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Abstract

We investigate the problem of succinctly representing an arbitrary permutation,
π, on {0, . . . , n − 1} so that πk(i) can be computed quickly for any i and any
(positive or negative) integer power k. A representation taking (1 + ǫ)n lgn +
O(1) bits suffices to compute arbitrary powers in constant time, for any positive
constant ǫ ≤ 1. A representation taking the optimal ⌈lgn!⌉ + o(n) bits can be
used to compute arbitrary powers in O(lg n/ lg lg n) time.

We then consider the more general problem of succinctly representing an
arbitrary function, f : [n] → [n] so that fk(i) can be computed quickly for any i
and any integer power k. We give a representation that takes (1+ǫ)n lgn+O(1)
bits, for any positive constant ǫ ≤ 1, and computes arbitrary positive powers in
constant time. It can also be used to compute fk(i), for any negative integer k,
in optimal O(1 + |fk(i)|) time.

We place emphasis on the redundancy, or the space beyond the information-
theoretic lower bound that the data structure uses in order to support operations
efficiently. A number of lower bounds have recently been shown on the redun-
dancy of data structures. These lower bounds confirm the space-time optimality
of some of our solutions. Furthermore, the redundancy of one of our structures
“surpasses” a recent lower bound by Golynski [Golynski, SODA 2009], thus
demonstrating the limitations of this lower bound.
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1. Introduction

For an arbitrary function f from [n] = {0, . . . , n− 1} to [n], define fk(i), for
all i ∈ [n], and any integer k as follows:

fk(i) =







i when k = 0
f(fk−1(i)) when k > 0 and
{j|f−k(j) = i} when k < 0.

We consider the following problem: we are given a specific and arbitrary (static)
function f from [n] to [n] that arises in some application. We want to represent
f (after pre-processing f) in a data structure that, given k and i as parameters,
rapidly returns the value of fk(i). For the sake of simplicity, in the rest of the
paper we assume that the given number k is bounded by some polynomial in n.

Our interest is in succinct, or highly-space efficient, representations of such
functions, whose space usage is close to the information-theoretic lower bound
for representing such a function. Since there are nn functions from [n] to [n],
such a function cannot be represented in less than ⌈n lgn⌉ bits1. Any amount
of memory used by a data structure that represents such a function, above and
beyond this lower bound, is termed the redundancy of the data structure. We
also consider the case where f is given as a “black box”, i.e. the data structure
is given access to a routine to evaluate f(i) for any i ∈ [n]; in this case any
amount of memory whatsoever used by the data structure is its redundancy. The
fundamental aim is to understand precisely the minimum redundancy required
to support operations rapidly.

Clearly, the above problem is trivial if space is not an issue. To facilitate the
computation in constant time, one could store fk(i) for all i and k (|k| ≤ n, along
with some extra information), but that would require Ω(n2) words of memory.
The most natural compromise is to retain the values of fk(i) where 2 ≤ k ≤ n
is a power of 2. This Θ(n lgn)-word representation easily yields a logarithmic
evaluation scheme. Unfortunately, this representation not only uses non-linear
space (and is relatively slow) but also does not support queries for the negative
powers of f efficiently. Given f in a natural representation — the sequence f(i)
for i = 0, . . . , n − 1, or as a black box — a highly space-efficient solution is to
store no additional data structures (zero redundancy), and to compute fk(i) in
k steps, for positive k. However, this is unacceptably slow for large k, and still
does not address the issue of negative powers.

1.1. Results

Our results are primarily in the unit-cost RAM with word size Θ(logn) bits,
where we measure the running time and the bits of space used by an algorithm.
We also consider the “black-box” model, known also as the systematic model
[10], where we look at the number of evaluations of f in addition to the run-
ning time and space (in bits) used by the algorithm. Lower bound results are

1lg denotes the logarithm base 2.
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discussed in either the black-box model or in the cell-probe model, where we
consider the space (in bits) used by the algorithm, and the running time is the
number of w-bit words of the data structure read by the algorithm to answer a
query (and all other computation is for free). Finally, we also briefly consider
the bit-probe model, which is the cell-probe model with w = 1 [24].

1.1.1. Permutations

We begin by considering a special case, where the function is a permutation
(abbreviated hereafter as a perm [22]) of [n] = {0, . . . , n−1}. This turns out not
only to be an interesting sub-case in its own right, but is also essential to our
solution to the general problem. Note that for storing perms, the information-
theoretic lower bound is P(n) = ⌈lgn!⌉ ≈ n lgn − 1.44n bits, so the obvious
representation (as an array storing π(i) for i = 1, . . . , n) has redundancy Θ(n)
bits (and of course does not support inverses or powers). We obtain the following
results for representing perms:

1. We give a representation that uses P(n) +O(n(lg lg n)5/(lgn)2) bits, and
supports π() and π−1() in O(lg n/ lg lg n) time.

2. In the “black box” model, where access to the perm is only through the π()
operation, we show how to support π−1() in O(t) time and at most t+ 1
evaluations of π(), using (n/t)(lg n+ lg t+O(1)) bits, for any 1 ≤ t ≤ n.

3. Given a structure that represents a perm π in space S(n) bits, and sup-
ports π() and π−1() in time tf (n) and ti(n) respectively, we show how
to represent a given perm π′ on [n] in space S(n) + O(n lg n/ lg lg n)
bits (or S(n) + O(

√
n lgn) bits) and support arbitrary powers of π′ in

tf (n)+ ti(n)+O(1) time (or tf (n)+ ti(n)+O(lg lg n) time, respectively).

As corollaries, we get the following representations of perms:

4. one that uses P(n)+O((n/t) lg n) bits, and supports π() in O(1) time and
π−1() in O(t) time, for any t ≤ lg n.

5. one that uses P(n)+O((n/t) lg n) bits and supports πk() in O(t) time for
arbitrary k, for any t ≤ lg n.

6. one that uses P(n) + O(n(lg lg n)5/(lg n)2) bits and supports πk() in
O(lg n/ lg lgn) time for arbitrary k.

Related Work

Perms are fundamental in computer science and have been the focus of ex-
tensive study. A number of papers have dealt with issues pertaining to perm
generation, membership in perm groups etc. There has also been work on
space-efficient representation of restricted classes of perms, such as the perms
representing the lexicographic order of the suffixes of a string [17, 18], or so-
called approximately min-wise independent perms, used for document similarity
estimation [6]. Our paper is the first to study the space-efficient representation
of general perms so that general powers can be computed efficiently (however,
see the discussion on Hellman’s work in Section 1.2).
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Recently Golynski [14, 15] showed a number of lower bounds for the re-
dundancy of permutation representations. He showed a space lower bound of
Ω((n/t) lg(n/t)) bits for Item (2) for any algorithm that evaluates π at most
t < n/2 times [15, Theorem 17]. Thus, (2) is asymptotically optimal for all
t = n1−Ω(1). Furthermore, Golynski [14] showed that the redundancy of (4) is
asympotically optimal in the cell probe model with word size w = lgn: specifi-
cally, that any perm representation which supports π() in O(1) probes and π−1()
in t probes, for any t ≤ (1/16)(lgn/ lg lgn), must have asymptotically the same
redundancy as (4). He also shows that any perm that supports both π() and
π−1() in at most t cell probes, for any t ≤ (1/16)(lgn/ lg lgn), must have redun-
dancy Ω(n(lg lg n)2/ lgn). In the preliminary version of this paper [26], a perm
representation was given that supported π() and π−1() in O(lg n/ lg lgn) time,
and had redundancy Θ(n(lg lg n)2/ lgn). Golynski suggested that the result of
[26] was “optimal up to constant factor in the cell probe model”. However,
we note that the lower bound is quite sensitive to the precise constant in the
number of probes: our result (1) obtains an asymptotically smaller redundancy
by using over 2 lgn/ lg lgn cell probes.

1.1.2. Functions

For general functions from [n] to [n], our main result is that we reduce the
problem of representing functions to that of representing permutations, with
O(n) additional bits. As corollaries, we get the following representations of
functions, both of which use close to the information-theoretic minimum amount
of space, and answer queries in optimal time:

1. one that uses n lg n(1 + 1/t) + O(1) bits, and supports fk(i) in O(1 +
|fk(i)| · t) time for any integer k, and for any t ≤ lg n/ lg lg n.

