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Abstract continue to grow in the future, as malware writing is quickly
turning into a profitable business [26]. Malware authors of-
Malicious code (or malware) is defined as software that ten sell their creations to miscreants, who then use the ma-
fulfills the deliberately harmful intent of an attacker. Mal licious code to compromise large numbers of machines that
ware analysis is the process of determining the behavior are linked together in so-called botnets. These botnets are
and purpose of a given malware sample (such as a virus,then abused as platforms to launch denial-of-servicekstac
worm, or Trojan horse). This process is a necessary stepor as spam relays. An important indication of the signifi-
to be able to develop effective detection techniques and re-cance of the problem is that even people without any par-
moval tools. Currently, malware analysis is mostly a man- ticular interest in computers are aware of worms such as
ual process that is tedious and time-intensive. To miti- CodeRed or Sasser. This is because security incidents af-
gate this problem, a number of analysis tools have beenfect millions of users and regularly make the headlines of
proposed that automatically extract the behavior of an un- mainstream news sources.
known program by executing it in a restricted environment  The most important line of defense against malicious
and recording the operating system calls that are invoked. code are virus scanners. These scanners typically rely on
The problem of dynamic analysis tools is that only a sin- a database of signatures that characterize known malware
gle program execution is observed. Unfortunately, how- instances. Whenever an unknown malware sample is found
ever, it is possible that certain malicious actions are only in the wild, it is usually necessary to update the signature
triggered under specific circumstances (e.g., on a particu- database accordingly, so that this novel malware piece can
lar day, when a certain file is present, or when a certain be detected by the scan engine. To this end, it is very im-
command is received). In this paper, we propose a systenportant to be able to quickly analyze an unknown malware
that allows us to explore multiple execution paths and iden- sample and understand its behavior and effect on the sys-
tify malicious actions that are executed only when certain tem. In addition, the knowledge about the functionality of
conditions are met. This enables us to automatically ex- malware is important for its removal. That is, to be able to
tract a more complete view of the program under analysis effectively remove a piece of malware from an infected ma-
and identify under which circumstances suspicious actionschine, it is usually not sufficient to delete the binary itsel
are carried out. Our experimental results demonstrate that Often, it is also necessary to remove the residues left loehin
many malware samples show different behavior dependingby the malicious code (such as undesirable registry entries
on input read from the environment. Thus, by exploring services, or processes) and undo changes made to legitimate
multiple execution paths, we can obtain a more completefiles. All these actions require a detailed understanding of
picture of their actions. the malicious code and its behavior.
The traditional approach to analyze the behavior of an
unknown program is to execute the binary in a restricted
1 Introduction environmentand observe its actions. The restricted enviro
ment is often a debugger, used by a human analyst to man-
ually step through the code in order to understand its func-
tionality. Unfortunately, anti-virus companies receiyeto
several hundreschew malware samples each day. Clearly,
the analysis of these malware samples cannot be performed
completely manually.

Malware is a generic term used to describe all kinds of
malicious software (e.g., viruses, worms, or Trojan hoxses
Malicious software not only poses a major threat to the se-
curity and privacy of computer users and their data, but is
also responsible for a significant amount of financial loss.
Unfortunately, the problem of malicious code is likely to



In a first step towards an automated solution, a number When the behavior of a program is determined from a
of dynamic malware testing systems were proposed. Thesesingle run, it is possible that many of the previously men-
systems, such as CWSandbox [29], the Norman Sand-tioned actions cannot be observed. This mightlead a human
Box [25], TTAnalyze [2], or Cobra [28] automatically load analystto draw incorrect conclusions about the risk of a cer
the sample to be analyzed into a virtual machine environ- tain sample. Even worse, when the code fails at an early
ment and execute it. While the programis running, its inter- check and immediately exits, the generated report might
action with the operating system is recorded. Typicallig th  not show any malicious activity at all. One possibility to
involves recording which system calls are invoked, togethe address this problem is to attempt to increase test coverage
with their parameters. The result of an automated analysisThis could be done by running the executable in different
is a report that shows what operating system resources (e.genvironments, maybe using a variety of operating system
files or Windows registry entries) a program has created orversions, installed applications, and data/time settillys
accessed. Some tools also allow the system to connect tdortunately, even with the help of virtual machines, cregti
a local network (or even the Internet) and monitor the net- and maintaining such a testing system can be costly. Also,
work traffic. Usually, the generated reports provide human performing hundreds of tests with each sample is not very
analysts with an overview on the behavior of the sample andefficient, especially because many environmental changes
allow them to quickly decide whether a closer, manual anal- have no influence on the program execution. Moreover, in
ysis is required. Hence, these automated systems free theases where malicious code is expecting certain commands
analysts of the need to waste time on already known mal-as input or checking for the existence of non-standard files
ware. Also, some tools are already deployed on the Internet(e.g., files that a previous exploit might have created} it i
and act as live analysis back-ends for honeypot instatiatio virtually impossible to trigger certain actions.
such as Nepenthes [1]. Unfortunately, current analysis sys  In this paper, we propose a solution that addresses the
tems also suffer from a significant drawback: their analysis problem of test coverage and that allows automated mal-
is based on aingleexecution trace only. That is, their re- ware analysis systems to generate more comprehensive re-
ports only contain the interaction that was observed whenports. The basic idea is that we explore multiple execution
the sample was run in a particular test environment at a cer-paths of a program under test, but the exploration of differ-
tain point in time. Unfortunately, this approach has the po- ent paths is driven by monitoring how the code uses certain
tential to miss a significant fraction of the behavior that a inputs. More precisely, we dynamically track certain input
program might exhibit under varying circumstances. values that the program reads (such as the currenttime from

Malware programs frequently contain checks that deter- the operating system, the content of a file, or the result of
mine whether certain files or directories exist on a machine a check for Internet connectivity) and identify points irth
and only run parts of their code when they do. Others re- execution where this input is used to make control flow de-
quire that a connection to the Internet is established dr tha cisions. When such a decision point is identified, we first
a specific mutex object does not exist. In case these condicreate a snapshot of the current state of the program execu
tions are not met, the malware may terminate immediately. tion. Then, the program is allowed to continue along one of
This is similar to malicious code that checks for indication the execution branches, depending on the actual input.value
of a virtual machine environment, modifying its behavior Later, we return to the snapshot and rewrite the input value
if such indications are present in order to make its analysissuch that the other branch is taken. This allows us to explore
in a virtual environment more difficult. Other functionalit  both program branches. In addition, we can determine un-
that is not invoked on every run are malware routines that der which conditions certain code paths are executed.
are only executed at or until a certain date or time of day.  For a simple example, consider a program that checks for
For example, some variants of the Bagle worm included a the presence of a file. During execution, we track the result
check that would deactivate the worm completely after a of the operating system call that checks for the existence
certain date. Another example is the Michelangelo virus, of that file. When this result is later used in a conditional
which remains dormant most of the time, delivering its pay- branch by the program, we store a snapshot of the current
load only on March 6 (which is Michelangelo’s birthday). execution state. Suppose, for example, that the file does
Of course, functionality can also be triggered by other con- not exist, and the program quickly exits. At this point, we
ditions, such as the name of the user or the IP address of theewind the process to the previously stored state and rewrit
local network interface. Finally, some malware listens for the result such that it does reports the file’s existencenThe
certain commands that must be sent over a control channelve can explore the actions that the program performs under
before an activity is started. For example, bots that autema the condition that the file is there.
ically log into IRC servers often monitor the channel fora  We have developed a system for Microsoft Windows that
list of keywords that trigger certain payload routines. allows us to dynamically execute programs and track the in-

put that they read. Also, we have implemented a mechanism



to take snapshots of executing processes and later revert tactions currently include the creation and modification of
previously stored states. This provides us with the means tofiles and Windows registry entries, interprocess communi-
explore the execution space of malware programs and to ob-cation, and basic network interaction.

