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Abstract. We present and discuss techniques for performing and im-
proving the model-checking of higher-order, functional programs based
upon abstract interpretation [4]. We use continuation-passing-style con-
version to produce an abstractable state machine, and then utilize ab-
stract garbage collection and abstract counting [9] to indirectly prune
false branches in the abstract state-to-state transition graph. In the pro-
cess, we generalize abstract garbage collection to conditional garbage
collection; that is, we collect values which an ordinary reaching-based
collector would have deemed live when it is provable that such values
will never be referenced. In addition, we enhance abstract counting, and
then exploit it to more precisely evaluate conditions in the abstract.
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1 Introduction

We are interested in analysing and verifying the behavior of programs written
in call-by-value, higher-order programming languages based on the λ-calculus,
such as Scheme or Standard ML. (However, techniques developed for this class
of languages can be profitably adapted for other higher-order languages, such as
Haskell or Java.) Our goal is to describe the construction of a model checker for
higher-order programs in such a way that it is eligible to achieve precision en-
hancements by garbage collecting “dead” environment structure in the abstract
state space traversed by the program.

We decompose building a garbage-collecting model checker for a higher-order
language into four steps:

1. Convert the language’s semantics into state-to-state rules of the form ς ⇒ ς ′.
2. Axiomatize the rules by modelling control explicitly, i.e., with continuations.
3. Instrument the resulting state machine with garbage collection.
4. Construct an abstract interpretation of this machine’s transition relation.

The abstract state-to-state transition that results induces a finite, directed graph
between abstract states, which sets the stage for model checking. However, the
abstraction that makes the state-space finite and hence checkable, can obscure
the property we seek, and so render the entire analysis useless. Folding states
in the concrete state space together introduces spurious paths; if these spurious
paths admit the possibility of “bad” behavior, then our computable abstract
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analysis will erroneously conclude that a correct program might give rise to
incorrect behavior. The program succeeds, but the analysis has failed.

We address this problem with Step (3) above: garbage-collecting elements of a
machine state (such as its environment structure and bound values) permits the
abstract interpretation to prune false branches from the state space’s transition
graph. To get a feel for the reduction in the state space, consider the following
doubly nested loop, written in a direct-style Scheme:

(letrec ((lp1 (λ (i x)

(if (= 0 i) x

(letrec ((lp2 (λ (j f y) (if (= 0 j)

(lp1 (- i 1) y)

(lp2 (- j 1) f

(f y))))))

(lp2 10 (λ (n) (+ n i)) x))))))

(lp1 10 0))

Figure 1 shows the flow-sensitive, context-sensitive abstract transition graphs
generated by this loop first without, and then with, abstract garbage collection.
Garbage-collecting environment structure during the exploration of the abstract
state space yields an order of magnitude improvement in the size of the state
space—enough so that the doubly-nested structure of the loop is visually ap-
parent from the second graph. (Besides the improvement in analytic precision,
we also get a secondary benefit in that the processor time and memory space
needed to explore the abstract state space are also greatly reduced.)

Abstract garbage collection sets the stage for another technique known as
abstract counting [9]. With abstract counting, we track the “cardinality” of an
abstract object; that is, we track whether an abstract object currently represents
zero, one or more than one concrete values. Suppose we were to use sets of
concrete values for our abstract values. Ordinarily, if abstract value A were
equal to abstract value B, we could not infer that any concrete value a ∈ A is
equal to any concrete value b ∈ B, except for the case where A and B have size
one. The ability to transfer abstract equality to concrete equality allows us to
more precisely evaluate conditions, e.g. (= x y), in the abstract.

In previous work [9], we developed a higher-order flow-analysis framework,
ΓCFA, which synergistically combines abstract counting and abstract garbage
collection as we’ve just outlined above. The benefit of combining the two is
that we can use abstract counts to reason more precisely about reachable values
during abstract garbage collection. This, in turn, increases the chance that we
can cut off even more branches from the abstract transition graph.