2. one that uses n lg n + O(n) bits and supports fk(i) in O((1 + |fk(i)|) ·
(lg n/ lg lgn)) time, for any integer k.

Along the way, we show that an unlabelled static n-node rooted tree can be
represented using the optimal 2n + o(n) bits of space to answer level-ancestor
— given a node x and a number k, to report the i-th ancestor of x — and level-
successor/level-predecessor queries — to report the next/previous node at the
same level as the given node — in constant time. We represent the tree in 2n
bits as a balanced parenthesis (BP) sequence. The key technical contribution is
to provide a o(n)-bit index for excess search in a BP sequence. For a position
i in a BP sequence, excess(i) is the number of unclosed open parentheses up to
that position (this corresponds to the depth of a node in the tree represented
by the BP). The operation next-excess(i, k), starting at a position i in the BP
sequence, finds the next position j whose excess is k; we support next-excess in
O(1) time provided that j’s excess is at most (lgn)c below or above the excess
of i (i.e., |k − excess(i)| = O((lg n)c)), for any fixed constant c ≥ 0. To add
standard navigational operations, one can use existing o(n) bit indices for BP
sequences [25].
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Related work

The problem of representing a function f space-efficiently in the “black box”
model, so that f−1 can be computed quickly, was considered by Hellman [20].
Specialized to perms, Hellman’s idea is similar to our “black box” representation
for representing a perm and its inverse, modulo some implementation details.
The version of the function powers problem that we consider is different: whereas
Hellman attempts, given x, to find any y such that f(y) = x, we enumerate all
such y. Furthermore, our solution does not use the “black box” model, and
assumes space for representing f in its entirety, which is both unnecessary and
prohibitive in Hellman’s context.

Representing trees to support level-ancestor queries is a well-studied prob-
lem. Solutions with O(n) preprocessing time and O(1) query time were given
by Dietz [8], Berkman and Vishkin [5] and by Alstrup and Holm [1]. A much
simpler solution was given by Bender and Farach-Colton [3]. For a tree on n
nodes, all these solutions require Θ(n) words, or Θ(n lgn) bits, to represent the
tree itself, and the additional data structures stored to support level-ancestor
queries also take Θ(n) words (level-successor/predecessor is trivial using Θ(n)
words).

As noted above, our interest is in succinct tree representations. We make a
few remarks about such representations, so as to better understand our contri-
bution in relation to others. Succinct tree representations can also be considered
to be split into a tree encoding that takes 2n+ o(n) bits, and an index of o(n)
bits for that tree encoding. There are many tree encodings, including BP [25],
DFUDS [4], LOUDS [21] and Partition [12], and it is not known if they are
equivalent, i.e. if there are operations that have o(n) sized indices for one tree
encoding and not the other. Another feature is that different tree encodings
impose different numberings on the nodes of the tree. Therefore, a result show-
ing a succinct index for a particular operation in (say) BP does not imply the
existence of a succinct index for that operation in (say) LOUDS. This matters
from an application perspective because the only way to get a space-efficient
data structure that simultaneously supports operations a and b, where a and b
are known to be supported only by (say) LOUDS and BP-based tree encodings
respectively, would be to encode the tree twice, once each in LOUDS and BP
and to maintain the correspondence between the LOUDS and BP numberings,
which would severely affect the space usage.

We provide o(n)-bit BP indices for the operations of level-ancestor and level-
successor/predecessor, via excess search. Geary et al. [12] gave a o(n)-bit index
for supporting level-ancestor in O(1) time using the Partition encoding, but
they did not provide support for level-successor/predecessor; a o(n)-bit index
for supporting these queries was announced by He et al. [19]. Very recently
Sadakane and Navarro [33] gave an alternative algorithm for excess search in
BP and showed that excess search together with range-minimum queries suffice
to support a wide variety of tree operations, among other things. Their excess
index is of smaller size, but seems not to support search for excess values greater
than the starting point.
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1.2. Motivation

There are a number of motivations for succinct data structures in general,
many to do with text indexing or representing huge graphs [17, 21, 25, 32]. Work
on succinct representation of a perm and its inverse was, for one of the authors,
originally motivated by a data warehousing application. Under the indexing
scheme in the system, the perm corresponding to the rows of a relation sorted
under any given key was explicitly stored. It was realized that to perform certain
joins, the inverse of a segment of this perm was precisely what was required.
The perms in question occupied a substantial portion of the several hundred
gigabytes in the indexing structure and doubling this space requirement (for the
perm inverses) for the sole purpose of improving the time to compute certain
joins was inappropriate.

Since the publication of the preliminary versions of these papers, the re-
sults herein have found numerous applications, most notably to the problem
of supporting rank and select operations over strings of large alphabets [16].
Other applications arise in Bioinformatics [2]. The more general problem of
quickly computing πk() also has number of applications. An interesting one is
determining the rth root of a perm [30]. Our techniques not only solve the rth

power problem immediately, but can also be used to find the rth root, if one
exists. Inverting a “one-way” function, particularly in the scenario considered
by Hellman [20], is a fundamental task in cryptography.

Finally, very recently a number of results have been shown that focus on the
redundancy of succinct data structures for various objects, including [10, 13, 14,
29]; we have already mentioned lower bounds on the redundancy of representing
perms in particular. This has been accompanied by some remarkable results on
very low-redundancy data structures. For example, consider the simple task of
representing a sequence of n integers from [r], for some r ≥ 1 to permit random
access to the i-th integer. The naive bound of n ⌈lg r⌉ bits has redundancy
Θ(n) bits relative to the optimal ⌈n lg r⌉ bits. Following the first non-trivial
result on this topic ([26, Theorem 3]), a line of work culminated in Dodis et al.’s
remarkable result that O(1)-time access can be obtained with effectively zero
redundancy [9]. We also note that the redundancy is often important in practice,
as the “lower-order” redunancy term in the space usage is often significant for
practical input sizes [11].

The remainder of the paper is organized as follows. The next section de-
scribes some previous results on indexable dictionaries used in later sections.
Section 3 deals with permutation representations. In Section 3.1 we describe
the ‘shortcut’ method, and Section 3.2 describes an optimal space representation
based on Benes networks. Both of these are representations supporting π() and
π−1() queries, and we consider the optimality of these solutions in Section 3.3.
In Section 3.4 we consider representations that support arbitrary powers. Sec-
tions 4 and 5 deal with general function representation. Section 4 outlines new
operations on balanced parenthesis sequences which lead to an optimal-space
tree representation that supports level-ancestor queries along with various other
navigational operations in constant time. Section 5 describes a succinct repre-
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sentation of a function that supports computing arbitrary powers in optimal
time.

2. Preliminaries

Given a set S ⊆ [m], |S| = n, define the following operations:

rank(x, S): Given x ∈ [m], return |{y ∈ S|y < x}|,

select(i, S): Given i ∈ [n], return the i+ 1-st smallest element in S,

p-rank(x, S): Given x ∈ [m], return −1 if x 6∈ S and rank(x, S) otherwise (the
partial rank operation).

Furthermore, define the following data structures:

• A fully indexable dictionary (FID) representation for S supports rank(x, S),
select(i, S), rank(x, S̄) and select(i, S̄) in O(1) time.

• An indexable dictionary (ID) S supports p-rank(x, S) and select(i, S) in
O(1) time.

Raman, Raman and Rao [32] show the following:

Theorem 2.1. On the RAM model with wordsize O(lgm) bits:

(a) There is a FID for a set S ⊆ [m] of size n using at most
⌈

lg
(

m
n

)⌉

+
O(m lg lgm/ lgm) bits.

(b) There is an ID for a set S ⊆ [m] of size n using at most
⌈

lg
(

m
n

)⌉

+ o(n)+
O(lg lgm) bits.