serve behavior that is not seen by traditional malware anal- The existing analysis tool implements some virtual ma-
ysis environments. To demonstrate the feasibility of our ap chine introspection capabilities; in particular, it is atib
proach, we analyzed a large number of real-world malware attribute each instruction that is executed by the emulated
samples. In our experiments, we were able to identify time processor to an operating system process (or the kernel) of
checks that guarded damage routines and different behaviothe guest system. This allows us to track only those sys-
depending on existence of certain files. Also, we were abletem calls that are invoked by the code under analysis. Also,
to automatically extract a number of command strings for a the system provides a mechanism to copy the content of
bot with their corresponding actions. complex data structures, which can contain pointers torothe
objects in the process’ virtual address space, from the Win-
dows guest system into the host system. This is convenient

« We propose a dynamic analysis technique that allows IN order to be able to copy the system call_arguments from
us to create comprehensive reports on the behavior ofthe emulated system into the analysis environment. Unfor-

malicious code. To this end, our system explores mul- tunately, the existing system only collected a single execu

tiple program paths, driven by the input that the pro- fion trace.
gram processes. Also, our system reports the set of

conditions on the input under which particular actions Multiple execution paths. To address the problem that a
are triggered. single execution trace typically produces only part of the

complete program behavior, we extended the analysis tool
 We developed a tool that analyzes Microsoft Windows yyith the capability to explore multiple execution pathseTh
programs by executing them in a virtual-machine- goa| is to obtain a number of different execution paths, and
based environment. Our system keeps track of usereach path possibly reveals some specific behavior that can-
input and can create snapshots of the current processot be observed in the other traces. The selectidnarich-
at control flow decision points. In addition, we can re- ing points— that is, points in the program execution where
set a running process to a previously stored state andpoth alternative continuations are of interest — is based on
consistently modify its memory such that the alterna- the way the program processes input data. More precisely,
tive execution path is explored. when a control flow decision is based on some input value
that was previously read via a system call, the program takes
one branch (which depends on the outcome of the concrete
check). At this point, we ask ourselves the following ques-
tion: Which behavior could be observed if the input was
such that the other branch was taken?
. To answer this question, we label certain inputs of inter-
2 System Overview est to the program and dynamically track their propagation
during execution. Similar to the propagation of taint infor
The technigues described in this paper are an extensiormation used by other authors in previous work [12, 23], our
to an existing system for automated malware analysis [2]. system monitors the way these input values are moved and
This tool is based on Qemu [3], a fast virtual machine em- manipulated by the process. Whenever we detect a control
ulator. Using Qemu’s emulation of an Intel x86 host sys- flow decision based on a labeled value, the current content
tem, a Windows 2000 guest operating system is installed.of the process address space is stored. Then, execution con-
The choice of Windows and the Intel x86 architecture was tinues normally. When the process later wishes to termi-
motivated by the fact that the predominant fraction of mal- nate, it is automatically reset to the previously storechsna
ware is developed for this platform. The analysis works by shot. This is done by replacing the current content of the
loading the (malware-)program into the emulated Windows process address space with the previously stored values. In
environment, starting its execution, and subsequently-mon addition, we rewrite the input value that was used in the
itoring its activity. To this end, the analysis tool analyzd! control flow decision such that the outcome of this deci-
operating system calls that are invoked by the binary. For sion is reversed. Then, the process continues its execution
each system call, the analysis tool records the type of ser-along the other branch. Of course, it is possible that mul-
vice requested and the corresponding arguments. Based otiple branching in a row are encountered. In this case, the
the system calls observed during execution, a report is gen-execution space is explored by selecting continuationtpoin
erated that summatrizes the security-relevant actionss&he in a depth-first order.

To summarize, the contributions of this paper are as follows

e We evaluated our system on a large number of real-
world malware samples and demonstrate that we were
able to identify behavior that cannot be observed in
single execution traces.



cution path, itis typically not sufficient to change the $ing

x=2 memory location that is used by the control flow decision.

0 intx Instead, it_is necessary to consistently update (or rewrite
1. x=read input(); all values in the process address space that are related to

2: if (x>0) x=0 the input. The reason is that the original input value might
zf if (x _<§)" o, . have been copied to other memory locations, and even
P exit(OF;tm (rok; exit used by the program as part of some previous calculations.

x=2 When only a single instance of the input is modified, it

. is possible that copies of the original value remain in the

exit F;r,l(?tt program’s data section. This can lead to the execution of

invalid operations or the exploration of impossible paths.

Figure 1. Exploration of multiple execution Thus, whenever an input value is rewritten, it is necessary
paths. to keep the program state consistent and appropriately

update all copies of the input, as well as results of previous
operations that involve this value. Also, we might not have
complete freedom when choosing an alternative value for
a certain input. For example, an input might have been
used in previous comparison operations and the resulting
constraints need to be observed when selecting a value that
can revert the control flow decision at a branching point. It
is even possible that no valid alternative value exists that
can lead to the exploration of the alternative path. Thus,
to be able to consistently update and input and its related
values, it is necessary to keep track which memory
locations depend on a certain input amolw they depend

on this value.

For an example on how multiple execution paths of a
program can be explored, consider Figure 1. Note that al-
though this example is shown in C code (to make it eas-
ier to follow), our system works directly on x86 binaries.
When the program is executed, it first receives some input
and stores it into variabbe (on Line 1). Note that because
x is considered interesting, it is labeled. Assume that is thi
concrete run, the value stored intds 2. On Line 2, it is
compared td). At this point, our system detects a compari-
son operation that involves labeled data. Thus, a snapghoto
the current process is created. Then, the process is allowed .
to continue. Because the condition is satisfied, the if-tiian 3 Path Exploration
is taken and we record the fact thahas to be larger than
0. On Line 3, the next check fails. However, because the To be able to explore multiple program paths, two main
comparison again involves labeled data, another snapshoe€omponents are required. First, we need a mechanism to de-
is created. This time, the process continues on the elsecide when our system should analyze both program paths.
branch and is about to cadixi t . Because there are still  To this end, we track how the program uses data from cer-
unexplored paths (i.e., there exist two states that have notain input sources. Second, when an interesting branching
been visited), the process is reverted to the previous (sec{oint is located, we require a mechanism to save the cur-
ond) state. Our system inspects the comparison at Line 3rent program state and reload it later to explore the alterna
and attempts to rewrite such that the check succeeds. For tive path. The following two subsections discuss these two
this, the additional constraint > 0 has to be observed. componentsin more detail.

