
On exact quantum query complexity

Ashley Montanaro∗, Richard Jozsa and Graeme Mitchison

Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, UK.

September 10, 2013

Abstract

We present several families of total boolean functions which have exact quantum query com-
plexity which is a constant multiple (between 1/2 and 2/3) of their classical query complexity,
and show that optimal quantum algorithms for these functions cannot be obtained by simply
computing parities of pairs of bits. We also characterise the model of nonadaptive exact quantum
query complexity in terms of coding theory and completely characterise the query complexity
of symmetric boolean functions in this context. These results were originally inspired by nu-
merically solving the semidefinite programs characterising quantum query complexity for small
problem sizes. We include numerical results giving the optimal success probabilities achievable
by quantum algorithms computing all boolean functions on up to 4 bits, and all symmetric
boolean functions on up to 6 bits.

1 Introduction

Many important quantum algorithms operate in the query complexity model. In this model, the
quantity of interest is the number of oracle queries to the input x ∈ {0, 1}n required to compute
some (possibly partial) function f(x). Many functions f are now known to admit quantum speed-
up in the case where the algorithm is allowed a constant probability of error, and the model of
bounded-error quantum query complexity is now relatively well understood. Intriguingly, the model
of exact quantum query complexity, where the quantum algorithm must succeed with certainty,
seems to be more mysterious.

If f is allowed to be a partial function, it is known that there can be an exponential separation
between exact quantum and exact classical query complexity [13], and even between exact quantum
and bounded-error classical query complexity [8]. There are also examples of total functions where
exact quantum algorithms allow a speed-up over classical algorithms. In particular, it is known that
the parity of n bits can be computed exactly using only dn/2e quantum queries [10, 15], while any
classical algorithm (exact or randomised) must make exactly n queries. However, prior to this work
this was the best quantum speed-up known for the exact computation of total boolean functions.
Even worse, to the authors’ knowledge this was essentially the only exact quantum speed-up known.
Some years ago, Hayes, Kutin and van Melkebeek [18] gave a quantum algorithm that computes
the majority function on n bits exactly using only n+ 1−w(n) queries, where w(n) is the number
of 1s in the binary expansion of n, but the only quantum ingredient in this algorithm is computing
the parity of 2 bits using 1 query. The same applies to quantum algorithms presented by Dubrovska

∗am994@cam.ac.uk

1

ar
X

iv
:1

11
1.

04
75

v2
 [

qu
an

t-
ph

]
 9

 S
ep

 2
01

3

and Mischenko-Slatenkova [14], and also algorithms by Vasilieva [29, 30]. In the other direction,
it is known that the separation between quantum and classical exact query complexity can be at
most cubic [22], whereas the best known relationship between bounded-error quantum and classical
query complexity is a 6th power [6].

The question of whether the factor of 2 speed-up obtained for computing parity can be beaten
is of particular interest because any constant factor speed-up greater than a factor of 2 would in
fact give an example of an asymptotic quantum-classical separation for total functions in the exact
model1, via a construction similar to the Recursive Fourier Sampling problem of Bernstein and
Vazirani [7]. Indeed, given a boolean function f on n bits, let f (2) be the function defined by
f (2)(x) = f(f(x1), . . . , f(xn)), where x1, . . . , xn are n-bit strings; and more generally, for k > 2,
let f (k) be f applied to n independent instances of f (k−1). Then any quantum algorithm which
computes f exactly using q queries can be applied recursively to obtain a quantum algorithm
computing f (k) exactly using O((2q)k) queries (the factor of 2 arises from the need to uncompute
“garbage” left over from each use of the algorithm [1]). However, if every exact classical algorithm
which computes f exactly must make at least d queries, one can show that any exact classical
algorithm for f (k) must make at least dk queries. If q < d/2, this would imply an asymptotic
separation.

Note added. Following the completion of this work, in a breakthrough result, Ambainis has
demonstrated such an asymptotic separation between quantum and classical exact query complexity
for a total function [3]. Also, very recently Ambainis, Iraids and Smotrovs [4] have developed
optimal exact quantum algorithms to determine whether an n-bit string has Hamming weight
exactly k, and to determine whether an n-bit string has Hamming weight at least k, verifying a
conjecture in Section 8.

1.1 Our results

We show that the model of exact quantum query complexity is richer than it may have hitherto
appeared. Our results can be divided into analytical and numerical parts. On the analytical side,
the main results are as follows.

• We present several new families of boolean functions f for which the exact quantum query
complexity of f is a constant multiple (between 1/2 and 2/3) of its classical query complexity,
and we show that optimal quantum algorithms for these functions cannot be obtained by
simply computing parities of pairs of bits. These separations are based on concatenating
small separations obtained for functions on small numbers of bits; indeed, we give optimal
exact quantum query algorithms for every boolean function on 3 bits.

• We give a simple and explicit quantum algorithm for determining whether a 4-bit string has
Hamming weight 2, using only 2 queries. Again, this cannot be done merely by computing
parities of pairs of input bits. More generally, we give an exact algorithm which distinguishes
between inputs of Hamming weight n/2 and Hamming weight in the set {0, 1, n − 1, n}, for
all even n, using 2 queries. This generalises the well-known Deutsch-Jozsa problem [13] of
distinguishing Hamming weight n/2 from Hamming weight in {0, n}.

• We characterise the model of nonadaptive exact quantum query complexity in terms of a
coding-theoretic quantity. In this setting, all queries to the input must be made up front, in

1We would like to thank Scott Aaronson for stressing this point to us.

2

parallel. In contrast to the classical case, there exist non-trivial quantum algorithms in this
model. Using our characterisation result, we completely determine the nonadaptive exact
quantum query complexity of symmetric boolean functions.

These analytical results were inspired by numerical investigations in which we evaluated the
best success probability achievable by quantum algorithms computing all boolean functions on
up to 4 bits, and all symmetric boolean functions on up to 6 bits. This was achieved using the
semidefinite programming approach of Barnum, Saks and Szegedy [5] to formulate semidefinite
programs (SDPs) giving the precise optimal success probability for quantum algorithms using up
to k queries, for all k < n. We then solved these SDPs numerically using the CVX package [16] for
Matlab; the results are given in Section 6 and Appendix A. Given an SDP solution, one can then
write down an explicit quantum query algorithm with the same parameters; we discuss how this
can be done in Section 4. Our analytical results were based on inspecting these algorithms.

Some further highlights from the numerical results are as follows.

• We conjecture that the exact quantum query complexity of the problem of determining
whether an n-bit string has Hamming weight exactly k is precisely max{k, n − k}. We also
conjecture that determining whether an n-bit string has Hamming weight at least k has exact
quantum query complexity max{k, n − k + 1} for k ≥ 1. Both conjectures hold numerically
for all n ≤ 6.

• In particular, we present strong numerical evidence that the algorithm of Hayes, Kutin and
van Melkebeek [18] for the majority function is not always optimal, by showing that there
exists an exact quantum algorithm for computing the majority function on 5 bits using only
3 queries, while their algorithm would require 4 queries.

• We show numerically that all boolean functions on up to 4 bits, with the exception of functions
equivalent to the AND function, have an exact quantum query algorithm using at most 3
queries.

• We show numerically that no boolean function on up to 5 bits has exact quantum query
complexity strictly less than half its exact classical query complexity.

Note that Høyer, Lee and Špalek have previously solved related SDPs (known as the adversary
and generalised adversary bounds) for all boolean functions on up to 4 bits [20]. These results are
also included in [27]. These SDPs give lower bounds on bounded-error quantum query complexity
but do not characterise it exactly, although the generalised adversary bound does so up to a constant
factor [26].

1.2 Organisation

The remainder of this paper is organised as follows. After formalising some definitions in Section
2, in Section 3 we move on to techniques for finding separations between exact quantum query
algorithms, classical algorithms, and quantum algorithms computing parities of input bits. We
then discuss in Section 4 how the Barnum-Saks-Szegedy SDP can be solved for small problems to
give explicit quantum query algorithms. Section 5 gives our algorithm for determining whether a
4-bit input has Hamming weight 2. In Section 6 we give optimal exact quantum query algorithms,
found by semidefinite programming, for every boolean function on 3 bits. Our results characterising

3

nonadaptive exact quantum query complexity are in Section 7, after which we conclude with a
discussion of open problems. Two appendices detail our numerical results (including computation
of exact quantum query complexity for all 4-bit boolean functions, and all symmetric functions on
up to 6 bits), and also give example CVX source code.

2 Definitions

2.1 Generalities and boolean functions

For any bit-string x, |x| will denote the Hamming weight of x, and x̄ will denote NOT(x). ei will
denote the bit-string with 1 in the i’th position, and 0 elsewhere. We use the convention [X] for a
quantity which evaluates to 1 if the statement X is true, and 0 otherwise. We will be interested
in boolean functions f : {0, 1}n → {0, 1}, and particularly interested in the following families of
functions, all on n bits. PARITY is the function PARITY(x) = [|x| is odd]. MAJ is the majority
function where MAJ(x) = [|x| ≥ n/2]. The EXACTk function is defined by EXACTk(x) = [|x| = k].
NAE (“not-all-equal”) evaluates to 0 if all the input bits are equal, otherwise evaluates to 1. Finally,
the threshold function Thk(x) evaluates to 1 if and only if |x| ≥ k. All of these are examples of
symmetric boolean functions; a boolean function f is said to be symmetric if f(x) only depends
on |x|. A non-symmetric function on 3 bits which we will consider is SEL, where SEL(x1, x2, x3) is
defined to be equal to x2 if x1 = 0, and equal to x3 if x1 = 1.

We say that two boolean functions f and g are isomorphic if they are equal up to negations
and permutations of the input variables, and negation of the output variable. This relationship is
sometimes known as NPN-equivalence.