3. Representing Permutations

3.1. The Shortcut Method

We first provide a space-efficient representation (based on Hellman’s idea)
that supports π−1() in the “black box” model. Recall that in the “black box”
model, the perm is accessible only through calls of π(). Let t ≥ 2 be a parameter.
We trace the cycle structure of the perm π, and for every cycle whose length k is
greater than t, the key idea is to associate with some selected elements, a shortcut
pointer to an element t positions prior to it. Specifically, let c0, c1, . . . , ck−1

be the elements of a cycle of the perm π such that π(ci) = c(i+1) mod k, for
i = 0, 1, . . . , k − 1. We associate shortcut pointers with the indices whose π
values are cit, for i = 0, 1, . . . , l = ⌊k/t⌋, and the shortcut pointer value at cit
stores the index whose π value is c((i−1) mod (l+1))t, for i = 0, 1, . . . , l (see Fig. 1).
Let s ≤ n/t be the number of shortcut pointers after doing this for every cycle
of the perm and let d1 < d2 < . . . < ds be the elements associated with shortcut
pointers.
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2 4 11 6 1 9 8 0 5 7 3 12 10 13

Figure 1: Shortcut method. Solid lines denote the perm, and the dotted lines denote the
shortcut pointers. The shaded nodes indicate the positions having shortcut pointers.

We store the set {di} in a data structure D that is an instance of the in-
dexable dictionary (ID) of Theorem 2.1(b). Given an index i, D allows us to
test if a particular element has a shortcut pointer with it, and if so, returns its
position in the set {di}. We store the sequence {si}, where si is the shortcut
pointer associated with di in an array S. The following procedure computes
π−1(x) for a given x:

i := x;
while π(i) 6= x do

if i ∈ D and p-rank(i,D) = r // both found by querying D
then j := S[r];
else j := π(i);

i := j;
endwhile

return i

Since we have a shortcut pointer for every t elements of a cycle, the number of
π() evaluations made by the algorithm is at most t+1, and all other operations
take O(1) time by Theorem 2.1. By the standard approximation ⌈lg

(

n
s

)

⌉ =
s(lg(n/s)+O(1)), we see that the space used by D is at most (n/t)(lg t+O(1))
bits. The space used by S is clearly s⌈lgn⌉ = s(lg n+O(1)). Thus we have:

Theorem 3.1. Given an arbitrary permutation π on [n] as a “black box”, and
an integer 1 ≤ t ≤ n, there is a data structure that uses at most (n/t)(lg n +
lg t + O(1)) bits that allows π−1() to be computed in at most t + 1 evaluations
of π(), plus O(t) time.

We get the following easy corollary:

Corollary 3.1. There is a representation of an arbitrary perm π on [n] using
at most P(n) + O((n/t) lg n)) for any 1 ≤ t ≤ lg n that supports π() in O(1)
time and π−1 in O(t) time.

Proof. We represent π naively as an array taking n⌈lg n⌉ = P(n) + O(n) bits,
and allowing π() to be computed in O(1) time, and apply Theorem 3.1. The
space bound follows since for t ≤ lg n, (n/t)(lg n+ lg t+ O(1)) = Ω(n).
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Remark: Choosing t = ⌈(1/ǫ)⌉ for any constant ǫ > 0 in Corollary 3.1 we get a
representation of a permutation π on [n] in (1+ ǫ)n lg n bits where π() and π−1

both take O(1) time.

3.2. Representations based on the Benes network

3.2.1. The Benes Network

The results in this section are based on the Benes network, a communication
network composed of a number of switches, which we now briefly outline (see
[23] for details). Each switch has two inputs x0 and x1 and two outputs y0 and
y1 and can be configured either so that x0 is connected to y0 (i.e. a packet that
is input along x0 comes out of y0) and x1 is connected to y1, or the other way
around. An r-Benes network has 2r inputs and 2r outputs, and is defined as
follows. For r = 1, the Benes network is a single switch with two inputs and
two outputs. An (r + 1)-Benes network is composed of 2r+1 switches and two
r-Benes networks, connected as shown in Fig. 2(a). A particular setting of the
switches of a Benes network realises a perm π if a packet introduced at input
i comes out at output π(i), for all i (Fig. 2(b)). The following properties are
either easy to verify or well-known [23].

• An r-Benes network has r2r−2r−1 switches, and every path from an input
to an output passes through 2r − 1 switches;

• For every perm π on [2r] there is a setting of the switches of an r-Benes
network that realises π.

r-Benes network

r-Benes network

(a) construction of (r + 1)-Benes network

7

6

5

4

3

2

1

0

1

3

5

0

7

6

4

2

(b) Benes network realising the permutation (4 7 0 6 1 5 2 3)

Figure 2: The Benes network construction and an example

Clearly, Benes networks may be used to represent perms. If n = 2r, a repre-
sentation of a perm π on [n] may be obtained by configuring an r-Benes network
to realize π and then listing the settings of the switches in some canonical order
(e.g. level-order). This represents π using r2r − 2r−1 = n lgn−n/2 bits. Given
i, one can trace the path taken by a packet at input i by inspecting the appro-
priate bits in this representation, and thereby compute π(i); by tracing the path
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back from output i we can likewise compute π−1(i). The time taken is clearly
O(lg n); indeed, the algorithm only makes O(lg n) bit-probes. To summarize:

Proposition 3.1. When n = 2r for some integer r > 0, there is a representa-
tion of an arbitrary perm π on [n] that uses n lgn − n/2 bits and supports the
operations π() and π−1() in O(lg n) time.

However, the Benes network has two shortcomings from our viewpoint:
firstly, the Benes network is defined only for values of n that are powers of
2. In order to represent a perm with n not a power of 2, rounding up n to
the next higher power of 2 could double the space usage, which is unaccept-
able. Furthermore, even for n a power of 2, representing a perm using a Benes
network uses P(n) + Ω(n) bits.

We now define a family of Benes-like networks that admit greater flexibility
in the number of inputs, namely the (q, r)-Benes networks, for integers r ≥
0, q > 1.

Definition 3.1. A q-permuter to be a communication network that has q inputs
and q outputs, and realises any of the q! perms of its inputs (an r-Benes network
is a 2r-permuter).

Definition 3.2. A (q, r)-Benes network is a q-permuter for r = 0, and for
r > 0 it is composed of q2r switches and two (q, r−1)-Benes networks, connected
together in exactly the same way as a standard Benes network.

Lemma 3.1. Let q > 1, r ≥ 0 be integers and take p = q2r. Then:

1. A (q, r)-Benes network consists of q2r−1(2r−1) switches and 2r q-permuters;

2. For every perm π on [p] there is a setting of the switches of a (q, r)-Benes
network that realises π.

Proof. (1) is obvious; (2) can be proved in the same way as for a standard Benes
network.

We now consider representations based on (q, r)-Benes networks; a crucial
component is the representation of the central q-permuters, which we address
in the next subsection. Since we are not interested in designing communication
networks as such, we focus instead on ways to represent the perms represented by
the central q-permuters in optimal (or very close to optimal) space and operate
on it – specifically, to compute π() and π−1() on the perms represented by the
q-permuters – in the bit-probe, cell-probe or RAM model. This is sufficient to
compute π() and π−1 in the (q, r) Benes network at large.

3.2.2. Representing Small Perms

In this section we consider the highly space-efficient representation of “small”
perms to use as a central q-permuter in a (q, r)-Benes network. It is straight-
forward (as noted in Section 3.3) to represent a perm on [q], q = O(lg n/ lg lg n)
and operate on it in the cell-probe model, or by table lookup in the RAM model.
As we will see, the larger we can make our central q-permuters (while keeping
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optimal space and reasonable processing times), the lower the redundancy of
our representation. With this in mind, we now give a method for asymptot-
ically larger values of q. We use the following complexity bounds for integer
multiplication and division using the fast Fourier Transform [7]:

Lemma 3.2. Given a number A occupying m words and another number B ≤
A, one can compute the numbers (A mod B) and (A div B) in O(m lgm) time.

Lemma 3.3. If q ≤ (lg n)2/(lg lg n)4, then there is a representation of an arbi-
trary perm π on [q] using P(q) bits that supports π(i) and π−1(i) in O(lg n/ lg lg n)
time. This assumes access to a set of precomputed constants that depend on q
and can be stored in O(q2 lg q) bits and also precomputed tables of size

√
n(lgn)O(1)

bits.

