Deep parsing in Watson M. C. McGord
J. W. Murdock
Two deep parsing components, an English Slot Grammar (ESG) B. K. Boguraev

parser and a predicate-argument structure (PAS) builder, provide
core linguistic analyses of both the questions and the text content
used by IBM Watson™ to find and hypothesize answers. Specifically,
these components are fundamental in question analysis, candidate
generation, and analysis of passage evidence. As part of the Watson
project, ESG was enhanced, and its performance on Jeopardy!™
questions and on established reference data was improved. PAS was
built on top of ESG to support higher-level analytics. In this paper,
we describe these components and illustrate how they are used in
a pattern-based relation extraction component of Watson. We also

provide quantitative results of evaluating the component-level

performance of ESG parsing.

Introduction

Two deep parsing components, an English Slot Grammar
(ESQG) parser and a predicate-argument structure (PAS)
builder, provide core linguistic analyses of both the questions
and the text content used by IBM Watson* to find and
hypothesize answers. Specifically, these components are
fundamental in question analysis, candidate generation, and
analysis of passage evidence [1-3].

ESG [4-7] is a deep parser in the sense that the parse trees
it produces for a sentence (or segment of any phrasal
category) show a level of logical analysis (or deep structure).
However, each parse tree also shows a surface-level
grammatical structure (surface structure), along with the
deep structure. The parse trees for a segment are ranked
according to a parse scoring system (described below), and
for Watson, we use only the highest-ranked parse. (A parse
score roughly corresponds to the likelihood that the parse
is a correct one.) In this paper, we provide an overview
of Slot Grammar (SG) in its current state, discussing new
features and special adaptations made for the Jeopardy!**
question-answering (QA) task. Most of the improvements
motivated by the Jeopardy! challenge are applicable to
general English and other applications. The adaptations that
are really special to Jeopardy! questions can be controlled
by flag settings, which are off by default and can be turned
on when ESG is used for the Jeopardy! task.

Parse analysis by ESG is followed by the application
of a PAS builder, which simplifies and abstracts from the

Digital Object Identifier: 10.1147/JRD.2012.2185409

ESG parse in a variety of ways; for example, it drops some
terms (e.g., auxiliary verbs) that are rarely very important for
the tasks that our downstream components perform. The
active/passive alternations such as “John sold a fish” and
“A fish was sold by John” have slightly different structures
in ESG but the same structure in PAS.

The deep parsing suite for Watson consists of ESG,
followed by the PAS builder. Deep parsing results are
pervasively used in the Watson QA system, in components
within every stage of the DeepQA architecture [8]: question
analysis, question decomposition, hypothesis generation,
hypothesis and evidence scoring, etc. Here are a few specific
examples.

e Relation extraction (see [9] and the section on relation
extraction below) identifies semantic relationships
(in the sense of that section) among entities using the
results of deep parsing.

e Question analysis [1] uses results of deep parsing
to identify the type of answer that a question is
seeking.

e The keyword search component [2] uses semantic
relations in the question to identify keywords that have
some strong semantic connection to whatever the
question is asking for; those keywords are given a higher
weight in the search query.

e Passage-scoring components [3] use the results of deep
parsing on both the question text and the passages
found by keyword search to determine whether a passage
aligns well to the question and thus provides evidence
in support of some candidate answer.

©Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed
royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/12/$5.00 © 2012 IBM

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

M. C. MCCORD ET AL. 3:1

noun cn pl physobj artf
verb vfin vpres pl sta
adj erest

verb vfin vpres pl cord
adv

verb vfin vpres pl

adv ppadv nounadv neg
adv

verb vinf vpref ssa

det pl def

noun cn pl

prep wh

noun pron wh

det sg possdet

noun cn sg langunit
verb vfin vpres sg

subj(n) chandelier(1)
e lconj look(2,1,3)
comp(a) great(3,1,u)
top but(4)
vadv nowadays(5,6)
rconj do(6,1,9)
vadv not(7,6)
vadv usually(8,9)
auxcomp(binf) use(9,1,11,u)
ndet these(10)
obj(n) item(11,u)
comp(p) from(12,17,13)
objprep(n) which(13,11,u)
ndet their(14)
subj(n) name(15,u,u)
nrel be(16,15,17)
pred(en)

derive(17,u,15,12) verb ven vpass

Figure 1

ESG parse of the Jeopardy! question “Chandeliers look great but nowadays do not usually use these items from which their name is derived.”

e Some of the type coercion components [10] use the PAS
to compare the type requested to answer types found in
natural-language text.

e The results of PAS (and relation extraction) across a large
corpus are aggregated in the PRISMATIC knowledge
base [11], which is used by a variety of search [2] and
answer-scoring [3, 10] components.

The pervasive usage of deep parsing results reflects the fact
that these components provided the core natural-language
processing capabilities for the Watson QA system.

In this paper, we first describe SG parsing for Watson, and
then we discuss PAS, followed by an approach to relation
extraction that illustrates the use of ESG and PAS. These
main sections are followed by sections on use in Watson,
evaluation, related work, and conclusion and future work.

SG parsing

The SG parsing system is divided into a large
language-universal shell and language-specific grammars for
English, German, French, Spanish, Italian, and Portuguese.
Some of the SG features described in this section are in

the shell, and some are specific to English (ESG); all of the
examples are for ESG. We discuss 1) the pipeline of SG
parsing, 2) the nature of SG parses, 3) the lexical system,
and 4) syntactic analysis. At the end of this paper, we
describe an evaluation of ESG performance.

Pipeline of SG parsing

The main steps of SG parsing are (A) tokenization and
segmentation, (B) morpholexical analysis, and (C) syntactic

3:2 M. C.MCCORD ET AL.

analysis. Step (A) is self-contained and can handle various
tagging systems (such as HTML). Its output is directly
used in some components of Watson. Unlike some parsers,
SG uses no part-of-speech (POS) tagger; the corresponding
information simply comes out of syntactic analysis. In the
following, after describing the nature of SG parse trees,
we concentrate on the lexicon and syntactic analysis.

Nature of SG analyses

Figure 1 shows a sample Jeopardy! question and its ESG
parse tree. We look at the example and give an overview of
SG parses in general.

An SG parse tree is a dependency tree: Each tree node N
is centered on a headword, which is surrounded by its left
and right modifiers, which are, in turn, tree nodes. Each
modifier M of N fills a slot in N. The slot shows the
grammatical role of M in N. In our example, the node
with headword “chandelier” fills the subj (i.e., subject) slot
for the coordinated VP (verb phrase) node with headword
“but”. This modifier tree structure is the surface structure
of the parse analysis. In our sample parse display, you can
see, on the left side, the surface structure tree lines—each
line connecting a node M to its mother node N and showing
the slot filled by M in N.

Slots are of two kinds: complement slots and adjunct
slots. Complement slots, such as subj and obj (i.e., direct
object) for verbs, are idiosyncratic to senses of their
headwords and are associated with these senses in their
lexical entries. Adjunct slots, such as vadv (verb-modifying
adverbial), are associated with the POS of the headword
sense in the SG syntax module. Adjunct slot-fillers can

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

typically modify any node of the category (POS) with
which they are associated. Complement slots play a dual role

in SG: They can name grammatical roles, as mentioned.
In addition, they can name logical arguments of word senses,
as described later in this section.

In the sort of parse display given in Figure 1, the
lines/rows correspond 1-to-1 to tree nodes.

We now describe the five main ingredients associated
with a parse node, and then we state which parts constitute
deep structure and which constitute surface structure.

()

@

©)

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3

The headword of the node—The internal parse data
structure stores several versions of the headword,
including a) the form of it as it occurs in the text
(inflected, mixed case, etc.); b) the lemma (citation)
form; and c¢) the SG word sense of the node, which

we explain below in the “SG lexicons” subsection.
Typically, the headword comes from a single-word
token, but it may be a multiword or a punctuation symbol
acting as a coordinator or a special symbol for a special
kind of node, such as a quote node as described

below. In the above form of parse display, the headword
is shown in lemma form, but there are display options
to show other forms. The headword is seen in the
middle column as a predicate followed by arguments,
for example, in

derive (17, u, 15, 12).

We call this predication the word-sense predication

for the node, and it is the main vehicle for showing the
deep structure of the parse.