2.2 Query complexity model

An exact classical query algorithm to compute a boolean function f : {0, 1}n → {0, 1} is described
by a decision tree (see e.g. [9]). A decision tree T is a rooted binary tree where each internal vertex
has exactly two children, each internal vertex is labelled with a variable xi, 1 ≤ i ≤ n, and each
leaf is labelled with 0 or 1. T computes a boolean function as follows: starting with the root, the
variable labelling each vertex is queried, and dependent on whether the answer is 0 or 1 the left or
right subtree is evaluated. When a leaf is reached, the output is the label of that leaf. The depth
of T is the maximal length of a path from the root to a leaf (i.e. the worst-case number of queries
used on any input). The minimal depth over all decision trees computing f is the exact classical
query complexity (aka decision tree complexity) D(f).

We follow what is essentially the standard quantum query complexity model (see e.g. [5, 21]).
A quantum query algorithm to compute a boolean function f : {0, 1}n → {0, 1} is specified by
a sequence of unitary operators U0, . . . , Ut which do not depend on the (initially unknown) in-
put x. These unitaries are interspersed with oracle calls Ox (which do depend on the input x).
The final state of an algorithm that makes t queries, before the final measurement, is given by
UtOxUt−1Ox . . . OxU0|0〉. The overall Hilbert space H used by the quantum query algorithm is
split into three subspaces Hin ⊗ Hwork ⊗ Hout. For boolean functions, Hout is a single qubit,
whereas the workspace Hwork is of arbitrary size. The oracle Ox acts only on Hin by mapping
|i〉 7→ (−1)xi |i〉 for some hidden bit string x. Hin is n+ 1 dimensional and indexed by basis vectors
|0〉, . . . , |n〉; a query to x0 always returns 0. The final step of the algorithm is always simply to
measure the Hout register and return the outcome. We say that the algorithm computes f within
error ε if, on input x, the algorithm returns f(x) with probability at least 1 − ε for all x. The

4

exact quantum query complexity QE(f) is the minimum number of queries used by any quantum
algorithm which computes f(x) exactly for all x.

Note that if boolean functions f and g are isomorphic, D(f) = D(g) and QE(f) = QE(g).

3 Separating exact quantum and classical query complexity

We observe that a fixed function demonstrating a separation between exact quantum and classical
query complexity, even a small additive constant, can give rise to a constant factor multiplicative
separation for an asymptotically growing family of functions. For a boolean function f : {0, 1}n →
{0, 1}, let deg(f) be the degree of the multilinear polynomial representing f over the reals (see
e.g. [25, 9] for a precise definition). Then we have the following easy proposition.

Proposition 1. Let f : {0, 1}k → {0, 1} be a boolean function on k bits such that QE(f) = q and
deg(f) = d. Also let g : {0, 1}n → {0, 1} be a boolean function such that deg(g) = n. Define the
family of functions fn : {0, 1}nk → {0, 1} as follows: divide the nk input bits into blocks b1, . . . , bn
of k bits each, and set fn(x1, . . . , xnk) = g(f(b1), f(b2), . . . , f(bn)). Then dn/2 ≤ QE(fn) ≤ qn and
D(fn) ≥ dn.

Proof. An exact quantum query algorithm for fn using qn queries can be obtained simply by
computing f(bi) for each block bi individually, and then computing g(f(b1), . . . , f(bn)) without
any further queries, so QE(fn) ≤ qn. On the other hand, deg(fn) = deg(f) deg(g) = dn. As
D(fn) ≥ deg(fn) [25] and QE(fn) ≥ deg(fn)/2 [6], D(fn) ≥ dn and QE(fn) ≥ dn/2.

Natural examples of functions g to which Proposition 1 can be applied are AND and OR. Thus
an example of an exact query complexity separation we obtain from our results on small boolean
functions is the following:

Theorem 2. Let EXACT`
2 be the boolean function on 4` bits defined as follows. Split the input x

into consecutive blocks b1, . . . , b` containing 4 bits each, and set EXACT`
2(x1, . . . , x4`) = 1 if each

block bi contains exactly two 1s. Then QE(EXACT`
2) = 2` and D(EXACT`

2) = 4`.

Proof. It is easy to verify that the polynomial degree of the EXACT2 function on 4 bits is equal to
4; we prove that QE(EXACT2) = 2 in Section 5. The claim then follows from Proposition 1.

3.1 Quantum algorithms based on parity queries

It is well-known that quantum computers can evaluate the parity of two input bits exactly using
only one query [10]. Thus a non-trivial class of exact quantum query algorithms consists of classical
decision trees, each of whose vertices corresponds to a query either to an individual bit of the input,
or to the parity of two input bits. We now give a lower bound on the number of queries used by
such algorithms (indeed, a more general class of algorithms). Define parity decision trees to be the
modification of decision trees where each internal vertex v is labelled with a subset Sv of the input
variables. When v is reached, the parity

⊕
i∈Sv

xi is computed. If the answer is 0, the left subtree
is evaluated; if the answer is 1, the right subtree is evaluated. Standard decision trees are simply
the special case of parity decision trees where |Sv| = 1 for all v, while decision trees based on the
use of the quantum algorithm for PARITY are parity decision trees such that |Sv| ≤ 2 for all v.

We then have the following simple result.

5

Proposition 3. Let f : {0, 1}n → {0, 1} be a boolean function, and let d be the degree of f as an
n-variate polynomial over F2. Then any parity decision tree which computes f must have depth at
least d.

Proof. We will show by induction that any decision tree on parities which has depth D gives rise
to a degree D polynomial over F2. The function computed by any such tree can be written as
pT0 + (1 + p)T1 for some degree 1 polynomial p over F2 and decision trees T0, T1 of depth at most
D− 1. Therefore, the degree of the polynomial obtained by repeating this procedure recursively is
at most D. If the tree computes f on every input, this polynomial must be equal to f , and hence
be degree d. Thus D ≥ d.

4 Quantum query algorithms from semidefinite programming

In this section we discuss, following [5], how quantum query complexity can be evaluated as a
semidefinite programming (SDP) problem, given in Definition 1 below. In this definition, ◦ is the
Hadamard (entrywise) product of matrices.

Definition 1 (Quantum query complexity primal SDP).

For a given boolean function f : {0, 1}n → {0, 1} and a
given integer t, find a sequence of 2n-dimensional real symmetric

matrices (M
(j)
i), where 0 ≤ i ≤ n and 0 ≤ j ≤ t − 1, and

2n-dimensional real symmetric matrices Γ0, Γ1, satisfying the
following constraints:

n∑
i=0

M
(0)
i = E0 (1)

n∑
i=0

M
(j)
i =

n∑
i=0

Ei ◦M (j−1)
i (for 1 ≤ j ≤ t− 1) (2)

Γ0 + Γ1 =
n∑
i=0

Ei ◦M (t−1)
i (3)

F0 ◦ Γ0 ≥ (1− ε)F0 (4)

F1 ◦ Γ1 ≥ (1− ε)F1, (5)

where Ei is the matrix 〈x|Ei|y〉 = (−1)xi+yi , and F0 and F1 are
diagonal matrices defined by 〈x|Fz|x〉 = 1 if and only if f(x) = z,
and 〈x|Fz|x〉 = 0 otherwise.

The following important characterisation will be the key to many of our results.

Theorem 4 (Barnum, Saks and Szegedy [5]). There is a quantum query algorithm that uses t
queries to compute a function f : {0, 1}n → {0, 1} within error ε if and only if the SDP of Definition
1 is feasible.

Therefore, if one minimises ε subject to these semidefinite constraints, one obtains the lowest
possible error that can be achieved by a quantum algorithm which computes f using t queries.

6

4.1 A prescription for quantum algorithms

It is perhaps not immediately obvious how, given a solution to the semidefinite program of Definition
1, to produce a quantum query algorithm with the same parameters. This was implicit in [5]; we
now spell out explicitly how it can be done. We will use the following standard lemma from linear
algebra (see e.g. [19]).

Lemma 5. Let S = (|ψi〉) and T = (|φj〉) be two sequences of m vectors of the same dimension.
Define Ψ =

∑
i |ψi〉〈i|, Φ =

∑
j |φj〉〈j|. Then there is a unitary U such that U |φi〉 = |ψi〉 for all i if

and only if Ψ†Ψ = Φ†Φ. If such a U exists, it can be written down as follows. Let V and W be any
isometries satisfying Ψ = V

√
Ψ†Ψ, Φ = W

√
Φ†Φ (i.e. isometries occurring in polar decompositions

of Ψ, Φ), and complete V and W to unitary matrices V ′ and W ′. Then U = V ′(W ′)†.

Given a set of matrices M
(j)
i as in Definition 1, one can derive an explicit quantum query

algorithm completely mechanically, as follows. Use a workspace Hwork of n qubits, and ignore the
output qubit for the time being. Let the initial state be |0〉|0〉, and let the state of the system
at time j (i.e. after j queries have been made, and just before the (j + 1)’st query is made) be

|ψ(j)
x 〉 =

∑n
i=0 |i〉|ψ

(j)
x,i 〉, where |ψ(j)

x,i 〉 is a subnormalised state in the Hilbert space Hwork.

We will define the state at time 0 ≤ j ≤ t − 1 in terms of the matrices M
(j)
i occurring in a

solution to the SDP by setting

|ψ(j)
x,i 〉 =

√
M

(j)
i |x〉, (6)

where

√
M

(j)
i is the unique positive semidefinite square root of M

(j)
i . It is perhaps not immedi-

ately clear that following this prescription leads to |ψ(j)
x 〉 being normalised, let alone the sequence

|ψ(0)
x 〉, |ψ(1)

x 〉, . . . , |ψ(t−1)
x 〉 corresponding to a valid quantum query algorithm for all x; however, we

will now see that this is indeed the case.

For any 1 ≤ j ≤ t, define

|φ(j)x 〉 =
n∑
i=0

(−1)xi |i〉|ψ(j−1)
x,i 〉,

and set |φ(0)x 〉 = |0〉|0〉. Also define the matrices obtained by concatenating the vectors as columns,

Ψ(j) =
∑

x∈{0,1}n
|ψ(j)
x 〉〈x|, Φ(j) =

∑
x∈{0,1}n

|φ(j)x 〉〈x|.

