
The Very Unofficial Dummies

Guide To Scapy

Author: Adam Maxwell (@catalyst256)

Find me at http://itgeekchronicles.co.uk

twitter.com/#!/catalyst256
http://itgeekchronicles.co.uk/

By Adam Maxwell (@catalyst256) 1 http://itgeekchronicles.co.uk

Table of Contents

Chapter 1 - Introduction .. 1

Chapter 2 - Installing Scapy ... 2

Chapter 3 - Creating a packet .. 4

Chapter 4 – Sending & Receiving Packets .. 6

Chapter 5 – Getting more out of your packets .. 13

Chapter 6 – Reading & Writing Packets to pcap .. 20

Chapter 7 – Layering Packets .. 26

Chapter 8 – Even more uses for Scapy ... 30

Chapter 9 – And now the end is near and so I face the final chapter ... 32

Appendix A – Common Scapy Commands ... 34

Appendix B – ICMP Types .. 42

Appendix C – TCP Header Information .. 44

Appendix D – DNS Record Types .. 45

Appendix E – BPF (Berkeley Packet Filter) .. 47

Disclaimer: This is by no means an expert’s guide to Scapy in fact until recently

I had never used Scapy before. The aim of this guide is to provide people who

have no experience/knowledge of Scapy with some guidance to creating packets

and giving them the confidence to go further. Some of the details in here might

be wrong, but I will do my best to ensure that information is correct and where

examples are provided that they have been tested.

Chapter 1 - Introduction

Hello and welcome to this very unofficial dummies guide to Scapy, and when I use the term
“dummies” I mean no offence, as I am referring more to myself than you (honest). I started getting
more into InfoSec in January 2012 after spending 15 years working in IT (mostly infrastructure type
roles), as part of my on-going development I started to look into this tool called Scapy.

What is Scapy??

“Scapy is a powerful interactive packet manipulation program. It is able to forge or decode packets of a wide

number of protocols, send them on the wire, capture them, match requests and replies, and much more. It can
easily handle most classical tasks like scanning, tracerouting, probing, unit tests, attacks or network discovery
(it can replace hping, 85% of nmap, arpspoof, arp-sk, arping, tcpdump, tethereal, p0f, etc.). It also performs
very well at a lot of other specific tasks that most other tools can't handle, like sending invalid frames, injecting
your own 802.11 frames, combining techniques (VLAN hopping+ARP cache poisoning, VOIP decoding on WEP
encrypted channel ...), etc.” (Sourced from https://www.secdev.org/projects/Scapy/).

Sound interesting? well it did to me but then at the same time it kind of scared me, the information I
could find on the internet was “involved” and I couldn’t find any kind of guides that made it easy for
a beginner (like me) to get comfortable using Scapy. So I decided to write one, both as a learning
tool for myself but maybe for other people who are interested in learning more about this seriously
cool tool.

Now bear in mind this is my first guide so it might be a bit disjointed but it’s a work in progress so it
should get better over time.

So I guess you want to know what you might be able to find in this guide?? Here is an overview of
some of the topics we are going to cover through the course of the guide;

● Installing Scapy (the pre-reqs and any other helpful software)

https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/

By Adam Maxwell (@catalyst256) 2 http://itgeekchronicles.co.uk

● Creating a packet

● Send/Receiving packets

● Basic Scapy commands

● Capturing packets (and reading packet capture files into Scapy)

● Layering packets

● More Examples

Throughout this guide I will provide examples (that I’ve tried and tested) as well as output from
Wireshark so you can “see” what the packets look like. At the end of the guide I’m going to include a
section of appendixes that you might found useful, ranging from DNS record types to Scapy
commands.

Throughout this guide anything that is in italics is a command to type or run. I’ve also used some
funky icons in order to provide some pleasing visuals. Below is a table showing the icons and their
meanings.

Wonder what this could mean?? If you spot this icon it’s a warning, either that I’m not 100%
sure what I’m writing about or I’ve encountered an issue with something along the way.

Information only people, I’ve used this to denote pieces of information you might find
useful.

So you ready to start creating some packets??? Let’s get Scapy installed and see what all the fuss is

about..

Chapter 2 - Installing Scapy

I am only going to cover installing Scapy on Ubuntu (I’ve followed this same process of Ubuntu 10.x
through to 12.x). If you want to know how to install it on other version of nix or windows you can find
the instructions at http://www.secdev.org/projects/Scapy/doc/installation.html

If you experience issues installing Scapy, you can boot a vanilla Backtrack 5 R2 install that comes with
Scapy 2.0.1 pre-installed.

You might also want to install Wireshark on the same machine as Scapy, this will allow you to capture
packets as you create them so you can actually see the results as you go (this guide won’t cover how
to use Wireshark).

The main prerequisite to run Scapy is Python 2.5, one of the cool things about Scapy is that once you
get the hang of creating packets within the application you can then use it in python scripts/code
and have even more fun with it. So this is what you need to get started with Scapy;

1. Install Python 2.5+

2. Download and install Scapy

3. (Optional): Install additional software for special features.

4. Run Scapy with root privileges.

1. Install Python 2.5+ - The official documentation for Scapy states Python 2.5 to run Scapy 2.x, I’m
currently running Python 2.7 and never had a problem with it. If you are unsure what version of
Python you are using then from a terminal type:

max@dumbass:~$ python -V
Python 2.7.3

If you haven’t got Python 2.5+ already installed then from Ubuntu you can simply type:

http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html
http://www.secdev.org/projects/scapy/doc/installation.html

By Adam Maxwell (@catalyst256) 3 http://itgeekchronicles.co.uk

max@dumbass:~$ sudo apt-get install python

2. Download and install Scapy - Once you have python installed you need to get scapy. now there
are a few ways you can do this so I will go through the ones I’ve used:

max@dumbass:~$ sudo apt-get install python-scapy

max@dumbass:~$ cd /tmp

$ wget scapy.net
$unzip scapy-latest.zip
$ cd scapy-2.*

$ sudo python setup.py install

3. (Optional): Install additional software for special features - Now by this point you should
have Scapy installed, you can test this by simply typing this in a terminal:

max@dumbass:~$ sudo scapy
WARNING: No route found for IPv6 destination :: (no default route?)
Welcome to Scapy (2.2.0)

To exit out of Scapy, just type:

Welcome to Scapy (2.2.0)
>>> exit()

Version 2.2.0 seems to be latest stable build and for the remainder of this guide that’s the version
we will use. Now when you just ran Scapy you might have noticed some errors about components
missing, Scapy can do a lot of extra things such as providing 3D maps, graphs, charts etc but you
need some extra packages. Here’s the command to get all those extra goodies:

max@dumbass:~$ sudo apt-get install tcpdump graphviz imagemagick python-gnuplot python-
crypto python-pyx (this is all one line)

4. Run Scapy with root privileges - Now this is the easy one, and if fact if you’ve already done this
but nevertheless the command is this:

max@dumbass:~$ sudo scapy

And this time you should hopefully see this:

WARNING: No route found for IPv6 destination :: (no default route?)
Welcome to Scapy (2.2.0)
>>>

So that covers the install of Scapy, hopefully it was painless and you are all set to get started, if you
have had some “issues” let me know and I will try and help, or you could use the oracle that is
GOOGLE.

By Adam Maxwell (@catalyst256) 4 http://itgeekchronicles.co.uk

Chapter 3 - Creating a packet

Appendix A towards the back of the guide will provide a list of “common” Scapy functions and
protocols.

The examples throughout this guide should work (and they have been tested) against Scapy version
2.x.

That’s right it’s time to play.. so to start with we are going to jump straight in and write your very first
packet. Now you might be thinking “Don’t I need to understand more about Scapy??” well maybe
you do but I learn best by doing and this is my guide. For each packet we create I will provide a
breakdown of what and why we use the commands listed. Hopefully as we work through the guide
you will slowly build your knowledge and start experimenting yourself (with Scapy that is).

So packet number 1 is going to be....... a simple (yet useful) ICMP packet. To start with we are going
to create a single ICMP packet with the well-known message “HelloWorld” contained as the payload.

The IP addresses used in this guide are only relevant to my home network, you need to change them
to the appropriate local addresses you use. Please also make sure you only send packets to devices
you own or allowed to poke at.

Welcome to Scapy (2.2.0)
>>> send(IP(dst="10.1.99.2")/ICMP()/"HelloWorld")
.
Sent 1 packets.
>>>

So let’s break this down shall we;

send - this tells Scapy that you want to send a packet (just a single packet)
IP - the type of packet you want to create, in this case an IP packet
(dst=”10.1.99.2”) - the destination to send the packet to (in this case my router)
/ICMP() - you want to create an ICMP packet with the default values provided by Scapy
/”HelloWorld”) - the payload to include in the ICMP packet (you don’t have to provide this in order
for it to work.

Now I’ve explained that a bit quick, so let’s put it into some context by seeing what Wireshark saw:

No. Time Source Destination Protocol Length Info
5 2012-05-16 21:25:34.306827 10.1.99.22 10.1.99.2 ICMP 52 Echo (ping) request id=0x0000, seq=0/0, ttl=64

Frame 5: 52 bytes on wire (416 bits), 52 bytes captured (416 bits)
Arrival Time: May 16, 2012 21:25:34.306827000 BST
Epoch Time: 1337199934.306827000 seconds
[Time delta from previous captured frame: 50.948599000 seconds]
[Time delta from previous displayed frame: 50.948599000 seconds]
[Time since reference or first frame: 77.326326000 seconds]
Frame Number: 5
Frame Length: 52 bytes (416 bits)
Capture Length: 52 bytes (416 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ip:icmp:data]
[Coloring Rule Name: ICMP]
[Coloring Rule String: icmp || icmpv6]
Ethernet II, Src: Dell_e7:90:ae (00:22:19:e7:90:ae), Dst: Netgear_83:ab:70 (30:46:9a:83:ab:70)
Destination: Netgear_83:ab:70 (30:46:9a:83:ab:70)
Address: Netgear_83:ab:70 (30:46:9a:83:ab:70)
.... ...0 = IG bit: Individual address (unicast)
.... ..0. = LG bit: Globally unique address (factory default)
Source: Dell_e7:90:ae (00:22:19:e7:90:ae)
Address: Dell_e7:90:ae (00:22:19:e7:90:ae)
.... ...0 = IG bit: Individual address (unicast)

By Adam Maxwell (@catalyst256) 5 http://itgeekchronicles.co.uk

.... ..0. = LG bit: Globally unique address (factory default)
Type: IP (0x0800)
Internet Protocol Version 4, Src: 10.1.99.22 (10.1.99.22), Dst: 10.1.99.2 (10.1.99.2)
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.... ..00 = Explicit Congestion Notification: Not-ECT (Not ECN-Capable Transport) (0x00)
Total Length: 38
Identification: 0x0001 (1)
Flags: 0x00
0... = Reserved bit: Not set
.0.. = Don't fragment: Not set
..0. = More fragments: Not set
Fragment offset: 0
Time to live: 64
Protocol: ICMP (1)
Header checksum: 0xa0bc [correct]
[Good: True]
[Bad: False]
Source: 10.1.99.22 (10.1.99.22)
Destination: 10.1.99.2 (10.1.99.2)
Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: 0
Checksum: 0xf7ff [correct]
Identifier (BE): 0 (0x0000)
Identifier (LE): 0 (0x0000)
Sequence number (BE): 0 (0x0000)
Sequence number (LE): 0 (0x0000)
[Response In: 6]
Data (10 bytes)
Data: 48656c6c6f576f726c64
[Length: 10]

0000 30 46 9a 83 ab 70 00 22 19 e7 90 ae 08 00 45 00 0F...p."......E.
0010 00 26 00 01 00 00 40 01 a0 bc 0a 01 63 16 0a 01 .&....@.....c...
0020 63 02 08 00 f7 ff 00 00 00 00 48 65 6c 6c 6f 57 c.........HelloW
0030 6f 72 6c 64 orld

For this first packet I’ve included everything from Wireshark, in future I won’t (the guide would be
huge), but what I have done is bold some parts of the Wireshark dump that relate to the packet we
just created.

Let’s see the original packet we just wrote again, matched against the bold sections above:

send(IP(dst="10.1.99.2")/ICMP()/"HelloWorld")

Internet Protocol Version 4, Src: 10.1.99.22 (10.1.99.22), Dst: 10.1.99.2 (10.1.99.2)
Protocol: ICMP
Data: 48656c6c6f576f726c64 or “HelloWorld”

Do you notice how the packet we created appears as you would expect with any normal ICMP
packet when using something like Wireshark? Can we take this further? Let’s look at another ICMP
packet but with an extra option:

send(IP(src="10.1.99.100", dst="10.1.99.2")/ICMP()/"HelloWorld")

Notice the difference? Yes that’s right we “spoofed” the source address, if we look at Wireshark now
we see this:

Internet Protocol Version 4, Src: 10.1.99.100 (10.1.99.100), Dst: 10.1.99.2 (10.1.99.2)
Protocol: ICMP
HelloWorld

What you didn’t see (and I didn’t show you) is that in the first packet we got a corresponding Ping
Reply packet for our original Ping Request, in this second example we didn’t (because we spoofed
the IP source address).

By Adam Maxwell (@catalyst256) 6 http://itgeekchronicles.co.uk

Having fun yet???

So what else can we add into this simple packet without making it too complicated?? How about
changing the TTL (Time to Live) for the ICMP packet?? In the original Wireshark dump I highlighted
Time to live: 64 which is the default TTL, but what if we wanted to change that? Is that possible?? Well
with Scapy yes, yes it is and here how:

send(IP(src="10.1.99.100", dst="10.1.99.2", ttl=128)/ICMP()/"HelloWorld")

Can this be any easier?? and what does that look like to wireshark??

Internet Protocol Version 4, Src: 10.1.99.100 (10.1.99.100), Dst: 10.1.99.2 (10.1.99.2)
Time to live: 128

Anyway back to these ICMP packets, so before we call it quits on these bad boys, let’s just explore
one last option (I promise it will get more exciting soon).