This yields a solution fox that equalsl. The value ofx

is updated td and the process is restarted. This time, the 3.1 Tracking Input

print statementon Line 4 is invoked. When the process is

about to exit on Line 5, it is reset to the first snapshot. This  In traditional taint-based systems, it is sufficient to know

time, the system searches a valuexXdhat fails the check  that a certain memory location depends on one or more in-

on Line 2. Because there are no additional constraints forput values. To obtain this information, such systems typ-

X, an arbitrary, non-positive integer is selected and the pro ically rely on three components: a set of taint sources, a

cess continues along the else-branch. This time, the call toshadow memory, and extensions to the machine instructions

exi t is permitted, and the analysis process terminates withthat propagate the taint information.

areport that indicates that a callpo i nt was found under Taint sources are used to initially assign labels to certain

the condition that the inputwas1 (but not0 or 2). memory locations of interest. For example, Vigilante [11]
is a taint-based system that can detect computer worms that

Consistent memory updates. Unfortunately, when  Ppropagate over the network. In this system, the network is

rewriting a certain input value to explore an alternative-ex ~ considered a taint source. As a result, each new input byte
that is read from the network card by the operating system



receives a new label. The shadow memory is required tobe changed. However, via a chain of intermediate locations,
keep track of which labels are assigned to which memory this value ultimately depends an Thus, all intermediate
locations at a certain point in time. Usually, a shadow byte locations need to be modified appropriately. To this end,
is used for each byte of physical machine memory. This a mapping is required that helps us to quickly identify all
shadow byte stores the label(s) currently attached to thelocations that currently share the same label.
physical memory location. Finally, extensions to the ma-
chine instructions are required to propagate taint inferma
tion when an operation manipulates or moves labeled data.
The most common propagation policy ensures that the re-
sult of an operation receives the union of the labels of the
operation’s arguments. For example, consideadd ma-
chine instruction that adds the constant valago a mem-
ory locationM; and stores the result at locatidt,. In this
case, the system would use the shadow memory to look up
the label attached td/; and attach this label td/,. Thus,
after the operation, both locationg; and M> share the
same label (although their content is different).

In principle, we rely on a taint-based system as previ-
ously described to track how the program under analysis Figure 2. Consistent memory updates.
processes input values. That is, we have a number of taint
sources that assign labels to input that is read by the pro-
gram, and we use a shadow memory to keep track of the TO underline the importance of a consistent memory up-
current label assigned to each memory location (including date, consider the example in Figure 2. Assume that the
the processor registers). Taint sources in our system ardunctionread.i nput on Line 1 is a taint source. Thus,
mostly system calls that return information that we con- When the program executes this function, variabls la-
sider relevant for the behavior of malicious code. This in- beled. In our example, the program initially reads the value
cludes system calls that access the file system (e.g., checR- When thecheck routine is invoked, the value of vari-
for existence of file, read file content), the Windows registr ~ ablexis copied into the parameteragic As part of this as-
and the network. Also, system calls that return the current Signment, the variableagicreceives the label of. When
time or the status of the network connection are interesting Magicis later used in the check on Line 7, a snapshot of the
Whenever a relevant function (or system call) is invoked by current state is taken (because the outcome of a conditional
our program, our system automatica”y assigns a new |abe|branCh depends on a labeled Value). Execution continues
to each memory location that receives this function’s iesul but quickly terminates on Line 8. At this point, the pro-
Sometimes, this means that a single integer is labeled. Incess is reverted to the previously stored snapshot and our
other cases, for example, when the program reads from aSystem determines that the valuenségichas to be rewrit-

file or the network, the complete return buffer is labeled, ten t00x1508 to take the if-branch. At this point, the new
using one unique label per byte. value has to be propagated to all other locations that share

the same label (in our case, the variakje Otherwise, the
program would incorrectly print the value ofinstead of
021508 on Line 3.

X = read_input();
check(x);
printf("%d", x);

void check(int magic) {
if (magic != 0x1508)
exit(1);

CONOORON2O

Inverse mapping. In addition to the shadow memory,
which maps memory locations to labels, we also require
aninverse mapping The inverse mapping stores, for each
label, the addresses of all memory locations that currently Linear dependencies. In the previous discussion, the ini-
hold this label. This information is needed when a process ial input value was copied to new memory locations before
is reset to a previously stored state and a certain input vari Peing used as an argumentin a control flow decision. In that
able must be rewritten. The reason is that when a memorycase, rewriting this argument implied that all locationatth
location with a certain label is modified, it is necessanjtos share the same label had to be updated with the same value.
multaneously change all other locations that have the sameS0 far, however, we have not considered the case when the
label. Otherwise, the state of the process becomes inconinitial input is not simply copied, but used as operand in
sistent. For example, consider the case in which the valuecalculations. Using the straightforward taint propagatio

of labeled inputz is copied several times before it is even- mechanism outlined above, the result of an operation with
tua”y stored at memory |0cati0y|_ Furthermore, assume a labeled argument receives this argument,S label. This als
thaty is used as argument by a conditional branch. To ex- happens when the result of an operation has a different value
p|ore the alternate execution branch, the content pfust than the argument. Unfortunately, that leads to prObIemS



when rewriting a variable at a snapshot point. In particu- the constraint system. Then, we extract all constraints tha
lar, when different memory locations share the same labelcontain at least one of the labels related,to This set of
but hold different values, one cannot simply overwrite thes constraints is then solved, using a linear constraint solve
memory locations with a single, new value. (we use the Parma Polyhedral Library).

We solve this problem by assigningnaw labeko the re- When the constraint system has no solution, the labeled
sult of any operation (different than copying) that invalve value cannot be changed such that the outcome of the con-
labeled arguments. In addition, we have to record how thedition is reverted. In this case, our system cannot explore
value with the new label depends on the value(s) with the the alternative path, and it continues with the next snapsho
old label(s). This is achieved by creating a new constraint stored. When a solution is found, on the other hand, this
that captures the relationship between the old and new la-solution can be directly used to consistently update the pro
bels, depending on the semantics of the operation. Thecess’ state. To this end, we can directly use, for each label,
constraint is then added tocanstraint systerthat is main- the value that the solver has determined to update the corre-
tained as part of the execution state of the process. Cansidesponding memory locations. This works because all (linear)
the simple example where a value with labgels used by  dependencies between values are encoded by the respective
anadd operation that increases this value by the constantconstraints in the constraint system. That is, a solution of
10. In this case, the result of the operation receives a newthe constraint system respects the relationships that have
labell;. In addition, we record the fact that the result of to hold between memory locations. All memory locations
the operation with; is equal to the value labeled kyplus that share the same label receive the same value. However,
10. That is, the constrait = Iy + 10 is inserted into the  as expected, when memory locations have different labels,
constraint system. The approach works similarly when two they can also receive different values. These values réspec

labeled inputs, one with labéh and the other with labé&l the relationships introduced by the operation previousty e
are summed up. In this case, the result receives a new labegcuted by the process and captured by the corresponding
l o and we add the constraifyt = lg + [;. constraints in the constraint system.

