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PREFACE

This monograph presents techniques for the analysis of portfolios of
securities. Although the techniques arc mathematical in nature, the
monograph is written primarily with the non-mathematician in mind.
Part 1 discusses and illustrates the inputs, outputs, and objectives of
a formal portfolio analysis. Part 11 presents concepts and theorems
needed subsequently in our exposition. Part ITI uses the prerequisites
developed in Part IT to go more deeply into technigues of portiolio
analysis. Part IV, finally, discusses the theory of rational behavior
and its applications to the selection of portfolios.

The appendices of the bock are for the mathematically trained
reader only. Their main function is to prove certain more advanced
relationships noted and used in the text.

The mathematically trained reader may find the following sugges-
tions helpful: Part I should be read by way of motivation and illustra-
tion. Part II may be skimmed or skipped. [t attempts an elementary
exposition of the minimum requirements for the rest of the text.
(Within Part II, Chapter 3 culminates in the formula for the expected
value of a linear combination of variables. Chapter 4 culminates in
the formula for the variance of a linear combination of random varia-
bles. Chapters 5 and 6 present certain laws of large numbers.)

Part 111 presents a geometric analysis of, and computing procedures
for, the derivation of efficient sets. Appendices A and B demonstrate
that the computing procedures presented in Chapters 8 and 9 do, in
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viii PREFACE

fact, produce the desired efficient sets. Part IV, on the theory of ra-
tional behavior, presents and applies the utility and personal prob-
ability maxims. Appendix C continues the text’s discussion of axiom
systems for expected utility.

I am indebted to several organizations for aid and encouragement.
The method of analysis presented in this monograph was originally
developed for my doctoral dissertation. This early work (1950-51} was
supported by the Social Science Research Council and the Cowles Com-
mission for Research in Economics. From August 1955 through May
1956, while on leave from the RAND Corporation, 1 did most of the
writing required to transform thesis into monograph. During this
period I was located at the Cowles Foundation for Research in Eco-
nomics at Yale, where the writing of the monograph was made pos-
sible by a grant from the Merrill Foundation for Advancement of
Financial Knowledge. To these organizations I wish to express my
gratitude for intellectual and material support.

I am aiso indebted to many individuvals. James Tobin and Roy
Radner read one or more drafts of many chapters and provided val-
uable advice with respect to both content and exposition. Mrs. Mar-
kowitz read drafts of several chapters and provided helpful suggestions
concerning exposition for the non-mathematician.

The content of Part IV of this book reflects a series of conversations
with Gerard Debreu. The content of Part I reflects sessions with
Horace F. Isleib, Investment Officer of Yale University, and Ralph W.
Halsey, Jr., Assistant Investment Officer.

This monograph benefited from the diligence of a number of people:
Ewing Jackson Webb, who prepared the inputs to the ten-security
example; Harold Watts, Robert Z. Aliber, and Leroy S. Wehrle, who
proofed the final draft for the Cowles Foundation; Mrs. Natalie Sirkin,
who did the hard part of preparing the bibliography; and Miss Althea
Strauss, who efficiently supervised the typing of two or three drafts of
each chapter.

While the afore-mentioned individuals and organizations have aided
immeasurably in the writing of this book, all opinions and any errors
contained herein are, of course, my own responsibility.

Harry M. MARKOWITZ
New York City
February, 1959
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CHaAPTER I

INTRODUCTION

THE ANALYSIS OF PORTFOLIOS

This monograph is concerned with the analysis of portfolios containing
large numbers of securities. Throughout we speak of “*portfolio selection™
rather than “security selection.” A good portfolio is more than a long
list of good stocks and bonds. It is a balanced whole, providing the
investor with protections and opportunities with respect to a wide range of
contingencies. The investor should build toward an integrated portfolio
which best suits his needs. This monograph presents fechniques of
Portfolio Analysis directed toward determining a most suitable portfolio
for the large private or institutional investor.

A portfolio analysis starts with information concerning individual
securities. 1t ends with conclusions concerning portfolios as a whole.
The purpose of the analysis is to find portfolios which best meet the
objectives of the investor.

Various types of information concerning securities can be used as the
raw material of a portfolio analysis. One source of information is the
past performance of individual securities. A second source of information
is the beliefs of one or more security analysts concerning future perform-
ances. When past petformances of sccurities are used as inputs, the
outputs of the analysis are portfolios which performed particularly well in
the past. When beliefs of security analysts are used as inputs, the outputs
of the analysis are the implications of these beliefs for better and worse
portfolios.

This introductory chapter discusses broad principles upon which the
techniques of portfolio analysis are based. The next chapter discusses the
inputs, outputs, and objectives of illustrative portfolio analyses. Subse-
quent parts of the monograph go more deeply into the techniques by which
information concerning securities is transformed into conclusions con-
cerning portfolios.



4 PORTFOLIO SELECTION
THE UNCERTAINTY OF SECURITY RETURNS

Uncertainty is a salient feature of security investment. Economic
forces are not understood well enough for predictions to be beyond doubt
or error.  Even if the consequences of economic conditions were under-
stood perfectly, non-economic influences can change the course of general
prosperity, the Ievel of the market, or the success of a particular security.
The health of the President, changes in international tensions, increases or
decreases in military spending, an extremely dry summer, the success of an
invention, the miscalculation of a business management—all can affect the
capital gains or dividends of one or many securities.

We are expecting too much if we require the security analyst to predict
with certainty whether a typical security will increase or decrease in value.
Even if he could assemble all information, including information available
only to the managers of the corporation and information available only to
its competitors, the security analyst might still be forced to conclusions
such as:

This security may be expected to do well if securitics in general do well. It
must be expecied io do poorly if securities in general do poorly. Even this
following of the market is not certain, There are weaknesses which may cause
it to do pootiy even though securities in general are performing well: The
possibility of a labor dispute or of an aggressive competitor cannot be ignored.
On the other hand, there are potentialities which may bring success greater than
even the corporation management dares hope. The new styling of the product,
the (not inexpensive) advertising campaign, and the expansion of production
facilities may prove to be a magic combination, fulfilling all expectations
for it.

Only the clairvoyant could hope to predict with certainty. Clairvoyant
analysts have no need for the techniques of this monograph.

The existence of uncertainty does not mean that careful security analyses
are valueless. The security analyst may be expected to arrive at reasonable
opinions to the effect that:

The return (including capital gains and dividends) on security A is less
uncertain than that on security B; the return on security C is more closely
connected to the course of the general market than is that on security D; the
growth of security E is more certain but has less potential than that of security
F; only if the demand for their industry’s product continues to expand (as it
is likely, but not certain, to do) wiil the return on securities G and H be
satisfactory.

Carefully and expertly formed judgments concerning the potentialities and
weaknesses of securities form the best basis upon which to analyze port-
folios.
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CORRELATION AMONG SECURITY RETURNS

A second salient feature of security investment is the correlation among
security returns. Like most economic quantities, the returns on securities
tend to move up and down together. This correlation is not perfect:
individual securities and entire industrics have at times moved against the
general flow of prosperity. On the whole, however, economic good and
ill tend to spread, causing periods of generally high or generally low
economic activity.

If security returns were not correlated, diversification could eliminate
risk. It would be like flipping a large number of coins: we cannot predict
with confidence the outcome of a single flip; but if a great many coins are
flipped we can be virtually sure that heads will appear on approximately
one-halif of them. Such canceling out of chance events provides stability
to the disbursements of insurance companies. Correlations among
security returns, however, prevent a similar canceling out of highs and
lows within the security market. It is somewhat as if 100 coins, about to
be flipped, agreed among themselves to fall, heads or tails, exactly as the
first coin falls. In this case there is perfect correlation among outcomes.
The average outcome of the 100 flips is no more certain than the outcome
of a single flip. If correlation among security returns were *“‘perfect™ —if
returns on all securities moved up and down together in perfect unison—
diversification could do nothing to eliminate risk. The fact that security
returns are highly correlated, but not perfectly correlated, implies that
diversification can reduce risk but not eliminate it.

The correlation among returns is not the same for all securities. We
generally expect the returns on a sccurity to be more correlated with those
in the same industry than those of unrelated industries. Business con-
nections among corporations, the fact that they service the same area, a
common dependence on military expenditures, building activity, or the
weather can increase the tendency of particular returns to move up and
down together.

To reduce risk it is necessary to avoid a portfolio whose securities are all
highly correlated with each other. One hundred securities whose returns
rise and fali in near unison afford little more protection than the uncertain
return of a single security.

OBJECTIVES OF A PORTFOLIO ANALYSIS

It is impossible to derive all possible conclusions concerning portfolios.
A portfolio analysis must be based on criteria which serve as a guide to the
important and unimportant, the relevant and irrelevant.
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The proper choice of criteria depends on the nature of the investor.
For some investors, taxes are a prime consideration; for others, such as
non-profit corporations, they are irrelevant.  Institutional considerations,
legal restrictions, relationships between portfolio returns and the cost of
living may be important to one investor and not to another. For each
type of investor the details of the portfolio analysis must be suitably
selected,

‘Two objectives, however, are common to all investors for which the
techniques of this monograph are designed:

1. They want “return” to be high. The appropriate definition of
“return” may vary from investor to investor. But, in whatever sense is
appropriate, they prefer more of it to less of it.

2. They want this return to be dependable, stable, not subject to un-
certainty. No doubt there are security purchasers who prefer uncertainty,
like bettors at a horse race who pay to take chances. The techniques in
this monograph arc not for such speculators. The techniques are for the
investor who, other things being equal, prefers certainty to uncertainty.

The portfolio with highest “likely return” is not necessarily the one with
least *‘uncertainty of return.”* The most reliable portfolio with an
extremely high likely return may be subject to an unacceptably high degree
of uncertainty. The portfolio with the least uncertainty may have an
undesirably small “likely return.” Between these extremes would lic
portfolios with varying degrees of likely return and uncertainty.

If portfolio A has both a higher likely return and a lower uncertainty of
return than portfolio B and meets the other requirements of the investor,
it is clearly better than portfolio B. Portfolio B may be eliminated from
consideration, since it yields less return with greater uncertainty than does
another available portfolio. We refer to portfolio B as “inefficient.”
After eliminating all such inefficient portfolios—all such portfolios which
are clearly inferior to other available portfolios—we are left with portfolios
which we shall refer to as “efficient.” These consist of: the portfolio with
less uncertainty than any other with a 6% likely return, the portfolio with
less uncertainty than any other with a 79 likely return, and so on. It
cannot be said of two efficient portfolios ““the first is clearly better than the
second since it has a larger likely return and less uncertainty.”  All such
cases have been eliminated.

The proper choice among efficient portfolios depends on the willingness
and ability of the investor to assume risk. If safety is of extreme impor-
tance, “likely return™ must be sacrificed to decrease uncertainty. If a

! In later chapters we must give precise definitions to terms such as “likely” and
“uncertainty.””  For the present we may leave them as rough, intuitive concepts.
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greater degree of uncertainty can be borne, a greater level of likely return
can be obtained. An analysis of the type presented in this monograph:

first, separates efficient from inefficient portfolios;

second, portrays the combinations of likely return and uncertainty of
return available from efficient portfolios;

third, has the investor or investmeni manager carefully select thc
combination of likely return and uncertainty that best suits his needs; and

fourth, determines the portfolic which provides this most suitable:—
combination of risk and return.
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ILLUSTRATIVE PORTYFOLIO ANALYSES

INPUTS TO AN ILLUSTRATIVE PORTFOLIO ANALYSIS

The nature and objectives of portfolio analyses may be illustrated by a
small example concerned with portfolios made of one or more of nine
common stocks and cash. The nine securities, listed in Figures 1a to 11,
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Figure 1a. Returns on security 1, American Tobacco, Common.

include a utility, a railroad, a large and a small steel company, and several
other manufacturing corporations. Cash is included in the analysis as a
tenth “security.” No special significance should be attached to this list
of securities other than that it will be used in illustrating principles of
portfolio analysis.

An actnal portfolio analysis would start from a much longer list of

promising securities,

the desirable portfolio.

g

. Not all these securities would appear in the final
desirable portfolio. They enter the analysis as candidates for a place in
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The returns on the nine securities, during the years 193754, are presented
in Table 1 and illustrated in Figure 1. The return during a year is defined

to be
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(the closing price for the year) minus

(the closing price for the previous year) plus
(the dividends for the year) all divided by
(the closing price of the previous year).



TanLE 1

RETURNS ON NINE SECURITIES LISTED IN FIGURES la THROUGH i

Security
Year 1 2 3 4 5 6 7 8 9
Am. T, AT &T. U.8.8. G.M. AT & Sfe C.C Bdn. Frstn. S.S.

1937 —.305 —.173 -.318 —.477 —.457 —.065 —.319 —.400 —.435
1938 513 008 285 714 107 238 076 336 238
1939 .035 L2200 —.047 165 —.424 —.078 381 —.093 -—.295
1940 —.126 030 104 —.043 —.189 —.077 —.051 —.090 —.036
1941 —.280 —.183 —.171 —-.277 637 —.187 087 —.194 —.240
1942 —.003 067 —.039 476 865 156 262 1.113 126
1943 428 300 149 225 313 351 341 580 .639
1944 192 103 260 .280 637 233 227 473 282
1945 446 216 419 216 .373 349 352 229 .578
1946 —.088 —.046 —.078 —.272 —.037 —.209 153 —.126 289
1947 —.127 —.071 169 144 026 358 —.099 009 .184
1948 —.015 056 —.035 107 153 —.231 038 000 114
1945 .305 038 133 321 067 246 273 223 -.222
1950 — 096 089 732 .305 579 —.248 091 .650 327
1951 016 090 021 195 040 —.064 .054 -—.131 333
1952 128 083 131 390 A34 079 109 175 062
1953 —.010 .035 006 —.072 - 027 067 210 —.084 —.048
1954 154 176 508 715 469 077 112 756 185

SASATYNY OI'TOAL¥0d JALLVYISNTIE

€1



14 PORTFOLIO SELECTION
For example, the return in 1948 is

(closing price, 1948) — (closing price, 1947) + (dividends, 1948)
(closing price, 1947)

This is the amount which an investor would have made or lost if he invesied
$1.00 at the end of 1947, collected the dividends declared in 1948, and sold
at the closing price of 1948. A loss is represented by a negative return.
For example, if the closing price of 1947 were 50, that of 1948 were 45, and
$2 of dividends were declared during 1948, then the return in 1948 would be

45 - 5042
50

or a loss of 6% per dollar invested.

Our example portfolio analysis will consider performances of portfolios
with respect to “return” thus defined. This assumes that a dollar of
realized or unrealized capital gains is exactly equivalent to a dollar of
dividends, no better and no worse. This assumption is appropriate for
certain investors, for example, some types of tax-free institutions. Other
ways of handling capital gains and dividends, which are appropriate for
other investors, are discussed later.

Our nine securities differed in the amount of return which they yielded
on the average. For example, the average of the annual returns on
United States Steel Common Stock was 14.6 cents per dollar invested;
that on Coca-Cola Common was 5.5 cents per dollar invested, On the
average’ the return on U.S. Steel was higher than that on Coca-Cola,

Securities also differ with respect to their stability of return. For
example, the greatest loss incurred on A. T. & T. was 18 cents per dollar
invested (in 1941). On the other hand, the greatest loss on Sharon Steel
was 43 cents per dollar invested (in 1937). In three other years Sharon
Steel showed losses exceeding 20 cents per dollar. Clearly, A. T. & T.
showed less variability of return than did Sharon Steel.

Portfolio selection should be based on reasonable beliefs about future
rather than past performances per se. Choice based on past performances
alone assumes, in effect, that average returns of the past are good estimates
of the “likely™ return in the future; and variability of return in the past is
a good measure of the uncertainty of return in the future. Later we shall
see how considerations other than past performances can be introduced
inio a portfolio analysis. For the present it is convenient to discuss an
analysis based on past performances alone,

= —.06,

! There are various ways of averaging a set of numbers. We shall use the “‘ordinary”
average, obtained in this case by adding together the eighteen numbers and dividing by
eighteen,
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‘Suppose that a portfolio consisted of 20 cents’ worth of Atchison,
Topeka & Santa Fe per dollar invested, plus 80 cents” worth of Coca-Cola
per dollar invested. The return in 1954 on such a portfolio would be

(:2) times (the return of A. T. & Sfe in 1954) plus
(.8) times (the return of Coca-Cola in 1954)

= (.2)(.469) + (.8)(.077)
= .155.

Return can be calculated similarly for any combination of securities in
any year.

The average return on the portfolio consisting of 809, Coca-Cola and
205 A.T. & Sfe was equal to

(-8) times (the average return on Coca-Cola) plus
{.2) times (the average return on A. T. & Sfe)

= (.8)(.055) + (.2)(.198)
= 084.

This is higher than the average return on Coca-Cola and lower than the
average return on A. T. & Sfe. Inevitably the average return on a port-
folio lies somewhere between the highest and the lowest average return on
the securities contained in the portfolio.

One might conjecture that the variability of return on a portfolio can,
similarly, be no smaller than that of the least variable security in the
portfolio. But this is not so. The return on A. T. & Sfe was rather
unstable during the period 1937-54 (showing a maximum loss of 45 cents
on the dollar). The return on Coca-Cola was more stable, showing a
maximum loss of only 25 cents. The rcturn on the 80 %,-20 % combination
of Coca-Cola and A, T. & Sfe, respectively, was still more stable. Hs
maximum loss was only 18 cents on the dollar. In Figure 2 we have
plotted the annual returns on the portfolio consisting of 80 cents Coca-Cola,
20 cents A. T. & Sfe. For comparison we have also plotted the return on
Coca-Cola.

“Largest loss” is not the only possible measure of variability. Another
measure, better for our purposes, is discussed later. In terms of this
measure also, the variability of A. T. & Sfe is greater than that of Coca-
Cola, while that of Coca-Cola is, nevertheless, greater than that of the
portfolio. For the present we assume that Figure 2 and the reader’s eye
confirm the statement that the variability of the particular portfolio was
less than that of either of the securities contained in it.

Cur 20 %-80 % portfolio had both a higher average return and a lower
variability of return than a portfolio consisting of 1009, Coca-Cola. On
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ILLUSTRATIVE PORTFOLIO ANALYSES 17

the whole, the “diversified” portfolio was both more profitable and more
stable than Coca-Cola alone. One might wonder whether or not there was
some other portfolio—some other combination of our ten securities (nine
securities and cash)—which had both greater average return and greater
stability than even the 209(-809, mixture. Or perhaps there was a
portfolio with greater average return and the same stability; or greater
stability and the same average return.

Before we can discuss such questions, we must settle on some particular
measure of the variability of return on a portfolio. *“Greatest loss” is a
possible measure, but not a good one for our purposes. For example, it
fails to distinguish between a security whose pattern of returns is shown in
Figure 3a from one whose pattern of return is shown in 3b. In Chapter
VIII various measures of variability are evaluated in terms of basic
principles of behavior under uncertainty. The discussion there confirms
that “maximum loss” is not a desirable measure for us.

A better measure is the standard deviation, frequently used in statistics
and statistical applications in such diverse fields as economics, psychology,
and astronomy.! The next section describes the standard deviation.
The reader may skim or skip the details of this section since subsequent

sections require only the knowledge that the standard deviation is a
measure of variability.

THE STANDARD DEVIATION

The definition of the average of eighteen numbers is, in effect, a set of
computing instructions. It says “add together the elghteen numbers and
divide by eighteen.” The definition of a standard deviation is also a set of
computing instructions, albeit a more complicated set.

We begin with a series of numbers such as the returns on security 1
(column 2, Table 2). From each number we subtract the average:

—.305 — 066 = —.371,
513 — 066 = .47,
055 — 066 = —.011, etc.