The vectors |φ(j)x 〉 represent the state of the system immediately after the j’th oracle call, and

|φ(0)x 〉 is the initial state of the system. We would like to find unitaries U0, . . . , Ut−1 mapping

|φ(j)x 〉 7→ |ψ(j)
x 〉 for all x. By Lemma 5, such a sequence of unitaries will exist if

(Ψ(j))†Ψ(j) = (Φ(j))†Φ(j).

But observe that for any 0 ≤ j ≤ t− 1,

〈x|(Ψ(j))†Ψ(j)|y〉 = 〈ψ(j)
x |ψ(j)

y 〉 =
n∑
i=0

〈ψ(j)
x,i |ψ

(j)
y,i 〉 =

n∑
i=0

〈x|M (j)
i |y〉,

7

so (Ψ(j))†Ψ(j) =
∑n

i=0M
(j)
i . Similarly, for any 1 ≤ j ≤ t,

〈x|(Φ(j))†Φ(j)|y〉 = 〈φ(j)x |φ(j)y 〉 =

n∑
i=0

(−1)xi+yi〈ψ(j−1)
x,i |ψ(j−1)

y,i 〉

=

n∑
i=0

(−1)xi+yi〈x|M (j−1)
i |y〉 = 〈x|

(
n∑
i=0

Ei ◦M (j−1)
i

)
|y〉.

As, by constraint (2) in the SDP,
∑n

i=0M
(j)
i =

∑n
i=0Ei ◦M

(j−1)
i for all 1 ≤ j ≤ t− 1, this implies

by Lemma 5 that for each j ≥ 1 there exists a unitary Uj such that Uj |φ(j)x 〉 = |ψ(j)
x 〉 for all x, and

this Uj can be determined explicitly from Lemma 5. In the case j = 0, (Φ(j))†Φ(j) = E0, and hence

SDP constraint (1) implies the existence of a U0 such that U0|φ(0)x 〉 = |ψ(0)
x 〉 for all x.

The final constraint we need to satisfy is that the algorithm outputs the correct result. Define
the final state of the system on input x (just before the output qubit is measured) to be

|γx〉 = |0〉in(
√

Γ0|x〉)work|0〉out + |0〉in(
√

Γ1|x〉)work|1〉out.

Then

〈γx|γy〉 = 〈x|Γ0|y〉+ 〈x|Γ1|y〉 = 〈x|

(
n∑
i=0

Ei ◦M (t−1)
i

)
|y〉

by SDP constraint (3), so by a similar argument there exists a Ut such that Ut|φ(t)x 〉 = |γx〉 for all x.
Measuring the output qubit gives the answer 0 with probability 〈x|Γ0|x〉, which by constraint (4) is
at least 1− ε when f(x) = 0. Similarly, by constraint (5) we obtain the answer 1 with probability
at least 1− ε when f(x) = 1.

Observe that we have some freedom in our choice of states |ψ(j)
x,i 〉; while eqn. (6) gives one

choice which always works, it would suffice to pick any states such that 〈ψ(j)
x,i |ψ

(j)
y,i 〉 = 〈x|M (j)

i |y〉. In

particular, if the rank of M
(j)
i is upper bounded by r for all i, j, one can choose states of dimension

r throughout. This would reduce the size of the Hwork register from n qubits to dlog2 re qubits.
Also observe that without loss of generality all states and unitaries occurring in a quantum query
algorithm can be taken to be real.

5 EXACT2

We now give a simple and explicit quantum algorithm for evaluating the EXACT2 function on 4
bits using only 2 quantum queries. This algorithm was originally inspired by numerically solving
the SDP discussed in the previous section. The algorithm does not use any workspace (or even
an output register), and hence operates solely on the 5-dimensional input register indexed by basis
states {|0〉, . . . , |4〉}. Define a unitary matrix U by

U =
1

2


0 1 1 1 1
1 0 1 ω ω2

1 1 0 ω2 ω
1 ω ω2 0 1
1 ω2 ω 1 0

 ,

8

where ω = e2πi/3 is a complex cube root of 1. We begin in the state

|ψ〉 =
1

2

4∑
i=1

|i〉

and then apply Ox, then U , then Ox again. Finally, we perform the measurement consisting of a
projection onto the state |ψ〉 and its orthogonal complement. If the outcome is |ψ〉, we output 1,
and otherwise 0.

The claim is that Vx := OxUOx leaves |ψ〉 unchanged, up to a phase factor, when x has
Hamming weight 2, and otherwise maps |ψ〉 into a subspace orthogonal to |ψ〉. To see that the
claim is correct, note first that U |ψ〉 = |0〉, since 1 + ω + ω2 = 0. But for x = 0000, Ox is the
identity. Thus

V0000|ψ〉 = |0〉.

Similarly, for x = 1111 we have V1111|ψ〉 = −|0〉. For x = 1000, Ox|ψ〉 = |ψ〉 − |1〉. So Vx|ψ〉 =
|0〉 −OxU |1〉. But the coefficient of |1〉 in U |1〉 is zero, so Ox leaves U |1〉 unchanged and we have

V1000|ψ〉 = |0〉 − U |1〉.

Similar results hold for the other weight 1 strings x.

For x = 1100, Ox|ψ〉 = |ψ〉 − |1〉 − |2〉, and

U(|ψ〉 − |1〉 − |2〉) = |0〉 − 1

2

(
2|0〉+ |1〉+ |2〉+ (ω + ω2)(|3〉+ |4〉)

)
=

1

2
(−|1〉 − |2〉+ |3〉+ |4〉).

Applying Ox once more we get
V1100|ψ〉 = |ψ〉.

We get the same result for other strings of weight 2, possibly with a phase factor. For instance

V1001|ψ〉 = ω2|ψ〉.

Given a string x of weight 3, we can flip all the bits and the oracle behaves identically, up to a
change of sign on the space spanned by |1〉, . . . , |4〉. For example,

V0111|ψ〉 = −|0〉 − U |1〉,

and the other strings of weight 3 are similar.

Thus, for x such that |x| 6= 2, Vx|ψ〉 lies in the span of |0〉 and U |i〉 for i = 1, 2, 3, 4. However
〈ψ|0〉 = 0 and 〈ψ|U |i〉 = 1

4(1 + ω + ω2) = 0 for i = 1, 2, 3, 4. So this subspace is orthogonal to |ψ〉,
proving our claim.

5.1 Distinguishing weights 0 and 1 from balanced strings

We would ideally like to understand the number of queries required to solve the EXACTk function
on n input bits, for all n and k. As an intermediate goal generalising our solution for n = 4, one
can ask for a two-query algorithm, for any even n, that distinguishes strings of weight 0 and 1
from strings of weight n/2. We take the input space Hin, with basis vectors |i〉, i = 0, 1, . . . , n,
and tensor it with an ancilla space. In the ancilla space we select vectors |ai〉, i = 1, . . . , n, of unit

9

length with inner products 〈ai|aj〉 = c, for i 6= j, for some real c which will be chosen later. We
also select some orthogonal vector |0〉 in the ancilla space.

The oracle acts on the input space, so Ox|i〉|j〉 = (−1)xi |i〉|j〉 for any i, j. Recall that ei is
the string with a 1 at position i and 0’s elsewhere, and let b ∈ {0, 1}n be an arbitrary “balanced”
string with |b| = n/2. The algorithm starts with the state |φ〉 =

∑n
i=1 |i〉|0〉 (we keep |φ〉 un-

normalised throughout for simplicity). As before, Vx := OxUOx, with U to be defined shortly.
The aim is to show that, for any balanced b, Vb|φ〉 is orthogonal to the subspace spanned by
V0n |φ〉, Ve1 |φ〉, . . . , Ven |φ〉, which thus discriminates between balanced strings and strings of weight
at most 1.

Now define U by its action on the states |τi〉 = Oei |φ〉 by

U |τi〉 = α|00〉+ β
n∑
j=1

|j〉|aj−i+1〉+ γ|i〉|a1〉,

where α, β and γ are real and j − i is taken mod n, so j − i + 1 ∈ {1, . . . , n}. This will be an
isometry (which can be extended to a unitary on the whole tensor product space) if

α2 + (n− 1)β2 + (γ + β)2 = n,

α2 + (n− 2)β2c+ 2(γ + β)βc = n− 4.

We find

Vei |φ〉 = OeiU |τi〉 = α|00〉+ β

n∑
j=1

|j〉|aj−i+1〉 − (γ + 2β)|i〉|a1〉, (7)

and

(n− 2)U |φ〉 = U

(
n∑
i=1

|τi〉

)

= nα|00〉+ β

(
n∑
i=1

|i〉

)(
n∑
i=1

|ai〉

)
+ γ

(
n∑
i=1

|i〉

)
|a1〉, (8)

and

2Vb|φ〉 = ObU
n∑
i=1

(−1)bi+1|τi〉

= β
n∑
j=1

|j〉
n∑
i=1

(−1)bi+bj+1|aj−i+1〉 − γ

(
n∑
i=1

|i〉

)
|a1〉. (9)

Note that the coefficient of |j〉|a1〉 in the first term of the preceding equation is β(−1)2bi+1 = −β.
Using this fact, (8) and (9) imply

(n− 2)〈φ|VbU |φ〉 = β2
n∑
i=1

n∑
j=1

(−1)bi+bj+1 − nγβ(2− (n− 2)c)− nγ2,

and since the first term vanishes, the condition for 〈φ|VbU |φ〉 = 0 is

γβ(2 + (n− 2)c) + γ2 = 0. (10)

10

Similarly, from (7) and (9) we deduce that 〈φ|VbVei |φ〉 = 0 if and only if

2β2(1− c) + γβ(2− nc) + γ2 = 0. (11)

From (11) and (10) we find

(n− 1)(n− 2)c2 + (2n− 3)c+ 1 = 0,

which has roots c = −1/(n−1),−1/(n−2). It is not possible to find a set of unit length vectors |ai〉
with 〈ai|aj〉 = −1/(n− 2) for i 6= j; this follows from the fact that the associated Gram matrix is
not positive semidefinite. However, this condition is not violated if 〈ai|aj〉 = −1/(n−1), and in fact
we can choose the ai to be the normalised vectors from the centre of a regular (n− 1)-dimensional
simplex to its vertices, i.e. the vectors consisting of√

n

n− 1

(
− 1

n
,− 1

n
, . . . ,− 1

n
,
n− 1

n

)
and its permutations.