In our current system, we can only model linear rela-  To illustrate the concept of linear dependencies between
tionships between input variables. That is, our constraint values and to show how their dependencies are captured
system is a linear constraint system that can store terms inby the constraint system, consider Figure 3. The example
the form of{c,, * I, + ch—1 *ln—1 + ...+ c1 * 11 + co} shows the labels and constraints that are introduced when a
where the; are constants. These terms can be connected bysimpleat oi function is executed. The goal of this function
equality or inequality operators. To track linear dependen is to convert a string into the integer value that this string
cies between labels, the taint propagation mechanism of theepresents. For this example, we assume that the function is
machine instructions responsible for addition, subtaacti  executed on a stringtr with three characters; the first two
and multiplication had to be extended. are the ASCII character equivalent of the numbéwhich

Using the information provided by the linear constraint is 30). The third one has the valueand terminates the
system, it is possible to correctly update all memory loca- string. We assume that interesting input was read into the

tions that depend on an input valuevia linear relation-  string; as a result, the first characsr{0] has label, and
ships. Consider the case where a conditional control flow str[1] has label; .
decision uses a value with labigl To explore the alterna- The figure shows the initial mapping between program

tive branch of this decision, we have to rewrite the labeled variables and labels. For this initial state, no constsint
value such that the outcome of the condition is reverted. To have been identified yet. After the first loop iteration, ibca
do this consistently, we first use the linear constraintayst  be seen that the variablesandsumare also labeled. This
to identify all labels that are related tq. This provides us  results from the operations on Line 7 and Line 8, respec-
with the information which memory locations have some tively. The relationship between the variables are capture
connection with,,, and thus, must be updated as well. In a by the two constraints. Becausemwas0 before this loop
second step, a linear constraint solver is used to determineteration, variablesumandc hold the same value. This is
concrete values for these memory locations. expressed by the constraiy = I,. Note that this exam-
Two labelsl; andl; are related either (a) when they ap- ple is slightly simplified. The reason is that the checks per-
pear together in the same constraint or (b) when there ex-formed by the while-statement on Line 5 lead to the creation
ists a sequence of labels;,,...,l; } such that, = [;,, of additional constraints that ensure that the valuestrd]
Iy = 1, andl;, liq V?gol appear in the same constraint. and str[1] are betweer80 (ASCII value for '0’) and 39
More formally, the binary relatiomelatedis the transitive ~ (ASCII value for character '9"). Also, because the checks
closure of the binary relatiomppears in the same con- operate on labeled data, the system creates snapshots for
straint. Thus, when a value with labé| should be rewrit-  each check and attempts to explore additional paths later.
ten, we first determine all labels that asdatedto /,, in For these alternative paths, the string elements are rewrit



Mapping: Constraints: Mapping: Constraints:
str[@] <--> 1 str[@] <--> 1 _ _
0: char str], *p; 4 ] <-=>1pg 1,=1,- 30
; int sum; str[1] <--> 11 str1] <--> 11 13 _ 12
3: p=str [ <> 1,
4: sum=0; Initial state <um o
5: while (p>="'0'&& *p <="9"){ <> 13
6: sum =sum * 10; . . )
7: intc="p-'0%; L . State after first loop iteration
Mapping: Constraints:
8: Sum = sum + C;
9: p++;
10: ) str[0] <--> 10 12 _ 10 _ 30
11: str[1] <--> 1y =1
12: if (sum == 82) 3 2
13:  printf("ok"); c <-> 15 1,-10% 13
sum <==>1 _ _
Code fragment 6 lg=1p - 30
16 - 14 + 15

State after second loop iteration

Figure 3. Constraints generated during program execution.

ten to be characters that do not represent numbers. In thesthe state when any label related tpor /; should be rewrit-
cases, the while-loop would terminate immediately. ten. To address this problem, we maintain a’éé¢hat keeps

In the example, the program reaches the check ontrack of all labels that are part of non-linear dependencies
Line 11 after the second loop iteration. Given the origi- Whenever a label should be rewritten, all related labels are
nal input forstr, sumis 0 at this point and the else-branch determined. In case any of these labels i\inthe state
is taken. However, because this conditional branch in®lve cannot be consistently changed and the alternative path can
the valuesumthat is labeled witllg, a snapshot of the cur-  not be explored.
rent program state is created. When this snapshot is later
restored, our system needs to rewstemwith the values2 3.2 Saving and Restoring Program State
be able to take the if-branch. To determine how the pro-
gram state can be updated consistently, the constraint sys- The previous section explained our techniques to track
tem is solved for ¢ = 82. A solution to this system can  the propagation of input values during program execution.
be found {p = 38,11 = 32,1 = I3 = 8,14 = 80,and  Every memory location that depends on some interesting
Is = 2). Using the mappings, this solution determines how input has an attached label, and the constraint system deter
the related memory locations can be consistently modified. mines how values with different labels are related to each
As expectedstr[0] andstr[1] are set to the characters '8’  other. Based on this information, multiple paths in the exe-
and '2’, respectively. The variableis also set t@. cution space can be explored. To this end, our system mon-

itors the program execution for conditional operationd tha

Non-linear dependencies. Theat oi function discussed use one (or two) labeled arguments. When such a branch
previously represents a more complex example of what caninstruction is identified, a snapshot of the current process
be captured with linear relationships. However, it is also state is created.
possible that a program performs operations that cannot be  The snapshot of the current execution state contains the
represented as linear constraints. These operations/ievol  content of the complete virtual address space that is in use.
for example, bitwise operators suchasd, or or a lookup In addition, we have to store the current mappings and the
in which the input value is used as an index into a table. In constraint system. But before the process is allowed to con-
case of a non-linear relationship, our current system canno tinue, one additional step is needed. In this step, we have
infer the assignment of appropriate values to labels suath th to ensure that the conditional operation itself is taken int
a certain memory location can be rewritten as desired. Thus,account. The reason is that no matter which branch is actu-
whenever an operation creates a non-linear dependency beally taken, this conditional operation enforces a constrai
tween label$ ; andl;, we no longer can consistently update on the possible value range of the labeled argument. We



call this constraint gath constraint The path constraint  havior is exhibited. For example, consider that our analysi
has to be remembered and taken into account in case the lasbserves an operating system call that should be included
beled value is later rewritten (further down the execution into the report of suspicious behavior. In this case, we can
path). Otherwise, we might create inconsistent states oruse the solution(s) to the constraint system to determine al
reach impossible paths. When the if-branch of the condi- values that the labeled input can take to reach this calk Thi
tional is taken (that is, it evaluates to true for the current is helpful to understand the conditions under which certain
labeled value), the condition is directly used as path con- malicious behavior is triggered. For example, consider a
straint. Otherwise, when the else-branch is followed, the worm that deactivates itself after a certain date. Using our
condition has to be reversed before it is added to the con-analysis, we can find the program path that exhibits the ma-
straint system. To this end, we simply take the condition’s licious behavior. We can then check the constraint system
negation. to determine under which circumstances this path is taken.
For example, recall the first program that we showed This yields the information that the current time has to be
in Figure 1. This program uses two checks to ensure thatbefore a certain date.
x > 0 andx < 2 before thepri nt function is invoked.
When the first if-statement is reached on Line 2, a snap-4 System I mplementation
shot of the state is created. Becauskad an initial value
of 2, the process continues along the if-branch. However,
we have to record the fact that the if-branch can only be
taken when the labeled value is larger tliarAssume that

We implemented the concepts introduced in the previous
section to explore the execution space of Windows binaries.
More precisely, we extended our previous malware analy-

the Iab_el ofz is lo. Hence, the_ appropriate path constraint sis tool [2] with the capability to automatically label inpu
lp > 0 is added to the constraint system. At the next check . . . .
sources of interest and track their propagation using stan-

on Line 3, another snapshot is created. This time, the else- . . ) :
branch is taken, and we add the path constraint = 2 dard taint analysis (as, for example, realized in [12, 2i8]).

