
A Fast Planar Partition Algorithm, II

Ket an Mulmuley
The University of Chicago

1 Introduction
In [Mull] we gave a randomized, optimal, and efficient al-
gorithm to find the partition of a plane induced by a set of
linear segements. Optimal algorithms for the same problem
were also independently given in [Ch],[Cl]. In this paper we
extend the optimal planar partition algorithm of [Mull] to
many other related problems.

First we examine what happens if the segments in question
are algebraic instead, but of a bounded degree. We shall
approach this problem in two ways. The first approach is
purely algebraic. Following this approach, we shall give an
optimal, randomized O(tn + n log n) algorithm to find the
planar partition induced by a set of algebraic segments of
bounded degree, where n is the number of segments and
m is the number of intersections. The second approach to
the problem is based on linear approximations. Here we
approximate every algebraic segment by a chain of linear
segments. The problem now is to find the planar partition
induced by a given set of linear chains of a bounded degree,
where the degree of a chain is defined to be the maximum
number of intersections between the chain and a straight
line. Note that we are not making any assumptions about
the size of a chain, i.e. the number of linear segments in a
chain. The reason is that even if the degree of an algebraic
segment is bounded, it, is not necessary that the size of its
linear approximation will be bounded. For example, a larger
circle has to be approximated by a larger set of linear seg-
ments than a smaller a circle. In this setting, we consider
the problem of finding the planar partition induced by n
linear chains of bounded degree of total size N. We give
an 0(N + nlog n + m) algorithm to find such a partition,
where m is the number of intersections of the chains. Note
that if we simply applied the planar partition algorithm of
[Mull] to the derived set of N linear segments, we will get
an 0(N log N + m) algorithm.

The other problem treated in this paper is clipping. This
is a very effective form of divide and conquer which is ex-
tensively used in practice, especially in computer graphics
[Suther]. It is done as follows. One first divides a given
window into many subwindows, and then “clips” the input

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

@ 1989 ACM 0-89791-318-3/89/0006/0033 $1.50

33

against these subwindows. This gives us a set of smaller
problems, one for each subwindow, and one can recur if
necessary. In practice, the overhead of this conventional
clipping per window W is O(& + n,), where nw is the
number of endpoints of the input segments within W and
& is the number of input segments intersecting W. The
cost O(n,) is unavoidable. The linear dependence of the
overhead on the “flux” Qw is, however, undesirable, and
constitutes a major bottleneck for the conventional clipping.
The reason is that the number of intersections between the
input and all subwindow borders becomes large quite soon,
as one increases the number of subwindows. In this paper,
we present a new clipping technique called virtual clipping,
for which the overhead per window W depends only loga
rithmically on the flux q&,,. And yet, one gets all advantages
of the conventional clipping, in the sense that, the work
done within any given subwindow, in the amortized sense,
obeys exactly the same bound as if the input were actually
clipped against that subwindow. Note that the cost of vir-
tual clipping is logarithmic in the window flux regardless of
the position of that cIipping window with respect to the input.
Besides making the clipping more efficient, this also makes
it more robust than the conventional clipping with respect
to the decisions regarding the positions and the number of
clipping subwindows. Unlike the space requirement of the
conventional clipper, the space requirement of the virtual
clipper is guaranteed to be linear, regardless of the input or
the locations of the clipping subwindows. This makes virtual
clipping a favorable alternative to the conventional clipping.
Our technique is intimately based on the ideas used in the
planar partition algorithm of [Mull]. The name virtual clip
ping comes from the fact that our algorithm does not clip
the input against the specified subwindows actually, but only
uirtually. This technique can be used not just in connection
with the planar partition problem but many others, which
include the problems in computer graphics.

As an application of virtual clipping, we give a very
efficient planar point location algorithm. Optimal alg*
rithms taking O(nlogn) preprocessing time, O(n) space and
O(log n) query time are known [Lipton,Kirpat,Edel,Sarnak].
(See also [Prep].) Yet a planar point location algorithm
based on conventional clipping works equally well and some-
times even better in practice [Edah]. Because of the ad-
vantage of virtual clipping over conventional clipping, our
algorithm is expected to be a favorable candidate in practice.
In the worst case, our algorithm takes O(nlogn) time, but
in practice, this should be linear. Its space requirement is
guaranteed to be 0(n). Contrast this with the O(n3/‘) worst,

case time and space requirement of a conventional clipping
algorithm [Edah]. The querry time of our algorithm in pray-
tice should be O(l), but no O(logn) theoretical guarantee
can be given. Virtual clipping makes it feasible to choose
quite small subwindows, making it unnecessary to set up
any elaborate search structure within any subwindow. This
makes the search structure of our algorithm simplest among
all known search structures for the point location problem.
This also means that in practice the query time of our al-
gorithm should compare favorably with that of the other
algorithms.

The main theoretical tool which is used in the analysis of
the algorithms in this paper is a probabilistic game involving
certain stoppers and triggers. This is an extensive general-
ization of the games considered in (Muil]. Our success in
analyzing this general game directly enables us to handle,
in a unifying framework, the situations which we could not
handle before. It also allows us to give a more direct analysis
of the algorithm in [Mull], which is a bit simpler. The proba-
bilistic games of a similar nature have extensive applications
in quite different situations too [Mul2]. For applications to
the hidden surface removal problem see [Muls].

We shall assume that the reader is familiar with the alga
rithm in [Mull], and the terminology used in its description.
On the other hand, the analysis in this paper is almost self
contained.

2 Stoppers and Triggers

A main theoretical tool used in the analysis of our algorithms
is the probabilistic analysis of a certain game. As this game
is theoretically interesting in its own right, we shall begin
with this game and its analysis. The game itself is a gener-
alization of the similar games in [Mull]. Its analysis given
here is, however, more direct.