Proof. We represent a perm π over [q] as a sequence r(0), r(1), . . . , r(q − 1),
where r(0) = 0 and for 1 ≤ i < q, r(i) = |{j < i|π(j) < π(i)}| is the rank of π(i)
in the set {π(0), π(1), . . . , π(i−1)}. This sequence is viewed as a q-digit number
in a “mixed-radix” system, where the i-th digit r(i) is from [i+1], representing

the integer R =
∑q−1

i=0 i!r(i). The perm π is encoded by storing R in binary:
since R is an integer from [q!], the space used by the encoding is P(q) bits, and
R is stored in m = O(lg n/(lg lg n)3) words. To compute π() or π−1(), we first
decode the sequence r(0), . . . , r(q − 1) from R in O(m(lgm)2) time, and from
this seqeunce compute π() and π−1() in O(m lgm) and O(m) time respectively,
for an overall running time of O(m(lgm)2) = O(lg n/ lg lg n). We now describe
these steps, assuming for simplicity that q is a power of 2.

To decode R, we first obtain representations R′ and R′′ of the sequences of
digits r(q−1), r(q−2), . . . , r(q/2), and r(q/2−1), . . . , r(0) as R′ = (R div (q/2)!)
and R′′ = (R mod (q/2)!) in O(m lgm) time, and recurse. When recursing,
note that lgR′ − (lgR)/2 = O(q) bits, so the lengths of R′ and R′′ are equal to
within O(m/ lgm) words. Standard arithmetic, plus table lookup, is used once
the integer to be decoded fits into a single word. Thus, the recurrence is:

T (m) = m lgm+ T (m1) + T (m2)

T (1) = O(1)

where m1 +m2 ≤ m + 1 and |mj − m/2| = O(m/ lgm) (for j = 1, 2), which
clearly solves to O(m(lgm)2). (It is assumed that the divisors at each level of
the recursion such as (q/2)! at the top level, (q/4)! and (3q/4)(3q/4−1) · · · (q/2)
at the next level etc. are pre-computed (but these depend on q only, and are
independent of the perm π).

We partition the sequence r(q−1), . . . , r(0) into chunks of c = ⌈ 1
2 (lg n/ lg q)⌉

consecutive numbers each; each chunk fits into a single word and the number of
chunks is O(m). Define under(x, i) as the number of values in π(q− 1), . . . , π(i)
that are ≤ x. As r(q − 1) = π(q − 1), under(x, q − 1) is immediate. Further
observe that:

• if r(i) = x− under(x, i + 1)− 1 then π(i) = x;
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• if r(i) < x− under(x, i + 1)− 1 then π(i) < x;

• if r(i) > x− under(x, i + 1)− 1 then π(i) > x.

Thus, under(x, i) is easily computed from under(x, i+1) and r(i). Given under(x, i)
and a chunk r(i−1), . . . , r(i− c) one can perform all the following tasks in O(1)
time using table lookup:

• compute under(x, i − c);

• determine if there is a j ∈ [i− 1, i− c] such that π(j) = x;

• given a position j ∈ [i− 1, i− c], determine whether π(j) ≤ x or > x.

This gives an O(m)-time algorithm for computing π−1() and an O(m lgm)-time
algorithm for computing π() (via binary search).

3.2.3. Representing Larger Perms

We will now use the representation of Lemma 3.3, to represent larger per-
mutations via the Benes network. We begin by showing:

Proposition 3.2. For all integers p, t ≥ 0, p ≥ t there is an integer p′ ≥ p
such that p′ = q2ℓ and p′ < p(1 + 1/t), for integers q and ℓ where t < q ≤ 2t
and ℓ ≥ 0.

Proof. Take q to be
⌈

p/2ℓ
⌉

, where ℓ is the integer that satisfies t < p/2ℓ ≤ 2t.
Note that p′ < (p/2ℓ + 1) · 2r = p(1 + 2r/p) < p(1 + 1/t).

Now we describe the necessary modifications to the Benes network. Although
no new ideas are needed, a little care is needed to minimize redundancy.

Lemma 3.4. For any integer p ≤ n, if p = q2r for integers q and r such that
(lg n)2/2(lg lgn)4 < q ≤ (lg n)2/(lg lgn)4 and r ≥ 0, then there is a represen-
tation of an arbitrary perm π on [p] that uses P(p) + Θ((p lg q)/q) bits, and
supports π() and π−1() in O(r+lg n/ lg lg n) time each. This assumes access to
a pre-computed table of size O(

√
n(lg n)c) bits that does not depend upon π, for

some constant c > 0.

Proof. Consider the (q, r)-Benes network that realizes the perm π, and represent
this network as follows. List all the switch settings of the outer 2r layers of
switches as in Proposition 3.1, and represent each of the central q-permuters
using Lemma 3.3. The representation of Lemma 3.3 requires pre-computed
tables of size O(

√
n(lg n)c) bits (for some constant c > 0), which can be shared

over all the applications of the lemma. We now calculate the space used. Note
that:

P(p) = p lg(p/e) + Θ(lg p) = q2r(r + lg q − lg e) + Θ(lg p)

= qr2r + 2r(q lg(q/e)) + Θ(lg p)
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By Lemma 3.1 and Lemma 3.3 the space used by the above representation
(excluding lookup tables) is qr2r + 2rP(q) = qr2r + 2r(q lg(q/e) + Θ(lg q)) =
P(p) + Θ((p lg q)/q).

The running time for the queries follows from the fact that we need to look at
O(r) bits among the outer layers of switch settings, and that the representation
of the central q-permuter (Lemma 3.3) supports the queries in O(lg n/ lg lg n)
time.

Theorem 3.2. An arbitrary perm π on [n] may be represented using P(n) +
O(n(lg lg n)5/(lg n)2) bits, such that π() and π−1() can both be computed in
O(lg n/ lg lg n) time.

Proof. Let t = (lgn)3. We first consider representing a perm ψ on [l] for some
integer l, t < l ≤ 2t. To do this, we find an integer p = l(1+O((lg lgn)4/(lgn)2))
that satisfies the preconditions of Lemma 3.4; such a p exists by Proposition 3.2.
An elementary calculation shows that P(p) = P(l)(1 + O((lg lg n)4/(lg n)2)) =
P(l) + O(lg n(lg lg n)5). We extend ψ to a perm on [p] by setting ψ(i) = i for
all l ≤ i < p and represent ψ. By Lemma 3.4, ψ can be represented using
P(p) + Θ((p lg p)(lg lg n)4/(lg n)2) = P(l) + Θ(lg n(lg lgn)5) bits such that ψ()
and ψ−1() operations are supported in O(lg n/ lg lg n) time, assuming access to
a pre-computed table of size O(

√
n(lg n)c) bits, for some constant c > 0.

Now we represent π as follows. We choose an n′ ≥ n such that n′ = n(1 +
O(1/(lg n)3)) and n′ = q2r for some integers q, r such that t < q ≤ 2t. Again
we extend π to a perm on [n′] by setting π(i) = i for n ≤ i < n′, and represent
this extended perm. As in Lemma 3.4, we start with a (q, r)-Benes network
that realises π and write down the switch settings of the 2r outer levels in level-
order. The perms realised by the central q-permuters are represented using
Lemma 3.4. Ignoring any pre-computed tables, the space requirement is qr2r +
2r(P(q) + Θ(lg n(lg lg n)5)) bits, which is again easily shown to be P(n′) +
Θ((n′ lgn′)/q + 2r lg n(lg lg n)5)) = P(n′) + Θ(n(lg lg n)5/(lg n)2) bits. Finally,
as above, P(n′) = (1+O(1/(lg n)3))P(n), and the space requirement is P(n) +
Θ(n(lg lg n)5/(lg n)2) bits.