; : addition, we implemented the mechanisms to consistently
to the constraint system (which, because of the else-branch . :
. . . save and restore program states. This allows us to automati-
is the negation of the conditional chegck< 2). When the L :

. . ) o cally generate more complete reports of malicious behavior
process is about to terminate on Line 5, it is reset to the pre-

: . . : than our original tool. The reports also contain the infor-
viously stored state. This time, the if-branch on Line 3 must mation under which circumstances a particular behavior is
be taken. To this end, we add the path constriajnt 2 to P

) . : ) observed. In this section, we describe and share implemen-
the constraint system. At this point, the constraint system__.. . o ,
. . . e : tation details that we consider interesting for the reader.
containstwo entries. One is the constraint just added (i.e.,
lo < 2). The other one stems from the first check and re-
quires thai, > 0. When these constraints are analyzed, our
solver determines thdg = 1. As a resultg is rewritten to

1 and the program continues with the callgoi nt . o dthe original vsi Nis buil
When a program state is restored, the first task of our ur system (and the ariginal analysis tool) is built on top

system is to load the previously saved content of the pro- of the rs]ystem emulator Qefmu [3]. Thus, th(ledek?smst way LO
gram’s address space and overwrite the current values with>ave the execution state of a program would be to save the

the stored ones. Then, the saved constraint system is loadet@t€ of the complete virtual machine (Qemu already sup-
Similar to the case in which the first branch was taken, it is POtS this functionality). Unfortunately, when a sample is

also necessary to add the appropriate path constraint Wheﬁnalyzed, many snapshots have t‘? be created. Savmg the
following the alternative branch. To this end, the path con- 'M29¢€ of the complete virtual machlne costs too much time
straint that was originally used is reversed (that is, wetak an resfcn;]rces. Thu§,_ we reqwlre a mﬁphan(ljsm todtakel snaé)-
its negation). This new path constraint is added to the con-> Ots ofthe process mrw]age on Y('j To _tf 'Sﬁn » We develope
straint system and the constraint solver is launched. When? Qemu component t at can identiy the active memory
a solution is found, we use the new values for all related P29€S Of_ a process tha_t IS executing in the guest operating
labels to rewrite the corresponding memory locations in a system (in our case, M|cro_soft Windows). This is done t_’y
consistent fashion. As mentioned previously, when no solu- analyzing the page table dlrectpry that belongs to the Win-
tion is found, the alternative branch cannot be explored. dows process. Because Qem? |s,a PC gmulator, we have full
Note that at any point during the program’s execution, access to the emulated machine’s physical memory. Hence,

the solution space of the constraint system specifies all pos /& ¢an access the Windows kernel data structures and per-

sible values that the labeled input can have in order to reach]corm the sarcr;e cal(;:ulatlops af] thehW|_nd(|)W5 merr?or)é r?an-
this point in the program execution. This information is im- agement code to determine the physical page that belongs

portant to determine the conditions under which certain be- to a certain V|rFuaI a_lc_idress of the process under analysis.
Once we have identified all pages that are memory mapped

4.1 Creating and Restoring Program
Snapshots



for our process, we simply copy the content of those that snapshot has been taken. When we later revert to the pre-
are flagged valid. In addition, when creating a snapshot of viously stored snapshot, the resource is already gone, and
a process, we have to make a copy of the virtual CPU regis-any handles to it are stale. For example, such a situation
ters, the shadow memory, and the constraint system. can occur when a file is closed after a snapshot is made. To
The method described above has one limitation. We can-address this problem, we never allow a process to close or
not store (or reset) memory that is paged out on disk. Thisfree any resource that it obtains from the operating system.
limitation stems from the fact that although we can accessTo this end, whenever an application calls tkeCl ose
the complete main memory from outside, we cannot read function or attempts to return allocated memory to the OS,
the content on the virtual hard disk (without understand- we intercept the function and immediately return to the user
ing how the Windows file system and swapping is imple- program. From the point of view of the operating system,
mented). Thus, we have to disable swapping and prevenino handle is ever closed. Thus, when the process is reset to
the guest OS from moving memory pages to the disk wherean old state, the old handles are still valid.
they can no longer be accessed. In our experiments, we
found that this limitation is not a problem as our malware 4.2 Identification of Program Termination
samples had very modest memory demands and never ex-
ceeded the 256 MB main memory of the guest OS. The goal of our approach is to obtain a comprehensive
To reset a process such that it continues from a previ- |og of the activities of a program on as many different ex-
ously saved snapshot, we use a procedure that is similakcution paths as possible. Thus, before reverting to a pre-
to the one for storing the execution state. First, we iden- yviously stored state, the process is typically allowed to ru
tify all mapped pages that belong to our process of interest.yntil it exits normally or crashes. Of course, our system-can
Then, for each page that was previously saved, we overwritenot allow the process to actually terminate. Otherwise, the
the current content with the one that was stored. When theguest Operating system removes the process-re|ated$ntrie
pages are restored, we also reset the virtual CPU to its savegrom its internal data structures (e.g., scheduler quend) a
state. Note that it is possible that the process has alldcate frees its memory. In this case, we would lose the possibility
more pages than were present at the time when the snapshe revert the image to a snapshot we have taken earlier.
was taken. This is the case when the program has requested To prevent the program from exiting normally, we in-
additional memory from the operating system. Of course, tercept all calls to the\t Ter mi nat ePr ocess system
these new pages cannot be restored. Fortunately, this is n@ervice function (provided by thatdl | . dl | library).
problem and does not alter the behavior of the process. TheThijs is done by checking whether the program counter
reason is that all references in the original pages that nowof the emulated CPU is equal to the start address of the
point to the new memory areas are reverted back to the val-Nnt Ter i nat ePr ocess function. Whenever the in-
ues that they had at the time of the snapshot (when the newspected process calls this function, we assume that it wishe
pages did not exist yet). The only problem is that the newly to terminate. In this case, we can revert the program to a
allocated pages are lost for the process, but still cons@tler previous snapshot (in case unexplored paths are left).
in use by the operating system. This “memory leak” might  Segmentation faults (i.e., illegal memory accesses) are
become an issue when, for example, a memory allocatinganother venue for program termination that we intercept.
routine is executed various times when different execution To this end, we hook the page fault handler and examine
paths are explored. Although we never experienced prob-the state of the emulated CPU whenever a page fault oc-
lems in our experiments, one possible solution would be to curs. If an invalid memory access is detected, the process is
inject code into the guest OS that releases the memory.  reverted to a stored snapshot. Interestingly, invalid mgmo
An important observation is that a process can only be gccesses occur relatively frequently. The reason is that du
reset to a previously stored state when it is executing in use ing path exploration, we often encounter checks that ensure

mode. When a process is executing kernel code, revertingthat a pointer is not null. In order to explore the alternativ
it back to a user mode state can leave data structures Usegath, the pointer is setto an arbitrary non-null value. When

by the Windows kernel in an inconsistent state. The samethis value is later dereferenced, it very likely refers to an
is true when the operating system is executing an interruptunmapped memory area, which results in an illegal access.
handling routine. Typically, resetting the process wheh no  Often, we encounter the situation that malicious code
in user mode leads to a crash or freezes the system. does not terminate at all. For example, spreading routines
Our current implementation allows us to reliably reset are typically implemented as endless loops that do not stop
processes to previous execution states. However, one hagcanning for vulnerable targets. In such cases, we cannot
to consider the kernel state when snapshots are taken or resimply end the analysis, because we would fail to analyze
stored. In particular, we have to address the problem that agther, potentially interesting paths. To overcome thispro
resource might be returned to the operating system after aem, we set a timeout for each path that our system explores