Assume that we have three sets M, H and K. We assume
that M is linearly ordered. H and K can be unordered. We
also assume that H and K are disjoint. They can, however,
intersect M. Imagine M placed on the positive real axis,
according to its order; the ordering of M increases in the
positive direction. This is just for the sake of visualization,
otherwise, M is completely abstract. Imagine an observer
located at the origin.

Now we shall conduct a novel experiment. The experi-
ment consists in repeatedly selecting, in a random fashion,
an element from MUHUK, without replucement, until every
element from the union has been selected. The observer
will’be active during a part of this experiment which is
determined as follows: The observer becomes active, if at
all, immediately after all elements of H have been chosen,
provided no element from K has been chosen before this
instant. If the observer becomes active at all, he will go
into the inactive state immediately after some element from
K has been chosen; if K is empty he will remain active
thereafter. Thus H can be regarded as a set of triggers and
K can be regarded as a set of stoppers.

Let us say that an element a E M was observed by the
observer urhen it was chosen if 1) the observer was in the

active state at this instant 2) no element b < a in M had
been chosen before this instant. The idea is that the chosen
elements of M are supposed to act as barriers to the sight
of the observer. Hence if an element B < (1 in M had been
chosen before u, the observer could not see a when it was
chosen. Let 0 be the number of elements of M that were
observed by the observer in the active state. We want to
estimate E(O), the expected value of the random variable 0.
Let IMI = m, [HI = h and 1K1 = L. The functional form
of E(0) depends very crucially on what h and k are, as the
following theorem shows.

Theorem 1 Given the sets M, H and K as above, the ex-
pected value E(0) is bounded as below:

1) h = 0, k = 0: E(0) 5 ln(m + 1) + y, where y is the
Euler’s constant.

2) h = 0, k > 0:

a) KnM=B: E(O)<ln(T+l).

b) KnM#B:E(O)<l+ln(~+l).

3) k = 0, h > 0: E(0) < ,&,

4) h > 0, k > 0:

a) KnM=B: E(O)<h=&.

b) K”M#@:E(O)q&=&.
k ;L

Proof: Let Oi be the random variable which is one if the
ith element of M was observed by the observer in his active
phase, and zero otherwise. Then 0 = ci Oi and E(0) =
ci E(Oi). Hence, it suffices to estimate E(Oi), for every i.

For a fixed i, let ci be the ith element in M and let Mi
denote the subset of’M consisting of the elements less than
or equal to ci. We make the following crucial observation:
E(Oi) can depend only on the sets Mi, H, and K. This
is the restriction argument that was used in [Mull], and is
easy to prove. Informally this can be easily seen as follows.
Imagine a new observer who can only see the elements in
Mi U H U K. Then as far as he can see, the elements in
Mi U H U K are still chosen with a uniform randomness, and
by the very definition of Oi, it is strictly a function of what
happens within the universe Mi U H U K.

First consider only the case K n M = 0. Let Ui = Mi U

HuK.
To estimate E(Oi), we now restrict our attention to Mi U

H u K.
First notice that E(Oi) =O,ifHnMi#B. Byouras-

sumption, K and M are disjoint and H and K were already
disjoint. Thus we need to estimate E(Oi) only when Mi, H
and K are all disjoint; thus Ui = IUil = i + h + k.

Now notice that ci can be observed if and only if

1) the first h elements to be chosen from Vi, be-
long to H.

h!
The probabililty of this happening is

h
Ui(Ui-l)“‘(U;--h+l) = (i+h+k)..:(i+k+l)’

2) The (h + 1)st element chosen from Vi is ci. The prob-
ability of this happening is *j = h.

34

Hence, E(Oi) = ~i+h+~..(i+kT.
If H II Mi # 0, E(Oi) = 0. Thus we conclude:

E(“i) 5 (;+h+k;!..-(i+k)*

Now we proceed by cases.

1) h = 0, k = 0: in this case E(Oi) 5 +, hence

E(O)=&zlnm+7,
i=l

where y is the Euler’s constant.

2) h = 0, k > 0: in this case E(0;) 2 & and hence

~(o)=~~~J~~~~=l~(l+~).
i=l 0

3) k=O, h>o: inthiscase

E(Oi) < & = I&J . &. Hence

E(O) 5 &e-t,
i=l Cb~>

1 O” 1

< h+ljzO(jfr)’ c where r = h + 1,

5 asr22,

20° 1

CC

1

= ‘“hfl
j=O

--j+2 i+l >

2

= h+l’

4) h > 0, k > 0: in this CSR E(Oi) 5 <i+h+,!&i+kl =

&-&y* Hence

where r = h + 1 (thus T 2 2),

= - f g Ltrl(Hrl-l))(iy) ’ where r’ = r - 2,

= (r-1) OJ mjzk j+i-1 c(-- j:r 1
r-l 1 =

m’(k+r-1)

Now consider the case when K n M # 8.
Let M’ = M - K be the relative complement of M with

respect to K and let m’ =]A4’]. Notice that M’, K, H are
mutually disjoint. Let 0’ be the number of elements from
M’ which were observed by the observer during the active
state. Then E(0’) can be bounded as in the preceding part
of the proof, because M’, K, and H are mutually disjoint.

Let 0” be the number of elements from K which were
observed by the observer during his active state. It remains
to bound E(0”). Note that 0” 5 1, as the observer becomes
inactive immediately after an element from K is chosen. In
case h = 0 and k > 0, this immediately implies that E(0) 5

l+ln l+$
(>

5 l+ln(l+ji). Th e only case remaining

is the case when h > 0 and k > 0. Fix an element c in k.
Now note that an element c from K can be observed only if
(but not necessarily if):

1) The first h element chosen from aU K belong to H and

2) the (h + 1)st element chosen from H UK is c itself.