The ID of the node—This is an integer that, in most
cases, is the word number of the headword in the
segment, but there are exceptions, with the most common
being for multiwords, where the ID is the word
number of the head of the multiword. In this parse
display, the node ID is shown as the first argument

of the word-sense predication, for example, 17 in
derive (17, u, 15, 12).

The (logical or deep) argument frame of the node—In
the internal parse data structure, this consists of the list of
complement slots of the word sense, each slot being
associated with its filler node (or nil if it has no filler).
In the “derive” node of our example, this list of pairs
would be (subj: nil, obj: phl5, comp:phl2),
where ph15 is the phrase with node ID 15, spanning
“their name”, and ph12 is the phrase with ID 12,
spanning “from which”. The subj slot has no overt
filler. Note that “derive” is given in the passive, but these
three slot-fillers constitute the logical (active form)
arguments of the verb. For example, ph15 is the logical
obj of “derive”, although grammatically, it is a subj
(of “be”). That is why we speak of the logical or deep

MAY/JULY 2012

“4)

)

argument frame of the node. For a verb, the first member
of its argument frame is always its logical subject.

Now we can say what the word-sense predication of a
node is in the above form of parse display. The predicate
name is the word sense or, optionally, the citation
form. The first argument is the node ID. The remaining
arguments are the IDs of the filler nodes in the argument
frame or u (for “unfilled” or “unknown”) if there is
no filler.

The word-sense predication can be directly translated
into a logical predication. We can replace the numerical
arguments by similarly indexed logical variables, for
example, as in derive(el7,x,x15,x12), where, in
general, derive(e, x, y, z) means that e is an event where x
derives y in manner z. Hence, the node ID argument can
be thought of as an event argument or, more generally,
an entity argument for the predication. Note that, in
the example, “chandeliers” (node 1) is shown as the
logical subj of the predicates for “look”, “do”, and
“use”, although in surface structure, its only role is as the
(grammatical) subj of the coordinated node 4. In
handling coordination, the SG parsing algorithm can
“factor out” slots of the conjuncts. This happens with
nodes 2 and 6, providing the common subj filled by
node 1, but still showing 1 as logical subj for each
conjunct. SG parsing also fills in implicit arguments for
many nonfinite VPs, and this results in 1 being the
logical subj of node 9.

The sample parse shows two other kinds of
implicit arguments filled in: a) The predication
great (3, 1, u), where “chandeliers” (1) fills the first
slot (asubj) of the adjective “great”, directly shows
that “great” applies to “chandeliers” (under the context
of “look”). b) The predication which (13, 11, u),
where “items” (11) fills the first slot (nsubj) of the
relative pronoun “which”, is interpreted as showing that
the relative pronoun is co-referent with “items”. Then,
in building a logical form, the relative pronoun’s
variable can simply be replaced throughout with the
variable for “items”.

The features of the node—In our parse display, the
node’s features are listed to the right of the headword.
These can be morphosyntactic or semantic features.

(In this example, some features were omitted for
brevity’s sake.) The first feature listed is the POS of
the node. Most of the features come from those of

the headword sense, as obtained from morpholexical
analysis of the headword, but some may be added during
syntactic analysis when the node acquires modifiers.
The (surface) modifier structure for the node—In the
internal parse data structure, a node N has two associated
lists—for its left modifiers (premodifiers) and its right
modifiers (postmodifiers), where each modifier node

is paired with the slot it fills in N. In our parse display,

M. C. MCCORD ET AL. 3:3

it should be clear how to read the tree structure from
the lines and dots on the left of the display (picture a tree
diagram in standard form turned on its side). The slot
shown closest to the headword of a node N is the slot that
N fills in its mother node. For each complement

slot S, the slot option used for S is shown in parentheses
after S. For instance, node 17, for “derived”, fills slot
pred (en), meaning that node 17 fills a past-participial
form of the pred (predicate) slot—for “be” (in

node 16). More information about slot options is given
in the next subsection.

The core of the SG deep structure is the set of word-sense
predications described in (3) above, since these are close
to logical predications. Deep structure information also exists
in the semantic features of nodes. However, even some
morphosyntactic features, such as tense and number, matter
for logical form. The core of the surface structure lies in the
headword information (1) and (2), the morphosyntactic
features, and the surface modifier structure (5). However,
adjunct slots appearing in (5) can also be of relevance to deep
structure, because, e.g., determiners may produce quantifiers
in logical form.

SG lexicons

In this subsection, we describe the SG lexical system

and improvements made to it to benefit Watson. Much of
the SG analysis process is driven by the lexicons used,
particularly because SG lexicons specify (complement) slot
frames for word senses, and the main step in syntactic
analysis is slot-filling.

SG lexical entries are typically indexed by citation
forms of words or multiwords. Morpholexical analysis of
tokens does efficient lookup in the lexicons, along with
morphological analysis, both inflectional and derivational.
ESG morphology currently handles 29 derivational affixes.

For any language version of SG (such as ESG), there
is a main lexicon called the base lexicon. The system
allows any number of lexicons; ones besides the base lexicon
would typically be user addendum lexicons. The ESG base
lexicon has approximately 87,000 entries, but many more
word forms are recognized because of the derivational
and inflectional morphology.

In the work on Watson, we have developed a way of
augmenting (i.e., expanding and improving) the ESG base
lexicon automatically from other sources, particularly
Princeton WordNet** [12, 13]. The process of augmentation
is done before run time for any new version of the base
lexicon and takes only about 5 seconds on a standard
desktop. We describe the augmentation methods in this
subsection.

In the following, we describe (A) the form of SG lexical
entries and then (B) improvements made during the work
on Watson.

3:4 M. C.MCCORD ET AL.

Form of SG lexical entries
The following is a sample entry (slightly simplified) from
the ESG base lexicon:

talk<v (objn (pabout)) (comp (ptowith))
<v objl (compl (p into))
<n nsubj (nobj n (p about))
(ncomp (p to with))

In general, a lexical entry has an index word, given in
citation (lemma) form, and can be a single word or a
multiword—talk in our example. This is followed by
a sequence of sense frames for the word—three in
our example, two verb frames and one noun frame. Each
sense frame can specify any of the following seven kinds
of items, all of which are optional except the first: (1) POS,
(2) complement slot frame, (3) features—both semantic
and syntactic—(4) word-sense name, (5) numerical score,
(6) subject area test, and (7) generalized support verb
construction. Our sample shows only (1) and (2) in the sense
frames. Each sense frame defines an SG word sense for
the index word. The ESG lexical word senses are rather
syntactic in nature, although the differing slot frames
do constrain the possible semantic word senses. However,
the SG framework allows finer semantic distinctions in
its word senses, because slot options can make semantic type
tests on the slot’s fillers. This is done to some extent in
the ESG lexicon.

Now, let us look in more detail at the seven kinds of items
in a sense frame.

Part of speech

In parse data structures, there are 15 possible parts of speech
that include noun, verb, adj, adv, qual (qualifier), det,
prep, subconj (subordinating conjunction), and conj
(coordinating conjunction). Some of these are seen in

the sample parse tree of Figure 1, where the POS is

listed as the first of the nodes’ features. The lexicon uses
these same POS names, except in the case of nouns and
verbs, for the sake of brevity. For instance, the lexical POS n
is expanded into noun cn (common noun) in parse trees,
and v expands into verb. Other features, such as number
and tense, are added on the basis of morphology.

Complement slot frame

In our sample entry, the first sense frame for talk shows
two slots, namely, obj and comp, in its slot frame. An initial
sub7 slot is implied; every verb has a subj slot, and

this can be omitted as long as it needs no special options.
The obj slot shown has two options: n and (p about).
The first allows NP (noun phrase) fillers for obj (plus some
other nominals such as gerund phrases), and the second
allows “about”-PPs (prepositional phrases). The options

are disjunctively viewed. The comp slot has option

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

(p to with), which allows both “to”- and “with”-PPs.
Thus, the slot frame allows variants such as “John talked
(about) mathematics to/with Bill”.

In general, a slot has an associated list of possible (slot)
options, which are symbols that name constraints on the
possible fillers of the slot. This applies to adjunct and
complement slots (the options for each adjunct slot are
specified along with the slot in the syntax module). The idea
for complement slots is that the slot deals with one argument
of the word sense, which can be realized in different ways
syntactically. Slot options can specify not only the basic
syntactic category of the filler but also many other kinds
of tests on the filler, such as semantic type requirements,
other feature tests, subject area tests, tests for specific words,
or recursively any Boolean combination of tests. Our
example shows how lexical entries name specific options
for complement slots. If none is specified, as in the obj1 slot
in the second sense frame for talk, then default options
are assigned by the system.