With c = −1/(n− 1) we find

α2 =
n3 − 6n2 + 12n− 12

n(n− 2)
,

β =
2(n− 1)

n
√
n− 2

,

γ =
−2√
n− 2

.

We have therefore shown that, with this choice of U , the algorithm correctly distinguishes
between balanced strings and strings of Hamming weight at most 1. One can verify that the same
argument goes through for strings of Hamming weight at least n− 1. Thus the algorithm correctly
distinguishes between inputs of weight n/2 and weight in the set {0, 1, n− 1, n}.

6 Exact quantum query algorithms for small functions

Having whetted our appetite with the EXACT2 problem, we now turn to quantum algorithms for
other small boolean functions. For each function on n bits we considered, we calculated, via the
SDP of Definition 1, the best possible success probability achievable by quantum algorithms making
t queries, for t = 1, . . . , n− 1 (any function can clearly be computed exactly using n queries). We
did this for all functions on up to 4 input bits, and for all symmetric functions on up to 6 bits. We
used the convex optimisation package CVX [16] for Matlab, which allows optimisation problems
to be specified in a simple and intuitive way; see Appendix B for source code. The CVX package
allows the choice of underlying solvers SeDuMi and SDPT3. We used SeDuMi for the results given
below, and also checked the results with SDPT3, which gave the same values up to a difference of
at most 0.001. The numerical results for functions on 4 bits, and symmetric functions on up to 6
bits, are deferred to Appendix A.

Note that there is a basic issue with calculating exact quantum query complexity numerically,
which is that one receives a numerical solution from the SDP solver, which is not exact. If the SDP
solver claims that there exists a quantum query algorithm that computes some function f using k

11

queries with success probability at least 0.999, for example, one cannot be sure that this algorithm
is actually exact. In the case of all functions on up to 3 bits, we therefore give explicit optimal exact
quantum query algorithms. These algorithms were obtained by a somewhat laborious process of
taking the numerically obtained (real-valued, approximate) solutions to the SDP and using these
as a guide to find exact solutions.

For completeness, we begin by giving optimal exact quantum query algorithms for all boolean
functions of 1 and 2 bits. In what follows, the tables are indexed by function ID; the ID of each
function is the integer obtained by converting its truth table from binary. Columns give the optimal
success probability that can be achieved by quantum algorithms making 1, . . . , n−1 queries. Entries
are starred when there is a nonadaptive exact quantum algorithm using that number of queries (see
Section 7).

6.1 Functions of up to 2 bits

Up to isomorphism, the only non-constant function of 1 bit is f(x1) = x1, which clearly requires
exactly one query. In the case of 2 bits, there are two classes of functions.

ID Function 1 query

1 x1 ∧ x2 0.900

6 x1 ⊕ x2 1*

An optimal quantum algorithm for the function x1 ⊕ x2 proceeds as follows [10]. Input the
state 1√

2
(|1〉 + |2〉) into the oracle to produce 1√

2
((−1)x1 |1〉 + (−1)x2 |x2〉). Perform a Hadamard

gate (with respect to the basis {|1〉, |2〉}), measure in the basis {|1〉, |2〉}, and output 0 if “1” is
measured, and 1 if “2” is measured. It is easy to see that this algorithm succeeds with certainty.

6.2 Functions of 3 bits

The following table lists the optimal success probability that can be achieved by quantum algorithms
computing all boolean functions depending on 3 bits, up to isomorphism.

ID Function 1 query 2 queries F2 deg. D(f)

1 x1 ∧ x2 ∧ x3 0.800 0.980 3 3
6 x1 ∧ (x2 ⊕ x3) 0.667 1* 2 3
7 x1 ∧ (x2 ∨ x3) 0.773 1 3 3
22 EXACT2 0.571 1 3 3
23 MAJ 0.667 1 2 3
30 x1 ⊕ (x2 ∨ x3) 0.667 1 2 3
53 SEL(x1, x2, x3) 0.854 1 2 2
67 (x1 ∧ x2) ∨ (x̄1 ∧ x̄2 ∧ x3) 0.773 1 3 3
105 PARITY 0.500 1* 1 3
126 NAE 0.900 1* 2 3

Observe that the AND function requires 3 queries to be computed exactly; in fact, it has been
known for some time that AND on n bits has QE(AND) = n [6]. For most of the other functions,
an optimal exact quantum algorithm is easy to determine, based only on classical queries and
computing the parity of two bits using one query:

12

• x1 ∧ (x2 ⊕ x3): Query x1 and evaluate x2 ⊕ x3 using one query.

• MAJ: First evaluate x1 ⊕ x2. If the answer is 1, then output x3, otherwise output x1. This
works because if x1 and x2 are different, then there will be at least two 1’s in total if and only
if x3 is 1. If x1 and x2 are the same, there will be at least two 1’s if and only if x1 is 1.

• x1 ⊕ (x2 ∨ x3): This function is equivalent to (x̄3 ∧ x2) ∨ (x3 ∧ (x1 ⊕ x2)). So query x3 first,
then either query x2 or x1 ⊕ x2.

• SEL(x1, x2, x3): Query x1 first, then either output x2 or x3.

• PARITY: Evaluate x1 ⊕ x2, query x3, take the exclusive OR of the two.

• NAE: This function is equivalent to (x1 ⊕ x2) ∨ (x1 ⊕ x3).

However, the three remaining functions (EXACT2, x1 ∧ (x2 ∨x3) and (x1 ∧x2)∨ (x̄1 ∧ x̄2 ∧x3))
do not have such straightforward optimal algorithms. Indeed, by Proposition 3, they cannot be
computed using 2 queries by any algorithm which is a decision tree on parity queries. In the case
of EXACT2, we obtain an optimal algorithm by appending an additional zero bit and computing
EXACT2 on 4 bits (see Section 5). We now give quantum query algorithms for the two remaining
functions. Rather than writing out the unitary operators arising in the algorithm explicitly, we
simply give expressions for matrices forming a exact solution to the query complexity SDP. We
stress that, given these matrices, one can follow the procedure of Section 4 to find an explicit
quantum algorithm completely mechanically. The matrices are fully specified by their non-zero
eigenvalues and eigenvectors.

6.2.1 x1 ∧ (x2 ∨ x3)

Matrix Eigenvalues Eigenvectors

M
(0)
0 ,M

(0)
1 , 2 (1, 1, 1, 1, 1, 1, 1, 1)

M
(0)
2 ,M

(0)
3

M
(1)
0 3/2 (1, 1, 1, 1, 0, 0, 0, 0)

1 {(−1, 1,−1, 1, 0, 2, 0, 2), (0,−1, 1, 0, 0,−1, 1, 0)}
M

(1)
1 1 (1, 0, 0,−1, 2, 1, 1, 0)

1/2 (−1, 0,−1, 0, 0, 1, 0, 1)

M
(1)
2 1 (1, 0, 0,−1, 2, 1, 1, 0)

1/2 (−1,−1, 0, 0, 0, 0, 1, 1)

M
(1)
3 3/4 {(0, 1, 0, 1, 0, 1, 0, 1), (0,−1, 1, 0, 0,−1, 1, 0)}

Γ0 5/2 (3, 2, 2, 3, 2, 0, 0, 0)
1 {(0,−1, 0, 0, 1, 0, 0, 0), (0,−1, 1, 0, 0, 0, 0, 0)}

1/2 (−1, 0, 0, 1, 0, 0, 0, 0)

Γ1 3/2 {(0, 0, 0, 0, 0, 1, 0, 1), (0, 0, 0, 0, 0,−1, 1, 0)}

13

6.2.2 (x1 ∧ x2) ∨ (x̄1 ∧ x̄2 ∧ x3)

For conciseness, set α± = −1 + 1
2(5±

√
5) in the following table.

Matrix Eigenvalues Eigenvectors

M
(0)
0 ,M

(0)
1 , 2 (1, 1, 1, 1, 1, 1, 1, 1)

M
(0)
2 ,M

(0)
3

M
(1)
0 1 (−2,−1,−1, 0,−1, 0, 0, 1)

3/4 (0, 0,−1,−1, 2, 2, 1, 1)
1/4 (0, 0, 1, 1, 0, 0, 1, 1)

M
(1)
1 1 (−2,−1,−1, 0,−1, 0, 0, 1)

3/4 (0,−1, 2, 1,−1,−2, 1, 0)
1/4 (0,−1, 0,−1, 1, 0, 1, 0)

M
(1)
2 1 (0, 1, 1, 2, 1, 2, 2, 3)

3/4 (0,−1, 0,−1, 1, 0, 1, 0)
1/4 (0,−1, 2, 1,−1,−2, 1, 0)

M
(1)
3 1 (0, 3,−1, 2,−1, 2,−2, 1)

3/4 (0, 0, 1, 1, 0, 0, 1, 1)
1/4 (0, 0,−1,−1, 2, 2, 1, 1)

Γ0
1
4(5 +

√
5) (1 +

√
5, 0, α+, 1, α+, 1, 0, 0)

3/2 (0, 0, 0,−1, 0, 1, 0, 0)
1 (0, 0,−1, 0, 1, 0, 0, 0)

1
4(5−

√
5) (1−

√
5, 0, α−, 1, α−, 1, 0, 0)

Γ1 3/2 {(0,−1, 0, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1, 0)}

7 Nonadaptive exact quantum query complexity

We now turn to a very restricted model of exact query complexity, in which the algorithm’s queries
are required to be nonadaptive. In other words, the choice of which input variables to query cannot
depend on the result of previous queries, so the algorithm must choose which variables to query
at the start2. Any nonadaptive quantum algorithm computing a function f(x) using k queries to
the input x corresponds to a choice of a state |ψ〉, which is input to k copies of the oracle (i.e. the
unitary operator O⊗kx), followed by a two-outcome measurement to determine whether f(x) = 0 or
f(x) = 1.