If 0, denotes the random variable which is one if c is ob-
served and zero otherwise, it follows that

E(oc)’ (k+$?.(k+l) +
Hence

E(0”) = c E(0,) 5
CEK

(k+h).:.(k+l) =+)=&*

The rest follows because E(0) = E(0’) + E(0”). [I

3 Algebraic segments
In [Mull] we gave a randomized optimal, and efficient al-
gorithm to find the partition of a plane induced by a set
of linear segements. Now we examine what happens if the
segments are algebraic instead, but of a bounded degree.
There are two approaches to this problem, one is purely
algebraic and the other is based on linear approximations to
the algebraic segments.

3.1 An algebraic approach

In this section, we shall take the algebraic approach. For
the sake of simplicity, we shall assume that the segments
are bounded and are surrounded by a window. If there
are unbounded segments, we can always take the window
at %finity’.

We have to first decide how an algebraic segment is going
to specified in an unambiguous way.

Let us first consider a simpler case when the algebraic
segment in question is monotonic and bounded; we say that
a segment is monotonic if it intersects any vertical line at
most once. In this case, we specify the algebraic equation,
f(z, y) = O, that the segment satisfies, We also specify, in
addition, the two endpoints of the segment. As the segment
is monotonic, we can also orient it so that the t coordinate
increases in the direction of the orientation. Unfortunately,

all this information is not always enough. For example, let
p and q be the two extreme points of the circle where the
tangents are vertical. Also assume that p has the smaller z
coordinate. Now there are two segments from p to q which
satisfy the same algebraic equation. Thus we also need to
specify the tangential orientation of the segment at p. This
can be done, for example, just by specifying if the segment
is oriented upwards or downwards at p.

We assumed above that the segment is monotonic. How-
ever, monotonocity is not a severe restriction. Indeed, any
algebraic curve of a bounded degree can always be broken
down into a bounded number of monotonic segments. Let
us see how. Assume that the curve satisfies an equation

f(X,Y) = 0, which is of a bounded degree. We find all
“critical’ points on the curve where the tangents become
vertical. These points satisfy the equations f(z, y) = 0 and

% = 0. By Bezout’s theorem, there are only a bounded
number of solutions to this system of equations. Moreover,
all these equations can be easily found out by forming a
resultant R, which is a polynomial of a bounded degree in
one variable. As R has a bounded degree, it is reasonable
assume that its roots can be found in a bounded time. In
practice, the roots have to be found by a numerical method,
such as Newton’s method. Hence, to be precise we should
also take into consideration the bit complexity of the root
extraction. This indeed can be done, because in an algebraic
problem such as this, we only need to approximate a root
by calculating its first “few” bits [Canny]. For simplicity, we
shall ignore the bit complexity issue here, and just charge
ourselves O(1) time for the extraction of a root. So assume
that we know all real solutions of the system f(z, y) = 0 and
8

f
= 0. This gives us all critical points on the curve. But we

so need to know how these critical points are topologically
connected to each other. Towards this end, define the rank
of a point a on the curve C : f(x, y) = 0 to be the num-
ber of points of intersection between the curve C and the
semi-infinite vertical line going upwards from a. The rank
at 4 = (20, ys) can be found by simply evaluating the Sturm
sequence of the function g(y) = f(xe, y) at y = ys [Waerden].
Such Sturm sequences were also used by Canny in his road
map algorithm [Canny]. Once we know the rank of every
critical point as well as its type (whether it is a left extreme
or a right extreme) it is easy to figure out the topological
structure by just scanning the critical points from left to
right. Hence, we can assume hereafter that the segments are
monotonic.

We also need to specify how to find the points of inter-
section of two monotonic segments R and S which satisfy
the equations f(z, y) = 0, and g(x, y) = 0 respectively. By
Berout’s theorem, the number of solutions to these equations
is bounded. We find, as before, all real solutions to the

system f(x, Y) = 0 and g(x, y) = 0. This gives us a set
of points V of plausible solutions. Next we need to know
which points in V lie on R and S. Let us see how we can
find the subset of V which lies on R. We can then do a
similar thing for S. Let re and rr be the endpoints of R
and assume that rs has the smaller z coordinate. Define
the rank of R at a given x-coordinate x0 to be the number
of intersections between the curve C : f(x, y) = 0 and the

vertical line x = x0, which lie strictly above R. Using the
Sturm sequences as above, it is easy find the rank of R at any
x coordinate by scanning the critical points of C from left
to right. Now a point o = (x0, yo) in V belongs to R iff the
rank of a coincides with the rank of R at 20. The scheme
given here is purely theoretical. As we shall see later, in
practice, we can do much better.

Now assume that we are given n bounded monotonic alge-
braic segments. All segments will be oriented in the direction
of the increasing x-coordinate. We wish to find the induced
partition of the plane, which is formed by passing a verti-
cal attachment through each endpoint extending in either
direction to a window border or another input segment.

The algorithm is an extension of the algorithm in [Mull],
so we shall only elaborate upon the differences. There were
actually two algorithms given in [Mull]. The algorithm in
this section is an extension of the one which maintains a
trapezoidal decomposition of the window at every stage.

We first form an initial partition GO of the window by
passing vertical attachments extending to the window bor-
ders through all endpoints of the input segments. All these
vertical attachment are contractible and will contracted
throughout the algorithm repeatedly. Starting with GO, we
successively add the segments in a random order to get a
succession of partitions GO, Gr , . . . , G,, where G, will be
the partition sought.

Shown in fig 1 is a partition G, obtained after adding
four randomly selected segments to GO. Note how the ver-
tical attachments through various endpoints have been con-
tracted. Also note that each face of partition has a face-
length less than or equal to four. This is done by passing a
contractible vertical attachment through every point of in-
tersection encountered. Because these vertical attachments
are contractible, they will be contracted in the course of
the algorithm, just like any other contractible attachment.
Finally, note that the partition GJ also contains vertical
attachments through the endpoints of the segments not yet
added. In the fig. 1, these are shown as dotted.