Most slots are optional by default, meaning that they
are not required to be filled for a valid use of the sense
frame. This applies to the two slots listed in the first sense
frame of our example. A suffix 1, as in our second
sense frame, indicates that the slot is obligatory—that it
must be filled.

Features

The features can be syntactic features or semantic types.
ESG currently uses approximately 160 semantic types,
belonging to a type hierarchy. Examples can be seen

in the sample parse in Figure 1, e.g., artf (artifact) and
langunit (language unit). The types are mainly high-level
and include, e.g., physical object; substance; abstraction;
property; natural phenomenon; event; act; change; various
types for time, location, and measures; collection; living
being; human; (nonhuman) animal; communication; feeling;
profession; artifact; artistic composition; and others. An
important type for its effect in parsing is “role entity”—an
entity (usually a person) viewed as having a particular role
(“teacher”, “leader”, “mother”, etc.). For more details,

see [7]. The features appearing in a sense frame get
transferred to any one-word phrase having that word sense
as head and used as a “starter phrase” in syntactic

analysis. Several of the ESG syntax rules test on these
semantic types.

Word-sense name

If this is omitted, the word-sense name is taken to be

the index word of the entry with a suitable integer appended.
When the current sense frame is converted to a “starter”
phrase for parsing, this item becomes the word sense

of that node, mentioned in the preceding subsection.
Syntax rules can test on specific sense names for words.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

Numerical score

This can feed into the parse scoring system described
below and may reward or penalize uses of the current sense
frame.

Subject area test

If a subject area (domain, topic) for the current text is
specified or determined automatically (e.g., computers or
medicine), then this kind of test can allow/exclude the
current sense or give it a numerical score.

Generalized support verb construction

In “make a reference to”, the noun “reference”
idiosyncratically uses the support verb “make”. A special
keyword allows one to store this information under the noun
“reference”, thus not overloading the common verb “make”.
The mechanism is more general than what can be handled
by multiwords, because it allows variations such as
interspersed modifiers and extraposition of the noun in
“wh” questions. The mechanism not only applies to
support verbs for nouns but can also involve any pair of
parts of speech.

Improvements

Now, we describe special improvements made to the ESG
lexical system during the work on Jeopardy!. The first four
of these are of value for general use of ESG (including
Jeopardy!), and the fifth is special to Jeopardy!.

Matching noun frames with verb frames

The ESG lexicon is well-populated with complete slot
frames for all open-class word senses—for nouns, adjectives,
and adverbs, as well as for verbs. Special effort was made
in working on Watson to encode slot frames for de-verbal
nouns (such as “celebration” for “celebrate”) and other
verb-related nouns in a way that properly corresponds to
verb frames. Relating nouns and verbs this way can help
in relation extraction or in matching questions to answers,
because the same relation plus arguments may be
expressed as a verb in one place but as a corresponding
noun in another. This kind of correspondence can be

seen in the above lexical entry for talk, where the slot
frame of the noun sense corresponds to the first verb
sense, with the noun slots nsubj, nobj, and ncomp
corresponding, respectively, to the verb slots subj, obj,
and comp. No options are specified for nsubj; hence,

it takes its default options, which are agent and n.

The agent option is filled by “by”-PPs, as in “a talk

by John”. The n option for both nsubj and nobj is
filled by “of”-PPs; hence, there can be ambiguity

(as in “the love of God”); however, it is disambiguated,
for example, in “a talk of John’s” or in “the choice of
the department for their chairperson”. Possessive noun
premodifiers can also fill nsubj implicitly. For example,

M. C. MCCORD ET AL. 3:5

subj(n) she(1)
17 top
P obj(n)
[chsl(n)
ndet a(4)
obj(n) song(5,u,6,u)
Lt nobj(n) of(6,5,7)

objprep(n) sixpence(7)

sing(2,1,202,u,u,u)
Sing a Song of Sixpence(202) noun propn sg chn
sing(3,202,5,u,u,u)

noun nom f h perspron
verb vfin vpast sg vsubj

verb vfin vinf vpres
det sg indef

noun cn sg musicomp
prep pprefn nonlocp
noun cn sg pl

Illustration of chunk-lexical analysis, with underlying structure of chunk.

the NP “John’s talk with Mary about the book” corresponds
to the VP “John talked with Mary about the book”, and

in the NP, “John’s” fills nsubj for the noun “talk”.

Some of the nouns with verb-like frames are morphologically
derived from verbs, as with “discussion”/““discuss”.

Others, as with “talk”, may use the same word or a word
that is etymologically related but not involving regular
affixation.

Augmentation by WordNet

As mentioned above, WordNet is used in augmenting the
ESG base lexicon. The main augmentation process is
completely automatic and can be run by any ESG user
with a recent version of WordNet from Princeton. The
augmentation has two aspects: increasing the number of
entries and marking the augmented lexicon systematically
with semantic types. The new entries consist of proper
nouns and certain multiword common nouns in the
WordNet vocabulary that are not already in the ESG
base lexicon. The extra semantic type marking is done as
follows: ESG has an attached mapping of WordNet
senses (or synsets) to some of the ESG semantic types.
Given a lexical index word W and SG sense frame for W,
the augmentation algorithm looks at the WordNet

senses of W for the POS of the sense frame; and, for
each such S, goes up the WordNet hypernym chain of §
until it (possibly) finds a synset that is mapped to an
ESG type T; and then marks T on the given sense frame
of W. The process takes account of synset frequencies
and the number of WordNet senses for a word, to avoid
marking via too-rare senses. ESG runs well without

this augmentation, but the augmentation increases a
parse accuracy score, as described in the “Evaluation”
section below.

Noun-verb correspondences

Augmentation of the base lexicon also includes the addition
of four kinds of relationships between open-class words:
nform, viorm, ernform, and ervform. A verb J is
given the compound feature (nformAN; ...N,) when the

3:6 M. C. MCCORD ET AL.

nouns N ...N,, are nominal forms of V. For example,
the verb “defer” is given the feature

(nform deferral deferment deference) .

The feature vEorm provides an inverse of this. A verb V' is
given the feature (ernform Nj...N,) when the nouns
Nj...N, are agentive nouns for the action of V. For
example, “celebrate” is given (ernform celebrator
celebrant). The feature ervform provides an inverse.
The auxiliary lexical files used for this augmentation come
from the WordNet link for derivationally related words,
plus quite a bit of editing. These relations are not used in
parsing, but they are provided in the ESG parse output
and can be useful downstream when Watson is matching
questions to possible answers, and the same concept is
expressed as both a verb and a noun.

Chunk lexicons

SG lexical coverage can also be increased by another
device—chunk lexicons—which use a storage and lookup
scheme that allows a very large number of multiword entries.
For the Jeopardy! application, ESG uses a chunk lexicon,
ch.1x, of proper nouns derived from Wikipedia** anchor
texts, with approximately 1.4 million entries. In the parse
trees, the chunk entries found are treated like multiwords,
but the parse also shows their underlying syntactic structures.
For instance, “Sing a Song of Sixpence” is in ch.lx, and
the ESG parse for “She sang Sing a Song of Sixpence” is as
shown in Figure 2. Note that “Sing a Song of Sixpence”
is shown as a multiword proper noun, but its underlying
VP structure is also shown, under the slot chs1.

A chunk lexicon has also been created for the Unified
Medical Language System (National Institutes of Health,
U.S. National Library of Medicine, http://www.nlm.nih.gov/
research/umls/).

LAT reward features

This improvement is specific to the Jeopardy! application.
The augmentation of the ESG base lexicon also includes

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

the addition of compound features that help the parser
choose NP analyses that lead question analysis to better
identification of lexical answer types (LATSs) [1] (a LAT

is a term in a question that indicates what type of entity is
being asked for). A LAT reward feature on a noun sense N is
of the form (latrwd R), where R is a floating-point number.
When syntactic analysis forms an NP with N as head and
with “this” or “these” as determiner and certain other
constraints are satisfied, the parse score of the NP

is made better by amount ¢ * R, where c is a certain
constant (experimentally determined by parse testing)—thus
rewarding N in a typical LAT configuration. For a given N,
the reward number R is computed from a frequency table
of known LATSs occurring in Jeopardy! questions. R is
taken as sqrt(F/F,), where F is the frequency of N in the
table, and F is the highest frequency occurring in the table.
No latrwd is added if N does not occur in the table.