One reason to study the nonadaptive model is that some important quantum algorithms are
nonadaptive. An example is Simon’s algorithm for the hidden subgroup problem over Zn2 [28], which
computes a partial function with bounded error and achieves an exponential speed-up over any
possible classical algorithm. Separations are also known for total functions. For example, an optimal
exact quantum algorithm for PARITY is nonadaptive and uses dn/2e quantum queries [10, 15]. In
the bounded-error setting, a more general result is known: by a remarkable result of van Dam,
any boolean function of n bits can be computed with bounded error using n/2 +O(

√
n) quantum

queries [12]. However, it has also been shown that this separation is close to optimal [23]; any
nonadaptive bounded-error quantum algorithm computing a total function depending on n variables

2In some sense, all quantum query algorithms are nonadaptive, as the choice of unitaries applied in the algorithm
does not depend on the input. However, the weight placed on queries to different input bits throughout the algorithm
does in general depend on the input.

14

must make Ω(n) queries. Nonadaptive exact quantum query algorithms are even more restricted,
and require at least n/2 queries [23].

Another motivation for studying the nonadaptive model is that, as we have seen, the general
model of exact quantum query complexity appears to be rich and complex. Working in the much
simpler nonadaptive model might allow stronger bounds and tighter characterisations to be proven.

For a boolean function f , let Dna(f), QnaE (f) be the nonadaptive quantum and classical exact
query complexities of f , i.e. the minimum number of nonadaptive queries required to compute
f with certainty. The nonadaptive model is extremely restricted classically, as we see from the
following easy proposition.

Proposition 6. For any total boolean function f depending on n variables, Dna(f) = n.

Proof. A nonadaptive exact classical query algorithm A making k queries is specified by a list of
k fixed variables which are queried. If k < n, there must exist a variable i which is not queried,
but on which f depends. Thus there must exist an input x such that if bit i is flipped, A does not
notice the difference, so A cannot be correct on every input.

We now introduce some additional notation. For any boolean function f : {0, 1}n → {0, 1},
define

Sf := {z : ∀x, f(x) = f(x+ z)},

where addition is over the group Zn2 ; i.e. Sf is the set of translations of the input under which
f is invariant. Note that Sf is a subspace of {0, 1}n. For any subspace S ⊆ {0, 1}n, let S⊥

denote the orthogonal subspace to S, i.e. S⊥ = {x : x · s = 0,∀ s ∈ S}. Finally, let d(x, S)
denote the maximum Hamming distance between a bit-string x ∈ {0, 1}n and a subset S ⊆ {0, 1}n:
d(x, S) = maxy∈S d(x, y). Then we have the following theorem.

Theorem 7. For any boolean function f : {0, 1}n → {0, 1},

QnaE (f) = min
x∈{0,1}n

max
y∈S⊥f

d(x, y) = min
x∈{0,1}n

d(x, S⊥f).

We have thus completely characterised the nonadaptive exact quantum query complexity of f .
In the coding theory literature, the quantity minx∈{0,1}n d(x, S⊥f) is known as the radius of the code

S⊥f [11]. Observe that Theorem 7 implies that QnaE (f) can be computed exactly in time polynomial
in 2n. We now prove this theorem and then draw some corollaries. In the proof it will be convenient
to use the notation

f̂(x) =
1

2n

∑
y∈{0,1}n

(−1)x·yf(y)

for the Fourier transform (over Zn2) of some function f : {0, 1}n → R.

Proof of Theorem 7. Label computational basis states by a length k string of integers (i1, . . . , ik)
in the range {0, . . . , n}; each such string represents a list of variables queried, with 0 representing
a “null query” which does nothing. O⊗kx acts on these basis states by mapping

|i1, . . . , ik〉 7→ (−1)xi1+···+xik |i1, . . . , ik〉.

Now note that we can restrict ourselves to query strings in non-decreasing order, and containing at
most one of each integer between 1 and n. The first of these is because querying any permutation

15

of a string is equivalent to querying the string itself. The second is because querying the same
index twice does nothing, and hence is equivalent to the null query.

These strings are now in obvious one-to-one correspondence with the set of n-bit strings of
Hamming weight at most k. Thus the state we obtain from applying O⊗kx to an arbitrary input
state is of the form

|ψx〉 =
∑

s∈{0,1}n,|s|≤k

(−1)s·xαs|s〉.

A nonadaptive quantum query algorithm computing f exactly using k queries exists if and only if
there exists a set {αs} such that 〈ψx|ψy〉 = 0 for all x, y such that f(x) 6= f(y), or in other words∑

s∈{0,1}n,|s|≤k

(−1)s·(x+y)|αs|2 = 0.

For brevity, write w(s) = |αs|2. The above constraint says that, for all z /∈ Sf ,∑
s∈{0,1}n,|s|≤k

(−1)s·zw(s) = 0.

Considering w(s) as a function w : {0, 1}n → R such that w(s) = 0 for |s| > k, in Fourier-analytic
terminology the constraint says that

ŵ(z) = 0 if z /∈ Sf ,

i.e. that ŵ is only supported on the subspace Sf . This is equivalent to the constraint that

w(s) =
1

|S⊥f |
∑
t∈S⊥f

w(s+ t) for all s.

To see this, define the function PSf
(x) = [x ∈ Sf], and note that P̂Sf

(t) = 1
|S⊥f |

[t ∈ S⊥f]. Letting ∗
denote convolution over Zn2 (i.e. (f ∗ g)(x) =

∑
y f(y)g(x+ y)), by Fourier duality we have

PSf
w = w ⇔ P̂Sf

∗ ŵ = ŵ ⇔
∑
t

w(s+ t)P̂Sf
(t) = w(s) for all s

⇔ 1

|S⊥f |
∑
t∈S⊥f

w(s+ t) = w(s) for all s.

Thus w is uniform on cosets of S⊥f . As w is not identically zero, there must be a coset t+ S⊥f such

that every element s ∈ t + S⊥f has Hamming weight at most k. If Sf = 0, then S⊥f = {0, 1}n and
hence has only one coset, which contains 1n. Hence we must have k = n. More generally, we have
that QnaE (f) is the minimal k such that there exists a t satisfying |s| ≤ k for all s ∈ t+S⊥f . In other

words, QnaE (f) is the minimal k such that there exists a t satisfying d(s, t) ≤ k for all s ∈ S⊥f .

We observe from this proof that it is without loss of generality that any nonadaptive exact
quantum algorithm can be described as picking a coset of S⊥f and querying everything in that
subset uniformly. Explicitly, we have the following algorithm.

1. Let t ∈ {0, 1}n be a bit-string such that d(t, S⊥f) = k.

16

2. Produce the state of n qubits 1
|S⊥f |1/2

∑
s∈t+S⊥f

(−1)s·x|s〉 at a cost of k queries to the oracle.

3. Perform Hadamards on every qubit of the resulting state and measure to get outcome x̃.

4. Output f(x̃).

One can easily verify that in fact f(x̃) = f(x) with certainty. We note that this is reminiscent of
an algorithm of van Dam [12] which learns x itself with bounded error using n/2+O(

√
n) queries to

the oracle. Here, we also compute a partial Fourier transform from which f(x) can be determined,
but our algorithm succeeds with certainty.

We now draw some corollaries from Theorem 7.

Corollary 8. For any boolean function f : {0, 1}n → {0, 1} such that f is not invariant under any
translation, QnaE (f) = n.

Proof. If f is not invariant under any translation, Sf = ∅ and hence S⊥f = {0, 1}n. For any
bit-string x ∈ {0, 1}n, there exists a y ∈ {0, 1}n such that d(x, y) = n. Hence QnaE (f) = n.

One could also have observed this corollary by noting that QnaE (f) depends only on Sf , and for
the AND function (which has QE(AND) = n [6]), SAND = ∅. The corollary implies that only an
exponentially small fraction of boolean functions f have QnaE (f) < n. One class of functions that
do satisfy this is given by the following corollary.

Corollary 9. For any boolean function f : {0, 1}n → {0, 1} such that f(x) = f(x̄) for all x,
QnaE (f) ≤ n− 1.

Proof. The constraint f(x) = f(x̄) for all x is equivalent to f(x+1n) = f(x) for all x, so {0n, 1n} ⊆
Sf , implying S⊥f ⊆ {x : |x| even}. If n is odd, then d(0n, S⊥f) ≤ n − 1 (as 1n has odd Hamming

weight, there is no even weight bit string distance n from 0n). Similarly, if n is even, d(10n−1, S⊥f) ≤
n− 1. Hence QnaE (f) ≤ n− 1.

An explicit nonadaptive quantum algorithm achieving this query complexity proceeds as follows.
Evaluate yk := x1⊕xk, for 2 ≤ k ≤ n, at a cost of n−1 queries in total, then output f(0, y2, . . . , yn).
If x1 = 0, this is simply f(x), while if x1 = 1, this is f(x̄) = f(x).

Corollary 10. For any boolean function f : {0, 1}n → {0, 1} that depends on all n input bits,
QnaE (f) ≥ dn/2e.