Remark: It is actually not necessary to maintain the
points of attachment of the vertical segments through the
endpoints of the segments not yet added. For example, con-
sider the trapezoid pqrs in fig. 1 which contains endpoints as
and al. The segments through the points se and al have not
been added so far. In the figure the trapezoid pqrs has been
explicitly decomposed further by the vertical attachments
through the points as and or. In practice, this explicit
decomposition is not necessary. Indeed, we only need to
maintain the representation of pqrs together with a list of
the interior endpoints of the unadded segments ordered by
their z-coordinates. This representation is more efficient.
However, for the sake of conceptual simplicity, we shall as-
sume that all decompositions are explicit. The same remark
is also applicable to all other algorithms to be discussed in
this paper.

The inductive step of adding S = Sk+, to Gk is achieved
by 1) locating the first region & in Gk that S begins to
traverse, 2) travelling along S in Gk, by repeatedly doing
face traversals and face transitions, 3) updating Gk as we
travel.

36

First consider the face traversal. Shown in fig 2a, is a face
R of Gk which the segment S has entered through a point ao.
We wish to find the ‘next” point al on the border of R that
S intersects. When all segments are linear, R is convex, and
hence, apart from as, there a unique point of intersection
between S and the border of R. When the segments are
algebraic, this need not be the case in general. Hence, using
the procedure given in the begining of this section, we find
all points of intersection between S and every border of R;
remember that R has at the most four borders. Among
these points of intersection, we select the one which is next
to as, in its z-coordinate. This point is 01. (In practice,
we do not need to find all points of intersection between
S and a border of R. If one using Newton’s method, we
can use as an initial guess a point close to ae.) Note that
we can return to the same face R of the old partition Gk
several times; see fig 2a again. If we update Gk as we travel
through it, this should cause no problem. It is important for
this reason, however, that the update proceed concurrently
with the travel. Monotonicity ensures that at no time in
our travel we need to contract a vertical attachment added
during the preceding part of our travel along S.

Next consider a face transition. Fig 2b shows S, the seg-
ment being added, about to leave the face Re of GI, at point
w. Suppose that the point of exit u lies on an input segment
T. (If w lies on a vertical attachment, the case is easier.) We
travel left on T until we meet the vertex a which is visible on
the other side of T; note that travelling “left” makes sense
because T is monotonic. At a we turn around, and travel
right until we meet S again on the other side of T. When
we do so, we are in the face RI that S enters next. We are
now ready for the next face traversal.

We travel in Gk from the initial point of S to its endpoint,
using repeated face traversals and face transitions. As we
travel, we update Gk. This consists in splitting the faces of
Gk that are traversed by S and appropriately contracting
the vertical attachments that are intersected by S.

The partition G, obtained at the end of the above algo
rithm, is precisely partition that we sought.

The analysis of this algorithm is very similar to the anal-
ysis of the algorithm for linear chains, to be considered next.
Hence, we shall merely state the final result.

Theorem 2 The expected running time of the above al-
gorithm is O(d”(tn + nlogn)), where m is the number of
intersections, n is the number of segments, and d is a bound
on the degrees of the segments.

3.2 Linear chains

In this section we shall approach the problem concerning
algebraic segments in a different way. This approach is based
on linear approximations. We shall approximate every alge-
braic segment by a chain of linear segments. The problem
now is to find the planar partition induced by a given set
of linear chains. As every chain is meant to represent an
algebraic segment of a bounded degree, we will assume, in
this approach, that its degree is bounded; the degree of a
chain is defined to be the maximum number of intersections

between the chain and a straight line. For the sake of sim-
plicity, we will also assume, in addition, that every chain is
monotonic, i.e. it intersects any vertical line at most once.
This assumption can be readily removed. Note that we are
not making any assumptions about the size of a chain, i.e.
the number of linear segments in a chain. Let n be the
number of linear chains, and let N be the sum of the sizes
of all chains. In this section, we give an 0(N + n log n t m)
algorithm to find a partition of the plane induced by the
chains, where m is the number of intersections of the chains.

The algorithm is an extension of the algorithm in [Mull],
so again we shall only elaborate upon the differences.

Each chain has two endpoints and possibly many inter-
mediate points, which will be called link points. We form
the initial partition Go, by passing contractible vertical at-
tachments extending to the window borders, through the
endpoints of the chains. Note that GO does not contain
vertical attachments through the link points. Now we succeg
sively refine Go, by throwing the chains in a random order,
so as to get a succession of partitions Go,. . . , G,. G, will
be the partition sought.

Consider the (k + 1)st refinement which consists in adding
a randomly chosen chain S = Sk+1 = (so, 51,. . . , sk) to Gk,
so as to get Gk+l. We locate the initial face RQ that S starts
traversing, by going to the vertical attachment associated
with so. Now we travel from SO to sr in Gk and update it
precisely as in @full]. The only difference comes when we
arrive at si, which can lie in the middle of some face R;
see fig 3a. In this case, we split the face R by passing a
contractible vertical attachment through si which extends in
either direction to the border of R. Being contractible, the
attachment will contract later just like the other contractible
attachments. Having done this, we proceed to 92, and so on.
Note that we can visit the same face R of the old partition
Gk several times (see fig 3b), but if we update Gk, ss we
travel, this should cause no problem.

For this algorithm, the following two theorems hold.

Theorem 3 The expected number of face splits is
O(nlog n t N t m), where m is the number of intersections
of the chains. The constant within 0 is small and does not
depend upon the degree bound d.

