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Abstract

Malicious code (or malware) is defined as software that
fulfills the deliberately harmful intent of an attacker. Mal-
ware analysis is the process of determining the behavior
and purpose of a given malware sample (such as a virus,
worm, or Trojan horse). This process is a necessary step
to be able to develop effective detection techniques and re-
moval tools. Currently, malware analysis is mostly a man-
ual process that is tedious and time-intensive. To miti-
gate this problem, a number of analysis tools have been
proposed that automatically extract the behavior of an un-
known program by executing it in a restricted environment
and recording the operating system calls that are invoked.

The problem of dynamic analysis tools is that only a sin-
gle program execution is observed. Unfortunately, how-
ever, it is possible that certain malicious actions are only
triggered under specific circumstances (e.g., on a particu-
lar day, when a certain file is present, or when a certain
command is received). In this paper, we propose a system
that allows us to explore multiple execution paths and iden-
tify malicious actions that are executed only when certain
conditions are met. This enables us to automatically ex-
tract a more complete view of the program under analysis
and identify under which circumstances suspicious actions
are carried out. Our experimental results demonstrate that
many malware samples show different behavior depending
on input read from the environment. Thus, by exploring
multiple execution paths, we can obtain a more complete
picture of their actions.

1 Introduction

Malware is a generic term used to describe all kinds of
malicious software (e.g., viruses, worms, or Trojan horses).
Malicious software not only poses a major threat to the se-
curity and privacy of computer users and their data, but is
also responsible for a significant amount of financial loss.
Unfortunately, the problem of malicious code is likely to

continue to grow in the future, as malware writing is quickly
turning into a profitable business [26]. Malware authors of-
ten sell their creations to miscreants, who then use the ma-
licious code to compromise large numbers of machines that
are linked together in so-called botnets. These botnets are
then abused as platforms to launch denial-of-service attacks
or as spam relays. An important indication of the signifi-
cance of the problem is that even people without any par-
ticular interest in computers are aware of worms such as
CodeRed or Sasser. This is because security incidents af-
fect millions of users and regularly make the headlines of
mainstream news sources.

The most important line of defense against malicious
code are virus scanners. These scanners typically rely on
a database of signatures that characterize known malware
instances. Whenever an unknown malware sample is found
in the wild, it is usually necessary to update the signature
database accordingly, so that this novel malware piece can
be detected by the scan engine. To this end, it is very im-
portant to be able to quickly analyze an unknown malware
sample and understand its behavior and effect on the sys-
tem. In addition, the knowledge about the functionality of
malware is important for its removal. That is, to be able to
effectively remove a piece of malware from an infected ma-
chine, it is usually not sufficient to delete the binary itself.
Often, it is also necessary to remove the residues left behind
by the malicious code (such as undesirable registry entries,
services, or processes) and undo changes made to legitimate
files. All these actions require a detailed understanding of
the malicious code and its behavior.

The traditional approach to analyze the behavior of an
unknown program is to execute the binary in a restricted
environment and observe its actions. The restricted environ-
ment is often a debugger, used by a human analyst to man-
ually step through the code in order to understand its func-
tionality. Unfortunately, anti-virus companies receive up to
several hundrednew malware samples each day. Clearly,
the analysis of these malware samples cannot be performed
completely manually.
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In a first step towards an automated solution, a number
of dynamic malware testing systems were proposed. These
systems, such as CWSandbox [29], the Norman Sand-
Box [25], TTAnalyze [2], or Cobra [28] automatically load
the sample to be analyzed into a virtual machine environ-
ment and execute it. While the program is running, its inter-
action with the operating system is recorded. Typically, this
involves recording which system calls are invoked, together
with their parameters. The result of an automated analysis
is a report that shows what operating system resources (e.g.,
files or Windows registry entries) a program has created or
accessed. Some tools also allow the system to connect to
a local network (or even the Internet) and monitor the net-
work traffic. Usually, the generated reports provide human
analysts with an overview on the behavior of the sample and
allow them to quickly decide whether a closer, manual anal-
ysis is required. Hence, these automated systems free the
analysts of the need to waste time on already known mal-
ware. Also, some tools are already deployed on the Internet
and act as live analysis back-ends for honeypot installations
such as Nepenthes [1]. Unfortunately, current analysis sys-
tems also suffer from a significant drawback: their analysis
is based on asingleexecution trace only. That is, their re-
ports only contain the interaction that was observed when
the sample was run in a particular test environment at a cer-
tain point in time. Unfortunately, this approach has the po-
tential to miss a significant fraction of the behavior that a
program might exhibit under varying circumstances.

Malware programs frequently contain checks that deter-
mine whether certain files or directories exist on a machine
and only run parts of their code when they do. Others re-
quire that a connection to the Internet is established or that
a specific mutex object does not exist. In case these condi-
tions are not met, the malware may terminate immediately.
This is similar to malicious code that checks for indications
of a virtual machine environment, modifying its behavior
if such indications are present in order to make its analysis
in a virtual environment more difficult. Other functionality
that is not invoked on every run are malware routines that
are only executed at or until a certain date or time of day.
For example, some variants of the Bagle worm included a
check that would deactivate the worm completely after a
certain date. Another example is the Michelangelo virus,
which remains dormant most of the time, delivering its pay-
load only on March 6 (which is Michelangelo’s birthday).
Of course, functionality can also be triggered by other con-
ditions, such as the name of the user or the IP address of the
local network interface. Finally, some malware listens for
certain commands that must be sent over a control channel
before an activity is started. For example, bots that automat-
ically log into IRC servers often monitor the channel for a
list of keywords that trigger certain payload routines.

When the behavior of a program is determined from a
single run, it is possible that many of the previously men-
tioned actions cannot be observed. This might lead a human
analyst to draw incorrect conclusions about the risk of a cer-
tain sample. Even worse, when the code fails at an early
check and immediately exits, the generated report might
not show any malicious activity at all. One possibility to
address this problem is to attempt to increase test coverage.
This could be done by running the executable in different
environments, maybe using a variety of operating system
versions, installed applications, and data/time settings. Un-
fortunately, even with the help of virtual machines, creating
and maintaining such a testing system can be costly. Also,
performing hundreds of tests with each sample is not very
efficient, especially because many environmental changes
have no influence on the program execution. Moreover, in
cases where malicious code is expecting certain commands
as input or checking for the existence of non-standard files
(e.g., files that a previous exploit might have created), it is
virtually impossible to trigger certain actions.

In this paper, we propose a solution that addresses the
problem of test coverage and that allows automated mal-
ware analysis systems to generate more comprehensive re-
ports. The basic idea is that we explore multiple execution
paths of a program under test, but the exploration of differ-
ent paths is driven by monitoring how the code uses certain
inputs. More precisely, we dynamically track certain input
values that the program reads (such as the current time from
the operating system, the content of a file, or the result of
a check for Internet connectivity) and identify points in the
execution where this input is used to make control flow de-
cisions. When such a decision point is identified, we first
create a snapshot of the current state of the program execu-
tion. Then, the program is allowed to continue along one of
the execution branches, depending on the actual input value.
Later, we return to the snapshot and rewrite the input value
such that the other branch is taken. This allows us to explore
both program branches. In addition, we can determine un-
der which conditions certain code paths are executed.