OK so what do you think this ICMP packet does??

send(IP(src="10.1.99.100", dst="10.1.99.2", ttl=128)/ICMP(type=0)/"HelloWorld")

Well if you are thinking that it’s just sent a Ping Reply (ICMP Type 0) to 10.1.99.2 then you are
correct, here are the Wireshark highlights.

Internet Protocol Version 4, Src: 10.1.99.100 (10.1.99.100), Dst: 10.1.99.2 (10.1.99.2)
Internet Control Message Protocol
Type: 0 (Echo (ping) reply)

For reference I've included a list of the other ICMP types in Appendix B (which you can find at the
back of the book).

Hopefully by now you are realising how powerful Scapy is, the method I’ve shown you here is not
the only way you can create packets, because Scapy is based on Python what you can do with Scapy
is only limited by your imagination (and some limitations of the application).

In chapter 7 I will provide you with another way to write Scapy packets in a different way but for the
time being we will continue using the same format as we have done with the ICMP packets.

Summary

In this chapter we have looked at creating a simple ICMP packet, then modifying some of the packet
headers. Out of the box Scapy (thanks to the developers) will use default values based on the packet
type if you don't supply them thus enabling you to focus on the parts you want to change rather
than having to include all the options yourself.

In the next chapter we will look at Sending & Receiving Scapy packets.

Chapter 4 – Sending & Receiving Packets

So you all set to move onto the next level of Scapy?? Well here we go then, in this chapter we are
going to look at sending and receiving packets via Scapy. The “send”n”receive” functions are the
heart of Scapy (after all you won't get far just sending packets), and they work as a “couple” and
return two lists. The first element is a list of couples (packet sent, answer), and the second element
is the list of unanswered packets. Both of these two elements are lists, but Scapy wraps them up in
an object to present them better, and to provide them with some methods that do the most
frequently needed actions.

There are 3 main functions to s&r (sending and receiving) these are:

By Adam Maxwell (@catalyst256) 7 http://itgeekchronicles.co.uk

● sr() - The sr() function is for sending packets and receiving answers. The function returns

a couple of packet and answers, and the unanswered packets.

● sr1() - This function is a variant that only returns one packet that answered the sent

packet (or the packet set) sent.

When using sr() or sr1() the packets must be layer 3 packets (IP, ARP, etc.)

● srp() - The function srp() does the same for layer 2 packets (Ethernet, 802.3, etc).

Throughout this chapter we are going to use both the sr() function and the sr1() function and we
will again be using the ICMP packet for the exercises.

So this is how you write a simple ICMP packet in Scapy using the sr() function.

h=sr1(IP(dst="10.1.99.2")/ICMP())

So most of this should familiar to you from the previous chapter, let’s look at the differences;

h – This is the name of my packet, if you are familiar with Python this is how you declare a name
(name=)

sr1– This is the Scapy function that we discussed at the start of the chapter.

>>> h=sr1(IP(dst="10.1.99.2")/ICMP())
Begin emission:
.Finished to send 1 packets.
*
Received 2 packets, got 1 answers, remaining 0 packets

Now that we have sent a packet (yes, yes I know ICMP isn't very “sexy”), let’s start to look at what the
sr1() function allows us to do.

To see the “answered” packet (remember the sr functions can show the answered and unanswered
packets, but sr1() is only interested in the first answered packet), simply type:

>>> h (remember h is the name we gave our packet)

You should see something like this:

>>> h
<IP version=4L ihl=5L tos=0x0 len=28 id=7394 flags= frag=0L ttl=64 proto=icmp chksum=0x83e2
src=10.1.99.2 dst=10.1.99.25 options=[] |<ICMP type=echo-reply code=0 chksum=0xffff id=0x0
seq=0x0 |<Padding load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00e@\x07-'
|>>>

Now if you remember back to the previous chapter this is the same information that Wireshark
showed us, if you want a slightly better formatted version you can type:

>>> h.show()

This will return you something similar to this:

>>> h.show()
###[IP]###
version= 4L

By Adam Maxwell (@catalyst256) 8 http://itgeekchronicles.co.uk

ihl= 5L
tos= 0x0
len= 28
id= 7394
flags=
frag= 0L
ttl= 64
proto= icmp
chksum= 0x83e2
src= 10.1.99.2
dst= 10.1.99.25
\options\
###[ICMP]###
type= echo-reply
code= 0
chksum= 0xffff
id= 0x0
seq= 0x0
###[Padding]###
load= '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00e@\x07-'
>>>

If we were to run the same Scapy command again, but this time add our own payload using this
command:

>>> h=sr1(IP(dst="10.1.99.2")/ICMP()/"HelloWorld")

We would see this in h.show():

>>> h.show()
###[IP]###
version= 4L
ihl= 5L
tos= 0x0
len= 38
id= 7395
flags=
frag= 0L
ttl= 64
proto= icmp
chksum= 0x83d7
src= 10.1.99.2
dst= 10.1.99.25
\options\
###[ICMP]###
type= echo-reply
code= 0
chksum= 0x0
id= 0x0
seq= 0x0
###[Raw]###
load= 'HelloWorld'
###[Padding]###
load= '\x00\x00\x00\x00\xe7\x03N\x99'
>>>

See isn't this nice and easy, and fun..

By Adam Maxwell (@catalyst256) 9 http://itgeekchronicles.co.uk

Let's move onto another example, this time using the sr() function so that we can see the
“unanswered” packets as well.

In Scapy type this command; notice that we have moved away from ICMP packets.

>>> p=sr(IP(dst="10.1.99.2")/TCP(dport=23))

Now things are getting more interesting.. Let’s break this down again so we can see the changes:

p – This time I've called my packet p (no real reason, just fancied a change)

sr – We changed to the sr() function so we can see the unanswered packets as well

/TCP – Yes that's right we moved onto TCP packets instead of ICMP

dport=23 - A TCP packet needs a destination, so you can use dport to specify one and I've chosen
port 23 (Telnet) as my example.

The commands for showing a packet using sr() are different because we have the opportunity to
look at both the answered and unanswered packets. If you type:

>>> p

You will notice that you get a different output.. shall we have a look?

>>> p=sr(IP(dst="10.1.99.2")/TCP(dport=23))
Begin emission:
.Finished to send 1 packets.
*
Received 2 packets, got 1 answers, remaining 0 packets
>>> p
(<Results: TCP:1 UDP:0 ICMP:0 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:0 Other:0>)
>>>

If you try and use p.show() you now get an error message:

>>> p.show()
Traceback (most recent call last):
File "<console>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'show'
>>>

Don't worry you haven't broken it, we just need to get at the information in a different way with the
sr() function. In order to see the returned packets you need to do this with Scapy:

>>> ans,unans=_

In Python _ (underscore) is the latest result.

>>> ans.summary()

You get the following back from Scapy:

>>> ans.summary()
IP / TCP 10.1.99.25:ftp_data > 10.1.99.2:telnet S ==> IP / TCP 10.1.99.2:telnet > 10.1.99.25:ftp_data
RA / Padding

By Adam Maxwell (@catalyst256) 10 http://itgeekchronicles.co.uk

One thing to note and this only applies to when you starting using packets other than ICMP is that
the default source port for Scapy is port 22 (or ftp_data) as shown above. You can of course change
this and we cover that a bit later.

You can also specify ranges of destination ports in your packet creation (I know starting to sound a
bit like a port scanner..) again this is easy to do, and if you look at this example you can see what I
mean.

>>> p=sr(IP(dst="10.1.99.2")/TCP(dport=[23,80,53]))
Begin emission:
.**Finished to send 3 packets.
*
Received 4 packets, got 3 answers, remaining 0 packets
>>>

The ports are encased around [] and separated by commas. If you then type p again, you will see a
slightly different output based on the number of packets (1 packet per port).

>>> p
(<Results: TCP:3 UDP:0 ICMP:0 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:0 Other:0>)
>>>

>>> ans,unans=_
>>> ans.summary()
IP / TCP 10.1.99.25:ftp_data > 10.1.99.2:telnet S ==> IP / TCP 10.1.99.2:telnet > 10.1.99.25:ftp_data
RA / Padding
IP / TCP 10.1.99.25:ftp_data > 10.1.99.2:http S ==> IP / TCP 10.1.99.2:http > 10.1.99.25:ftp_data SA /
Padding
IP / TCP 10.1.99.25:ftp_data > 10.1.99.2:domain S ==> IP / TCP 10.1.99.2:domain >
10.1.99.25:ftp_data SA / Padding
>>>

Each sent packet has the corresponding received packet listed, it's not as much detail as using sr1()
shows but from the output above, you can actually tell which ports on my router are “open”. What's
that you say, did we just perform a port scan with Scapy, yes yes we did.. (cool or what).

Before we go into a bit more detail on that, let me just recap (and sorry if you already know this)
about the TCP 3 way handshake or the TCP Handshake as it's sometimes called. TCP is a connection
based protocol (as opposed to UDP which is connectionless), this allows for error checking and
retransmissions of TCP packets.

In order for this to happen the TCP handshake needs to occur. The process for the handshake is
quite simple and goes something like this:

Now how does this relate to the 3 packets we sent? Let’s look at the port 80 (http) packet first:

By Adam Maxwell (@catalyst256) 11 http://itgeekchronicles.co.uk

IP / TCP 10.1.99.25:ftp_data > 10.1.99.2:http S ==> IP / TCP 10.1.99.2:http > 10.1.99.25:ftp_data SA /
Padding

Notice the two different sets of bold characters? That's the SYN (S) from my laptop and the router
replies with a SYN-ACK (SA). This means that a connection is half established, it's not fully
established because we only sent 1 packet to the router on port 80.

Now let’s look at the packet we sent to port 23 (telnet):

IP / TCP 10.1.99.25:ftp_data > 10.1.99.2:telnet S ==> IP / TCP 10.1.99.2:telnet > 10.1.99.25:ftp_data
RA / Padding

Notice the difference? The packet from my laptop is the SYN (S) but my router responds with a RST-
ACK (RA) which is a RESet & ACKnowledge flag within the TCP packet. A RST is used to tell the source
computer to reset a connection, in this case my router doesn't support port 23 (telnet) and as such
the TCP handshake can't be established.

Hopefully that makes sense?? Appendix C will some more information on the different kind of flags
that can appear in TCP packets.

There is a useful nmap port scanning guide, which will explain the different port scan techniques and
how nmap scans. Hopefully it might make some of this a bit clearer. http://nmap.org/book/man-port-
scanning-techniques.html

Does this mean that Scapy can be used as a port scanner? The short answer is yes, but remember
you need to understand what you are looking for, Scapy is designed to send/receive packets and the
interpretation of the data is down to you. Applications like NMAP are designed to provide you with a
user friendly output, but sometimes you might want “more” information.

So let’s turn our example above into a port scanner, because Scapy is flexible in what it does you can
set the flags on the TCP packets as you want. One of the most common and popular port scans is
the SYN scan, so let’s get Scapy to do one of those for us.

The command for a SYN scan is again one line of code and here it is:

>>> p=sr(IP(dst="10.1.99.2")/TCP(sport=666,dport=[22,80,21,443], flags="S"))

Now I've added a couple more options in this example, the first is sport=”666”, remember I said
that Scapy defaults to port 22 (ftp_data) by default, well for the purpose of this exercise I decided to
change it (yes 666 was just the first number I came up, and no I don't worship the devil), the second
option was flags=”S” which tells Scapy just to send SYN packets. Shall we see the results??

>>> p=sr(IP(dst="10.1.99.2")/TCP(sport=666,dport=[22,80,21,443], flags="S"))
Begin emission:
***Finished to send 4 packets.
*
Received 4 packets, got 4 answers, remaining 0 packets
>>> p
(<Results: TCP:4 UDP:0 ICMP:0 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:0 Other:0>)
>>> ans,unans=_
>>> ans.summary()
IP / TCP 10.1.99.25:666 > 10.1.99.2:ssh S ==> IP / TCP 10.1.99.2:ssh > 10.1.99.25:666 SA / Padding
IP / TCP 10.1.99.25:666 > 10.1.99.2:http S ==> IP / TCP 10.1.99.2:http > 10.1.99.25:666 SA / Padding
IP / TCP 10.1.99.25:666 > 10.1.99.2:ftp S ==> IP / TCP 10.1.99.2:ftp > 10.1.99.25:666 RA / Padding
IP / TCP 10.1.99.25:666 > 10.1.99.2:https S ==> IP / TCP 10.1.99.2:https > 10.1.99.25:666 RA /
Padding
>>>

http://nmap.org/book/man-port-scanning-techniques.html
http://nmap.org/book/man-port-scanning-techniques.html

By Adam Maxwell (@catalyst256) 12 http://itgeekchronicles.co.uk

So 4 ports means 4 packets, all with the source port of 666 and from the results above you can
probably (if you were paying attention) tell which ports are open on my router. Now the purpose of
this guide is to show you want Scapy can do, sending SYN packets is fine but a TCP handshake
always starts with one, so let’s try changing that to an ACK packet. Here's what that would look like:

>>> p=sr(IP(dst="10.1.99.2")/TCP(sport=888,dport=[21,22,80,443], flags="A"))
Begin emission:
.***Finished to send 4 packets.
*
Received 5 packets, got 4 answers, remaining 0 packets
>>> p
(<Results: TCP:4 UDP:0 ICMP:0 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:0 Other:0>)
>>> ans,unans=_
>>> ans.summary()
IP / TCP 10.1.99.25:888 > 10.1.99.2:ftp A ==> IP / TCP 10.1.99.2:ftp > 10.1.99.25:888 R / Padding
IP / TCP 10.1.99.25:888 > 10.1.99.2:ssh A ==> IP / TCP 10.1.99.2:ssh > 10.1.99.25:888 R / Padding
IP / TCP 10.1.99.25:888 > 10.1.99.2:http A ==> IP / TCP 10.1.99.2:http > 10.1.99.25:888 R / Padding
IP / TCP 10.1.99.25:888 > 10.1.99.2:https A ==> IP / TCP 10.1.99.2:https > 10.1.99.25:888 R / Padding
>>>

Other than the source port which I've changed just for the sake of it, you notice the A (ACK) flag on
the sent packet, with a R (RST) flag on the response? That's because I've sent a packet to my router
that it's only supposed to receive after a SYN-ACK packet and so it's reset it.