Theorem 4 The expected number of vertices visited during
the face transitions is O(d’(n log n + N + m)), where d is the
degree bound. 1f the same vertex is visited during many face
transitions, then every visit is counted.

Theorem 5 The average facelength of the partition re-
mains less than or equal to 4 throughout the algorithm.

Just as in [Mull], Th eorem 3 and Theorem 4 by them-
selves do not guarantee that the expected running time of
the algorithm is O(n log n + N + m), because the facelength,
at least theoretically, is unbounded. Theorem 5 indicates
that this should not be a problem in practice. One can get
around this problem, as in [Mull], by passing a contractible
vertical attachment through every point of intersection en-
countered in the algorithm. For this new algorithm, Theo-
rem 3 and Theorem4 still hold. As every face formed in this

37

algorithm has length 5 4, it follows that the algorithm is
O(n log n + N + m). In the following analysis we shall only
analyze this new algorithm for linear chains. The proof of
Theorem 5 is similar to the proof of the analogous theorem
for the planar partition algorithm in dull].

If t is an endpoint, a link point, or a point of intersection,
we denote by Ft the number of times the vertical attachment
through t is contracted after it came into existence.

The total number of face splits F = m + N + c Ft. Thus
we only need to estimate E(Ft). For a vertex t, define nt
to be the vertical spanlength at 1, i.e. the number of chains
that intersect the imaginary vertical line through t. The
following lemma proves Theorem 3.

Lemma 1 1. If t is an endpoint, then E(Ft) is O(log nt).

2. If 1 is a point of intersection, then E(Ft) is O(1).

3. If t is a link point, then E(Ft) is O(1).

ProOf
Case 1, t is an endpoint: Let FF (F:) be the number

of times the upper (lower) part of the vertical attachment
through t is contracted in the course of the algorithm. We
will only estimate E(FF); E(F:) can be estimated similarly.
Let M be the set of chains which intersect the imaginary
semi-infinite vertical line going upwards from t. Because
of the monotonicity, each chain can intersect this line only
once. Hence, the set M can be linearly ordered according to
the order of the associated points of intersection, with the
order increasing upwards. Let H and K be empty sets. The
Lemma follows by applying Theorem 1 to the sets M, H
and K.

Case 2, t is a point of intersection of chains RI and
R2:

We proceed precisely as above. The only difference is that
now we let H = {RI, Rz} instead.

Case 3, t is a link point of a chain R:
Let H = (R}, and proceed as before. [I

Now we turn to estimating the cost of face transitions.
A face transition across a vertical attachments is achieved
in a constant time. Moreover, a face transition across a
vertical attachment is always accompanied by a contraction
(splitting) of that attachment. As we have already estimated
the expected number face splits, we need not worry about
the face transitions across vertical attachments anymore. We
estimate the expected cost of the rest of the transitions by
amortization. More precisely, we shall distribute this cost
among the endpoints and the link points of the chains, as
well as the points of intersections of the chains. Then we only
need to estimate the cost charged to a fixed endpoint, link
point, or a point of intersection. Towards this end, we first
define, as in [Mull], what it means for a point of attachment
p, lying on a segment T of some input chain, to witness a
face transition when a new chain S is being added. Notice
first that the number of intersections between T and S is
bounded. Hence, during the addition of S, only a bounded
number of face transitions can occur across T. Fix a point
of attachment p on T, and define the right side and the
left side of T with respect to p arbitrarily. We say that p

witnesses, on its right side, a face transition along S and
across T if 1) S intersects T, 2) there is no chain C, added
before S, that intersects T on the right side of p and before
S (more precisely, between p and the nearest point, on the
right side of p, where S intersects T). Note that every point
of attachment that is visited during a face transition of S
across T is a witness to the transition, but not conversely.
Moreover, the number of transitions of S across T is bounded
by d, where d is the degree bound. This means that, if p is
a witness to a transition of S across T, it can be visited
at the most d times during the face transitions along S. If
c (5 d), is the number of intersections between S and T,
all face transitions of S across T can be carried out in time
O(cw+c), where w is the number of points of attachment on
T which were the witnesses. The cost O(c) can be charged
to the c new points of intersection formed. Hence, we only
need to estimate the expected sum of w over all transitions.
If t is an endpoint, a link point, or a point of intersection, let
Qt be the number of face transitions witnessed by an either
end of the vertical attachment through t, after it came into
existence. Theorem 4 now follows from the following lemma.

Lemma 2 1. If t is an endpoint, then E(Qt) is O(log nt).

2. If t is a point of intersection, then E(Qt) is O(1).

3. If t is a link point, then E(Qt) is O(1).

Proof.
Case 1, t is an endpoint of a chain:
Let & be the set of chains which intersect the infinite

vertical line T through t. For every S E &, place an observe
od at the (unique) intersection of S with T. Fix S. Let Mf be
the set of chains which intersect S to the left of o, (looking
from t). Mi is defined analogously to be the set of chains
intersecting S to the right of 0,. Let Hs = {S}. Let K, be
the set of chains intersecting T between 0, and t. We linearly
order Mf by the rightmost points of intersection of chains
in Md with S. More precisely, a chain R E Mf is defined to
be less than R’ E Mf iff the rightmost point of intersection
between R and S is to the right of the rightmost of point of
intersection between R’ and S. Thus the ordering increases
along S away from the observer o, in the left direction.

Define the active state of the observer o., as in Theorem
l,bylettingM=M:, H=H,andK= K,. Letk,=]K,],
Let O’, be the number of elements observed by o. during his
active state. 0: is defined analogously. From Theorem 1, it

follows that E(Of) is 0 (f) . Similarly E(O:) is 0 (r> .