For a simple example, consider a program that checks for
the presence of a file. During execution, we track the result
of the operating system call that checks for the existence
of that file. When this result is later used in a conditional
branch by the program, we store a snapshot of the current
execution state. Suppose, for example, that the file does
not exist, and the program quickly exits. At this point, we
rewind the process to the previously stored state and rewrite
the result such that it does reports the file’s existence. Then,
we can explore the actions that the program performs under
the condition that the file is there.

We have developed a system for Microsoft Windows that
allows us to dynamically execute programs and track the in-
put that they read. Also, we have implemented a mechanism
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to take snapshots of executing processes and later revert to
previously stored states. This provides us with the means to
explore the execution space of malware programs and to ob-
serve behavior that is not seen by traditional malware anal-
ysis environments. To demonstrate the feasibility of our ap-
proach, we analyzed a large number of real-world malware
samples. In our experiments, we were able to identify time
checks that guarded damage routines and different behavior
depending on existence of certain files. Also, we were able
to automatically extract a number of command strings for a
bot with their corresponding actions.

To summarize, the contributions of this paper are as follows:

• We propose a dynamic analysis technique that allows
us to create comprehensive reports on the behavior of
malicious code. To this end, our system explores mul-
tiple program paths, driven by the input that the pro-
gram processes. Also, our system reports the set of
conditions on the input under which particular actions
are triggered.

• We developed a tool that analyzes Microsoft Windows
programs by executing them in a virtual-machine-
based environment. Our system keeps track of user
input and can create snapshots of the current process
at control flow decision points. In addition, we can re-
set a running process to a previously stored state and
consistently modify its memory such that the alterna-
tive execution path is explored.

• We evaluated our system on a large number of real-
world malware samples and demonstrate that we were
able to identify behavior that cannot be observed in
single execution traces.

2 System Overview

The techniques described in this paper are an extension
to an existing system for automated malware analysis [2].
This tool is based on Qemu [3], a fast virtual machine em-
ulator. Using Qemu’s emulation of an Intel x86 host sys-
tem, a Windows 2000 guest operating system is installed.
The choice of Windows and the Intel x86 architecture was
motivated by the fact that the predominant fraction of mal-
ware is developed for this platform. The analysis works by
loading the (malware-)program into the emulated Windows
environment, starting its execution, and subsequently mon-
itoring its activity. To this end, the analysis tool analyzes all
operating system calls that are invoked by the binary. For
each system call, the analysis tool records the type of ser-
vice requested and the corresponding arguments. Based on
the system calls observed during execution, a report is gen-
erated that summarizes the security-relevant actions. These

actions currently include the creation and modification of
files and Windows registry entries, interprocess communi-
cation, and basic network interaction.

The existing analysis tool implements some virtual ma-
chine introspection capabilities; in particular, it is able to
attribute each instruction that is executed by the emulated
processor to an operating system process (or the kernel) of
the guest system. This allows us to track only those sys-
tem calls that are invoked by the code under analysis. Also,
the system provides a mechanism to copy the content of
complex data structures, which can contain pointers to other
objects in the process’ virtual address space, from the Win-
dows guest system into the host system. This is convenient
in order to be able to copy the system call arguments from
the emulated system into the analysis environment. Unfor-
tunately, the existing system only collected a single execu-
tion trace.

Multiple execution paths. To address the problem that a
single execution trace typically produces only part of the
complete program behavior, we extended the analysis tool
with the capability to explore multiple execution paths. The
goal is to obtain a number of different execution paths, and
each path possibly reveals some specific behavior that can-
not be observed in the other traces. The selection ofbranch-
ing points– that is, points in the program execution where
both alternative continuations are of interest – is based on
the way the program processes input data. More precisely,
when a control flow decision is based on some input value
that was previously read via a system call, the program takes
one branch (which depends on the outcome of the concrete
check). At this point, we ask ourselves the following ques-
tion: Which behavior could be observed if the input was
such that the other branch was taken?

To answer this question, we label certain inputs of inter-
est to the program and dynamically track their propagation
during execution. Similar to the propagation of taint infor-
mation used by other authors in previous work [12, 23], our
system monitors the way these input values are moved and
manipulated by the process. Whenever we detect a control
flow decision based on a labeled value, the current content
of the process address space is stored. Then, execution con-
tinues normally. When the process later wishes to termi-
nate, it is automatically reset to the previously stored snap-
shot. This is done by replacing the current content of the
process address space with the previously stored values. In
addition, we rewrite the input value that was used in the
control flow decision such that the outcome of this deci-
sion is reversed. Then, the process continues its execution
along the other branch. Of course, it is possible that mul-
tiple branching in a row are encountered. In this case, the
execution space is explored by selecting continuation points
in a depth-first order.
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Figure 1. Exploration of multiple execution
paths.

For an example on how multiple execution paths of a
program can be explored, consider Figure 1. Note that al-
though this example is shown in C code (to make it eas-
ier to follow), our system works directly on x86 binaries.
When the program is executed, it first receives some input
and stores it into variablex (on Line 1). Note that because
x is considered interesting, it is labeled. Assume that in this
concrete run, the value stored intox is 2. On Line 2, it is
compared to0. At this point, our system detects a compari-
son operation that involves labeled data. Thus, a snapshot of
the current process is created. Then, the process is allowed
to continue. Because the condition is satisfied, the if-branch
is taken and we record the fact thatx has to be larger than
0. On Line 3, the next check fails. However, because the
comparison again involves labeled data, another snapshot
is created. This time, the process continues on the else-
branch and is about to callexit. Because there are still
unexplored paths (i.e., there exist two states that have not
been visited), the process is reverted to the previous (sec-
ond) state. Our system inspects the comparison at Line 3
and attempts to rewritex such that the check succeeds. For
this, the additional constraintx > 0 has to be observed.
This yields a solution forx that equals1. The value ofx
is updated to1 and the process is restarted. This time, the
print statement on Line 4 is invoked. When the process is
about to exit on Line 5, it is reset to the first snapshot. This
time, the system searches a value forx that fails the check
on Line 2. Because there are no additional constraints for
x, an arbitrary, non-positive integer is selected and the pro-
cess continues along the else-branch. This time, the call to
exit is permitted, and the analysis process terminates with
a report that indicates that a call toprint was found under
the condition that the inputx was1 (but not0 or 2).

Consistent memory updates. Unfortunately, when
rewriting a certain input value to explore an alternative exe-

cution path, it is typically not sufficient to change the single
memory location that is used by the control flow decision.
Instead, it is necessary to consistently update (or rewrite)
all values in the process address space that are related to
the input. The reason is that the original input value might
have been copied to other memory locations, and even
used by the program as part of some previous calculations.
When only a single instance of the input is modified, it
is possible that copies of the original value remain in the
program’s data section. This can lead to the execution of
invalid operations or the exploration of impossible paths.
Thus, whenever an input value is rewritten, it is necessary
to keep the program state consistent and appropriately
update all copies of the input, as well as results of previous
operations that involve this value. Also, we might not have
complete freedom when choosing an alternative value for
a certain input. For example, an input might have been
used in previous comparison operations and the resulting
constraints need to be observed when selecting a value that
can revert the control flow decision at a branching point. It
is even possible that no valid alternative value exists that
can lead to the exploration of the alternative path. Thus,
to be able to consistently update and input and its related
values, it is necessary to keep track ofwhich memory
locations depend on a certain input andhow they depend
on this value.