Proof. We need to show that, for any bit-string x, we can find an element y ∈ S⊥f such that
d(x, y) ≥ n/2. As f depends on all its input bits, for all i ∈ {1, . . . , n}, ei /∈ Sf . This implies that,
for all i ∈ {1, . . . , n}, there is at least one element of S⊥f whose i’th bit is 1. Thus, if we pick an

element y ∈ S⊥f at random, each bit of y will be 0 or 1 with equal probability, so the expectation

of d(x, y) is exactly n/2. Therefore, d(x, S⊥f) ≥ n/2.

Corollary 10 was previously proven in [23] via a different method. We can also show that
functions whose nonadaptive exact quantum query complexity is minimal are of very restricted
form.

Corollary 11. Let f : {0, 1}n → {0, 1} be a boolean function that depends on all n input bits and
such that QnaE (f) = n/2. Then there exists an x such that d(x, y) = n/2 for all y ∈ S⊥f .

17

Proof. By the proof of Corollary 10, Ey∈S⊥f d(x, y) = n/2. Thus, if d(x, y) ≤ n/2 for all y ∈ S⊥f , we

must have d(x, y) = n/2 for all y ∈ S⊥f .

7.1 Symmetric boolean functions

It turns out that we can apply Theorem 7 to completely characterise the nonadaptive exact quantum
query complexity of symmetric boolean functions, via the following tetrachotomy.

Theorem 12. Let f : {0, 1}n → {0, 1} be symmetric. Then exactly one of the following four
possibilities is true.

1. f is constant and QnaE (f) = 0.

2. f is the PARITY function or its negation and QnaE (f) = dn/2e.

3. f satisfies f(x) = f(x̄) (but is not constant, the PARITY function or its negation) and
QnaE (f) = n− 1.

4. f is none of the above and QnaE (f) = n.

We will prove Theorem 12 using the following lemma, whose proof is given afterwards.

Lemma 13. Let f : {0, 1}n → {0, 1} be symmetric and satisfy f(x) = f(x+ a) for all x ∈ {0, 1}n,
for some a with 1 ≤ |a| ≤ n − 1. Then, if |a| is odd, f is constant. If |a| is even, f is constant,
PARITY or its negation.

Proof of Theorem 12. First assume there is an a with 1 ≤ |a| ≤ n−1 such that f(x) = f(x+a) for
all x ∈ {0, 1}n. Then, by Lemma 13, f is constant, PARITY or its negation. If f is constant then
clearly QnaE (f) = 0. If f is PARITY or its negation, by the result [15] of Farhi et al. QnaE (f) = dn/2e.
On the other hand, if there is no a with 1 ≤ |a| ≤ n−1 such that f(x) = f(x+a) for all x ∈ {0, 1}n,
but there is such an a with |a| = n, f(x) = f(x̄) and by Corollary 9 QnaE (f) = n − 1. Finally, if
there is no a 6= 0n such that f(x) = f(x+ a) for all x ∈ {0, 1}n, by Corollary 8 QnaE (f) = n.

It will be convenient to prove Lemma 13 using Fourier analysis, based on the following well-
known fact.

Fact 14. For any f : {0, 1}n → R and for any a ∈ {0, 1}n, if f(x) = f(x+ a) for all x ∈ {0, 1}n,
then for all b such that |a ∧ b| is odd, f̂(b) = 0.

Proof of Lemma 13. Note that, because f is symmetric, if f̂(s) = 0 for some s with |s| = k, f̂(t) = 0
for all t with |t| = k. Without loss of generality, assume a consists of j ones followed by n−j zeroes
(i.e. is of the form 1 . . . 10 . . . 0). Consider the bit-string s which is 1 on the set {1, . . . , 2k + 1} for
some 0 ≤ k ≤ (j − 1)/2, and the set {n − ` + 1, . . . , `}, for some 1 ≤ ` ≤ j. By Fact 14, for any
such bit-string s, f̂(s) = 0. By varying k and `, we can vary |s| arbitrarily between 1 and either n
(if |a| is odd), or n− 1 (if |a| is even). Thus, if |a| is odd, f̂(s) = 0 for all s 6= 0n, so f is constant.
Otherwise, if |a| is even, f̂(s) = 0 for all s /∈ {0n, 1n}. The only boolean functions satisfying this
are constant functions, PARITY and its negation.

18

8 Open problems

It is a very tempting conjecture that QE(EXACTk) = max{k, n − k}. It is easy to see that the
lower bound QE(EXACTk) ≥ max{k, n − k} holds; by setting min{k, n − k} input bits to 0 we
obtain a function equivalent to the AND function on ` := max{k, n − k} bits, which has exact
quantum query complexity `. So it would suffice to prove the upper bound QE(EXACTn/2) ≤ n/2
for all even n to prove this conjecture. To see this, note that for any k ≤ n/2, an algorithm for
EXACTk on n bits can be obtained from an algorithm for EXACTn−k on 2(n− k) bits simply by
appending n− 2k bits set to 1; the case k ≥ n/2 is similar.

Following the completion of this work, Ambainis has shown the existence of a total boolean
function f such that QE(f) = O(D(f)0.8675...) [3]. It remains open to determine the optimal sep-
aration between quantum and classical exact query complexity; we are hopeful that the numerical
techniques used in this paper may prove helpful in resolving this question, and in finding new
examples of functions which demonstrate quantum-classical separations.

Acknowledgements

AM was supported by an EPSRC Postdoctoral Research Fellowship and would like to thank Scott
Aaronson and Dan Shepherd for comments. We would also like to thank two anonymous referees
for their helpful suggestions. Special thanks to Andris Ambainis and Andrey Vihrov for pointing
out an error in the algorithm of Section 5.1 in an earlier version of this paper.

A Numerical results for functions on up to 6 bits

In this appendix we collate our numerical results concerning the optimal success probability achiev-
able by quantum algorithms for all boolean functions on 4 input bits, and symmetric boolean func-
tions on 5 and 6 input bits. We split the results into sections according to the number of bits
on which the functions depend. Note that each section on functions of k bits does not include
functions which only depend on fewer than k bits. In the following tables, entries are starred when
there is a nonadaptive exact quantum algorithm using that number of queries (see Section 7). An
entry “1” means that the SDP solver claims a solution with success probability greater than 0.999;
note that this does not strictly speaking imply the existence of an exact algorithm using that num-
ber of queries. We use the notation SYM(c0, . . . , cn) to mean the symmetric function f such that
f(x) = c|x|. In the tables of symmetric functions, we simply identify each function with the vector
(c0, . . . , cn). Note that for all non-constant symmetric f , the decision tree complexity D(f) = n,
but this is not the case for QE(f). For most functions f on 4 bits, D(f) is easily verified to be
4 via polynomial degree arguments; we calculated D(f) for the remaining functions f using the
algorithm of [17].

We also showed numerically that there exists no boolean function f on up to 5 bits such that
QE(f) < D(f)/2. There are too many functions on 5 bits to iterate through them näıvely, so we
used the following procedure. Any function f on 5 bits such that QE(f) ≤ 2 can be obtained by
setting f(x) = (1−x1)f0(x2, . . . , x5)+x1f1(x2, . . . , x5), where f0 and f1 are boolean functions on 4
bits such that QE(f0) ≤ 2, QE(f1) ≤ 2. From the previous numerical results there are 25 boolean
functions f on 4 bits, up to isomorphism, which have QE(f) ≤ 2. Generating and combining all
functions isomorphic to these gives a large number of functions to test. However, the size of this list
can be reduced by discounting all functions f on 5 bits produced such that deg(f) = 5, and then

19

running the efficient algorithm of [17] to discount all remaining functions f such that D(f) ≤ 4.
We are left with 13,608 candidate functions, none of which turn out to have QE(f) ≤ 2.

A.1 Functions of 4 bits

ID Function 1 query 2 queries 3 queries D(f)

1 x1 ∧ x2 ∧ x3 ∧ x4 0.735 0.962 0.996 4
6 0.654 0.931 1* 4
7 0.750 0.954 1 4
22 0.572 0.906 1 4
23 0.667 0.926 1 4
24 x1 ∧ ¬NAE(x̄2, x3, x4) 0.654 0.931 1* 4
25 0.640 0.961 1 4
27 x1 ∧ SEL(x4, x2, x3) 0.667 0.965 1 3
30 0.600 0.956 1 4
31 0.718 0.970 1 4
61 0.643 0.976 1 4
105 0.500 0.900 1* 4
107 0.571 0.941 1 4
111 0.662 0.968 1* 4
126 x1 ∧NAE(x2, x3, x4) 0.667 0.947 1* 4
127 0.727 0.972 1 4
278 EXACT3 0.529 0.884 1 4
279 Th3 0.643 0.900 1 4
280 0.572 0.906 1 4
281 0.600 0.956 1 4
282 0.571 0.936 1 4
283 0.637 0.959 1 4
286 0.546 0.932 1 4
287 0.659 0.945 1 4
300 0.571 0.936 1 4
301 0.572 0.964 1 4
303 SEL(x3, x1 ∧ x2, SEL(x4, x1, x2)) 0.644 0.966 1 3
316 0.562 0.962 1 4
317 SEL(x3, x1 ∧ x2, SEL(x2, x1, x4)) 0.572 0.980 1 3
318 0.546 0.956 1 4
319 0.640 0.972 1 4
360 0.529 0.884 1 4
361 0.500 0.916 1 4
362 0.546 0.932 1 4
363 0.546 0.955 1 4
366 0.546 0.956 1 4
367 0.571 0.969 1 4
382 0.546 0.923 1 4
383 0.600 0.946 1 4
384 NAE(x̄1, x2, x3, x4) 0.800 0.980 1* 4
385 0.750 0.954 1 4
386 0.640 0.961 1 4

20

ID Function 1 q. 2 qs. 3 qs. D(f)