(currently, 20 seconds). Whenever a path is still executedwhile handling network traffic. Consider an applicationttha
when the timeout expires, our system waits until the pro- opens a connection to a remote server and then exchanges
cess is in a safe state and then reverts it to a previous snapsome data (e.g., such as a bot connecting to an IRC server).
shot (until there are no more unexplored paths left). As a When reverting to a previous state, the synchronization be-
result, it is also not possible for an attacker to thwart our tween the application and the server is lost. In particular,
analysis by deliberating inserting code on unused exetutio when the program first sends out some data, is later reset,

paths that end in an endless loop. and then sends out this data again, the remote server re-
ceives the data twice. Typically, this breaks protocol ¢ogi
4.3 Optimization and leads to the termination of the connection. In our cur-

rent implementation, we solve this problem as follows: All

One construct that frequently occurs in programs are hetwork system calls in which the program attempts to es-
String Comparisons_ Usua”y, two Strings are Compared by tablish a connection or sends out data are intercepted and
performing a sequence of pairwise equality checks betweennot relayed to the operating system. That is, for these,calls
corresponding characters in the two strings. This can leadour system simply returns a success code without actually
to problems when one of the strings (or both) are labeled.opening a connection or sending packets. Whenever the
Note that each character comparison operates on labeled aProgram attempts to read from the network, we simply re-
guments and thus, is a branching point_ As a result, whenturn a String of random characters of the maximum Iength
a labeled string of. characters is compared with another requested. The idea is that because the results of network

string, we create states. Each of the states: 0 < i < n reads are labeled, our multiple path exploration technique
represents the case in which the fitstharacters of both ~ Wwill later determine those strings that trigger certainaus
strings match, while the two characters with the offsetl (€.g., such as command strings sent to a bot). -

differ. For practica| purposes, we Wp|ca||y do not need thi Another limitation is the lack of support for S|gnals and

detailed resolution for string comparisons. The reason is Multi-threaded applications. Currently, we do not record
that most of the time, a program only distinguishes betweensignals that are delivered to a process. Thus, when a signal
the two cases in which both strings are either equal or notis raised, this only happens once. When the process is later
equal. To address this problem, we implemented a heuris-reverted to a previous state, the signal is not resent. ke la
tics that attempts to recognize string comparisons. This isOf support for multi-threaded applications is not a problem
implemented by checking for situations in which the same per se Creating a snapshot for the complete process works
compare instruction is executed repeatedly, and the arguindependently of the number of threads. However, to ensure
ments of this compare have addresses that increase by on@eterministic behavior our system would have to ensure that
on every iteration. When such a string comparison is en-threads are scheduled deterministically.

countered, we do not branch on every check. Instead, we It might also be possible for specially-crafted malware
explore one path where the first characters are immediatelyPrograms to conceal some malicious behavior by prevent-
different, and a second one in which the two strings match.ing our system from exploring a certain path. To this end,
This optimization avoids the significantincrease of therove the program has to ensure that a branch operation depends
all number of states that would have to be processed otherOn @ value that is related to other values via non-linear de-

wise (often without yielding any additional information). ~ pendencies. For example, malicious code could delibgratel
apply non-linear operations suchasr to a certain value.
4.4 Limitations When this value is later used in a conditional operation, our

system would determine that it cannot be rewritten, as the
related memory locations cannot be updated consistently.

In Section 4.1, we discussed our approach of never re- X
turning any allocated resource to the operating system. Thel Nus, the alternative branch would not be explored. There

goal was to avoid invalid handles that would result when a &€ (W0 ways to address this threat. First, we could replace
process first closes a handle and is then reset to a previoud€ linear constraint solver by a system that can handle more
snapshot (in which this handle is still valid). Our approach 0mPplex relationships. For instance, by using a SAT solver,
works well in most cases. However. one has to considerW€ could also track dependencies that involve bitwise op-

situations in which a process creates external effects, e.g €rations. Unfortunately, when analyzing a binary that is
when writing to a file or sending data over a network. specifically designed to withstand our analysis, our proto-

There are few problems when a program writes to a file. type will never be able to correctly invert all operations en
The reason is that the file pointer is stored in user memory, countered. An example for that are one-way hash functions,
and thus, it is automatically reset to the previous valuewhe for which our system cannot infer the original data from the
the process is restored. Also, as mentioned previously, file Nash value alone. Therefore, a second approach could be to

are never closed. Unfortunately, the situation is not ag eas "€/ax the consistent update requirement. That is, we allow
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our system to explore paths by rewriting a memory loca- sources. In our current prototype implementation, we con-
tion without being able to correctly modify all related in- sider the functions listed in Table 1 to provide interesting
put values. This approach leads to a higher coverage of thanput. These functions were chosen primarily based on our
code analyzed, but we lose the knowledge of the input thatprevious experience with malware analysis (and also based
is required to drive the execution down a certain path. In on discussions with experienced malware analysts working
addition, the program could perform impossible operations in an anti-virus company). In the past, we have seen ma-
(or simply crash) because of its inconsistent state. Howeve licious code that uses the output provided by one of these
frequent occurrences of conditional jumps that cannot be re functions to trigger actions. Also, note that adding addi-
solved by our system could be interpreted as malicious. Intional input sources, if required, is trivial and is not a {im
this case, we could raise an appropriate warning and have atation of our approach. During the analysis, we label the
human analyst perform a deeper investigation. return values of functions that check for the existence of an

Finally, specially-crafted malware programs could per- operating system resource. For functions that read from a
form a denial-of-service attack against our analysis tgol b resource (i.e., file, network, or timer), we label the conple
performing many conditional branches on tainted data. This buffer that is returned (by using one label for each byte).
would force our system to create many states, which in turn

leads to an exponential number of paths that have to be ex- [ Interesting input sources | |
plored. One solution to this problem could be to define Check for Internet connectivity 20
a distance metrics that can compare saved snapshots and Check for mutex object 116
merge sufficiently similar paths. Furthermore, we could Check for existence of files 79
also treat a sudden, abnormal explosion of states as a sign Check for existence of registry ently 74
of malicious behavior. Read current ime 134

) Read from file 106
5 Evaluation Read from network 134

In this section, we discuss the results that we obtained by
running our malware analysis tool on a set of 308 real-world ~ Table 1. Number of samples that access
malicious code samples. These samples were collected in tainted input sources.
the wild by an anti-virus company and cover a wide range
of malicious code classes such as viruses, worms, Trojan

horses and bots. Note that we performed our experiments After running our analysis on the complete set of 308
on all the samples we received, without any pre-selection. real-world malware samples, we observed that 229 of these

The 308 samples in our test set belong to 92 distinct mal- S&Mples used atleast one of the tainted input sources we de-
ware families (in certain cases, several different versioh  [Ined- The breakdown of the usage based on input is shown
a single family were included in the sample set). We clas- IN Table 1. Of course, reading from a tainted source does
sified these malware families using the free virus encyclo- N0t automatically imply that we can explore additional ex-
pedia available avi rusl i st.com Analyzing the re- ecution paths. For example, many samples copy their own

sults, we found that 42 malware families belong to the class €X€cutable file into a particular directory (e.g., the Wiwdo
of email-based worms (e.g., Netsky, Blaster). 30 families system folder). In this case, our analysis observes that a fil

are classified as exploit-based worms (e.g., Blaster, §asse 'S réad, and appropriately taints the input. However, the

10 malware families belong to the classic type of file in- tainted bytes are simply written to another file, but not used
fector viruses (e.g., Elkern, Kriz). The remaining 10 fami- for any conditional control flow decisions. Thus, there are
lies are classified as Trojan horses and backdoors, typicall N° ltérnative program paths to explore.