Changing your TCP flags on packets is a useful ability, some devices (such as firewalls) respond
differently when you port scan them, understanding the responses you get back (or should get back)
can help you find your way around them (so to speak).

What other “quick” changes to our TCP packets can we make with Scapy??, well if we follow the same
vein as performing port scans, what if we wanted to randomize the source port? and maybe put a
timeout on the responses? or add an interval between each scan? Well let’s have a look what that
would look like.

>>>p=sr(IP(src="10.1.99.100", dst="10.1.99.2")/TCP(sport=RandShort(),
dport=[20,21,80,3389]),inter=0.5,retry=2,timeout=1)
Begin emission:
..........Finished to send 4 packets.
Begin emission:
....Finished to send 4 packets.
Begin emission:
....Finished to send 4 packets.

Received 18 packets, got 0 answers, remaining 4 packets
>>>

Unfortunately the code for this packet spanned two lines, so I will go through the changes. Similar to
the work we did in the previous chapter, once again I’ve spoofed the source IP (src=”10.1.99.100”),
and I’ve also randomised the source port (sport=RandShort(). The last 3 options inter,retry and
timeout I will explain in a bit more detail.

Inter:

If there is a limited rate of answers, you can specify a time interval to wait between two packets with
the inter parameter. If some packets are lost or if specifying an interval is not enough, you can
resend all the unanswered packets, either by calling the function again, directly with the
unanswered list, or by specifying a retry parameter.

By Adam Maxwell (@catalyst256) 13 http://itgeekchronicles.co.uk

Retry:

If retry is 3, Scapy will try to resend unanswered packets 3 times. If retry is -3, scaly will resend
unanswered packets until no more answers are given for the same set of unanswered packets 3
times in a row.

Timeout:

The timeout parameter specifies the time to wait after the last packet has been sent.
Now if you have just run through the example above, you might notice something different. If you
type p Scapy responds with this:

>>> p
(<Results: TCP:0 UDP:0 ICMP:0 Other:0>, <Unanswered: TCP:4 UDP:0 ICMP:0 Other:0>)

Notice all the packets are “unanswered”, well that’s because we spoofed the source IP address so
the packets went back to the “fake” IP address, if we want to see the unanswered packets we need
to do the following:

>>> ans,unans=_
>>> unans.show()
0000 IP / TCP 10.1.99.100:4087 > 10.1.99.2:http S
0001 IP / TCP 10.1.99.100:1794 > 10.1.99.2:3389 S
0002 IP / TCP 10.1.99.100:9637 > 10.1.99.2:ftp_data S
0003 IP / TCP 10.1.99.100:4522 > 10.1.99.2:ftp S

Notice the random source port??

Summary:

We have covered a lot in this chapter; hopefully most of it makes sense to you? In this chapter we
have covered sending and receiving packets using the sr1() function, how to view the information in
the response and then we moved onto the sr() function which allows us to send multiple packets.
We also looked at the methods for retrieving the reply packets as well as ways to change the packet
values, in a similar way to how we did with the ICMP packets earlier on.

This is by no means the most you can get out of Scapy, the examples I’ve provided are just the
basics so it gives you a foundation to build on.

In the next chapter we will look at some of the other “basic” tasks you can accomplish with Scapy,
hopefully these examples will build on what you have already learnt and give you a better
understanding of how flexible and powerful Scapy can be.

Chapter 5 – Getting more out of your packets

So feeling the love for Scapy yet? Well if you are good; if you are still a doubter then let’s see what
we can do to resolve that. In this chapter we are going to look at some of the other things Scapy can
do in terms of packets. These examples are again written in the same way as throughout the guide
and I will break them down for you as we go.

The humble DNS Query:

We are going to start with a simple DNS query, again most of this should look familiar, as all we are
doing is changing some of the packet information to handle DNS queries. So here is the code:

>>> sr1(IP(dst="10.1.99.2")/UDP()/DNS(rd=1,qd=DNSQR(qname="www.citrix.com")))

So let’s look at this in more detail. The first part you should be familiar with:

http://www.citrix.com/
http://www.citrix.com/
http://www.citrix.com/
http://www.citrix.com/
http://www.citrix.com/

By Adam Maxwell (@catalyst256) 14 http://itgeekchronicles.co.uk

sr1 - This is the send & receives function that only returns the first answered packet
(IP(dst=”10.1.99.2”) - Again we are using an IP packet and the destination IP is my router (which is
also my DNS provider)
/UDP() - Well as you may or may not know, DNS is a UDP packet (port 53) so we need to specify that
in our packet.
/DNS - This is telling Scapy that we want to create a DNS packet.
rd=1 - Is telling Scapy that recursion is desired
qd=DNSQR(qname=”www.citrix.com”) - Now I’m not a 100% sure but qd= I believe means Query
Domain and DNSQR is DNS Question Record, qname=”” is the name of what you are querying.

The response back from Scapy looks a little like this:

<IP version=4L ihl=5L tos=0x0 len=99 id=0 flags=DF frag=0L ttl=64 proto=udp chksum=0x606d
src=10.1.99.2 dst=10.1.99.25 options=[] |<UDP sport=domain dport=domain len=79
chksum=0x4e6c |<DNS id=0 qr=1L opcode=QUERY aa=0L tc=0L rd=1L ra=1L z=0L rcode=ok
qdcount=1 ancount=2 nscount=0 arcount=0 qd=<DNSQR qname='www.citrix.com.' qtype=A
qclass=IN |> an=<DNSRR rrname='www.citrix.com.' type=CNAME rclass=IN ttl=26081
rdata='www.gslb.citrix.com.' |<DNSRR rrname='www.gslb.citrix.com.' type=A rclass=IN ttl=60
rdata='66.165.176.15' |>> ns=None ar=None |>>>
>>>

The parts I’ve highlighted in bold are the parts we specified in our DNS packet, if you look to the
right of the DNSQR section you will see the an=<DNSRR, which is the DNS Resource Record (as in the
response to our question).

OK by default Scapy is just asking for A records (Appendix D will provide more information about

DNS record types), so let’s see if we can change that and ask for NS records for citrix.com. Here’s the

Scapy packet for it.

sr1(IP(dst="10.1.99.2")/UDP()/DNS(rd=1,qd=DNSQR(qname="citrix.com",qtype= "NS")))

So what have we done differently? Well we changed the qname and removed the www. part from it
and then we added the extra field called qtype which allows us to specify the type of DNS record we
are looking for, for the given domain. The returned packet in Scapy looks like this:

<IP version=4L ihl=5L tos=0x0 len=212 id=0 flags=DF frag=0L ttl=64 proto=udp chksum=0x5ffc
src=10.1.99.2 dst=10.1.99.25 options=[] |<UDP sport=domain dport=domain len=192
chksum=0x5c56 |<DNS id=0 qr=1L opcode=QUERY aa=0L tc=0L rd=1L ra=1L z=0L rcode=ok
qdcount=1 ancount=4 nscount=0 arcount=4 qd=<DNSQR qname='citrix.com.' qtype=NS
qclass=IN |> an=<DNSRR rrname='citrix.com.' type=NS rclass=IN ttl=171773
rdata='ctxdns04.citrix.com.' |<DNSRR rrname='citrix.com.' type=NS rclass=IN ttl=171773
rdata='ctxdns03.citrix.com.' |<DNSRR rrname='citrix.com.' type=NS rclass=IN ttl=171773
rdata='ctxdns01.citrix.com.' |<DNSRR rrname='citrix.com.' type=NS rclass=IN ttl=171773
rdata='ctxdns02.citrix.com.' |>>>> ns=None ar=<DNSRR rrname='ctxdns02.citrix.com.' type=A
rclass=IN ttl=25883 rdata='68.156.138.136' |<DNSRR rrname='ctxdns03.citrix.com.' type=A
rclass=IN ttl=25883 rdata='203.166.19.161' |<DNSRR rrname='ctxdns01.citrix.com.' type=A
rclass=IN ttl=25883 rdata='66.165.176.24' |<DNSRR rrname='ctxdns04.citrix.com.' type=A rclass=IN
ttl=25883 rdata='62.200.22.27'

So that’s how you use Scapy to query DNS servers, now I have to admit as I write these examples
out I do have several attempts to get them right myself, but that’s the whole point of this guide.

Traceroute - the Scapy way:

Now this is a bit of an easy one for me, mostly because Scapy comes pre-built with a traceroute
function. It is cool in its own way and here is why:

http://www.citrix.com/
http://www.citrix.com/
http://www.citrix.com/
http://www.citrix.com/
http://www.citrix.com/

By Adam Maxwell (@catalyst256) 15 http://itgeekchronicles.co.uk

To execute a Scapy traceroute all you need to do is this:

>>> traceroute (["www.google.com"], maxttl=20)

Nothing fancy in this really, if you were to run this you would see something like this (and very
quickly as well).

Begin emission:
..*Finished to send 20 packets.

Received 20 packets, got 18 answers, remaining 2 packets
 74.125.132.99:tcp80
1 10.1.99.2 11
3 80.3.129.161 11
4 212.43.163.221 11
5 62.252.192.157 11
6 62.253.187.178 11
7 212.43.163.70 11
8 212.250.14.158 11
9 209.85.240.61 11
10 209.85.253.94 11
11 66.249.95.173 11
12 209.85.252.83 11
14 74.125.132.99 SA
15 74.125.132.99 SA
16 74.125.132.99 SA
17 74.125.132.99 SA
18 74.125.132.99 SA
19 74.125.132.99 SA
20 74.125.132.99 SA
(<Traceroute: TCP:7 UDP:0 ICMP:11 Other:0>, <Unanswered: TCP:2 UDP:0 ICMP:0 Other:0>)
>>>

Have you noticed anything odd?? Well that’s my fault for not mentioning that this traceroute

function in Scapy is actually a TCP traceroute and not an ICMP one.. Whoops.. Notice this section?

Received 20 packets, got 18 answers, remaining 2 packets 74.125.132.99:tcp80 see how it

resolved www.google.com to 74.125.132.99 tcp 80 as in the HTTP port? Then if you look at response

14 and below see the SA at the end of the line, could that be a SYN-ACK response? Remember you

are performing a TCP traceroute so you are sending a SYN packet and expecting a SYN-ACK

response.

What if we changed the packet and sent it to my router on a port we knew was closed? (Yes I know

the traceroute will be short, that’s not the point).

>>> traceroute (["10.1.99.2"], maxttl=20)

Begin emission:

.*******************Finished to send 20 packets.

*

Received 21 packets, got 20 answers, remaining 0 packets

 10.1.99.2:tcp80

1 10.1.99.2 SA

2 10.1.99.2 SA

3 10.1.99.2 SA

4 10.1.99.2 SA

5 10.1.99.2 SA

6 10.1.99.2 SA

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

By Adam Maxwell (@catalyst256) 16 http://itgeekchronicles.co.uk

7 10.1.99.2 SA

8 10.1.99.2 SA

9 10.1.99.2 SA

10 10.1.99.2 SA

11 10.1.99.2 SA

12 10.1.99.2 SA

13 10.1.99.2 SA

14 10.1.99.2 SA

15 10.1.99.2 SA

16 10.1.99.2 SA

17 10.1.99.2 SA

18 10.1.99.2 SA

19 10.1.99.2 SA

20 10.1.99.2 SA

(<Traceroute: TCP:20 UDP:0 ICMP:0 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:0 Other:0>)

Oh wait that’s used port 80 again, that’s the Scapy default when using a TCP traceroute, I wonder if

we can change that??

>>> traceroute (["10.1.99.2"],dport=23,maxttl=20)

Yep that seemed to work, let’s have a look at the results:

Begin emission:

*******************Finished to send 20 packets.

*

Received 20 packets, got 20 answers, remaining 0 packets

 10.1.99.2:tcp23

1 10.1.99.2 RA

2 10.1.99.2 RA

3 10.1.99.2 RA

4 10.1.99.2 RA

5 10.1.99.2 RA

6 10.1.99.2 RA

7 10.1.99.2 RA

8 10.1.99.2 RA

9 10.1.99.2 RA

10 10.1.99.2 RA

11 10.1.99.2 RA

12 10.1.99.2 RA

13 10.1.99.2 RA

14 10.1.99.2 RA

15 10.1.99.2 RA

16 10.1.99.2 RA

17 10.1.99.2 RA

18 10.1.99.2 RA

19 10.1.99.2 RA

20 10.1.99.2 RA

(<Traceroute: TCP:20 UDP:0 ICMP:0 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:0 Other:0>)

By Adam Maxwell (@catalyst256) 17 http://itgeekchronicles.co.uk

Notice the change to tcp23 and how all the responses were RA (Reset & Acknowledge). OK so why

20 packets each time? Unlike other traceroute programs that wait for each node to reply before

going to the next, Scapy sends all the packets at the same time. This has the disadvantage that it

can’t know when to stop (thus the maxttl parameter).

So what does this really mean?? Well what happens if we want to traceroute multiple destinations?

