
Improving Flow Analyses viaΓCFA
Abstract Garbage Collection and Counting

Matthew Might
Georgia Institute of Technology

mattm@cc.gatech.edu

Olin Shivers
Northeastern University
shivers@ccs.neu.edu

Abstract
We present two independent and complementary improvements
for flow-based analysis of higher-order languages: (1)abstract
garbage collectionand (2) abstract counting, collectively titled
ΓCFA.

Abstract garbage collection is an analog to its concrete coun-
terpart: we determine when an abstract resource has become un-
reachable, and then reallocate it as fresh. This prevents flow sets
from merging in the abstract, which has two immediate effects: (1)
the precision of the analysis is increased, and (2) the running time
of the analysis is frequently reduced. In some nontrivial cases, we
achieve an order of magnitude improvement in precision and time
simultaneously.

In abstract counting, we track how many times an abstract
resource has been allocated. A count of one implies that the abstract
resource momentarily represents only one concrete resource. This,
in turn, allows us to perform environment analysis and to expand
the kinds (rather than just the degree) of optimizations available to
the compiler.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Optimization

General Terms Languages

Keywords Gamma-CFA, program analysis, flow analysis, envi-
ronment analysis, functional languages, lambda calculus, super-
beta, inlining, CPS, continuations, abstract garbage collection, ab-
stract counting

1. Introduction
Experience in the field of flow analysis leads to a perception that
speed and precision are fundamental tradeoffs. 0CFA is cubic in the
worst case, and the more precise 1CFA is exponential. In general,
the next step up the ladder of precision, (k + 1)-CFA, is always
slower then the one beneath it,k-CFA. Given this information
alone, the tradeoff seems natural.

Our message is just the opposite: speed and precision are not
necessarily tradeoffs; in many cases, higher speed is a direct conse-
quence of higher precision. What the conventional wisdom is miss-
ing is a key fact about the nature of (im)precision: the manner in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP ’06 September 16–21, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

which imprecision reinforces itself during a flow analysis through
an ever-worsening feedback loop.

To get a feel for how this happens, take a look at the following
Scheme fragment:

(let ((x y))
((if (equal? x y) f g) z))

Clearly the condition(equal? x y) is always true, which means
that f always executes andg never will. A flow analysis such
as 0CFA, however, will often miss this information and take the
branch tog anyway. Let’s investigate why this is so.

During the analysis, multiple values could flow toy at different
times. For the moment, suppose just the constant0 has flowed to
y. From this, 0CFA then infers that0 also flows tox. Temporarily,
0CFA knows thatx’s value is restricted to the set{0} and thaty’s
is restricted to the set{0}, and this is enough information to infer
that(equal? x y) holds.

Moving forward, let another constant,5, also flow toy. The5 is
then seen flowing tox. Now the set of possible values forx is the set
{0, 5}, with the same set fory. When 0CFA looks at the condition
(equals? x y), it doesn’t know if it’s comparing0 to 0, 0 to 5 or
5 to 5. Being a conservative analysis, 0CFA then chases downboth
branches of theif. As a result, all of the time that 0CFA spends
investigating theg branch is completely wasted, since it doesn’t
correspond to something which can happen in any execution.All of
the information generated on theg branch is spurious and serves
to further taint the analysis. Making matters worse, this tainted
information can cause other spurious forks during the analysis,
leading to a vicious cycle of ever-worsening information.

We present a way to end the cycle by intermittently and safely
improving precision during analysis. This tightens up the set of
values to which an expression might evaluate. These tighter bounds
(better information) decrease the chance that a spurious branch
will be investigated during analysis. The mechanism we use to
accomplish this is a form of abstract garbage collection applied to
the environment structure.

Once we install the abstract garbage collector, however, another
opportunity to improve appears in the form ofabstract counting.
The idea here is to count (abstractly) the number of concrete ob-
jects to which a given abstract object corresponds. When this count
is one, the abstract object is effectively concrete. With this infor-
mation, we can make inferences that exceed the power of ordinary
control-flow analysis. For instance, suppose we’re told that two sets
of values,S1 andS2, are equal, but we don’t know what’s in ei-
ther set. What could we say about the contents of these sets if we
were told that the size of both sets was one? We could say,with-
out knowing what’s in the sets, that any member ofS1 is equal to
any member ofS2 andvice versa. By adapting this reasoning to a
control-flow analysis, we gain the ability to perform environment
analysis as well.

13

{x,y,z}

w

z

y
x

{w}

Concrete Space Abstract Space

Figure 1. Collisions in the concrete-to-abstract map.

Our work here definesabstract garbage collectionandabstract
countingfor environment structure, proves the correctness of both
and provides results from a running implementation. Our primary
contribution is a framework for performing:

1. An abstract-garbage-collecting control-flow analysis.

2. An abstract-counting-based environment analysis.

For nontrivial examples, we are able to achieve large speedups for
both 0CFA and 1CFA. At the same time, we manage to improve
precision by an order of magnitude. We’ll discuss connections to
other work in more detail in a later section.

2. Conventions
For all of the domains used in this work, we assume the “natural”
meaning for the lattice operatorsu andt as well as the relation
v; that is, a point-wise lifting (for functions), or an index-wise
lifting (for vectors and tuples). We also assume an implicit and
appropriate top> and bottom⊥ element for domains that need
them. For a power domainA = P (B), we define⊥A = ∅ and
>A = B; the order relation and the meet and join operators are then

X vA Y iff ∀x ∈ X : ∃y ∈ Y : x vB y

X tA Y = X ∪ Y

X uA Y = {b ∈ X ∪ Y : {b} vA X and{b} vA Y }.

The vertical bar ‘|’ operator denotes function restriction,i.e., f |X
is the functionf defined at most over elements in the setX. When a
function is applied to an element outside of its domain, it yields⊥;
thus, we getdom(f) = {x : f (x) 6= ⊥}. The functionfree returns
the set of free variables for a given piece of syntax. We use boldface
to denote vectors,i.e., d = 〈d1, . . . , dn〉. The “absolute value”
notation|x| should be read and interpreted as “the abstraction of
x.” The functionf [x1 7→ y1, . . . , xn 7→ yn] is the functionf except
that when applied toxi, it yields yi. Operators are implicitly lifted
point-wise over ranges for functions; that is: if⊕ : Y × Y → Y and
f, g : X → Y , thenf ⊕ g = λx.f (x) ⊕ g(x).

3. The problem: too many pigeons
During an analysis performed through abstract interpretation, it is
typically the case that an infinite, concrete space in which compu-
tation occurs is compressed into some finite, abstract space. It is
inevitable, then, that some elements of the abstract domain repre-
sent multiple elements of the concrete space (Figure 1). It’s this
overlapping in the abstract that leads to imprecision in reasoning.

Example: Abstract integers To get a better feel for the problem,
consider an abstraction of the integers to their sign. The concrete

set is the integers,Z. The abstract set is the power set of signs,
Ẑ = P ({−, 0,+}). The abstraction map| · | : Z → Ẑ in this case is:

|z| =


{−} z < 0
{0} z = 0
{+} z > 0.

The addition operator,+ : Z × Z → Z, abstracts naturally to
⊕ : Ẑ × Ẑ → Ẑ. For example:

{0} ⊕ {0,+} = {0,+}
{+} ⊕ {+} = {+}
{+} ⊕ {−} = {−,0,+}

{+,−} ⊕ {0} = {−,+}.

Suppose we wish to analyze the expression 4+−4 with an abstract
interpretation. To do so, we evaluate|4| ⊕ |−4|, and get back
{−,0,+}. At this point, it’s worth noting several things:

• Had we simply evaluated 4+−4 and then abstracted, we would
have |4 + −4| = {0}. That is, abstract interpretation conser-
vatively overapproximated, even though a tighter answer was
possible.

• The set{0} has only one concrete counterpart: 0. So, if we can
find a tighter way to do abstract interpretation, then the abstract
interpretation may in some cases yield the exact concrete result.

• Because{0} has only one concrete counterpart, it acts as if it
were concrete. That is,

{0} ⊕ ẑ = ẑ ⊕ {0} = ẑ,

in which case, no precision is lost.

• When comparing abstract values, we cannot ordinarily infer
concrete equality from the abstract. That is,

|z1| ⊆ ẑ1 and|z2| ⊆ ẑ2 andẑ1 = ẑ2 6=⇒ z1 = z2,

unlessthe abstract values correspond to one concrete element:

|z1| ⊆ ẑ1 and|z2| ⊆ ẑ2 andẑ1 = ẑ2 = {0} =⇒ z1 = z2.

Example: A simple flow analysis When using abstract interpre-
tation for a flow analysis, we encounter a similar set of prob-
lems. Consider control-flow analysis for the pure, call-by-valueλ-
calculus given by the following grammar:

e, f ∈ EXP ::= v
| (λ (v) e)
| (f e)

Starting with the concrete, environment-based semantics given in
the left-hand side of Figure 2, we can drop the environment com-
ponentρ to arrive at the abstract, control-flow constraints given in
the right-hand side of Figure 2.