combined with bot functionality (e.g., AceBot, AgoBot, or Out of the 229 samples that access tainted sources, 172
rBot). To understand how wide-spread our malware in- use some of the tainted bytes for control flow decisions. In

stances are, we checked Kaspersky's top-20 virus list forthis case, our analysis is able to explore additional paths
July 2006, the month that we received our test data. We @nd extract behavior that would have remained undetected

found that our samples cover 18 entries on this list. Thus, With @ dynamic analysis only based on a single execution

we believe that we have assembled a comprehensive sef@ce: In general, exploring multiple paths results in aenor

of malicious code samples that cover a variety of malware COMPIete picture of the behavior of that code. However, it
classes that appear in the wild. is unreasonable to expect that our analysis can always ex-

In a first step, our aim was to understand to which ex- tract important additional knowledge about program behav-

tent malware uses interesting input to perform control flow 10 For example, several malware instances implement a
decisions. To this end, we had to define appropriate inputcN€ck that uses a mutex object to ensure that only a sin-
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gle program instance is running at the same time. That is, 15" of August. Suppose th& ast er is executed on the
when the mutex is not found on the first execution path, the 15¢ of January. In that case, a single execution trace would
malware performs its normal malicious actions. When our yield no indication of an attack. Using our system, however,
system analyzes the alternative path (i.e., we pretend that snapshot for the first check of the if-condition is created.
the mutex exists), the program immediately exits. In such After resetting the process, the day is rewritten to be large
situations, we are only able to increase our knowledge bythan15. Later, the system also passes the month check, up-
the fact that the presence of a specific mutex leads to im-dating the month variable to a value ®br larger. Hence,
mediate termination. Of course, there are many other caseshe multiple execution path exploration allows us to idignti

in which the additional behavior is significant, and reveals the fact thaBl ast er launches a denial-of-service attack,
hidden functionality not present in a single trace. as well as the dates that it is launched.

Table 2 shows the increase in coverage of the malicious  Another interesting case in which our analysis can pro-
code when we explore alternative branches. More precisely,vide a more complete behavioral picture is when malware
this table shows the relative increase in the number of basicchecks for the existence of a file to determine whether it was
blocks that are analyzed by our system when considering al-already installed. For example, tKei z virus first checks
ternative paths. The baseline for each sample is the numbefor the existence of the fil&KRI ZED. TT6 in the system
of basic blocks covered when simply running the sample in folder. When this file is not present, the virus simply copies
our analysis environment. For a small number of the sam- itself into the system folder and terminates. Only when the
ples (21 of 172), the newly detected code regions amountfile is already present, malicious behavior can be observed.
to less than 10% of the baseline. While it is possible that In such cases, an analysis system that performs a single ex-
these 10% contain information that is relevant for an ana- ecution run would only be able to monitor the installation.
lyst, they are mostly due to the exploration of error paths  Finally, our system is well-suited to identify actions that
that quickly lead to program termination. For the remaining are triggered by commands that are received over the net-
samples (151 of 172), the increase in code coverage is abovevork or read from a file. An important class of malware
10%, and often significantly larger. For example, the larges that can be controlled by remote commands are IRC (Inter-
increase in code coverage that we observed was 3413.58%net Relay Chat) bots. When started, these programs usually
when analyzing th&V n32. Pl exus. B wor m This was connect to an IRC server, join a channel, and listen to the
because this sample only executes its payload if its file namechat traffic for keywords that trigger certain actions. Mod-
contains the stringpu. exe. As this was not the case for ern IRC bots can typically understand more than 100 com-
the sample uploaded into our analysis system, the malwaremands, making a manual analysis slow and tedious. Using
payload was only run in an alternative path. Anecdotal evi- our system, we can automate the process and determine, for
dence of the usefulness of our system is provided in the fol-each command, which behavior is triggered. In contrast,
lowing paragraphs, where we describe interesting behaviorwhen running a bot in existing analysis tools, it is likelgath
that was revealed by alternative paths. However, examiningno malicious actions will be seen, simply because the bot
the quantitative results alone, it is evident that almost on never receives any commands. The code on the right side of
half of the malware samples in the wild contain significant, Figure 4 shows a fragment of the command loop of the bot
hidden functionality that is missed by a simple analysis. r xBot . This code implements a series of if-statements that

check a line received from the IRC server for the presence

| Relative increasg Number of sampleg| of certain keywords. When this code is analyzed, the result
0% - 10 % 21 of the read from the network (that is, the content of aagy
10 % - 50 % 71 is labeled. Therefore, all calls to tls¢ r crp function are
50 % - 200 % 37 treated as branching points, and we can extract the actions
=200 % 43 for one command on each different path.

Performance. The goal of our systemis to provide a mal-
Table 2. Relative increase of code coverage. ware analyst with a detailed report on the behavior of an
unknown sample. Thus, performance is not a primary re-
guirement. Nevertheless, for some programs, a significant
Behavioral analysisresults. One interesting class of ma- number of paths needs to be explored. Thus, the time and
licious behavior that can be detected effectively by our sys SPace requirements for saving and restoring states caenot b
tem is code that is only executed on a certain date (or in acompletely neglected. _
time interval). As an example for this class, consider the ~Whenever our system creates a snapshot, it saves the

Bl ast er code shown one the left side of Figure 4. This COmplete active memory content of the process. In addi-
code launches a denial-of-service attack, but only after th tion, the state contains information from the shadow mem-
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0: //receive line from network --> store in array af]
1. GetDateFormat( LOCALE_409, 0, NULL, 1: //al0] = command, a[1] = arg1, a[2] = arg2, ...
"d", day, sizeof(day)); 2:
2: GetDateFormat( LOCALE_409, 0, NULL, 3: if (stremp(“crash”, a[0]) == 0) {
"M", month, sizeof(month)); 4: stremp(a[5],"crash"); // yes, this will crash.
3: 5: return 1;
4: if (atoi(day) > 15 && atoi(month) >= 8) 6: }
5:  run_ddos_attack(); 7: else if (strcmp("getcdkeys", a[0]) == 0) {
8: getcdkeys(sock,a[2],notice);
9: return 1;
10:
Blaster Denial-of-Service Attack 11 else if (strcmp("driveinfo”, a[0]) == 0) {
12: Drivelnfo(sock, a[2], notice, a[1]);
13: return 1;
14: }

rxBot Command Loop

Figure 4. Bl ast er and r xBot source code snippets.

ory and the constraint system. During our experiments, we search trees that we observed, as we use a depth-first search
determined that the size of a state was equal to about threestrategy. Theotal number of states were on average 32,
times the amount of memory that a process has allocatedwith a maximum of 1,210. Given the number of concur-
On average, the size of a state was about 3.5 MB, and itrently active states, we deemed it not necessary to develop
never exceeded 10 MB. The time needed to create or re-more sophisticated algorithms to create program snapshots
store a snapshot was 4 milliseconds on average, with a smalMoreover, in a synthetic benchmark, we verified that our
variance (on an Intel Pentium IV with 3.4 GHz and 2 GB system can handle more than thousand active states.