3 Path Exploration

To be able to explore multiple program paths, two main
components are required. First, we need a mechanism to de-
cide when our system should analyze both program paths.
To this end, we track how the program uses data from cer-
tain input sources. Second, when an interesting branching
point is located, we require a mechanism to save the cur-
rent program state and reload it later to explore the alterna-
tive path. The following two subsections discuss these two
components in more detail.

3.1 Tracking Input

In traditional taint-based systems, it is sufficient to know
that a certain memory location depends on one or more in-
put values. To obtain this information, such systems typ-
ically rely on three components: a set of taint sources, a
shadow memory, and extensions to the machine instructions
that propagate the taint information.

Taint sources are used to initially assign labels to certain
memory locations of interest. For example, Vigilante [11]
is a taint-based system that can detect computer worms that
propagate over the network. In this system, the network is
considered a taint source. As a result, each new input byte
that is read from the network card by the operating system
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receives a new label. The shadow memory is required to
keep track of which labels are assigned to which memory
locations at a certain point in time. Usually, a shadow byte
is used for each byte of physical machine memory. This
shadow byte stores the label(s) currently attached to the
physical memory location. Finally, extensions to the ma-
chine instructions are required to propagate taint informa-
tion when an operation manipulates or moves labeled data.
The most common propagation policy ensures that the re-
sult of an operation receives the union of the labels of the
operation’s arguments. For example, consider anadd ma-
chine instruction that adds the constant value10 to a mem-
ory locationM1 and stores the result at locationM2. In this
case, the system would use the shadow memory to look up
the label attached toM1 and attach this label toM2. Thus,
after the operation, both locationsM1 and M2 share the
same label (although their content is different).

In principle, we rely on a taint-based system as previ-
ously described to track how the program under analysis
processes input values. That is, we have a number of taint
sources that assign labels to input that is read by the pro-
gram, and we use a shadow memory to keep track of the
current label assigned to each memory location (including
the processor registers). Taint sources in our system are
mostly system calls that return information that we con-
sider relevant for the behavior of malicious code. This in-
cludes system calls that access the file system (e.g., check
for existence of file, read file content), the Windows registry,
and the network. Also, system calls that return the current
time or the status of the network connection are interesting.
Whenever a relevant function (or system call) is invoked by
our program, our system automatically assigns a new label
to each memory location that receives this function’s result.
Sometimes, this means that a single integer is labeled. In
other cases, for example, when the program reads from a
file or the network, the complete return buffer is labeled,
using one unique label per byte.

Inverse mapping. In addition to the shadow memory,
which maps memory locations to labels, we also require
an inverse mapping. The inverse mapping stores, for each
label, the addresses of all memory locations that currently
hold this label. This information is needed when a process
is reset to a previously stored state and a certain input vari-
able must be rewritten. The reason is that when a memory
location with a certain label is modified, it is necessary to si-
multaneously change all other locations that have the same
label. Otherwise, the state of the process becomes incon-
sistent. For example, consider the case in which the value
of labeled inputx is copied several times before it is even-
tually stored at memory locationy. Furthermore, assume
thaty is used as argument by a conditional branch. To ex-
plore the alternate execution branch, the content ofy must

be changed. However, via a chain of intermediate locations,
this value ultimately depends onx. Thus, all intermediate
locations need to be modified appropriately. To this end,
a mapping is required that helps us to quickly identify all
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Figure 2. Consistent memory updates.

To underline the importance of a consistent memory up-
date, consider the example in Figure 2. Assume that the
functionread input on Line 1 is a taint source. Thus,
when the program executes this function, variablex is la-
beled. In our example, the program initially reads the value
0. When thecheck routine is invoked, the value of vari-
ablex is copied into the parametermagic. As part of this as-
signment, the variablemagicreceives the label ofx. When
magicis later used in the check on Line 7, a snapshot of the
current state is taken (because the outcome of a conditional
branch depends on a labeled value). Execution continues
but quickly terminates on Line 8. At this point, the pro-
cess is reverted to the previously stored snapshot and our
system determines that the value ofmagichas to be rewrit-
ten to0x1508 to take the if-branch. At this point, the new
value has to be propagated to all other locations that share
the same label (in our case, the variablex). Otherwise, the
program would incorrectly print the value of0 instead of
0x1508 on Line 3.

Linear dependencies. In the previous discussion, the ini-
tial input value was copied to new memory locations before
being used as an argument in a control flow decision. In that
case, rewriting this argument implied that all locations that
share the same label had to be updated with the same value.
So far, however, we have not considered the case when the
initial input is not simply copied, but used as operand in
calculations. Using the straightforward taint propagation
mechanism outlined above, the result of an operation with
a labeled argument receives this argument’s label. This also
happens when the result of an operation has a different value
than the argument. Unfortunately, that leads to problems
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when rewriting a variable at a snapshot point. In particu-
lar, when different memory locations share the same label
but hold different values, one cannot simply overwrite these
memory locations with a single, new value.

We solve this problem by assigning anew labelto the re-
sult of any operation (different than copying) that involves
labeled arguments. In addition, we have to record how the
value with the new label depends on the value(s) with the
old label(s). This is achieved by creating a new constraint
that captures the relationship between the old and new la-
bels, depending on the semantics of the operation. The
constraint is then added to aconstraint systemthat is main-
tained as part of the execution state of the process. Consider
the simple example where a value with labell0 is used by
anadd operation that increases this value by the constant
10. In this case, the result of the operation receives a new
label l1. In addition, we record the fact that the result of
the operation withl1 is equal to the value labeled byl0 plus
10. That is, the constraintl1 = l0 + 10 is inserted into the
constraint system. The approach works similarly when two
labeled inputs, one with labell 0 and the other with labell1
are summed up. In this case, the result receives a new label
l 2 and we add the constraintl2 = l0 + l1.

In our current system, we can only model linear rela-
tionships between input variables. That is, our constraint
system is a linear constraint system that can store terms in
the form of{cn ∗ ln + cn−1 ∗ ln−1 + . . . + c1 ∗ l1 + c0}
where theci are constants. These terms can be connected by
equality or inequality operators. To track linear dependen-
cies between labels, the taint propagation mechanism of the
machine instructions responsible for addition, subtraction,
and multiplication had to be extended.

Using the information provided by the linear constraint
system, it is possible to correctly update all memory loca-
tions that depend on an input valuex via linear relation-
ships. Consider the case where a conditional control flow
decision uses a value with labelln. To explore the alterna-
tive branch of this decision, we have to rewrite the labeled
value such that the outcome of the condition is reverted. To
do this consistently, we first use the linear constraint system
to identify all labels that are related toln. This provides us
with the information which memory locations have some
connection withln, and thus, must be updated as well. In a
second step, a linear constraint solver is used to determine
concrete values for these memory locations.

Two labelsls andlt are related either (a) when they ap-
pear together in the same constraint or (b) when there ex-
ists a sequence of labels{li0 , . . . , lin

} such thatls = li0 ,
lt = lin

, andli, li+1 ∀n−1

i=0 appear in the same constraint.
More formally, the binary relationrelated is the transitive
closure of the binary relationappears in the same con-
straint. Thus, when a value with labelln should be rewrit-
ten, we first determine all labels that arerelated to ln in

the constraint system. Then, we extract all constraints that
contain at least one of the labels related toln. This set of
constraints is then solved, using a linear constraint solver
(we use the Parma Polyhedral Library).