By finding the least relation≈> such that the constraints in
Figure 2 are satisfied, the relation≈> represents the results of
Shivers’ 0CFA [8]. For example, with the following program:

((λ (x) (x x)) (λ (y) (y y)))

We get x ≈> [[(λ (y) (y y))]] and y ≈> [[(λ (y) (y y))]].
Now, take the following program fragment:

(let* ((id (λ (x) x))
(unused (id lam)))

(id lam′))

While analyzing this fragment, 0CFA picks upx ≈> lam from the
call (id lam). Next, it picks upx ≈> lam′ from the body of the
let*. Becausex is the body ofid, 0CFA thinks thatlam andlam′

could be returned anywhere thatid is called. As a result, 0CFA tells

14

(f, ρ) ⇒ ([[(λ (v) eb)]] , ρ′)
(e, ρ) ⇒ d
(eb, ρ′[v 7→ d]) ⇒ (lam, ρ′′)
([[(f e)]] , ρ) ⇒ (lam, ρ′′)

 [apply]

{
f ≈> [[(λ (v) eb)]] eb ≈> lam

[[(f e)]] ≈> lam

(lam, ρ) ⇒ (lam, ρ) [eval-lambda] lam ≈> lam

(v, ρ) ⇒ ρ(v) [eval-var]


For every application term(f e):

f ≈> [[(λ (v) eb)]] e ≈> lam
v ≈> lam

Figure 2. A concrete big-step semantics for call-by-valueλ-calculus (left), and its abstract control-flow constraints for 0CFA (right).

us that the above fragment could yield eitherlam or lam′, when in
fact, onlylam′ is possible.

The root cause of this loss of precision is the way in which
environments are handled in the abstract: all bindings to a given
variable are merged together. To alleviate this over-approximation,
more sophisticated flow analyses arrange for bindings made in
different contexts (known ascontours) to be distinguishable from
one another. Shivers’ 1CFA, for instance, uses a distinct abstract
context for each call site. That is, when aλ term is invoked at a call
site, the context for the binding made there is the call site itself.
Agesen’s [1] CPA, on the other hand, utilizes the cartesian product
of the types of the arguments for a contour. The main idea behind
these solutions is to create a finite set of abstract contexts in which
bindings may occur. As a result, only bindings sharing the same
abstract context merge.

In the end, all of these approaches still suffer the same problem:
the set of abstract contours is finite, so some merging is inevitable
for any nontrivial program. Our work is concerned, in part, with
how to improve the precision of an analysis based on these ab-
stract contour sets. Our methods, however, generalize to other re-
sources allocated during an abstract interpretation, including store
locations, list cells and timestamps.

4. Abstract garbage collection and counting
Note: To avoid confusion between the ideas ofgarbage collection
and collecting semantics, both of which are used in this work,
we will avoid using the term “collecting” or “collection” in an
unqualified context. We will use the term “GC” when we mean
something related to garbage collection.

In a flow analysis, abstract bindings (introduced later) are a
finite resource. Ultimately, we run out of them, and when we do, we
have to pick one to reuse. In doing so, we end up merging values
associated with abstract bindings together. Just as with concrete
store locations, however, we can apply GC to this finite resource
in the abstract. Whenever we find that some abstract bindings have
become unreachable, we are able to safely reallocate them as fresh.

In this section, we’ll take a high-level view of abstract garbage
collection, in order to build some intuition for later sections.

Take a concrete machine with three addresses:a1, a2 anda3.
We can imagine an abstract version of this machine with only two
abstract addresses, ˆa1,2 and â3. In this example, ˆa1,2 is the abstract
address fora1 anda2, andâ3 is the abstract address fora3.

Start by allocating a new object,o1, to addressa1. The resulting
heap (left) and its abstract counterpart (right) look like this:

concrete abstract

o1 a1 |o1|

a2 â1,2

a3 â3

The root pointer, presumably coming from a register or the stack, is
represented by a double box. The double arrow⇒ means “abstracts
to.” Consequently, ˆa1,2 points to|o1|, the abstract counterpart ofo1.

Next, allocate a new object,o2, to addressa3. Simultaneously,
shift the root pointer toa3. Note that with the move of the root
pointer,o1 has become “unreachable.”Withoutgarbage collection
(in the concrete or in the abstract), we would then have the follow-
ing setup:1

concrete abstract

o1 a1 |o1|

a2 â1,2

o2 a3 â3 |o2|

Now we’re ready to get into trouble. Allocate a third object,o3, and
give it the fresh addressa2 in the concrete. This means that|o3|, its
abstract counterpart, is allocated to ˆa1,2. Also, form a pointer from

1 With garbage collection, we would removeo1 and|o1|, because there is no
path from the root to either.

15

o2 to o3. This gives us the following picture:

concrete abstract

o1 a1 |o1|

o3 a2 â1,2 |o3|

o2 a3 â3 |o2|

Note how the concrete and the abstract have diverged—how the
abstract has begun to overapproximate the concrete. The abstract
address ˆa1,2 now claims to have two objects to which it could point,
|o1| and|o3|, when in fact, only|o3| is possible.

In effect, |o1| is a zombie—a previously dead (unreachable)
object which has become live again. Whereas previously there was
no path from the root ˆa3 to |o1|, we now have the path ˆa3 → |o2| →
â1,2 → |o1|. Note also that the concrete version of this path does
not exist. In general, zombies are created when the abstract address
pointing to a dead object is reallocated.

Now, reset to the machine state described by the second dia-
gram. Garbage collecto1 and|o1|, and then repeat the last round of
changes. This leads to the following image:

concrete abstract

a1

o3 a2 â1,2 |o3|

o2 a3 â3 |o2|

By performing garbage collection in the concrete and the abstract,
we have prevented overapproximation.

This exercise hints at another way to enhance the analysis, not
in precision, but in power. When an abstract address is freshly
allocated, it corresponds to only one concrete address. As a result,
from the time in which an abstract address is freshly allocated
to the time in which it is reallocated, we can treat the address
and whatever it points to as “concrete.” Moreover, in the interim,
equality for the address in the abstract implies equality for the
address in the concrete.

By tracking the number of times an abstract address has been
allocated and resetting the count to zero if it gets garbage collected,
we have a mechanism for performingenvironmentanalysis. We
briefly review the utility of environment analysis in Section 10.
We term the mechanism of counting abstract allocationsabstract
counting.

5. A concrete semantics
In this section, we develop a concrete, garbage-collecting seman-
tics. A slight but important twist here is that our GC operates over
environment structure rather than a store. The analysis we develop
later is then just an abstract interpretation [3] of these semantics.2

Here, we start off with an environment-based semantics for the
call-by-value, multi-argumentλ-calculus, and through a series of
transformations, we will evolve a semantics that suits our purposes.
Readers, especially those already comfortable with continuation-
passing style (CPS), may safely skip the intervening semantics and
go directly to the final version, if they wish. The walk through the
transformation is included purely to help build understanding of
our semantics in gradual steps.

5.1 CPS

As a design constraint, we would like our analysis be able to handle
languages that provide full continuations. Partly to achieve this, we
will define our analysis in terms of a continuation-passing style rep-
resentation. Using CPS will also, as we’ll see, simplify the math-
ematics we develop. CPS isλ-calculus with a simple restriction:
function calls do not return—they are one-way control transfers. In-
stead of returning, each procedurep takes an additional argument,
another procedure known asp’s continuation. P ’s contract is that
it will invoke the continuation supplied by the caller, passing it the
“return” value thatp computed. Thus, instead of writing

(* (+ w x) (- y z))

which would require the+ and- procedures to return values to their
calling context, we write

(+ w x (λ (a) (- y z (λ (b) (* a b k)))))

wherek is the continuation for the top-level multiply. Again, the
new contract for the- procedure is, “The procedure- takes three
arguments: two numbers,i andj, and a continuationk. It computes
the differencei− j, and passes this value to procedurek.” Thus the
continuationk passed to a procedurep encodes, as a procedure,
p’s calling context; the continuation represents “the rest of the
computation” to be performed afterp is done.

The procedures-do-not-return stricture is reflected in the gram-
mar for CPS, which differs from the traditional, or “direct-style”
λ-calculus in that:

• call forms may only appear as the body of aλ expression;

• λ expressions can only have call forms as their body; and

• the arguments to a call form must be variable references orλ
expressions.

A side-by-side view of their grammars highlights the differences
between direct-style and CPS:

Direct-Styleλ-calculus︷ ︸︸ ︷
e, f ∈EXP::= v

| (λ (v∗) e)
| (f e∗)

CPSλ-calculus︷ ︸︸ ︷
e, f ∈EXP ::= v | lam
lam∈LAM ::= (λ (v∗) call)
call∈CALL::= (f e∗)

wherev is a variable, a member ofVAR.
To translate a call-by-value direct-style program into an equiv-

alent CPS program, we can use the following translatorT , which

2 Ordinarily, one wouldn’t add garbage collection to a semantics. A seman-
tics is meant to map a program to a result, and adding garbage collection
does not change this result. The reward for adding GC is invisible until we
perform the abstract interpretation.