Our purpose in this paper is to show how ΓCFA technology can be applied to
the problem of model-checking software written in higher-order languages. Our
technical contributions are:

1. Enhancing abstract garbage collection by switching from reachability to us-
ability as the criterion for liveness. That is, our garbage collector discards
abstract values and environment structure which are “reachable,” but whose
use is dominated by conditions which have become unsatisfiable. We term
this conditional garbage collection.
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Fig. 1. These images are abstract state-to-state transition graphs generated from the
same doubly nested loop. Construction of the top graph did not utilize abstract garbage
collection. The bottom graph is the result of garbage collecting at each step.

2. Using abstract counting to more precisely evaluate conditionals during ab-
stract garbage collection. We also improve the precision of abstract counting
by accounting for objects that remain invariant across transitions.

2 CPS

Our first task in preparing a program for model checking is to put it into a
continuation-passing style (CPS) representation [1, 6, 12]. In CPS, function calls
do not return; they are one-way control transfers. Further, all control structures
(call, return, loops, exceptions, and so forth) are encoded using this restricted
mechanism. Among other benefits, CPS reifies implicit control context, thus
rendering it into a form that can be handled by the abstract garbage-collection
machinery we’ll be using.

The grammar for our particular CPS representation is given in Figure 2. Note
that our language has some syntactic structure more reminiscent of A-Normal
Form (ANF) [10] than minimal CPS: it includes an explicit if conditional form,
instead of encoding conditionals as primitive procedures that take multiple con-
tinuation arguments, and we also have a let form for binding variables to the
results of “trivial” expressions, which can be trees of primop applications whose
leaves are variables, constants and λ terms. We also provide a letrec form for
defining mutually-recursive functions, and a halt form that terminates the com-
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const ∈CONST = Z+ {#f}
prim ∈PRIM = {+, *, equal?, <, . . .}

v ∈VAR ::= a set of identifiers

e, f ∈EXP ::= v | const
| (λ (v1 · · · vn) call)
| (prim v1 · · · vn)

call ∈CALL ::= (f e1 · · · en)

| (if ec et ef )

| (let ((v e)) call)
| (letrec ((v lam)∗) call)
| (halt e)

Fig. 2. A grammar for restricted CPS. Programs are alphatised terms with no free
variables, i.e., any two binding variables are distinct.

putation, providing its final result. Note the signature syntactic distinction of
a CPS representation: the arguments ei to a function call (f e1 · · · en) cannot
themselves be function calls—that would require function calls to return a value,
which CPS does not permit.

3 Generating the abstract state graph with ΓCFA

Our objective in this section is to create a computable, finite abstract transition
relation—that is, a small-step operational semantics for our CPS language whose
set of possible machine states is finite. (We skip over the development of the
corresponding concrete semantics. It is completely standard, and can, in any
event, be inferred from the abstract semantics.) Figure 3 gives the state-space
for ΓCFA.

The set Ŝtate is the set of possible abstract states—the nodes in the forthcom-
ing abstract transition graph. We distinguish two kinds of states: Êval states and
Âpply states. In an Êval state, execution has reached a call site, e.g. (f e1 · · · en),
where the function f and its arguments ei need evaluation. In an Âpply state,
execution has reached the application of a procedure to a vector of argument
values.

In Êval states, arguments are evaluated under the current environment, which
is decomposed into a “local” variable-to-binding portion (B̂Env) and a “global”
binding-to-value portion (V̂Env) [11]. Given a factored environment (β̂, v̂e), a
variable maps to a value in two stages: (1) the time of its binding in the current
environment β̂ is found: β̂(v); and (2) the value attached to the variable at this
time is looked up: v̂e(v, β̂(v)). Consequently, the binding (v, t̂) acts as a reference
to this value. (When using a binding in this referential sense, we refer to it as
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bς ∈ Ŝtate = Êval + Âpply