When the constraint system has no solution, the labeled
value cannot be changed such that the outcome of the con-
dition is reverted. In this case, our system cannot explore
the alternative path, and it continues with the next snapshot
stored. When a solution is found, on the other hand, this
solution can be directly used to consistently update the pro-
cess’ state. To this end, we can directly use, for each label,
the value that the solver has determined to update the corre-
sponding memory locations. This works because all (linear)
dependencies between values are encoded by the respective
constraints in the constraint system. That is, a solution of
the constraint system respects the relationships that have
to hold between memory locations. All memory locations
that share the same label receive the same value. However,
as expected, when memory locations have different labels,
they can also receive different values. These values respect
the relationships introduced by the operation previously ex-
ecuted by the process and captured by the corresponding
constraints in the constraint system.

To illustrate the concept of linear dependencies between
values and to show how their dependencies are captured
by the constraint system, consider Figure 3. The example
shows the labels and constraints that are introduced when a
simpleatoi function is executed. The goal of this function
is to convert a string into the integer value that this string
represents. For this example, we assume that the function is
executed on a stringstr with three characters; the first two
are the ASCII character equivalent of the number0 (which
is 30). The third one has the value0 and terminates the
string. We assume that interesting input was read into the
string; as a result, the first characterstr[0] has labell0 and
str[1] has labell1.

The figure shows the initial mapping between program
variables and labels. For this initial state, no constraints
have been identified yet. After the first loop iteration, it can
be seen that the variablesc andsumare also labeled. This
results from the operations on Line 7 and Line 8, respec-
tively. The relationship between the variables are captured
by the two constraints. Becausesumwas0 before this loop
iteration, variablessumandc hold the same value. This is
expressed by the constraintl 3 = l2. Note that this exam-
ple is slightly simplified. The reason is that the checks per-
formed by the while-statement on Line 5 lead to the creation
of additional constraints that ensure that the values ofstr[0]
and str[1] are between30 (ASCII value for ’0’) and39

(ASCII value for character ’9’). Also, because the checks
operate on labeled data, the system creates snapshots for
each check and attempts to explore additional paths later.
For these alternative paths, the string elements are rewrit-

6



0 : c h a r s t r [ ] , * p ;1 : i n t s u m ;2 :3 : p = s t r ;4 : s u m = 0 ;5 : w h i l e ( * p > = ' 0 ' & & * p < = ' 9 ' ) {6 : s u m = s u m * 1 0 ;7 : i n t c = * p % ' 0 ' ;8 : s u m = s u m + c ;9 : p + + ;1 0 : }1 1 :1 2 : i f ( s u m = = 8 2 )1 3 : p r i n t f ( " o k " ) ;

M a p p i n g :s t r [ 0 ] < ; ; > l 0s t r [ 1 ] < ; ; > l 1 C o n s t r a i n t s : M a p p i n g :s t r [ 0 ] < ; ; > l 0s t r [ 1 ] < ; ; > l 1c < ; ; > l 2s u m < ; ; > l 3
C o n s t r a i n t s :l 2 = l 0 ; 3 0l 3 = l 2

M a p p i n g :s t r [ 0 ] < ; ; > l 0s t r [ 1 ] < ; ; > l 1c < ; ; > l 5s u m < ; ; > l 6
C o n s t r a i n t s :l 2 = l 0 ; 3 0l 3 = l 2l 4 = 1 0 * l 3l 5 = l 1 ; 3 0l 6 = l 4 + l 5

I n i t i a l s t a t e S t a t e a f t e r f i r s t l o o p i t e r a t i o n
S t a t e a f t e r s e c o n d l o o p i t e r a t i o nC o d e f r a g m e n t

Figure 3. Constraints generated during program execution.

ten to be characters that do not represent numbers. In these
cases, the while-loop would terminate immediately.

In the example, the program reaches the check on
Line 11 after the second loop iteration. Given the origi-
nal input forstr, sumis 0 at this point and the else-branch
is taken. However, because this conditional branch involves
the valuesumthat is labeled withl6, a snapshot of the cur-
rent program state is created. When this snapshot is later
restored, our system needs to rewritesumwith the value82

be able to take the if-branch. To determine how the pro-
gram state can be updated consistently, the constraint sys-
tem is solved forl 6 = 82. A solution to this system can
be found (l0 = 38, l1 = 32, l2 = l3 = 8, l4 = 80, and
l5 = 2). Using the mappings, this solution determines how
the related memory locations can be consistently modified.
As expected,str[0] andstr[1] are set to the characters ’8’
and ’2’, respectively. The variablec is also set to2.

Non-linear dependencies. Theatoi function discussed
previously represents a more complex example of what can
be captured with linear relationships. However, it is also
possible that a program performs operations that cannot be
represented as linear constraints. These operations involve,
for example, bitwise operators such asand, or or a lookup
in which the input value is used as an index into a table. In
case of a non-linear relationship, our current system cannot
infer the assignment of appropriate values to labels such that
a certain memory location can be rewritten as desired. Thus,
whenever an operation creates a non-linear dependency be-
tween labelsl i andlj, we no longer can consistently update

the state when any label related tol i or lj should be rewrit-
ten. To address this problem, we maintain a setN that keeps
track of all labels that are part of non-linear dependencies.
Whenever a label should be rewritten, all related labels are
determined. In case any of these labels is inN , the state
cannot be consistently changed and the alternative path can-
not be explored.

3.2 Saving and Restoring Program State

The previous section explained our techniques to track
the propagation of input values during program execution.
Every memory location that depends on some interesting
input has an attached label, and the constraint system deter-
mines how values with different labels are related to each
other. Based on this information, multiple paths in the exe-
cution space can be explored. To this end, our system mon-
itors the program execution for conditional operations that
use one (or two) labeled arguments. When such a branch
instruction is identified, a snapshot of the current process
state is created.

The snapshot of the current execution state contains the
content of the complete virtual address space that is in use.
In addition, we have to store the current mappings and the
constraint system. But before the process is allowed to con-
tinue, one additional step is needed. In this step, we have
to ensure that the conditional operation itself is taken into
account. The reason is that no matter which branch is actu-
ally taken, this conditional operation enforces a constraint
on the possible value range of the labeled argument. We

7



call this constraint apath constraint. The path constraint
has to be remembered and taken into account in case the la-
beled value is later rewritten (further down the execution
path). Otherwise, we might create inconsistent states or
reach impossible paths. When the if-branch of the condi-
tional is taken (that is, it evaluates to true for the current
labeled value), the condition is directly used as path con-
straint. Otherwise, when the else-branch is followed, the
condition has to be reversed before it is added to the con-
straint system. To this end, we simply take the condition’s
negation.