Let 0, = Of, + 0: be the iumber of elements in Mi U bl

observed by od along S in either direction, during his active

state. Then E(0.) is 0 & .
(>

Now it is easy to see that

Qt = I& 0,. Hence E(Ql) = O(xaE+c f) = O(log nt).

Case 2, t is a point of intersection of &ah RI and
R2:

Proceed as above, but now let H, = {S, RI, Rz). From

Theorem 1, it follows that E(0,) is 0 (;) . Hence E(Qt) =
8

OE

38

Case 3, t is a link point of a chain R:
Now let HI = {S, R}. From Theorem 1, it fylows

that E(0,) is 0
() F’

a
Hence WQt) = O(CsE+t ~1 =

O(l). 0

Remark: The analysis of this section, when specialized
to the case of segments, instead of the chains of segments,
gives a somewhat simpler and a more direct proof of the
optimality of the algorithm in [Mull].

4 Virtual clipping

The planar partition algorithm in [Mull] takes O(m+n log n)
time, where n is the number of input segments, and m is the
number of intersections. We are interested in knowing if
the second term can be made almost linear in n in prac-
tice. Clearly if m is very large compared to nlog n, this
is worthless. But if m is not that large, aa is often the
case in computer graphics, this is clearly useful. We shall
see how this can be achieved by using a form of clipping,
which we shall call virtual clipping. In this section, we shall
describe the algorithm that results when virtual clipping is
incorporated in the algorithm of [Mull].

But first let us recall the conventional clipping. This is a
form of divide and conquer which is often used in practice.
For the planar partition problem, the conventional clipping
can be used as follows.

1) divide the window into subwindows,

2) “clip” the input segments against the subwindows,

3) solve the subproblem for each subwindow. If the size
of the clipped input for a subwindow is below a cer-
tain threshold use “the basic algorithm” to solve the
subproblem, otherwise recur.

Two factors determine the efficiency of the resulting algo-
rithm: 1) the cost of clipping; 2) the cost of the basic al-
gorithm. Indeed the threshold size in the third step has to
be chosen judiciously, so that the two costs are balanced.
The cost of conventional clipping per window W is at least
O(a.n, + b), where n w is the number of endpoints of the
input segments within W, & is the number of intersections
of the input segments with the borders of W, and a is the
search time required to locate a subwindow containing a
given endpoint of a segment. In practice, one can use some
kind of a bucket search to locate a subwindow, hence a is
almost a constant. Hence the cost of conventional clipping
per window W is O(& + n,) in practice. The cost of
O(n,) is unavoidable. The cost O(&,), on the other hand,
is undesirable, and constitutes a major bottleneck in the
conventional clipping. The reason is that the number of
intersections between the input and all subwindow borders
becomes large quite soon, as one increases the number of
subwindows.

The virtual clipping introduced in this section clips the
input against any subwindow not actually but “virtually”.
For all practical purposes, the cost of virtual clipping per
window W is O(n, + log(l + &,)). This clearly shows why

it is preferable to the conventional clipping. Finally, our
“basic algorithm” will be none else but the planar partition
algorithm in [Mull]. We have already seen in [Mull] that it
is optimal and very efficient. This makes the combination
of virtual clipping and the basic algorithm of [Mull] a very
efficient algorithm in practice.

Incorporation of virtual clipping in the basic algorithm
of [Mull] turns out to be very natural. We shall describe
now the algorithm that results after this incorporation. AS
to be expected, it does not clip the input segments against
the subwindows right in the beginning, but only when it be-
comes necessary. In the begining of the algorithm, we divide
the window, hierarchically, based only on the distribution
of the endpoints of the input segments. This subdivision
of the window can be done recursively, until the number
of endpoints in every subwindow is below a certain thresh-
old. Recall that the conventional clipper will recursively
clip a subwindow further if the number of input segments
intersecting the subwindow is larger than a threshhold. The
number of input segments intersecting a given subwindow
can be much larger than the number of endpoints contained
within the subwindow. Because our clipping is virtual, we
can not base our decisions on the number of input segments
intersecting a subwindow. Indeed, we can not afford to
know this number! But, let us see why it is justified, in
our case, to make the decisions regarding the number and
the locations of the subwindows solely on the distribution of
the endpoints. There are three reasons for this. First, our
basic algorithm, which is the planar partition algorithm in
[Mull], discovers every point of intersection t of the input
segments in a constant (amortized) time regardless of the
size of the window containing t; Hence, as far as the decision
regarding the subwindows is concerned, one does not need
to worry too much about the time spent in detecting the
intersections of the input segments. Secondly, the running
time of the virtual clipper will depend only logarithmically
on the flux through any subwindow. Thirdly, if we disregard
the time spent in detecting the intersections of the input
segments, the time spent “within” any subwindow will de-
pend, in the amortized sense, only on the number of input
endpoints contained within that subwindow. All this makes
it feasible to divide the window right in the beginning of the
algorithm, solely on the basis of the distribution of the input
endpoints.

So assume that we are already given a subdivision of the
main window. Theoretically, for an arbitrary input, a sub-
division of the main window can always be found recursively
in O(n log n) time, so that the number of endpoints within
every subwindow of this division is below a required thresh-
old. In practice, invariably, some kind of a bucket sort can
be used, which should take almost linear time. In the rest of
the section, we shall make no assumption about the window
subdivision or the input. We simply assume that a window
subdivision is given to us, and that we are also told which
endpoint belongs to which subwindow. Other than this, we
assume nothing regarding the input. In fact, we do not even
assume that the number of endpoints within a subwindow
is below any threshold. Obviously better the subdivision of
the window, better the running time. But the lack any extra

I
39

assumptions will clearly show us how robust our algorithm
is with respect to the locations of the clipping subwindows.

The algorithm is an extension of the planar partition al-
gorithm in [Mull], and has the same outline: we first form
an initial partition Go, and refine it successively by adding a
randomly chosen input segment to get a succession of parti-
tions, GO , . . . ,G,. We shall elaborate upon the differences.