16

takes a direct-style term and a continuationq awaiting its result:3

T [[v]] q = [[(q v)]]

T [[(λ (v) e)]] q = [[(q (λ (v v′) call))]]
wherecall = T e v′

T [[(f e)]] q = T f [[(λ (v′) call)]]
wherecall = T e [[(λ (v′′) (v′ v′′ q)]].

In the above, primed variables (v′, v′′) are fresh variables.

5.2 Deriving an environment-based CPS semantics

Specialising to CPS Even though we could use an ordinaryλ-
calculus semantics to interpret CPS, its syntactic restrictions permit
a much simpler interpretation, one in which “function call” is
explicitly modelled as a one-way control transfer. Begin with an
environment-based semantics,⇒ ⊆ (EXP× Env) × (EXP× Env),
for direct-styleλ-calculus:

(f, ρ) ⇒∗ ([[(λ (v1 · · · vn) e)]] , ρ′) (ei, ρ) ⇒∗ di
([[(f e1 · · · en)]] , ρ) ⇒ (e, ρ′[vi 7→ di])

(app-prog)

(lam, ρ) ⇒ (lam, ρ) (lambda-eval)

(v, ρ) ⇒ ρ(v). (var-eval)

An environmentρ is a functionVAR → D; the set of denotable
valuesD just contains closures—λ terms paired with an environ-
ment. Evaluating an expressione in this semantics consists of find-
ing (lam, ρ) such that (e, []) ⇒∗ (lam, ρ).

Now, assume that this semantics is being used to interpret a pro-
gram written in CPS, and consider what becomes degenerate. In
CPS, execution begins with the (app-prog) rule on some top-level
call form. The (app-prog) rule will never be used to satisfy an an-
tecedent of the (app-prog) rule in CPS, as neither the procedure
f nor any argumentei can be a call form. Consequently, the an-
tecedents in the (app-prog) rule are immediately satisfied with the
rules (lambda-eval) or (var-eval).

Noting that the (lambda-eval) and (var-eval) rules are trivial,
their degenerate, CPS-specific semantics becomes:

A(v, ρ) = ρ(v)

A(lam, ρ) = (lam, ρ).

That is, the -eval rules have been captured in the argument evaluator
functionA. The remaining transition rule (app-prog) becomes:

([[(f e1 · · · en)]] , ρ) ⇒ (call, ρ′[vi 7→ di])

where

{
([[(λ (v1 · · · vn) call)]] , ρ′) = A(f, ρ)

di = A(ei, ρ).

At this point, we have a specialized concrete semantics for CPS,
but we need to make additional changes before we can add garbage
collection.

Adding a time counter It will be useful later on to add a time
countert to our transition system, giving us:

([[(f e1 · · · en)]] , ρ, t) ⇒ (call, ρ′[vi 7→ di], t + 1)

where

{
([[(λ (v1 · · · vn) call)]] , ρ′) = A(f, ρ)

di = A(ei, ρ).

This time counter is a resource that is guaranteed to always be
fresh, a property we utilize in the next transformation. Times are
also ordered, which permits chronological reasoning in proofs.

3 The transformT given here handles the single-argument direct-styleλ-
calculus. GeneralizingT to handle the multi-argumentλ-calculus we use is
not difficult.

Factoring the environment structure Certain headaches are
avoidable by removing the recursion from the domains here. Recur-
sive domains enter our semantics because environments,ρ, have the
structureEnv= VAR→ LAM× Env. By factoring the environment
into a binding environmentβ : VAR→ Timeand a variable environ-
mentve : VAR× Time→ D, the recursion goes away. The binding
half of the environment,β, yields the timeβ(v) that some variablev
was bound for some particular lexical context. The global environ-
ment half,ve, keeps track of all the variable/value bindings made
during execution of the program: it maps a variable/binding-time
pair to its associated valueve(v, t). By “tagging” variable bindings
in ve with their binding times, multiple, distinct bindings of the
same variable can coexist in aveenvironment. We callve“global”
because it is a single, shared component of machine state, while the
local β environments are what we find in closures, whereρ used to
be. Thus, instead of accessing a variable’s value withρ(v), we now
fetch it withve(v, β(v)).

Putting this all together results in the following semantics:

([[(f e1 · · · en)]] , β, ve, t) ⇒
(call, β ′[vi 7→ t′], ve[(vi, t′) 7→ di], t′)

where

{
([[(λ (v1 · · · vn) call)]] , β ′) = A(f, β, ve)

di = A(ei, β, ve)
t′ = t + 1.

Because the environment has been split, we have to modify the
evaluation functionA. The new definition ofA is shown in Fig-
ure 4. With this factoring, we can also now refer to a particularbind-
ing, a variable/time coupling. Bindings are somewhat like the con-
crete addresses used the previous section, andve is somewhat like
a store. In fact, bindings are the resource over which our garbage
collection algorithm will operate.4

Eval/apply transitions A final factoring (Figure 3) of these se-
mantics simplifies the integration of extra features beyond our sim-
ple core language, such asletrec, basic values, primops, condi-
tionals and a store. This factoring splits the transition rule into two
stages: (1) an eval stage when the arguments to a call are evaluated,
and (2) an apply stage when a procedure is applied to a vector of
values.

If we were to compose the eval transition with the apply transi-
tion, we would end up with the original transition relation.

5.3 CPS as a state machine

Figures 5 and 3 show the semantic domains and the transition rules
for our CPS semantics; these definitions, together with ones for
theA function in Figure 4 comprise our complete, final concrete
semantics. For convenience, given some stateς, we will frequently
refer to its components by subscripting them withς; that is,ς =
(. . . , veς , tς). A primitive continuationhalt has been added to the
set of values; execution terminates when thehalt continuation is
applied.

Note that something pleasant happened when we specialised
this semantics from the original direct-style rules: the final small-
step semantics defines a simple state machine, one which alternates,
tick-tock, between (call, β, ve, t) eval states, and (proc,dargs, ve, t)
apply states. The machine-like nature of the system is captured by
the fact that the transition system is now defined by a pair of axiom
rules—there are no recursive inference rules. The time counter
is now clearly a “machine clock” that assigns a unique, ordered
timestamp to each kind of state, and our semantic domains are no
longer recursively defined.

4 At this point, our setTimehas become equivalent to the concrete contour
setCN in Shivers’ work [8].

17

([[(f e1 · · · en)]] , β, ve, t) ⇒ (proc,d, ve, t+1)

where

{
proc= A(f, β, ve)

di = A(ei, β, ve)

(([[(λ (v1 · · · vn)]] call), β),d, ve, t) ⇒ (call, β ′, ve′, t)

where

{
β ′ = β[vi 7→ t]

ve′ = ve[(vi, t) 7→ di]

Figure 3. A small-step semantics for CPS, with a factored environment representation: (left) the eval-state transition, and (right) the apply-
state transition.

A : EXP× BEnv× VEnv→ D

A(v, β, ve) = ve(v, β(v))

A(lam, β, ve) = (lam, β)

Figure 4. TheA function evaluates argument expressions given a
factoredBEnv/VEnvenvironment.

ς ∈ State = Eval+ Apply
Eval = CALL× BEnv× VEnv× Time
Apply = Proc× D∗ × VEnv× Time

β ∈ BEnv = VAR→ Time
b ∈ Bind = VAR× Time

ve ∈ VEnv = Bind→ D
proc ∈ Proc = Clo+ {halt}

clo ∈ Clo = LAM× BEnv
d ∈ D = Proc
t ∈ Time = an infinite set of times (contours)

Figure 5. Semantic domains

Defining the meaning of our language as a small-step opera-
tional semantics exposes the intermediate states of the computa-
tion, including the environment structure we made explicit with our
factoredVEnv/BEnvrepresentation. This sets us up to use abstract
interpretation to reason statically about these states. All we need to
do now is add garbage collection.

5.4 Adding GC transitions to the semantics

Before we can define garbage collection, we need to define more
basic notions, such as the touchability of a value by a binding,
the adjacency of bindings and the bindings reachable from some
entity. For our framework,garbage collectionmeans finding the
set of reachable bindings and restricting the domain of the global
variable environmentve to solely these bindings.

First, we define the bindingsT (d) touched by some valued:

T (lam, β) = {(v, β(v)) : v ∈ free(lam)}
T (halt) = {}.

A closure (lam, β) could potentially touch a binding (v, t) if v is
free inlam, and ifβ(v) = t. We can extend the functionT to objects
such as states:

T (call, β, ve, t) = {(v, β(v)) : v ∈ free(call)}
T (proc,d, ve, t) = T (proc) ∪ T (d1) ∪ · · · ∪ T (dn).