387 0.667 0.965 1 4
390 0.571 0.936 1 4
391 0.637 0.959 1 4
393 SEL(x3, x1 ∧ x̄4, x2 ∧ x4) 0.667 0.965 1 3
395 0.724 0.963 1 4
399 0.751 0.980 1 4
406 0.500 0.916 1 4
407 0.572 0.940 1 4
408 0.600 0.956 1 4
409 0.643 0.976 1 4
410 0.572 0.964 1 4
411 0.656 0.969 1 4
414 0.546 0.955 1 4
415 0.642 0.965 1 4
424 0.667 0.926 1 4
425 0.637 0.959 1 4
426 0.718 0.970 1 4
427 SEL(x3, x1 ∧ x̄4,SEL(x4, x1, x2)) 0.751 0.980 1 3
428 0.637 0.959 1 4
429 SEL(x2, x1 ∧ x̄4,SEL(x3, x1, x4)) 0.656 0.969 1 3
430 0.644 0.966 1 4
431 0.710 0.977 1 4
444 0.572 0.980 1 4
445 0.641 0.965 1 4
446 0.572 0.969 1 4
447 0.667 0.980 1 4
488 0.643 0.900 1 4
489 0.572 0.940 1 4
490 0.659 0.945 1 4
491 0.642 0.965 1 4
494 0.640 0.972 1 4
495 SEL(x3, x1,SEL(x4, x1, x2)) 0.667 0.980 1 3
510 0.600 0.946 1 4
829 0.563 0.975 1 4
854 0.598 0.955 1 4
855 0.714 0.969 1 4
856 0.572 0.964 1 4
857 0.579 0.961 1 4
858 SEL(x1, x2 ∧ x3, x2⊕ x4) 0.572 0.980 1 3
859 0.628 0.974 1 4
862 0.572 0.966 1 4
863 SEL(x1, x2 ∧ x3, x2 ∨ x4) 0.667 0.986 1 3
872 0.546 0.932 1 4
873 0.500 0.946 1 4
874 0.598 0.955 1 4
875 0.572 0.951 1 4
876 0.546 0.956 1 4
877 0.545 0.961 1 4

21

ID Function 1 q. 2 qs. 3 qs. D(f)

878 0.572 0.966 1 4
879 0.600 0.966 1 4
892 0.563 0.975 1 4
893 0.571 0.966 1 4
894 0.572 0.947 1 4
961 0.718 0.970 1 4
965 SEL(x2, x1 ∧ x̄3, SEL(x1, x3, x4)) 0.751 0.980 1 3
966 0.644 0.966 1 4
967 0.710 0.977 1 4
980 0.659 0.945 1 4
981 0.714 0.969 1 4
982 0.572 0.951 1 4
983 0.661 0.965 1 4
984 SEL(x1, x2 ∧ x3, SEL(x4, x̄3, x̄2)) 0.644 0.966 1 3
985 0.628 0.974 1 4
987 SEL(x4,SEL(x3, x1, x2),SEL(x2, x1, x3)) 0.661 0.965 1 3
988 0.640 0.972 1 4
989 SEL(x1, x2 ∧ x3, x̄3 ∨ x4) 0.667 0.986 1 3
990 0.600 0.966 1 4
1632 (x1 ⊕ x2) ∧ (x3 ⊕ x4) 0.667 1* 1* 4
1633 0.562 0.962 1 4
1634 0.643 0.976 1 4
1635 0.572 0.980 1 4
1638 0.667 0.947 1* 4
1639 0.641 0.965 1 4
1641 0.500 0.936 1* 4
1643 0.561 0.966 1 4
1647 MAJ(x1, x2, x3 ⊕ x4) 0.667 1 1* 4
1650 0.656 0.969 1 4
1651 0.628 0.974 1 4
1654 0.641 0.965 1 4
1656 0.546 0.956 1 4
1657 0.500 0.964 1 4
1658 0.571 0.966 1 4
1659 0.571 0.962 1 4
1662 0.600 0.954 1 4
1680 (x1 ⊕ x2) ∧ (x1 ⊕ x3 ⊕ x4) 0.500 0.900 1* 4
1681 0.500 0.916 1 4
1683 0.500 0.946 1 4
1686 0.500 0.936 1* 4
1687 0.500 0.964 1 4
1695 SEL(x3 ⊕ x4, x1, x2) 0.500 1 1* 3
1712 0.571 0.941 1 4
1713 0.546 0.955 1 4
1714 0.572 0.940 1 4
1715 0.572 0.951 1 4
1716 0.546 0.955 1 4
1717 0.545 0.961 1 4

22

ID Function 1 q. 2 qs. 3 qs. D(f)

1718 0.561 0.966 1 4
1719 SEL(x4,SEL(x2, x1, x3),SEL(x3, x2, x1)) 0.572 0.962 1 3
1721 0.500 0.964 1 4
1725 0.529 0.955 1 4
1776 0.662 0.967 1* 4
1777 0.572 0.969 1 4
1778 0.642 0.965 1 4
1782 SEL(x2, x1, x3 ⊕ x4) 0.667 1 1* 3
1785 x1 ⊕ (x2 ∧ (x3 ⊕ x4)) 0.500 1 1* 4
1910 0.600 0.954 1 4
1912 0.546 0.923 1 4
1913 0.529 0.955 1 4
1914 0.572 0.947 1 4
1918 0.572 0.922 1 4
1968 0.662 0.968 1* 4
1969 0.642 0.965 1 4
1972 0.572 0.969 1 4
1973 0.600 0.966 1 4
1974 0.572 0.962 1 4
1980 SEL(x3, SEL(x4, x1, x2), x1 ⊕ x2) 0.571 0.966 1 3
2016 SEL(x1, x2 ∧ (x3 ∨ x4), x̄2 ∧ (x̄3 ∨ x̄4)) 0.773 1 1* 4
2017 0.640 0.972 1 4
2018 0.710 0.977 1 4
2019 0.667 0.986 1 4
2022 SEL(x3,SEL(x2, x1, x4),SEL(x1, x2, x̄4)) 0.661 0.965 1 3
2025 0.571 0.966 1 4
2032 0.727 0.971 1 4
2033 0.667 0.980 1 4
2034 SEL(x2, x1,SEL(x4, x3, x̄1)) 0.667 0.980 1 3
2040 0.600 0.946 1 4
5736 EXACT2 0.572 1 1* 4
5737 SYM(0,0,1,0,1) 0.500 0.962 1 4
5738 0.563 0.975 1 4
5739 0.500 0.980 1 4
5742 0.572 0.947 1 4
5758 0.572 0.922 1 4
5761 0.500 0.860 1 4
5763 0.500 0.907 1 4
5766 0.500 0.936 1* 4
5767 0.500 0.933 1 4
5769 0.500 0.907 1 4
5771 0.500 0.946 1 4
5774 0.561 0.966 1 4
5782 0.500 0.962 1 4
5783 0.500 0.954 1 4
5784 0.500 0.946 1 4
5785 0.500 0.933 1 4
5786 0.500 0.964 1 4

23

ID Function 1 q. 2 qs. 3 qs. D(f)

5787 0.500 0.955 1 4
5790 SEL(x3, SEL(x4, x1, x2), x2 ⊕ x4) 0.500 0.980 1 3
5801 0.500 0.933 1 4
5804 0.545 0.961 1 4
5805 0.500 0.955 1 4
5820 0.529 0.955 1 4
5865 0.500 0.954 1 4
6014 SYM(0,0,1,1,0) 0.600 0.874 1 4
6030 SEL(x3, SEL(x4, x1, x2),SEL(x4, x2, x̄1)) 0.667 1 1* 3
6038 0.500 0.980 1 4
6040 0.572 0.951 1 4
6042 SEL(x4, SEL(x3, x1, x2),SEL(x2, x3, x̄1)) 0.572 0.962 1 3
6060 0.600 0.966 1 4
6120 x1 ⊕MAJ(x2, x3, x4) 0.667 1 1* 4
6375 x1 ⊕ ¬NAE(x̄2, x3, x4) 0.500 0.900 1* 4
6625 0.500 0.946 1 4
6627 0.500 0.955 1 4
6630 0.500 0.954 1 4
7128 Sorted input bits [2] 0.854 1 1* 3
7140 x1 ⊕ SEL(x4, x2, x3) 0.500 1 1* 3
7905 0.500 0.900 1* 4
27030 PARITY 0.500 1* 1* 4

A.2 Symmetric functions of 5 bits

Function 1 query 2 queries 3 queries 4 queries

(0,0,0,0,0,1) 0.693 0.925 0.988 0.999
(0,0,0,0,1,0) 0.516 0.761 0.972 1
(0,0,0,0,1,1) 0.640 0.798 0.974 1
(0,0,0,1,0,0) 0.530 0.616 1 1
(0,0,0,1,0,1) 0.500 0.593 0.995 1
(0,0,0,1,1,0) 0.546 0.758 1 1
(0,0,0,1,1,1) 0.600 0.728 1 1
(0,0,1,0,0,1) 0.500 0.640 0.988 1
(0,0,1,0,1,0) 0.500 0.517 1 1
(0,0,1,0,1,1) 0.500 0.534 1 1
(0,0,1,1,0,0) 0.600 0.874 1 1*
(0,0,1,1,0,1) 0.500 0.856 0.998 1
(0,0,1,1,1,0) 0.616 0.762 0.969 1
(0,1,0,0,0,1) 0.500 0.728 0.967 1
(0,1,0,0,1,0) 0.500 0.860 1 1*
(0,1,0,1,0,1) 0.500 0.500 1* 1*
(0,1,0,1,1,0) 0.500 0.616 0.998 1
(0,1,1,0,0,1) 0.500 0.784 0.998 1
(0,1,1,1,1,0) 0.736 0.962 0.996 1*