The first major difference comes right in the formation of
initial partition Go. In the basic algorithm of [Mull], the
initial partition is formed by passing a vertical attachment
through every endpoint which extends in either direction
upto the main window border. Now we shall form Go, by
passing a vertical attachment through every input endpoint
1, which extends in either direction up to the borders of
the subwindow containing t. Fig 4 shows a subdivision
of the main window into seven subwindows, based on the
distribution of the endpoints in an input. The resulting
initial partition Go is also shown. The window borders are
thickened and we shall follow the same convention in other
figures.

After this the algorithm proceeds as in [Mull]: start-
ing with GO we successively refine the current partition by
adding a randomly chosen segment to it. The refinement of
Ga due to the addition of a segment S = Sk+1 = (se,sl)
consists in: 1) locating the first face & of Gk that S starts
traversing, by using a pointer to the vertical attachment
through SO; 2) travelling from se to sr in the partition by
doing face traversals and face transitions repeatedly; 3) up
dating the partition as we travel. The only additional thing
that needs to be specified is what happens when one passes
through a subwindow border. In fig 5a, the new segment
S =-Sk+1 crosses the border between windows WI and Wz.
It is clear that the part of the border just to the right of S
can be erased (contracted) without violating the convexity
of the resulting partition. The resulting partition is shown in
fig 5b. A similar thing can be done if the part of the border
immediately to the left of S can be contracted. Shown in
fig 5c is a situation where no contraction can be carried out,
as that will destroy the convexity of the partition. Note that,
because of our rules for contraction, the situation in fig. 5d
cannot arise. Also, there is one exception to the above rule
for contraction. We do not contract a window border if this
involves destroying (or removing) a window corner. Thus,
in fig. 5e, we contract only one part (see fig. 5f).

It also becomes necessary to modify the procedure in
[Mull] for a face transition, when the transition takes place
across a subwindow border. In fig. 6 the new segment S is
about to leave a face in the window WI and enter a face in
the window Wz. The procedure in (Mull] will find the face
of Wz that S enters, as follows (see fig 6): travel left on the
border until we reach the first vertex d which is visible on
the other side of the border. Here turn around, and travel
right until we reach S again on the other side. When we do
so, we are in the correct face. The problem here is that we
end up visiting too many points of attachment, especially
the ones in the windows W3, Wr, Ws, One can get around
this difficulty as follows. Recall that by our definition of
visibility in [Mull], the window corner a is invisible in the
face R. Now we shall force a to be visible in R. This is done

by simply including a in the representation of the face R.
A similar thing is done for every window corner, which is a
t-junction. Coming back to the transition of S across the
border between WI and WZ, it is clear that we can now turn
around at the corner a, thereby visiting only the points of
attachments on the borders of WI and Wz.

The rest of the algorithm, is as in mull], hence we shall
not discuss it any further. However, a few remarks are in
order. Even when the input segment S lies strictly within
a window, we can %tray” outside the window during our
travel along S. Fig 7 shows straying during one typical face
transition during a journey along S. Such straying cannot be
avoided. Indeed, that is an unavoidable part of the virtual
clipping. Yet, our analysis shows that, in the amortized
sense, the expected work done “within” any subwindow is
close to the expected work that would be done even if the
input were actually clipped along the window border. Thus
we get the full effect of the conventional clipping at a nominal
overhead.

Remark: Virtual clipping can also be used in conjuction
with our algorithms for algebraic segments and linear chains.
In fact, it can be used in any problem that benefits from
the conventional clipping. These include the problems in
computer graphics.

The analysis of virtual clipping is somewhat complicated.
It can be found in ~ul4]. Here we shall merely state the
final result.

For t, which is an input endpoint or a point of intersec-
tion of input segments, let n; denote the number of input
segments which intersect the imaginary vertical segment ex-
tending upwards from t to the border of the subwindow
containing 1. We define nf similarly with respect to the
bottom border of the window containing t. We shall call
nt = n: + nt the vertical spanlength at t. For a window W,
let &, denote the number of input segments intersecting the
left border of W. Note that this border is going shrink in the
course of the algorithm, but &, is defined with respect to
the initial complete left border of w. We define &,, q$, &,
for the right, upper, and bottom borders similarly, Let

dw = df, + &, + 4:: + &, be the total flux through W.
For a given window W, let raw be the number of endpoints
within W, and let m, be the number of intersections of the
input segments within W.

It turns out that the total cost (i.e.the running time) of
the algorithm can be amortized in such a way that if C,,, is
the total cost (of face splits as well as transitions) charged to
the endpoints, and the intersections of the input segments
within W, as well as to the corners of W, then

Theorem 6 E(C,) =

+0 (n, + mw + log(1 -I- nt)) , where t ranges over the end-
points within W. The expected running time of the algo-
rithm is obtained by summing E(C,) over alI windows.

Note that O(m,+n,+~tEWlog(f+nt)) is precisely the
expected running time of the basic algorithm in [Mull], if we

40

were to actually clip the input against the subwindow W and
then run this basic algorithm on the clipped input. (This
excludes the cost of actual clipping.) The remaining terms
in the expression for E(C,) give the overhead of virtual

clipping. Note that s is the ratio of a horizontal flux

and a vertical flux. For a square window, the two flux quan-
tities should be comparable. Hence, the logarithmic ratio of
the horizontal and the vertical flux, when averaged over all
endpoints within the window W, is very close to a constant.
This means that, for all practical purposes, the overhead
of virtual clipping per window W is O(log(1 + &,) + n,).
In contrast, the overhead of the conventional clipping per
window W is O(r& + n,). This clearly shows why virtual
clipping is preferable to the conventional clipping.