In essence, a binding is touched by an entity if the binding is
immediatelyreachable by that entity.

With this notion of touch, we can define theadjacencyrelation
over bindings:

b ;ve b
′ ⇐⇒ b′ ∈ T (ve(b)).

The setR(ς) of bindingsreachablefrom stateς is simply all the
bindings we can reach fromς with chains of;ve links:

R(ς) = {b′ : b ∈ T (ς) andb ;∗
veς b

′}.

Now we can define the GC function,Γ : State→ State:

Γ(ς) =

{
(proc,d, ve|R(ς), t) ς = (proc,d, ve, t)
(call, β, ve|R(ς), t) ς = (call, β, ve, t).

The functionΓ removes unreachable bindings from the domain of
the global variable environmentve.

Using this, we can define the alternate, GC transition rule,⇒Γ:

Γ(ς) ⇒ ς ′

ς ⇒Γ ς ′
.

That is,⇒Γ first performs a collection, and then steps the execution
forward. When a GC is “deemed appropriate,” the transition can be
made with this rule instead of with the regular transition,⇒.

Because we are agnostic as to when a GC is done, we define
a new, nondeterministic transition relationV for this semantics as
the union of⇒ and⇒Γ.

Before proceeding, we need to tidy up loose ends such as the
injection of a program into an initial state, and the concept of a
final state. The injection functionI : LAM → Stateinjects aλ term
accepting the halt continuation into an initial state:

I(lam) = ((lam,⊥BEnv), 〈halt〉,⊥VEnv, t0).

A final stateis one applying thehalt continuation to a singleton
argument vector containing the final result: (halt, 〈dresult〉, ve, t).

Execution may also end by arriving at a stuck state, of which we
distinguish three kinds:

Mismatch A mismatch stuck state is an apply state in which the
number of arguments supplied does not match the number of
arguments required. This is a result of programmer error.

Undefined variable An undefined-variable stuck state is an eval
state in which a variable argument is not in the domain of the
lexical contour environmentβ. This can happen only if the top-
level program has a free variable, also a programmer error.

Corrupted environment A corrupted-environment stuck state is
an eval state in which a required binding is not in the domain of
the global variable environmentve. As part of showing correct-
ness, we demonstrate that this can never happen.

We call a stateterminal if it is final or stuck.

6. Correctness of garbage-collecting semantics
The transformation from a non-GC semantics to a GC semantics
is nontrivial, and we are obliged to show correctness. As we men-
tioned, we leave it open whether⇒ or ⇒Γ is used for any given
transition, so the semantics are nondeterministic. Given that we
have two choices from any given state, we can visualize the exe-

18

cution space as a binary tree:

I(lam)

ς1
1 ς2

1

ς1
2 ς2

2 ς3
2 ς4

2

Here, dotted arrows represent GC-and-step-forward transitions
(⇒Γ) and solid arrows represent ordinary transitions (⇒). What
we mean by the termcorrectnessin this case is that the result
obtained is independent of the path taken through this tree.

Realizing that this “tree” is in reality the following DAG hints
at how we might go about doing this:

ς4
3

ς3
2 ς3

3

ς2
1 ς2

2 ς2
3

I(pr) ς1
1 ς1

2 ς1
3

In words, the GC transitions from any given depth of the tree always
merge into the same state. This happens because the GC function
Γ takes all states at a given depth to the same state. That is, the GC
function partitions states into equivalence classes. Moreover, it’s
trivial to show that all members of a given equivalence class would
yield the same result if they were final. Our focus for the remainder
of this section becomes formalizing and demonstrating what we’ve
just described.

Thus our roadmap for correctness is as follows:

1. Show that soundness (defined shortly) is preserved under⇒
transitions, and then under GC.

2. Show that all states at any given depth of the execution tree are
equivalent.

3. Show that if one state at some depth transitions, then all states
at that depth transition.

4. Using the above, show that the result obtained on any path
through the execution tree is equivalent to the result obtained
on any other path.

From this, it also follows that if one branch doesn’t terminate, no
branch terminates.

A word on proof technique. Many of the proofs in this sec-
tion require us to show that if some path is valid over some
adjacency relation;ve then the path is also valid over some
other adjacency relation;ve′ . Often, we show this using
contradiction: we choose the first binding which invalidates
the path for;ve′ and then show that it cannot actually in-
validate the path. Later on, in showing the correctness of the
analysis, we’ll make use of a similar path-based technique.

Thesoundnessof a state captures the essence of well-formedness
for a given state:

Definition 6.1 (Soundness). A stateς satisfies Sound(ς) iff

R(ς) ⊆ dom(veς).

In words, a state is sound if it has a valid entry in its global
environment for every binding it could conceivably reach.

We say that two states areequivalentif they are equal under GC:

Definition 6.2. Statesς1 andς2 are equivalent iff Γ(ς1) = Γ(ς2).

Our first theorem rules out a corrupted-environment error for
sound states.

Theorem 6.3. Sound states are not corrupt.
That is, if a stateς is sound, then either

• ς ⇒ ς ′,
• ς is a final state, or
• ς is stuck, but not corrupt.

Proof. By the definitions.

Soundness is important because if two states are sound and
equivalent, then either both transition, or neither transitions. This
ultimately lets us show that if any state at some depth in the
execution tree transitions, then all states at that depth transition.

The following lemma relates touching and reaching:

Lemma 6.4 (Containment). If ς ⇒ ς ′, and T (ς ′) ⊆ R(ς), then
R(ς ′) ⊆ R(ς).

Proof. By contradiction and the definitions ofT andR.

The next lemma states that once a binding is dead, it cannot
come back to life.

Lemma 6.5(No Zombies). If (v, t) 6∈ R(ς), andς ⇒ ς ′, then

• ς is an eval state and(v, t) 6∈ R(ς ′), or
• ς is an apply state and ift < tς , then(v, t) 6∈ R(ς ′).

Proof. Assumeς ⇒ ς ′. We proceed by cases onς:
Caseς = ((lam, β),d, ve, t): Thus,ς ′ = (call, β ′, ve′, t). Choose

any (vn, tn) 6∈ R(ς) such thattn < t. We proceed by contradiction,
so suppose that (vn, tn) ∈ R(ς ′). Now, let〈(v0, t0), . . . , (vn, tn)〉 be
a path through;veς′ from T (ς ′).

Suppose the root of the path, (v0, t0), hast0 = t. Then we know
that this root binding was just created, and hence thatve(v0, t0) = di
for somei. From the definition ofT (ς), T (di) ⊆ T (ς), and so
〈(v1, t1), . . . , (vn, tn)〉 is a legitimate path through;ve from T (ς)—
the path is legitimate because no element past (v0, t0) in the path
can have a time equal tot, and becauseve andve′ differ only by
bindings for timet.

Now, suppose thatt0 < t. From this, we can infer thatv0 is
a free variable in bothlam and in call. Hence, (v0, t0) ∈ T (ς).
Consequently, the path〈(v0, t0), . . . , (vn, tn)〉 is also valid through
;ve.

Hence, under either supposition, (vn, tn) ∈ R(ς), which is a
contradiction.

Caseς = ([[(f e1 · · · en)]] , β, ve, t):
Thus,ς ′ = (proc,d, ve′, t + 1). In this case,ve = ve′. Conse-

quently, we can reduce this case to showingT (ς ′) ⊆ R(ς). By
definition,

T (A(e, β, ve)) =

{
{(v, β(v)) : v ∈ free(e)} e ∈ LAM
T (ve(e, β(e)) e ∈ VAR.

Now, we show thatT (proc) ⊆ R(ς). Either f ∈ LAM or
f ∈ VAR. If f ∈ LAM, by free(f) ⊆ free(call), T (proc) ⊆

19

R(ς). If insteadf ∈ VAR, then (f, β(f)) ∈ T (ς), and hence,
T (ve(f, β(f))) ⊆ R(ς ′). Either way,T (A(f, β, ve)) ⊆ R(ς). An
identical argument shows for eachdi thatT (di) ⊆ R(ς).

This case now follows from Lemma 6.4.

The No Zombies Lemma captures a fundamental constraint on
program behavior, and therefore acts as the workhorse for many of
our proofs.

Now we can show that soundness is preserved across non-GC
transitions:

Theorem 6.6. If a stateς is sound andς ⇒ ς ′, thenς ′ is sound.

Proof. Assumeς is sound andς ⇒ ς ′. We proceed by cases on the
structure ofς:

Caseς = ([[(f e1 · · · en)]] , β, ve, t): Soundness is established
by

R(ς ′) ⊆ R(ς) ⊆ dom(ve) = dom(ve′).

Taking this chain of relations from left to right:R(ς ′) ⊆ R(ς)
follows from the No Zombies Lemma;R(ς) ⊆ dom(ve) because
ς is sound; anddom(ve) = dom(ve′) simply because eval-state
transitions do not alter thevecomponent of the state, sove= ve′.