Êval = ĈALL× B̂Env × V̂Env × Ĉount × T̂ime

Âpply = P̂roc × bD∗ ×dRef
∗ × V̂Env × Ĉount × T̂ime

bβ ∈ B̂Env = VAR → T̂ime
bb ∈ B̂ind = VAR × T̂ime

bve ∈ V̂Env = B̂ind → bD
br ∈ dRef = B̂ind
bd ∈ bD = P(dBas + P̂roc)

dproc ∈ P̂roc = dClo
cclo ∈dClo = LAM × B̂Env
cbas ∈ dBas = · · ·
bµ ∈ Ĉount = B̂ind → {0, 1,∞}
bt ∈ T̂ime = a finite set of abstract times

Fig. 3. The abstract state-space.

a member of R̂ef to emphasize the distinction.) We also sometimes refer to the
variable environment v̂e as the abstract heap.

The set of abstract denotable values (D̂) is the power set of basic values (B̂as)
and procedures (P̂roc). The finite set T̂ime takes the place of Shivers’ contour
set [11]; consequently, the context-sensitivity of the analysis depends on the
choice of the set T̂ime and the next-time function, ŝucc : Ŝtate× T̂ime → T̂ime.

Up to now, our semantic domains have been completely standard for a higher-
order control-flow analysis; we now introduce the extra machinery that gives our
ΓCFA abstract semantics the ability to engage in abstract garbage collection and
counting. Every state features a counter map µ̂. For a binding b̂ and counter µ̂,
the count µ̂(b̂) approximates how many concrete bindings the abstract bind-
ing b̂ represents. The set of approximate counts is {0, 1,∞}, where the symbol
∞ denotes any number greater than one, and the operator ⊕ is the natural
abstraction of addition.

The argument-evaluation function Â : EXP × B̂Env × V̂Env → D̂ is:

Â(const , β̂, v̂e) = {const}
Â(v, β̂, v̂e) = v̂e(v, β̂(v))

Â(lam, β̂, v̂e) = {(lam, β̂)}
Â([[(prim v1 · · · vn)]], β̂, v̂e) = Ô(prim)〈Â(v1, β̂, v̂e), . . . , Â(vn, β̂, v̂e)〉

where the function Ô : PRIM → (D̂∗ → D̂) maps a primitive to a sound
abstraction.

Figure 4 defines the transition ς̂ ≈> ς̂ ′. The first transition rule (arg. eval.)
looks up the procedure for the expression f , evaluates the arguments e1, . . . , en

and moves forward. The next rule (conditional) makes a best-effort attempt
to avoid forking on conditional evaluation. The subsequent rule (let-binding)
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([[(f e1 · · · en)]], bβ, bve, bµ,bt) ≈> (dproc, bd, br, bve, bµ, dsucc(bς,bt))

where

8
<
:
dproc ∈ bA(f, bβ, bve)
bdi = bA(ei, bβ, bve)

bri = if ei ∈ VAR then (ei,bt) else ⊥
(arg. eval.)

([[(if ec et ef )]], bβ, bve, bµ,bt) ≈> (dproc, 〈〉, bve, bµ, dsucc(bς,bt))

where dproc ∈

8
><
>:

bA(et, bβ, bve) #f 6∈ bA(ec, bβ, bve)
bA(ef , bβ, bve) {#f} = bA(ec, bβ, bve)
bA(et, bβ, bve) t bA(ef , bβ, bve) otherwise

(conditional)

([[(let ((v e)) call)]], bβ, bve, bµ,bt) ≈> (call , bβ[v 7→ bt ], bve ′, bµ′, dsucc(bς,bt))
where

 bve ′ = bve t [(v,bt) 7→ bA(e, bβ, bve)]

bµ′ = bµ⊕ (λ .0)[(v,bt) 7→ 1]

(let-binding)

([[(letrec ((v e)∗) call)]], bβ, bve, bµ,bt) ≈> (call , bβ′, bve ′, bµ′,bt ′)

where

8
>><
>>:

bt ′ = dsucc(bς,bt)
bβ′ = bβ[vi 7→ bt ′]
bve ′ = bve t [(vi,bt ′) 7→ bA(lami, bβ′, bve)]

bµ′ = bµ⊕ (λ .0)[(vi,bt ′) 7→ 1]