1 Tts frequent use in other fields does not prove that the standard deviation is a good
measure for evaluating portfolios. In fact, the reasons for its use in statistics differ
from those which justify its use in the evaluation of portfolios. Tts use in statistics is
frequently due to its connection with a particular “bell-shaped” or “normal™ curve
which describes the probabilities associated with a variety of chance events. Its
justification in the evaluation of portfolios is connected with the fact that, for conserva-
tive invesiors, a loss of 21, dollars is more than twice as bad as a loss of L dollars; while
a gain of 2G dollars is not quite twice as good as a gain of G dollars.
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TABLE 2
COMPUTATION OF STANDARD DEVIATION

Deviations Squared
Year Returns from Deviati
eviations
Average
1 -—.305 —-.3M 137641
2 513 A47 .199809
3 .055 -.011 000121
4 —.126 -.192 .036864
5 —.280 —.346 119716
6 —.003 —-.069 004761
7 .428 362 131044
8 192 A26 .015876
9 446 .380 .144400
10 —.088 —.154 .023716
11 —.127 —.193 037245
12 —.015 —.081 006561
13 .305 239 057121
14 —.096 -.162 026244
15 016 —.050 .002500
16 128 062 003844
17 | —.010 —.076 005776
18 .154 088 007744
Average 066 000 1053333

Standard Deviation = Vv.0533 = .231.

We now have eighteen new numbers known as “deviations from the aver-
age” (column 3, Table 2). The next step is to square these deviations:
(=371 = (—.371)(—.371)
= .137641,
(.447)" = 199809,
(—.011)% = 000121, etc.,

giving us eighteen squared deviations from the average (column 4 in
Table 2).
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Next we find the average of the squared deviations:

437641 + (199809 + - - - + 007744
18

This average squared deviation is called the variance of the numbers. The
standard deviation, finally, is the square root of the variance. Thus the
standard deviation of the returns on security 1 is

4/ 0533 = .231.

= .053333.

In short, the standard deviation is
the square root of the average squared deviation.

The standard deviation of return on a portfolio is not determined solely
by the standard deviations of its individual securities. It also depends on
the correlations between securities.  The “correlation coefficient” measores
the extent to which two series of numbers tend to move up and down
together. 1f they move up and down in perfect unison, the correlation
coefficient is 1. If the rise (or fall) of one makes it no more or no less
likely that the other will rise (or fail), then their correlation coefficient is
zero: they are uncorrelated. The more the two series of numbers tend to
move up and down together, the greater is their correlation coefficient.
(The exact definition of the correlation coefficient is presented in a
subsequent chapter.)

The standard deviation of a portfolio is determined by

{(a) the standard deviation of each security,
(b) the correlation between each pair of securities, and, of course,
(c) the amount invested in each security.

Once (a), (b), and (c) are known, the standard deviation of the portfolio
can be computed. Other things being equal, the higher the correlations
among security returns, the greater is the standard deviation of the port-
folio as a whole. To put it another way: the more the returns on indi-
vidual securities tend to move up and down together, the less do variations
in individual securities “cancel out” each other; hence the greater is the
variability of return on the portfolio.

QOUTPUTS OF THE ANALYSIS

Figure 4 shows the average return and standard deviation of return on
the securities in Table 1. The horizontal axis represents the average
return; the vertical axis represents the standard deviation. Thus the
point labelled 1 indicates that security 1 (American Tobacco Common
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Stock) had an average return of .066 (6.6 cents per dollarj and a standard
deviation of return of .23. The point P represents the average and the
standard deviation of return on the portfolio with 20 cents of A. T. & Sfe
and 80 cents Coca-Cola per dollar invested.  Our tenth security, cash, has
a zero average and a zero standard deviation of return,
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Figure 4. Some obtainable combinations—average and standard deviation.

We see from Figure 4 that A, T. & T. (security 2) had about the same
return on the average and a much lower standard deviation than either
security 1 or 6. Clearly, security 2 performed better during the period
than did 1 or 6, combining as high an average with greater stability.

Portfolio P, as noted before, had both a higher average and a lower
standard deviation than security 6. Security 7 had a still higher average
and lower standard deviation than portfolio P.

Is there a portfolio which had the same average return as security 2 bu
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had a smaller standard deviation? Is there a portfolio which had the same
standard deviation as security 2 but had a higher average return? Is there
a portfolio which had the same average return as security 7 but a smaller
standard deviation? Is there a portiolio which had both a higher average
and a lower standard deviation than did security 47

The answer to all these questions is “yes.”. The curve in Figure 4
indicates the smaliest standard deviation obtainable with each level of
average return. It indicates, for example, that there was a portfolio with

an average return of 5 cenis (.05 dollar) per doilar invested and
a standard deviation of slightly less than 6 cents per dollar invested.

No portfolio with an average return of 5 cents or more had a lower
standard deviation. Similarly there was a portfolio with

an average return of 10 cents per dollar invested, and
a standard deviation of slightly more than 11 cents per dollar invested.

No portfolio with this much average return had a lower standard deviation.
The curve in Figure 4 was derived from

(a) the average returns of the individual securities,
(b) the standard deviations of the individual securities, and
(c) the correlations between each pair of securities.

The procedures by which such a curve is obtained are discussed in
Chapter VI

Comparing the curve with the numbered points, we see that there was a
portfolio with the same average return as A. T. & T. (security 2) but with
little more than 1{2 the standard deviation. There was a portfolio with
the same standard deviation but with about 669 more return on the
average than security 2. There were portfolios with both slightly more
average return and slightly less standard deviation than security 7. There
was a portfolio with the same average return as security 4 but with much
less standard deviation; and one with the same standard deviation as
security 4 but with slightly more average return.

We can divide portfolios into two groups:

(1) those whose average return and standard deviation of return are
represented by a point on the curve in Figure 4, and

1 A curve such as that in Figure 4 is drawn on the basis of some assumption about
“legitimate” portfotios. The analysis behind the curve of Figure 4 did not permit
borrowing (e.g., buying on margin} or short selling. The portfolic was otherwise
unrestricted. Diflerent assumptions about “legitimaie™ portfolios are appropriate for
different investors.
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{(2) those whose average return and standard deviation of return would
be represenied by a point above the curve.

No portfolio has an average return and standard deviation which would be
represented by a point below the curve?

A portfolio of the second sort, not on the curve, is called inefficient.
If a portfolio is inefficient, there is either some other porifolio with more
average return and no more standard deviation, or else some portfolio
with less standard deviation and no less average return. In the case of
most inefficient portfolios there are portfolios whick have both more
average return and less standard deviation.

Thus the portfolio consisting entirely of security 6 i inefficient because
portfolio P has more average and less standard deviation; portfolio P is
inefficicnt because a portfolio consisting entirely of sccurity 7 has more
average and less standard deviation; while the portfolio consisting entirely
of security 7 is inefficient because there is a portfolio represented by some
point on the curve (e.g., the point with an average of .14 and a standard
deviation of about .16) which has still more average return and still less
standard deviation.

M a portfolio is represented by a point on the curve, it is called efficient.
If a portfolio is “cfficient,” it is impossible to obtain a greater average
return without incurring greater standard deviation; it is impossible to
obtain smaller standard deviation without giving up return on the average.
For example, the efficient portfolio with an average return of .1 has a
standard deviation of return of slightly more than .11. If we wanted an
average return of .14 we should have to accept a standard deviation of
about .16; if we wanted a standard deviaiion of .08 we should have to
accept an average return of .07.

Suppose we believed that past averages and standard deviations were
reasonable indicators of “most likely” return and “uncertainty” of return
in the future. Figure 4 would indicate combinations of “most likely”
return and *‘uncertainty” of return obtainable from portfolios. We would
not want an inefficient portfolio, because we could obtain greater return
with greater certainty by choosing an efficient one. Our “chosen™
portfolio would be an efficient portfolio.

Judgment must be employed in choosing one of the set of all efficient
portfolios. The “investor” must contemplate the various efficient com-
binations of average return and standard deviation. He must decide
whether it is better for him to select a portfolio with, for example,

an average return of .04 and a standard deviation of .045, or one with

! That is, no “legitimate’ portfolio (in the sense of the footnote on page 21) has an
average return and standard deviation represented by a point below the curve.
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an average return of .10 and a standard deviation of .113, or one with
an average return of .14 and a standard deviation of .16.

The “investor” must choose one combination of average and standard
deviation which, more than any other, satisfies his needs and preferences
with respect to risk and return.

Once the “investor” chooses among these efficient combinations of
avcf_ég@ return and standard deviation, the analysis can indicate a portfolio
which gives rise to the chosen combination. If he decides on an average
return of .07 and a standard deviation of .08, the portfolio analysis indicates
that the corresponding portfolio has

8 cents, security 3

1.5 cents, security 4

6 cents, security 5 per dollar of portfolio.
34.5 cents, security 7
50 cents, security 10

1f the “investor” is curious about the efficient portfolio with an average
return of .175, the analysis indicates that this has

33 cents, security 4
45.5 cents, security 5} per dollar of portfolio.
21.5 cents, security 7

Among the efficient portfolios are special ones referred to as corner
portfolios. Once we know the corner portfolios, we can easily derive the
portfolio associated with any efficient combination of average return and
standard deviation.

The nature and significance of the corner portfolios can be illustrated
geometrically by an example involving three securities, The curve in
Figure 4 relates standard deviation to average return. It does not portray
the amounts invested in each security. Such a portrayal is difficult when
ten securities are involved. It is a simple matter for three securities. In
Figure 5 the horizontal axis represents the amount invested in a first
security. The vertical axis represents the amount invested in a second
security. Thus the point P represents a security with 257 invested in
security 1 and 50 % invested in security 2. The amount invested in security
3 must be 25%, since the amounts invested in the three securities must add
to 100%.

The heavy line shows how the set of efficient portfolios can leok in a
three-security analysis. In the present example every portfolio represented
by a point on the heavy line is efficient.  Any portfolio not thus represented
is not efficient. The locus of points portraying efficient portfolios starts at
the point a, whose portfolio has smallest variance. The locus moves in a
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straight line from a until it reaches the point b; there it turns and moves in
another straight line until it reaches ¢; there it turns again and moves in a
straight line until it reaches the point d, whose portfolio has largest average
return. Ifthe points g, b, ¢, and 4 are known, the other points representing
efficient portfolios can be inferred. The points 4, b, ¢, and d represent
the corner portfolios of the present three-security example.

100

~d
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o
(=]

% invested in security 2
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o] 25 50 75 10¢
% invested in security 1

Figure 5. Efficient portfolios among three securities,

Qur ten-security analysis has 7 corner portfolios, as listed in Table 3.
For example, the third corner portfolio consists of

8 cents, security 4

92 cents, security 5} per dollar of portfolio

and had an average return of .196.

Each corner portfolio is efficient: its average and standard deviation is
represented by a point on the curve in Figure 4. Any “weighted average”
of consecutive corner portfolios is also efficient. For example, let us take
a weighted average of the fourth and fifth corner portfolios, using the
weights 1/4 and 3/4. We get a new portfolio with

% Invested In security 4 = (1/4)(41) + (3/4)(25)
= 29,

% invested in security 5 = (1/4)(59) + (3/4X(32)

% invested in security 7 = (1/4)0) + (3/4)(43)
=32,

(1/4)(.188) + (3/4)(-162)
.169.

average return
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Sccurities 1, 2, 3, 6, 8, 9, 10 do not appear in either the fourth or the fifth
corner portfolio and therefore do not appear in the weighted average of the
two. The new portfolio, calculated above, is efficient.

If we take a weighted average of the second and fourth corner portfolios,
we do not get an efficient portfolio. We must use consecutive portfolios
such as the first and second, or second and third, etc. The two weights
used (like 3/4 and 1/4) must be between 0 and 1 and must add up to 1.

The efficient portfolio with an average return of .19 is a weighted average
of the third and fourth corner portfolios. This is indicated by the fact
that the third corner porifolio has a higher, and the fourth corner portfolio
has a lower average return than .19. Similarly, the efficient portfolio with
an average return of .15 is a weighted average of the fifth and sixth corner
portfolios; the efficient portfolio with an average return of .08 is a
weighted average of the sixth and seventh corner portfolios.

Suppose we wished to find the efficient portlolio with an average return
of .15, This lies between the fifth and sixth corner portfolios, which have
average returns of .162 and .140 respectively. We must find weights,
wand [ — w, so that

w(.162) + (I — w)(.140) = .150.

Solving for w, we get

150 —.140 5
V=62 - 40 1T

I —~w=—

I
‘Thus the efficient portfolio with an average return of 150 has
invested in security 3 = (5{113(0) < (6/11)16) = 9,
invested in security 4 = (5/11)(25) 4 (6/11)(3) = 13,
invested in security 5 = (5/11)(32) + (6/11)(12) = 21,
invested in security 7 = (5/11)(43) 4 (6/11)(69) = 57.
The efficient portfolio associated with any combination of average return

and standard deviation of return on the curve in Figure 4 can be found
similarly.

ProOBABILITY BELIEFS AND PORTFOLIOS

The inputs to the analysis discussed above were past performances of
individual securities; the outputs were statements about performances of
portfolios. Portfolio selection based solely on such an analysis assumes,
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in effect, that past averages and standard deviations are reasonable
measures of the “likely” return and the uncertainty of return in the future,
The present section considers a second type of input to a portfolio
analysis. A third type is touched on in the following section.
Rather than using past performances per se, we could use the “proba-
bitity beliefs” of experts as inputs to a portfolio analysis. This raises
three questions:

What is a probability belief?
What is an expert?
How do we get the former from the latter?

The nature of probability belief can be illustrated by a very hypothetical
example. For this example we need two “props.” The first “prop” is a
large ‘“‘wheel of fortune” marked with numbers 1 through 100. The
wheel is perfectly balanced and impeccably honest. Thus there is exactly
a .01 probability (1 chance in 100) that the number 1 will be the result of a
spin of the wheel. Similarly, there is exactly a .02 probability (2 chances
in 100) that either the number 1 or else the number 2 will appear; and a
.16 probability that one of the first sixteen numbers will appear.

The second “prop” is a rich but eccentric uncle of yours who has willed
you a chance to win a large fortune. You even have a choice as to the
kind of chance situation in which to engage. Specifically you must choose
between the following two alternatives:

Alternative 1. The wheel marked with the numbers 1 to 100 will be
spun. If any number from 1 to 80 appears, you win the fortune. Other-
wise you are thanked for your cooperation and the fortune goes to the care
of aged cats. Alternative 1 is subject to a .2 probability of losing the
fortune.

Alternative 2. You win the money if it does not rain tomorrow. lf a
trace of rain is reported by the local weather station, the money goes to
the cats.

If you prefer alternative 2 to alternative 1, then the probability belief
you attach to rain tomorrow is less than .2. If you prefer alternative 1,
then the probability belief you attach to rain is greater than .2. If
you are indifferent between the two alternatives, your probability belief
equajs .2.2

The choice of alternative 1 or 2 would depend on considerations such as

! We may suppose that the alternatives are set up so as to minimize extraneous
factors such as differences in “‘suspense” and possible *“regret.”” For example, which-
ever alternative is chosen, the wheel is spun and the outcome of each alternative is
announced. Other details are left to the reader’s imagination.
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cloud formation, temperature, humidity, the weather forecast if you
happened to see it or were allowed to look at it, experience in the past
(especially on days similar to the present day). If possible, you might
consult the records of the weather bureau. Or perhaps you could consult
a meteorologist who could better judge the possibilities latent in the
current weather picture.

Usually the meteorologist is expected to make a prediction: to tell
whether rain or no rain is morc likely. In the present example the
meteorologist is asked to advise on the probability belief which should be
attached to “rain tomorrow.” We need not restrict ourselves to mythical
situations involving eccentric uncles for questions of probability belief to
be relevant. A higher probability of “right” weather conditions is
required before proceeding with a nuclear weapons test than with a picnic
excursion, while a higher probability is required for the picnic excursion
than for hanging the family wash.

The Security Analyst is the meteorologist of stocks and bonds. If he
is thorough, his statements about the future of a security will be based on
general conditions and prospects for the economy and the market; the
nature of possible new developments in the indusiry; the past performance,
financial structure, and other matters relating to the opportunities and
dangers confronting the corporation; and, finally, the position of the
particular security vis-a-vis others of the corporation.

We shall not discuss the procedures of the security analyst in arriving
at reasonable beliefs about securities. Works on security analysis are
availablel The topic of this monograph is Portfolio Analysis. A
portfolio analysis begins where security analyses leave off.

The relationship between portfolio analysis and security analysis may
be illustrated by a particular portfolio analysis based on the probability
beliefs of security analysts. These beliefs were recorded on forms such as
those in Figures 6 and 7. The information recorded was the output of
security analyses and the input to a portfolio analysis. The information
required for the portfolio analysis depended on

(1) the objectives of the investor and

{2} the need of the portfolio analysis for estimates of, the most likely
return on each security, the uncertainty of return associated with each
security, and the correlation between each pair of securities.

The investor, in the example under discussion, was a tax-exempt institution.
Long-standing higher policy restrained the investor from using capital
gains for current expenditures. This policy was accepted in the portfolio

! See, for example, Graham and Dodd, Security Analysis {2].
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{Name of Security) {Current Yiekd)

RELATION OF SECURITY’'S RETURN TO
STANDARD & POOR’S INDEX

I the Standard & Poor
Index changes during
the pext three years

by .....
+90%  +55%  420% —15% —~50%

High
Then we may
expect of the  Likely

security

Low

Correlations

List securities which are other than “normally” correlated with the above
security. (See attached sheet! for definitions of “normally correlated,” HH, H,
L, and LL.)

HH
H

N (It is unnecessary to list securities in this category. All securities not

listed elsewhere will be assumed to be here.)

LL

Remarks:

1 Discussed in text.

Figure 7. Form 2.
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analysis as an immutable fact of life. 1t was decided that a desirable
portfolio

(i) would yield at least a specified current income,! to provide for
current expenses, and

(iiy would grow in value (from additional income or capital gains)
during the next three years, to provide the basis of future income and
growth.

It was decided that “current income” was sufficiently predictable that
unecertainty in this area could be ignored. Uncertainty of future growth,
however, could not be ignored.

The portfolio analysis produced a set of “efficient portfolios” similar to
those discussed in the last section,  Each efficient portfolio gives minimum
“uncertainty of growth” for given “most likely growth.” Each efficient
portfolio also meets the requirement for current yield.

Two forms were used to record beliefs about securitics.  The first form,
Figure 6, is concerned with the performance of the Standard & Poor
Index of 480 Common Stocks during the next three years (May 1956—
May 1959). It asks that “probabilities” be assigned the statements:

The Index will rise by at least 759 during the three years.
The Index will rise by at least 409, but less than 75%,.
The Index will rise by less than 4075,

The Index will fall by less than 25%.

The Index will fall by more than 257,

The actual performances during all such three-year periods from 1871 to
1955 were presented. Thus the arrow labeled 1929 indicates that there
was over a 100%;, increase in the Index from May 1926 to May 1929. The
column labeled “frequency” (of occurrence) indicates, for example, that
a three-year gain of more than 759 occurred 5 times during the period.
The column labeled “percentage” (of occurrence) indicates that this
frequency of 5 represents 6% of the total 82 observations.

The information on past performances was presented fot the convenience
of the security analysts, to be considered or ignored as they saw fit. The
probability beliefs recorded in the last column represented a concensus
concerning the (then) future performance of the market.

One copy of the second form, Figure 7, was filled out for each security
in the analysis. The form provides space for

{1} name of security,
(2) estimated current income,

! Intercst and dividends during the coming year.
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(3) answers to questions such as “Suppose the Standard & Poor Index
rises by 20%, what do you consider to be the most likely return on this
security? What do you consider to be a “high” return? A low return?
Similar questions were asked for other changes in the Index.

(4) Indication that the security in question is “unusually” correlated
with particular other securities in the analysis.

A “high” return is defined to be a return so high that the analyst feels
there is but one chance in twenty that a higher return would occur. A
“low” return is defined to be a return so low that the analyst feels there is
but one chance in twenty that a lower return will occus.  Thus there is one
chance in ten that the return will be either higher than “the high”” or lower
than *“the low.” High and low need not be defined in terms of “‘one
chance in twenty.” A different level of probability could be used, as long
as it is used consistently.