Caseς = (([[(λ (v1 · · · vn) call)]] , β),d, ve, t):
In this case,ς ′ = (call, β ′, ve′, t). Again, we must show that

R(ς ′) ⊆ dom(ve′). Choose (v′, t′) ∈ R(ς ′).
Subcaset′ < t: By the No Zombies Lemma, we have that

(v′, t′) ∈ R(ς). By this and the soundness ofς, we know that
(v′, t′) ∈ dom(ve). By this and the apply state schema, we know
that (v′, t′) ∈ dom(ve′).

Subcaset′ = t: In other words, this binding is fresh forς ′. In
this case, (v′, t′) is clearly indom(ve′).

Most importantly, we also show that performing a GC does not
degrade soundness:

Theorem 6.7. If ς is sound, thenΓ(ς) is sound.

Proof. AssumeSound(ς). By the definition ofR, all paths start-
ing from T (ς) through the relation;ve are over the elements in
R(ς). Hence, any of these paths is also valid through the relation
;ve|R(ς). As a result,R(Γ(ς)) = R(ς) ⊆ dom(veς). Consequently,
R(Γ(ς)) = dom(veς |R(ς)).

Because the initial state is sound, we can now claim that every
state on every possible branch through the computation is also
sound.

We can also show that performing a GC on a GC’d state doesn’t
change anything:

Lemma 6.8. Γ(Γ(ς)) = Γ(ς).

Now, we can show that all states at a given depth in the tree have
the same image under the GC function,Γ. The key inductive step
is the following theorem:

Theorem 6.9. If ς1 and ς2 are sound, andΓ(ς1) = Γ(ς2), then
either both states are terminal, orς1 ⇒ ς ′1 and ς2 ⇒ ς ′2 and
Γ(ς ′1) = Γ(ς ′2) .

Proof. AssumeSound(ς1), Sound(ς2) andΓ(ς1) = Γ(ς2). By the
definition ofΓ and soundness, if one state is terminal, then so is the
other. [To avoid triple subscripts, letςi = (. . . , vei, . . .).]

We now handle the case where they are non-terminal. We must
show that their subsequent states,ς ′1 and ς ′2 are equal under the
GC functionΓ, which reduces to showingve′1|R(ς ′1) = ve′2|R(ς ′2),
whereve′1 andve′2 are the variable environments for the subsequent
states. Before proceeding, we note that byΓ(ς1) = Γ(ς2), we can
infer R(ς1) = R(ς2).

We proceed by contradiction, so suppose we can find a bind-
ing (v′, t′) such that (ve′1|R(ς ′1))(v

′, t′) = d1 but that we had
(ve′2|R(ς ′2))(v

′, t′) = d2 6= d1. From this supposition, we know
that (v′, t′) ∈ dom(ve′1) and (v′, t′) ∈ R(ς ′1). We proceed by cases
on what could cause this inequality.

Case ve′2(v′, t′) 6= d1. By the apply state schema, we can rule
out the case wheret′ is fresh forς ′2. Thus,ve1(v′, t′) 6= ve2(v′, t′).
From this, we can infer that (v′, t′) is in neitherR(ς1) norR(ς2). By
the No Zombies Lemma, we would then have that (v′, t′) 6∈ R(ς ′1),
except that this is a contradiction.

Case (v′, t′) 6∈ R(ς ′2). Let 〈(v0, t0), . . . , (vn, tn)〉 be a path to
(v′, t′) from T (ς ′1) through;ve′1

; that (v′, t′) ∈ R(ς ′1) guarantees
this path exists. Letk be the lowest index in the path such that
〈(v0, t0), . . . , (vk, tk)〉 is not a valid path forR(ς ′2). The equality of
ς ′1 and ς ′2 over T means thatk 6= 0. By the apply state schema,
tk cannot be fresh forς ′2. Thus,ve1(vk−1, tk−1) 6= ve2(vk−1, tk−1),
which means that (vk−1, tk−1) 6∈ R(ς1). However, this lets us con-
clude, by the No Zombies Lemma, that (vk−1, tk−1) 6∈ R(ς ′1) either,
which is clearly not the case. Thus, the path must be valid forR(ς ′2)
as well, but this would imply that (v′, t′) ∈ R(ς ′2), which is a con-
tradiction.

From all of this, we can conclude that thenth children from any
two branches of execution are equivalent:

Theorem 6.10. If I(lam) Vn ς1 andI(lam) Vn ς2, thenΓ(ς1) =
Γ(ς2).

7. Abstract semantics:ΓCFA
Thus far, we have developed a concrete, garbage-collecting seman-
tics for CPS and proved its correctness. In this section, we shift
gears and build an abstract semantics—our analysis—which simu-
lates the concrete. While it is possible to separate abstract GC and
abstract counting, we add them both at the same time to avoid du-
plicating work. It is simple enough to tune parameters within this
framework so that either feature is effectively “turned off” through
degeneracy. We term this combined frameworkΓCFA.

The major components of this abstraction will be:

• An abstract domain for each concrete domain from Figure 5.
The abstract counterpart for a given domain will be written with
a hat on it,e.g., D̂ is the abstraction ofD.

• A family of abstraction functions—all written with the absolute-
value-style notation| · |—which maps elements from concrete
domains (such asState, D, andClo) into their corresponding
abstract domains (such aŝState, D̂ andĈlo).

• An abstract collection function,̂Γ : Ŝtate→ Ŝtate.

• Abstract transition relations,≈> and ≈>Γ̂ which simulate the
concrete transitions.

To abstract the semantics, we begin by making the set of times
finite, giving us the set̂Time. We also need an abstract “successor”
function,ŝucc: T̂ime→ T̂imewhich is constrained so that:

|t| v t̂ =⇒ |t + 1| v ŝucc(̂t).

By leaving the exact structure and size of̂Time unspecified, we
allow the precision of the analysis,e.g., 0CFA, 1CFA, CPA, to be
controlled externally.5

5 We should actually define the concrete successor function so that it takes
in the current state when choosing a next time. This then allows the abstract
successor function to take in the abstract state when making its decision.
Since this adds a few tedious distractions to the proof of correctness, we opt
to keep it simple here. We have shown detailed abstract-contour selection
machinery in previous work [8].

20

ς̂ ∈ Ŝtate = Êval+ Âpply

Êval = CALL× B̂Env× V̂Env× Ĉount× T̂ime
Âpply = P̂roc× D̂∗ × V̂Env× Ĉount× T̂ime

β̂ ∈ B̂Env = VAR→ T̂ime

b̂ ∈ B̂ind = VAR× T̂ime

v̂e∈ V̂Env = B̂ind→ D̂

p̂roc∈ P̂roc = Ĉlo+ {halt}
ĉlo ∈ Ĉlo = LAM× B̂Env

d̂ ∈ D̂ = P (P̂roc)
µ̂ ∈ Ĉount= B̂ind→ N̂
n̂ ∈ N̂ = {0, 1,∞}
t̂ ∈ T̂ime = a finite set of abstract times

Figure 6. Abstract Domains

The next significant change is the addition of an abstract bind-
ing counter,µ̂ ∈ Ĉount, to each state. Given an abstract bind-
ing (v, t̂), the valueµ̂(v, t̂) approximates how many concrete bind-
ings (v, t̂) currently represents. For our work, we use three possible
approximations—0, 1 and∞; that is, an abstract binding may rep-
resent no concrete bindings, a single concrete binding or an arbi-
trary number of concrete bindings.6 An abstraction of the naturals,
N̂ = {0, 1,∞}, represents these possibilities. We define the lattice
operations for̂N as:⊥N̂ = 0, >N̂ = ∞, t = max,u = min and
v = ≤.

Percolating these changes through the rest of the domains leads
to the abstract domains in Figure 6. The compression of the infinite
set Time into the finite setT̂ime causes each abstract binding to
represent multiple concrete bindings. As a result, the entry in an
abstract global variable environmentv̂efor a given abstract binding
may need to represent multiple concrete values. This causes the
domain of abstract denotable valuesD̂ to become a power domain.

Combining the above leads to a natural definition for the ab-
stract transition relation,≈>:

([[(f e1 · · · en)]] , β̂, v̂e, µ̂, t̂) ≈> (p̂roc, d̂, v̂e, µ̂, ŝucc(̂t))

where

{
p̂roc∈ Â(f, β̂, v̂e)

d̂i = Â(ei, β̂, v̂e)

(([[(λ (v1 · · · vn) call)]] , β̂), d̂, v̂e, µ̂, t̂) ≈> (call, β̂ ′, v̂e′, µ̂′, t̂)

where

 β̂ ′ = β̂[vi 7→ t̂]
v̂e′ = v̂et [(vi, t̂) 7→ d̂i]
µ̂′ = µ̂ ⊕ [(vi, t̂) 7→ 1].