The running time for π() and π−1() is clearly O(lg n). To improve this
to O(lg n/ lg lg n), we now explain how to step through multiple levels of a
Benes network in O(1) time, taking care not to increase the space consumption
significantly. Consider a (q, r)-Benes network and let t = ⌊lg lg n− lg lg lg n⌋−1.
Consider the case when t ≤ r (the other case is easier), and consider input
number 0 to the (q, r)-Benes network. Depending upon the settings of the
switches, a packet entering at input 0 may reach any of 2t switches in t steps
A little thought shows that the only packets that could appear at the inputs to
these 2t switches are the 2t+1 packets that enter at inputs 0, 1, k, k+1, 2k, 2k+
1, . . ., where k = q2r−t. The settings of the t2t switches that could be seen by
any one of these packets suffice to determine the next t steps of all of these
packets. Hence, when writing down the settings of the switches of the Benes
network in the representation of π, we write all the settings of these switches
in t2t ≤ (lg n)/2 consecutive locations. Using table lookup, we can then step
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through t of the outer 2r layers of the (q, r)-Benes network in O(1) time. Since
computing the effect of the central q-permuter takes O(lg n/ lg lgn) time, we see
that the overall running time is O(r/t + lgn/ lg lgn) = O(lg n/ lg lg n).

3.3. Optimality

We now consider the optimality of the solutions given in the previous two
sections: specifically, if they achieve the best possible redundancy for a given
query time. As noted in Introduction, Golynski [15, Theorem 17] has shown
that any data structure in the “black-box” model that supports π−1 in at most
t < n/2 evaluations of π() requires an index of size Ω((n/t) lg(n/t)). This shows
the asymptotic optimality of Theorem 3.1 for t = n1−Ω(1). In the cell probe
model, Golynski [14] shows that:

Lemma 3.5. For any data structure which uses P(n)+ r bits of space to repre-
sent a perm over [n] and supports π() and π−1() in time tf and ti respectively,
such that max{tf , ti} ≤ (1/16)(lgn/ lg lgn), it holds that r = Ω((n lg n)/(tf ·ti))
bits.

This shows that Corollary 3.1 is optimal for a range of values of the parameter
t. Specficially, there is a constant c (which depends upon the constant within the
O() in Corollary 3.1 and the value 1/16 in Lemma 3.5) such that the redundancy
of Corollary 3.1 is asymptotically optimal for all t ≤ c lg n/ lg lg n. In order to
clarify the relationship of Lemma 3.5 to the results in Section 3.2 we have the
following proposition:

Proposition 3.3. In the cell probe model with word size O(log n), a perm π
non [n] can be represented as follows:

i. Both π() and π−1() can be computed using 2 lgn/ lg lgn + O(1) probes,
and the space used is P(n) +O(n(lg lgn)2/ lgn) bits.

ii. Both π() and π−1() can be computed using (2+ǫ) lgn/ lg lgn+O(1) probes,
for any constant ǫ > 0, and the space used is P(n)+O(n(lg lg n)3/(lgn)2)
bits.

Proof. In the cell probe model, we note that given a perm π on [q], one can
compute π() and π−1 on a perm q in O(1 + (q lg q)/ lgn) time, using P(q)
bits. This is done by representing π implicitly, e.g., as the index of π in a
canonical enumeration of all perms on [q], and computing π() and π−1 by simply
reading the entire representation (which occupies O(1+(q lg q)/ lgn) cells). Two
particular values of q are of interest here: q1 = Θ(lgn/ lg lgn), when the time is
O(1) probes, and q2 = ǫ(lgn/ lg lg n)2, for some constant ǫ < 1, when the time
is at most ǫ lgn/ lg lgn probes.

Using these representations as the central q-permuter in Lemma 3.4, followed
by Theorem 3.2, we note that the number of probes made in the outer layers
of the Benes network is at most 2 lgn/ lg lg n. By adding the probes made to
the central q-permuter (for both q = q1 and q = q2), we get the numbers of
probes claimed. The redundancies are obtained by straightforward calculation
as in Lemma 3.4 and Theorem 3.2.
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The first of two cases represents the lowest number of probes that we are
able to achieve with our approach. Although the number of probes is still higher
than the maximum number of probes allowed by Lemma 3.5, the redundancy
equals the lowest redundancy provable by Lemma 3.5. However, with a very
small increase in the number of probes, the redundancy drops considerably (and
in fact is lower than that of Theorem 3.2).

3.4. Supporting Arbitrary Powers

We now consider the problem of representing an arbitrary perm π to compute
πk() for k > 1 (or k < 1) more efficiently than by repeated application of π()
(or π−1()). Here we develop a succinct structure to support all powers of π
(including π() and π−1). The results in this section assume that we have P(n)
bits (plus some redundancy) to store the representation, i.e., we do not work in
the “black-box” model.

Theorem 3.3. Suppose there is a representation R taking s(n) bits to store
an arbitrary perm π on [n], that supports π() in time tf , and π−1() in time
ti. Then there is a representation for an arbitrary perm on [n] taking s(n) +
O(n lg n/ lg lgn) bits in which πk() for any integer |k| ≤ n can be supported in
tf + ti +O(1) time, and one taking s(n) +O(

√
n lg n) bits in which πk() can be

supported in tf + ti +O(lg lgn) time.

Proof. Consider the cycle representation of the given perm π, in which for all
cycles of π, we write down the elements comprising the cycle, in the order in
which they appear in the cycle, starting with the smallest element in the cycle. It
will be convenient to consider the logical array ψ of length n, which comprises the
cycles written in nondecreasing order of length, with logical separators marking
the boundary of each cycle (see Fig. 3 for an example)2. Clearly, ignoring the
logical separators between cycles, ψ is itself a permutation.

To compute πk(x) for any (positive or negative) k we do the following:

1. find the position j in ψ that contains x,

2. find the left endpoint l of the segment of ψ that represents the cycle
containing i, and the length λ of this cycle and

3. return the element of ψ in position s = l + ((j − l + k) mod λ).

The data structure for implementing this is as follows. We represent ψ in
the assumed representation R. In Step (1), j is computed as ψ−1(i) in time ti,
and in Step (3), the return value is just ψ(s), computed in time tf . We now
focus on Step (2). Let λ1 < λ2 < . . . < λz be the distinct cycle lengths in π
(the example in Fig. 3 has z = 3); note that z = O(

√
n). We store the sequence

{λi} in an array, using O(
√
n lg n) bits. Also consider the set S = {si}, where

s1 = 0 and for i = 2, . . . , z, si is the total length of all cycles in π whose length
is strictly less than λi (note that si is the starting position of the sequence of

2One can dispense with the logical separators by writing the cycles in order of decreasing
minimum element, but this is not as convenient for our purposes.
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Figure 3: A permutation π and the logical array ψ representing its cycles.

cycles of size λi). Thus, if j is the position of x in ψ in Step (1), then the length
λ of the cycle containing x is λt, where t = rank(j, S). Also, since all the cycles
of length λ begin at st = select(S, t), it is straightforward to compute the left
endpoint of the cycle containing x. It only remains to describe how to represent
S. We choose two options, giving the claimed results:

• to represent S in the FID of Theorem 2.1, taking lg
(

n
z

)

+O(n lg lgn/ lgn) =
O(n lg lg n/ lgn) bits, which supports rank and select in O(1) time.

• to represent S as an array, supporting select in O(1) time and also as a
predecessor data structure (e.g. the Y-fast trie [34]) which supports rank
in O(log logn) time. The space used by this option is O(

√
n lg n) bits.

As an immediate corollary, we get, from Theorem 3.2

Corollary 3.2. There is a representation to store an arbitrary perm π on [n]
using at most P(n) +O(n(lg lg n)5/(lg n)2) bits that can support πk() for any k
in O(lg n/ lg lgn) time.

4. Succinct trees with level-ancestor queries

In this section we consider the problem of supporting level-ancestor queries
on a static rooted ordered tree. The structure developed here will be used in
the next section as a substructure in representing a function efficiently. Given
a rooted tree T with n nodes, the level-ancestor problem is to preprocess T to
answer queries of the following form: Given a vertex v and an integer i > 0, find
the ith vertex on the path from v to the root, if it exists. Existing solutions take
Θ(n lgn) bits to answer queries in O(1) time [8, 5, 1, 3], and our solution stores
T using (essentially optimal) 2n bits of space, and uses auxiliary structures of
o(n) bits to support level-ancestor queries in O(1) time. Another useful feature
of our solution (which we need in the function representation) is that it also
supports finding the level-successor (or predecessor) of a node, i.e., the node to
the right (left) of a given node on the same level, if it exists, in constant time.
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A high-level view of our structure and the query algorithm is as follows: for
any constant c > 0 we construct a structure A, that given a node x and any
(positive or negative) integer k, |k| ≤ lgc n, supports finding the ancestor (or
the first successor in pre-order, if k ≤ 0) of x whose depth is depth(x) + k (this
structure is our main contribution). Applying the above with c = 2 (say), we
also construct another structure, B, which supports level-ancestor queries on
nodes whose depths are multiples of lg2 n, and whose heights are at least lg2 n.
To support a level-ancestor query, structure A is first used to find the closest
ancestor of the given node, whose depth is a multiple of lg2 n and whose height
is at least lg2 n. Then structure B is used to find the ancestor which is the
closest descendant of the required node and whose depth is a multiple of lg2 n.
Structure A is again used to find the required node from this node. The choice
of different powers of lg n in the structures given below are somewhat arbitrary,
and could be fine-tuned to slightly improve the lower-order term.