(letrec-binding)

(([[(λ (v1 · · · vn) call)]], bβ), bd, br, bve, bµ,bt) ≈> (call , bβ′, bve ′, bµ′, dsucc(bς,bt))

where

8
<
:

bβ′ = bβ[vi 7→ bt ]
bve ′ = bve t [(vi,bt) 7→ bdi]

bµ′ = bµ[(vi,bt) 7→ bµ(vi,bt)⊕ if (vi,bt) = bri then 0 else 1].

(proc. app.)

Fig. 4. The ΓCFA abstract transition bς ≈> bς ′

covers the Êval -to-Êval transition for let constructs. The (letrec-binding) rule
is similar, but it implements recursive environment structure by evaluating the λ

terms within the next environment β̂′. The final rule (proc. app.) covers Âpply-
to-Êval transitions for the application of a procedure.

In an improvement upon previous work [9], we include machinery to detect
when a binding remains invariant across a call. The sole purpose of passing
a vector of references (i.e., bindings) is to determine when a variable is being
rebound to itself. In the (proc. app.) rule, when it’s found that a binding is being
rebound to itself, its abstract cardinality—the number of concrete bindings it
represents—does not increase.

The root of the abstract graph for a program call is the initial machine state,
an Êval state with an empty environment and a counter that maps everything
to 0: (call ,⊥,⊥, (λ .0), t̂0).

Note that using a CPS-based representation renders all the rules of our se-
mantics axioms: none of the rules in Figure 4 are inference rules with antecedents.
Thus, a CPS semantics really captures the notion of a “machine,” where each
transition depends on a local, bounded amount of computation and context.

Finally, note what happens when we cast our fairly standard higher-order
control-flow analysis as an abstract small-step semantics: it maps a program
into a finite state-graph. . . which is exactly what a model-checker needs. Before
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invoking a model checker, however, we’ll first turn our attention to techniques
to “sharpen” our abstract state graph, reducing the degree of approximation
inherent in its finite structure.

4 Governors

Conditional abstract garbage collection attempts to discard even some “reach-
able” abstract objects by proving that an unsatisfiable condition guards their
use. This requires a syntactic function that yields the sequence of the conditions
that hold upon reaching an expression. For example, in the expression:

(let ((a 3))

(if (= a b) e1 e2))

The binding ( 7→ a 3) and the condition (= a b) govern the use of the expres-
sion e1, whereas ( 7→ a 3) and (not (= a b)) govern the use of e2. Formally,
given a term t and a subterm s ∈ t, the governors of s within t are the conditions
in the vector G(t, s), where G is defined in Figure 5.

G(v, s) = 〈〉
G(const , s) = 〈〉

G([[(λ (v1 · · · vn) call)]], s) = G(call , s)

G([[(e1 · · · en)]], s) =

(
G(ei, s) s ∈ ei

〈〉 otherwise

G([[(let ((v e)) call)]], s) =

8
><
>:

G(e, s) s ∈ e

〈[[( 7→ v e)]]〉 § G(call , s) s ∈ call

〈〉 otherwise

G([[(letrec ((v lam)
∗
) call)]], s) =

8
><
>:

〈[[( 7→ vi lami)]]〉 § G(lami, s) s ∈ lami

〈[[( 7→ vi lami)]]〉 § G(call , s) s ∈ call

〈〉 otherwise

G([[(if ec et ef )]], s) =

8
><
>:

〈ec〉 § G(et, s) s ∈ et

〈[[(not ec)]]〉 § G(ef , s) s ∈ ef

〈〉 otherwise

Fig. 5. The governor function. (We write v1 § v2 to concatenate two vectors.)