For example, recall the first program that we showed
in Figure 1. This program uses two checks to ensure that
x > 0 andx < 2 before theprint function is invoked.
When the first if-statement is reached on Line 2, a snap-
shot of the state is created. Becausex had an initial value
of 2, the process continues along the if-branch. However,
we have to record the fact that the if-branch can only be
taken when the labeled value is larger than0. Assume that
the label ofx is l0. Hence, the appropriate path constraint
l0 > 0 is added to the constraint system. At the next check
on Line 3, another snapshot is created. This time, the else-
branch is taken, and we add the path constraintl0 >= 2

to the constraint system (which, because of the else-branch,
is the negation of the conditional checkx < 2). When the
process is about to terminate on Line 5, it is reset to the pre-
viously stored state. This time, the if-branch on Line 3 must
be taken. To this end, we add the path constraintl 0 < 2 to
the constraint system. At this point, the constraint system
containstwo entries. One is the constraint just added (i.e.,
l 0 < 2). The other one stems from the first check and re-
quires thatl0 > 0. When these constraints are analyzed, our
solver determines thatl0 = 1. As a result,x is rewritten to
1 and the program continues with the call toprint.

When a program state is restored, the first task of our
system is to load the previously saved content of the pro-
gram’s address space and overwrite the current values with
the stored ones. Then, the saved constraint system is loaded.
Similar to the case in which the first branch was taken, it is
also necessary to add the appropriate path constraint when
following the alternative branch. To this end, the path con-
straint that was originally used is reversed (that is, we take
its negation). This new path constraint is added to the con-
straint system and the constraint solver is launched. When
a solution is found, we use the new values for all related
labels to rewrite the corresponding memory locations in a
consistent fashion. As mentioned previously, when no solu-
tion is found, the alternative branch cannot be explored.

Note that at any point during the program’s execution,
the solution space of the constraint system specifies all pos-
sible values that the labeled input can have in order to reach
this point in the program execution. This information is im-
portant to determine the conditions under which certain be-

havior is exhibited. For example, consider that our analysis
observes an operating system call that should be included
into the report of suspicious behavior. In this case, we can
use the solution(s) to the constraint system to determine all
values that the labeled input can take to reach this call. This
is helpful to understand the conditions under which certain
malicious behavior is triggered. For example, consider a
worm that deactivates itself after a certain date. Using our
analysis, we can find the program path that exhibits the ma-
licious behavior. We can then check the constraint system
to determine under which circumstances this path is taken.
This yields the information that the current time has to be
before a certain date.

4 System Implementation

We implemented the concepts introduced in the previous
section to explore the execution space of Windows binaries.
More precisely, we extended our previous malware analy-
sis tool [2] with the capability to automatically label input
sources of interest and track their propagation using stan-
dard taint analysis (as, for example, realized in [12, 23]).In
addition, we implemented the mechanisms to consistently
save and restore program states. This allows us to automati-
cally generate more complete reports of malicious behavior
than our original tool. The reports also contain the infor-
mation under which circumstances a particular behavior is
observed. In this section, we describe and share implemen-
tation details that we consider interesting for the reader.

4.1 Creating and Restoring Program
Snapshots

Our system (and the original analysis tool) is built on top
of the system emulator Qemu [3]. Thus, the easiest way to
save the execution state of a program would be to save the
state of the complete virtual machine (Qemu already sup-
ports this functionality). Unfortunately, when a sample is
analyzed, many snapshots have to be created. Saving the
image of the complete virtual machine costs too much time
and resources. Thus, we require a mechanism to take snap-
shots of the process’ image only. To this end, we developed
a Qemu component that can identify the active memory
pages of a process that is executing in the guest operating
system (in our case, Microsoft Windows). This is done by
analyzing the page table directory that belongs to the Win-
dows process. Because Qemu is a PC emulator, we have full
access to the emulated machine’s physical memory. Hence,
we can access the Windows kernel data structures and per-
form the same calculations as the Windows memory man-
agement code to determine the physical page that belongs
to a certain virtual address of the process under analysis.
Once we have identified all pages that are memory mapped
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for our process, we simply copy the content of those that
are flagged valid. In addition, when creating a snapshot of
a process, we have to make a copy of the virtual CPU regis-
ters, the shadow memory, and the constraint system.

The method described above has one limitation. We can-
not store (or reset) memory that is paged out on disk. This
limitation stems from the fact that although we can access
the complete main memory from outside, we cannot read
the content on the virtual hard disk (without understand-
ing how the Windows file system and swapping is imple-
mented). Thus, we have to disable swapping and prevent
the guest OS from moving memory pages to the disk where
they can no longer be accessed. In our experiments, we
found that this limitation is not a problem as our malware
samples had very modest memory demands and never ex-
ceeded the 256 MB main memory of the guest OS.

To reset a process such that it continues from a previ-
ously saved snapshot, we use a procedure that is similar
to the one for storing the execution state. First, we iden-
tify all mapped pages that belong to our process of interest.
Then, for each page that was previously saved, we overwrite
the current content with the one that was stored. When the
pages are restored, we also reset the virtual CPU to its saved
state. Note that it is possible that the process has allocated
more pages than were present at the time when the snapshot
was taken. This is the case when the program has requested
additional memory from the operating system. Of course,
these new pages cannot be restored. Fortunately, this is no
problem and does not alter the behavior of the process. The
reason is that all references in the original pages that now
point to the new memory areas are reverted back to the val-
ues that they had at the time of the snapshot (when the new
pages did not exist yet). The only problem is that the newly
allocated pages are lost for the process, but still considered
in use by the operating system. This “memory leak” might
become an issue when, for example, a memory allocating
routine is executed various times when different execution
paths are explored. Although we never experienced prob-
lems in our experiments, one possible solution would be to
inject code into the guest OS that releases the memory.

An important observation is that a process can only be
reset to a previously stored state when it is executing in user
mode. When a process is executing kernel code, reverting
it back to a user mode state can leave data structures used
by the Windows kernel in an inconsistent state. The same
is true when the operating system is executing an interrupt
handling routine. Typically, resetting the process when not
in user mode leads to a crash or freezes the system.

Our current implementation allows us to reliably reset
processes to previous execution states. However, one has
to consider the kernel state when snapshots are taken or re-
stored. In particular, we have to address the problem that a
resource might be returned to the operating system after a

snapshot has been taken. When we later revert to the pre-
viously stored snapshot, the resource is already gone, and
any handles to it are stale. For example, such a situation
can occur when a file is closed after a snapshot is made. To
address this problem, we never allow a process to close or
free any resource that it obtains from the operating system.
To this end, whenever an application calls theNtClose
function or attempts to return allocated memory to the OS,
we intercept the function and immediately return to the user
program. From the point of view of the operating system,
no handle is ever closed. Thus, when the process is reset to
an old state, the old handles are still valid.

4.2 Identification of Program Termination

The goal of our approach is to obtain a comprehensive
log of the activities of a program on as many different ex-
ecution paths as possible. Thus, before reverting to a pre-
viously stored state, the process is typically allowed to run
until it exits normally or crashes. Of course, our system can-
not allow the process to actually terminate. Otherwise, the
guest operating system removes the process-related entries
from its internal data structures (e.g., scheduler queue) and
frees its memory. In this case, we would lose the possibility
to revert the image to a snapshot we have taken earlier.

To prevent the program from exiting normally, we in-
tercept all calls to theNtTerminateProcess system
service function (provided by thentdll.dll library).
This is done by checking whether the program counter
of the emulated CPU is equal to the start address of the
NtTerminateProcess function. Whenever the in-
spected process calls this function, we assume that it wishes
to terminate. In this case, we can revert the program to a
previous snapshot (in case unexplored paths are left).