SG syntactic analysis
After tokenization, segmentation, and morpholexical
analysis, the main steps of syntactic analysis begin.

The first step is to convert the morpholexical analyses of
tokens into one-word phrases, where a phrase is the main
data structure that syntactic analysis works with. These
can form “starter” phrases for syntactic analysis.

The next step is multiword agglomeration, which converts
some sequences of one-word phrases into phrases that span
multiwords. The most common multiword agglomeration
is based on multiword entries in lexicons, but it can also
be done on the basis of general rules, such as rules for
human names, dates, and literal numbers. The operation
of lookup in chunk lexicons (described in the previous
subsection) also occurs at this stage. Multiword
agglomeration can also be nondeterministic, in the
sense that syntactic analysis sees both agglomerated
and nonagglomerated spans. Local syntactic analysis is
performed at this stage for chunk multiwords.

Then the main SG syntactic analysis is performed—yvia
bottom-up left-to-right chart parsing, where the units worked
with are of data type phrase. The main kind of step is a
binary one, where a modifier phrase fills a slot in an adjacent
matrix phrase (on the left or right). The slots tried are
those from the available (complement) slots list (ASL) of
the matrix and from the adjunct slots associated with the POS
of the matrix. The ASL of a one-word phrase is just its
complement slot frame. When a slot from the ASL is used,
it is removed from the ASL of the augmented version of
the matrix with the filler modifier attached. However,
the ASL in the augmented matrix can gain members if the
slots are extraposed out of the modifier phrase, e.g., for
handling “wh” phrases. Moreover, in coordination, slots
can be extraposed out of the conjuncts and coalesced, as
in “John saw and Mary heard the train”, where “the train”
simultaneously fills the obj slot of the two conjuncts.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

In the modification process, all slots of the matrix are tried,
nondeterministically. And for each such slot, all of its options
are tried, normally in an if-then-else way. Slot-filler rules
in the grammar (which is rule-based) determine the
constraints on filling slots plus options.

Although the slot frame is ordered, the actual fillers in
a phrase may appear in various orders within the sentence
and use various slot options. Fillers may come from remote
parts of the sentence, as in “What did you say she sees”,
where “what” fills the obj of “see” remotely.

SG parsing uses a numerical scoring system, where each
(intermediate or final) phrase is assigned a parse score.
This has two purposes: First, the final parses of a segment
are numerically ranked. Most applications of SG, including
Watson, use only the highest-ranked parse for each
segment. Second, during parsing, intermediate phrase
analyses can be pruned away from the parse space (chart)
when their scores fall too low compared with competing
analyses for the same span, headword, and POS. Parse
space pruning greatly increases efficiency (in both time
and space) and affects the parse outcomes. However,
in order to see more parses and at the risk of overload for
very long sentences, one can turn pruning off by a flag
setting. The base parse scores can come from several
sources, for example, general rules in the shell (such as
preference of complement slots over adjunct slots),
specific scoring in the grammar, and rewards or penalties
given in the lexicon (such as from latrwd features).

In addition, parse scoring can take input in a bootstrapping
way from data gathered from parsing (by ESG itself) of
large corpora.

If at the end of the chart parsing of a segment, there is
no phrase built that spans the whole segment, then SG forms
a pieced-together parse on the basis of preferences for
maximally spanning pieces and other heuristics involving
pieces’ POS.

During the main step of parsing, SG can analyze
multiword units in yet another way. On the basis of
(partial) capitalization and possible quoting, SG can form
quote nodes, which are proper noun nodes, but show an
internal syntactic structure underneath. For instance, for the
sentence “He appeared on Meet the Press”, ESG analyzes
“Meet the Press” as a proper noun unit—a quote node—but
also shows the VP structure underneath. The parse tree is
shown in Figure 3. Quote node formation is similar in results
to the use of chunk lexicons, as described above, but does
not rely on multiword lexicons. Quote nodes are formed
during regular parsing, and decisions may be made on
what fits best in the overall parse.

One special adaptation of the ESG parsing process for
the Jeopardy! question domain is to accommodate the
relatively frequent occurrence (compared with general
English) of segments in Jeopardy! that are NPs instead
of complete sentences. An example is “Number of poems

M. C. MCCORD ET AL. 3:7

subj(n) he(1)
14 top
R comp(lo)
objprep(n) qtn(203)
Ly qt:l(n)p
ndet
obj(n)

the(5)

meet(4,u,6,u)

press(6,u)

noun sg nom m h perspron

appear(2,1,u,3) verb vfin vpast sg vsubj
on(3,2,203)

prep staticp

noun propn sg qtn
verb vfin vinf

det sg def

noun cn sg

Parse showing a quote node.

Emily Dickinson gave permission to publish during her
lifetime”. The idea is that the whole NP uniquely
characterizes the answer. One heuristic (among several) used
for boosting the scores for such NP analyses is to reward
them if the segment contains no “reference words” such as
“this”, “he”, “she”, etc., which typically signal subphrase
foci in sentence questions. These heuristics are controlled
by a flag that is off by default and is turned on for the
Jeopardy! task.

Predicate-argument structure
The PAS builder provides simplification and abstraction
of the ESG parse that removes some details. By design,
the semantic distinctions that are removed in the PAS are
ones that are subtle and not essential to the coarse-grained
distinctions we make in many Watson components that
use the parses. Without these distinctions, those components
can be more flexible and require less knowledge. For
example, passive and active forms of the same assertion
result in the same PAS. The ESG parse does show the
active-form (logical) arguments of a passive verb, except
that a logical subject is a “by”-PP. PAS building replaces
such a PP by the object of the preposition and removes
any auxiliary “be” verb, in order to produce exactly the
active form. A relation detector can use a pattern over
the PAS that was developed (either manually or statistically)
for active sentences and apply them to passive sentences
without any changes; in contrast, if the pattern were
written exactly over the parse, then two different variants
would be needed to handle active and passive sentences
(as illustrated in the example in the next section).

The PAS builder does not process the original text;
it merely transforms the outputs of ESG into a simpler less
comprehensive form. The PAS for a segment is a labeled
directed graph. Each node has a citation form, begin
and end character offsets, a POS, and a link to the ESG parse
node from which it was derived. In addition, PAS nodes
that are derived from ESG parse nodes that have determiners
have an additional string label indicating the determiner
that was used (since determiners generally do not appear
as distinct nodes in the PAS). Each arc in the PAS,

3:8 M. C.MCCORD ET AL.

from node A to node B, is labeled by the SG slot that B
fills in A.

We expect some meaningful distinctions to be lost when
moving from ESG outputs to PAS. However, the lost
meaning tends to be subtle (e.g., differences in emphasis)
and difficult to make use of effectively. Omitting these
distinctions can make it easier to write or automatically
induce patterns for extracting semantics from questions
and passages, as well as to detect when passages provide
answers to questions. For example, consider the following
sentences.

e [heard that Edison invented the phonograph in 1877.
e [heard that Edison invented a phonograph in 1877.
e [heard Edison invented the phonograph in 1877.
e [heard that Edison was inventing the phonograph
in 1877.
e [heard that the phonograph was invented by Edison
in 1877.

These sentences do have different meanings, and these
differences are reflected in their ESG parses. The difference
between the first two is particularly important, semantically,
but it is very difficult to make use of that distinction in
a general and flexible way. The PAS outputs for these
sentences all have identical structure. Any relation detection
rule that is written over PAS that matches any one of these
sentences also matches all of the others. Any question
that aligns well in the PAS with some or all of any of these
sentences (e.g., “Who invented the phonograph?”) does
so equally well with any of the others. This is mostly an
advantage of PAS, although it can also be a disadvantage
when it causes a system to draw incorrect conclusions
(e.g., concluding that someone invented the phonograph
when that person merely invented a more advanced
phonograph).

Here is an additional set of text snippets that are treated
as identical by PAS.

e Odysseus was bold and clever.
e bold and clever Odysseus.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

e bold and clever Odysseus was.
e bold, clever Odysseus.
e bold, clever Odysseus was.