5 Conditional abstract garbage collection

In previous work [9], we based abstract garbage collection on the same notion
as concrete garbage collection: reachability. That is, if object a is reachable, and
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a points to b, then object b is also considered reachable. Reachability, however,
is overly conservative, as it might keep objects uncollected when they will never
again be used.

Consider the following thunk-creating function, f:

(define (f a b c d)

(λ () (if (equal? a b) c d)))

Analyzing the expression (f x x y z) produces an abstract closure contain-
ing entries for the variables a, b, c and d in its environment. So, all four
bindings would be considered reachable from this closure. In reality, however,
it is impossible to reach the binding to the variable d, since the predicate
(not (equal? a b)) governs its use, and because the predicate is provably
unsatisfiable from the information x = a = b. To lessen such problems, we an-
notate object-to-object links with governing conditions in the abstract heap v̂e;
these conditions must be satisfiable for a binding to be potentially usable.

To build this stronger GC, we first need the concept of the set of bindings
touched by a value. The touching function accepts an environment, a counter
and a value, and it returns the bindings directly touched by that value:

T̂ bµcve(lam, β̂) = {(v, β̂(v)) : v ∈ free(lam) and (β̂, v̂e, µ̂, 〈〉) MaySat G(lam, v)},

where the MaySat (may satisfy) relation includes a binding only if all of its
governors could be satisfiable.

The MaySat relation is a subset of (B̂Env × V̂Env × Ĉount × Ĝov
∗
)× Ĝov

∗
.

The notion that a compound environment (β̂, v̂e, µ̂, g) may satisfy a vector of
governors g′ is defined recursively:

(β̂, v̂e, µ̂, g) MaySat g′1 (β̂, v̂e, µ̂, g § 〈g′1〉) MaySat 〈g′2, . . . , g′n〉
(β̂, v̂e, µ̂, g) MaySat 〈g′1, . . . , g′n〉

The base case, (β̂, v̂e, µ̂, g) MaySat 〈〉, holds trivially.
Clearly, we can specify a number of rules to describe the MaySat relation on

a single governor. The less obvious rules are below. For any case not covered,
the MaySat relation can always conservatively report “yes,” Were the relation
MaySat to always report “yes,” the GC would become reachability-based.

Binding governors are trivially satisfied, and they also yield an equivalence:

( 7→ v e) ∈ g

(β̂, v̂e, µ̂, g) MaySat (≡ v e)

Surprisingly, with the use of abstract counting, we can also attempt to prove
complete equality (≡) for function values by checking (efficiently) to see if two
closures happen to describe the same function:

Â(v1, β̂, v̂e) = Â(v2, β̂, v̂e) = (lam, β̂′) ∀v ∈ free(lam) : µ̂(v, β̂′(v)) = 1
(β̂, v̂e, µ̂, g) MaySat (≡ v1 v2)
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We may also choose to invoke an external theorem prover in an attempt to
demonstrate the MaySat relation. In other work [8], we explored the sound inte-
gration of abstract interpretation and theorem proving. The issues and solutions
encountered there are adaptable to this context as well.

At this point, we can define the remainder of the garbage-collection machin-
ery. Basic values touch nothing; for denotables, we extend touching:

T̂ bµcve{p̂roc1, . . . , p̂rocn} = T̂ bµcve(p̂roc1) ∪ · · · ∪ T̂ bµcve(p̂rocn).

We can then extend the notion of touching to states:

T̂ (call , β̂, v̂e, µ̂, t̂) =
{

(v, β̂(v)) :
v ∈ free(call), and
(β̂, v̂e, µ̂, 〈〉) MaySat G(call , v)

}

T̂ (p̂roc, d̂, r̂, v̂e, µ̂, t̂) = T̂ bµcve(p̂roc) ∪ T̂ bµcve(d̂1) ∪ · · · ∪ T̂ bµcve(d̂n).

These functions return the root set from which garbage collection begins. Note
that the touching function does not return the references supplied, r̂. These
references are never used to index into the abstract heap v̂e, and so do not
constitute a reachable use.