Let’s give it a try:

>>> traceroute (["10.1.99.2", "www.google.com","www.citrix.com"],maxttl=20)

So I’ve removed the dport= option as I’m happy to send this out on port 80, and I’ve also added 2

other destinations. So have you run it yet? Was it quick? Let’s see the results from my packets:

Begin emission:

***Finished to send 60 packets.

Received 59 packets, got 59 answers, remaining 1 packets

 10.1.99.2:tcp80 66.165.176.15:tcp80 74.125.132.106:tcp80

1 10.1.99.2 SA 10.1.99.2 11 10.1.99.2 11

2 10.1.99.2 SA 10.167.160.1 11 10.167.160.1 11

3 10.1.99.2 SA 80.3.129.61 11 80.3.129.33 11

4 10.1.99.2 SA 212.43.163.217 11 212.43.163.217 11

5 10.1.99.2 SA 213.105.159.30 11 213.105.64.22 11

6 10.1.99.2 SA 62.253.185.81 11 212.43.163.70 11

7 10.1.99.2 SA 80.81.192.190 11 212.250.14.158 11

8 10.1.99.2 SA 85.112.0.78 11 209.85.240.61 11

9 10.1.99.2 SA 85.112.0.89 11 209.85.253.90 11

10 10.1.99.2 SA 85.112.0.102 11 72.14.232.134 11

11 10.1.99.2 SA 66.165.161.13 11 216.239.49.45 11

12 10.1.99.2 SA 66.165.161.5 11 -

13 10.1.99.2 SA 66.165.161.1 11 74.125.132.106 SA

14 10.1.99.2 SA 66.165.161.82 11 74.125.132.106 SA

15 10.1.99.2 SA 66.165.163.26 11 74.125.132.106 SA

16 10.1.99.2 SA 66.165.176.15 SA 74.125.132.106 SA

17 10.1.99.2 SA 66.165.176.15 SA 74.125.132.106 SA

18 10.1.99.2 SA 66.165.176.15 SA 74.125.132.106 SA

19 10.1.99.2 SA 66.165.176.15 SA 74.125.132.106 SA

20 10.1.99.2 SA 66.165.176.15 SA 74.125.132.106 SA

(<Traceroute: TCP:33 UDP:0 ICMP:26 Other:0>, <Unanswered: TCP:1 UDP:0 ICMP:0 Other:0>)

If the target IP answers an ICMP time exceeded in transit (ICMP Type 11)

before answering to the handshake, there is a Destination NAT happening first.

Notice that all the results for each of the different destinations all lined up next to each other,

granted it’s a bit messy on the screen above, but it gives you the idea. That’s 60 packets it sent, then

returned and displayed each response in probably less than 5 seconds. If you have ever tried an

ICMP traceroute you know it goes from slow, to painfully slow.

Before we close this section down on traceroute, notice the line at the bottom? <Traceroute: TCP:33

UDP:0 ICMP:26 Other:0>, <Unanswered: TCP:1 UDP:0 ICMP:0 Other:0> Yes that means you can view

the answered and unanswered packets the same way as we did in Chapter 4. Here’s the recap:

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

By Adam Maxwell (@catalyst256) 18 http://itgeekchronicles.co.uk

>>> ans,unans=_

>>> unans

<Unanswered: TCP:1 UDP:0 ICMP:0 Other:0>

>>> unans.show()

0000 IP / TCP 10.1.99.25:10664 > 74.125.132.106:http S

This is just the unanswered packets; the answered ones are the ones you see in the results. Want to

see them again? Then just type:

>>> ans.show()

So let’s move onto something else.

The Ping Collection, by Scapy:

I’ve shown you the SYN scan earlier, Scapy being what is allows you perform a whole host of

different scans, rather than bore you with a section for each, in this part I will provide you with the

code for each and that’s about it (after all it should be making a bit more sense by now). So here we

go:

In order to save a bit of time I’ve started each packet with ans,unans= which basically saves time

after you’ve sent your packet.

The ACK Scan:

>>> ans,unans=sr(IP(dst="10.1.99.2")/TCP(dport=[80,666],flags="A"))

Begin emission:

.*Finished to send 2 packets.

*

Received 3 packets, got 2 answers, remaining 0 packets

>>> ans.show()

0000 IP / TCP 10.1.99.25:ftp_data > 10.1.99.2:http A ==> IP / TCP 10.1.99.2:http > 10.1.99.25:ftp_data

R / Padding

0001 IP / TCP 10.1.99.25:ftp_data > 10.1.99.2:666 A ==> IP / TCP 10.1.99.2:666 > 10.1.99.25:ftp_data

R / Padding

Unfiltered ports will appear in the answered packets and filtered ports can be found with

unanswered packets.

The IP Scan:

>>> ans,unans=sr(IP(dst="10.1.99.2",proto=(0,255))/"SCAPY",retry=2)

Now this one took forever to run on my laptop, so much so I cancelled it. Give it a try if you want but

I’m not 100% convinced with the results.

The ARP Ping:

This is another one of Scapy’s built in functions, to perform an ARP scan on your network range, just

run the following:

By Adam Maxwell (@catalyst256) 19 http://itgeekchronicles.co.uk

>>> arping("10.1.99.*")

The output (which obviously depends on your network) will look similar to this:

***Finished to send 256 packets.
*
Received 4 packets, got 4 answers, remaining 252 packets
 30:46:9a:83:ab:70 10.1.99.2
 00:25:64:8b:ed:1a 10.1.99.18
 00:26:55:00:fc:fe 10.1.99.12
 d8:9e:3f:b1:29:9b 10.1.99.22
(<ARPing: TCP:0 UDP:0 ICMP:0 Other:4>, <Unanswered: TCP:0 UDP:0 ICMP:0 Other:252>)

The ICMP, TCP and UDP ping shown below, all generate warnings about MAC address
destination not found. These errors seem to be generated when the hosts don’t respond to
an ARP request for the IP. If you are scanning a large range then you will see a lot of these
errors (even though they are not really errors).

The ICMP Ping:

Everyone’s favourite scan, the foundation for network discovery everywhere:

>>> ans,unans=sr(IP(dst="10.1.99.1-254")/ICMP())

This one went a bit bonkers on my laptop, I got a lot of “WARNING: MAC address to reach

destination not found. Using broadcast” errors, that could just be my laptop, give it try.

TIP: If you need to exit out of a packet run, you can use CTRL+c.

The TCP Ping:

This is a simple TCP ping against a subnet using port 80 (HTTP) and sending just a SYN flag.

>>>ans,unans=sr(IP(dst=”10.1.99.*”)/TCP(dport=80, flags=”S”))

Again on this one I got a lot of “WARNING: Mac address to reach destination not found. Using

broadcast” error messages during the scan.

The UDP Ping:

This simple one liner will produce ICMP port unreachable errors from live hosts. You can pick any

port which is most likely to be closed, so I went with port 0.

>>> ans,unans=sr(IP(dst="10.1.99.*"/UDP(dport=0))

Again on this one I got a lot of “WARNING: Mac address to reach destination not found. Using

By Adam Maxwell (@catalyst256) 20 http://itgeekchronicles.co.uk

broadcast” error messages during the scan..

Summary:

In this chapter we have looked at some of the basic uses of Scapy, DNS queries, TCP traceroute and

more are available to you and enable you to get more out of Scapy. Remember Scapy is all about

enabling you to have greater control over the packets you send and tailoring them to your needs.

All the examples in this chapter have been based on the sr() and sr1() functions, so by now you

should be able to write simple Scapy packets and display the results. We also added the

“ans,unans=” to the start of some of the later examples, which again is the same output just a

different way to writing packets.

In this next chapter we are going to look at reading and writing pcap files in Scapy and some of the

basic tasks we can accomplish.

Chapter 6 – Reading & Writing Packets to pcap

One of the nice features about Scapy (yes I keep saying that, but there are a lot) is its ability to

import and export the packets you created to pcap files. Now if you are thinking that pcap is just a

file extension then you would be wrong (as I was until I wrote this). pcap is actually an API for

capturing network traffic.

Below is a subset of the Wikipedia definition of pcap (well worth a read):

In the field of computer network administration, pcap (packet capture) consists of an application programming

interface (API) for capturing network traffic. Unix-like systems implement pcap in the libpcap library; Windows uses a

port of libpcap known as WinPcap.
Monitoring software may use libpcap and/or WinPcap to capture packets travelling over a network and, in newer

versions, to transmit packets on a network at the link layer, as well as to get a list of network interfaces for possible

use with libpcap or WinPcap.

libpcap and WinPcap provide the packet-capture and filtering engines of many open source and commercial network

tools, including protocol analyzers (packet sniffers), network monitors, network intrusion detection systems, traffic-

generators and network-testers.

libpcap and WinPcap also support saving captured packets to a file, and reading files containing saved packets;

applications can be written, using libpcap or WinPcap, to be able to capture network traffic and analyze it, or to read a

saved capture and analyze it, using the same analysis code.

A capture file saved in the format that libpcap and WinPcap use can be read by applications that understand that

format, such as tcpdump, Wireshark, CA NetMaster, or Microsoft Network Monitor 3.x.
The MIME type for the file format created and read by libpcap and WinPcap is application/vnd.tcpdump.pcap. The

typical file extension is .pcap, although .cap and .dmp are also in common use. (sourced from:

http://en.wikipedia.org/wiki/Pcap)

In this chapter we are going to cover a few areas that deal with the reading and writing of packets

into and out of pcap files. These are;

 Sniffing packets

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Network_administration
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Packet_sniffer
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Packet_(information_technology)
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Link_layer
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Packet_sniffer
http://en.wikipedia.org/wiki/Network_monitor
http://en.wikipedia.org/wiki/Network_intrusion_detection_system
http://en.wikipedia.org/wiki/Tcpdump
http://en.wikipedia.org/wiki/Wireshark
http://en.wikipedia.org/wiki/CA,_Inc.
http://en.wikipedia.org/w/index.php?title=NetMaster&action=edit&redlink=1
http://en.wikipedia.org/wiki/Microsoft_Network_Monitor_3.x
http://en.wikipedia.org/wiki/MIME_type
http://en.wikipedia.org/wiki/Pcap

By Adam Maxwell (@catalyst256) 21 http://itgeekchronicles.co.uk

 Reading pcap files
 Writing pcap files
 Viewing packets with Wireshark
 Replaying a pcap file

Sniffing Packets:

So let’s start with some good old fashion packet sniffing, Scapy comes with a built-in sniffer function

that we are going to explore first.

So to do a simple sniff across all interfaces (this is the default action if you don’t define a interface)

simply type:

>>>sniff()

Give it a few seconds and then press CTRL+c and you should see something similar to this:

<Sniffed: TCP:43 UDP:24 ICMP:2 Other:0>

Because we didn’t define any kind of parameters for the sniff command it’s just gone off sniffing

everything (as you would expect), now let’s see how we can view what it’s collected:

These commands are similar to what we have used before:

>>> a=_
>>> a.nsummary()

Once you’ve executed the a.nsummary() command you will see a list of all the packets collected, this

is the output of some of mine:

0003 Ether / IP / UDP / DNS Qry "daisy.ubuntu.com."
0004 Ether / IP / UDP / DNS Qry "daisy.ubuntu.com."
0005 Ether / IP / UDP / DNS Qry "daisy.ubuntu.com."
0006 Ether / IP / UDP / DNS Qry "daisy.ubuntu.com."
0007 Ether / IP / UDP / DNS Qry "daisy.ubuntu.com."
0008 Ether / IP / UDP / DNS Ans "91.189.95.54"
0009 Ether / IP / UDP / DNS Ans "91.189.95.54"
0010 Ether / IP / UDP / DNS Ans "91.189.95.54"
0011 Ether / IP / UDP / DNS Ans "91.189.95.55"

Each “sniffed” packet in this view (remember it’s a summary view) is displayed in this format:

packet number (0000), frame type (Ether), internet layer (IP), transport layer (TCP), application layer

(DNS), packet data (daisy.ubuntu.com)

If you want to see the specific details about a packet you can type the following:

By Adam Maxwell (@catalyst256) 22 http://itgeekchronicles.co.uk

>>> a[3]

Which will show us the third packet from the summary:

<Ether dst=00:00:00:00:00:00 src=00:00:00:00:00:00 type=0x800 |<IP version=4L ihl=5L tos=0x0

len=62 id=29501 flags=DF frag=0L ttl=64 proto=udp chksum=0xc96f src=127.0.0.1 dst=127.0.0.1

options=[] |<UDP sport=34566 dport=domain len=42 chksum=0xfe3d |<DNS id=52408 qr=0L

opcode=QUERY aa=0L tc=0L rd=1L ra=0L z=0L rcode=ok qdcount=1 ancount=0 nscount=0 arcount=0

qd=<DNSQR qname='daisy.ubuntu.com.' qtype=A qclass=IN |> an=None ns=None ar=None |>>>>

See nice and simple way to sniff packets, now what if we wanted to be a bit more specific about

what we sniff? Well let’s try another simple example.

The options to filter traffic are based on the BPF (Berkeley Packet Filter), Appendix E will contain

some BPF variables you can use.

This example will filter based on icmp traffic going out of my eth0 interface (LAN connection).

>>> sniff(iface="eth0", filter="icmp", count=10)

So this command has a few more options, so let’s break it down for you:

iface=”eth0” - nice simple one, I’m defining the interface to sniff on (remember by default it’s all

interfaces that Scapy will sniff packets from).
filter=”icmp” - This is telling the sniff() function to only look for ICMP packets
count=10 - If you only want to collect a certain amount of packets, you can use the count option to

define that number, in this case I told it to collect 10 ICMP packets and then stop.

Now let’s look at the output from this:

>>> a=_
>>> a.nsummary()
0000 Ether / IP / ICMP / IPerror / UDPerror / DNS Ans "91.189.95.55"
0001 Ether / IP / ICMP / IPerror / UDPerror / DNS Ans "91.189.95.54"
0002 Ether / IP / ICMP 10.1.99.25 > 74.125.132.103 echo-request 0 / Raw
0003 Ether / IP / ICMP 74.125.132.103 > 10.1.99.25 echo-reply 0 / Raw
0004 Ether / IP / ICMP 10.1.99.25 > 74.125.132.103 echo-request 0 / Raw
0005 Ether / IP / ICMP 74.125.132.103 > 10.1.99.25 echo-reply 0 / Raw
0006 Ether / IP / ICMP 10.1.99.25 > 74.125.132.103 echo-request 0 / Raw
0007 Ether / IP / ICMP 74.125.132.103 > 10.1.99.25 echo-reply 0 / Raw
0008 Ether / IP / ICMP / IPerror / UDPerror / DNS Ans "wb-in-f103.1e100.net."
0009 Ether / IP / ICMP / IPerror / UDPerror / DNS Ans "wb-in-f103.1e100.net."