ESG has two different dimensions of structure: deep structure
and surface structure. PAS collapses these two dimensions
into one. The structure of PAS generally follows the deep
structure, except for those types of slots that are encoded
only in the surface structure. Moreover, PAS nodes
have a lemma form feature that roughly corresponds to
the lemma in the ESG parse, but ESG has some special
encoding of derivational morphology under some
circumstances (e.g., “non-Mormon” in text is encoded as
“non+Mormon” in the ESG lemma). PAS removes this
special encoding.

A variety of nodes from ESG are omitted from the
PAS. Links to and from these nodes in the parse tree are
instead redirected to related nodes in the PAS. For example,
links to/from auxiliary verbs are instead treated as links
to/from the corresponding main verbs. Any links between
the omitted and the related node are completely omitted.
For example, the link from an auxiliary verb to the
corresponding main verb is omitted in the PAS. The specific
types of nodes omitted are as follows:

e Auxiliary verbs (including auxiliary verbs indicating
passive voice).

e All closed-class nodes that introduce VPs, such as the
infinitive “to” marker, and the “that” that introduces
“that” clauses.

e Determiners, except for ones on a special whitelist of
“high-semantics” determiners, e.g., possessive pronouns,
determiners indicating negation (but, as noted above, the
string values of the determiners are retained as string
values in the PAS nodes that they would be attached to).

e Forms of “be” with no predicate.

e Forms of “be” for which the predicate is an adjective.

In addition, the PAS provides a simplified POS taxonomy:
Several ESG POSs are completely omitted, as noted

above; ESG’s subconj (subordinating conjunction) is
marked as prep (preposition) in PAS. ESG’s qual
(qualifier) is marked as adv (adverb) in PAS. The simpler
taxonomy is sufficient to make key coarse distinctions,
allowing downstream processing to distinguish between
nouns, verbs, and some kinds of modifying and connecting
words, without making all of the more subtle distinctions
among word classes that ESG provides. In ESG, coordinating
conjunctions (e.g., “and”) are marked with the POS of the
elements they coordinate; they have a separate cord feature
to indicate that they are conjunctions. In PAS, the POS for
these nodes is cord; the POS of the constituents is marked
only on those constituents. This change is convenient for
many components that perform local processing on specific

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

nodes; for example, a component that wants to iterate
through all nouns in a sentence (and does not want to treat
conjunctions as nouns) can simply check the POS of each
node, without having to do a separate check to see whether
the node is a coordination. Below is a summary of the
PAS for the chandelier question, whose ESG parse is shown
in Figure 1:

chandelier (1)

look (2, subj:1, comp:3)

great (3)

but (4, lconj:2, rconj:9) [top predicate]

nowadays (5)

not (7)

usually (8)

use (9, subj:1, obj:11, vadv:5, vadv:7,
vadv:8)

item (11, nrel:17) [determiner: these]

from (12, objprep:13)

which (13)

their (14)

name (15, ndet:14) [determiner: their]

derive (17, obj:15, comp:12)

The notation used here provides an ID number for each node
(the first number after the open parenthesis) followed by
zero or more labeled arguments consisting of a label, a colon,
and the ID number of the target node. For example,
“chandelier” has ID 1, and “use” has an ID 9, and its first
labeled argument indicates that its subject has ID 1, i.e.,
“chandelier” is the subject of “use.” The ID numbers

used here are merely an artifact of how we present PAS in
a paper. In DeepQA, PAS is encoded as UIMA CAS data
structures with labeled pointers among nodes; hence, no ID
numbers are needed. Key differences between the PAS in
this example and the corresponding ESG parse in Figure 1
include the following.

e The ESG parse in Figure 1 shows the surface structure
via lines and the deep structure as logical arguments.
Since the PAS does not make that distinction, all
structures are shown as labeled logical arguments. In
the example above, the node “derive (17...)” in the PAS
has two arguments that were derived from the deep
(logical) structure of the corresponding node in the
ESG parse. In contrast, the node “but (4...)” has two
arguments in the PAS (labeled “lconj” and “rcon;j”)
that are derived from the ESG surface structure.

e Some nodes that are present in the parse are omitted in
the PAS; specifically, the following nodes in the parse are
omitted: the determiner “these” and the two auxiliary
verb nodes (for “do” and “be”). The determiner “their”,
which is a possessive pronoun, is not dropped because
PAS builder considers it a high-semantics determiner.

M. C. MCCORD ET AL. 3:9

e As noted earlier, the ESG parse argument frame includes
entries labeled u (for “unfilled” or “unknown”) if there
is no filler, e.g., derive (17,u,15,12), indicating
that “derive” has an unfilled slot for a subject. The PAS
does not explicitly encode this information.

e The nouns that have determiners attached to them in the
parse have a determiner string label in the PAS.

e The ESG parse has a set of features, shown in the
rightmost column in Figure 1. These are not encoded in
the PAS (we expect PAS users who want these features to
examine the corresponding node in the ESG parse).

Pattern-based relation extraction
In this section, we show how the analysis provided by
deep parsing facilitates pattern-based relation extraction.
Relation extraction identifies domain-specific semantic-level
relations in a sentence, together with their arguments,
which are typically typed entities. Examples of semantic
relations are authorOf, actorIn, and bornOn, and we
refer to them as deep relations because they abstract even
further away from ESG and PAS analyses. Such abstractions
are used by processes such as answer lookup [2], passage
scoring [3], and structured inference [14].

There is great variability, both lexical and syntactic,
with which a relation can be expressed. For instance,
just a sample of Jeopardy! questions with instances of an
authorOf relation are listed below. Clearly, anticipating
all of them and writing individual patterns is not a productive
way to recognize a relation. Using representational
devices from ESG and PAS analyses, however, it turns
out that most of the examples can be handled by a
single rule; only two rules are required for all of the
examples.

(1) In 1936, he wrote his last play, “The Boy David”; an
actress played the title role.

(2) Born in Winsted, he practiced law in Connecticut before
he wrote “Unsafe at Any Speed”.

(3) This “French Connection” actor coauthored the 1999
novel “Wake of the Perdido Star”.

(4) Walter Mosley penned this mystery about
Detective Easy Rawlins searching for a woman in
post-WWII L.A.

(5) In December 1513, he wrote Francesco Vettori that he’d
“composed a little work ‘on princedoms’”.

(6) A “manly” 19th century realist, she penned works
like “Adam Bede”, “Felix Holt” and “Daniel Deronda”.

(7) Robert Louis Stevenson fell in love with Fanny
Osbourne, a married woman, and later wrote this tale
for her son.

(8) This friend who refused to destroy Kafka’s works wrote
a historical novel on Tycho Brahe.

(9) While living in Vermont, Kipling began writing this tale
of an orphaned son of an Irish soldier in India.

3:10 M. C. MCCORD ET AL.

(10) “According to” our sources, the first game book he
wrote was a “Short Treatise on the Game of Whist”.

(11) “The Lair of the White Worm” and “Dracula” were
written by this Dubliner.

(12) “Somnium”, an early work of science fiction, was
written by this German & published posthumously
in 1634.

(13) Rip’s tale appears in “The Sketch Book” written by
this man.

(14) Originally written by Alexander Pushkin as a poem, this
Russian novel was later turned into an opera.

(15) This author of “Jazz” and “Tar Baby” was the first
black American to win the Nobel Prize in Literature.

(16) Author of “Fathers and Sons”, he was the first Russian
to be widely read and admired in Europe.

(17) Beckett is a major dramatist of the “Theater of”
this, which portrays a bewildered and anxious
humanity.

(18) Edmund White wrote a definitive biography of this
French thief, novelist & playwright of “The Maids”.

Examples (1) and (2) illustrate a relatively straightforward
authorOf expression: the verb “write” is immediately
preceded by a subject (potentially an author) and followed
by an object (referring to a title). Allowing for lexical
variability (as we illustrate below), this observation suggests
a pattern such as the following:

authorOf :: [Author] [WriteVerb] [Work]

The issue is how to recognize the components of the pattern
in the text. Linear sequence-based frameworks have
problems identifying the headwords of constituents, which
may be complex phrases themselves. This is orthogonal
to the framework’s need to be sensitive to alternative
lexical cues for authorship, as examples (3) through (6) show
(cf. “coauthor”, “pen”, “compose”, “novel”, “mystery”,
“bestseller”, etc., as indicators for authorOf). An
additional requirement here is that it manages to identify
the specific elements to trigger a pattern match: e.g.,
“penned” (6) has three distinct [Work] arguments,
signaled by coordination, and “Robert Louis Stevenson”
is an [Author] argument to “wrote” (7), but this is difficult
to detect, given the detracting effects of the intervening
material.