Here, the operator⊕ is the natural abstraction of addition overN̂.
The argument evaluatorA abstracts naturally tôA:

Â(v, β̂, v̂e) = v̂e(v, β̂(v))

Â(lam, β̂, v̂e) = {(lam, β̂)}.

We add garbage collection to the abstract semantics with the
same steps we used in the concrete case. First, we define what it
means for an abstract value to touch an abstract binding, with the

6 We are abusing our notation a bit here: the element∞ doesn’t mean an
infinite number of bindings; it means anunknownor arbitrary number of
bindings.

Where precision is lost. It’s worth taking a moment to point
out where precision is lost. If we put the definitions of⇒
and≈> side-by-side and looked at the definitions ofve′ and
v̂e′, we’d notice a join (t) operation present in the abstract
that does not exist in the concrete. In the concrete, every time
we extendve, the bindings added are guaranteed to be fresh,
because we just bumped up the current time. In the abstract,
we can’t “extend”v̂e to get v̂e′, because the bindings may
not be fresh. As we try to insert an entry for (v, t̂) into v̂e,
something may already be there. If we overwrote the value
lying at (v, t̂), our analysis would no longer be sound, so
instead, we must merge the old and new values.

Returning to the example in the introduction, after ana-
lyzing the fragment the first time,̂ve([[x]] , t̂) would be{0},
and after the second time,̂ve([[x]] , t̂) would be{0, 5}.

Returning to the model developed in Section 4, the con-
crete addresses are members ofBind, the abstract addresses
are members of̂Bind, the concrete objects areD and the ab-
stract objects are members ofD̂. The functionsve and v̂e
themselves model the connections in the “heaps.”

function T̂ :

T̂ (lam, β̂) = {(v, β̂(v)) : v ∈ free(lam)}
T̂ (halt) = {}

T̂ {p̂roc1, . . . , p̂rocn} = T̂ (p̂roc1) ∪ · · · ∪ T̂ (p̂rocn).

As before, we can extend the notion of touching to abstract states:

T̂ (call, β̂, v̂e, µ̂, t̂) = {(v, β̂(v)) : v ∈ free(call)}
T̂ (p̂roc, d̂, v̂e, µ̂, t̂) = T̂ (p̂roc) ∪ T̂ (d̂1) ∪ · · · ∪ T̂ (d̂n).

The abstraction of the binding-to-binding adjacency relation looks
nearly the same:

b̂ ;̂v̂e b̂′ ⇐⇒ b̂′ ∈ T̂ (v̂e(b̂)).

The abstract reachable-bindings function,R̂ : Ŝtate→ P (B̂ind),
looks nearly identical to its concrete counterpartR, as well:

R̂(ς̂) = {b̂′ : b̂ ∈ T̂ (ς̂) andb̂ ;̂∗
v̂êς

b̂′}.

Now we can define the abstract GC function,Γ̂ : Ŝtate→ Ŝtate:

Γ̂(ς̂) =

{
(p̂roc, d̂, v̂e|R̂(ς̂), µ̂|R̂(ς̂), t̂) ς̂ = (p̂roc, d̂, v̂e, µ̂, t̂)

(call, β̂, v̂e|R̂(ς̂), µ̂|R̂(ς̂), t̂) ς̂ = (call, β̂, v̂e, µ̂, t̂).

The chief difference between̂Γ and the concrete versionΓ is that
we also restrict the domain of the binding counterµ̂, effectively
resetting any unreachable bindings back to a count of 0.

With this, the abstract GC transition becomes

Γ̂(ς̂) ≈> ς̂ ′

ς̂ ≈>Γ̂ ς̂ ′
.

To run the analysis, we first inject a programlam into an abstract
state usinĝI : LAM → Ŝtate:

Î(lam) = |I(lam)|.
We’ll define the abstraction operator| · | in the next section.

We need no notion of a final state for the abstract semantics, as
we are not particularly interested in the actual value produced by
the computation. To run the analysis then consists of collecting (in
the sense of acollecting semanticsrather than GC) all of the states

21

How precision is saved. Now that we’ve integrated abstract
garbage collection, we can discuss its role in improving
precision. Suppose the abstract interpretation is on the verge
of adding a new binding for (v, t̂) in v̂e. Eitherv̂e(v, t̂) = ⊥,
in which case this binding has been collected since its last
allocation (or never allocated at all), or some value is already
sitting at (v, t̂) in v̂e. Note that if nothing is at (v, t̂), then:

v̂et [(v, t̂) 7→ d̂] ≡ v̂e[(v, t̂) 7→ d̂].

That is, we are not merging abstract bindings.
Returning to the example in the introduction, after an-

alyzing the fragment the first time,̂ve([[x]] , t̂) would be
{0}. It’s likely, however, that before returning to this point,
garbage collection would reset̂ve([[x]] , t̂) to ⊥. Thus, during
the second pass,̂ve([[x]] , t̂) would be{5}.

Peeking back at theid example in Section 3, we can
motivate howΓCFA (with a 0CFA-level contour set) yields
the more precise answer: that onlylam′ is in the flow set for
the return value. After the first call toid, x is{lam}. Directly
after this call, however, that binding tox is unreachable, and
x can be reset to⊥. Thus, when interpretation reaches the
second call toid, there is no merging of{lam} and{lam′}.

reachable from the initial state on any path. In practice, we can stop
collecting on any given path if (1) the current state is stuck, or (2)
we have already visited a state that approximates (viav) the current
state. We refer to the set of abstract states reached by a program
pr as V̂(pr). Eventual termination of the analysis is guaranteed
because the space through which it roams,̂State, is finite.

7.1 Choices impacting precision

We left the set of abstract times constrained but unspecified, so that
we can vary precision externally. If we use a singleton set for̂Time,
we end up with 0CFA. We can instead let̂Timebe the set of call
sites, and then have the successor function̂succchoose the cur-
rent call site as the next “time.” This gives us 1CFA. Generalizing
further, it’s not hard to set upk-CFA for anyk. It’s also straightfor-
ward to set up Wright and Jagannathan’s polymorphic splitting [12]
or Agesen’s CPA [1]. By varyinĝTimeandŝucc, we can instantiate
almost any conceivable variation on existing analyses and have it
“GCified.”

There are a number of policy choices available for deciding
when to perform a GC transition, each with a different impact
on precision. The simplest policy, “never GC,” just gives us an
ordinary control-flow analysis. The other extreme, which is to GC
on every step, could be considered too aggressive because the act
of performing a GC transition throws away some information that
could be useful to the optimizer when trying to perform Super-
β copy propagation [8].7 The time cost of a GC does not appear
to be significant, and implementation results reveal that any GC
costs are handily outweighed by the savings we get from searching

7 This seems counterintuitive; it arises because the GC semantics reaps
away environment structure that is irrelevant to the programas it is—but
this structure might become relevant to proving the safety of the code-
transform we are contemplating. Consider the Super-β optimization which
seeks to change a referencer in the syntax tree from some variablex to
some other variablez, perhaps to makex into a useless variable.
In order to do this, the analysis must show thatx is always equal toz when-
ever control reaches pointr in the program. Performing this transformation
addsz to the free-variable set of positionr in the syntax tree, as well as
the free-variable sets ofr’s parents. However, while analysing theorigi-
nal program, at some point on the control path to thex reference atr, the
z binding may become dead, and so, by the time control actually reaches

a smaller state space. The policy we use when deciding whether
or not to make a GC is: “perform a GC transition if and only if
zombie creation would be imminent otherwise.” Zombie creation is
imminent if we are about to add a binding for (v, t̂), but µ̂(v, t̂) ≥ 1,
or alternatively,v̂e(v, t̂) 6= ⊥.

If desired, we can effectively turn abstract counting off by set-
ting N̂ = {∞}.

8. Correctness of the abstract semantics
In this section, we demonstrate the correctness of the analysis. We
have excised portions of the proofs which do not differ from an
ordinary proof of correctness for a control-flow analysis. These
portions are the same as the ones we’ve presented in earlier work [8,
7]. To show the correctness of the abstract semantics, we must show
that they simulate the concrete semantics. The first step in this
process is defining the simulation relation, and for that, we need
to define our abstraction map.

The concrete and the abstract are formally connected by the
abstraction operation,| · |:

|(call, β, ve, t)|Eval = (call, |β|, |ve|,M(ve), |t|)
|(proc,d, ve, t)|Apply = (|proc|, |d|, |ve|,M(ve), |t|)

|〈d1, . . . , dn〉|D∗ = 〈|d1|D, . . . , |dn|D〉
|d|D = {|d|Proc}

|halt|Proc = halt

|clo|Proc = |clo|Clo

|(lam, β)|Clo = (lam, |β|)
|(v, t)|Bind = (v, |t|)

|β|BEnv = λv.|β(v)|
|ve|VEnv = λ(v, t̂).

⊔
|t|=̂t

|ve(v, t)|D

where the abstract counter creator,M : VEnv→ Ĉountis

M(ve) = λb̂.ŝize{b′ ∈ dom(ve) : |b′| = b̂},

and the abstract set-size function̂sizeis

ŝize(S) =

{
size(S) size(S) ∈ {0, 1}
∞ otherwise.