Segmentation faults (i.e., illegal memory accesses) are
another venue for program termination that we intercept.
To this end, we hook the page fault handler and examine
the state of the emulated CPU whenever a page fault oc-
curs. If an invalid memory access is detected, the process is
reverted to a stored snapshot. Interestingly, invalid memory
accesses occur relatively frequently. The reason is that dur-
ing path exploration, we often encounter checks that ensure
that a pointer is not null. In order to explore the alternative
path, the pointer is set to an arbitrary non-null value. When
this value is later dereferenced, it very likely refers to an
unmapped memory area, which results in an illegal access.

Often, we encounter the situation that malicious code
does not terminate at all. For example, spreading routines
are typically implemented as endless loops that do not stop
scanning for vulnerable targets. In such cases, we cannot
simply end the analysis, because we would fail to analyze
other, potentially interesting paths. To overcome this prob-
lem, we set a timeout for each path that our system explores
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(currently, 20 seconds). Whenever a path is still executed
when the timeout expires, our system waits until the pro-
cess is in a safe state and then reverts it to a previous snap-
shot (until there are no more unexplored paths left). As a
result, it is also not possible for an attacker to thwart our
analysis by deliberating inserting code on unused execution
paths that end in an endless loop.

4.3 Optimization

One construct that frequently occurs in programs are
string comparisons. Usually, two strings are compared by
performing a sequence of pairwise equality checks between
corresponding characters in the two strings. This can lead
to problems when one of the strings (or both) are labeled.
Note that each character comparison operates on labeled ar-
guments and thus, is a branching point. As a result, when
a labeled string ofn characters is compared with another
string, we createn states. Each of the statessi : 0 ≤ i ≤ n

represents the case in which the firsti characters of both
strings match, while the two characters with the offseti + 1

differ. For practical purposes, we typically do not need this
detailed resolution for string comparisons. The reason is
that most of the time, a program only distinguishes between
the two cases in which both strings are either equal or not
equal. To address this problem, we implemented a heuris-
tics that attempts to recognize string comparisons. This is
implemented by checking for situations in which the same
compare instruction is executed repeatedly, and the argu-
ments of this compare have addresses that increase by one
on every iteration. When such a string comparison is en-
countered, we do not branch on every check. Instead, we
explore one path where the first characters are immediately
different, and a second one in which the two strings match.
This optimization avoids the significant increase of the over-
all number of states that would have to be processed other-
wise (often without yielding any additional information).

4.4 Limitations

In Section 4.1, we discussed our approach of never re-
turning any allocated resource to the operating system. The
goal was to avoid invalid handles that would result when a
process first closes a handle and is then reset to a previous
snapshot (in which this handle is still valid). Our approach
works well in most cases. However, one has to consider
situations in which a process creates external effects, e.g.,
when writing to a file or sending data over a network.

There are few problems when a program writes to a file.
The reason is that the file pointer is stored in user memory,
and thus, it is automatically reset to the previous value when
the process is restored. Also, as mentioned previously, files
are never closed. Unfortunately, the situation is not as easy

while handling network traffic. Consider an application that
opens a connection to a remote server and then exchanges
some data (e.g., such as a bot connecting to an IRC server).
When reverting to a previous state, the synchronization be-
tween the application and the server is lost. In particular,
when the program first sends out some data, is later reset,
and then sends out this data again, the remote server re-
ceives the data twice. Typically, this breaks protocol logic
and leads to the termination of the connection. In our cur-
rent implementation, we solve this problem as follows: All
network system calls in which the program attempts to es-
tablish a connection or sends out data are intercepted and
not relayed to the operating system. That is, for these calls,
our system simply returns a success code without actually
opening a connection or sending packets. Whenever the
program attempts to read from the network, we simply re-
turn a string of random characters of the maximum length
requested. The idea is that because the results of network
reads are labeled, our multiple path exploration technique
will later determine those strings that trigger certain actions
(e.g., such as command strings sent to a bot).

Another limitation is the lack of support for signals and
multi-threaded applications. Currently, we do not record
signals that are delivered to a process. Thus, when a signal
is raised, this only happens once. When the process is later
reverted to a previous state, the signal is not resent. The lack
of support for multi-threaded applications is not a problem
per se. Creating a snapshot for the complete process works
independently of the number of threads. However, to ensure
deterministic behavior our system would have to ensure that
threads are scheduled deterministically.

It might also be possible for specially-crafted malware
programs to conceal some malicious behavior by prevent-
ing our system from exploring a certain path. To this end,
the program has to ensure that a branch operation depends
on a value that is related to other values via non-linear de-
pendencies. For example, malicious code could deliberately
apply non-linear operations such asxor to a certain value.
When this value is later used in a conditional operation, our
system would determine that it cannot be rewritten, as the
related memory locations cannot be updated consistently.
Thus, the alternative branch would not be explored. There
are two ways to address this threat. First, we could replace
the linear constraint solver by a system that can handle more
complex relationships. For instance, by using a SAT solver,
we could also track dependencies that involve bitwise op-
erations. Unfortunately, when analyzing a binary that is
specifically designed to withstand our analysis, our proto-
type will never be able to correctly invert all operations en-
countered. An example for that are one-way hash functions,
for which our system cannot infer the original data from the
hash value alone. Therefore, a second approach could be to
relax the consistent update requirement. That is, we allow
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our system to explore paths by rewriting a memory loca-
tion without being able to correctly modify all related in-
put values. This approach leads to a higher coverage of the
code analyzed, but we lose the knowledge of the input that
is required to drive the execution down a certain path. In
addition, the program could perform impossible operations
(or simply crash) because of its inconsistent state. However,
frequent occurrences of conditional jumps that cannot be re-
solved by our system could be interpreted as malicious. In
this case, we could raise an appropriate warning and have a
human analyst perform a deeper investigation.

Finally, specially-crafted malware programs could per-
form a denial-of-service attack against our analysis tool by
performing many conditional branches on tainted data. This
would force our system to create many states, which in turn
leads to an exponential number of paths that have to be ex-
plored. One solution to this problem could be to define
a distance metrics that can compare saved snapshots and
merge sufficiently similar paths. Furthermore, we could
also treat a sudden, abnormal explosion of states as a sign
of malicious behavior.

5 Evaluation

In this section, we discuss the results that we obtained by
running our malware analysis tool on a set of 308 real-world
malicious code samples. These samples were collected in
the wild by an anti-virus company and cover a wide range
of malicious code classes such as viruses, worms, Trojan
horses and bots. Note that we performed our experiments
on all the samples we received, without any pre-selection.

The 308 samples in our test set belong to 92 distinct mal-
ware families (in certain cases, several different versions of
a single family were included in the sample set). We clas-
sified these malware families using the free virus encyclo-
pedia available atviruslist.com. Analyzing the re-
sults, we found that 42 malware families belong to the class
of email-based worms (e.g., Netsky, Blaster). 30 families
are classified as exploit-based worms (e.g., Blaster, Sasser).
10 malware families belong to the classic type of file in-
fector viruses (e.g., Elkern, Kriz). The remaining 10 fami-
lies are classified as Trojan horses and backdoors, typically
combined with bot functionality (e.g., AceBot, AgoBot, or
rBot). To understand how wide-spread our malware in-
stances are, we checked Kaspersky’s top-20 virus list for
July 2006, the month that we received our test data. We
found that our samples cover 18 entries on this list. Thus,
we believe that we have assembled a comprehensive set
of malicious code samples that cover a variety of malware
classes that appear in the wild.