RAM). As mentioned in Section 4.2, a timeout of 20 sec-

onds was set for the exploration of each individual program g Rdlated Work

path. In addition, we set a timeout of 100 seconds for the

complete analysis run of each sample. This tight, additiona Malicious code analysis. Analyzing malicious executa-

time limit was introduced to be able to handle a large num- ; .
bles is not a new problem; consequently, a number of solu-

ber of samples in case certain malware instances would cre-; ; . L .
. tions already exist. These solutions can be divided into two
ate many paths. In our experiments, we observed that 58%

of the malware programs finished before the timeout ex- groups. sta‘uc; gnalysmnd dynamic analysmechnlqu?s.
. - Static analysis is the process of analyzing a program’s code
pired. The remaining 42% of the samples had unexplored . o .
. . without actually executing it. This approach has the advan-
paths left when the analysis process was terminated. As ; .
; . . age that one can cover the entire code and thus, possibly
result, by increasing the total timeout, we would expect to C
. . ; apture the complete program behavior, independent of any
achieve an even larger increase in code coverage than that.

reported in the previous paragraphs. The trade-off is that i smg[e path executed during run-t|me.. In [8.]’ a tlechmque
. ) was introduced that uses model checking to identify parts of
would take longer until results are available.

The size of a state could be significantly reduced if we a program thatimplement a previously specified, malicious

) L : code template. This technique was later extended in [9],
exploited the fact that the majority of memory locations . .
L allowing more general code templates and using advanced
and entries in the shadow memory dre Also, we could

. static analysis techniques. In [21], a system was presented
aFtempt o create incremental snapshots_ that only store thethat uses static analysis to identify malicious behavior in
difference between the current and_ previous states. In the_kernel modules that indicate a rootkit. Finally, in [20], a
ory, the number of concurrently_actlve states can be as hlghbehavioral-based approach was presented that reliedyeavi
as the number of branching points encountered. However,

we observed that this is typically not the case, and the num-o" static code analysis to detect Intemet Explorer plg-in

) . . that exhibit spyware-like behavior. The main weakness of
ber of concurrently active states during the experiments wa . il )
. static analysis is that the code analyzed may not necegsaril
lower. More precisely, our system used on average 31 con- : . -

) be the code that is actually run. In particular, this is troe f
current states (the maximumwas 469). Note that these num- e .
X self-modifying programs that use polymorphic or metamor-
bers also represent the average and maximum depths of the . . :
phic techniques [27]. Also, malware can draw from a wide
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range of obfuscation mechanisms [22, 30] that may makeson whether certain properties hold on these automata. The
static analysis very difficult. systems that are closest to our work are DART [14] and

Because of the many ways in which code can be obfus-EXE [7]. Both systems use symbolic execution [19]. That
cated and the fundamental limits in what can be decidedis, certain inputs are expressed as symbolic variables, and
statically, we firmly believe that dynamic analysis is a nec- the system explores in parallel both alternative execution
essary complement to static detection techniques. In [4], apaths when a conditional operation is found that uses this
behavior-based approach was presented that aims to dynansymbolic input. Similar to our approach, these systems can
ically detect evasive malware by injecting user input into explore multiple execution paths that depend on interest-
the system and monitoring the resulting actions. In addi- ing input. Also, the conditions under which certain paths
tion, a number of approaches exist that directly analyze theare selected can be calculated (and are subsequently used
code dynamically. Unfortunately, the support for dynamic to generate test cases). The main differences to our tech-
code analysis is limited; often, it only consists of debug- nique are the following. First, the goal of these systems is
gers or disassemblers that aid a human analyst. Tools sucho explore programs for program bugs while our intent is to
as CWSandbox [29], the Norman SandBox [25], TTAna- create comprehensive behavioral profiles of malicious code
lyze [2], or Cobra [28] automatically record the actions-per Second, we do not have the possibility of using source code
formed by a code sample, but they only consider a singleand operate directly on hostile (obfuscated) binaries.s Thi
execution path and thus, might miss relevant behavior. Toleads to a significantly different implementation in which
address this limitation and to capture a more comprehensivanteresting inputs are dynamically tracked by taint pragag
view of a program’s behavior, we developed our approachtion. Also, the problem we are addressing is complicated
to explore multiple execution paths. by the fact that we are not able to utilize built-in operating

A very recent work that addresses the detection of hid- system mechanisms (e.g., fork) to explore alternative pro-
den, time-based triggers in malware is described in [13]. gram paths. Hence, we require an infrastructure to save and
In their work, the authors attempt to automatically disqove restore snapshots of the program execution.
time-dependent behavior by setting the system time to dif-

ferent values. The problem is that time-based triggers cangpeculative execution. In [24], a system was presented
be missed when the system time is not set to the exact timahat uses process snapshots to implement speculative-execu
that the malware expects. In our approach, we do not at-tion. In distributed files systems, processes typicallyetav
tempt to provide an environment such that trigger condi- wajt until remote file system operations are completed be-
tions are met, but explore multiple code paths independentfore they can resume execution. With speculative execution
of the environment. ThUS, we have a better chance of find'processes continue without Wamng for remote responses,
ing hidden triggers. In addition, our approach is more com- pased on locally available data only. When it later turns out
prehensive, as we can detect arbitrary triggers. that the remote operation returns data that is differemhfro
Finally, in their technical report [5], the authors present the |ocal one, the process is reset to its previously stored
a system that is similar to ours in its goal to detect trigger- snapshot. The concept of snapshots used in speculative ex-
based malware behavior. The main differences are the sysgcution is similar to the one in our work. The difference is
tem design, which is based on mixed execution of binary that we use snapshots as a means to explore alternative exe-

code using elements of symbolic execution, and a less comcytion paths, which requires consistent memory updates.
prehensive evaluation (on four malware samples).

_ _ _ 7 Conclusions
Software testing. The goal of our work is to obtain a

more complete picture of the behavior of a malicious code
sample, together with the conditions under which certain
actions are performed. This is analogous to software @stin
where one attempts to find inputs that trigger bugs.

A number of test input generation systems [6, 15, 16]
were presented that analyze a program and attempt to fin
input that drives execution to a certain program point. The

differenc:(_a to our approach.is th_at the emphasis of theseinteresting input (e.g., the local time, file checks, readsif
systems is to reach a certain point, and not to explore the, . network). In particular, we dynamically check for con-
complete program behavior. Other tools were pmposed thatditional branch instructions whose outcome depend on cer-
explore multiple paths of a program to detect implementa- tain input values. When such an instruction is encountered,

tion elrrors. For example}_m_odel CheCk'nE_tOOIS [1(?’ &7’ 18] a snapshot of the current execution state is created. When
translate programs into finite state machines and then reay, o program later finishes along the first branch, we reset

In this paper, we presented a system to explore multi-
ple execution paths of Windows executables. The goal is to
obtain a more comprehensive overview of the actions that
an unknown sample can perform. In addition, the tool au-
omatically provides the information under which circum-

tances a malicious action is triggered.

Our system works by tracking how a program processes

14



it to the previously saved state and modify the argument of [10] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasare

the condition such that the other branch is taken. When

performing this rewrite operation, it is important to cossi

tently update all memory locations that are related to the
argument value. This is necessary to prevent the program

from executing invalid or impossible paths.

Our experiments demonstrate that, for a significant frac-

[11]

tion of malware samples in our evaluation set, the system is [12]

indeed exploring multiple paths. In these cases, our knowl-

edge about a program’s behavior is extended compared to
a system that observes a single run. We also show for al13]

number of real-world malware samples that the actions that
were discovered by our technique reveal important and rel-

evant information about the behavior of the malicious code. [14]
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