For a setS whose elements are abstractable,|S| = {|s| : s ∈ S}.
Now we’re ready to define the simulation relation,S ⊆ Ŝtate×

State.

Definition 8.1 (Simulates). An abstract statêς simulates a con-
crete stateς, writtenS (ς̂, ς), iff |ς| v ς̂.

The key steps for correctness now become a matter of showing
that the simulation is preserved under transition and under GC:

Theorem 8.2. If S (ς̂, ς) andς ⇒ ς ′, then there exists an abstract
stateς̂ ′ such that̂ς ≈> ς̂ ′ andS (ς̂ ′, ς ′). Diagrammatically:

ς̂
S

≈>

ς

⇒

ς̂ ′ S
ς ′

Proof. With the exception of the binding-counter component, this
is a straightforward proof for the correctness of a control-flow

r, its binding will have been garbage collected—which kills our ability to
reason aboutz’s equality withx.

22

analysis. Correctness of the binding-counter component follows
from the lemmas below.

Theorem 8.3. If S (ς̂, ς), thenS (Γ̂(ς̂),Γ(ς)).

Proof. By Lemma 8.8.

Proving these theorems reduces to the following lemmas.

Lemma 8.4. If S (ς̂, ς), ς ⇒ ς ′, ς̂ ≈> ς̂ ′, andM(veς) v µ̂ς̂ then
M(veς′) v µ̂ς̂′ .

Proof. SupposeS (ς̂, ς), ς ⇒ ς ′, ς̂ ≈> ς̂ ′, andM(veς) v µ̂ς̂ . The
case whereς is an eval state is trivial, so supposeς is an apply state.
Let ς = (. . . , ve, t), ς ′ = (. . . , ve′, t), andς̂ = (. . . , v̂e, µ̂, t̂). By the
apply-state schema,ve′ = ve[(vi, t) 7→ di]. Thus:

M(ve′) = λb̂.ŝize{b ∈ dom(ve′) : |b| = b̂}
= λb̂.ŝize{b ∈ dom(ve) : |b| = b̂}

∪ {b ∈ dom([(vi, t) 7→ di]) : |b| = b̂}
= λb̂.ŝize{b ∈ dom(ve) : |b| = b̂}

⊕ ŝize{b ∈ dom([(vi, t) 7→ di]) : |b| = b̂}
v µ̂ ⊕M([(vi, t) 7→ di])

= µ̂ ⊕ [(vi, t̂) 7→ 1].

Lemma 8.5. If S (ς̂, ς), then|T (ς)| v T̂ (ς̂).

Proof. By cases on the structure ofς.

Lemma 8.6. |R(ς)| v R̂(|ς|).

Proof. For this case, the operatorv effectively becomes⊆. Choose
an abstract bindinĝb ∈ |R(ς)|. Let b be such that|b| v b̂ and
b ∈ R(ς). Let 〈b0, . . . , b〉 be a path that justifiesb ∈ R(ς). We can
show by Lemma 8.5 and contradiction that the path〈|b0|, . . . , |b|〉
must also justifŷb ∈ R̂(|ς|).

Lemma 8.7. If ς̂1 v ς̂2, thenR̂(ς̂1) v R̂(ς̂2).

Proof. By reasoning similar to Lemma 8.6.

Lemma 8.8. If S (ς̂, ς), thenM(veς |R(ς)) v µ̂ς̂ |R(ς̂).

Proof. AssumeS (ς̂, ς). Then,

M(veς |R(ς)) = M(ve)
∣∣|R(ς)| v µ̂ς̂ |R̂(ς̂).

Lemma 8.9.
∣∣ve|R(ς)

∣∣ v |ve|
∣∣|R(ς)|.

Proof. Choose any abstract bindinĝb.

|ve
∣∣R(ς)|(b̂) =

⊔
|b|=b̂

|(ve|R(ς))(b)|

=
⊔
|b|=b̂

|if b ∈ R(ς) then ve(b) else⊥|

v
⊔
|b|=b̂

|if b̂ ∈ |R(ς)| then ve(b) else⊥|

= if b̂ ∈ |R(ς)| then
⊔
|b|=b̂

|ve(b)| else⊥

= (|ve|
∣∣|R(ς)|)(b̂).

Lemma 8.10. If ve1 v ve2 andB̂1 v B̂2, thenv̂e1|B̂1 v v̂e2|B̂2.

Proof. By reasoning similar to Lemma 8.9.

9. Extensions
We can add primops and conditionals to the analysis in the standard
way, which is described in Shivers’ work [8]. Assuming appropriate
modifications to the syntax, we can handleletrec with anÊval→
Êval transition:

([[(letrec ((vi lami)) call)]] , β̂, v̂e, µ̂, t̂)
≈> (call, β̂ ′, v̂e′, µ̂′, t̂′)

where


t̂′ = ŝucc(̂t)
β̂ ′ = β̂[vi 7→ t̂′]
d̂i = Â(lami, β̂

′, v̂e)
v̂e′ = v̂et [(vi, t̂′) 7→ d̂i]
µ̂′ = µ̂ ⊕ [(vi, t̂′) 7→ 1].

We can also add a store to the semantics and apply abstract
counting and abstract GC to it. The store itself is merely an extra
component within the state, accessed by primops. The counterµ̂

must then also map abstract store locations intoN̂. This implies
that the reaching function̂R’s range may contain both bindings
and locations. It also means that the adjacency relation ˆ; must be
parameterized by both the variable environment and the store.

10. Applications
Control-flow analysis, for which we enhance precision, offers
a number of applications, including but certainly not limited to
constant propagation, useless-variable elimination and induction-
variable elimination.

Environment analysis, which we perform through abstract
counting, enables a more exotic array of optimizations, includ-
ing lightweight closure conversion, Super-β lambda propagation,
Super-β copy propagation and continuation promotion [8, 11, 7, 9].

We have recently shown [9] how these analyses, applied to CPS
representations, permit compilers to fuse together graphs of online
transducers. We hope to apply this technology to programs such
as DSP systems, network protocol stacks and graphics pipelines.
The analyses we’ve presented in this paper were critical to the
transducer-fusing transforms we have demonstrated in that setting.

Abstract counting can be brought to bear on environment analy-
sis by the following theorem, which provides the environment con-
dition allowing us to infer concrete environment equality.

Theorem 10.1(Environment condition). Take two abstract envi-
ronmentŝβ1 andβ̂2 that are reachable from the same abstract state.
Let µ̂ be the abstract binding counter from this state. Letβi be any
concrete environment corresponding toβ̂i. Then,β1(v) = β2(v) if
β̂1(v) = β̂2(v) and µ̂(v, β̂1(v)) = µ̂(v, β̂2(v)) = 1 .

Proof. By the definition of the simulation relation.

11. Results and implementation
We have a prototype implementation written in Haskell which
accepts a small subset of direct-style Scheme. It allows a choice
of 0CFA or 1CFA on the command-line and the option to turn
off abstract GC or abstract counting. The source code itself is a
close mapping of the mathematics, plus strictness annotations for
efficiency.

Table 1 measures improvement in analytic precision resulting
from just abstract GC. To get a general feel for the improvement
in precision, we include the number of states visited for ordinary
k-CFA and ourΓCFA. Generally speaking, fewer states represents

23

0CFA 0CFA+GC 1CFA 1CFA+GC
Program States Time States Time States Time States Time

fact-tail 28 ε 28 ε 28 ε 28 ε
fact-y-combinator 130 ε 80 ε 202 ε 110 ε
nested-loops 80 ε 71 ε 214 ε 82 ε
put-double-coroutines 3339 7m 51s 808 17s 9460 56m 30s 1813 57s
integrate-fringe-coroutines 7428 41m 31s 1619 1m 06s 31741 12h 31m 08s 6340 6m 55s
integrate-stream-coroutines 11540 3h 11m 54s 2066 2m 46s 27032 >12h 7055 9m 09s

Table 1. Improvements fork-CFA and GC without abstract counting. We report the number of states reached during analysis as well as
running time of the analysis. In both cases, lower values are better. A time ofε means that the analysis finished in less than a second.