That’s 10 ICMP packets collected and again if you want to see an individual packet you can just type:

>>> a[2]
<Ether dst=30:46:9a:83:ab:70 src=00:22:19:e7:90:ae type=0x800 |<IP version=4L ihl=5L tos=0x0

len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0xfeaa src=10.1.99.25 dst=74.125.132.103

By Adam Maxwell (@catalyst256) 23 http://itgeekchronicles.co.uk

options=[] |<ICMP type=echo-request code=0 chksum=0x82a5 id=0x14fc seq=0x1 |<Raw

 load='k\x10\xc2OD\xfa\x03\x00\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x

19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./01234567' |>>>>

So now you have the basics of capturing packets, let’s move on to how to reading existing pcap files.

Reading pcap files

For this section I’ve created a pcap file from Wireshark and saved it in my /tmp folder as

read1.pcap we will then load that file into Scapy and then see if we can examine the contents.

So let’s see the command we need to import a pcap file.

>>> pkts = rdpcap("/tmp/read1.pcap")

So let’s quickly go through this command (and I say quickly because there isn’t much to it).

pkts= - here we are defining a name to store the imported pcap file (you can use anything you want)
rdpcap - this it the Scapy function for reading a pcap file
“/tmp/read1.pcap” - is the location of my test pcap file as mentioned at the start of this section

So shall we see if it worked?? To check to make sure it’s imported your pcap file you can use this

command:

>>> pkts

and what you should get back is something like this (depends on the file you are importing).

<read1.pcap: TCP:16 UDP:25 ICMP:2 Other:0>

So now what?? Let’s look at those packets in more detail.

>>> pkts.summary()
Ether / IPv6 / UDP fe80::7c87:4708:cf7d:9a84:56723 > ff02::c:1900 / Raw
Ether / IP / TCP 199.47.216.144:http > 10.1.99.25:33648 PA / Raw
Ether / IP / TCP 10.1.99.25:33648 > 199.47.216.144:http PA / Raw
Ether / IP / TCP 199.47.216.144:http > 10.1.99.25:33648 A
Ether / IP / UDP / DNS Qry "daisy.ubuntu.com."
Ether / IP / UDP / DNS Qry "daisy.ubuntu.com."
Ether / IP / UDP / DNS Qry "daisy.ubuntu.com."

You can also use the same command from the previous section to look at the packets in more detail:

>>> pkts[1]
<Ether dst=00:22:19:e7:90:ae src=30:46:9a:83:ab:70 type=0x800 |<IP version=4L ihl=5L tos=0x0

len=231 id=56525 flags=DF frag=0L ttl=49 proto=tcp chksum=0x5f69 src=199.47.216.144

By Adam Maxwell (@catalyst256) 24 http://itgeekchronicles.co.uk

dst=10.1.99.25 options=[] |<TCP sport=http dport=33648 seq=2841451166L ack=1464285890

dataofs=8L reserved=0L flags=PA window=126 chksum=0x2f0e urgptr=0 options=[('NOP', None),

('NOP', None), ('Timestamp', (1438757224, 2941902))] |<Raw load='HTTP/1.1 200 OK\r\nX-DB-

Timeout: 120\r\nPragma: no-cache\r\nCache-Control: no-cache\r\nContent-Type: text/plain\r\nDate:

Sun, 27 May 2012 11:41:41 GMT\r\nContent-Length: 15\r\n\r\n{"ret": "punt"}' |>>>>

So let’s move on to how to write pcap files in Scapy.

Writing pcap files

I will cover this from the start, just so you understand the whole process. First of lets collect a few

packets that we will later write to a pcap file.

>>> pkts=sniff(iface="eth0",filter="tcp and port 80",count=10)

Again we are using the sniff() function within Scapy and writing the collected packets in pkts. I’ve

changed it slightly so that this time we are collecting http traffic. What we need to do next is write

those packets into a pcap file so we can use Wireshark to dissect them better.

>>> wrpcap("/tmp/write1.pcap",pkts)

Let’s breakdown this command for you, wrpcap is the Scapy function for writing files to pcap,

“/tmp/write1.pcap” is the filename and pkts is what to write to the pcap file.

If I do an ls -ll *.pcap on my /tmp folder you can see the 2 files I’ve used today.

-rw------- 1 root root 11292 May 27 12:41 read1.pcap
-rw-r--r-- 1 root root 2291 May 27 13:08 write1.pcap

Although I can’t show you, I have loaded the write1.pcap into Wireshark and it does only show me

the 10 http packets that I collected using sniff().

Viewing packets with Wireshark

Once again there is a nifty little function already coded into Scapy, that will allow you to view your

generated packets directly in Wireshark (which does have more advanced packet dissection

abilities).

Wireshark works with Layer 2 packets (usually called “frames”), in order to avoid strange results with

Wireshark we are going to add an Ether() header to the ICMP packets used in this example. The

Ether() header will be covered in more detail in the next chapter (Layering packets).

So first off let’s generate some packets:

>>> packets=Ether()/IP(dst="www.google.com")/ICMP()

http://www.google.com/

By Adam Maxwell (@catalyst256) 25 http://itgeekchronicles.co.uk

So let’s break this down for you:

packets= Again this is the name we are creating for the packets we are generating.
Ether() - This is adding an Ether() heading to the ICMP packets.
/IP-This is the internet layer we need to use.
dst= - Is the destination for the packets (in this case google.com).
/ICMP() - Generate some default ICMP packets (default as in let Scapy fill in the necessary

information).

Then let’s show them with Wireshark:

>>> wireshark(packets)

When you have run this command Wireshark will load in a separate window and display the packet

or packets (in this case just 1 packet as that is all we sent).

This next section shows you an awesome feature which for InfoSec professionals can come in

handy.

Replaying a pcap file

So you have a pcap file that contains the packet output of an attack, you want to replay that output

so you can test it in your lab to see the effects for yourself, well here’s how you can do this with

Scapy.

>>>pkts=rdpcap(“/tmp/attack.pcap”)
>>>for pkt in pkts:
>>> send(pkt)
>>>

The first command reads the stored pcap file from “/tmp/attack.pcap” and stores it in the name

pkts. Then we tell Scapy (remember it’s based on Python), that for each pkt (packet) in pkts (our

stored pcap file) send those packets, send(pkt).

In reality you can use these commands for things other than replaying “attacks”, if you want to test

something repeatedly without having to retype the commands it can come in useful. The same for

storing packets in pcap files, it just makes going back to things a bit easier (especially when like me

you are still learning lots).

Summary:

This chapter has been all about reading, writing and viewing pcap files, whether it’s creating them

yourself or viewing ones you have saved from other sources. We’ve looked at rdpcap() which allows

you to read pcap files and wrpcap() which allows you to write generated packets to a pcap file for

later use or examination. We have had a quick look at the wireshark() function which allows you to

leverage the packet dissection abilities of Wireshark and then we finished off looking at how to

replay a pcap file.

By Adam Maxwell (@catalyst256) 26 http://itgeekchronicles.co.uk

It might have seemed like a chapter missing substance and one that I’ve skipped through quickly,

but remember I am still new to Scapy and this guide is just to provide the basics.

In the next chapter we are going to look at how you can layer packets to create all manner of weird

and wonderful things.

Chapter 7 – Layering Packets

In reality you have been creating layered packets throughout this guide; Scapy at its core is all about

the layering of protocols together to make custom packets. This chapter will go through some of

what, hopefully you are already comfortable with but putting it a clearer picture (or not, just

depends really).

Within Scapy the / operator has been used as a composition operator between two layers, when

doing so, the lower layer can have one or more of its default fields overloaded according to the

upper layer.

So you confused yet?? (well that makes two of us) Let’s go back to the start and look at creating a

packet from the start.
First off let’s view the section of a IP packet within Scapy.

>>> IP()
<IP |>
>>>

Simple enough now we are going to “layer” TCP over it.

>>> IP()/TCP()
<IP frag=0 proto=tcp |<TCP |>>
>>>

So that’s a IP packet using TCP layered together. Now let’s add another layer.

>>> Ether()/IP()/TCP()
<Ether type=0x800 |<IP frag=0 proto=tcp |<TCP |>>>
>>>

Notice how the / indicates a new layer? So what else can we do?

>>> IP()/TCP()/"GET / HTTP/1.0\r\n\r\n"
<IP frag=0 proto=tcp |<TCP |<Raw load='GET / HTTP/1.0\r\n\r\n' |>>>
>>>

Ok so now we’ve layered a HTTP GET request into the TCP layer, but notice we’ve stripped out the

By Adam Maxwell (@catalyst256) 27 http://itgeekchronicles.co.uk

Ether() part because we didn’t specify it.

Remember that each command we type at this point is changing the original values we might have

set earlier, this is because we are not storing this anywhere (yet).

Let’s try something else.

>>> Ether()/IP()/IP()/UDP()
<Ether type=0x800 |<IP frag=0 proto=ipencap |<IP frag=0 proto=udp |<UDP |>>>>
>>>

Ok so I’ve just created a double /IP packet, no idea why, but then Scapy lets you create packets

however you want (that’s part of the fun). So let’s look at another way to build these packets so we

can send them.

So first off lets create some layers, we are going to do this the “long” way because I hope you will

learn a bit more about the power of Scapy and it’s close relation to Python.

>>> a=Ether()
>>> b=IP()
>>> c=TCP()

So we’ve created 3 variables, each one a different protocol type. Scapy will by default provide values

for each of the protocols. To see what they are for each we simply type the following commands:

>>>a.show()
>>>b.show()
>>>c.show()

Let’s work through these one at a time:

>>> a.show()
###[Ethernet]###
WARNING: Mac address to reach destination not found. Using broadcast.
 dst= ff:ff:ff:ff:ff:ff
 src= 00:00:00:00:00:00
 type= 0x0
>>>

Ok looks like a standard default Ether() layer, but remember the Ether() layer is what provides the

MAC address information, remember those error messages I got when I tried some of the scans? It

seems that they are because the dst MAC address is set to ff:ff:ff:ff:ff:ff (broadcast). I wonder if we

can change any of these??

>>> a=Ether(src="00:22:19:e7:90:ae")

By Adam Maxwell (@catalyst256) 28 http://itgeekchronicles.co.uk

So this command should change the source MAC address of my Ether() layer, let’s see if it worked.

>>> a.show()
###[Ethernet]###
WARNING: Mac address to reach destination not found. Using broadcast.
 dst= ff:ff:ff:ff:ff:ff
 src= 00:22:19:e7:90:ae
 type= 0x0
>>>

Yes that worked, getting the idea?? Let’s move onto the next layer.

>>>b.show()
###[IP]###
 version= 4
 ihl= None
 tos= 0x0
 len= None
 id= 1
 flags=
 frag= 0
 ttl= 64
 proto= ip
 chksum= None
 src= 127.0.0.1
 dst= 127.0.0.1
 \options\
>>>

Again this looks familiar, let’s see if we can change some of the fields to new values.

>>> b=IP(ttl=10, src="10.1.99.25", dst="10.1.99.2")

So for this layer, we have changed the TTL for the packet, changed the SRC IP address to my laptop

and then specified a DST IP address (my router). Let’s have a look at the IP layer now.

>>> b.show()
###[IP]###
 version= 4
 ihl= None
 tos= 0x0
 len= None
 id= 1
 flags=
 frag= 0
 ttl= 10
 proto= ip
 chksum= None
 src= 10.1.99.25

By Adam Maxwell (@catalyst256) 29 http://itgeekchronicles.co.uk

 dst= 10.1.99.2
 \options\
>>>

So now for the last layer, the TCP layer, let’s have a look at its default fields.

###[TCP]###
 sport= ftp_data
 dport= http
 seq= 0
 ack= 0
 dataofs= None
 reserved= 0
 flags= S
 window= 8192
 chksum= None
 urgptr= 0
 options= {}
>>>

From this we can see that the Scapy default (as we discussed earlier in the guide) for the sport is

ftp_data and the dport is http. Let’s change those values shall we.

>>> c=TCP(sport=22, dport=22, flags="A")

I also changed the flag to A (or ACK) so it will make it easier to spot when we send this packet.

We will just double check to make sure our new values have been updated.

>>> c.show()
###[TCP]###
 sport= ssh
 dport= ssh
 seq= 0
 ack= 0
 dataofs= None
 reserved= 0
 flags= A
 window= 8192
 chksum= None
 urgptr= 0
 options= {}

What’s next of this great adventure? Well lets join all the layers up together and send them on their

merry way.

>>> d=sendp(a/b/c)
.

By Adam Maxwell (@catalyst256) 30 http://itgeekchronicles.co.uk

Sent 1 packets.

We have gone back to the sendp() function as we created a layer 3 packet (the Ether() function) and

as you can see the packet was sent, but was it our packet? Well let’s find out, we will use Wireshark

for the capture.

55 2012-05-27 15:29:27.220051 10.1.99.25 10.1.99.2 TCP 54 [TCP Dup

ACK 2#1] ssh > ssh [ACK] Seq=1 Ack=1 Win=8192 Len=0

That looks like the right packet, the flag is set to ACK and the dport is 22 as we configured within the

TCP() layer. Just to confirm this I’ve added some more output below:

Transmission Control Protocol, Src Port: ssh (22), Dst Port: ssh (22), Seq: 1, Ack: 1, Len: 0

Summary:

This chapter has hopefully given you a better understanding of what we have in reality been doing

throughout the guide, each packet that we wrote were layered thus creating one packet built to our

own design.