The returns on most securities are correlated. If the Standard & Poor
Index rose substantially, we would expect United States Steel (Common)
to rise. If the Standard & Poor Index rose substantially, we would also
expect Sweets Company of America (Common) to rise. For this reason
itis more likely that United States Steel will do well when Sweets Company
does well. If the returns on two securities are correlated only because
they are correlated with things in general (and the Standard & Poor Index
in particular), then we say that they are normally correlated. The returns
on two securities may be more highly correlated than would be indicated
by their relationships with the Standard & Poor Index. If a company in
the automobile industry does better than one would expect from the rise in
the Index, there is a greater chance that a company in the tire business will
do better than one would expect from the rise in the Index. The returns
from securities of such companies are referred to as highly or very highly
correlated, depending on the degree of correlation. It is alse possible for
securities to be less correlated than would be indicated by their relation-
ships with the Index. This would be the case for two firms in the same
industry, if the total demand for the output of the industry were stable
but sales of individual firms were subject to severe competition. The
securities of such firms would be referred to as less than normally or much
less than normally correlated, depending on the degree to which one
security would tend to move opposite to the other if the Index stayed
constant.

Space is provided on the form to indicate securities in the analysis with
which the particular security is very highly correlated (HH), highly cor-
related (H), less than normally correlated (L), or much less than normally
correlated (LL). Normal correlations {N) need not be listed.
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Such forms, and a small amount of written material accompanying them,
must be supplemented by verbal communication between portfolio analyst
and security analyst. In particular, special effort must be made to ensure
a meeting of minds on notions such as “one chance in twenty” and “norm-
ally correlated.”

In Figures la through 1i we presented information concerning past
performances of individual securities. The portfolio analysis based on
this information derived conclusions concerning past petformances of
portfolios. Many of these conclusions were not self-evident before the
analysis, even though the past performances of individual securities were
systematically arrayed for inspection. In a similar manner, a security
analyst may have beliefs about individual securities without seeing their
implications for portfolios as a whole. The purpose of the portfolio
analysis is to bring out these implications.

By analogy, a poker player may believe that a deck of cards is well
shuffled. Yet he may not know all the implications of this belief. He is
not likely to know, offhand, the probability of beating 3 aces and 2 jacks;
or of beating 4 eights and a king if deuces are wild. It is usually not polite
or convenient to employ a computing machine to calculate probabilities
during the course of a poker game. In portfolio selection, however, the
stakes are higher and decisions should be made on the basis of thorough
analysis.

A VARIETY OF PORTFOLIO ANALYSES

The illustrative portfolio analyses discussed in previous sections are but
two of a variety of portfolio analyses which could be performed. No
single type of analysis is right for all purposes. The choice of analysis
depends on the nature and goals of the investor. The present section
discusses some of the ways in which portfolio analyses can vary.

Alternative Inputs. Methods have been suggested for predicting future
sccurity performances from past performances, volume of transactions, or
other measurable phenomena. I shall not discuss the pros and cons of
any such system, except to note that no method of prediction is infallible.
With few exceptions, predictions are subject to some range of uncertainty.

An investor might feel that a particular method of prediction has merit.
He might wish to select a portfolio which uses its predictions but, through
proper diversification, reduces some of the uncertainty attached to predic-
tions for individual securitics. The predictions, and estimates of the
uncertainty of predictions, can be used as inputs to a portfolio analysis,
"The outputs of the analysis are, then, implications of the method of
prediction for better and worse portfolios.
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Another approach is to consider such predictions, along with other data,
to arrive at the probability beliefs discussed in the preceding section. |

Taxes. Some investors are not subject to Federal Income tax. For
others this is a prime consideration in the choice of portfolio. A portiolio
analysis can take into account

(i) the differences in taxes on income and capital gains,
(i) the change in tax rate with change in income Jevel, and
(iii) the fact that capital gains taxes are paid only if the gains are
“realized™ (if the security is sold).

Exogenous Assets. Many investors have sources of income other than
their portfolio. For a private investor this might include a salary; for a
university it would include tuition and endowments. These other sources
of income are not irrefevant to the portlolio selection decision. It is
desirable to choose a portfolio whose performance will not be too highly
correlated with the investor’s other income. It is undesirable to have a
portfolio perform worst when it is needed most.  Such considerations may
be handled formally by including other sources of income as a fictitious
security or “‘exogenous asset.” The holding of this asset is not subject to
choice in the analysis, but the correlation of its income with the yields of
securities will influence the selection of portfolio.

Cost of Living.  Also of importance in many cases is the rise and fall in
the costs of fulfilling the needs and obligations of the investor. To account
for this the analysis may be performed in terms of “real return’ rather than
money returns.

If the ten-security analyses discussed earlier had been based on real
return. rather than on money return, cash would have had a negative
average return and a positive standard deviation.

SUMMARY

The examples of the present chapter have illustrated the inputs, the
outputs, and the objectives of portfolio analyses. Parts IT and III of this
monograph discuss relationships and techniques by which information
about securities ar¢ transformed into conclusions about portfolios. Part
IV discusses topics related to the choice of criteria for a portfolio analysis.
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AVERAGES AND EXPECTED VALUES

MATHEMATICS AND YOU

The relationships between securities and portfolios, to be discussed, are
mathematical in nature.  They follow from definitions of terms and prop-
erties of numbers. Like the theorems of geometry, they are subject to
precise statement and rigorous deduction.

Except for the appendices, this monograph was written to meet the
needs of the reader without mathematical training. The writer has
attempted to illustrate concepts concretely, to avoid excessively ferse
proofs, to introduce essential mathematical apparatus in easy stages.
Successive chapters build on previously presented concepts, relationships.
and apparatus, thus aflowing the reader to raise his level of mathematical
sophistication gradually. '

The non-mathematician cannot expect to skim this monograph as if it
were a novel, or skip around in it as if it were a newspaper. The subject
progresses step by step. The journey can be completed only if each step
is taken in turn. Here are four rules which should aid the reader:

1. Avoid “good” reading habits. Some modern reading methods en-
courage the reader to grasp phrases in a glance, move steadily forward,
never reread a passage, never mull over a detail. ~ Although such practices
may be excellent for quickly reading a novel, they are not suited to the
comprehension of unfamiliar mathematical material! Rapid reading
becomes increasingly out of the question as we introduce more compact
notation. A few symbols can represent dozens of words of ordinary
English. To attempt to swallow such a concentrated morsel in a single
gulp is bound to lead to intellectual indigestion.

2. Pay particular atiention to definirions. It is impossible for the reader
to understand the signiticance of a theorem or follow a proof if he does not
know the exact meaning of terms. Terms of special importance are in
italic type when first introduced.

37
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3. Pay particular attention to theorems. A theorem is a compact,
formal statement of an important rclationship between concepts. Most of
our discussions are directly or indirectly related to some theorem. They
cxplain theorems, prove theorems, illustrate the importance of theorems.
If the theorems are understood, their applications to problems of portfolio
selection follow as corollaries.

4. Take time to understand proofs. A proof shows that the relationships
expressed in a theorem follow from definitions of terms and properties of
numbers. A theorem learned by rote will soon loose meaning and slip
from memory. Once the reasons for the validity of the theorem are seen,
once its proof is understood, once the inevitability and logical necessity of
the relationship are comprehended, the theorem becomes like an old
friend not easily forgotten, quick to be recognized if met again.

THREE TOPICS FOR THE PRICE OF ONE

We shall conduct parallel discussions on three distinct topics:

first, we shall consider relationships among past returns, particularly
relationships between past returns on securities and those on portfolios;

second, we shall consider relationships among probability beliefs,
particularly the probability beliefs of securities and their implications for
portfolios; and

third, we shall consider relationships among random variables.

The relevance of the first two topics was illustrated in the last chapter.
The nature and significance of the third topic require a word of explanation.

A random variable, as we shall use the term, is a number generated by
a chance device. Thus the number of dots appearing after a roll of dice,
the number of aces drawn in a hand of cards, the number resulting from
a spin of a roulette wheel are random variables.

As noted in the last chapter and discussed in Chapter XII, the relation-
ships which apply to the objective probabilities of random variables also
apply to consistent probability beliefs. Tt will be convenient to illustrate
definitions and relationships with specific random devices rather than
immediately discussing them in terms of the more abstract notion of
probability beliefs. Applications to random variables will frequently
serve as concrete illustrations of relationships applicable to probability
beliefs, and to past series as well.

The three topics—relationships among past averages, relationships
based on probability beliefs, and relationships among random variables—
are different in substance but (in certain respects) are identical in form.
A past frequency is not the same thing as a belief about the future. A
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probability belief about the future is not necessarily a true, objective
probability. Nevertheless, certain arithmetic relationships among past
averages are exactly the same as corresponding relationships among
random variables. The latter, in turn, are the same as relationships
among probability beliefs. Thus a discussion of one of our topics can
frequently serve as a discussion of all three.

FREQUENCY DISTRIBUTIONS, PROBABILITY DISTRIBUTIONS

A spin of the “wheel of fortune” in Figure 1 determines the next value
of a random variable. The numbers on the perimeter of the wheel may
be thought of as amounts won or lost if §1 is wagered. Thus, if the whecl

Figute 1. Wheel of fortune, A spin of the wheel determines the next value of a
random variable. .05 represents a 577 gain; —.10 represents a 109 loss,

stops with the pointer at .10, the bettor wins 10 cents per dollar bet: he
has a 10% return on his money. If the wheel stops with the pointer at
— .05, the bettor loses 5 cents per dollar bet: he incurs a 5% loss.

The significant facts about the wheel can be summarized in tabular or
graphical form. Table 1 shows

the outcomes which can result from a spin of the wheel,
the number of times each possible outcome appears on the wheel, and
the probability that the outcome will result from the spin of the wheel.

We assume that cach place on the wheel has the same chance of appearing
under the pointer. Thus the outcome .05, which appears in 3 of the 8
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places on the wheel, has 3 chances in 8, that is, a probability of 3/8, of
appearing as the result of the spin of the wheel.

TABLE 1
PROBARILITIES OF OUTCOMES

Possible Number of
Outcomes Appearance Probability
on Wheel
—10 1 18
-.05 1 18
00 2 14
Total 8 1.00

This table presents the probability distribution
of the random variable of the wheel in Figure 1.

The information in Table I is presented graphicaily in Figures 2 and 3.
In both figures possible outcomes are represented by asterisks (¥). The

* * % * ¥ oy *
| I \/ N\ ]
-.10 =05 00 .05 10

Figure 2. Probabilities of outcomes. Each asterisk represents an outcome on the
wheel in Figure 1.

figures differ in their treatment of outcomes appearing more than once on
the wheel. Thus the outcome .05 is represented like this

o

03
I
1
1

05

in Figure 2, and like this

in Figure 3.
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Figures 2 and 3 and Table 1 tell us how probability is distributed among
possible outcomes. Each presents the probability distribution of the
random variable.

*
}
* *
|
10

Ol e —
B k—x—=

|
~-.10 -.05 .00

Figure 3. Probabilities of outcomes. This is an alternative way of presenting the
outcomes on the wheel in Figure 1. (Se¢ also Figure 2.)

For our purposes, a probability distribution contains all pertinent
information concerning a random variable. The color and size of the
wheel are not relevant.  Neither is the placement of outcomes around the
wheel, as long as the wheel is perfectly balanced and impeccably honest.

TABLE 2

PROBABILITY BELIEFS

Return Probability
—.30 1/30
—.20 2/30
—-.10 4/30

00 6/30
10 8/30
.20 5/30
.30 2/30
40 1/30
.50 1/30

Tabular presentation of (hypo-
thetical) probability beliefs.

Several random devices can have the same probability distribution.
Our discussions will be concerned with probability distributions rather
than with physical mechanisms by which random variables are produced.

Wheels such as that in Figure 1 will, nevertheless, be valuable in helping
us concretely to visualize abstract relationships. In this and following
chapters we shall see wheels with random variables, wheels with pairs of
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random variables, wheels with several random variables, new wheels
constructed in specific ways from old wheels, and others. Each will
illustrate an abstract idea relevant to the analysis of portfolios.

Probability beliefs about future, uncertain events, like probabilities of a
random event, can be presented in a tabular or graphic form. An indi-
vidual might feel that the return (including capital gains) on a security
during the next year will be somewhere between —30% and +50%;,. The
probability beliefs which he associates with various possible outcomes
might be as represented in Table 2. Thus, according to the table, the
individual feels that there are 4 chances in 30 that a loss of 109 will be
incurred, whereas he feels there are 8 chances in 30 that a gain of 109 will
occur.

F=y
b= *
-] *
=] * #
e * * L
o * #* * *
* ¥ »* *
* * * * * *
* * - ¥ * * * * *
i 1 | ! S 1 L | -
-30 -20 -10 L0 10 .20 30 40 50
Return

Figure 4. A distribution of probability beliefs. Graphical representation of the
probability distribution in Table 2.

The information in Table 2 is presented graphically in Figure 4. Figure
4 is patterned after Figure 3. Table 2 could also be represented, perhaps
not so conveniently, by a figure patterned after Figure 2.

Frequency

0

5F

| * £

I~ * ; 1 * * *

* * * * * * * *
| | T N ] |
-3 -20 -10 00 110 20 30 .40 50

Figure 5. Returns on American Tobacco Comm. Stock. Graphical representation
of past returns in Table 3,
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TABLE 3

RELATIVE FREQUENCY OF THE RETURNS ON
AMERICAN TOBACCO COMMON STOCK, 1937-54

n ) (3}
Relative
Return Frequency Frequency
(by intervals) @) = 18
—.35t0 —.25 2 2/18
—.25to —.15 0 0/18
—~.15to —.05 4 4/18
—05to .05 4 4/18
O5to U3 2 2/18
d5to .25 2 2/18
25t0 .35 1 1/18
35to 45 2 2/18
4510 .55 1 H18
SUM = 18 SUM =1

Frequencies of past occurrence can also be summarized in a tabular or
graphical manner. Table 3 presents, for example, the following informa-
tion concerning American Tabacco Common Stock:

each annual return which occurred during an 18-year period,
the frequency with which each return occurred, and
the relative frequency of occurrence (= frequency divided by 18).

The same information is presented graphically in Figure 5.

AVERAGE AND EXPECTED VALUE DEFINED

In this section we shall define

(1) the average value of a past event,
(2) the expected value of a random variable, and
(3) the expected value of an uncertain event.

We shall also show how and why a discussion of one of these concepts can,
in certain matters, serve as a discussion for the other two.
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The average value of a series of numbers—for example, the average past
return of a portfolio—was defined in Chapter I as the sum of the series
divided by the number of items in the series.

Average past return may also be defined in terms of relative frequency
of occurrence, as is illustrated by Table 4. The first column of the table

TasLE 4

AVERAGE RETURN OF AMERICAN TOBACCO COMMON
STOCK IN TERMS OF RELATIVE FREQUENCIES

Re(tll.)lrn Relati (12:) 3)

. . elative Frequenc .
g’f“‘l‘fl‘:;’:,:;)l {from Table 3) ! (1) times (2)
~ .30 2/18 —.60/18
—-.20 0/18 —0—
~-.10 4/18 —.40/18

00 4/18 —0—
+.10 2/18 .20/18
+.20 2/18 .40/18
+.30 1/i8 .30/18
+ .40 2/18 .80/18
+.50 1/18 .50/18

SUM = Average
SUM =1 Past Return
= 1.20/18 = .067

lists returns which occurred during §8 years. The second column presents
the relative frequencies of occurrence. The third column is

(the value of the return) times (its relative frequency).

That is, the third column is the product of the first and second columns.
The sum of the entries in the third column is the average past return.
The asterisks in Figure 5 indicate the past returns on American Tobacco
Common. The arrow marks the average of these returns. Figures 5a
through Sh show the past returns and their averages for eight other
securities used in Chapter I. These illustrations should provide an
intuitive feel for the refationships between typical series and their averages.
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A spin of the wheel in Figure 1 determines the next value of a random
variable. The expected value of this random variable is, by definition, the
average of the numbers on the wheel. The expected value of the random
variable in Figure I, then, equals

05 + 00+ .05 — .05+ .05+ .10 4 .00 — .10
3

= .0125.

Expected value can also be calculated in terms of probabilities of outcomes,
In Table 5, the first column lists possible outcomes; the second column
presents probabilities of outcomes; the third column is

(the value of the outcome) times {its probability).
The sum of the entries in the third column is the expected value of the
random variable.
TABLE 5

DERIVATION OF EXPECTED VALUE FROM PROBABILITIES

(1) @ 3)
Ouicome Probability nm-2
—-.10 1/8 (—.10)/8
—.05 /8 {—.05)/8
.00 2/8 .00
.05 3/8 15/8
10 1/8 .10/8
SUM 1.00 10/8 = 0125

One must distinguish between an average outcome and an expected
outcome. A spin of the wheel in Figure [ will result in either a —.10, or
a —.05, ora .00, ora .05, ora.l0. Thus the average outcome of a spin
(the result of the spin divided by 1) will be one of the five aforementioned
numbers. The expected value of the spin, on the other hand, is the average
of the numbers on the wheel.  If we keep these distinctions in mind, we see
that the following are meaningful statements:

the random variable turned out to be greater than its expected value;
the random variable turned out to be less than its expected value;
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Figure 5a. American Telephone & Telegraph.
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Figure 5b, United States Steel.
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Figure 5c. General Motors.
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Figure 5d. Atchisen, Topeka & Sante Fe.
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Figure 5h. Sharon Steel.



48 PORTFOLIC SELECTION

the average of the ten spins was very close to the expected value of the
random variable.

The reader should keep in mind the exact sense in which we use the term
“expected value.” Expected value is only imperfectly related to the verb
“to expect.”” The expected value of the random variable generated by the
wheelin Figure 1is.0125.  Yet no one would expect this to be the outcome
since .0125 does not appear on the wheel. Expected outcome, as we use
the term, is no more or less than an average. Strictly speaking, it is, as
illustrated in Table 5, the weighted average of possible outcomes with
probabilities of occurrence used as weights.

Our definition of expected outcome raises two questions:

1. Why attach the term *“expected outcome™ to the concept “a weighted
average of possible outcomes using probabilities as weights”?
2. Why use this concept at all? -

The answer to the first question is “convenience and tradition.” We shall
use the concept frequently; we need a label for it. Since the eighteenth
century, statistical literature has associated this term with this concept.

The second question, why use this concept at all, will be discussed in the
next section, ““Alternative Measures of Central Tendency.”

The expected outcome of an uncertain event is defined exactly like the
expected outcome of a random variable, except that probability beliefs are
used instead of objective probabilities. If the second column of Table 4
represented an individual's probability beliefs concerning possible returns
on a security, then the sum of the entries in the third column is what we
refer to as his expectation, or expected return, for the security.

The first column in Table 6 lists possible outcomes. The second
column contains a set of numbers which sum to one. The third column
is the product of the first two. Its sum is written below the column.

The table could represent the probability distribution of a random
variable, the frequency distribution of a past event, or a set of probability
beliefs. It is impossible to tell which. Depending on what kind of
distribution is represented by the second column, the sum of the third
column is the expected value of a random variable, the expected value of
an uncertain event, or the average outcome of a past event.

From an arithmetic point of view, past averages and the two types of
expected values are identical. Each is defined, in exactly the same way,
in terms of a set of numbers such as that in Figure 5., A discussion of the
arithmetic relationships governing any one of the three can be easily
translated into a discussion of either of the other two.
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TABLE 6

WHAT KIND OF DISTRIBUTION IS THIS?

{1} (2) (-2
—.10 A -0
—.05 2 —.01

.00 3 00
+.05 2 +.01
+.10 A +.01
4-.15 .1 +.015

+.015

ALTERNATIVE MEASURES OF CENTRAL TENDENCY

Averages and expected values measure central tendency: they tell us
where the center of a distribution is located. An average past return is a
number about which past returns fluctuated. An expected future return
is centrally located with respect to possible future outcomes.

Average and expected value are not the only measures of central
tendency. We shall compare these measures with two others frequently
found in statistics texts.

Table 7 describes three measures of central tendency. For each it
gIves

(a) iis technical name,

(b) an alternative name, appropriate when the measure is applied to past
series,

(c) an alternative name, appropriate when the measure is applied to
random variables or probability beliefs, and

(d) a brief description of the measure.

Thus the mean is the technical name for an ordinary average. The
mean of a past series is called its average. The mean value of a probability
distribution is called the expected value of the random variable or uncertain
event. The mean, as we already know from our discussion of expected
values and averages, is a weighted average of possible outcomes with
probabilities or frequencies used as weights.