5 A planar point location algo-
rit hm

As an application of virtual clipping, we will give an efficient
planar point location algorithm. The point location problem
is defined as follows. We are given a planar graph G, not
necessarily connected. We have to preprocess the input and
build a search structure such that given a query point p, we
can quickly locate p within G.

Assume that the input graph G is surrounded by a win-
dow. Subdivide the window (recursively, if necessary) into
many “buckets” or subwindows, such that each subwindow
contains only a constant number of input points. Now
run the algorithm of the last section. This builds a pla-
nar partition induced by G. But this planar partition also
has in addition, the corners of all subwindows or buckets
embedded in it. This turns out to be useful in answering
a query. Given a query point p, we first locate it in the
appropriate bucket (subwindow), using a bucket search; in
practice this will take only a constant time. Now choose
any corner u of this subwindow, which is already embedded
in the partition, and travel from u to p precisely as in the
partition algorithm, by repeatedly doing face traversals and
face transitions. In practice, this should again take only
a constant time; Using the terminology of Theorem 6, it
follows that the preprocessing time is 0 (n, + log(1 + nt)) +

o cc, log(l +-kj + C, frog (s j + log (-gig) jl
where W ranges over all windows, and-t ranges’over a.li knd-
points in G. Here nt is the vertical span length at t defined
with respect to the window W containing t and 4; is the
flux through the upper border of the window W containing
t; & is similarly defined. (Note that in Theorem 6, m,,
the number of intersections of the input segments within
a window W, is now set to zero.) In the worst case, this
preprocessing time is O(nlogn), where n is the number of
vertices in G. By what we have discussed in the last section,
it is clear that the dominating term in the running time
expression is c, log(1 +) nt , w h ere t runs over all vertices of
G. Remember that nt is the number of edges in G that inter-
sect the imaginary vertical segment through t extending only
upto the borders of the subwindow containg t. By choosing
the subwindows sufficiently small, one can ensure that this

term too becomes almost linear in n. Thus, in practice, the
algorithm should run in linear time. The space requirement
of the algorithm is always O(n). Though the search time
should be O(1) in practice, no theoretical O(log n) guarantee
can be given.

We shall compare our algorithm with the one based upon
conventional clipping [Edah], which is reported to be as
fast, and sometimes faster, than other planar partition al-
gorithms. For this conventional clipping algorithm no the-
oretical guarantee can be given even for the preprocessing
time or the storage requirement-they could be as high as
O(n3i2). But even in practice, the storage and the time
requirement of the virtual clipper should be better, because
it detects and retains only a few points of intersection with
the window borders. This also makes it possible to choose
the subwindows quite small, so that the number of input
points within any given subwindow is a small constant. In
turn, this makes it unnecessary to build any elaborate search
structure within a subwindow. Conventional clippers do not
have this freedom. Unlike the algorithm of [Edah], our al-
gorithm detects the point of intersection of the edges in the
input graph G, if it is not actually planar. This makes it
more robust.

6 Concluding reinarks

In [Mu14], we also give one more, completely different, al-
gorithm to find the planar partition induced by a set of
linear segments. A novel feature of this algorithm is that
it combines randomization with a topological sweep, as in
[Guib]. The theory of probabilistic games, as used in this
paper, can be extended much further. For this extension
and the related applications see [Mu121 and [Mu13].

Paw1

PI

PI

[Edah]

[Edel]

[Guib]

[Kirpat]

41

References

Canny .I., The complexity of robot motion plan-
ning, Ph.D. thesis, M.I.T., 1987.

Chazelle B., Edelsbrunner H., An optimal algo-
rithm for intersecting line segments in the plane,
Proceedings of the FOCS, 88.

Clarkson K, Applications of random sampling to
computational geometry, II, Proc. 4th Ann. Sym-
pos. Comput. Geom., 1988.

Edahiro M., Kokubo I., and Asano T., A
new point location algorithm and its practical
efficiency-comparison with existing aigorithm,
ACM Transactions on Graphics 3(2), 1984.

Edelsbrunner H., Guibas L., Stolfi J., Optimal
point location in monotone subdivisions, SIAM
J. Computing, vol. 15, no.2, pp. 317.540,1986.

Guibas L. and Seidel R., Computing convolutions
by reciprocal search, Discrete Comput. Geom. 2:
175-193 (1987).

Kirpatrik D., Optimal search in planar subdivi-
sions, SIAM J. Comput. 12(l), 1983.

[Lipton]

! [MU12]

W31

W4

Prep1

[Sarnak]

[Suther]

Lipton R. and Tarjan R., Applications of a planar
separator theorem, Proceedings of the FOCS, 77.

Mnlmuley If., A fast planar partition algorithm,
I, Proceedings of the 29th FOG’S, 1988, full uer-
sion to appear in a special computational ge-
omtery issue of the Journal of Symb. Logic.

Mnlmuley K., On levels in arrangements and
Voronoi diagrams, Technical report, TR 88-21,
Uniueraity of Chicago, December, 88.

Mnlmuley K., An efficient hidden surface removal
algorithm, manuscript.

Mnlmnley K., A fast planar partition algorithm,
II, complete manuscript, submitted to JAM.

Preparata, F. and M. Shames, Computational
Geometry, An Introduction. Springer-Verlag,
1985.

Sarnak, N., Tarjan, R., Planar point location
using persistent search trees, Communications
ACM, vol. 27, no. 7, pp. 669-679, 1986.

Sutherland, I. E., R. F. Sproull, and R. A. Scha-
maker, A characterization of ten hidden surface
algorithms, Computing Surveys 6: l-55, 1974.

[Waerden] Van der Waerden B. L., Algebra, v. 1. Frederic
Ungar Publishing Co.

42

C) No Coniha&~ is

-=r-

\

W3 -

c