Look back at some of the other packets we wrote and you will start to see each layer, for example

this packet below which is from the very start of the guide is a layered packet, I just didn’t call it that

or explain layering to you (cruel I know).

send(IP(src="10.1.99.100", dst="10.1.99.2", ttl=128)/ICMP(type=0)/"HelloWorld")

I’ve only showed you a fraction of what is possible with Scapy but I hope it’s enough to get you

interested and writing your own packets. Chapter 8 will cover some of the other example uses of

Scapy.

Chapter 8 – Even more uses for Scapy

Some of the following examples may have an adverse effect against machines you decide to run

them against. The author of this guide accepts no responsibility for any damage to your own or other

people's computer systems that you decide to “target”.

Fuzzing:

Scapy comes with a handy Fuzzing function, which allows you to quickly build fuzzing templates and

send the fuzzed packets in a loop. Below is the Wikipedia definition of fuzzing.

Fuzz testing or fuzzing is a software testing technique, often automated or semi-automated, that involves

providing invalid, unexpected, or random data to the inputs of a computer program. The program is then

monitored for exceptions such as crashes, or failing built-in code assertions or for finding potential memory

leaks. Fuzzing is commonly used to test for security problems in software or computer systems.

Fuzz testing is often employed as a black-box testing methodology in large software projects where a budget

exists to develop test tools. Fuzz testing is one of the techniques that offer a high benefit-to-cost ratio (sourced

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Random_data
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Crash_(computing)
http://en.wikipedia.org/wiki/Assertion_(computing)
http://en.wikipedia.org/wiki/Memory_leak
http://en.wikipedia.org/wiki/Memory_leak
http://en.wikipedia.org/wiki/Black-box_testing

By Adam Maxwell (@catalyst256) 31 http://itgeekchronicles.co.uk

from: http://en.wikipedia.org/wiki/Fuzzing).

In this example we are going to write a “fuzzed” packet that consists of a normal IP layer, then a

“fuzzed” UDP and NTP layer. In this example the UDP checksum will be correct, the UDP destination

port will be overloaded by NTP to be 123 and the NTP version will be forced to version 4. All the

other ports will be randomised.

>>>send(IP(dst=”your_target”)/fuzz(UDP()/NTP(version=4)(loop=1)

................^C

Sent 16 packets.

You will need to perform a CTRL+c to break the transmissions of the packets.

ARP Cache Poisoning

Now for this to work, you also have to perform a VLAN hopping attack, this is essentially the classic

ARP cache poisoning attack that will prevent a client from joining the gateway.

The classic ARP cache poisoning looks something like this:

>>>send(Ether(dst=clientMAC)/ARP(op=”who-has”, psrc=gateway, pdst=client).

inter=RandNum(10,40), loop=1)

ARP cache poisoning with double 802.1q encapsulation:

>>> send(Ether(dst=clientMAC)/Dot1Q(vlan=1)/Dot1Q(vlan=2)

 /ARP(op="who-has", psrc=gateway, pdst=client),

 inter=RandNum(10,40), loop=1)

There is also a Scapy function called arpcachepoison() that you can use, the code is below and will

send a ARP response to the target with your MAC address and the victim’s IP address.

>>>arpcachepoison(target, victim, interval=60)

VLAN Hopping

The Scapy documentation states that this will only work in very specific conditions, but a double

802.1q encapsulation will make a packet jump to another VLAN:

>>> sendp(Ether()/Dot1Q(vlan=2)/Dot1Q(vlan=7)/IP(dst=target)/ICMP())

The first VLAN is your current VLAN and the second VLAN (vlan=7) is the destination VLAN. This is

one of the Scapy tricks that I’m going to try out soon.

http://en.wikipedia.org/wiki/Fuzzing

By Adam Maxwell (@catalyst256) 32 http://itgeekchronicles.co.uk

Before we close this chapter I’m just going to show you how you can include Scapy functions into

your Python code. I’ve seen this being used in different applications and it’s something that I’m

going to look to at working with as well.

So now a nice simple bit of Python code for you.

#! /usr/bin/env python

import sys

from scapy.all import sr1,IP,ICMP

p=sr1(IP(dst=sys.argv[1])/ICMP())

if p:

 p.show()

If you are familiar with Python, then this might make sense to you already. If you aren’t then let me

explain how it works.

The first line is standard in all (well almost all) Python scripts, it allows your computer to know

where Python is installed when you run the script. After that we import sys which is a Python library

for certain functions. We then import some of the Scapy functions we want to use from scapy.all

import sr1, IP, ICMP. What this means is that we are enabling ourselves to use the sr1() function,

the IP() function and the ICMP() functions from Scapy (all make sense).

The next line is the same as we have used in this guide, we are creating a ICMP packet to send and

receive the first response back (that’s the sr1 function). The sys.argv[1] indicates that when we save

this code you would enter the IP address as the argument i.e. scapy-ping.py 10.1.99.2 the last 2

lines of code print the response out using the p.show() function as we have done before.

Summary:

Well that’s it for this chapter, I hope this has fuelled your imagination and interest in what else

Scapy can do. There is a saying which I like that goes “You are only limited by your imagination”,

so please imagine the possibilities and make it happen. I know I am going to.

Chapter 9 – And now the end is near and so I face the final chapter

So we are at the end of this my first how-to guide, I hope you have enjoyed reading this as much as I

enjoyed writing it, which considering how much I hate writing documentation at work it isn’t a bad

achievement (well for me anyway).

The whole purpose of this guide was to provide people with little or no knowledge of Scapy (which

include me), a place to start learning about this fantastic tool. It’s certainly something that I’m going

to continue to use and I will update this guide as I learn new things you can do.

This is by no means an “experts” guide, the topics I’ve covered only scratch the surface of what

By Adam Maxwell (@catalyst256) 33 http://itgeekchronicles.co.uk

Scapy can do, but I’ve only been using Scapy since I started writing this guide, which at this point in

time is about 2 weeks.

I would like to take this opportunity to thank Philippe Biondi (the creator of Scapy) and the team

over at secdev.org for the work and effort they have put in to make this application what it is.

Without people like them, people like us would have to find something else to do with our spare

time.. :)

I would also like to thank Nick Barron (@hvcco) for giving up some of his spare time to proof read

this document in an attempt to ensure I make less of a fool of myself by publishing a steaming bag

of poo (yes I used the word poo, it is my guide remember).

Finally I would like to thank you, the people that read this guide for taking a chance on me and

sitting through this guide (unless you just skipped to the last page).

I would love to hear any comments or feedback you may have about this guide, or indeed if you

want to share some of your experiences with Scapy so that I can learn as much as possible.

Happy packet crafting..

By Adam Maxwell (@catalyst256) 34 http://itgeekchronicles.co.uk

Appendix A – Common Scapy Commands

Some may argue that I have should have included this earlier in the guide, but I didn’t want to

overload you with lots of commands, some of which we won’t have used. In this appendix, I will

provide a dump of the protocols and commands available within Scapy so that you can go forth and

experiment. It may be easier to get these out of Scapy yourself but I’m trying to build a complete

guide here.

These are the two most important commands in Scapy, they are ls() and lsc(). Actually they are

Python functions, which is why they must be called with ending parentheses.

The command ls() will display all of the available protocols (see below, it’s a long list). If you want to

view the detail of what you can change in any of these protocols then you can simply type:

>>>ls(protocol)

So typing ls(ARP) would show you this output.

hwtype : XShortField = (1)

ptype : XShortEnumField = (2048)

hwlen : ByteField = (6)

plen : ByteField = (4)

op : ShortEnumField = (1)

hwsrc : ARPSourceMACField = (None)

psrc : SourceIPField = (None)

hwdst : MACField = ('00:00:00:00:00:00')

pdst : IPField = ('0.0.0.0')

ARP ARP

ASN1_Packet None

BOOTP BOOTP

CookedLinux cooked linux

DHCP DHCP options

DHCP6 DHCPv6 Generic Message)

DHCP6OptAuth DHCP6 Option - Authentication

DHCP6OptBCMCSDomains DHCP6 Option - BCMCS Domain Name List

DHCP6OptBCMCSServers DHCP6 Option - BCMCS Addresses List

DHCP6OptClientFQDN DHCP6 Option - Client FQDN

DHCP6OptClientId DHCP6 Client Identifier Option

DHCP6OptDNSDomains DHCP6 Option - Domain Search List option

DHCP6OptDNSServers DHCP6 Option - DNS Recursive Name Server

DHCP6OptElapsedTime DHCP6 Elapsed Time Option

DHCP6OptGeoConf

DHCP6OptIAAddress DHCP6 IA Address Option (IA_TA or IA_NA suboption)

DHCP6OptIAPrefix DHCP6 Option - IA_PD Prefix option

DHCP6OptIA_NA DHCP6 Identity Association for Non-temporary Addresses Option

DHCP6OptIA_PD DHCP6 Option - Identity Association for Prefix Delegation

DHCP6OptIA_TA DHCP6 Identity Association for Temporary Addresses Option

DHCP6OptIfaceId DHCP6 Interface-Id Option

DHCP6OptInfoRefreshTime DHCP6 Option - Information Refresh Time

By Adam Maxwell (@catalyst256) 35 http://itgeekchronicles.co.uk

DHCP6OptNISDomain DHCP6 Option - NIS Domain Name

DHCP6OptNISPDomain DHCP6 Option - NIS+ Domain Name

DHCP6OptNISPServers DHCP6 Option - NIS+ Servers

DHCP6OptNISServers DHCP6 Option - NIS Servers

DHCP6OptOptReq DHCP6 Option Request Option

DHCP6OptPref DHCP6 Preference Option

DHCP6OptRapidCommit DHCP6 Rapid Commit Option

DHCP6OptReconfAccept DHCP6 Reconfigure Accept Option

DHCP6OptReconfMsg DHCP6 Reconfigure Message Option

DHCP6OptRelayAgentERO DHCP6 Option - RelayRequest Option

DHCP6OptRelayMsg DHCP6 Relay Message Option

DHCP6OptRemoteID DHCP6 Option - Relay Agent Remote-ID

DHCP6OptSIPDomains DHCP6 Option - SIP Servers Domain Name List

DHCP6OptSIPServers DHCP6 Option - SIP Servers IPv6 Address List

DHCP6OptSNTPServers DHCP6 option - SNTP Servers

DHCP6OptServerId DHCP6 Server Identifier Option

DHCP6OptServerUnicast DHCP6 Server Unicast Option

DHCP6OptStatusCode DHCP6 Status Code Option

DHCP6OptSubscriberID DHCP6 Option - Subscriber ID

DHCP6OptUnknown Unknown DHCPv6 OPtion

DHCP6OptUserClass DHCP6 User Class Option

DHCP6OptVendorClass DHCP6 Vendor Class Option

DHCP6OptVendorSpecificInfo DHCP6 Vendor-specific Information Option

DHCP6_Advertise DHCPv6 Advertise Message

DHCP6_Confirm DHCPv6 Confirm Message

DHCP6_Decline DHCPv6 Decline Message

DHCP6_InfoRequest DHCPv6 Information Request Message

DHCP6_Rebind DHCPv6 Rebind Message

DHCP6_Reconf DHCPv6 Reconfigure Message

DHCP6_RelayForward DHCPv6 Relay Forward Message (Relay Agent/Server Message)

DHCP6_RelayReply DHCPv6 Relay Reply Message (Relay Agent/Server Message)

DHCP6_Release DHCPv6 Release Message

DHCP6_Renew DHCPv6 Renew Message

DHCP6_Reply DHCPv6 Reply Message

DHCP6_Request DHCPv6 Request Message

DHCP6_Solicit DHCPv6 Solicit Message

DNS DNS

DNSQR DNS Question Record

DNSRR DNS Resource Record

DUID_EN DUID - Assigned by Vendor Based on Enterprise Number

DUID_LL DUID - Based on Link-layer Address

DUID_LLT DUID - Link-layer address plus time

Dot11 802.11

Dot11ATIM 802.11 ATIM

Dot11AssoReq 802.11 Association Request

Dot11AssoResp 802.11 Association Response

Dot11Auth 802.11 Authentication

Dot11Beacon 802.11 Beacon

Dot11Deauth 802.11 Deauthentication

Dot11Disas 802.11 Disassociation

Dot11Elt 802.11 Information Element

Dot11ProbeReq 802.11 Probe Request

Dot11ProbeResp 802.11 Probe Response

Dot11QoS 802.11 QoS

By Adam Maxwell (@catalyst256) 36 http://itgeekchronicles.co.uk

Dot11ReassoReq 802.11 Reassociation Request

Dot11ReassoResp 802.11 Reassociation Response

Dot11WEP 802.11 WEP packet

Dot1Q 802.1Q

Dot3 802.3

EAP EAP

EAPOL EAPOL

Ether Ethernet

GPRS GPRSdummy

GRE GRE

GRErouting GRE routing informations

HAO Home Address Option

HBHOptUnknown Scapy6 Unknown Option

HCI_ACL_Hdr HCI ACL header

HCI_Hdr HCI header

HDLC None

HSRP HSRP

ICMP ICMP

ICMPerror ICMP in ICMP

ICMPv6DestUnreach ICMPv6 Destination Unreachable

ICMPv6EchoReply ICMPv6 Echo Reply

ICMPv6EchoRequest ICMPv6 Echo Request

ICMPv6HAADReply ICMPv6 Home Agent Address Discovery Reply

ICMPv6HAADRequest ICMPv6 Home Agent Address Discovery Request

ICMPv6MLDone MLD - Multicast Listener Done

ICMPv6MLQuery MLD - Multicast Listener Query

ICMPv6MLReport MLD - Multicast Listener Report

ICMPv6MPAdv ICMPv6 Mobile Prefix Advertisement

ICMPv6MPSol ICMPv6 Mobile Prefix Solicitation

ICMPv6MRD_Advertisement ICMPv6 Multicast Router Discovery Advertisement

ICMPv6MRD_Solicitation ICMPv6 Multicast Router Discovery Solicitation

ICMPv6MRD_Termination ICMPv6 Multicast Router Discovery Termination

ICMPv6NDOptAdvInterval ICMPv6 Neighbor Discovery - Interval Advertisement

ICMPv6NDOptDstLLAddr ICMPv6 Neighbor Discovery Option - Destination Link-Layer Address