50 PORTFOLIO SELECTION

TABLE 7
THREE MEASURES OF CENTRAL TENDENCY

Alternative

Alternative Name,
Technical Name, random
Name past series variables Description

Mean Average Expected value A weighted average using
frequencies or probabilities
as weights

Mode Most frequent  Most likely That number (or those
numbers) which appears
more frequently, or has a
higher probability than any
other

Median Midpoint Midpoint A number such that 509 of

the observations (or 509,
of the probability) are
associated with numbers
equal to or greater than this
number, and 505, are
associated with numbers
equal to or less than this
number

The mode is an outcome which appears more frequently or has a higher
probability than any other outcome. Thus the mode of the distribution
in Figure 2 is .05. The distribution in Table 8 has two modes, since .00
and .05 have the same, highest, probability (or frequency).

TaBLE B

A DISTRIBUTION WITH TWO MODES AND
MANY MEDIANS

—05 1/6

00 1/3
+.05 1/3
+.10 1/6

The median is the midpoint of a distribution. At least one-half of the
probability (or frequency) is associated with outcomes equal to or smaller
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than the median; at least one-half is associated with outcomes equal to or
larger than the median. Thus the distribution in Table 2 has a median of
.10, since the sum of the probabilitics associated with outcomes equal to
or less than .01 is 21/30, while that associated with outcomes equal to or
greater than .10 is 17/30. In the distribution in Table 8, any number
betwecen .00 and .05 (inclusive) is a median. For example, .025 is a
median, since the sum of the probabilities associated with outcomes less
than .025 equals 1/2, as does the sum of the probabilities associated with
outcomes greater than .025,

Before discussing the relative merits, for portfolio analysis, of alternative
measures of central tendency, let us consider the use made of such measures.
In Chapter Il, you recall, average past return was used as one of two criteria
for evaluating portfolios. The other criterion was standard deviation, a
measure of variability. The average returns and standard deviations of
portfolios were plotted in Figure 4 of Chapter I1. If a portfolio had an
average return and standard deviation represented by a point on the curve,
it was referred to as efficient. If a portfolio was not efficient, it was
possible to find an efficient portfolio with either

(a) greater average return but no greater standard deviation, or
(b} less standard deviation but no less average return.

Rather than average return we could have used mode or median as a
measure of central tendency. Rather than standard deviation we could
have used, for example, “maximum loss” or “frequency of loss™ as the
measure of instability. We could have constructed a figure with mode on
the horizontal axis and maximum loss on the vertical axis. We could have
drawn a curve showing the smallest maximum loss obtainable among
portfolios with a given level of mode. We could have defined a portfolio
to be efficient if its mode and maximum loss were represented by a point
on this new curve.

We must distinguish between

(a) a portfolio deemed efficient in an analysis based on mean and
standard deviation and

(b) a portfolio deemed efficient in an analysis based on mode and
maximum loss.

The first we will refer to by the clumsy but mnemonic phrase: a mean—
standard deviation—efficient porifolio. The second we will refer to as a
mode—maximum loss—efficient portfolio. We can similarly define a
“median—standard deviation—efficient portfolio,” a “‘mean—probability
of loss—efficient portfolio,” or a portfolio indicated as efficient in an
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analysis based on any measure of central tendency and any measure of risk,
variability, or uncertainty.

One measure of central tendency is better than another if it generates
better efficient portfolios. If the best “mode—standard deviation—
efficient portfolio” is generally better than: the best “mean—probability
of loss—efficient portfolio,” the best “median—standard deviation—
efficient portfolio,” ete., then mode is the best measure of central tendency
and standard deviation is the best measure of instability.

In some cases several different combinations of measures lead to the same
set of efficient portfolios. This is true, in particular, when probability
distributions of returns can be described by one of several standard
patterns. If, for example, probability distributions are assumed to
follow the (bell-shaped) normal distribution, illustrated in Figure 6a, then
a portfolio is mean—standard deviation—efficient if and only if it is

mode—probability of loss efficient,
mode—standard deviation efficient,
mean—probability of loss efficient,
median—standard deviation efficient, and
median—probability of loss efficient.

The above equivalence between efficient sets also holds if probability
distributions follow the “‘log-normal”™ distributijon illustrated in Figure 6b.

In cases such as these the choice of measures is primarily a matter of
convenience. For example, in the analysis based on probability beliefs,
discussed in Chapter II, it was assumed that probability beliefs approxi-
mately followed the log-normal pattern. The questionnaire was phrased
in terms of mode, that is, “most likely return.” For convenience of
computation, mode was translated into mean. For ease of interpretation,
mean was translated back into mode.

It may happen, however, that different combinations of measures yield
different efficient portfolios. For such cases we must seck a combination
of measures, a measure of central tendency and a measure of instability,
which generally produces better efficient portfolios than any other
combination of measures.

A comparison of measures can be based either on specific instances or
on general principles. We could show cases in which one measure clearly
did better than another in describing the relative worth of two portfolios.
We could show clearly undesirable properties possessed by one measure
and not by another. From such particulars we might gain a feeling about
at least some of the strong and weak points of different measures. Or,
alternatively, we could deduce the relative merits of different measures
from fundamental principles of choice in the face of risk and uncertainty.
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The two approaches, one based on specific instances, the other based on
general principles, are supplementary. Instances give concreteness to

principles; principles provide generality to instances. Eventually both
approaches will be taken in this book.
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Figure 6. (a) The “normal” distribution; (b) the “log-normal™ distribution.

We are not ready to explore principles of behavior under uncertainty.
Our present discussion will be confined to particulars rather than uni-
versals. Our final discussions of behavior under uncertainty will be
postponed to Chapters X through XIIIL

Figure 7 presents two distributions, (a) and (b). Distribution (b) may
be thought of as a slight modification of distribution (a): (b) results if the
—.20 return in (a) is increased to a —.1I5 return and one of the .20 returns
in (a) is increased to a .25 return.  Distribution (b) is clearly better than
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distribution (a), since it can be obtained by increasing some returns while
decreasing none.

Maode
}
* * -+ # * * *
IS N . AV
-.20 =.10 o .10 20
(a)
Maode
|
* * * £ w * *
MAVAR | | | i
-.20 -.10 .00 10 20

()

Figure 7. Two (hypothetical) distributions of returns.

Yet distribution (a) has a mode of +.20, while distribution (b) has a
mode of —.15. Thus we see that a small difference between distributions
can make a large difference in their modes. More important, this differ-
ence in mode can be completely misleading.

A third distribution of returns is presented in Figure 8. This third
distribution may be thought of as a modification of distribution (b) in
Figure 7. The distribution in Figure 8§ results if the .10 return in (b) is
increased to a .20 return, the .20 return in (b) increased to a .40 return, and
the .25 return increased 1o a .45 return.  Clearly the distribution in Figure
§ is superior to distribution (b).

* * ok * * * *
VA a M
-20 -.10 .00 10 .20 30 40

Figure 8. A third distribution of returps.

Yet the median of the distribution in Figure 8 is the same as the median
of distribution (b). In fact, both of these are equal to the median of
distribution {a). Thus we sec that the median is insensitive to changes,
even to unambiguously good or bad changes, as long as they do not affect
the midpoint of the distribution.
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An increase in returns, as between distribution (a) and distribution (b)
in Figure 7, is always associated with an increase in mean. If a single
asterisk is shifted to the right, the increase in mean equals

the amount by which the asterisk is shifted
the number of asterisks in the distribution’

Hence mean cannot move in the wrong direction, as the mode could; nor
can the mean be insensitive to an increase not offset by any decrease, as
could the median and the mode.

It would seem, then, that the mean is a more appropriate measure of
central tendency than is either mode or median. Further substantiation
of the appropriateness of the mean is presented in Chapter XIIL

Besides being a more desirable measure of central tendency, the mean is
a more convenient measure in at least two respects.  First, a distribution
can never have more than one mean. It can, however, have many modes
and medians (see Table 8). Second, the arithmetic relationships between
means of securities and means of portfolios are much simpler than the
corresponding relationships for modes and medians.

The rest of this chapter will discuss these relationships between means of
securities and means of portfolios.

A CONSTANT TIMES A RANDOM VARIABLE

The wheel in Figure 9 generates a pair of random variables. The
numbers on the outer ring of the wheel are exactly the same as those on the
wheel in Figure 1. The numbers on the inner ring are, in every case,
three times as large as the numbers on the cuter ring.  The random number
generated by a spin of the wheel and a reading of the inner ring is inevitably
three times as large as the random number generated by the same spin and
a reading of the outer ring.

For ease of reference we shall name our two random variables. That on
the outer ring we shall refer to as the random variable r. That on the
inner ring we shall refer to as the random variable 3r. Their names
remind us of the relationship between them.

The expected value of the random variable 3r can be computed in the
usual way:

A5 4 004 15 — .15+ 154+ .30 4 .00 — .30
8
But, when we know the expected value of a random variable such as r,

there is an easier way to obtain the expected value of a random variable
such as 3r. The expected value of the random variable 3r is three times

= 0375.
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the expected value of the random variable r (0375 =3 times .0125).
More generally, for any random variable on any ring of any wheel:

a random variable which is always three times as large has an expected
value three times as large;

a random variable which is always 1000 times as large has an expected
value 1000 times as large;

a random variable which is always one-half as large has an expected
value one-half as large;

a random variable which always equals (—2) times the original random
variable has an expected value twice the magunitude of, but opposite in
sign to, the original random variable.

In practice, r might be the return on a $1 bet; then 3r would be the
return on a §3 bet.  Or r might be the return per share of a security; then

Figure 9. Random variables: r and 3r. The outer ring defermines a random vari-
able ». The inner ring determines a random variable 3r. The expected value of 3,
is three times the expected value of r.

1000r would be the return on 1000 shares. Or r might be the return per
dollar of portfolio if the entire portfolio were invested in security A; then
one-half r would be the return from security A, per dollar invested in the
portlolio, if one-half the value of the portfolio were invested in security A.
Or r might be the amount which the roulette croupier gains from, or loses
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to, the player if §1 is bet on “red”; then —2r is the amount which the
player wins from or loses to the croupier on a §2 bet on *“red.”
If a random variable r had an expected value of .01, then

the expected value of 3r would be .03,

the expected value of 1000r would be 10.00,
the expected value of .5¢ would be .005,

the expected value of —2r would be —.02.

The general relationship is stated in the following theorem.

THEOREM: Suppose 7 is any random variable generated by any wheel;
suppose A is any number;

suppose Ar is the random variable which is always A4 times as large as r; then
the expected value of Ar is 4 times as preat as the expected value of ».

The proof of this theorem involves only definitions of terms and well-known
relationships of arithmetic: Suppose that 7 is on the outer band and Ar is
on the inner band of some wheel. By definition, the expected value of »
equals

the sum of the numbers on the outer band

the number of places on the wheel

Similarly, the expected value of Ar is, by definition,

the sum of the numbers on the inner band

the number of places on the wheel

Every number on the inner ring is 4 times as great as the corresponding
number on the outer ring; hence, by a basic property of numbers, the sum
of the numbers on the Inner ring is A times the sum of the numbers on the
outer ring. That is,

the sum of the inner ring = 4 times (the sum of the outer ring).

Dividing both sides of this equation by the same number, we obtain the
new equality:

the sum of the inner ring . the sum of the outer ring
= A times
the number of places the number of places

on the wheel on the wheel

Finally, substituting definitions, we find that

the expected value of Ar = A times (the expected value of r). Q.E.D.

The theorem stated and proved for the random variables of our wheels
can be restated to apply to past series and uncertain events. Specifically:
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(1) if past series 1 is always 4 times as large as past series 2, then the
average value of past series 2 is A times as great as the average value of
past series 1; and,

(2) if it is believed that future outcome 1 must inevitably be A times as
great as future outcome 2, then the expected value of future outcome 2
must be A times as great as the expected value of future outcome 1.

Because of the formal identity among the subjects discussed, no special
proof is needed for the last two assettions.
RANDOM PaiRs

A spin of the wheel in Figure 10 generates a random pair of variables.
For example, if the wheel stops as in the figure, the result of the spin is
the pair (.05, .10). The random variable on the outer ring will be referred

Figure 10. Random pairs of variables.

toasq. That on the inner ring will be referred to as the random variable r.
Thus a spin of the wheel determines a value of ¢ and a value of r: it
determines a pair (g, 7).

The probabilities associated with different pairs can be presented
graphically. Each pair of numbers (g, r) on the wheel in Figure 10 is
represented by an asterisk in Figure 11. The horizontal axis gives the



AYERAGES AND EXPECTED VALUES 59

g value of the pair; the vertical axis gives the r value of the pair. Pairs

(g, r) which appear more than once are represenicd by two or more
adjacent asterisks.

r
10 ® * .
- .05 *
! I | I
-.10 -05 .05 0 9
* * - ~.05
* - =.10

Figure 11. Possiblc pairs of outcomes.

The asterisks in Figure 12 represent the pairs of numbers on the wheel
in Figure 9. Since each number on the inner ring is exactly three times
that on the outer ring, the asterisks in Figure 12 lie in a straight line. Ina

| | | |
r=2 -is =10 -5

— =25
* - =30
Ir

Figure 12, Possible pairs of outcomes.
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case such as this we say that the two random variables are perfec
correlated.

In Figure 11 the ¢ values and r values show some tendency to be hi
and low together. This tendency is not perfect, however—the asterisks
not lig in 2 straight line. We therefore say that the variables are correlat
but not perfectly correlated.

(a)

Wheel 3

(b}

Figure 13, Two ways of generating (g, r) with the same probabilities.

Different chance mechanisms can produce random pairs with the sa
probabilities. The probability of obtaining a pair (g, r) is the same,
example, whether we

(a) spin wheel 1in Figure 13 and let g be the number on the outer whe
and r be the number on the inner wheel; or

(b) spin wheel 2 in Figure 13 and let its outcome be g; then spin whet
in the same figure and let its outcome be r.
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The probabilities of various possible pairs of outcomes in this case are
represented by asterisks in Figure 14. Random variables such as ¢ and r
of Figure 14 are said to be independent. Knowledge of the g outcome
gives no hint as to the outcome of r.

10 #- Y * *
.051* wk * *
| .
*

Figure 14. Possible pairs of outcomes.

‘The information in Figures 10 through 14 can also be presented in a
table. Table 9 illustrates one method of presentation. The g and r values

TABLE G

PROBABILITIES OF PAIRS—
A TABULAR PRESENTATION OF FIGURE 11

q r Probability
—.10 —.10 1/12
—.10 —.05 i/i2
—.05 — 05 1/12
- .05 o0 1/12

00 00 112

05 00 2112

.05 .10 3/12

10 05 112

10 10 1412

of each pair are listed in the first two columns; the probability of the pair
is given in the third column. Table 10 illustrates an alternative method of
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presentation. Values of q are listed along the side of the table; values of r
are listed across the top of the table. The probabilities associated with
each pair are listed within the table. Thus the probability of the pair with
a g of .05 and an r of .10 is presented in the cell whose row is marked .05
and whose column is marked .10. The method of presentation of Table
10 is generally more compact and gives a better visual impression of the
probability distribution than does the method of presentation used in
Table .

TasLe 10

PROBABILITIES OF PAIRS—
TABULAR PRESENTATIONS OF FIGURES 11, 12, AND 14

(a)
¥
q
—.10 —.05 00 .05 .10
— 10 1/12 112
—.05 112 112
00 ij12
05 1/12 3/12
.10 112 1/12
{b)
;
g
—.30 —.15 00 A5 .30
—.10 1/8
—.05 1/8
00 1/4
.05 3/8
.10 1/8
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TaBLE 10 (Continued)

(c)
,

g

00 .05 .10
00 1/15 115 1/15
.05 2/15 2/15 2/15
10 1/15 1/15 1/15
.15 1/15 1/15 1/15

THE EXPECTED VALUE OF THE SUM OF Two RANDOM VARIABLES

The wheel in Figure 15 illustrates the notion of a random variable which
is the sum of two other random variables. The first and second rings of

Figure 15. The sum of two random variables,

the wheel in Figure 15 are the same as the two rings on the wheel in
Figure 10. The numbers on the third ring in Figure 15 are, in every case,
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the sum of the numbers on the first and second rings. Thus the randon
number generated by a spin of the wheel and a reading of the third ring i
inevitably the sum of the numbers generated by the readings of the firs
and second rings.

We shall continue to refer to the random variables generated by the firs
and second rings as g and r, respectively, We shall refer to the randor
variable generated by the third ring either as soras r +¢. s=¢+
expresses the fact that s and g + r are different names for the same entity

In practice, ¢ might be the return if $1 were bet on ring 1; r might be th
return if §1 were bet on ring 2. Then r + g would be the total return
$1 each were bet on both rings.

The expected value of the random variable g is

05+.05— .05+ .05+ .10+ .10 + .05—.05—~.10— .10 +.05+.00 _ .1¢
12 T2

The expected value of the random variable r is

04 .00—.054 .10+ .10+ .05 +.00 4 .00 — .05 — .10+ .10+ .00 .2!

12 12

The expected value of the random variable s is

154 .05—.104+.15+ .20+ .15+ .05 — .05~ .15~ 20+ .15+ .00 .4

12 1z

Thus

Hence, in this case at least, the expected vatue of r - g equals the expecte
value of r plus the expected value of g. This relationship is true for ar
sum of two random variables on any wheel, as is expressed by the followir

THEOREM: Suppose that g and r are a pair of random variables generated t
any wheel. Suppose s is the random variable which always equals the sum
g and r. Then the expected value of s equals the expected value of g plus il
expected value of »,

Note that this theorem is asserted for any pair of random variables-
whether they are correlated or uncorrelated.

ProoF: We shall suppose that we have any two random variables, g and
on the first and second rings of a wheel. We shali suppose also that the thi
ring has the sum, s, of the first two rings.

Let us first show that the sum of all entries on the third ring equals (the su
of the entries on the first ring) plus (the sum of the entries on the second ring
If we let «, represent the first number on the first ring, o, the second number «



AVERAGES AND EXPECTED VALUES 65

the first ring, a, the third number on the first ring, a, the fourth number on the
first ring, and so on, until a,, the last number on the first ring—then the sum of
the numbers on the first ring is ¢y + a, + a3 + a3+ -+~ + 2, If we let by
represent the first number on the second ring, b, the .second number on the
second ring, by the third number on the second ring, &, the fourth number on
the second ring, and so on, until b, the last number on the second ring—then
the sum of the numbers on the second ring is &y + by + by + b4+ - - + by,
The first number on the third ring is, by definition, a, + &,; the second number
on the third ring is a, + b,; the third number on the third ring is a; + b;; the
fourth number on the third ring is g, + b;; and so on, until the last number on
the third ring, a, + b,. The sum of the numbers on the third ring is

(ay + by) + (2 + bo) + (ag + by) + (a4 by + -+ -+ (a, + b),
which in turn equals
tatataet  Fa)+G +b+b5+bg+ -+ b))
Thus
(the sum of the numbers on the third ring) equals
(the sum of the numbers on the first ring) plus
(the sum ol the numbers on the second ring).

Dividing both sides of the above equality by the number of places on the wheel,
we find that

the sum of the numbers on the third ring
the number of places on the wheel
the sum qf the numbers on the first ring fus
the number of places on the wheel
the sum of the numbers on the second ring
the number of places on the wheel ‘

equals

But this, in other terms, says that

the expected value of r + g equals
the expected value of  plus
the expected value of g. QED.

THE EXPECTED VALUE OF A WEIGHTED SUM OF Two RANDOM VARIABLES

The wheel in Figure 16 illustrates the notion of a weighted sum of two
random variables. The first two rings generate random variables which
we shall refer to as g and r, respectively.  The third ring generates a random
variable equal to 3¢; the fourth generates a random variable equal to 2r.
The numbers on the fifth ring are the sum of the numbers on the third and
fourth rings: Thus the fifth ring generates the random variable w =
3q + 2r. Hgis the return from $1 bet on ring 1 and # is the return from
$1 bet on ring 2, then w is the total return from §3 bet on ring 1 and $2 bet
on ring 2.
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If the reader cares to compute the expected values of g, r, and w, he will
find that the expected value of w equals three times the expected vaiue of

Figure 16. Weighted sum of two random variables. Ring 5 =w = 3¢ + 2r.,

g plus twice the expected value of r.  This relationship between the expec-
tations of two random variables and the expectation of their weighted sum
holds generally.