Essentially, the problem with linear patterns is that all
words “look” alike. In contrast, ESG and PAS provide
the analysis backbone against which variability in textual
expression can be reduced to a manageable number of
patterns—because these now can target deep constituents and
not surface word tokens. In most of the examples above,
the syntactic analysis of the question identifies exactly the
elements (typically subj and ob7j) that need to be examined
for expressing a possible (authorOf) relationship.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

There are numerous aspects of ESG’s syntactic parse
that play into structured rendering of the above pattern.

For instance, consider the following: a) Multiword named
entities are recognized as single nodes, making for a
natural targeted match [cf. “Robert Louis Stevenson” (7),
“Walter Mosley” (4)]. b) Complex NPs around relational
nouns get internal structure assignment, which helps
semantic interpretation [cf. “novel ‘Wake of the Perdido
Star’”, where “novel” is the head noun, and material after
it can be easily associated with the title (3)]. ¢) Quoted
material is properly handled, within its larger context: It gets
its own structured analysis suitably integrated within the
overall parse—which allows the pattern to apply “across”
the quotation marks in { he’d “composed a little work

‘on princedoms’”) (5). d) The analysis of coordinated
constructions allows the matching framework to develop
uniform analysis of nodes in relation instances; thus, rules
need not separately cater for single, or conjoined, relation
arguments. The same rule (above) would emit three distinct
[Work] arguments to “penned” (6), or supply the right
[Author] argument to “wrote” in (7), through its cord
association with “fell in love”, and so on.

ESG goes even further in systematically identifying and
explicitly labeling long-distance relationships between
constituents, thus bringing even more diverse text forms
closer together. For instance, an arbitrary amount of text
may interpose between a head noun and its covering verb; we
already saw the need to connect “Robert Louis Stevenson”
with “wrote” in (7); example (8) similarly requires identify-
ing “This friend” as a potential [Author] argument, some
distance apart from [WriteVerb]. In general, ESG
attempts to share arguments—where they are semantically
identical—across multiple clause boundaries, and even
if the syntactic contexts differ in a variety of ways: “Kipling”
is the subject of both “began” and “writing” (9); “book”
is the object of both “wrote” and “was” (10).

Clearly, the value of the pattern outlined earlier is
in its interpretation as a structural—as opposed to
linear—template. Assuming a notation where

[NodeA] -> dependencylabel —> [NodeB]

refers to a dependency link between two (parse) nodes, an
elaboration of the earlier pattern would target dependency
trees. A single pattern, conjoining two labeled links anchored
at the same (verb) node, would match all ten examples so far:

authorOf ::[WriteVerb] -> subj ->[Author] &
[WriteVerb] -> obj —->[Work]

We have chosen to define relation detection patterns over
PAS representations, since the PAS builder both preserves
information about argument clusters around nodes and
introduces further normalizations of its own. An example of

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

such additional normalization is the identical representation
(in PAS) of active and passive forms of phrases: Because
ESG retains the “by” marking, the above rule would need to
be duplicated, if targeting the dependency tree. In contrast,
if applied to PAS, the same rule (unmodified) would

detect a relation in a variety of passive constructs: simple,
or within, e.g., conjunctions (11) or appositives (12),
relative clauses (13), finite VP premodifiers and
postmodifiers (14), and so forth.

Additional simplifications of PAS over ESG, contributing
to the clarity of rule writing and keeping down the number
of rules, include marking coordinated constructions with
a unique cord POS, suppressing distinctions between
modifiers to the left or right of the head, and packaging
of modifiers and their labels into synchronous lists.

(See the section “Predicate-argument structure” above.)

As an illustration of the last point above, consider
expanding our current rule base (of one pattern) to detect
instances of the authorOf relation expressed by means
of relational nouns [examples (15) through (18)].

The key, an “of”-PP attached to an[Author] predicate,
may be syntactically analyzed as an nobj or nprep
construction, potentially leading to two separate rules over
ESG (and consequently PAS) dependency labels. However,
the PAS convention for uniform access to a node’s
modifiers (where each modifier is paired with the label with
which it is attached to the head) allows for a single rule,
loosely stating a conjunction of two dependency links
sharing an “of” node:

authorOf ::[Author] -> Label ->["of"-Arg] &
["of"-Arg] —> objprep —> [Work]

Label acts as a wildcard over nobj or nprep. The rule
would identify an argument in the list of argument nodes of
[Author] , which is governed by an “of” preposition,
linking it with an NP whose head passes the [WorXk]
constraint.

This discussion shows how the conventions of the
analytic style exposed by ESG and PAS facilitate the
abstraction of a relatively small set of rules, which—by
targeting constituent arguments and dependency link
labels—are capable of handling some of the variability
of relation expression in text.

Use in Watson

As noted in the introduction to this paper, the ESG parse,
PAS, and semantic relations are used by many different
components in Watson. Consider the example clue

from earlier in the text: “Chandeliers look great but
nowadays do not usually use these items from which

their name is derived.” This section describes a few of
the many ways in which the parse and information derived
from the parse are used.

M. C. MCCORD ET AL. 3 :11

Question analysis [1] attempts to identify a question focus:
the term in the clue that one would substitute the correct
answer for to produce a true statement. The analysis applies
a variety of rules to the parse to make this assessment.

In this example clue, the focus is “these items”, which is
inferred from the fact that it has the word “these” as a
determiner. Question analysis also attempts to identify one
or more LATS, often the head of the focus or some word
closely connected to the focus in the parse. In the example
clue, the LAT, “items”, is the head of the focus, but

more complex clues may have LATs that are disjoint from
the focus.

Some passage-scoring components [3] use the results
derived from the ESG parse (specifically, the PAS and the
semantic relations) from both the question text and the text
of various passages believed to contain supporting evidence
for some candidate answer. These components use that
information to determine the strength of the evidence
from that passage. A part of this assessment involves
determining how well the candidate answer in the passage
aligns with the focus of the question. In our example, the
PAS shows that the focus, “these items”, is the object of
the verb “use”, which has subject “chandeliers” and modifier
“not”. If a passage contains the verb “use” with the object
being a candidate answer, the subject being “chandeliers”,
and a modifier “not”, then these passage scorers will
assign a very high score to this candidate answer. If the
passage has similar words (e.g., synonyms) or similar
structure, then the passage scorers will provide partial
credit. Different passage scorers have different restrictions
on how well the terms and the connections among
terms (e.g., from PAS or semantic relations) must
match to receive different levels of credit; see [3] for
more details.

The PRISMATIC knowledge base [11] includes statistics
relating to how often sets of words are connected to each
other via specific PAS structures and semantic relations.
For example, PRISMATIC has a record of how often
the word “chandelier” is the subject of the verb “use”
in a large corpus and also of how often any given word is
the object of the verb “use” with subject “chandelier”.

This data is used for finding [2] and evaluating [3, 10]
candidate answers.

Some components [10] apply ESG and the PAS annotator
to analyze the content of various sources of answer type
information. One of the many sources used for typing
information is Wikipedia categories, which are short text
strings describing the type of entity that the page is about.
For example, the Wikipedia page for “Toronto, Ohio” has as
one of its categories “Populated places in Jefferson County,
Ohio”. Given this label, we would want to conclude that
“Toronto, Ohio” could be a legitimate answer to a question
asking for a “place,” but we would not want to conclude
that “Toronto, Ohio” could be a legitimate answer to a

3:12 M. C. MCCORD ET AL.

Table 1 Parser comparison.

Parser Test set A Test set B
(Jeopardy!) (Wikipedia)
ESG 92.0% 88.7%
ESGbase 84.2% 84.4%
Charniak parser 83.6% 81.1%

question asking for a “county” (although both of these
words appear in the category text). The ESG parse shows
“places” as the syntactic head of the NP “Populated places in
Jefferson County, Ohio.” Consequently, our type coercion
algorithms can conclude that this category is asserting that
Toronto, Ohio, is a place but would not conclude that
Toronto, Ohio, is a county.

As noted earlier, this is just a small sample of how Watson
uses the ESG parse and information derived from it.
Information about how words are connected to each other
(both in the question and in a variety of evidence sources)
is vital to the operation of the DeepQA technology and
is thus pervasively used in Watson.