The structure A consists of the tree T represented in 2n bits as a balanced
parenthesis (BP) sequence as in [25], by visiting the nodes of the tree in depth
first order and writing an open parenthesis whenever a node is first visited, and a
closing parenthesis when a node is visited after all its children have been visited.
Thus, each node has exactly one open and one closing parenthesis corresponding
to it. Hereafter, we also refer a node by the position of either the open or the
closing parenthesis corresponding to it in the BP sequence of the tree. We store
an existing auxiliary structure of size o(n) bits that answers the following queries
in O(1) time on the BP sequence (see [25, 11] for details):

• close(i): find the position of the closing parenthesis that matches the open
parenthesis at position i.

• open(i): find the position of the open parenthesis that matches the closing
parenthesis at position i.

• excess(i): find the difference between the number of open parentheses and
the number of closing parentheses from the beginning up to the position i.

Note that the excess of a position i is simply the depth of the node i in the tree.
Our new contribution is to give a o(n)-bit structure to support the following
operation in O(1) time:

• next-excess(i, k): find the least position j > i such that excess(j) = k.

We only support this query for excess(i)−O(lgc n) ≤ k ≤ excess(i)+O(lgc n)
for some fixed constant c. In the following lemma, we fix the value of c to be 2.
Observe that next-excess(i, k) gives:

(a) the ancestor of i at depth k, if k < depth(i), and

(b) the next node after i in the level-order traversal of the tree, if k = depth(i),
and

(c) the next node after i in pre-order, if k > depth(i).
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We now describe the auxiliary structure to support the next-excess query in
constant time using o(n) bits of extra space, showing the following:

Theorem 4.1. Given a balanced parenthesis sequence of length 2n, one can sup-
port the operations open, close, excess and next-excess(i, k) where |k−excess(i)| ≤
lg2 n, all in constant time using an additional index of size o(n) bits.

Proof. The auxiliary structure to support open, close and excess in constant
time using o(n) additional bits has been described by Munro and Raman [25]
(see also [11] for a simpler structure). We now describe the auxiliary structures
required to support the next-excess query in constant time.

We split the parenthesis sequence corresponding to the tree into superblocks
of size s = lg4 n and each superblock into blocks of size b = (lgn)/2. Since the
excess values of two consecutive positions differ only by one, the set contain-
ing the excess values of all the positions in a superblock/block forms a single
range of integers, which we denote as the excess-range of the superblock/block.
We store this excess range information for each superblock, which requires
O(n lg n/ lg4 n) = o(n) bits for the entire sequence. For each block, we also
store the excess-range information, where excess is defined with respect to the
beginning of the superblock. As the excess-range for each block can be stored
using O(lg lgn) bits, the space used over all the blocks is O(n lg lg n/ lgn) = o(n)
bits.

For each superblock, we store the following structure to support the queries
within the superblock (i.e., if the answer lies in the same superblock as the query
element) in O(1) time:

We build a complete tree with branching factor
√
lgn (and hence constant

height) with blocks at the leaves. Each internal node of this tree stores the
excess ranges of all its children, where the excess-range of an internal node
is defined as the union of the excess-ranges of all the leaves in its subtree.
Thus, the size of this structure for each superblock is O(s lg lg n/b) = o(s) bits.
Using this structure, given any position i in the superblock and a number k,
we can find the position next-excess(i, k) in constant time, if it exists within
the superblock. More specifically, a query is answered by starting at the leaf
(block) v containing the position i, traversing the tree upwards till we find the
first ancestor node which has a child with preorder number larger than that of v
whose excess-range contains k, and then traversing downwards to reach the leaf
containing the answer to the query; searches at the internal nodes and leaves are
performed using precomputed tables, as the information stored at these nodes
is either O(

√
lgn lg lgn) bits for internal nodes, or (lg n)/2 bits for leaves.

Let [e1, e2] be the range of excess values in a superblock B. Then for each i
such that e1 − lg2 n ≤ i < e1 or e2 ≤ i < e2 + lg2 n, we store the least position
to the right of superblock B whose excess is i, in an array AB.

In addition, for each i, e1 ≤ i ≤ e2, we store a pointer to the first superblock
B′ to the right of superblock B such that B′ has a position with excess i.
Then we remove all multiple pointers (thus each pointer corresponds to a range
of excesses instead of just one excess). The graph representing these pointers
between superblocks is planar. [One way to see this is to draw the graph on
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the Euclidean plane so that the vertex corresponding to the j-th superblock
B, with excess values in the range [e1, e2], is represented as a vertical line with
end points (j, e1) and (j, e2). Then, there is an edge between two superblocks
B and B′ if and only if the vertices (vertical lines) corresponding to these are
‘visible’ to each other (i.e., a horizontal line connecting these two vertical lines
at some height does not intersect any other vertical lines in the middle).] Since
the number of edges in a planar graph on m vertices is O(m), the number of
these inter-superblock pointers (edges) is O(n/s) as there are n/s superblocks
(vertices). The total space required to store all the pointers and the array AB

is O(n lg3(n/s)) = o(n) bits.
Thus, each superblock has a set of pointers associated with a set of ranges of

excess values. Given an excess value, we need to find the range containing that
value in a given superblock (if the value belongs to the range of excess values
in that superblock), to find the pointer associated with that range. For this
purpose, we store the following auxiliary structure: If a superblock has more
than lgn ranges associated with it (i.e., if the degree of the node corresponding
to a superblock in the graph representing the inter-superblock pointers is more
than lg n), then we store a bit vector for that superblock that has a 1 at the
position where a range starts, and 0 everywhere else. We also store an auxiliary
structure to support rank queries on this bit vector in constant time. Since there
are at most n/(s lgn) superblocks containing more than lg n ranges, the total
space used for storing all these bit vectors together with the auxiliary structures
is o(n) bits. If a superblock has at most lgn ranges associated with it, then we
store the lengths of these ranges (from left to right) using the searchable partial
sum structure of [31], that supports predecessor queries in constant time. This
requires o(s) bits for every such superblock, and hence o(n) bits overall.

Given a query next-excess(i, k), let B be the superblock to which the position
i belongs. We first check to see if the answer lies within the superblock B
(using the prefix sums tree structure mentioned above), and if so, we output
the position. Otherwise, let [e1, e2] be the range of excess values in B. If
e1 − lg2 n ≤ k < e1 or e2 ≤ k < e2 + lg2 n, then we can find the answer
from the array AB. Otherwise (when e1 ≤ k ≤ e2), we first find the pointer
associated with the range containing k (using either the bit vector or the partial
sum structure, associated with the superblock) and use this pointer to find the
block containing the answer. Finding the answer, given the superblock in which
it is contained, is done using the prefix sums tree structure stored for that
superblock.

Thus, using these structures, we can support next-excess(i, k) for any i and
|k − excess(i)| ≤ lg2 n in constant time.

By using the balanced parenthesis representation of the given tree and by
storing the auxiliary structures of Theorem 4.1, we can support the following:
given a node in the tree find its k-th ancestor, for k ≤ lg2 n, and also the next
node in the level-order traversal of the tree in constant time. To support general
level ancestor queries, we do as follows.

Firstly, we mark all nodes of the tree that are at a depth which is a multiple
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of lg2 n and whose height is at least lg2 n (similar to [1]). There are O(n/ lg2 n)
such nodes. We store all these marked nodes as a tree (preserving the ancestor
relation among these nodes) and store a linear space (hence o(n)-bit) structure
that supports level-ancestor queries in constant time [3]. Note that one level in
this tree corresponds to exactly lg2 n levels in the original tree. We also store
the correspondence between the nodes in the original tree and those in the tree
containing only the marked nodes.