24

A.3 Symmetric functions of 6 bits

Function 1 query 2 queries 3 queries 4 queries 5 queries

(0,0,0,0,0,0,1) 0.663 0.900 0.980 0.997 0.9999
(0,0,0,0,0,1,0) 0.511 0.684 0.940 0.993 1
(0,0,0,0,0,1,1) 0.640 0.738 0.946 0.993 1
(0,0,0,0,1,0,0) 0.516 0.572 0.878 1 1
(0,0,0,0,1,0,1) 0.500 0.541 0.875 0.999 1
(0,0,0,0,1,1,0) 0.527 0.751 0.904 1 1
(0,0,0,0,1,1,1) 0.589 0.710 0.901 1 1
(0,0,0,1,0,0,0) 0.530 0.616 1 1 1*
(0,0,0,1,0,0,1) 0.500 0.614 0.980 0.997 1
(0,0,0,1,0,1,0) 0.500 0.504 0.946 1 1
(0,0,0,1,0,1,1) 0.500 0.525 0.952 1 1
(0,0,0,1,1,0,0) 0.546 0.667 0.864 1 1
(0,0,0,1,1,0,1) 0.500 0.625 0.860 1 1
(0,0,0,1,1,1,0) 0.556 0.721 0.905 1 1
(0,0,1,0,0,0,1) 0.500 0.583 0.882 0.997 1
(0,0,1,0,0,1,0) 0.500 0.527 0.839 1 1
(0,0,1,0,0,1,0) 0.500 0.541 0.843 1 1
(0,0,1,0,1,0,0) 0.500 0.517 1 1 1*
(0,0,1,0,1,0,1) 0.500 0.500 0.985 1 1
(0,0,1,0,1,1,0) 0.500 0.520 0.940 1 1
(0,0,1,1,0,0,1) 0.500 0.712 0.867 1 1
(0,0,1,1,0,1,0) 0.500 0.513 0.840 1 1
(0,0,1,1,1,0,0) 0.616 0.762 0.969 1 1*
(0,0,1,1,1,0,1) 0.500 0.722 0.965 1 1
(0,0,1,1,1,1,0) 0.625 0.702 0.939 0.992 1
(0,1,0,0,0,0,1) 0.500 0.652 0.934 0.992 1
(0,1,0,0,0,1,0) 0.500 0.728 0.967 1 1*
(0,1,0,0,1,0,1) 0.500 0.500 0.836 1 1
(0,1,0,0,1,1,0) 0.500 0.667 0.863 1 1
(0,1,0,1,0,0,1) 0.500 0.500 0.934 1 1
(0,1,0,1,0,1,0) 0.500 0.500 1* 1* 1*
(0,1,0,1,1,1,0) 0.500 0.553 0.880 0.999 1
(0,1,1,0,0,0,1) 0.500 0.758 0.908 1 1
(0,1,1,0,1,1,0) 0.500 0.640 0.988 1 1*
(0,1,1,1,1,1,0) 0.693 0.925 0.988 0.999 1*

25

B Source code

The following is an example of how the CVX package [16] can be used to determine quantum query
complexity. For full source code, see [24]. In this case, we calculate the minimal error probability
over all quantum algorithms using 2 queries to compute some function f : {0, 1}3 → {0, 1} (given
as a column vector).

cvx_begin

cvx_precision best;

% variables m_i^j : 0 <= i <= n, 0 <= j <= t-1

variable m00(8,8) symmetric; variable m10(8,8) symmetric;

variable m20(8,8) symmetric; variable m30(8,8) symmetric;

variable m01(8,8) symmetric; variable m11(8,8) symmetric;

variable m21(8,8) symmetric; variable m31(8,8) symmetric;

variable g0(8,8) symmetric; variable g1(8,8) symmetric;

variable epss;

minimise(epss);

subject to

% Input condition.

m00 + m10 + m20 + m30 == ones(8,8);

% Running conditions (between 1 and t-1).

m01 + m11 + m21 + m31 == E0 .* m00 + E1 .* m10 + E2 .* m20 + E3 .* m30;

% Output matches last but one query.

g0 + g1 == E0 .* m01 + E1 .* m11 + E2 .* m21 + E3 .* m31;

% Output constraints.

diag(g0) >= (1-epss)*(1-f);

diag(g1) >= (1-epss)*f;

% Semidefinite constraints.

m00 == semidefinite(8); m10 == semidefinite(8);

m20 == semidefinite(8); m30 == semidefinite(8);

m01 == semidefinite(8); m11 == semidefinite(8);

m21 == semidefinite(8); m31 == semidefinite(8);

g0 == semidefinite(8); g1 == semidefinite(8);

cvx_end

26

References

[1] S. Aaronson. Quantum lower bound for Recursive Fourier Sampling. Quantum Inf. Comput.,
3(2):165–174, 2003. quant-ph/0209060.

[2] A. Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci.,
72(2):220–238, 2006. quant-ph/0305028.

[3] A. Ambainis. Superlinear advantage for exact quantum algorithms, 2012. arXiv:1211.0721.

[4] A. Ambainis, J. Iraids, and J. Smotrovs. Exact quantum query complexity of EXACT and
THRESHOLD, 2013. arXiv:1302.1235.

[5] H. Barnum, M. Saks, and M. Szegedy. Quantum query complexity and semi-definite program-
ming. In Proc. 18th Annual IEEE Conf. Computational Complexity, pages 179–193, 2003.

[6] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. J. ACM, 48(4):778–797, 2001. quant-ph/9802049.

[7] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26(5):1411–
1473, 1997.

[8] G. Brassard and P. Høyer. An exact quantum polynomial-time algorithm for Simon’s problem.
In Theory of Computing and Systems, Proceedings of the Fifth Israeli Symposium on, pages
12–23, 1997. quant-ph/9704027.

[9] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey.
Theoretical Computer Science, 288:21–43, 2002.

[10] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Proc. R.
Soc. Lond. A, 454(1969):339–354, 1998. quant-ph/9708016.

[11] G. Cohen, M. Karpovsky, H. Mattson, Jr., and J. Schatz. Covering radius – survey and recent
results. IEEE Trans. Inform. Theory, 31(3):328–343, 1985.

[12] W. van Dam. Quantum oracle interrogation: Getting all information for almost half the price.
In Proc. 39th Annual Symp. Foundations of Computer Science, pages 362–367. IEEE, 1998.
quant-ph/9805006.

[13] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc. Roy.
Soc. London Ser. A, 439(1907):553–558, 1992.

[14] Alina Dubrovska and Taisija Mischenko-Slatenkova. Computing boolean functions: Exact
quantum query algorithms and low degree polynomials, 2006. quant-ph/0607022.

[15] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum compu-
tation in determining parity. Phys. Rev. Lett., 81:5442–5444, 1998. quant-ph/9802045.

[16] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
1.21. http://cvxr.com/cvx, April 2011.

[17] D. Guijarro, V. Lav́ın, and V. Raghavan. Exact learning when irrelevant variables abound.
Inf. Proc. Lett., 70:233–239, 1999.

27

quant-ph/0209060
quant-ph/0305028
arXiv:1211.0721
arXiv:1302.1235
quant-ph/9802049
quant-ph/9704027
quant-ph/9708016
quant-ph/9805006
quant-ph/0607022
quant-ph/9802045
http://cvxr.com/cvx

[18] T. Hayes, S. Kutin, and D. van Melkebeek. The quantum black-box complexity of majority.
Algorithmica, 34(4):480–501, 2002. quant-ph/0109101.

[19] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[20] P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proc. 39th

Annual ACM Symp. Theory of Computing, pages 526–535, 2007. quant-ph/0611054.

[21] P. Høyer and R. Špalek. Lower bounds on quantum query complexity. Bulletin of the European
Association for Theoretical Computer Science, 87:78–103, 2005. quant-ph/0509153.

[22] G. Midrijānis. Exact quantum query complexity for total Boolean functions, 2004. quant-ph/
0403168.

[23] A. Montanaro. Nonadaptive quantum query complexity. Information Processing Letters,
110(24):1110–1113, 2010. arXiv:1001.0018.

[24] A. Montanaro, R. Jozsa, and G. Mitchison. Source code used to calculate quantum query
complexity. http://www.damtp.cam.ac.uk/user/am994/qc/.

[25] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computa-
tional Complexity, 4(4):301–313, 1994.

[26] B. Reichardt. Reflections for quantum query algorithms. In Proc. 22nd ACM-SIAM Symp.
Discrete Algorithms, pages 560–569, 2011. arXiv:1005.1601.

[27] B. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluating formulas.
In Proc. 40th Annual ACM Symp. Theory of Computing, pages 103–112, 2008. arXiv:0710.

2630.

[28] D. R. Simon. On the power of quantum computation. SIAM J. Comput., 26:1474–1483, 1997.

[29] Alina Vasilieva. Quantum query algorithm constructions for computing AND, OR and MA-
JORITY boolean functions, 2007. arXiv:0710.5592.

[30] Alina Vasilieva. Exact quantum query algorithm for error detection code verification, 2009.
arXiv:0904.3660.

28

quant-ph/0109101
quant-ph/0611054
quant-ph/0509153
quant-ph/0403168
quant-ph/0403168
arXiv:1001.0018
http://www.damtp.cam.ac.uk/user/am994/qc/
arXiv:1005.1601
arXiv:0710.2630
arXiv:0710.2630
arXiv:0710.5592
arXiv:0904.3660

	1 Introduction
	1.1 Our results
	1.2 Organisation

	2 Definitions
	2.1 Generalities and boolean functions
	2.2 Query complexity model

	3 Separating exact quantum and classical query complexity
	3.1 Quantum algorithms based on parity queries

	4 Quantum query algorithms from semidefinite programming
	4.1 A prescription for quantum algorithms

	5 EXACT2
	5.1 Distinguishing weights 0 and 1 from balanced strings

	6 Exact quantum query algorithms for small functions
	6.1 Functions of up to 2 bits
	6.2 Functions of 3 bits
	6.2.1 x1 (x2 x3)
	6.2.2 (x1 x2) (x3)

	7 Nonadaptive exact quantum query complexity
	7.1 Symmetric boolean functions

	8 Open problems
	A Numerical results for functions on up to 6 bits
	A.1 Functions of 4 bits
	A.2 Symmetric functions of 5 bits
	A.3 Symmetric functions of 6 bits

	B Source code