ICMPv6NDOptEFA ICMPv6 Neighbor Discovery Option - Expanded Flags Option

ICMPv6NDOptHAInfo ICMPv6 Neighbor Discovery - Home Agent Information

ICMPv6NDOptIPAddr ICMPv6 Neighbor Discovery - IP Address Option (FH for MIPv6)

ICMPv6NDOptLLA ICMPv6 Neighbor Discovery - Link-Layer Address (LLA) Option (FH for MIPv6)

ICMPv6NDOptMAP ICMPv6 Neighbor Discovery - MAP Option

ICMPv6NDOptMTU ICMPv6 Neighbor Discovery Option - MTU

ICMPv6NDOptNewRtrPrefix ICMPv6 Neighbor Discovery - New Router Prefix Information Option (FH for MIPv6)

ICMPv6NDOptPrefixInfo ICMPv6 Neighbor Discovery Option - Prefix Information

ICMPv6NDOptRDNSS ICMPv6 Neighbor Discovery Option - Recursive DNS Server Option

ICMPv6NDOptRedirectedHdr ICMPv6 Neighbor Discovery Option - Redirected Header

ICMPv6NDOptRouteInfo ICMPv6 Neighbor Discovery Option - Route Information Option

ICMPv6NDOptShortcutLimit ICMPv6 Neighbor Discovery Option - NBMA Shortcut Limit

ICMPv6NDOptSrcAddrList ICMPv6 Inverse Neighbor Discovery Option - Source Address List

ICMPv6NDOptSrcLLAddr ICMPv6 Neighbor Discovery Option - Source Link-Layer Address

ICMPv6NDOptTgtAddrList ICMPv6 Inverse Neighbor Discovery Option - Target Address List

ICMPv6NDOptUnknown ICMPv6 Neighbor Discovery Option - Scapy Unimplemented

ICMPv6ND_INDAdv ICMPv6 Inverse Neighbor Discovery Advertisement

ICMPv6ND_INDSol ICMPv6 Inverse Neighbor Discovery Solicitation

ICMPv6ND_NA ICMPv6 Neighbor Discovery - Neighbor Advertisement

ICMPv6ND_NS ICMPv6 Neighbor Discovery - Neighbor Solicitation

By Adam Maxwell (@catalyst256) 37 http://itgeekchronicles.co.uk

ICMPv6ND_RA ICMPv6 Neighbor Discovery - Router Advertisement

ICMPv6ND_RS ICMPv6 Neighbor Discovery - Router Solicitation

ICMPv6ND_Redirect ICMPv6 Neighbor Discovery - Redirect

ICMPv6NIQueryIPv4 ICMPv6 Node Information Query - IPv4 Address Query

ICMPv6NIQueryIPv6 ICMPv6 Node Information Query - IPv6 Address Query

ICMPv6NIQueryNOOP ICMPv6 Node Information Query - NOOP Query

ICMPv6NIQueryName ICMPv6 Node Information Query - IPv6 Name Query

ICMPv6NIReplyIPv4 ICMPv6 Node Information Reply - IPv4 addresses

ICMPv6NIReplyIPv6 ICMPv6 Node Information Reply - IPv6 addresses

ICMPv6NIReplyNOOP ICMPv6 Node Information Reply - NOOP Reply

ICMPv6NIReplyName ICMPv6 Node Information Reply - Node Names

ICMPv6NIReplyRefuse ICMPv6 Node Information Reply - Responder refuses to supply answer

ICMPv6NIReplyUnknown ICMPv6 Node Information Reply - Qtype unknown to the responder

ICMPv6PacketTooBig ICMPv6 Packet Too Big

ICMPv6ParamProblem ICMPv6 Parameter Problem

ICMPv6TimeExceeded ICMPv6 Time Exceeded

ICMPv6Unknown Scapy6 ICMPv6 fallback class

IP IP

IPOption None

IPOption_Address_Extension IP Option Address Extension

IPOption_EOL None

IPOption_LSRR IP Option Loose Source and Record Route

IPOption_MTU_Probe IP Option MTU Probe

IPOption_MTU_Reply IP Option MTU Reply

IPOption_NOP None

IPOption_RR IP Option Record Route

IPOption_Router_Alert IP Option Router Alert

IPOption_SDBM IP Option Selective Directed Broadcast Mode

IPOption_SSRR IP Option Strict Source and Record Route

IPOption_Security None

IPOption_Stream_Id IP Option Stream ID

IPOption_Traceroute None

IPerror IP in ICMP

IPerror6 IPv6 in ICMPv6

IPv6 IPv6

IPv6ExtHdrDestOpt IPv6 Extension Header - Destination Options Header

IPv6ExtHdrFragment IPv6 Extension Header - Fragmentation header

IPv6ExtHdrHopByHop IPv6 Extension Header - Hop-by-Hop Options Header

IPv6ExtHdrRouting IPv6 Option Header Routing

ISAKMP ISAKMP

ISAKMP_class None

ISAKMP_payload ISAKMP payload

ISAKMP_payload_Hash ISAKMP Hash

ISAKMP_payload_ID ISAKMP Identification

ISAKMP_payload_KE ISAKMP Key Exchange

ISAKMP_payload_Nonce ISAKMP Nonce

ISAKMP_payload_Proposal IKE proposal

ISAKMP_payload_SA ISAKMP SA

ISAKMP_payload_Transform IKE Transform

ISAKMP_payload_VendorID ISAKMP Vendor ID

IrLAPCommand IrDA Link Access Protocol Command

IrLAPHead IrDA Link Access Protocol Header

IrLMP IrDA Link Management Protocol

Jumbo Jumbo Payload

By Adam Maxwell (@catalyst256) 38 http://itgeekchronicles.co.uk

L2CAP_CmdHdr L2CAP command header

L2CAP_CmdRej L2CAP Command Rej

L2CAP_ConfReq L2CAP Conf Req

L2CAP_ConfResp L2CAP Conf Resp

L2CAP_ConnReq L2CAP Conn Req

L2CAP_ConnResp L2CAP Conn Resp

L2CAP_DisconnReq L2CAP Disconn Req

L2CAP_DisconnResp L2CAP Disconn Resp

L2CAP_Hdr L2CAP header

L2CAP_InfoReq L2CAP Info Req

L2CAP_InfoResp L2CAP Info Resp

L2TP None

LLC LLC

LLMNRQuery Link Local Multicast Node Resolution - Query

LLMNRResponse Link Local Multicast Node Resolution - Response

MGCP MGCP

MIP6MH_BA IPv6 Mobility Header - Binding ACK

MIP6MH_BE IPv6 Mobility Header - Binding Error

MIP6MH_BRR IPv6 Mobility Header - Binding Refresh Request

MIP6MH_BU IPv6 Mobility Header - Binding Update

MIP6MH_CoT IPv6 Mobility Header - Care-of Test

MIP6MH_CoTI IPv6 Mobility Header - Care-of Test Init

MIP6MH_Generic IPv6 Mobility Header - Generic Message

MIP6MH_HoT IPv6 Mobility Header - Home Test

MIP6MH_HoTI IPv6 Mobility Header - Home Test Init

MIP6OptAltCoA MIPv6 Option - Alternate Care-of Address

MIP6OptBRAdvice Mobile IPv6 Option - Binding Refresh Advice

MIP6OptBindingAuthData MIPv6 Option - Binding Authorization Data

MIP6OptCGAParams MIPv6 option - CGA Parameters

MIP6OptCGAParamsReq MIPv6 option - CGA Parameters Request

MIP6OptCareOfTest MIPv6 option - Care-of Test

MIP6OptCareOfTestInit MIPv6 option - Care-of Test Init

MIP6OptHomeKeygenToken MIPv6 option - Home Keygen Token

MIP6OptLLAddr MIPv6 Option - Link-Layer Address (MH-LLA)

MIP6OptMNID MIPv6 Option - Mobile Node Identifier

MIP6OptMobNetPrefix NEMO Option - Mobile Network Prefix

MIP6OptMsgAuth MIPv6 Option - Mobility Message Authentication

MIP6OptNonceIndices MIPv6 Option - Nonce Indices

MIP6OptReplayProtection MIPv6 option - Replay Protection

MIP6OptSignature MIPv6 option - Signature

MIP6OptUnknown Scapy6 - Unknown Mobility Option

MobileIP Mobile IP (RFC3344)

MobileIPRRP Mobile IP Registration Reply (RFC3344)

MobileIPRRQ Mobile IP Registration Request (RFC3344)

MobileIPTunnelData Mobile IP Tunnel Data Message (RFC3519)

NBNSNodeStatusResponse NBNS Node Status Response

NBNSNodeStatusResponseEnd NBNS Node Status Response

NBNSNodeStatusResponseService NBNS Node Status Response Service

NBNSQueryRequest NBNS query request

NBNSQueryResponse NBNS query response

NBNSQueryResponseNegative NBNS query response (negative)

NBNSRequest NBNS request

NBNSWackResponse NBNS Wait for Acknowledgement Response

NBTDatagram NBT Datagram Packet

By Adam Maxwell (@catalyst256) 39 http://itgeekchronicles.co.uk

NBTSession NBT Session Packet

NTP NTP

NetBIOS_DS NetBIOS datagram service

NetflowHeader Netflow Header

NetflowHeaderV1 Netflow Header V1

NetflowRecordV1 Netflow Record

NoPayload None

PPI Per-Packet Information header (partial)

PPP PPP Link Layer

PPP_ECP None

PPP_ECP_Option PPP ECP Option

PPP_ECP_Option_OUI PPP ECP Option

PPP_IPCP None

PPP_IPCP_Option PPP IPCP Option

PPP_IPCP_Option_DNS1 PPP IPCP Option

PPP_IPCP_Option_DNS2 PPP IPCP Option

PPP_IPCP_Option_IPAddress PPP IPCP Option

PPP_IPCP_Option_NBNS1 PPP IPCP Option

PPP_IPCP_Option_NBNS2 PPP IPCP Option

PPPoE PPP over Ethernet

PPPoED PPP over Ethernet Discovery

Packet None

Pad1 Pad1

PadN PadN

Padding Padding

PrismHeader Prism header

PseudoIPv6 Pseudo IPv6 Header

RIP RIP header

RIPAuth RIP authentication

RIPEntry RIP entry

RTP RTP

RadioTap RadioTap dummy

Radius Radius

Raw Raw

RouterAlert Router Alert

SCTP None

SCTPChunkAbort None

SCTPChunkCookieAck None

SCTPChunkCookieEcho None

SCTPChunkData None

SCTPChunkError None

SCTPChunkHeartbeatAck None

SCTPChunkHeartbeatReq None

SCTPChunkInit None

SCTPChunkInitAck None

SCTPChunkParamAdaptationLayer None

SCTPChunkParamCookiePreservative None

SCTPChunkParamECNCapable None

SCTPChunkParamFwdTSN None

SCTPChunkParamHearbeatInfo None

SCTPChunkParamHostname None

SCTPChunkParamIPv4Addr None

SCTPChunkParamIPv6Addr None

SCTPChunkParamStateCookie None

By Adam Maxwell (@catalyst256) 40 http://itgeekchronicles.co.uk

SCTPChunkParamSupportedAddrTypes None

SCTPChunkParamUnrocognizedParam None

SCTPChunkSACK None

SCTPChunkShutdown None

SCTPChunkShutdownAck None

SCTPChunkShutdownComplete None

SMBMailSlot None

SMBNegociate_Protocol_Request_Header SMBNegociate Protocol Request Header

SMBNegociate_Protocol_Request_Tail SMB Negociate Protocol Request Tail

SMBNegociate_Protocol_Response_Advanced_Security SMBNegociate Protocol Response Advanced Security

SMBNegociate_Protocol_Response_No_Security SMBNegociate Protocol Response No Security

SMBNegociate_Protocol_Response_No_Security_No_Key None

SMBNetlogon_Protocol_Response_Header SMBNetlogon Protocol Response Header

SMBNetlogon_Protocol_Response_Tail_LM20 SMB Netlogon Protocol Response Tail LM20

SMBNetlogon_Protocol_Response_Tail_SAM SMB Netlogon Protocol Response Tail SAM

SMBSession_Setup_AndX_Request Session Setup AndX Request

SMBSession_Setup_AndX_Response Session Setup AndX Response

SNAP SNAP

SNMP None

SNMPbulk None

SNMPget None

SNMPinform None

SNMPnext None

SNMPresponse None

SNMPset None

SNMPtrapv1 None

SNMPtrapv2 None

SNMPvarbind None

STP Spanning Tree Protocol

SebekHead Sebek header

SebekV1 Sebek v1

SebekV2 Sebek v3

SebekV2Sock Sebek v2 socket

SebekV3 Sebek v3

SebekV3Sock Sebek v2 socket

Skinny Skinny

TCP TCP

TCPerror TCP in ICMP

TFTP TFTP opcode

TFTP_ACK TFTP Ack

TFTP_DATA TFTP Data

TFTP_ERROR TFTP Error

TFTP_OACK TFTP Option Ack

TFTP_Option None

TFTP_Options None

TFTP_RRQ TFTP Read Request

TFTP_WRQ TFTP Write Request

UDP UDP

UDPerror UDP in ICMP

USER_CLASS_DATA user class data

VENDOR_CLASS_DATA vendor class data

VENDOR_SPECIFIC_OPTION vendor specific option data

VRRP None

X509Cert None

By Adam Maxwell (@catalyst256) 41 http://itgeekchronicles.co.uk

X509RDN None

X509v3Ext None

_DHCP6GuessPayload None

_DHCP6OptGuessPayload None

_ICMPv6 ICMPv6 dummy class

_ICMPv6Error ICMPv6 errors dummy class

_ICMPv6ML ICMPv6 dummy class

_IPOption_HDR None

_IPv6ExtHdr Abstract IPV6 Option Header

_MobilityHeader Dummy IPv6 Mobility Header

I know it’s a bit of a space filler but I wanted you to have the information available in this guide. The

other command lsc() will display all the Scapy command functions (see below, it’s a shorter list this

time).