Evaluation

ESG was evaluated for parse correctness on two test sets:
(A) 100 Jeopardy! question segments and (B) 100 segments
from Wikipedia. Both test sets were randomly chosen, and
ESG had no training on them. [In the ESG tests, the NE
(named entity) chunk lexicon extracted from Wikipedia,
mentioned above, was not used.] We have also evaluated
an earlier version of ESG (ESGbase) on these test sets.
ESGbase is a version that dates from just prior to the
commencement of work on Watson.

The Charniak parser (CP; reranking version with Mark
Johnson) [15] was evaluated on the same two test sets.
Although the CP delivers a different kind of parse tree
[in Penn Treebank (PTB) style], these trees can be
viewed as dependency trees in a straightforward way—for
example, replacing (S (NP ...) (VP v ...)) by
(VP (NP ...) v ...).

A node N in a dependency parse tree is called correct
if the mother node exhibited for N is correct, and the POS
of N is correct. POSs are taken on the level of PTB POSs.
The score for a parser is the percentage of correct nodes
it delivers across the whole test set (using only the
automatically top-ranked parse for each segment). (Recall
is 100%; both parsers deliver node data for all nodes in
the test sets.) The scores are given in Table 1.

In the evaluation, more was required of CP than sometimes
shows in the PTB. CP is weak on showing coordination
structure, particularly in the part of an NP from the beginning
up through the head noun (call this the “NP-front”).

The NP-front is usually (not always) shown in a flat way

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

by CP. However, coordination is part of surface structure.
ESG shows it and is penalized if it gets any part wrong.
Thus, flat CP NP-fronts with coordination are
penalized—except in the situation (which often holds)
that there is only one possible choice for the conjuncts.
CP NP-front analysis is also weak in that it sometimes
includes what should be a postmodifier of the NP-front at
the end of the flat NP-front list itself, as in “The brothers
Grimm”. Then it is difficult to tell what the head noun
should be. CP is also weak, and inconsistent, in showing
whether capitalized nouns are proper or common nouns,
and it sometimes shows them as adjectives. It also does
not show structure for productive hyphenation, as in
“group-oriented”.

Note that node correctness is a matter only of surface
structure; hence, the scoring in Table 1 does not reward
ESG for the extra information it provides in deep structure,
slot-filler marking, rich semantic type marking, etc. This
additional information is useful for Watson and other
applications.

We also scored on test set A the latest version of ESG
without the WordNet-based augmentation described above,
and the result was 91%. This is not outstandingly lower
than the 92% with the WordNet augmentation, but it
does not measure the value of the considerably greater
semantic type marking of the latter, which is useful for
downstream components and for further improvements in
parsing accuracy.

ESG parsing is efficient, processing ~5,000 words per
second on standard laptops; this is particularly valuable
for the Jeopardy! application. The efficiency is owed
to a careful implementation in C, to care in writing the
lexicon and the syntax rules, and to the parse space pruning
algorithm. In a test on 6,712 Jeopardy! question segments,
ESG ran in a total of 17 seconds. On the same test set and
the same machine (a Linux** xSeries* machine), CP ran
in 1,763 seconds using one thread, or ~104 times slower
than ESG. CP can run in more than one thread. With
two threads, it ran ~57 times slower than ESG. The machine
has four cores, but the three- and four-threaded runs of
CP took longer than the one-threaded CP run. ESG is not
equipped to run in more than one thread per sentence parse,
but for processing a large corpus, it would be easy to
divide the corpus into pieces and run the different pieces
on different cores.

ESG has a small footprint. The binary code and data
(not counting chunk lexicons) occupy ~5.7 MB, and
the working memory normally used is ~52 MB. The same
version of ESG used in Watson easily compiles and runs
on a smartphone.

We have not formally evaluated the PAS builder. Given
that the PAS builder provides only a simplification of
the ESG parse, we believe that the correctness results
for ESG above provide an adequate sense of how accurate

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

the PAS is. The exact percentage of correct nodes would
be slightly different since the PAS has fewer nodes
(given that some nodes are dropped). However, in general,
the PAS is correct whenever and to the extent that the
ESG parse is correct; hence, we believe that conducting
a distinct formal evaluation for the PAS would not
be productive.

Relation extraction was formally evaluated in [9].

Related work

ESG is rule-based, linguistically oriented, head-driven,
frame-oriented, and largely lexicalist. It is probably most
closely related to Head-driven Phrase Structure Grammar
(HPSG) [16] and Lexical Functional Grammar (LFG) [17]
among commonly used computational grammatical
systems. SG was one of the first computational head-driven
lexicalist grammatical systems, with the first work done
around 1978 and published in 1980 [4]. The combination
in SG of surface structure and deep structure is analogous
to LFG’s constituent structure and functional structure,

but a difference is that, in SG parse trees, surface and deep
structure are combined in the same tree. It is natural to do
this in SG because the functions (slots) play a crucial role
in parsing itself. It is also useful to have the two aspects
of analysis combined because some elements of surface
structure can play a role in logical forms, as happens,

e.g., with generalized quantifiers and focusing adverbs.
PAS usefully continues the combination.

Among commonly used statistical parsers, such as the
Charniak parser [15], Collins parser [18], Stanford parser
[19, 20], and Minipar [21], SG is most closely related to the
dependency parser Minipar. However, we have chosen to
compare ESG with the Charniak parser because of the latter’s
relatively wide use.

The development regimen for ESG has been regular
testing, observation of problems, making fixes that are as
general as possible, introduction of new constructions when
appropriate, and constant regression testing on a set of
~20,000 segments from various sources. (This set does not
overlap with the test sets A or B of the “Evaluation” section.)
There is no use of a tree bank. Imitating a tree bank can
sometimes stifle introduction of useful new constructions that
do not exist in the tree bank.

The term “predicate-argument structure” has been used
to refer to a wide variety of parse-like constructs, usually
focusing on semantic aspects of analysis rather than on
syntactic ones. For example, the PAS used in VerbNet [22]
uses thematic roles such as Agent and Patient. To assign
thematic roles, a system would then need some sort of lexical
resource describing the roles that apply to specific words
in specific syntactic constructs (e.g., [22]), and/or some
labeled training data illustrating the mapping by example
(e.g., [23]). Other PAS instantiations simply use syntactic
labels directly and thus do not need to perform this

M. C. MCCORD ET AL. 3:13

mapping—e.g., [24] and the PAS described in this paper.
(However, it should be noted that our PAS includes

ESG complement slot-fillers as arguments, which have a
semisemantic nature and often correspond to thematic

role arguments.) PAS instantiations of this sort do not
necessarily require extensive lexical knowledge and can
be much simpler to implement, although obviously they
provide less extensive semantic insight. They still provide
a more semantics-oriented level of analysis than a parse
usually does, because they remove parse ingredients that are
important only syntactically. The DeepQA project does
include a component that determines the thematic roles
that relate terms in some text, but we consider this to be a
distinct level of analysis, specifically, part of “shallow”
semantic relation detection [3]. By separating PAS and
identification of thematic roles into distinct components,
we provide separate complementary levels of analysis that
downstream components can use separately or in
conjunction.

Conclusion and future work
ESG can produce informative parse trees that exhibit
both deep structure and surface structure in a unified way.
ESG does so with broad coverage and good efficiency.
The ESG parse (particularly the deep structure) feeds
into the simplified and abstracted analysis of PAS.
Results from ESG and the PAS builder are used in
many downstream components of Watson. For example,
pattern-based relation recognition uses the syntactic
analysis that is generated by ESG and simplified/abstracted
by the PAS builder, and we have provided an illustration
of that.

We have given an overview of ESG and PAS analysis
and indicated the central role of slots and slot frames.
We have emphasized the new ingredients developed during
the work on Watson, some of which are special to the
Jeopardy! task, but most of which are of general value.

Future work on SG will include the following:
1) expansion of the semantic type system and its use
in parsing; 2) incorporation of word-sense disambiguation,
probably with senses of less granularity than in WordNet;
3) indication in parse trees of scoping of generalized
quantifiers and focusing adverbs, etc.; 4) development
of specialized lexicons and methods for handling very large
lexicons; and 5) continued improvement of coverage of
SG via regression testing.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., Trustees of Princeton University, Wikimedia
Foundation, or Linus Torvalds in the United States, other countries, or
both.