In a first step, our aim was to understand to which ex-
tent malware uses interesting input to perform control flow
decisions. To this end, we had to define appropriate input

sources. In our current prototype implementation, we con-
sider the functions listed in Table 1 to provide interesting
input. These functions were chosen primarily based on our
previous experience with malware analysis (and also based
on discussions with experienced malware analysts working
in an anti-virus company). In the past, we have seen ma-
licious code that uses the output provided by one of these
functions to trigger actions. Also, note that adding addi-
tional input sources, if required, is trivial and is not a lim-
itation of our approach. During the analysis, we label the
return values of functions that check for the existence of an
operating system resource. For functions that read from a
resource (i.e., file, network, or timer), we label the complete
buffer that is returned (by using one label for each byte).

Interesting input sources

Check for Internet connectivity 20
Check for mutex object 116
Check for existence of files 79
Check for existence of registry entry 74
Read current time 134
Read from file 106
Read from network 134

Table 1. Number of samples that access
tainted input sources.

After running our analysis on the complete set of 308
real-world malware samples, we observed that 229 of these
samples used at least one of the tainted input sources we de-
fined. The breakdown of the usage based on input is shown
in Table 1. Of course, reading from a tainted source does
not automatically imply that we can explore additional ex-
ecution paths. For example, many samples copy their own
executable file into a particular directory (e.g., the Windows
system folder). In this case, our analysis observes that a file
is read, and appropriately taints the input. However, the
tainted bytes are simply written to another file, but not used
for any conditional control flow decisions. Thus, there are
no alternative program paths to explore.

Out of the 229 samples that access tainted sources, 172
use some of the tainted bytes for control flow decisions. In
this case, our analysis is able to explore additional paths
and extract behavior that would have remained undetected
with a dynamic analysis only based on a single execution
trace. In general, exploring multiple paths results in a more
complete picture of the behavior of that code. However, it
is unreasonable to expect that our analysis can always ex-
tract important additional knowledge about program behav-
ior. For example, several malware instances implement a
check that uses a mutex object to ensure that only a sin-
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gle program instance is running at the same time. That is,
when the mutex is not found on the first execution path, the
malware performs its normal malicious actions. When our
system analyzes the alternative path (i.e., we pretend that
the mutex exists), the program immediately exits. In such
situations, we are only able to increase our knowledge by
the fact that the presence of a specific mutex leads to im-
mediate termination. Of course, there are many other cases
in which the additional behavior is significant, and reveals
hidden functionality not present in a single trace.

Table 2 shows the increase in coverage of the malicious
code when we explore alternative branches. More precisely,
this table shows the relative increase in the number of basic
blocks that are analyzed by our system when considering al-
ternative paths. The baseline for each sample is the number
of basic blocks covered when simply running the sample in
our analysis environment. For a small number of the sam-
ples (21 of 172), the newly detected code regions amount
to less than 10% of the baseline. While it is possible that
these 10% contain information that is relevant for an ana-
lyst, they are mostly due to the exploration of error paths
that quickly lead to program termination. For the remaining
samples (151 of 172), the increase in code coverage is above
10%, and often significantly larger. For example, the largest
increase in code coverage that we observed was 3413.58%,
when analyzing theWin32.Plexus.B worm. This was
because this sample only executes its payload if its file name
contains the stringupu.exe. As this was not the case for
the sample uploaded into our analysis system, the malware
payload was only run in an alternative path. Anecdotal evi-
dence of the usefulness of our system is provided in the fol-
lowing paragraphs, where we describe interesting behavior
that was revealed by alternative paths. However, examining
the quantitative results alone, it is evident that almost one
half of the malware samples in the wild contain significant,
hidden functionality that is missed by a simple analysis.

Relative increase Number of samples

0 % - 10 % 21
10 % - 50 % 71

50 % - 200 % 37
> 200 % 43

Table 2. Relative increase of code coverage.

Behavioral analysis results. One interesting class of ma-
licious behavior that can be detected effectively by our sys-
tem is code that is only executed on a certain date (or in a
time interval). As an example for this class, consider the
Blaster code shown one the left side of Figure 4. This
code launches a denial-of-service attack, but only after the

15th of August. Suppose thatBlaster is executed on the
1st of January. In that case, a single execution trace would
yield no indication of an attack. Using our system, however,
a snapshot for the first check of the if-condition is created.
After resetting the process, the day is rewritten to be larger
than15. Later, the system also passes the month check, up-
dating the month variable to a value of8 or larger. Hence,
the multiple execution path exploration allows us to identify
the fact thatBlaster launches a denial-of-service attack,
as well as the dates that it is launched.

Another interesting case in which our analysis can pro-
vide a more complete behavioral picture is when malware
checks for the existence of a file to determine whether it was
already installed. For example, theKriz virus first checks
for the existence of the fileKRIZED.TT6 in the system
folder. When this file is not present, the virus simply copies
itself into the system folder and terminates. Only when the
file is already present, malicious behavior can be observed.
In such cases, an analysis system that performs a single ex-
ecution run would only be able to monitor the installation.

Finally, our system is well-suited to identify actions that
are triggered by commands that are received over the net-
work or read from a file. An important class of malware
that can be controlled by remote commands are IRC (Inter-
net Relay Chat) bots. When started, these programs usually
connect to an IRC server, join a channel, and listen to the
chat traffic for keywords that trigger certain actions. Mod-
ern IRC bots can typically understand more than 100 com-
mands, making a manual analysis slow and tedious. Using
our system, we can automate the process and determine, for
each command, which behavior is triggered. In contrast,
when running a bot in existing analysis tools, it is likely that
no malicious actions will be seen, simply because the bot
never receives any commands. The code on the right side of
Figure 4 shows a fragment of the command loop of the bot
rxBot. This code implements a series of if-statements that
check a line received from the IRC server for the presence
of certain keywords. When this code is analyzed, the result
of the read from the network (that is, the content of arraya)
is labeled. Therefore, all calls to thestrcmp function are
treated as branching points, and we can extract the actions
for one command on each different path.

Performance. The goal of our system is to provide a mal-
ware analyst with a detailed report on the behavior of an
unknown sample. Thus, performance is not a primary re-
quirement. Nevertheless, for some programs, a significant
number of paths needs to be explored. Thus, the time and
space requirements for saving and restoring states cannot be
completely neglected.

Whenever our system creates a snapshot, it saves the
complete active memory content of the process. In addi-
tion, the state contains information from the shadow mem-
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Figure 4. Blaster and rxBot source code snippets.

ory and the constraint system. During our experiments, we
determined that the size of a state was equal to about three
times the amount of memory that a process has allocated.
On average, the size of a state was about 3.5 MB, and it
never exceeded 10 MB. The time needed to create or re-
store a snapshot was 4 milliseconds on average, with a small
variance (on an Intel Pentium IV with 3.4 GHz and 2 GB
RAM). As mentioned in Section 4.2, a timeout of 20 sec-
onds was set for the exploration of each individual program
path. In addition, we set a timeout of 100 seconds for the
complete analysis run of each sample. This tight, additional
time limit was introduced to be able to handle a large num-
ber of samples in case certain malware instances would cre-
ate many paths. In our experiments, we observed that 58%
of the malware programs finished before the timeout ex-
pired. The remaining 42% of the samples had unexplored
paths left when the analysis process was terminated. As a
result, by increasing the total timeout, we would expect to
achieve an even larger increase in code coverage than that
reported in the previous paragraphs. The trade-off is that it
would take longer until results are available.