arpcachepoison Poison target's cache with (your MAC,victim's IP) couple

arping Send ARP who-has requests to determine which hosts are up

bind_layers Bind 2 layers on some specific fields' values

corrupt_bits Flip a given percentage or number of bits from a string

corrupt_bytes Corrupt a given percentage or number of bytes from a string

defrag defrag(plist) -> ([not fragmented], [defragmented],

defragment defrag(plist) -> plist defragmented as much as possible

dyndns_add Send a DNS add message to a nameserver for "name" to have a new "rdata"

dyndns_del Send a DNS delete message to a nameserver for "name"

etherleak Exploit Etherleak flaw

fragment Fragment a big IP datagram

fuzz Transform a layer into a fuzzy layer by replacing some default values by random objects

getmacbyip Return MAC address corresponding to a given IP address

hexdiff Show differences between 2 binary strings

hexdump --

hexedit --

is_promisc Try to guess if target is in Promisc mode. The target is provided by its ip.

linehexdump --

ls List available layers, or infos on a given layer

promiscping Send ARP who-has requests to determine which hosts are in promiscuous mode

rdpcap Read a pcap file and return a packet list

send Send packets at layer 3

sendp Send packets at layer 2

sendpfast Send packets at layer 2 using tcpreplay for performance

sniff Sniff packets

split_layers Split 2 layers previously bound

sr Send and receive packets at layer 3

sr1 Send packets at layer 3 and return only the first answer

srbt send and receive using a bluetooth socket

srbt1 send and receive 1 packet using a bluetooth socket

srflood Flood and receive packets at layer 3

srloop Send a packet at layer 3 in loop and print the answer each time

srp Send and receive packets at layer 2

srp1 Send and receive packets at layer 2 and return only the first answer

srpflood Flood and receive packets at layer 2

srploop Send a packet at layer 2 in loop and print the answer each time

traceroute Instant TCP traceroute

tshark Sniff packets and print them calling pkt.show(), a bit like text wireshark

wireshark Run wireshark on a list of packets

wrpcap Write a list of packets to a pcap file

Some of these functions we have used others I will let you play around with yourself.

By Adam Maxwell (@catalyst256) 42 http://itgeekchronicles.co.uk

Appendix B – ICMP Types

Earlier in the guide we started building some basic ICMP packets, during one of the exercises we

changed the ICMP Type, the code we used at the time was this:

send(IP(src="10.1.99.100", dst="10.1.99.2", ttl=128)/ICMP(type=0)/"HelloWorld")

Below is a list of the different ICMP types that you can change within Scapy.

Type Code Description

0 – Echo Reply 0 Echo reply (used to ping)

1 and 2

Reserved

3 – Destination Unreachable

0 Destination network unreachable

1 Destination host unreachable

2 Destination protocol unreachable

3 Destination port unreachable

4 Fragmentation required, and DF flag set

5 Source route failed

6 Destination network unknown

7 Destination host unknown

8 Source host isolated

9 Network administratively prohibited

10 Host administratively prohibited

11 Network unreachable for TOS

12 Host unreachable for TOS

13 Communication administratively prohibited

14 Host Precedence Violation

15 Precedence cutoff in effect

4 – Source Quench 0 Source quench (congestion control)

5 – Redirect Message

0 Redirect Datagram for the Network

1 Redirect Datagram for the Host

2 Redirect Datagram for the TOS & network

3 Redirect Datagram for the TOS & host

6

Alternate Host Address

7

Reserved

8 – Echo Request 0 Echo request (used to ping)

9 – Router Advertisement 0 Router Advertisement

10 – Router Solicitation 0 Router discovery/selection/solicitation

11 – Time Exceeded
0 TTL expired in transit

1 Fragment reassembly time exceeded

12 – Parameter Problem: Bad IP header

0 Pointer indicates the error

1 Missing a required option

2 Bad length

13 – Timestamp 0 Timestamp

14 – Timestamp Reply 0 Timestamp reply

15 – Information Request 0 Information Request

16 – Information Reply 0 Information Reply

17 – Address Mask Request 0 Address Mask Request

18 – Address Mask Reply 0 Address Mask Reply

19

Reserved for security

20 through 29

Reserved for robustness experiment

30 – Traceroute 0 Information Request

31

Datagram Conversion Error

By Adam Maxwell (@catalyst256) 43 http://itgeekchronicles.co.uk

32

Mobile Host Redirect

33

Where-Are-You (originally meant for IPv6)

34
 Here-I-Am (originally meant for IPv6)

35

Mobile Registration Request

36

Mobile Registration Reply

37

Domain Name Request

38

Domain Name Reply

39
 SKIP Algorithm Discovery Protocol, Simple Key-Management for Internet Protocol

40
 Photuris, Security failures

41
 ICMP for experimental mobility protocols such as Seamoby [RFC4065]

42 through 255

Reserved

By Adam Maxwell (@catalyst256) 44 http://itgeekchronicles.co.uk

Appendix C – TCP Header Information

LISTEN - In case of a server, waiting for a connection request from any remote client.

SYN-SENT - waiting for the remote peer to send back a TCP segment with the SYN and ACK flags set. ('SYN-SENT' state is

usually set by TCP clients).

SYN-RECEIVED - waiting for the remote peer to send back an acknowledgment after having sent back a connection

acknowledgment to the remote peer. ('SYN-RECEIVED' state is usually set by TCP servers).

ESTABLISHED -The port is ready to receive/send data from/to the remote peer.

FIN-WAIT-1 - Indicated that the server is waiting for the application process on its end to signal that it is ready to close.

FIN-WAIT-2 - Indicates that the client is waiting for the server's fin segment (which indicates the server's application process

is ready to close and the server is ready to initiate its side of the connection termination).

CLOSE-WAIT - The server receives notice from the local application that it is done. The server sends its fin to the client.

LAST-ACK - Indicates that the server is in the process of sending its own fin segment (which indicates the server's application

process is ready to close and the server is ready to initiate its side of the connection termination).

TIME-WAIT - Represents waiting for enough time to pass to be sure the remote peer received the acknowledgment of its

connection termination request. According to RFC 793 a connection can stay in TIME-WAIT for a maximum of four minutes

known as a MSL (maximum segment lifetime).

CLOSED - Connection is closed

By Adam Maxwell (@catalyst256) 45 http://itgeekchronicles.co.uk

Appendix D – DNS Record Types

Type Value (decimal) Description Function

A 1 address record
Returns a 32-bit IPv4 address, most commonly used to
map hostnames to an IP address of the host, but also used
forDNSBLs, storing subnet masks in RFC 1101, etc.

AAAA 28
IPv6 address record

Returns a 128-bit IPv6 address, most commonly used to
map hostnames to an IP address of the host.

AFSDB 18 AFS database record

Location of database servers of an AFS cell. This record is
commonly used by AFS clients to contact AFS cells outside their
local domain. A subtype of this record is used by the
obsolete DCE/DFS file system.

APL 42 Address Prefix List Specify lists of address ranges, e.g. in CIDR format, for various
address families. Experimental.

CERT 37 Certificate record Stores PKIX, SPKI, PGP, etc.

CNAME
5

Canonical name record

Alias of one name to another: the DNS lookup will continue by
retrying the lookup with the new name.

DHCID 49 DHCP identifier Used in conjunction with the FQDN option to DHCP

DLV 32769 DNSSEC Lookaside Validation record
For publishing DNSSEC trust anchors outside of the DNS
delegation chain. Uses the same format as the DS record. RFC
5074 describes a way of using these records.

DNAME

39 delegation name

DNAME creates an alias for a name and all its subnames, unlike
CNAME, which aliases only the exact name in its label. Like the
CNAME record, the DNS lookup will continue by retrying the
lookup with the new name.

DNSKEY 48 DNS Key record The key record used in DNSSEC. Uses the same format as the
KEY record.

DS 43 Delegation signer
The record used to identify the DNSSEC signing key of a
delegated zone

HIP
55 Host Identity Protocol Method of separating the end-point identifier and locator roles

of IP addresses.

IPSECKEY 45 IPSEC Key Key record that can be used with IPSEC

KEY 25 key record

Used only for SIG(0) (RFC 2931) and TKEY (RFC 2930).[5] RFC
3445 eliminated their use for application keys and limited their
use to DNSSEC.[6] RFC 3755 designates DNSKEY as the
replacement within DNSSEC.[7] RFC 4025designates IPSECKEY as
the replacement for use with IPsec.[8]

KX 36 Key eXchanger record

Used with some cryptographic systems (not including DNSSEC)
to identify a key management agent for the associated domain-
name. Note that this has nothing to do with DNS Security. It is
Informational status, rather than being on the IETF standards-
track. It has always had limited deployment, but is still in use.

LOC
29 Location record

Specifies a geographical location associated with a domain
name

MX
15 mail exchange record Maps a domain name to a list of message transfer agents for

that domain

NAPTR

35 Naming Authority Pointer
Allows regular expression based rewriting of domain names
which can then be used as URIs, further domain names to
lookups, etc.

NS 2 name server record
Delegates a DNS zone to use the given authoritative name
servers

NSEC 47 Next-Secure record
Part of DNSSEC—used to prove a name does not exist. Uses the
same format as the (obsolete) NXT record.

NSEC3 50 NSEC record version 3
An extension to DNSSEC that allows proof of nonexistence for a
name without permitting zonewalking

NSEC3PARAM 51 NSEC3 parameters Parameter record for use with NSEC3

By Adam Maxwell (@catalyst256) 46 http://itgeekchronicles.co.uk

PTR 12 pointer record

Pointer to a canonical name. Unlike a CNAME, DNS processing
does NOT proceed, just the name is returned. The most
common use is for implementing reverse DNS lookups, but
other uses include such things as DNS-SD.

RRSIG 46 DNSSEC signature
Signature for a DNSSEC-secured record set. Uses the same
format as the SIG record.

RP 17 Responsible person
Information about the responsible person(s) for the domain.
Usually an email address with the @ replaced by a .

SIG 24 Signature
Signature record used in SIG(0) (RFC 2931) and TKEY (RFC
2930).[7] RFC 3755 designated RRSIG as the replacement for SIG
for use within DNSSEC.[7]

SOA 6 start of [a zone of] authority record

Specifies authoritative information about a DNS zone, including
the primary name server, the email of the domain
administrator, the domain serial number, and several timers
relating to refreshing the zone.

SPF

99 Sender Policy Framework
Specified as part of the SPF protocol as an alternative to of
storing SPF data in TXT records. Uses the same format as the
earlier TXT record.

SRV

33 Service locator
Generalized service location record, used for newer protocols
instead of creating protocol-specific records such as MX.

SSHFP 44 SSH Public Key Fingerprint

Resource record for publishing SSH public host key fingerprints
in the DNS System, in order to aid in verifying the authenticity of
the host. RFC 6594 defines ECC SSH keys and SHA-256 hashes.
See the IANA SSHFP RR parameters registry for details.

TA 32768 DNSSEC Trust Authorities
Part of a deployment proposal for DNSSEC without a signed
DNS root. See the IANA database and Weiler Spec for details.
Uses the same format as the DS record.

TKEY

249 secret key record
A method of providing keying material to be used with TSIG that
is encrypted under the public key in an accompanying KEY RR.[9]

TSIG

250 Transaction Signature
Can be used to authenticate dynamic updates as coming from
an approved client, or to authenticate responses as coming
from an approved recursive name server[10] similar to DNSSEC.

TXT 16 Text record

Originally for arbitrary human-readable text in a DNS record.
Since the early 1990s, however, this record more often carries
machine-readable data, such as specified by RFC
1464, opportunistic encryption, Sender Policy
Framework, DKIM,DMARC DNS-SD, etc.

By Adam Maxwell (@catalyst256) 47 http://itgeekchronicles.co.uk

Appendix E – BPF (Berkeley Packet Filter)

These examples were sourced from http://biot.com/capstats/bpf.html

To capture all packets arriving at or departing from laptop: "host laptop"

To capture traffic between helios and either hot or ace: "host helios and \(hot or ace \)"

To capture all IP packets between ace and any host except helios: "ip host ace and not helios"

To capture all traffic between local hosts and hosts at Berkeley: "net ucb-ether"

To capture all ftp traffic through internet gateway snup: (note that the

expression is quoted to prevent the shell from (mis-)interpreting the

parentheses):

"gateway snup and (port ftp or ftp-data)"

To capture traffic neither sourced from nor destined for local hosts (if

you gateway to one other net, this stuff should never make it onto your

local net).

"ip and not net localnet"

To capture the start and end packets (the SYN and FIN packets) of each

TCP conversation that involves a non-local host.

"tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net

localnet"

To capture all IPv4 HTTP packets to and from port 80, i.e. print only

packets that contain data, not, for example, SYN and FIN packets and

ACK-only packets. (IPv6 is left as an exercise for the reader.)

"tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2))

!= 0)"

To capture IP packets longer than 576 bytes sent through gateway snup: "gateway snup and ip[2:2] > 576"

To capture IP broadcast or multicast packets that were not sent via

Ethernet broadcast or multicast:

"ether[0] & 1 = 0 and ip[16] >= 224"

To capture all ICMP packets that are not echo requests/replies (i.e., not

ping packets):

"icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-

echoreply"

http://biot.com/capstats/bpf.html

