Vulnerability-specific execution filtering meets three im-
portant goals: fast filter generation, accurate detection, and
low performance overhead. These requirements address the
most relevant threat to today’s Internet infrastructure: fast
spreading worms. Worms that exploit known vulnerabilities
can cause millions of dollars of damage. A worm exploiting
an unknown vulnerability could be much more devastating.

Figure 2 shows our envisioned architecture for defend-
ing against worms. Various full instrumentation detectors
are placed across the Internet, for example on honeypots or
over-provisioned sites. When a new worm is released, the
full instrumentation version detects the exploit and uses the
VSEF Filter Generator to create an execution filter. The fil-
ter is then distributed to other vulnerable hosts across the In-
ternet (that have the same vulnerable binary, similar shared
libraries, etc.), which use VSEF Binary Instrumentation En-
gine to harden their binaries against subsequent infection.
This hardening can be done without restarting the server for
destination-based VSEF, because Dyninst is able to attach
to an already running program and instrument it without
restarting. Taint-based VSEF could also be implemented
using Dyninst, which would also allow it to harden the pro-
gram binary without needing to restart the program.

Our architecture provides for completely automatic re-
sponse and containment, and therefore can respond to a
rapid worm outbreak. Our system also works for previously
unknown vulnerabilities where the hardened binary can be
used until a proper patch can be installed. We note that sites
may be unmotivated to install automatically generated net-
work filters with suspect accuracy. The accuracy of our fil-
ters make automatic installation much more attractive.
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Figure 2. The deployment scenario for
vulnerability-specific execution filtering.
Upon (1) receiving an exploit of a new vul-
nerability, the (2) full instrumentation engine
detects it and creates an appropriate filter.
The filter is (3) disseminated to all hosts,
which then (4) use the filter to instrument and
produce a hardened binary. The hardened
binary cannot be then exploited (5). Note that
the exploit in step 5 may be a polymorphic
variant of step 1.

Our techniques and architecture also apply to other ad-
versarial models. Host-based privilege escalation attacks
are a serious threat that previous automatic defense systems
have mostly ignored. Our scheme can be used to harden
known vulnerable programs against such attacks until the
proper patch can be applied. Note this is especially impor-
tant for legacy systems where source code for the running
applications may no longer exist or be accessible and thus a
permanent patch may never be created.

We present a distributed architecture for efficiently and
securely generating, using, and sharing VSEF filters in [25].

6. Related work

Sidiroglou et. al. proposed selective emulation as part of
a reactive approach for handling software failure [33]. Their
selective emulation is similar in some aspects to our work.
Like us, they note that partial instrumentation can reduce
total monitoring overhead. However their approach for de-
fending against buffer overflow attacks requires source code
to instrument the binary, since it is based on a canary as
in StackGuard [12]. In addition, their instrumentation is at

function call granularity, and they use heuristics to find out
what function calls need to be instrumented. They leave as
an open problem how to determine more precise instrumen-
tation, which we solve by using taint-based analysis.

Rinard et. al. has proposed using compiler extensions to
deal with writes to unallocated memory. The approach al-
lows a program to execute even in the presence of buffer
overflow attacks[30]. These techniques are aimed at in-
creasing availability for services and are not necessarily safe
and thus inappropriate as a defense mechanism.

Shield [40] provides vulnerability-specific exploit
generic protection. However, it uses manually generated
signatures.

Costa et. al. propose a concurrent work to automatically
generated host-based input filters [11], which has greater
accuracy than network-based input filters, and can correctly
recognize some semantically equivalent inputs. However,
the approach still suffers difficulty when the correct classi-
fication rule is complex or needs application state, or when
input is encrypted.

IntroVirt [15] uses vulnerability-specific predicates to
detect when a vulnerability has been exploited. However,
these predicates are manually generated.

DAKODA [13] provides a quantitative analysis for a
number of exploit vectors. Their results show that network-
based filters are not specific enough for exploits against
many vulnerabilities, and that there are a number of vul-
nerabilities where the attack vector is encrypted, making
host-based input filters impractical. The paper also noted
that return addresses are not suited to be used as signatures
for polymorphic worms which were used in several existing
automatic signature generation methods [27, 20, 42].

We benefit directly from the active research for increas-
ing the efficiency of emulation [21, 41, 2]. For example,
we use Valgrind and DynamoRIO for taint-based instru-
mentation (on Linux and Windows, respectively), while Pin
reports emulation speeds 3.3x faster than Valgrind and 2x
faster than DynamoRIO [21].

We use TaintCheck [27] to initially discover unknown
vulnerabilities. Other fine-grained dynamic bug detection
tools could be used during initial filter creation, such as
program shepherding [17], libsafe [4, 6], or Nethercote-
Fitzhardinge bounds checking [23]. We chose TaintCheck
because the taint-based approach detects the widest variety
of attacks and is easy to augment to produce the taint log
needed for taint-based VSEF.

Slicing techniques [38, 43] can be used to help create or
refine the VSEF filters, as discussed in Section 3.3. We plan
to investigate this approach in the future.

7. Conclusion

We propose vulnerability-specific execution filtering
(VSEF), a new type of filter that recognizes and filters out



execution patterns of an exploit exercising a known vulner-
ability. VSEF is more accurate than input filtering, and sig-
nificantly faster than full execution monitoring. We give two
types of VSEF filters: taint-based VSEF and destination-
based VSEF. The former is more accurate while the latter
may require less instrumentation. We show how to auto-
matically create both filters using a VSEF Filter Genera-
tor. The filters can then be used to automatically harden
a binary against the vulnerability via the VSEF Binary In-
strumentation Engine. We provide an implementation for
both components under Windows and Linux, and run ex-
periments that confirm the accuracy, performance, and gen-
eration speed. In most cases the overhead of VSEF binary
hardening is only a few percent.
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