A query for level-ancestor(x, k), the ancestor of x at height k from x (i.e., at
depth depth(x) − k), is answered as follows: If k ≤ lg2 n, we find the answer
using a next-excess query. Otherwise, we first find the least ancestor of x which
is marked using at most two next-excess queries (the first one to find the least
ancestor whose depth is a multiple of lg2 n, and the next one, if necessary, to
find the marked ancestor whose height is at least lg2 n). From this we find the
highest marked ancestor of x which is a descendant of the answer node, using the
level-ancestor structure for the marked nodes. The required ancestor is found
from this node using another next-excess query, if necessary.

The query level-successor(x), which returns the successor of node x in the
level order (i.e., the node to the right of x which is in the same level as x), can
be supported in constant time using a next-excess(x, depth(x)) query. Since all
the nodes in a subtree are together in the parenthesis representation, checking
whether a node x is a descendant of another node y can be done in constant time
by comparing either the open or closing parenthesis position of x with the open
and closing parenthesis positions of y. Hence the representation also supports
the is-ancestor operation in constant time.

Thus we have:

Corollary 4.1. Given an unlabeled rooted tree with n nodes, there is a struc-
ture that represents the tree using 2n + o(n) bits of space and supports parent,
first-child, level-ancestor, level-successor and is-ancestor queries in O(1) time.

5. Representing functions

We now consider the representation of functions f : [n] → [n]. Given such a
function f , we equate it to a digraph in which every node is of outdegree 1, and
represent this graph space-efficiently. We then show how to compute arbitrary
powers of the function by translating them into the navigational operations on
the digraph.

More specifically, given an arbitrary function f : [n] → [n], consider the
digraphGf = (V,E) obtained from it, where V = [n] and E = {〈i, j〉 : f(i) = j}.
In general this digraph consists of a set of connected components where each
component has a directed cycle with each vertex being the root of a (possibly
single node) directed tree, with edges directed towards the root. See Figure 4(a)
for an example. We refer to each connected component as a gadget.

The main idea of our representation is to store the structure of the graph
Gf as a tree Tf such that the forward and inverse queries can be translated into
appropriate navigational operations on the tree. We store the bijection between
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(a) Graph representation of the function f(x) = (x2 + 2x − 1) mod 19, for 0 ≤ x ≤ 18. The
vertex labels in the brackets correspond to the function g obtained by renaming the vertices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 5 4 12 17 9 15 3 13 14 10 16 8 18 11 7 6 2 0

(b) Perm defining the isomorphism between Gf and Gg

( ( ) ) ( ) ( ( ( ) ( ) ) ) ( ( ) ) ( ( ) ) ( ( ( ) ( ( ) ( ) ) ) ) ( ( ) )
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

(c) Parenthesis representation and the bit vectors indicating the starting positions of the gad-
gets and the trees (auxiliary structures are not shown)

Figure 4: Representing a function

the nodes labels in Gf and the preorder numbers of the ‘corresponding’ nodes
in Tf as a perm π. To support the queries for powers of f , we need to find the
node in Tf corresponding to a given label, perform the required navigational
operations on the tree to find the answer node(s), and finally return the label(s)
corresponding to the answer node(s). Hence we store the perm π using one of
the perm representations from Section 3 so that π() and π−1() can be supported
efficiently.

We define a gadget to be wide if its cycle length is larger than lg1/3 n, and
narrow otherwise. The size of a gadget or a tree is defined as the number of
nodes in it. Before constructing the tree Tf , we first re-order the gadgets and
the tree nodes within each gadget as follows: (i) We first order the gadgets so
that all the narrow gadgets are before any of the wide gadgets. (ii) Wide gadgets
are ordered arbitrarily among themselves, while narrow gadgets are ordered in
the non-decresing order of their sizes. (iii) Within each group of narrow gadgets
with the same size, we arrange them in the non-decreasing order of their cycle
lengths (the cycle length of a gadget is the number of trees in the gadget).
(iv) For each gadget whose cycle length is greater than 1, we break the cycle
by selecting a tree with maximal height among all the tree that belong to the

21



gadget and deleting the outgoing edge from the root of this tree. We then order
the trees such that the trees are in the reverse order as we move along the cycle
edges in the forward direction (thus the tree with the maximal height that was
selected, is the last tree in this order). (v) We also arrange the nodes within
each tree such that the leftmost path of any subtree is the longest path in that
subtree, breaking the ties arbitrarily.

We now construct a tree that encodes the structure of the function f . Let
C1, C2, . . . , Cp be the gadgets in Gf and let T 1

i , T
2
i , . . . , T

qi
i be the trees in the

i-th gadget, for 1 ≤ i ≤ p, after the re-ordering of the gadgets and the nodes the
within the trees. Let rji be the root of the tree T j

i , for 1 ≤ i ≤ p and 1 ≤ j ≤ qi.
We refer the node r1i as the root of the gadget Ci.

Construct a tree Tf with root r whose children are the p nodes: r11 , r
1
2 , . . . r

1
p.

For 1 ≤ i ≤ p, under the node r1i add the path r2i − r3i − . . .− rqii . Also attach

the subtree under the root rji in T j
i to the node rji in Tf . The size of Tf is n+1

(the n nodes in Gf plus the new root r). We represent the tree Tf using the
structure of Corollary 4.1 using 2n+ o(n) bits. Items (iv) and (v) above ensure
that the leftmost path in any subtree of Tf is a longest path in that subtree,
and hence is represented by a sequence of open parentheses in the BP sequence.
This enables us to find the descendent of any node in the subtree at a given
level, if it exists, in constant time.

We number of the nodes of Tf with their pre-order numbers, starting from 0
for the root r. Every node in the tree Tf , except for the root r, corresponds to a
unique node in the graph Gf , and this correspondence can be easily determined
from the construction of the tree. As mentioned earlier, we store this bijection
π between the labels in Gf and the preorder numbers in Tf by representing the
perm π that supports π() and π−1() efficiently.

In addition to the perm π and the tree Tf , we store the following data
structures using o(n) bits:

1. An arrayA storing the distinct sizes of the narrow gadgets in the increasing
order (i.e., the sequence s1, s2, . . . , sd, where 1 ≤ s1 < s2 < . . . < sd ≤ n,
and for 1 ≤ i ≤ d there exists a narrow gadget of size si in Gf ). Note
than d = O(

√
n).

2. An FID for the set B = {p1, p2, . . . pd}, where pi is the preorder number
of the first narrow gadget (in the above ordering) whose size is si (or
equivalently, the sum of the sizes of all the narrow gadgets in Gf whose
sizes are less than si), for 1 ≤ i ≤ d.

3. An FID for the multiset C = {si,j}, for 1 ≤ i ≤ d and 1 ≤ j ≤ n1/3,
where si,j is the sum of the sizes of all the gadgets whose sizes are: (i) less
than si, and (ii) equal to si whose cycle lengths are at most j. (A rank

operation in this FID enables us to find the cycle length of the gadget
containing the node with a given preorder number, if it is in a narrow
gadget).

4. An array A′ that stores the size and cycle length of each wide gadget, in
the above ordering of the wide gadgets.
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5. An FID for the set B′ = {p′1, p′2, . . . p′d′}, where d′ is the number of wide
gadgets in Gf , and p

′
i is the preorder number of the root of the i-th wide

gadget (in the above ordering).

Given a node in a tree, we can find its k-th successor (i.e., the node reached
by traversing k edges in the forward direction), if it exists within the same tree,
in constant time using a level-ancestor query. The k-th successor of node rji (the
root of the jth tree in the ith gadget) can be found in O(1) time by computing
the length of the cycle in the ith gadget, using rank and select operations on the
the above FIDs. By combining these two, we can find the k-th successor of an
arbitrary node in a gadget in constant time.