0CFA+GC 1CFA+GC
Program Inlines w/o Counting Inlines w/Counting Inlines w/o Counting Inlines w/Counting

fact-tail 2 4 2 4
fact-y-combinator 4 8 4 8
nested-loops 4 10 4 10
put-double-coroutines 28 55 28 55
integrate-fringe-coroutines 45 77 45 77
integrate-stream-coroutines 46 72 47 76

Table 2. Improvement in lambda/constant propagation due to abstract counting. All runs used abstract garbage collection. We report the
number of expressions which can be replaced by aλ term/constant in the CPS-converted code. When abstract counting is enabled,λ terms
containing free variables may become eligible for (Super-β) inlining.

higher precision. Timing measurements were conducted on a 2.0
GHz Pentium 4 machine with 2 GB RAM running Fedora Core 4
Linux.8

For the more complicated examples, we were able to achieve or-
der of magnitude improvements in every case. The improvements
were less dramatic for the toy examples (such asfact-*) because
they offered less opportunity to improve: their small size left less
room for imprecision to compound itself. Most examples make
heavy use of Church encodings for constructs such as lists and op-
tion types. This is appropriate for testing as it makes the control-
flow analyzer’s jobmoredifficult (but we have no compelling rea-
son for using these encodings; it is simply an artifact of our crude,
prototype compiler). The*-coroutines examples make liberal
use ofcall/cc to build cooperatively multithreaded communica-
tion channels for stream processing [9].

Table 2 provides measurements for abstract counting’s ability
to inline λ terms or constants in place of variables. The number
of inlines with and without counting is given for comparison. All
examples in this table were run with abstract garbage collection
enabled.

12. Related work
The work we’ve developed in this paper lies at the confluence of
three lines of research: (1) prior work in control-flow analyses;
(2) prior work in environment analyses; and (3) prior work in
continuation-passing style representations.

From a control-flow analysis perspective, these techniques de-
scend from the broader body of work in higher-order control-flow
analysis, such as Shivers’ development of thek-CFA hierarchy [8].
By remaining agnostic to the structure of the abstract contour set,
our GC framework is orthogonal to, and synergistic with, most of
the subsequent innovations in CFA, such as Agesen’s CPA [1] and
Wright and Jagannathan’s polymorphic splitting [12]. That is, the

8 In the last test case, the benchmark machine lacked sufficient uptime and
availability (> 12 hours) to finish the 1CFA control test. We were still able
to compute the number of states visited on a dual 4 GHz Athlon in 6 hours.

ΓCFA framework should be able to take nearly any control-flow
analysis and make it more precise.

Shivers [8] introduced the term “environment analysis,” the
higher-order analog to must-alias analysis for variables and en-
vironments. His initial solution, reflow analysis, operates on the
same principle underlying our work: inferring when an abstract ob-
ject has only one corresponding concrete object. He achieves this
by selectively allocating a single unique abstract contouronceat a
point of interest during the analysis. For the remainder of the analy-
sis, this abstract contour is then effectively equivalent to a concrete
contour. This approach, however, suffers from the drawback that
the analysis must be re-run for each point of interest, and it does
not have the benefit of GC to improve precision. The techniques
we’ve presented here could be considered as a sort of “opportunis-
tic reflow analysis.” Our work is further differentiated by a proof
of correctness. (We suspect the proof techniques we employed to
show the correctness of abstract counting could be employed to
show the correctness of reflow analysis.)

With regard to must-alias analysis, our GC and counting anal-
yses are related to the line of work initiated by Hudak’s abstract
reference counting [5], continued by Chase’s [2] strong update
and generalized by Jagannathan [6]. Our abstract counterµ̂ and
reachability functionR̂ are quite similar to Jagannathan’s cardinal-
ity maps and reachmaps; in fact, Jagannathan described his tech-
nique as “an abstract form of garbage collection.” Of the work
that we know, Jagannathan is the first to use abstract garbage
collection in a higher-order analysis, and also the first to per-
form environment/must-alias analysis through the notion of “sin-
gleness.” In these ways, his result is the closest to our own; it differs
from our work in that:

• Our analysis supports polyvariance.

• Our analysis is a fundamental shift in granularity from the
variable level to the binding level.

• We operate over CPS rather than direct style, which makes
it simple to use an operational semantics for performing our
analysis, instead of constraint-solving.

24

• We need no explicit support for “strong update,” as GC provides
exactly the same effect. That is:ρ t [x 7→ y] = ρ[x 7→ y] when
ρ(x) = ⊥.

• Our reachability analysis is computed on-the-fly rather than
once, and we do not need to run multiple iterations of the
analysis to achieve the best results possible.

In other work [7], we have developed a technique,∆CFA, for
performing environment analysis using abstract frame strings. Like
other environment analyses,∆CFA relies upon the ability to infer
concrete equality from certain abstract conditions. Both abstract
GC and counting are orthogonal to and synergistic with∆CFA. In
practice, we have observed very significant improvements in speed
and precision when we added these techniques to our∆CFA trials.

A second line of work regarding environment analysis was initi-
ated by Wand and Steckler’s use of invariance sets [11]. Their anal-
ysis is not (outwardly) rooted in the notion of determining concrete
equality from the abstract, but rather in determining which vari-
ables must remain unchanged—invariant—across machine transi-
tions. Wand and Steckler also introduced lightweight closure con-
version, a cousin of Shivers’ Super-β inlining, to motivate the need
for their environment analysis. Hannan [4] later translated this tech-
nique to a type system. The invariance-set approach to environment
analysis, however, suffers from an inability to handle certain com-
mon cases, such as when a closure escapes its context of creation.

Our analysis also draws on the body of work that supports the
CPS-as-intermediate-representation thesis. The foundational work
here is by Steele [10]. Shivers’ earlier work [8] in CPS-based anal-
ysis has provided the basic framework for the techniques we’ve
developed here. CPS lends itself to analysis based on a state-
collecting abstract interpretation because it corresponds so natu-
rally to a state machine. In the context of our GC operations, having
a simple state machine means that we can freeze execution at inter-
mediate states, perform a GC, and then resume. We could achieve
this in a non-CPS setting, with a semantics based on context gram-
mars or progress-establishing inference rules, but it would compli-
cate the analysis and its correctness proofs. With CPS, we don’t
have to add machinery to our semantics to handle evaluation con-
text, or worry about or reference subcomputations appearing in a
justification tree for a given machine step.

13. Future work
We are currently in the process of adding these analyses to an
industrial-strength compiler for full SML. With this, we hope to
obtain measurements on precision and time improvements for very
large code bases. We are also curious to see if there are the per-
formance tradeoffs involved in using Hudak’s abstract reference
counting [5] rather than the tracing-style garbage collector pre-
sented here. Reference counting has the benefit of providing timely
deallocation, which could then spread apart the points where need-
driven tracing GC would have to be invoked by the analysis.

Acknowledgments
Suresh Jagannathan very kindly pointed out some important related
work that helped the development of our ideas. We’d also like to
thank Ben Chambers, Daniel Harvey and our anonymous review-
ers, whose detailed feedback made for a much better paper.

References
[1] A GESEN, O. The cartesian product algorithm: Simple and pre-

cise type inference of parametric polymorphism. InProceedings of
ECOOP 1995(1995), pp. 2–26.

[2] CHASE, D. R., WEGMAN, M., AND ZADECK, F. K. Analysis of
Pointers and Structures. InACM SIGPLAN Conference on Program-
ming Language Design and Implementation(White Plains, New York,
June 1990), pp. 296–310.

[3] COUSOT, P.,AND COUSOT, R. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approx-
imation of fixpoints. InACM SIGPLAN Symposium on Principles of
Programming Languages(Los Angeles, California, Jan. 1977), vol. 4,
pp. 238–252.

[4] HANNAN , J. Type Systems for Closure Conversion. InWorkshop on
Types for Program Analysis(1995), pp. 48–62.

[5] HUDAK , P. A semantic model of reference counting and its abstrac-
tion (detailed summary). InProceedings of the 1986 ACM Conference
on LISP and Functional Programming(Cambridge, Massachusetts,
Aug. 1986), pp. 351–363.

[6] JAGANNATHAN , S., THIEMANN , P., WEEKS, S., AND WRIGHT,
A. K. Single and loving it: Must-alias analysis for higher-order lan-
guages. InACM SIGPLAN Symposium on Principles of Programming
Languages(San Diego, California, January 1998), pp. 329–341.

[7] M IGHT, M., AND SHIVERS, O. Environment Analysis via∆CFA.
In ACM SIGPLAN Symposium on Principles of Programming Lan-
guages(Charleston, South Carolina, January 2006), pp. 127–140.

[8] SHIVERS, O. Control-Flow Analysis of Higher-Order Languages.
PhD thesis, School of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-
CS-91-145.

[9] SHIVERS, O., AND MIGHT, M. Continuations and transducer com-
position. InACM SIGPLAN Conference on Programming Language
Design and Implementation(Ottawa, Canada, June 2006).

[10] STEELE JR., G. L. RABBIT: a compiler for SCHEME. Master’s
thesis, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, May 1978. Technical report
AI-TR-474.

[11] WAND, M., AND STECKLER, P. Selective and lightweight closure
conversion. InACM SIGPLAN Symposium on Principles of Program-
ming Languages(Portland, Oregon, January 1994), vol. 21, pp. 435–
445.

[12] WRIGHT, A. K., AND JAGANNATHAN , S. Polymorphic splitting:
An effective polyvariant flow analysis.ACM Transactions on Pro-
gramming Languages and Systems 20, 1 (January 1998), 166–207.

25