THeOREM: Suppose that ¢ and r are any pair of random variables generated
by any wheel; suppose that 4 and B are any numbers; suppose, finally, that w
is the random variable which is always equal 10

Ag + Br,
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Then the expected value of w equals A4 times the expected value of g plus & times
the expected value of 7.

ProoF: This theorem follows easily from two results previously established.
The result concerning the ordinary sum of a pair of random variables tells us
that the expected value of Ag + Br equals the expected value of Ag plus the
expected value of Br. The result concerning a constant times a random variable
teils us that the expected value of A4g equals 4 times the expected value of g,
and the expected value of Br equals B times the expected value . Combining
these two results, we derive the theorem of the present section: The expected
value of Ag + Br equals A times the expected value of g plus b times the expected
value of r.

The theorem of the present section also applies, with slight rephrasing,
to past series and probability beliefs. For example, if security I has had
an average return of 12% and security II has had an average return of 8 Y
then the average return per dollar invested in a portfolio consisting of 1/4
security 1 and 3/4 security Il was

{(1/4)12) + G/4)(8) = 9%.

THE WEIGHTED AVERAGE OF ANY NUMBER OF RANDOM VARIABLES

Previous sections presented results applicable to one or two random
variables. The present section presents a more general result applicable
to any number of random variables.

It is necessary to modify our notation somewhat before discussing
arbitrarily large numbers of random variables. In discussing small groups
of men we can refer to each by name: Joe, Ben, Charlie. In discussing
larger groups we frequently use a different method of reference. We speak
of the first man, the second man, the first two hundred men. Thusfar it has
been convenient to give random variables names such as g and r.  Now it
will be convenient 1o refer to random variables as ry, ry, ry, ete. 7y (read
r-sub-1 or simply r-1) is, literally, the first random variable; r, is the second
random variable; ry, is the 147th random variable. If N represents the
total number of random variables, then r, is the last random variable.

Similarly, rather than speaking of numbers 4 and B, we shall speak of a
first number A4, a second number A,, a 147th number A,,;, and a last
number Ay.

The wheel in Figure 17 illustrates the notion of a weighted sum of several
random variables. The random variables on the first four rings will be
referred to as ry, 7y, 3, and r, respectively. The random variabie on the
inner ring is always

(2 times ry} plus (3 times ry) plus (ry) plus (two times ry).
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Figure 17. Weighted sum of several random variables. Ring 5=w =2, + 3r;
+ ry + 2y

The random variable generated by the inner ring will be referred to as the
weighted sum w.
w=2r + 3r, 4 ry + 2r,
The expected value of w in the present example is
{(twice the expected value of r;) pius
(three times the expected value of r,} plus
(the expected value of r3) plus
(twice the expected value of r,).
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The above relationship is a special case of the following:

THEOREM: Suppose that ry, ry, ry, -+, ry, is any sct of N random variables
generated by some wheel. Suppose that 4, 4, 4, - 1, Ay is any set of N
numbers. Suppose that w is the random variable which is inevitably equal to
Ayry + Agrg + Agry + - -+ Apry. Then the expected value of w is

(A, times the expected value of r;) plus
(A, times the expected value of r;) plus
(A, times the expected value of ry) plus
(and so on, until)

(A y times the cxpected value of ry).

If all the 4’s equal 1 in the above theorem, we have the case of an
ordinary sum. Hence, if we prove the above theorem—that the expected
value of the weighted sum is the weighted sum of the expected values—we
have also proved that the expected value of an ordinary sum is the ordinary
sum of the expected values. For example, the expected value of r; + ry +
g equals the expected value of r; plus the expected value of #, plus the
expected value of rg.

We have already proved special cases of the general theorem. When
N =1 the general theorem says that the expected value of A,r, equals 4,
times the expected value of r;. This case was shown in the section on
“A Constant Times a Random Variable.” When N = 2 the theorem says
that the expected value of A,r; 4+ Ayr, equals A, times the expected value
of r; plus A4 times the expected valve of r,, This case was shown in the
section on “The Weighted Sum of Two Random Variables.” The fact
that we have already established these special cases will be useful in the
proof of the general theorem.

The type of proof used for N = 2 could also be used for N = 3 or 4 or
5or 6. It would be clumsy, however, for N = 48 or 134. Furthermore,
it would not meet our need: to prove the theorem for a/f values of ¥.  For
this we must adopt a new method of proof.

The type of proof we shall employ is known as “mathematical induc-
tion.” We start by noting that the theorem is true when N = 1. We
next prove that, if the theorem is true when Af variables are involved, then
it is also true when M -+ 1 variables are involved. Hence, the fact that it
is true for N == 1 implies that it is true for ¥ = 2; the fact that it is true
for N = 2 implies that it is true for N = 3; and so on. Thus we have
shown that the theorem is true for any N once we have shown that

(a) the theorem is true for ¥ = 1, and
(b) if the theorcm is true for N = M then it is true for N=M+ 1.

We have already shown that (a) is so. We must now prove (b).
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Suppose, then, that the theorem is true for a weighted sum of M

variables:

Ay Aty + 0 0 - Ay
Is it true for the weighted sum of M + 1 variables

W= Alrl -+ Agf’z + 4 AJIF)]} + A}n+1r‘u*1?

A weighted sum of random variables is itself a random variable.
Specifically,

Ay + Aoty 0 0+ Ayry,

may be thought of as a single random variable. We may therefore think
of w as the sum of two random variables, namely

{Airy+ Agrg + - -+ Ayra) + Agytare-
The previously established result for the weighted sum of two random
variables tells us that
the expected value of w equals
the expected value of (A,r; + Ayry + - - - + Ayryp) plus
A pr4q times the expected value of ry, ;.

But we started by assuming that the expected value of
Ay b Aoy 0+ Ay

equals 4; times the expected value of r, plus A4, times the expected value
of ry, and so on. Hence the expected value of Ayry + -« © * + Apryi#arsy
equals

4, times the expected value of ry plus

A, times the expected value of r, plus

Ay times the expected value of r,, plus
Ayppy times the expected value of r . Q.E.D.

THE MAIN RESULTS

The theorem of the last section is the main result of the present chapter
as far as random variables are concerned. It says that the expected value
of a weighted sum is the weighted sum of the expected values. This js
true whether the random variables are correlated or uncorrelated. It is
true for any number of random variables, no matter how they move up or
down together.



AVERAGES AND EXPECTED VALUES 71

The theorem of the last section can be rephrased to apply to past series
or to uncertain future events:

1. If a series () is the weighted sum of N other series, then the average
of series S is the same weighted sum of the averages of the MV series.

2. If an individual believes that the value (1) of some future event must
inevitably equal a particular weighted sum of the values of ¥ other future
events, then, if his probability beliefs are internally consistent, the expected
value of ¥ must be the weighted average of the cxpected values of the
N cvents,

The proof given for the theorem of the last section also applies for the
above relationships. These two relationships are our main results con-
cerning expectations of uncertain future events and averages of past series.

EXERCISES

1. Calculate the expected value of a toss of an ordinary six-sided die.

2. Use the result of Exercise 1, plus the theorem on the sum of two random
variables, to caiculate the expected value of a toss of a pair of dice.

3. During the years 1934-1954 the following securities had the following
average returns:

security average return
{1) American Tobacco, Common T 6.6%;
(2} American Tel. and Tel., Common 6.2%7
(3) United States Steel, Common 14.6%

What were the averages of the returns on the following portfolios?

Portfolio [
security % in pertfolio

1 33.3%
2 33.3%
3 33.3%

Porifolio TI
security % in portfolio

1 25%¢

2 25%,

3 5097
ANSWERS

1: 3.5; 2: 7, 3a: 9.1; 3b: 10.5,



CHAPTER IV

STANDARD DEVIATIONS AND VARIANCES

DEFINITIONS

The definition of the variance of a series is illustrated by Tabie 1. The
first column of the table lists returns on a hypothetical security during 5
years. The average of these returns is .01.  The second column indicates,

TaBLE 1
RETURNS AND THEIR VARIANCE

Deviations
Squared
Returns from Deviations
Average

10 09 .0081

— 05 - .06 0036

00 —.01 L0001

05 04 0016

—.05 —.06 0036

Sum .05 00 0170
Average .01 00 0034

Variance = .0034.
Standard deviation = v.0034 = .058.

for each year, the difference between that year’s return and the average

return. Thus, in the first year, return was .09 greater than the five-year

average. The third column presents the squares of the numbers in the
72
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second column. In the first year, for example, the squared deviation from
the average was .09 times .09 = .0081. The average of the entries in the
third column, .0034, is referred to as the “variance™ of return,

The variance of return on a past series. then, is the average of the
squared deviations from the average,

The variance of a past series can also be computed from a table of
refative frequencies. Column I of Table 2 lists returns which occurred to

TABLE 2
DERIVATION OF VARIANCE FROM RELATIVE FREQUENCIES

Relative Deviations Squared Freguency

Returns F . from e times
requencies Dieviations
Average Squares

~ 05 2/5 —.06 0036 00144
.00 1/5 —.01 L0001 00002
05 1S 04 0016 00032
A0 1/5 _ 09 0081 00162
SUM 1 100340

our hypothetical security; column 2 shows the relative frequency of each
return. The average of the series, .01, can be computed from columns 1
and 2, as explained in the last chapter. Column 3 lists the difference
between the return and the average return; column 4 lists the squares of
the entries in column 3; column 5 presents the product of the entries in
columns 2 and 4. The sum of column 5 is the average of the squared
deviations from the average. The sum of column 5, in other words, is the
varjance of the series.

The standard deviation is the square root of the variance. In the

example under discussion the standard deviation equals v/ 0034 = .058.
The relationship between returns and their standard deviation is
illustrated in Figure 1. The asterisks in Figure 1 indicate annual returns,
from 1937 through 1954, on Atchison, Topeka, and Santa Fe Common
Stock. (See Chapter 1I, page 10) The arrow marked A4 indicates
the average return. The arrows marked A4 + 1 St. Dv., A 4+ 2 St. Dv,,
A — 15t. Dv.,and A — 2 5t. Dv. indicate returns which equal, respectively,
the average plus one standard deviation, the average plus two standard
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deviations, the average minus one standard deviation, and the average
minus two standard deviations. For example, the arrow marked 4 + 1
St. Dv. is at the return .198 4+ .357 = .555. The arrow marked 4 — 1

St. Dv. is at the return .198 — 357 = —.159.
A-23UDv.  A=1S5t Dv. A A+15t Dy, A+2 5t Dv.
l * *l wk EkR kR l x k ¥ % l# ' * l
| { | ] ] ] ! ] | 1 ] 1 ] | L1 ]

-5 -4 —-30-2-10 06 d0 20 30 40 50 & 0 B 90 10

Figure 1. Retutns on A, T. & Sfe Common (1937-54). A = average; St Dv, =
standard deviation; * = annual return.

In Figure 1 the lowest return is approximately two standard deviations
below the average: the asterisk farthest to the left is roughly in the
neighborhood of the arrow labeled 4 — 2 St. Dv. The highest return,
on the other hand, is approximately two standard deviations above the
average: the asterisk farthest to the right is in the neighborhood of the
arrow labeled 4 + 2 St. Dv. This relationship between the average, the
standard deviation, the highest return, and the lowest return of a series is
not unusual, although it is far from exact. Table 3 compares 4 — 2 St.
Dv. and 4 + 2 St. Dv. with the lowest and highest returns of the nine
securities used in Chapter 1. In some cases the highest and lowest returns

TaBLE 3

COMPARISON BETWEEN AVERAGE RETURN, STANDARD
DEVIATION, AND HIGHEST AND LOWEST RETURNS

Security A g A—20 | Lowest | A+ 20 | Highest
1 .066 231 —.39 —.305 528 513
2 062 121 —.180 —.183 304 300
3 146 292 —.438 —.318 730 .908
4 173 .30% —.445 — 477 791 15
5 .198 357 —.516 — 457 912 .865
6 055 203 —.351 —.248 4ot 355
7 128 169 —.210 —.319 466 331
8 190 383 —.576 - .400 .956 1.113
9 116 .281 —.446 — 435 678 639
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are quite close to two standard deviations from the average. In other
cases the relationship is quite rough, With security 8, for example, the
lowest return is only about 1.5 standard deviations from the average; with
security 7 the lowest return is 2.7 standard deviations from the average,
The standard deviation is a measure of variability which takes more into
account than just one or two extreme returns. Figure 2 presents returns
on two hypothetical securities which have the same average and the same
highest and lowest returns as the security in Figure 1. They do not, how-
ever, have the same standard deviation of return.  The returns in Figore 2b
are much more unstable than those in Figure 1; in Figure 2b returns are

* | [ . | \ tt?**t****tt**** i [ *
| 1 | I I J
-5 —40 —30 ~20 -10 00 10 .20 30 40 S50 60 70 80 80 10
(a)
dkkddEk % K FIE R FUTerrey
I NS T L ! |1 \ [ L1 |
=50 =40 =30 -20 =10 00 10 20 30 40 S0 60 .70 80 80 10
(b)

Figure 2. Returns on two hypothetical securities,

more frequently near their high or low extreme. The standard deviation
of return for the security in 2b is substantially higher than that in Figure 1.
Hence 4 4- 2 St. Dv. is substantially higher than the highest return. The
returns in Figure 2a, on the other hand, are more stable and the standard
deviation is lower than that in Figure 1. Hence, for the distribution in
Figure 2a, 4 + 2 St. Dv. is substantially less than the highest return.

We see that the statement *““the highest and lowest returns in a series are,
quite often, approximately two standard deviations removed from the
average of the series” is an extremely rough rule of thumb. It does,
however, provide a start toward an infuitive fecling for the notion of a
standard deviation.

The variance and standard deviation of a random variable are defined
analogously to those of a past series, as may be illustrated in terms of the
random variable on the outer ring of the wheel in Figure 3. The random
variable on the second ring equals the random variable on the first ring
minus the expected value of the variable on the first ring. The random
variable on the third ring is the square of the random variable on the
sccond ring. The expected value of the third ring is the variance of the
random variable on the first ring.



76 PORTFOLIO SELECTION

The variance of a random variable, then, is the expectled value of the
squared deviation from the expected value.

The variance of a random variable can be computed from a table of
probabilities. The entries in the second column of Table 2 can be inter-
preted as the probabilities associated with the random variable on the
outer ring of the wheel in Figure 3. The variance of the random variable
is computed from these probabilities exactly as the variance of return of
the past series was computed from its table of relative frequencies.

Figure 3. The variance of a random variable. The outer ring generates the random
variable r. The second ring generates the random variable »/, equal to r minus the
expected value of ». The third ring generates (+')®. The expected value of (+)? is the
variance of r.

The standard deviation of a random variable is the square root of its
variance. The standard deviation of a random variable measures how
close the random variable is likely to be to its expected value.

The variance of an uncertain future event is defined in terms of proba-
bility beliefs exactly as variance was defined, in terms of objective
probabilities, for a random variable. If the entries in the second column
of Table 2 represented probability beliefs, then .0034 would be the variance
based on these probabilities. As before, standard deviation is the square
root of variance. Standard deviation, in this case, measures the degree of
uncertainty associated with the future event,

In Chapter XIII the standard deviation is compared with other measures
of risk and variability. For most of the measures considered, the efficient
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portfolios produced by using standard deviation are to be preferred.
Some measures which seem reasonable offhand produce completely
unsatisfactory portfolios. One of the measures considered, the semi-
deviation, produces efficient portfolios somewhat preferable to those of the
standard deviation. Those produced by the standard deviation are
satisfactory, however, and the standard deviation itself is easier to use,
more familiar to many, and perhaps easier to interpret than the semi-
deviation.

The semi-deviation is the topic of Chapter IX. The discussion in that
chapter draws heavily on results derived in the present and intervening
chapters concerning the standard deviation.

The primary concern of the present chapter is with the characteristics
of securities which determine the standard deviation of a portlolio. A
series of intermediate results will be presented which build up to the general
relationship between security and portfolio.

NOTATION

Some conventions concerning notation will be useful in subsequent
sections of this chapter. :

On the outer ring of the wheel in Figure 3 we have a random variable
which we might refer to as r.  On the second ring of the same wheel we
have a random variable equal to r minus the expected value of r.  We shall
refer to the second random variable as #*. In general, if we have a random
variable p or g or r, we shall refer to the difference between the random
variable and its expected value as p’ or ¢ or ', respectively. The third
ring on the wheel in Figure 3 generates a random variable equal to the
squarc of . This will be referred to as the random variable (+')>. By
definition, the variance of r is equal to the expected value of (+')®.  Simi-
larly, the variance of p or ¢ is the expected value of (p')* ot ('), respec-
tively.

The following are two important facts about any randem variable +'
{or p" or ¢'):

(1) the expected value of r* equals zero; and

(2) the variance of s’ equals the variance of .

ProoF oF {1): r' equals r minus the expected value of r.  This may be thought
of as the sum of two random variables, namely, r plus another random variable
which always equals —(the expected value of r). Applying our result on the
sum of two random variables, we find that the expected value of r’ equals the
expected value of r minus the expected value of r, which equals zero.

Proor of (2): The variance of ¢’ is, by definition of variance, equal to the
expected value of (" minus the expected value of r')®.  But the expected value
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of r’ is zero; so the variance of r' is the expected value of (+)®.  But this is also
the variance of r.

Concepts such as “the expected value of ™ and “the variance of r”
will occur repeatedly. It will be convenient to let *‘expt” stand for the
phrase “‘expected value of™ and let “var” stand for the phrase *“the
variance of.” For example,

expt{r) refers to the expected value of r,
var{r) refers to the variance of r,

expt(r')® refers to the expected value of ()%,
var(p + ¢q) refers to the variance of p 4 g.

The reader should have little difficulty in remembering the definitions of
expt and var. Later it will be necessary to adopt a more compact but
less mnemonic notation.
With our present notation the discussion concerning r' can be sum-

marized as follows:

¥ =r — expt(r),

expt(r’) = 0,

var(r’) = var(r).

There are a number of conventions in use for representing the phrase
“A multiplied by B.” These include:

A times B,

A x B,

A - B, and simply
AB.

The notation 4 x B is rarely used in mathematical literature, since the
symbol x frequently has other uses. We shall never use 4 X B to
represent 4 multiplied by B. Thus far we have most frequently used the
phrase A times B. It will be increasingly desirable to wse the more
compact notations 4 - B and AB. The latter, being the more compact,
is generally preferred. The dot (), however, is sometimes used to avoid
ambiguity. For example,
expt(Aq + Br) = A - expt(g) + B - expt(r)
is clearer than
expt({dg -+ Br) = A expt(g) + B expt{r).

A ConsTANY TIMES A RANDOM VARIABLE

The outer ring of the wheel in Figure 4 genetraes a random variable r.
The second ring of the wheel generates 2 random variable w which is
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inevitably 3 times as large as r. w may also be referred to as 3r. The
third ring on the wheel generates the random variable w’ == w — expt(w);

Figure 4. The variance of 3r. The first ring generates a random variable r. The
second ring penerates a random variable w = 3r. The third ring generates w’ = w
— expt{w). The fourth ring generates (w)®. Expt(w’)* equals var(3r).

for example, w = .30 is .27 greater than the expected value of w. The
fourth ring generates the random variable (w')2. The expected value of
the random variable on the fourth ring is the variance of w:

var(w) = expt(w’)%

In the last chapter we studied the relationship between the expected
value of r and the expected value of w. We found that, for w = 3r,
expt(w) = 3 expt(r). In general, we found that

expt{dr) = A - expt(r).

In the present section we shall study the relationships between the
standard deviations and variances of w and r. We shall find:

1. If w = Ar, then the standard deviation of w equals A - (the standard
deviation of r).

2. If w = Ar, then the variance of w equals A% (the variance of r);
that is, var{w) = A2 var(r).

For example, if the standard deviation of return from §1 bet on the spin
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of a wheel is .2, then the standard deviation from a §5 bet is (5)(.2) = 1.
The variance of the §1 bet must be (.2)2 = .04. The variance of the $5
bet may be calculated in two ways. One way, we can apply the formula
in 2, above, to find that the variance of the $5 bet is (5)2(.04) = (25).04)
= 1. The other way, we can use the fact that the standard deviation of
the $5 bet has already been determined to be 1; hence the variance of the

$5 bet must be (1)2 = 1. Properly, both methods produce the same
result,

It is easiest first to verify the relationship between the variances of w

and r. The relationship among standard deviations then follows as a
corollary.