The resource we care about is the set of reachable bindings (not values), so
the following relation links binding to binding, skipping over intervening values:

b̂toucher Ã̂bµ
cve b̂touched iff b̂touched ∈ T̂ bµcve(v̂e(b̂toucher)).

The abstract reachable-bindings function, R̂ : Ŝtate → P(B̂ind) computes
the bindings reachable from a state:

R̂(ς̂) = {b̂ : b̂root ∈ T̂ (ς̂) and b̂root Ã̂bµbς
cve bς

∗
b̂}.

Now we can define the abstract GC function, Γ̂ : Ŝtate → Ŝtate:

Γ̂ (ς̂) =

{
(p̂roc, d̂, r̂, v̂e|R̂(ς̂), µ̂|R̂(ς̂), t̂) ς̂ = (p̂roc, d̂, r̂, v̂e, µ̂, t̂)
(call , β̂, v̂e|R̂(ς̂), µ̂|R̂(ς̂), t̂) ς̂ = (call , β̂, v̂e, µ̂, t̂).

Less formally, abstract garbage collection restricts the global variable environ-
ment and the counter to those bindings which are reachable from that state.1

For any state, we can make a garbage-collecting transition instead of a regular
transition:

Γ̂ (ς̂) ≈> ς̂ ′

ς̂ ≈>bΓ ς̂ ′
.

Unlike the flow-analytic version of ΓCFA, there is no advantage for precision in
delaying a collection, so every transition now collects.2 Figure 6 provides a visual
representation of the abstract heap both without governors (traditional ΓCFA)
and with governors (our enhanced ΓCFA).
1 When an entry in a counter bµ is restricted, it maps to 0 rather than the value ⊥.
2 Some optimizations, such as Super-β copy propagation, require that the flow analysis

preserves information about dead bindings as long as possible. If counting can prove
a dead binding equivalent to a live binding, it is sometimes efficient to replace the
live variable with the otherwise dead variable.
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bb1 22 ONMLHIJKdproc1
ss

bb2

88ppppppppppppp // ONMLHIJKdproc2

xxbb3
// ONMLHIJKdproc3

bb1 22 ONMLHIJKdproc1

(equal? x y)

ss

bb2

88ppppppppppppp // ONMLHIJKdproc2

(< z 3)

xxbb3
// ONMLHIJKdproc3

Fig. 6. Two illustrations of an abstract environment ( bve). Abstract bindings (in boxes)
behave like addresses. Abstract values are in circles. Solid arrows denote that a binding
yields a particular value in this abstract machine state’s total environment bve. Dotted
arrows denote that a value touches (bT ) a particular binding. The labels on dotted
arrows denote the guards which must be satisfiable in order for the binding to be
semantically touchable. The image on the left denotes a heap without governors; the
image on the right includes sample governors which must be satisfied for a value to
touch a binding.

6 Termination

Näıvely exploring the entire abstract transition graph, while sound, is not the
best approach to running the analysis. At the very least, the state-space should
be explored in depth-first order; each time a new state ς̂ is encountered, the
analysis should check to see whether there exists previously-visited state ς̂ ′ such
that ς̂ v ς̂ ′. If so, this branch terminates soundly.

Even this approach, however, misses opportunties to cut off forking due to
conditionals such as if. Instead, the search can use two work lists: a normal work
list, and a join-point work list. In the normal phase, the search pulls from the
normal work list. When queueing subsequent states, a state applying a join-point
continuation3 goes in the join-point work list. After exhausting the normal work
list, the search runs garbage collection on all states in the join-point list. After
this, the search is free to merge (through t : Apply × Apply → Apply) those
states currently at the same continuation. Aggressive merging lowers precision in
exchange for speed, whereas less enthusiastic merging leads to higher precision
but more time. After this, the join-point and normal lists are swapped, and the
exploration continues.