The size of a state could be significantly reduced if we
exploited the fact that the majority of memory locations
and entries in the shadow memory are0. Also, we could
attempt to create incremental snapshots that only store the
difference between the current and previous states. In the-
ory, the number of concurrently active states can be as high
as the number of branching points encountered. However,
we observed that this is typically not the case, and the num-
ber of concurrently active states during the experiments was
lower. More precisely, our system used on average 31 con-
current states (the maximum was 469). Note that these num-
bers also represent the average and maximum depths of the

search trees that we observed, as we use a depth-first search
strategy. Thetotal number of states were on average 32,
with a maximum of 1,210. Given the number of concur-
rently active states, we deemed it not necessary to develop
more sophisticated algorithms to create program snapshots.
Moreover, in a synthetic benchmark, we verified that our
system can handle more than thousand active states.

6 Related Work

Malicious code analysis. Analyzing malicious executa-
bles is not a new problem; consequently, a number of solu-
tions already exist. These solutions can be divided into two
groups: static analysisand dynamic analysistechniques.
Static analysis is the process of analyzing a program’s code
without actually executing it. This approach has the advan-
tage that one can cover the entire code and thus, possibly
capture the complete program behavior, independent of any
single path executed during run-time. In [8], a technique
was introduced that uses model checking to identify parts of
a program that implement a previously specified, malicious
code template. This technique was later extended in [9],
allowing more general code templates and using advanced
static analysis techniques. In [21], a system was presented
that uses static analysis to identify malicious behavior in
kernel modules that indicate a rootkit. Finally, in [20], a
behavioral-based approach was presented that relies heavily
on static code analysis to detect Internet Explorer plug-ins
that exhibit spyware-like behavior. The main weakness of
static analysis is that the code analyzed may not necessarily
be the code that is actually run. In particular, this is true for
self-modifying programs that use polymorphic or metamor-
phic techniques [27]. Also, malware can draw from a wide
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range of obfuscation mechanisms [22, 30] that may make
static analysis very difficult.

Because of the many ways in which code can be obfus-
cated and the fundamental limits in what can be decided
statically, we firmly believe that dynamic analysis is a nec-
essary complement to static detection techniques. In [4], a
behavior-based approach was presented that aims to dynam-
ically detect evasive malware by injecting user input into
the system and monitoring the resulting actions. In addi-
tion, a number of approaches exist that directly analyze the
code dynamically. Unfortunately, the support for dynamic
code analysis is limited; often, it only consists of debug-
gers or disassemblers that aid a human analyst. Tools such
as CWSandbox [29], the Norman SandBox [25], TTAna-
lyze [2], or Cobra [28] automatically record the actions per-
formed by a code sample, but they only consider a single
execution path and thus, might miss relevant behavior. To
address this limitation and to capture a more comprehensive
view of a program’s behavior, we developed our approach
to explore multiple execution paths.

A very recent work that addresses the detection of hid-
den, time-based triggers in malware is described in [13].
In their work, the authors attempt to automatically discover
time-dependent behavior by setting the system time to dif-
ferent values. The problem is that time-based triggers can
be missed when the system time is not set to the exact time
that the malware expects. In our approach, we do not at-
tempt to provide an environment such that trigger condi-
tions are met, but explore multiple code paths independent
of the environment. Thus, we have a better chance of find-
ing hidden triggers. In addition, our approach is more com-
prehensive, as we can detect arbitrary triggers.

Finally, in their technical report [5], the authors present
a system that is similar to ours in its goal to detect trigger-
based malware behavior. The main differences are the sys-
tem design, which is based on mixed execution of binary
code using elements of symbolic execution, and a less com-
prehensive evaluation (on four malware samples).

Software testing. The goal of our work is to obtain a
more complete picture of the behavior of a malicious code
sample, together with the conditions under which certain
actions are performed. This is analogous to software testing
where one attempts to find inputs that trigger bugs.

A number of test input generation systems [6, 15, 16]
were presented that analyze a program and attempt to find
input that drives execution to a certain program point. The
difference to our approach is that the emphasis of these
systems is to reach a certain point, and not to explore the
complete program behavior. Other tools were proposed that
explore multiple paths of a program to detect implementa-
tion errors. For example, model checking tools [10, 17, 18]
translate programs into finite state machines and then rea-

son whether certain properties hold on these automata. The
systems that are closest to our work are DART [14] and
EXE [7]. Both systems use symbolic execution [19]. That
is, certain inputs are expressed as symbolic variables, and
the system explores in parallel both alternative execution
paths when a conditional operation is found that uses this
symbolic input. Similar to our approach, these systems can
explore multiple execution paths that depend on interest-
ing input. Also, the conditions under which certain paths
are selected can be calculated (and are subsequently used
to generate test cases). The main differences to our tech-
nique are the following. First, the goal of these systems is
to explore programs for program bugs while our intent is to
create comprehensive behavioral profiles of malicious code.
Second, we do not have the possibility of using source code
and operate directly on hostile (obfuscated) binaries. This
leads to a significantly different implementation in which
interesting inputs are dynamically tracked by taint propaga-
tion. Also, the problem we are addressing is complicated
by the fact that we are not able to utilize built-in operating
system mechanisms (e.g., fork) to explore alternative pro-
gram paths. Hence, we require an infrastructure to save and
restore snapshots of the program execution.

Speculative execution. In [24], a system was presented
that uses process snapshots to implement speculative execu-
tion. In distributed files systems, processes typically have to
wait until remote file system operations are completed be-
fore they can resume execution. With speculative execution,
processes continue without waiting for remote responses,
based on locally available data only. When it later turns out
that the remote operation returns data that is different from
the local one, the process is reset to its previously stored
snapshot. The concept of snapshots used in speculative ex-
ecution is similar to the one in our work. The difference is
that we use snapshots as a means to explore alternative exe-
cution paths, which requires consistent memory updates.

7 Conclusions

In this paper, we presented a system to explore multi-
ple execution paths of Windows executables. The goal is to
obtain a more comprehensive overview of the actions that
an unknown sample can perform. In addition, the tool au-
tomatically provides the information under which circum-
stances a malicious action is triggered.

Our system works by tracking how a program processes
interesting input (e.g., the local time, file checks, reads from
the network). In particular, we dynamically check for con-
ditional branch instructions whose outcome depend on cer-
tain input values. When such an instruction is encountered,
a snapshot of the current execution state is created. When
the program later finishes along the first branch, we reset
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it to the previously saved state and modify the argument of
the condition such that the other branch is taken. When
performing this rewrite operation, it is important to consis-
tently update all memory locations that are related to the
argument value. This is necessary to prevent the program
from executing invalid or impossible paths.

Our experiments demonstrate that, for a significant frac-
tion of malware samples in our evaluation set, the system is
indeed exploring multiple paths. In these cases, our knowl-
edge about a program’s behavior is extended compared to
a system that observes a single run. We also show for a
number of real-world malware samples that the actions that
were discovered by our technique reveal important and rel-
evant information about the behavior of the malicious code.
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