THEOREM: If r is a random variable generated by any wheel, A4 is any number,
and w is the random variable which inevitably equals A - r, then

var(w) = 4% - var(r).
ProoF: We start by showing that w' = 4-¢". By definition,
w = w — expt(w).
But w = Ar and expt(w) = A4 - expt(r), so
wo=Ar — A- expi{r).

But Ar — A expt(r) = Alr — expt(»)], so

w' = Alr — expt(r)].
Since r — expt{r) is what we refer to as r’, we have

w = Ar', aswe sought to show.
If we square both sides of this equatic;n, we find that
W' = AR

This says that the random variable (w')? is always equal to (is the same thing as)
the random variable 4% - {+')2. Hence

expt(w')® = expt(4%'%),
or, equivalently, '
expt(w’)? = 4% - expt(r’)?,
But expt(w")? is the variance of w, and expt(r')? is the variance of r; therefore
var(w) = A% - var(r). Q.ED,

CororLary: If r is a random variable generated by any wheel, 4 is an
number, and w is the random variable which is inevitably A - r, then the standard
deviation of w is 4 times the standard deviation of r.

ProoF: The theorem on variances states that

var{w) = A% - var(r).
Hence

Vvar(w) = A - Vvar(r).
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But
\/var(w) = the standard deviation of w,

V'var(r) = the standard deviation of r,
from which the corollary follows immediately.

The theorem and corollary stated and proved above for a random
variable can be rephrased to apply to past series and probability beliefs:

1. If series 1 is always 4 times as great as series 2, then the standard
deviation of series 1 15 A times as great as that of series 2; whereas the
variance of series 2 is A? times as great as the variance of series 1.

2. If ris an uncertain future outcome about which an individual holds
a consistent set of probability beliefs, and if w is an outcome which the
individual believes must inevitably be A times as great as r, then the stan-
dard deviation of w is A times as great as r; whereas the variance of w
is 42 times as great as that of r.

The proof for the case of random variable can be used, practically word
for word, as a proof for the case of an uncertain event subject to a con-
sistent set of probability beliefs. The proof for the case of a random
variable becomes a proof for the case of a past series with little more than
the substitution of the word “‘average™ for the phrase “expected value.”

It makes sense to speak of “‘expected return per doliar invested™ or
“average return per dollar invested” or “standard deviation of return per
dollar invested.” But it does not make sense to speak of ““variance of
return per dollar invested.” If the expected return from §1 bet on the
spin of a wheel 15 .01, then the expected return from $10 is .1, the expected
return from $100 is 1.0, and so on. In all cases the ratio

expected total return
amount bet

is the same, .0l. Similarly, the ratio

standard deviation of total return
amount bet

remains constant as the size of bet varies. This is not true of variance,
If the variance of a §1 bet is, say, .001, then the variance of a §10 bet is .1,
the variance of a $100 bet is 10, the variance of a $1000 bet is 1000,
Depending on the amount bet, the ratio

variance of total return

amount bet
may be .001, .01, or 1.
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It is standard deviation rather than variance which is directly comparable
with a past series or a set of probabilities. The high and low returns of
the series in Figure 1 are about two standard deviations removed from the
average of the series. 1f we change the unit of measurement from dollars
to pennies (if we replace .5 by 50 on our graph), the high and low returns
remain about two standard deviations removed from the average. The
variance, however, goes from being smaller than the standard deviation
{.127 vs. .357) to being larger than the standard deviation (1270 vs. 35.7).

It is frequently more convenient to work with variance than with
standard deviation. Relationships between securities and portfolios are
generally simpler when expressed in terms of variances rather than standard
deviations. The variance is less clumsy to deal with in most proofs. In
computing efficient portfolios variance is used until the last, when variance
is translated into standard deviation for the purpose of presentation. Of
course, any relationship expressed in terms of variances can be translated
into terms of standard deviation by substituting (standard deviation)® for
variance. We shall frequently express and prove relationships in terms
of variances, leaving the translation to standard deviations for the reader.

COVARIANCE AND CORRELATION

The definition of the covariance between two random variables is
illustrated by the wheel in Figure 5.  The outer ring of the wheel generates
a random variable 4. The second ring generates a random variable r.
The third ring generates the random variable ¢" equal to g — expt(g).
The fourth ring generates r” equal to r — expt(r). The entries on the fifth
ring equal the product of the entries on the third and fourth rings. The
fifth ring, in other words, generates the random variable ¢'r. The
covariance between ¢ and r is defined to be the expected value of the
fifth ring.

The covariance between 4 and -, then, is the expected value of '

It will be convenient to let cov(g, ) represent the phrase “the covariance
between g and ».”” Thus

cov(g, r) = expt{r'g).

A more compact notation for covariance will be adopted later, when
needed.

Covariance can also be defined in terms of a table of probabilities. In
Table 4, for example, values of ¢ and 4’ are written across the top; values
of r and ¥’ are written along the side. The entries of the table indicate the
probabilities of -combinations of 4 and r. Thus the entry at the inter-
section of the row with r = .04 and column with g4 = .05 indicates that
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this combination of ¢ and r has one chance in six of being the result of the
spin of the wheel in Figure 5. To compute covariance from such a table,

Figure 5. The covariance of g and r. The outer band generates the random variable 4.
The second band generates the random variable r. The thlrd band generates ¢’ =

g — expt(g). 'The fourth band generates »’ = r — expt(r). The fifth band generates
¢'r’. The expected value of 4’7" is the covariance between g and r.

multiply ' times ¢ times the probability of the particular combination of
g and r, and sum all such products. For Table 4, for example,

cov(g, ) = (1/6)(—.035)(—.075) + (1/6)}(—065)(—.075)
+ (1/6)(.015) 4 (1/3)(.035).065) + (1/6)(.055K —.035)
= .001725.

The covariance between two past serics is defined analogously to the
covariance between two random variables. If the entries listed around
the first and second rings of the wheel in Figure 3 were past returns on two
securities, then the covariance between these two series would be the average
of the entries on the fifth ring of the wheel. If the entries in Table 4
represented relative frequencies rather than probabilities, the covariance
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would still be computed as above. The same would also be true if the
entries of the table represented probability beliefs,
TABLE 4
TABLE OF PROBABILITIES

q
-4 .00 05 10
r r'
q!
—.075 — 035 015 065
—05 —.075 /6
—.04 — 065 1/6
.04 015 /6
06 .035 1/3
.08 055 1/6

The covariance is a measure of the extent to which two sets of numbers
tend to move up and down together. When both g and r are above their
means, ¢’ -+’ is positive; when both ¢ and r are below their means,
g’ - ¥’ is also positive; when one variable is above and the other below its
mean, ¢’ - r’ is negative. Thus, if ¢ is usually above its mean when r is
above its mean, and below its mean when r is below its mean, then the
covariance of g and r is positive. If ¢ is usually above its mean when r is
below its mean, and vice versa, then their covariance is negative. If the
outcome of ¢ has no influence on the outcome of r—like random variables
generated by two independent wheels—then their covariance will be
zero.

The following theorem concerning covariances wilt be needed later:

THEoRem: If g and r are any pair of random variables generated by any wheet,
and if 4 and B are any two numbers, then the covariance between the random
variables Ag and Br equals 4 times B times the covariance between g and r;
that is,

cov(Aq, Br} = AB - cov(g, r).
PRroOF: cov(Ag, Br) equals the expected value of
[4g — expt{Aqg)] times [Br — expt(8r)].
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But Ag minus expt(4q) = Alg — expt(g)] = Ag’; similarly, Br — expt(Br) =
Br': hence
cov(dq, Br) = expt(Ag'Br")

= AB - expt{g’r")

= AB - cov(g, r). Q.E.D.
Similar theorems and proofs apply to past series and outcomes subject to
probability beliefs.

The coefficient of correlation for two random variables g and r is defined
as the ratio

covariance between g and
(standard deviation of ) times (standard deviation of r)

The same definition applies to the correlation between two series or two
uncertain future events. As the reader will prove for himself later
(Exercise 4 at the end of the chapter), the correlation coefficient is always
between —1 and 41 inclusive. _

If ¢ is always an exact positive multiple of r, then their correlation
coefficient is 1. If ¢ is an exact negative multiple of r, so that ¢ is
lowest when r is highest, then their correlation is —1. If g and r tend to
move up and down together, but not in perfect unison, then their correla-
tion coefficient js greater than zero but less than +1. If ¢ and r move
independently of each other, then their correlation coefficient is zero.

When two variables have a zero correlation coefficient, they are said to
be uncorrelated

1 Two variables which are uncorrelated are not necessarily independent. If two
variables are independent, the value of the outcome of one variable has no influence on
the outcome of the other, as is true with the random variables whose probability
distribution is given in Table (a). [t is possible for expt(g’+’) to be zero, hence for their
correfation to be zeto, even if ¢ and r are not independent. This is illustrated by
Table (b). Independence always implies zero correlation, but zero correlation does
not always imply independence.

TABLE (a) ) TaBLE (b)
g q
r !
-.1 0 +.1 -1 0 +.1
—.1 1/16 1/8 1/16 —.1 1/8 1/8
0 1/8 14 1/8 o 12
+.1 1/16 1/8 1/16 + 1 1/8 1/8
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The correlation coefficient provides a more easily interpreted measure,
than does the covariance, of the extent to which two variables tend
to move together. The covariance, however, proves to be more con-
venient in formulac and proofs. Results expressed in terms of covari-
ances can be translated into terms of correlation coeflicients by using the
relationship

(covariance of ¢ and r) equals

[(the correlation coefficient of g and r) times
(the standard deviation of 4) times

(the standard deviation of r}].

VARIANCE OF A SUM OF Two RANDOM VARIABLES

The first and second rings of the wheel in Figure 6 generate random
variables ¢ and r, respectively. The third ring generates the random

Figure 6. The random variables g, r, 5, ¢", ¥, 5"

variable s = ¢ + . The entry on the third ring is, in every case, the sum
of the entries on the first and second rings. The fourth, fifth, and sixth
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rings generate, respectively, the random variables ¢, 7', and 5", where

g =g — expi(g),
"= r — expt(r), and
5 =5 — expt(s). _

In the last chapter we studied the relationship between the expected
values of ¢, r, and 5. We found that expt(s) = expt(g) + expt(r). In the
present section we shail study the relationships between the variance of s
and the properties of ¢ and r.

Let us first note that, as illustrated on the wheel in Figure 6,

s=q +7r.
That this is true in general may be shown as follows: By definition,
s = (g +r) — exptlg + ).

Applying the theorem on the expected value of a sum, we get

5" =g 4+ r — expt(g) — expt(r).
Rearranging terms,

s’ =g — expt(g) + r — expt(r).
But g — expt(g) = ¢q" and r — expt(r) = r’, so

"=4¢" 4+ r, as we sought to show.

It is shown in high school algebra texts that, if A4 and B are any two
numbers,

(A + BYE= A + B+ 248B.

That is, the square of (the sum of A and B) equals (the square of A) plus
(the square of B) plus 2 times A times B. For example, if 4 =3 and
B = 4, then
(34+42=7" =49 and
32442 42-3:4=9416+ 24 =49,

illustrating that the number resulting from the operations (4 + B)* is the
same as the number resulting from the operations A* + B® + 24B.

We are now ready to state and prove the theorem concerning the variance
of the sum of two random variables.

Tugorem: If ¢ and r are any pair of random variables generated by any
wheel, and s is the random variable which always equals the sum g + r, then
the variance of s equals the variance of ¢ plus the variance of  plus twice the
covariance of g and r:

var(s) = var(g) + var(r) + 2cov(g, r).
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Prook: The variance of s equals the expected value of ()% But 5" equals
qd + ¢ s0(s) = (¢ + r)%, which js the same thing as (¢'¥ + (P + 2¢r'.

Hence
(sr)z = (l'")z + (q.u)g + qur.r,
from which it follows that
expt{(s’)* = expt(+")? + expt(g")® + 2 - exptlg’r').
But expt(s') = var(s), expt(r')? = var(r), expt(g')* = var(g), and expt(g'+'} ==
cov(y, r). Therefore
. var(s) = var(r) 4+ var(g) + Zcovig, r). Q.E.D.

CoroLLARY: If ¢ and r are uncorrelated——if their correlation coefficient and
(therefore) their covariance equal zero—then the variance of s equals the variance
of ¢ plus the variance of r; that is, when cov(g, r) = 0, then

var(s) = var(q) + var(r).

ExampLes: If the variances of both ¢ and r equal 1, and the two variables are
uncorrelated, then the variance of (g + r) equals 12 + 12 = 2. The standard
deviation of ¢ + r equals V2, or about 1.4{. Compare the above with the case
in which the two variances still equal 1, but their covariance equals 1/2. The
variance of ¢ + r then equals 1% + 1* + 2-1/2 = 3. The standard deviation
of ¢ + » in this case equals V'3, or about 1.73. Other things being equal, the
higher the correlation between two variables, the greater is the variance of their
sum.

If the variances of the two variables equal 1 but their covariance equals
—1/2, then the variance of the sum equals 1 + 1 —2+1/2 =1, Negative
covariances reduce the variance of the sum, whereas positive covariances increase
the variance of the sum.

For an example with variance not equal to 1: if var(¢g) = 2, var(r} = 3, and
cov(g, r) = 2, then

var{fg +r) =224+ 32 4 2-2=I7.

The standard deviation of ¢ + r equals V17, or approximately 4.12.

VARIANCE OF A WEIGHTED SUM OF TWO VARIABLES

In the last chapter we studied the expected values of weighted sums:
w = Aq -+ Br. We found that expt(w) = A -expt{g) + B expt(r). In
the present section we study the relationship between the variance of w
and the variances and covariance of ¢ and r.

THEOREM: Suppose that ¢ and r are any pair of random variables generated
by any wheel, that 4 and B are any two numbers, that w is the random variable
which always equals 4g 4~ Br; then

var(w) = A% - var(q) + B* - var(r} + 24B - cov(q, ).
Proor: According to the theorem on the sum of two random variables,
var{Aq + Br) = var{Aq) + var(Br) 4 2 cov(Aq, Br).
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But in previous sections we showed that var(Adg) = A var(g), var(8r) =
B? var(r), and cov(4g, Br) = AB - cov(q,r). Therefore
var{Aq + Br) = A% var(q) + Bfvar(r) + 24B- cov(g, r).
As usual, the theorem applies to past series and probability beliefs:

1. If series 1 is a weighted sum of series 2 and 3, with 4 and B as weights,
then the variance of series 1 equals 42 times the variance of series 2 plus
B? times series 3 plus 24 B times the covariance between series 2 and
series 3.

2. If a future outcome w, subject to a consistent set of probability
beliefs, must inevitably be a weighted sum, Ag 4+ Br, of two future events,
then

var(w) = A% var(q) + B%var(r) + 24B cov(g, r).

THE VARIANCE OF A SUM OF THREE RANDOM V ARIABLES

In this section we study the variance of a random variable s equal to the
sum of three other random variables p, ¢, and r. To start with we show,
concerning the random variable 5* = 5 — expt(s), that

Sl = P’ + q’ + rr.
By definition,
s'=(p+gqg+r)—expt(p+q+7)
Since expt(p + g + r) = expi(p) + expt(q) + expt(r), we have (after
rearranging terms)
§ = p — expt(p) + g — expt(g) + r — expt(r).
But, since p’ = p — expt(p), etc., we arrive at the sought-for relationship:
Sf =Pl‘ + q’ + rl“
To discuss the variance of three random variables we shall need some

formula for the square of the sum of three numbers A + B+ C. One
formula for the square of the sum of three numbers is

(A+ B+ CP=A%+ B2+ C*+ 24B + 2AC + 2BC.
A second formula, closely related to the first, is

(A+ B+ CP=A-4A+ AB+ AC+ BA+ B: B+ BC
+CA+CB+C-C
The reader may find Figure 7 helpful for remembering the latier formula.

A, B, and C are written along the top and the side of the square in Figure 7.
The products of the numbers at the side and top are written in appropriate
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places within the square. (4 + 8 + C)* is the sum of all these products.
The first version of (4 + B 4+ C)?is obtained from the second by making
replacements such as A% for 4 - 4 and 24B for AB + BA.

TreoREM: 1f p, g, and r are a triplet of random variables generated by any
wheel, and if s is the random variable p + ¢ + ¢, then
var(s} = var(p) + cov(p, §) + cov(p, r) + covig, p) + var(g)
+ covlg, r) + cov(r, p) + cov(r, g} + var(r),
or, equivalently,
var(s) = var(p) + var(g) + var{r) + 2 cov(p, q) + 2 cov(p, r) + 2 cov(yg, r).

The second version of var(s) follows immediately from the first if we make
replacements such as 2 cov(p, ¢) for cov(p, g) + covig, p). The first version
of var(s) is similar to the square in Figure 7, and, in fact, is derived from it.

A B %
Al A-A +A:B +A.C
B i+ B-A +B-B +B-
Cl+CA +C-B +CC

Figure 7. The square of a sum (4 + B + C)® is the sum of all products within the
square.

The theorem concerning var(s) may be proved as follows:
var(s) = expt(s'y = expt(p’ + ¢’ + r'2
But this in turn equals the expected value of
PY+pq +pr +pd + @R +gr +pr +4¢ + (R
The expected value of this sum is the sum of the individual expected values.

But, since expt(p’)® = var(p), expt(p’ ¢") = cov(p, ¢, etc., we have the desired
result:

var(s) = var(p) + cov(p, g} + cov(p, r) + cov(g, p), eic.

VARIANCE OF A WEIGHTFED SUM OF THREE RANDOM VARIABLES

The theorem for the weighted sum of three random variables follows
easily from the theorem on the ordinary sum of three random variables.
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TueoreM: If p, g, and r are any triplet of random variables generated by any
wheel, if 4, B, and C are any three numbers, and if w is the random variable
Ap + Bg + Cr, then

var(w) = A% var(p) 4+ AR cov(p, q) + AC - cov(p, r)
+ AB: covig, p) + B2 var(g) + BC - covig, r)
+ CA - cov(r, p) + CB cov(r,q) + €%« var(r)
or, equivalently,

var(w) = 4% - var(p) + B* - var(g) + C? - var(+)

+ 24B - cov{p, g} + 24C - cov{p, r) + 2BC - cov(g, r).

Proor: According to the result concerning the variance of a sum of three
random variables,

var(dp + Bg + Cr} = var(4p) + var(Bg) -+ var(Cr)

+ 2 cov(Ap, Bg) + 2 cov(Ap, Cr) + 2 cov(Bg, Cr).
But var(4p) = A*var(p), etc., covidp, Bg) = ABcov(p,q), etc.—from which
follows the second version of var(w). The first version follows from the second
by replacements such as cov(p, g) + covig, p) for 2 cov(p, ¢).

According to the first version of var(w) in the above theorem, the
variance of w is the sum of all covariances—counting cov(p, ) and cov(g, p)
as different covariances, and also counting var (p)as a coviarance, cov(p, p).
According to the second version, var(w) is the sum of all variances plus
twice the sum of all distinct covariances—not counting cov(g, p) as
distinct from cov(p, g). When the variables p, ¢, and r are uncorrelated,

var(w) = A2 var(p) + B%var(g) + C*var(r).

The theorem on the variance of a weighted sum of random variables can
also be rephrased to apply to the weighted sum of past series or future
uncertain events,

NoTtaTioN FOrR LARGE NUMBERS OF RANDOM VARIABLES

We shall revert to the notation used at the end of the last chapter for
dealing with large numbers of random variables. We shall refertor, asa
first random variable, r, as a second random variable, rs, as a fifty-second
random variable, and ry as the last of N random variables. We shall
refer to A4, as a first number, 4, as a second number, Ag, as a sixty-fourth
number, and A, as the last of N numbers. We shall let rj =r, —
expt(ry}, rg = ry — expt(ry), and so on.

It will also be convenient to use a more compact notation for variances
and covariances. We shall let V| represent the variance of ry, ¥, represent
the variance of 7y, V), represent the variance of ry

To represent the covariance between r, and r, we shall use the symbol
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G- o is the small Greek letter sigma. oy, may be read either as *the
covariance between ry and r,” or simply as “sigma 1,2.” The covariances
between 7y and ry, or rp and r;, or r5 and ry are similarly represented by
013, Os, and ogy, Tespectively.