7 A small example

In this section, we will trace through a small example that very simply demon-
strates how abstract garbage collection leads to increased flow-sensitivity even
in a context-insensitive analysis. Flow-sensitivity, in turn, is important when
3 Join-point continuations are easily annotated during CPS conversion.
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verifying the safety of programs that must obey an ordering in their use of an
API. We opt for a very simple specification: that calls to lock and unlock are
in the right order and never nested.

Take the following program:

(define (lockloop n)

(if (= n 0) (begin (lock mutex) (lockloop 1))

(begin (unlock mutex) (lockloop 0))))

(lockloop 0)

Clearly, this program will forever alternate between locking and unlocking mutex.
But can we model check the computation’s abstract state space to verify that it
correctly observes the lock/unlock protocol? Unfortunately, if we proceed with
an ordinary 0CFA-level abstract interpretation, we’re told that this code could
potentially lock mutex twice. Here’s what happens:
1. The flow set for n grows to {0}.
2. The true conditional arm is taken.
3. mutex is locked.
4. lockloop is called recursively.

5. The flow set for n grows to {0, 1}.
6. Both conditional arms are taken.
7. The analysis tries to re-lock mutex.
8. Lock-order-safety verification fails.

The problem we’re encountering is that in a traditional abstract interpre-
tation, the flow sets increase monotonically. With abstract garbage collection
enabled, however, flow sets can contract, and we get the following scenario:
1. The flow set for n grows to {0}.
2. The true conditional arm is taken.
3. mutex is locked.
4. The flow set for n is GC’d.
5. lockloop is called recursively.
6. The flow set for n grows to {1}.

7. The false conditional arm is taken.
8. mutex is unlocked.
9. The flow set for n is GC’d.

10. lockloop is called recursively.
11. The flow set for n grows to {0}.
12. Lock-order verification succeeds.

With abstract garbage collection enabled, this small example is verified to
be safe with respect to proper locking behavior even with 0CFA-level precision.
Figure 7 depicts the abstract transition graphs generated both without, and then
with, abstract garbage collection enabled. As before, the simplification makes it
possible visually to reconstruct the control flow of the code from the garbage-
collected graph.

Note that we have not verified the (enormous) state space produced by inter-
leaving execution steps of the locking thread with execution steps of some other
thread in some concurrent semantics, which, of course, is the context in which
we usually care about locks. We have simply verified that a single sequential
computation manipulates a resource such as a lock or a file descriptor according
to the requirements of some prescribed use protocol.

8 A higher-order example

Garbage collection also plays a critical role in taming higher-orderness during
model checking. Consider the following code, which demonstrates this point:
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Fig. 7. Abstract state transition graphs without, and then with, abstract garbage col-
lection for the infinite lock-unlock loop example.

(define mylock (identity lock))

(define myunlock (identity unlock))

(mylock mutex) (myunlock mutex)

Once again, running the 0CFA-level interpretation without garbage collection
fails to verify. Running it again, but with garbage collection, succeeds.

As before, the problem is flow-set merging. Both lock and unlock are seen
flowing out of the identity function id when myunlock is bound. Hence, the
flow set for myunlock includes both lock and unlock. Thus, it appears to the
program that “lock lock” is a possible sequence.

With garbage collection enabled, the flow set for the return value of id is col-
lected before the second call, thereby keeping the flow set of myunlock to strictly
unlock. Consequently, the only lock sequence exhibited is “lock unlock.”

Figure 8 contains the abstract transition graphs both with and without
garbage collection for a 0CFA-level contour set. Once again, the collected graph
has exactly the linear progression of states we expect from this example. The
uncollected graph is even more unwieldy than expected. This happens because
continuations (unseen in the direct-style code) also merge in the abstract, and
this leads to further losses in precision and speed. In the garbage-collected ver-
sion, however, flow sets for continuations are also collected.

When a sequence of locks must be taken in order to use a resource, handling
higher-orderness precisely is even more important, for then code patterns such as
the following become commonplace and natural to the functional programmer:

(map lock lock-list)

...