Given a node x in a gadget, if it is not the root of any tree, then we can
find all its k-th predecessors (i.e., all the nodes reachable by traversing k edges
in the reverse direction) in optimal time using the tree structure by finding all
the descendant nodes of x that are k levels below, as follows: we first find the
leftmost descendant in the subtree rooted at x at the given level, if it exists,
in constant time, as the leftmost path is represented by a sequence of open
parentheses in the parenthesis representation of the tree. From this node, we
can find all the nodes at this level by using the level-successor operation to find
the next node at this level, checking whether the node is a descendant of x using
the is-ancestor operation, and stopping when this test fails.

To report the set of all k-th predecessors of a node rji (which is the root of
the jth tree in the ith gadget), if j+ k ≤ qi, then we report all the nodes in the

subtree (of Tf) rooted at rji that are at the same level as rj+k
i . Otherwise, we

first find all trees T y
x which contain at least one answer, and then report all the

answers in each of those trees.
Now to find all the trees T j

i that contain at least one answer, we observe

that if T j′

i contains at least one node that is a k-th predecessor of rji , then it also

contains at least one node that is a (qi+(k mod qi))-th predecessor of rji (here qi
is the number of trees in the ith gadget). Also, the set of all (qi+(k mod qi))-th
predecessors of rji is a subset of the set of k-th predecessors of rji , when k ≥ qi.
In other words, the set of all trees that contain at least one k-th predecessor of
rji is the same as the set of all trees that contain at least one (qi+(k mod qi))-th

predecessor of rji .

Thus to find the k-th predecessors of rji , we identify two subsets of trees
whose union is the set of all trees in the gadget Ci that contain at least one
answer. These two subsets are the set of all trees that contain at least one node

• at a depth of k in the subtree rooted at node rji in Tf , and

• at a depth of k − (qi − j) in the subtree rooted at r1i in Tf .

Once we identify all the trees containing at least one answer, we can report all
the answer nodes in the tree Tf in time linear in the number of such nodes, as
explained earlier. Each of these node numbers are then transformed into their
corresponding node numbers in Gf using the representation of π.

Combining all these, we have:
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Theorem 5.1. If there is a representation of a perm on [n] that takes P (n)
space and supports forward in tf time and inverse in ti time, then there is a
representation of a function f : [n] → [n] that takes P (n) + 2n + o(n) bits of
space and supports fk(i) in O(tf + ti ∗ |fk(i)|) time (or in O(ti + tf ∗ |fk(i)|)
time), for any integer k (which can be stored in O(1) words) and for any i ∈ [n].

Using the succinct perm representation of Corollary 3.1, we get:

Corollary 5.1. There is a representation of a function f : [n] → [n] that takes
(1 + ǫ)n lg n+O(1) bits of space for any fixed positive constant ǫ, and supports
fk(i) in O(1 + |fk(i)|) time, for any integer k (which can be stored in O(1)
words and for any i ∈ [n].

5.1. Functions with arbitrary ranges

So far we considered functions whose domain and range are the same set
[n]. We now consider functions f : [n] → [m] whose domain and range are of
different sizes, and deal with the two cases: (i) n > m and (ii) n < m separately.
These results can be easily extended to the case when neither the domain nor
the range is a subset of the other. We only consider the queries for positive
powers.
Case (i) n > m: A function f : [n] → [m], where n > m can be represented
by storing the restriction of f on [m] using the representation mentioned in the
previous section, together with the sequence S = f(m+ 1), f(m+ 2), . . . , f(n)
stored in an array. This gives a representation that supports forward queries
efficiently.

To support the inverse queries, we store the sequence S using a representa-
tion that supports access and select queries efficiently, where access(i) returns
the value f(m+ i), and select(j, k) returns the k-th occurrence of the value j in
the sequence. We use the following representation which is implicit in Golyn-
ski et al. [16]: A sequence S of length n from an alphabet of size k (where n ≥ k)
can be represented as a collection of ⌈n/k⌉ perms over [k] together with O(n)
bits such that a select or an access query on S can be answered by performing a
single π() or π−1 query on one of the perms, together with a constant amount
of computation.

In addition, we augment the directed graph Gf , representing the function f
restricted to [m], with dummy nodes as follows: if f(m+ i) = j, then we add a
dummy node v as a ‘child’ of the node corresponding to j in Gf . The node v
is a representative of the set {i|f(i) = j, i > m}. We represent this augmented
directed graph to support the forward and inverse queries, using O(m) bits.
We also represent the perm that maps the ‘real’ (non-dummy) nodes to their
original values in the function f . Finally, we store an FID that indicates the
positions of the dummy nodes in the order determined by the representation of
Gf , using O(m) bits (note that the size of the graph Gf is O(m)).

To answer a query fk(i) for i ∈ [n] and k ≥ 1, we first find the node v
corresponding to i in the augmented graph Gf . The node v is a ‘real’ node if
i ≤ m, and can be found using the perm π that maps the nodes of Gf to their
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values in f and the FID indicating the positions of dummy nodes. We then
find the node u that is reached by traversing k edges in the forward direction,
using the structure of Gf . Finally, the value corresponding to the node u is
obtained using the perm π. If i > m, then the node v is a dummy node, and we
can find j = f(i) using an access query on the string S, and use the fact that
fk(i) = fk−1(j) to compute the answer.

To answer a query f−k(i) for i ∈ [m] and k ≥ 1, we first find the node
corresponding to the value i in Gf , find all the nodes that can be reached by
traversing k edges in the backward direction, and return the values correspond-
ing to all such nodes. Thus we have:

Theorem 5.2. If there is a representation of a perm on [n] that takes P (n)
space and supports forward in tf time and inverse in ti time, then there is a
representation of a function f : [n] → [m], n ≥ m that takes (n −m) ⌈lgm⌉ +
P (m)+O(m) bits of space and supports fk(i) in O(tf +ti) time, for any positive
integer k and for any i ∈ [n]. There is another representation of f that takes
⌈n/m⌉P (m)+O(m) bits that supports, for any k ≥ 1, fk(i) in O(tf + ti) time,
and f−k(i) in O(tf + ti ∗ |f−k(i)|) time (or in O(ti + tf ∗ |f−k(i)|) time).

Case(ii) n < m: For a function f : [n] → [m], where n < m, larger powers
(i.e., fk(i) for k ≥ 2) are not defined in general (as we might go out of the
domain after one or more applications of the function).

Let R be the set of all elements in the range [m] that have pre-images in
the domain [n] whose values are greater than n. In the graph Gf representing
the function f , each element in R corresponds to the root of a tree with no
outgoing edges. We order these trees such that elements corresponding to these
roots are in the increasing order. We then store an indexable dictionary for the
set R ⊆ [m] using lg

(

m
|R|

)

+ o(|R|)+O(lg lgm) bits . Since |R| ≤ n, this space is

at most n lg(m/n) +O(n+ lg lgm) bits. The size of the graph Gf is O(n) and
hence is stored in O(n) bits using the representation described in the previous
section. Finally, we store the correspondence between the node numbering given
by the O(n)-bit representation and the actual node labels in Gf , except for the
nodes corresponding to R. As all these nodes are in the set [n], we need to store
a perm π over [n].

A query for fk(i), for i ∈ [n] and k ≥ 1 is answered by first finding the node
corresponding to i in Gf using π, then finding the k-th node in the forward
direction, if it exists, using the structure of Gf , and finally finding the element
corresponding to this node, using the representation of π again. To find the set
f−k(i), for i ∈ [m] and k ≥ 1, we first find the node x corresponding to i in Gf

using either the representation of π if i ≤ n, or using the indexable dictionary
stored for the set R if n < i ≤ m. We then find all the nodes reachable from
x by taking k edges in the backward direction. We finally report the elements
corresponding to each of these nodes, using the representation of π. Thus we
have:

Theorem 5.3. If there is a representation of a perm on [n] that takes P (n)
space and supports forward in tf time and inverse in ti time, then there is a
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representation of a function f : [n] → [m], n < m that takes n lg(m/n)+P (n)+
O(n) bits. For any positive integer k, this representation supports the queries
for fk(i), for any i ∈ [n] (returns the power if defined and −1 otherwise) in
O(tf + ti) time, and supports f−k(i), for any i ∈ [m] in O(tf + ti ∗ |f−k(i)|)
time (or in O(ti + tf ∗ |f−k(i)|) time).
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