Since the variance of r, is the same as cov(r,, r,), we could represent this
variance by o, as well as by V.

VARIANCE OF A SUM OF ANY NUMBER OF RANDOM VARIABLES

Suppose that 5 is the sum of N random variables:

s=r+ratrgt 4y
then

S=r+rntr+-+r
This may be shown as follows:

Sttty —exptn+ o+ )
Applying the theorem on the expected value of a sum, and rearranging
terms, we obtain

5" =1 —expt(ry) + ry — expt(ry) + - - - 4+ ry — expt(ry),
from which follows
S=rn+rn+ -ty

To study the variance of the sum of any number of random variables we
need to know the general formula for the square of a sum. One version
of the square of the sum of ¥ numbers is
(Ar+ Ap+ Ay 4 - -+ AN = Ay + A Ay + Aydy + -+ Aydy

+ 4,4, 4 ApAy + Apdy 4+ - -+ dody
+ Ay Aydy + Apdy + 0 -+ Agdy

..................

+ ANA]_ + ANA2+ ANA3+ e +ANAN‘
This may be thought of as the sum of all entries in the square in Figure 8.
A second version, obtained by making replacements such as A} for 4,4,,
and 24,4, for A4, 4 A.4,, is:
(Ai + Ay + A+ + - + ApP
= (A)? + (A + (4 +- - -+ (4y)?
+ 214114.2 + 2A1A3 + M + 2A1A;\?
4 24,4, + © 4 244y, elc.
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THEOREM: Suppose that ry, ra, rg, - * -, ry are any N random variables
generated by some wheel, suppose that s is the sum of these random variables;
then the variance of 5 is

var(s) = 0y + G+ O+ - 0 Ouy
+ O+ Ont ot Oy
T ot Ot ogt ot Gy

tonmit ot omt -+ oun
or, equivalently,
var(s) =V + Vo + Vot - -+ Vy + 20+ 203+ - -+ 200y
+ 262:3 + -+ 20‘2N! etc.

A, Ay U Ap
A AA] FAA; FAAY b o +A4,An
Apl+ApA; +AA, +A4; 4 +A4,
A3 +A3A1 +A3A2 +A3A3 R S +A3An
A AnA; +AA; +AMAg F o +4.4,

Figure 8. The square of a sum, (4, + 4, + A3 + -+ - + Ax)® equals the sum of
the entries within the square.

ProoF: The prodf of the theorem is similar to that employed previously for
the sum of three variables. The variance of s is the expt(s)®. But (+')* =
(r] +r; +r,++ - -+ ry¥® Expanding this sum of a square according to
the formula presented in’ Figure 8, taking the expectation of the resulting
expression, making substitutions such as gy, for expt(ryr;) and oy, for exptiriry),
we arrive at the first formula of the theorem. The second version of var(s)
may be obtained from the first by substitutions such as ¥V, for oy, and 20,
for o 12+ O

If all the random variables are uncorrelated, the theorem asserts that the
variance of the sum is the sum of the variances:

V(S)=V1+ V2+ V3+"'+VN-.
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If all variables are positively correlated, the variance of the sum is greater
than the sum of the variances. If all variables are negatively correlated,
the vartance of the sum is less than the sum of the variances.

VARIANCE OF A WEIGHTED SUM OF ANY NUMBER OF VARIABLES

THEOREM: Suppose that ry, Fy, 13, * * *, ry are any N variables generated by
some wheel, that 4,, 4,, 4,,* - -, Ay are any N numbers, that w is the random
vatiable Ayr; + Agry + Agry + - - - + Ayry. The variance of w is equal to

Va!‘(w) = A]_Alal]_ + A1A2612 + A1A30‘13 + ot + AIANO-I:V
+ A Oy + ATy + AyAyops + + ¢ -+ ApAyOay
+ Az ;051 + Ag gz + AgAsOyy + 0 0 -+ A Ay
+ AyAyoy + AnAgy + AyAgoys + 0 -+ AyAxOyy,
or, equivalently,
var(w) = A3V, + A3V, + A3V 4+ - - - + AjVy
+ 24149535 + 24345005 + ¢ ¢ -+ 2414000
+ 2A2A3623 + - -+ 2A2ANO‘2N’ etc,
Proor: The proof of this theorem is essentially the same as that involving
the weighted sum of three random variablés. The first version of the result
for the ordinary sum of N variables tells us that
var{Ayry + Agry + ¢ -+ Ayra) = cov(dyry, Ayry) + cov(Ayry, Agrs)
+ cov(dyry, Agrg) + 0 -+ covl(Ayry, Ay} + covidgty, Ayry)
+ cov(dyry, Agry), etc.
Making substitutions such as A4,4,0y, for cov(dyry. Ayry) and A A0, for
cov(Ayry, Aprs), we arrive at the first version of var(w) in the theorem. The

second version follows from substitutions such as V) for oy, and 24, 4,0, for

APPLICATION TO PAST SERIES AND PROBABILITY BELIEFS

The theorem on the variance of a weighted sum of any number of
random variables also applies to weighted sums of past series or uncertain
future events.

Table 5 illustrates the computation of the variance of a portfolio con-
sisting of four securities. The securities involved are numbers one through
four from the analysis of the past series of nine securitics presented in
Chapter 1. Column (1) of the table presents the amounts invested in each
of these securities, per dollar of portfolio, for the portfolic whose variance
is to be evaluated. Thus the portfolio consists of 109 security 1, 40%
security 2, 307, security 3, and 209 security 4. Column (2) presents



TaBLE 5

VARIANCE OF A PORTFOLIO

(n 3] &) “) (5 (6) 7 (8) 9
Covar. | Amount | Covar, | Amount | Covar. | Amount | Covar, | Amiount
Amount with times with times with times with times
I“‘ﬁted Sec.1 | Cov. | Sec.2 | Cov. | Sec.3 | Cov. | Sec.4 | Cov.
NG Uau Vau P

(1) Sec. 1 .10 .053 L0053 .021 0021 029 0028 049 0049
(2) Sec. 2 .40 021 0084 015 L0060 .019 0076 024 0056
(3) Sec. 3 .30 .029 0087 019 0057 085 .0255 063 0189
(4) Sec. 4 .20 049 0098 .024 0048 063 0126 096 0192
(5) Sum 0322 .0186 0486 0526
(6) Amount invested 10 .40 30 .20 o
(7) Amount - Sum .00322 .00744 01458 01052 | 03576 l

SHONVIIYA GNV SNOILVIAZ(Q MYIVAUNVYILS

$6
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covariances between security 1 and the securities of the analysis. If we
let oy, represent the variance of security 1, ay; Tepresent the covariance
between security 1 and security 2, etc., column (1) tells us that ¢;, = .053,
01 = 021, 03 = .029, 0y = .049. Column (4) similarly presents oy,
O Oz G5 column (6) presents oy, oyp, Gyg, G34; column (8) presents
G415 Ogps Og3, 0. Column (3) presents the amounts invested in each
security muitiplied by the covariance of the security with security 1. Thus
(the amount invested in security 1) times (the variance of security 1) is
.0053; (the amount invested in security 2) times (the covariance between
the second security and the first security} is .0084. If we let 4, represent
the amount invested in the first security, 4, the amount invested in the
second security; A, in the third; A, in the fourth, then the sum of column
(3), .0322, equals
Ao + Agoyy + Ayory + Ay,

If we multiply this sum by 4,, the amount invested in security 1, we get
-00322, which equals

A1416y + A1 4501, + A Aoy + A 4,04,

Similarly, the first four entries in column (5) give us 4,0y, Ay0p, Ay,
Ayop,.  The fifth entry gives us

A0y + AyGgy + Ay0py + Ay0,
The seventh entry of column (5) gives
Agdroy + AyAy0p + ApAsoy + AAgoy.
If we add together the four entries in row 7, we obtain
A1 4,01 + A3 Ay0ry + A Agoys + A Aoy,
+ AsAy0gy + ApArOy + Aydy0py + ApAdyoy,
+ Az A0y + A3Ay03; + AzAzo + AyAyoy,
+ A A0y + Agdy04 + Ay Ay + Asdyoy.
That is, we obtain the variance of the portfolio, .03576.

DerIvED COVARIANCES

To find portfolios with minimum standard deviation for various levels of
expected return, an analysis must start with expected returns for each
security, variances of return for each security, and covariances of return
for each pair of securities. An analysis of 100 securities requires 100
expected returns, 100 variances, and almost 5000 covariances. It is
reasonable to ask security analysts to summarize their researches in 100
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carefully considered expected returns, and 100 carefully considered
variances of return. It is not reasonable, however, to ask for 5000 care-
fully and individually considered covariances. Yet covariances are
essential to an analysis of efficient porifolios. They express relationships
between sccurities; they guide the analysis to properly diversified port-
folios.

The thousands of covariances needed for large security analyses make
it essential that

(1) the relationships between securities be portrayed in a manner less
cumbersome than individual covariances, and

(2) the required covariances be derived from this portrayal by means of
an electronic computer,

The nature of such a portrayal, and the manner by which covariances can
be deduced from it, may be made clear by example.

A (hypothetical) staff of security analysts, together with a (hypothetical)
portfolio analyst, have decided that the relationships between the securities
in their analysis can be represented by the following three types of
information.

1. Figure 9 represents their consensus as to the probabilities of various
possible changes in a certain index during the coming 12 months. They
feel, for example, that there are 10 chances in 50 that there will be about a

*
*
* *
* * *
* * »
* * %
»* * - * *
* * * * * ® *
* *+ » L3 * * * * * *
* * * »* * * L 3 * * * * * * * *
[ S | J 1 1 ' ] i | i | ] | il )
-60 —50 —40 =30 -20 —-10 0 10 20 30 4 S0 60 0 8 90
% decrease 2 increase

Figure 9. Hypothetical probability beliefs concerning changes in an index.

10%; increase in the index, 1 chance in 30 that the index will fall by 50%,
& chances in 50 that the index will stay approximately the same.

2. Figures 10a and 10b represent the analyst team’s consensus con-
cerning the relationship between the change in the index and the expected
return (capital gains plus dividends) on two securities. Thus, if the index
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does not change, they expect the return on security (a) to be 109, while
that on security (b) is expected to be 09. 1f the index increases by 407;,
the return on security (a) is expected to be 309/, while that on security (b}
is expected to be 80%,. The analyst team has developed similar relation-
ships between security return and change in index for each of the other
securities in the analysis.

% s
return
on 60
security (a)

20
=100 ~80 =80 —~40 =20
\ | \ i il 1 ] ] | TR N |
0 40 6 8 100 120 140
=20 2% change in
index

—oF

@)

% i

return
oh -
security (b)

40 —

0
I I ! J i i ! L i i i i
=100 =83 —60 —40 -~ 20 40 60 80 100 120 1[40
- ~20 % change in

index
|- - 40
(b)

Figure 10. Relationships between index and securities.

3. It is not certain that the return on each security will agree with the
expected relationship between security and index shown in Figure 10.
Figure 11 shows their consensus as to amounts by which the returns on
securities (a) and (b) are likely to deviate from the relationship in Figure 10.
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Thus it is felt that there is 1 chance in 20 that the percentage return on
security (a) will be 30 greater than the amount indicated in Figure 10a;
while there is 1 chance in 22 that the percentage return on (b) will be 40
greater than indicated by Figure 10b. It is assumed that, if security (a)
is higher than would be expected from its relationship with the index, it is
neither more nor less likely that the security (b) will be higher than expected
from theindex. In other words, the correlation between the two securities

* ¥

*

* *
> * *
* * * » *
* * * * * * *

! | i ! [ t I | ! | |
~50 =40 =30 =20 -1 00 0 20 3 40 50
(@)

*

* *
* -
”» * * *
#* * #* * *
* E 3 * * * * * *
L | L ! ] L I 11 ! ]
=50 =40 =30 =20 =10 00 1 2 30 4 50

(b)

Figure 11. Deviations from expected.

can be explained in terms of their correlation with the index. It is niot
necessary for the analyst team to develop complete distributions such as
those in Figure 11. Only the variance, or standard deviation, of such
distributions is required for the derivation of covariances.

From the above information the expected returns, the variances of
return, and the covariances of returns for all securities can be deduced.
If the analysis includes 100 securities, the analyst team must supply

one distribution as in Figure 9,

100 sets of relationships between securities and index, as in Figure 10,
and

100 variances for distributions of the sort illustrated in Figure 11.

This information can be quickly processed by an electronic computer to
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derive the 100 expected returns, the 100 variances, and the 4950 covariances
needed for the analysis. The derivation of expectations, variances, and
covariances is based on formulae which are corollaries of the discussions of
this and the last chapter. These formulae are presented in the footnote.!

A portrayal of relationships, such as illustrated above, is usually referred
to as a model. This sort of mathematical model is similar to a physical
model in that it is a representation; it differs from a physical model in that
it is fashioned out of logical relationships rather than wood or clay.

There are a number of sophistications which an analyst team might wish
to add to our hypothetical model, for example:

1. Rather than having one underlying factor, the general prosperity of
the market as expressed by some index, the analysis could have several
underlying factors. Securities could be classified into industries; industry
prosperity could be explained by factors such as military expenditures and
consumer income. The correlation between securities within the same
industry would be explained in terms of their sharing in the industry
prosperity. The correlation between securities jn different industries
would be explained by correlations between industry prosperities.

i The return on sccurity (a) may be expressed as
rom= AL+ Aod + u,
where r, is the return on security (a), 7 is the value of the index, 4, and A, are two

constants, and # is the random deviation illustrated in Figure 11. Similarly, the return
on security (b) may be expressed as

=B+ Byl 4w
By assumption, coviy, v) = 0, cov(l, ) = 0, cov(l,v) =D, expi(#) = 0, expt{r) = 0.
The expected values of r, and r, are
expt(r,) = 4; + A, expt{d).
exptlry) = By + B, expt(]).
Subtracting their expectations from r, and ry, we get
rp= A0 +u,
rg=Bl" + .
The variance of r, is
expt(r’ = expt{d,d’ + u)* = expt(A,I'F + expt{u)® + 2 expt(A,0's)
= (A, var(l) + var(u).
Similarly,
var(t,) = (By)° var(f) + var(v).
The covariance between r, and ry is
COV(F o, 1y) = Xpt{Ael’ + ui(Byl' 4 1)
= exptl(A: By + Ad'v + ByJ'u + wv}
= A,B, var(D.
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2. The relationships between the performance of a security and that of
some (economy-wide or industry-wide) index need not be represented by a
straight line. Any curve which the analyst regards as a better representa-
tion of the relationship may be used.

3. The probability distribution in Figure I1a necd not be the same in
all circumstances. It can, for example, have greater variability when the
index is high, less variability when the index is low.

None of these modifications imposes a substantial burden on the elec-
tronic computer. They may, however, increase the requirements of the
analyst team. After a point, complexity adds work without appreciably
increasing the value of the analysis.

EXERCISES

1. Without referring to the text, write out the formula for the weighted sum of
four random variables.

2. Using the variances and covariances in Table 5, determine the variance of
return on a portfolio consisting of 4094 security 1, 3097 security 2, 2057 security
3, and 109/ security 4.

3. Show that, if 4 and B are both positive, the correlation coefficient between
Ag and Br is the same as that between g and r.

4. Prove that the correlation coefficient must be between —1 and 1, inclusive,
Hints: Start with the case in which both ¢ and » have a variance equal to 1.
(In this case the covariance equals the correlation coefficient.  Why?)  Consider
var(g + r) and var(g — r). Can variance ever be negative?

ANSWER

21 .03403,



CHAPTER V

INVESTMENT IN LARGE NUMBERS
OF SECURITIES

INTRODUCTION

In the last two chapters we presented formulae for computing the
expected return and variance of return of a porifolio. These formulae
apply to portfolios of any size, to any pattern of correlations among
securities. It may be difficult, however, to see broad principles from a
cursory inspection of these formulae. The present section derives from
these formulae rules of thumb concerning portfolios containing large
numbers of securities. These rules of thumb provide insight into dos and
dor’ts of large portfolios.

First we discuss the properties of the average of a large number of un-
correlated random variables. We see that diversification is extremely
powerful when outcomes are uncorrelated. This case, however, is more
applicable to the risks of insurance companies than to those of the security
investor. To understand the general properties of large portfolios we must
consider the averaging together of large numbers of highly correlated
outcomes. We find that diversification is much less powerful in this case.
Only a limited reduction in variability can be achieved by increasing the
number of securities in a portfolio.

The discussion of this chapter emphasizes the importance of the co-
variance. In portfolios involving large numbers of correlated securities,
variances shrink in importance compared to covariances. A security
adds much or little to the variability of a large porifolio, not according to
the size of its own variance, but according to the sum of all its covariances
with the other securities of the portfolio.

THE SUM OF THE FIRST N NUMBERS

It will be convenient in subsequent discussions for the reader to know
the formuia for the sum
142434444 N
102
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The sum of the first N numbers is cqual to

N-(N+T)
2
For example, when N = 4,

NN+1) 4-5
2 2
which does in factequal | + 2 + 3 4 4. When N = 10,

MN+ 1 10-11
=5 =55

whichequals 1 +2 4+ 3 4+ 4+ 5464+ 7 + 8+ 9+ 10. Itislesseasy
to confirm, but equally true, that the sum of the numbers from 1 to 1000 is

(1000)( LOOT)
2

= 10,

= 500,500.

A proof that the formula works for any N is provided in the footnote.!

UNCORRELATED RANDOM VARIABLES WITH IDENTICAL EXPRECTED VALUES
ANDY VARIANCES

In the present section we assume that ry, ry, 1y, - - -, ry are N uncorrelated
random variables. We also assume that each has the same expected
value (£} and the same variance (V). Thus

E = expt{r;) = exptiry) = expt{ry) = - - - = expt{ry),
V = var(r,) = var(r,) = var(t;) = - - - = var(r ).

1 We shall prove the formula by induction. That is, we shall show first that it is
true for N == 1, and then show that, if it is true for N = X, it must also be true for
N = K + 1. This establishes the formuia for any N.

The case of ¥ =1 is trivial: {-2f2 is Indeed the sum of the first one number,
Suppose now that it has been shown that

KK+ 1
l+2+3+"‘+K=—2+—)-
Then we must have
K(K 1
G234 40 rk+1=2830 4y

_KK+D+AKF D
N 2
CKPH3K+2
==

K+ DK+

E.D.
5 Q
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Also
cov(ry, 1} =0, cov(ry, ) = 0, coviry, ry) = 0, etc.

We shall let s represent the sum of the N random variables:
S=I‘1+r2+l’3+"‘+rN.
© We shall let w represent the average of the N random variables; that is,

_r1+i'2+r3+"'+r3\1
= N s

W

or, equivalently,
5
W= —

Sometimes it is convenient to think of w as

W= - 8.

L
N
The expected value of s follows from the formula (developed in Chapter I1I)
expt(s) = expt(r,) + expt(ry) + expt(rg) + -« - + cxpt(r&)
=E+E+E+- - +E

Thus
expt(s) = N - E.

The expected value of w is

expt(w) = expt {% (s)]

= ;—Vexpt(s).

But expt(s) = NE, so ‘

expt(w) = E.
Thus the average (w) of N random variables, each with an expected value
of E, itself has an expected value equal to E.

The variance of 5 and w can be derived from formulae developed in
Chapter IV. Since the random variables are uncorrelated,

var(s) = var(r} + var(r,) + var(ry) + * * - + var(ry)

=V4+V4+V+- +V
=N-V.
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var(w) = var [IN (s):|

1 2
= (ﬁ) var{s)
var(s)
N
But var(s) = N- ¥, so

NV

var(w) = —

zl= =

Thus the average (w) of ¥ uncorrelated random variables, each with the
same variance V, itself has a variance equal to V divided by N.