3:14 M. C. MCCORD ET AL.

References

1.

11.

13.

14.

20.

21.

22.

A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev,

S. Patwardhan, J. Fan, P. Fodor, and J. Chu-Carroll, “Question
analysis: How Watson reads a clue,” IBM J. Res. & Dev.,

vol. 56, no. 3/4, Paper 2, pp. 2:1-2:14, May/Jul. 2012.

J. Chu-Carroll, J. Fan, B. K. Boguraev, D. Carmel, D. Sheinwald,
and C. Welty, “Finding needles in the haystack: Search and
candidate generation,” /BM J. Res. & Dev., vol. 56, no. 3/4,
Paper 6, pp. 6:1-6:14, May/Jul. 2012.

J. W. Murdock, J. Fan, A. Lally, H. Shima, and B. K. Boguraev,
“Textual evidence gathering and analysis,” /BM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 8, pp. 8:1-8:14, May/Jul. 2012.

M. C. McCord, “Slot grammars,” Comput. Linguist., vol. 6, no. 1,
pp. 31-43, 1980.

M. C. McCord, “Using slots and modifiers in logic grammars
for natural language,” Artif. Intell., vol. 18, no. 3, pp. 327-367,
May 1982.

M. C. McCord, “Heuristics for broad-coverage natural language
parsing,” in Proc. ARPA Hum. Lang. Technol. Workshop, 1993,
pp. 127-132.

M. C. McCord, “Using slot grammar,” IBM T. J. Watson Res.
Center, Yorktown Heights, NY, IBM Res. Rep. RC23978.
[Online]. Available: http://domino.research.ibm.com/library/
cyberdig.nsf/papers/FB5445D25B7E3932852576F10047E1C2/
$File/rc23978revised.pdf

D. A. Ferrucci, “Introduction to “This is Watson,”” IBM J.

Res. & Dev., vol. 56, no. 3/4, Paper 1, pp. 1:1-1:15, May/Jul. 2012.
C. Wang, A. Kalyanpur, J. Fan, B. K. Boguraev, and

D. C. Gondek, “Relation extraction and scoring in DeepQA,”
IBM J. Res. & Dev., vol. 56, no. 3/4, Paper 9, pp. 9:1-9:12,
May/Jul. 2012.

J. W. Murdock, A. Kalyanpur, C. Welty, J. Fan, D. A. Ferrucci,
D. C. Gondek, L. Zhang, and H. Kanayama, “Typing candidate
answers using type coercion,” IBM J. Res. & Dev., vol. 56, no. 3/4,
Paper 7, pp. 7:1-7:13, May/Jul. 2012.

J. Fan, A. Kalyanpur, D. C. Gondek, and D. A. Ferrucci,
“Automatic knowledge extraction from documents,” /BM J.

Res. & Dev., vol. 56, no. 3/4, Paper 5, pp. 5:1-5:10,

May/Jul. 2012.

G. A. Miller, “WordNet: A lexical database for english,”
Commun. ACM, vol. 38, no. 11, pp. 39—41, 1995.

C. Fellbaum, WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press, 1998.

A. Kalyanpur, B. K. Boguraev, S. Patwardhan, J. W. Murdock,
A. Lally, C. Welty, J. M. Prager, B. Coppola,

A. Fokoue-Nkoutche, L. Zhang, Y. Pan, and Z. M. Qiu,
“Structured data and inference in DeepQA,” IBM J. Res. & Dev.,
vol. 56, no. 3/4, Paper 10, pp. 10:1-10:14, May/Jul. 2012.

E. Charniak and M. Johnson, “Coarse-to-fine n-best parsing

and MaxEnt discriminative reranking,” in Proc. 43rd Annu.
Meeting Assoc. Comput. Linguist., 2005, pp. 173—180.

C. Pollard and 1. A. Sag, Head-Driven Phrase Structure
Grammar. Chicago, IL: Univ. Chicago Press, 1994.

R. M. Kaplan and J. Bresnan, “Lexical-Functional Grammar:

A formal system for grammatical representation,” in The Mental
Representation of Grammatical Relations, J. Bresnan, Ed.
Cambridge, MA: MIT Press, 1982, pp. 173-281.

M. Collins, “Head-driven statistical models for natural language
parsing,” Comput. Linguist., vol. 29, no. 4, pp. 589-637, 2003.
D. Klein and C. D. Manning, “Accurate unlexicalized parsing,”
in Proc. 41st Meeting Assoc. Comput. Linguist., 2003,

pp. 423-430.

M.-C. de Marneffe, B. MacCartney, and C. D. Manning,
“Generating typed dependency parses from phrase structure
parses,” in Proc. LREC, 2006, vol. 6, pp. 449-454.

D. Lin, “Dependency based evaluation of MINIPAR,” in Proc.
1st Int. Conf. Lang. Resources Eval.—Workshop on the Evaluation
of Parsing Systems, Granada, Spain, 1998.

K. K. Schuler, “VerbNet: A broad-coverage, comprehensive verb
lexicon,” Ph.D. dissertation, Univ. Pennsylvania, Philadelphia,
PA, Jan. 2005, Paper AAI3179808.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

23. K. Kipper, M. Palmer, and O. Rambow, “Extending
PropBank with VerbNet semantic predicates,” in Proc.
AMTA Workshop Appl. Interlinguas, Tiburon, CA, Oct. 2002.
[Online]. Available: http://www.mendeley.com/research/
extending-propbank-verbnet-semantic-predicates/

24. R. Krestel, R. Witte, and S. Bergler, “Predicate-argument
EXtractor (PAX),” in Proc. LREC—New Challenges for
NLP Frameworks, Valletta, Malta, 2010, pp. 51-54.

Received July 27, 2011, accepted for publication
November 17, 2011

Michael C. McCord [BM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(mcmcecord@us.ibm.com). Dr. McCord is a Research Staff Member in
the Semantic Analysis and Integration Department at the T. J. Watson
Research Center. He received the Ph.D. degree in mathematics from
Yale University, New Haven, CT, and spent a year at the Institute
for Advanced Study, Princeton, NJ. His initial research was in
mathematics (topology and foundations), and he then moved into
computer science and natural-language processing, with emphasis on
syntax and semantics. He has been at IBM Research since 1983.

He originated the Slot Grammar parsing system, which has been
applied to machine translation and grammar checking, and which is
used in the Watson question-answering system. He is author or
coauthor of 47 refereed articles and one book.

J. William Murdock IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(murdockj@us.ibm.com). Dr. Murdock is a member of the IBM
DeepQA Research Team in the T. J. Watson Research Center.

In 2001, he received the Ph.D. degree in computer science from
Georgia Tech, Atlanta, where he was a member of Ashok Goel’s
Design and Intelligence Laboratory. He worked as a Post-Doctorate
with David Aha at the U.S. Naval Research Laboratory, Washington,
DC. His research interests include natural-language semantics,
analogical reasoning, knowledge-based planning, machine learning,
and self-aware artificial intelligence.

Branimir K. Boguraev [BM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(bran@us.ibm.com). Dr. Boguraev is a Research Staff Member in the
Semantic Analysis and Integration Department at the Thomas J. Watson
Research Center. He received the Engineering degree in electronics
from the Higher Institute for Mechanical and Electrical Engineering in
Sofia, Bulgaria (1974) and the Diploma and Ph.D. degrees in computer
science (1976) and computational linguistics (1980), respectively,
from the University of Cambridge, Cambridge, U.K. He worked on a
number of U.K./E.U. research projects on infrastructural support for
natural-language processing applications, before joining IBM Research
in 1988 to work on resource-rich text analysis. From 1993 to 1997,
he managed the natural-language program at Apple’s Advanced
Technologies Group, returning to IBM in 1998 to work on language
engineering for large-scale, business content analysis. Most recently,
he has worked, together with the Jeopardy! Challenge Algorithms
Team, on developing technologies for advanced question answering.
Dr. Boguraev is author or coauthor of more than 120 technical papers
and 15 patents. Until recently, he was the Executive Editor of the
Cambridge University Press book series Studies in Natural Language
Processing. He has also been a member of the editorial boards of
Computational Linguistics and the Journal of Semantics, and he
continues to serve as one of the founding editors of Journal of Natural
Language Engineering. He is a member of the Association for
Computational Linguistics.

IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 3 MAY/JULY 2012

M. C. MCCORD ET AL. 3:15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