(map unlock lock-list)

Fortunately, with ΓCFA, the flow sets for f don’t merge between invocations of
map, as they ordinarily would without garbage collection.
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Fig. 8. Abstract state transition graphs without and then with abstract garbage col-
lection for the higher-order lock-unlock example.

9 Understanding abstract garbage collection

It’s worth exploring the subtle interaction between flow sensitivity, continuations
and abstract GC with a quick case-wise analysis. Programmers hoping to have
their programs validated by this technology should know when abstract GC wins,
and when it loses.

Suppose the call site (f ... e) with continuation argument e invokes the
function (λ (... k) ...) during abstract interpretation. Let’s also assume a
0CFA contour set for now. We can divide this situation into three possible cases.

The first case is when this function is being called recursively as a self-tail
call. That is, a frame for this λ term is live and topmost on the stack, the
continuation e is the variable k, and the function f evaluates to this λ term.
Because this is a tail call, the flow set for the variable k is going to merge with
itself. In other words, no precision is lost for this continuation. As a result,
no additional branching results when this function returns to the values that k
represents. This is important, because iteration constructs such as for loops and
while loops transform to this kind of tail recursion in CPS. The extra intelligence
we have added about re-binding a variable to itself prevents counting precision
from degrading in this case, too.

The second case is when this λ term is being called recursively (perhaps
indirectly or mutually) but not as a tail-call. That is, a frame for this λ term
is live on the stack. This liveness makes the binding for k uncollectable. As a
result, the flow set for the return point e will merge into the flow set for the
continuation k, which already contains return points for the external call to this
λ term. Consequently, when interpretation returns from this λ term, it will return
to external callers from internal or indirectly recursive call sites. If the precision
loss is an issue, switching to a 1CFA contour set or to polymorphic-splitting [13]
removes some of this kind of merging.

The third case is when this λ term is not live on the stack; that is, an external
call to this λ term. In this case, the binding to the continuation variable k is
collectable. Consequently, before merging the flow set for the return point e into
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the flow set for the continuation k, the flow set for the continuation k is reset to
empty. So, in the abstract interpretation, this λ term returns only to the return
points in the flow set for the return point e.

This behavior is a major departure from ordinary flow-sensitive 0CFA anal-
yses, where a function spuriously returns to the return points of all previous
callers. The net effect of this behavior is to augment the degree of polyvariance
achieved for any given contour set. Perhaps most importantly, we can make
promises to the programmer that if they use strict tail-recursion and impera-
tive iteration constructs such as while and for, they will be rewarded during
abstract interpretation.

10 Implementation

We have an implementation of ΓCFA for Scheme, written in Haskell. This is the
implementation that we used to analyse the lock protocols of the examples in
the previous two sections. The implementation also produces warnings for pos-
sible list-access violations, e.g. taking the car of the empty list. In addition, it
performs shape analysis on linked lists, reporting back locations through which
improper (i.e., non-nil-terminated) lists may pass. At present, the implementa-
tion does not utilize an external theorem prover for the MaySat relation. We are
currently working with our colleagues at Georgia Tech to integrate the ACL2
theorem prover into the system.

11 Related work

The analysis of recursive, higher-order functions in the λ calculus has a rich his-
tory dating back to Church’s original work. In recent years, software verification
and model-checking have made strides with tools such as SLAM [2] and TERMI-
NATOR [3]. TERMINATOR, in fact, can reason about function pointers, which
are a strictly weaker, environmentless cousin to the higher-order closures we deal
with here. Fusing Leuschel et al.’s recent work [7] on symbolic closures with our
own presents a promising avenue for future research.

ΓCFA is embedded within the Cousots’ framework of abstract interpreta-
tion [4, 5]. It falls into the family of sound, context-sensitive, flow-sensitive, non-
monotonic model checkers for higher-order programs. ΓCFA differs from other
approaches in that it is geared specifically toward controlling spurious branches
that result from control structures such as continuations and higher-order func-
tions. We believe it is possible to adapt the notion of abstract garbage collection
to abstract-interpretation-based checkers.
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