The above results concerning the expected value and variance of s and
w may be summarized as follows:

THeOREM: M7y, rg, 7o, * * -, ry, are N uncorrelated random variables generated
by some wheel, each with the same expected value E and variance ¥, if 5 is the
sum of these random variables and w is their average, then

expt(s) = NE,

expi{w) = E,
var(s) = NV,
var(w) = —E

Suppose that each of the random variables ry, iy, ry has an expected
value of .3 and a variance of 1. If wy is the average of the first three
random variables—if w is the random variable equal to (r, + r, + r,)/3
—then the expected value of wy is .3 and its variance is 1/3.  If wy, is the
average of 10 of the random variables, its expected value is still .3 but its
variance is 1/10. Similarly the expected values of both wygs and wygq, are
.3, but their variances are .01 and .00I, respectively. As we consider aver-
ages of more and more of the r’s, the expected values of the average stay
the same, but the variance of the average becomes increasingly close to zero.

The rule, implicit in the theorem and illustrated by the example of the
last paragraph, may be stated as follows: If wy is the average of N un-
correlated random variables, each with the same variance and expected
value, as N increases

the expected value of wy remains constant,
the variance of wy; approaches zero.
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GENERALIZATIONS

ry of the last section may be regarded as the amount won or lost per
dollar bet on a first random variable; r, similarly would be the amount
won or lost on a second random variable; ry, the amount won or 1ost on
an Nth random variable. w then is the total amount won or lost if (1/N)
dollars are bet on each of N random variables.

If NV is large, the variance of w is aimost zero, Under the conditions
assumed in the previous section, wide diversification can practically
eliminate uncertainty.

There are four major ways, however, in which the returns from securities
differ from the random variables of the last section. We shall discuss
these differences in increasing order of their effect on the rcsults of the last
section:

1. Returns on securities are uncertamn events rather than random
variables subject to known objective probabilities. This implies only that
the expected returns, variances of returns, and covariances of return
referred to in this chapter should be interpreted as based on probability
beliefs rather than on objective probabilities.

2. Expected return is not the same for all securities. Let E| represent
the expected value of the return r, on the first security; let £, represent
the expected value of the return r, on the second security; and so on.
Then the expected value of s is

expt(s) = expt(r,) + expt(ry) + expt(rg) + - - + + expt(ra)
=E1+E2+E3+' " '+.E‘.\_‘-

The expected value of the average w of the N returns is

expt(w) = %expt(s)

_E1+.E2+E3+' "+E_\r.
- N

The expected value of the average then equals the average of the expected
values. A portfolic with equal amounts invested in each of ¥ securities
has an expected return per dollar invested equal to the average of the
expected returns of its securities.

The variance of return on a portfolio does not depend on the expected
returns of securities. Hence, as long as we assume that the #’s are un-
correlated and have equal variances, we must conclude that the variance
of return w approaches zero as N increases. Even though expected returns
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vary, increasing diversification brings increasing certainty when returns are
uncorrelated and variances are identical.

3. Variance of return is not the same for all securities. Suppose that
the variance on the second security of a portfolio is greater than that on the
first; that the variance on the third security is greater than that on the
second; and that each addition introduces a security with still greater
variability. What happens to the variance of the portfolio? Tt is possible
for the variance of successive securities to increase so rapidiy that the
variance of the portfolio does not approach zero. On the other hand, if
the variances never exceed an upper limit, the variance of the portfolio
still approaches zero. We shall consider first the case in which variances
'stay within certain bounds. After this we consider a case in which vari-
ances increase without limit and the variance of the portfolio does not
approach zero. Even the latter case turns out to be a testimonial to the
power of diversification among uncorrelated outcomes.

Suppose that ry, rp, £y, + -+ are uncorrelated returns with variances
Vi Vo, Vi o - . Let s be the sum, and w the average, of the first N of
these returns. Suppose that, while the variances ¥, V,, ¥, + - « are not

necessarily the same, none of them exceeds some upper bound V*. V, is
less than ¥'*, V, is less than V*, and so on.
The variance of s is

var(s) = Vi + Vo + Vo + - - -+ Py
But this cannot be greater than
V*+V*+V*+ . .+V*’

which equals N - F*.
Thus

var(s) <X N - V*,
The variance of w is

var(w) = (lN )2var(s).

But this can be no larger than
132 *
—| N V*=—
)=

So

V*
var(w) == s

As N increases, V*/N becomes smaller and smaller, approaching zero.
Since var(w) is smaller than V*/N, it too must approach zero as N increases.
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Thus, if variances stay within limits-—if they have an upper bound V*-—
the variance of the average of the uncorrelated variables stifl approaches
zero. If returns were uncorrelated and their variances bounded, sufficient
diversification would bring virtual certainty of return.

Now let us consider a particular case in which variances increase without
limit. Suppose that the variance of the first security is ¥'; that the variance
of the second security is twice as large as that of the first security, ¥y = 2V
that the variance of the third security is three times as large as that of the
first, ¥, = 3V; similarly that ¥, = 4V, Vg = 5V, Vg = 6V, and so on.
As the number of securities increases, the variance of the last one increases
without bound. '

The variance of the sum s of & of such returns is

var(s) = var(r) + var(ry) + var(rg) + ¢+ - 4+ var(ry)
=V4+2V+3V 4+ NV
=V1l+2+3+-+ +N)
1
= V.N_(f‘_’;_).

The variance of the average w of the N variables equals

var(w) = (lﬁ) 2var(.'r) .

_V NN+
2 T N
But
NN+1) _ N+1
N® N
hence
VN4 D
var{w) = SN

(N + 1)/N becomes increasingly close to 1 as N increases. (For ex-
ample, starting with N = 1 we have (N + D)/N = 2/1, 3/2, 4/3, 5[4, - - -,
101/100, - - -, 1001/1000, - - +). As (N + 1)/N approaches 1, var(w) ap-
proaches ¥f2. When N = 100, for example,

14
var(w) = 3 1.01 = .505V.
In the present case the variance of the securities increases too rapidly

for diversification to make the variance of the portfolic approach zero.
This case, nevertheless, is an example of the power of diversification
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among independent outcomes. A portfolio with variances ranging from
¥ to 100} has a variance of littfe more than (1/2}V. (O, to transiate this
into the more easily interpreted terms of standard deviation, the portfolio
with standard deviations up to 10 times as great as the standard deviation

of r; has itself a standard deviation of V12, about .71 times the standard
deviation of r,.) As additional securities with still greater standard
deviations are added, the widening diversification prevents the variance
of the portfolio from increasing, keeping it about (1/2)¥.

It is theoretically possible for the variance of the r’s to increase so
rapidly that the variance of w rises instead of falls. If, for example, the
variances of the #’s doubled and redoubled, ¥; = V, V, = 2V, V, = 4V,
V, =8V, V; = 16¥, Vg = 32V, and so on, then the variance of the
portfolio would increase without bound.

Such examples of rapidly increasing variances are of mostly academic
interest. If one ranked securities in general, or common stocks in
particular, in order of increasing variability, the variance of the 100th
would not be excessively greater than that of the 50th, the variance of the
200th wouid not be excessively greater than that of the 100th, nor would
the variance of even the 300th be excessively greater than that of the 200th.
If the returns from these securities were uncorrelated, there would be little
risk associated with widely diversified portfolios. But

4, The returns on securities are correlated. The consequences of these
correlations are discussed in the next section.

LARGE NUMBERS OF CORRELATED RETURNS

The variance of the average of a large number of future returns is closely
refated to the concept of an “average covariance.” We shall first deter-
mine how many distinct covariances are associated with & variables and
then define what we mean by the average covariance. We shall then be
ready to discuss the variance of porifolios consisting of large numbers of
securities.

The number of distinct covariances, not counting variances and not
counting a,, as distinct from oy, equals the sum of the first ¥ — 1
numbers:

142434+ @®-1D.

For example, if N = 2 there is one distinct covariance ¢y, If N =3
there are 1 + 2 = 3 distinct covariances, 0y, 0y3, and og. If N =4
there are 1 4 2 + 3 = 6 distinct covariances oy,, Oy, Gy Oz3, Oagr Oy
In general, r, has covariances with the N — 1 other securities,

Gyay O3 Taps © ° *s Tan-
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r, has N — 2 additional covariances (not counting o, listed above)
Gazs Gogs ~ ° 75 Opy-

Similarly r, has N — 3 covariances not previously counted; r, has N — 4
additional covatiances, and so on. Adding the covariances of r, to the
additional covariances of r,, to the additional covariances of r;, and so on,
we obtain

(N= D+ =D +N =3+ +3+2+1

distinct covariances. The sum of the first N — 1 numbers equals
(N — 1)N/2. Therefore (N — 1)N/2 equals the number of distinct
covariances associated with N securities.

The average covariance is defined to be

the sum of all distinct covariances

the number of distinct covariances

That is, the average covariance equals

the sum of all distinct covariances
(N — DN[2

Or, equivalently, the average covariance equals

2 - the sum of ail distinct cavariances
(N — DN

Conversely, the sum of all distinct covariances equals

(N—DN .
——~"— . the average covariance.

In this section we shall assume that variances Vi, V,, V;, -+ - are
bounded: there is some number V* larger than any of them.
Tn the last chapter we saw that the variance of the sum s equals
var@ =V +V, +V; +-- -+ Vy
+ 2005 + 2005+ - - 4 200y
+ 2023 + et + 20’2.:\7, elc.

This may be summarized by the statement

var(s) = (the sum of the variances)
+ twice {the sum of all distinct covariances).
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The average of the first N variables, w = s/N, has

var(w) = (_]A-’) 2Va]‘(s)

the sum of the variances
= e

2 - the sum of all distinct covariances
N2

But the sum of all distinct covariances equals (N — 1)N/2 times the
average covariance. Therefore

the sum of the variances (N — )N
N2 + N2

var(w) = - (the average covariance)
__ the sum of the variances n N -

1 :
T N (the average covariance).

The first of the two expressions on the right side of the above equation is
the formula for the variance of w when returns are uncorrelated. We
have seen that, if security vartances have an upper bound, this sum of
variances divided by N*® approaches zero as A increases. Furthermore,
{N — 1)/N approaches 1 as N increases. Therefore,

as N increases, the varianee of w approaches the value of the average
covarianee.

Suppose, by way of iltustration, that returns ry, 7y, #5, - - + all have the
same variance ¥ and that all pairs have the same correlation coefficient 1/2.
In this case each covariance equals (1/2)F.  The average of the covariances
of two or more returns must also equal (1/2)V. When N = 100,

var(w) = .01V + .99[(1/2)V]
= (.505)¥,

which is only slightly greater than the average covariance.

Compare this with the uncorrelated case: The variance of w is (1/2)}V
if wis the average of 100 uncorrclated returns, cach with a variance of 507,
The variance of the correlated portfolio is the same as that of 100 inde-
pendent securities whose standard deviations are 7 times as great. If we
averape together additional uncorrelated returns with variances equal to
50V, the variance of w falls toward zero. The variance of the correlated
variables, on the other hand, can never fall below (1/2)¥. This is iHus-
trated by Table 1, in which columns 2 and 3 present the variances and
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standard deviations of the uncorrelated variables, while columns 4 and 5
present those of the correlated variables.

For the example of the table,

V=.1.
TABLE 1
DIVERSIFICATION AND CORRELATION
Number Variance, Sta{lda}rd Yariance, Star.ldé.“d
of Portfolio A Deviation, Portfolio B Deviation,
Securities Portfolio A Portfolio B
1 5.000 2.236 .100 316
10 500 07 055 235
25 250 500 052 J228
50 100 316 051 226
100 .050 224 L0505 228
250 020 141 0502 224
300 010 100 0501 224
1,000 005 071 05005 224
10,000 0005 022 050005 224

Portfolio A consists of (hypothetical) securities whose returns are independent
and have variance equal to 5.

Portfolio B consists of (hypothetical) securities whose returns have variances
equal to .1 and correlations equal to 1/2.

THE CHOICE OF PORTFOLIO

Table 2 presents historical correlations among the nine securities used
in Chapter II.  The average of these correlations is .48, slightly less than
1/2. This average may not be representative for all securities or all
circumstances; but it does give us an idea, at least, of the magnitude of
the correlations among security returns.

Let us continue for a moment to consider portfolios with equal amounts
invested in each of N securities. The contribution which a particular
security makes to the variance of such a portfolio—the amount by which
the variance of the portfolio would be reduced if the security in question
were replaced by a completely riskless security—is equal to

1)\2 )
(Rr) [(the variance of the security)
plus twice (the sum of all its distinct covariances)].
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For example, if there were four securities in a portfolio, the contribution
to the variance due to the first security would equal

i

T6 M+ 2Aop, + o33 + 01l
Suppose we wished to select either security A or security B as the 100th
‘security of a portfolio. Each of the 99 securities already in the portfolio

has the same variance " and each pair has a correlation coefficient of 1/2.

TagLs 2
CORRELATIONS AMONG NINE SECURITIES

A.T. A.T.
. Am,T. USS. | GM. C.C. | Bdn. | Frstn.
Security &T. & Sfe
1%yl el |5 le | ol e
(1) Am. Tobacco
(2) Am. Tel. & Tel. | .77
(3} U.S. Steel 43 53
{(4) Gen. Motors 69 | .65 69
(5) A.T. & Sfe. 20 19 43 47
(6) Coca-Cola 69 Al 22 46 .18
(7) Borden .62 .1 21 40 35 33
{8) Firestone 45 55 61 .76 74 .38 45
(%) Sharcn Steel .56 .61 51 42 A5 38 .37 49

Average Correlation = 48,

Security A also has a variance of ¥ and a correlation coefficient of 1/2 with
the securities in the portfolio. Security B, however, is much more specu-
lative. Its variance equals 25¥"; its standard deviation is 5 times as great
as that of security A. On the other hand, the return on security B is
uncorrelated with any of the 99 securities already in the portfolio (perhaps
because the fate of this security depends, not on the swings of the general
market, but on the success of some invention or the ruling of some court,
whose effect is substantially independent of the level of the market), The
contribution which the conservative security A would make to the variance
of the portfolio--the amount by which the variance of the portfolio would
be greater with A than with a riskless security—is

V429 (1/2)¥)
10,000 = 01V.
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The contribution which the speculative security B would make is

25V
10,000 0025V,

The addition of the risky security produces a more conservative portfolio
than the addition of the conservative security.

This illustrates a basic principle: the security which is risky or conser-
vative, appropriate or inappropriate, for one portfolio may be the opposite
for another. One must think of selecting a portfolio as a whole, not
securities per se.

It would be incorrect to say that the variances or standard deviations of
securities have little influence on the variance of a portfolio. True, the
variance in itself adds little; it is the covariances which are important.
The covariance, however, is related to both the correlation coefficient and
the standard deviation. The covariance between r; and ry, for cxample,
is equal to

(the standard deviation of r) times

{the standard deviation of r,} times
(their correlation coefficient).

If security 1 has a standard deviation twice as large as that of security 2,
but security 2 has correlation coefficients twice as large as those of security
1, then each will make about the same contribution to the variance of a
large portfolio.

The returns on a security may be highiy correlated with those of some
securities but not with those of others. The returns on another security
may have a different, perhaps a partially overlapping, pattern of high and
low correlations. The problem is to pick securities so that their average:
covariance is small. Since different amounts can be invested in different
securities, the problem is really to choose securities and allocate funds so
that a weighted average of the covariances is small (where amounts
invested determine the “weights™). In Part IIT of this monograph we
~ discuss techniques for minimizing variance for various levels of expected
return. These techniques permit an elecironic computer to solve the
problem of finding the smallest weighted average of covariances consistent
with other objectives for, and restrictions upon, the choice of portfolio.

The computer supplements rather than supplants the human analyst.
The analyst, or analyst team, must decide on the objectives of the analysis,
select securities to be analyzed, decide on a model for derived covariances,
and make judgments pertaining to the expected returns, variance of
returns, and covariances of returns of securities. The machine takes over
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routine and deduciive processes, leaving the analyst free fo concentrate on
processes involving induction and judgment.

In discharging his function of sclecting securities to enter the analysis,
the analyst should keep in mind the properties of a security which may
make it a worthwhile addition to a portfolio. Not only should promising
leads with respect to expected return and variance be considered, but also
the value of low correlations should not be forgotten.



CHAPTER VI

RETURN IN THE LONG RUN

THe GEOMETRIC MEAN

Suppose that the return on a portfolio during eight consecutive years
was

year 1 2 3 4 5 6 7 8 average

return A5 | —05] .20 00 [—05| +.051 .00 A0 05

One dollar invested in the portfolio at the beginning of year [ became §1.15
by the end of the year. If this $1.15 were reinvested in the same portfolio,
it would have become $1.09 = (1.15) - (.95) by the end of the second year.
If reinvestment had continved, by the end of the third year the original $1
would have increased to

$1.31 = (1.15)- (.95) - (1.20).
By the end of the eighth year the §1 would have increased to
$1.44 = (1.15) - (.95) - (1.20) - (1.00) - (.95) - (1.05) - (1.00) * (1.10).

$1.44 is not the same as the average return, .05, compounded annually for
eight years; (1.05)® equals 1.48—slightly greater than the value of the
portfolio after the eighth year. To find the rate of growth (the amount
which if compounded annually for eight years would equal the end value
of the portfolio) we must solve the equation

rate of growth = v/(1.15)(.95)(1.20)(1.00)(.95)1.05K1.00)(1.10) — 1.

The expression v (1.15)(.95)(1.203 - - - (1.10) is known as the geometric
mean of the numbers (1.15), (.95), etc. A practical method of evaluating
this eighth root is noted in a subsequent section.

116



RETURN IN THE LONG RUN 117

In general, if a porifolio provides returns equal to ry, ry, g, * * -, F,

. the
historic rate of growth of the portfolio equals

VI+rmd+rdl47r) - (Q+r)— L

This amount compounded annually for n years gives the same final value
of portfolio as did the returns r), ¥y, - -, 1y

Suppose that §1 is wagered on the spin of the wheel in Figure 1. Let r,
represent the gain or loss from this first spin.  Suppose that the bettor now

Figure I. A random wheel.

wagers his $(1 + ry) on a second spin of the wheel, winning or losing r,
dollars per dollar bet. He now has 8(1 + r;)(1 + r,), which he wagers.
This continues for # spins of the wheel, at which time his §1 has become

S+ rl 4+ 4 s (41,

If the number of spins, n, is extremely large, it is virtually certain that
r = .15 will have resulted from approximately 1/8 of the spins; » = .00
will have resulted from 2/8 of the spins; and generally the relative fre-
quency of each return will be close to its true probability. We say this is
“virtually certain™ rather than “certain™ because it is possible, for example,
for r = .15 never to occur, even if # = 1,000,000. The probability that
any relative frequency will differ from its true probability by any specified
amount (e.g., the probability that the relative frequency of r = .15 will
differ from 1/8 by more than .0001) approaches zero as # increases. Asn
increases, it becomes increasingly certain that relative frequencies will be
very close to true probabilities.

If the relative frequencies of returns exacily equaled the probabilities of
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these returns, then the rate of return resulting from reinvesting for n spins
of the wheel would equal

V(1.15)(.95)1.20)(1.00)(.95)(1.05)(1.00)(1.10) — I.

When 7 is extremely large, when frequencies are virtually certain to be
close to probabilities, the experienced rate of return is almost certain to be
close to the above value.

TaBLE 1

RESULTS OF SAMPLING EXPERIMENT

“Month” Strategics “Month” Strategics
No. No.
oy109| D | O | O | @ [gysog] O | @ | @ | @
a=5lr=T6lx=1.0lx =20 w=USa=76lr=1012=20
10 .03 .87 .81 .52 200 2.85 372 4.00 | .76
20 1.12 | 116 1.18 1.04 250 2.86 3.45 3.29 22
30 1.51 | 2.03 2.42 3.77 300 3.79 503 5.05 29
40 195 ¢ 2.60 3.26 5.52 350 9.53 | 19.19 | 27.36 | 4.62
50 1.83 | 2.32 2.76 3.42 400 11.98 | 2566 { 3749 | 4.80
60 1.72 | 2.10 2.39 2.35 450 6.72 | 10.02 | 10.02 .16
70 1.45 | 1.58 1.62 .85 500 7.54 1 11.14 | 10.58 .08
80 1.83 | 2.23 2.49 1.80 550 890 | 1338 | 12.37 05
90 226 | 3.10 3.77 3.40 600 14.26 | 25.59 | 26.90 A3
100 2.64 | 3.80 4.88 5.43 650 7.17 B.44 5.7 002
110 201 | 245 2.67 1.26 700 10.44 | 14.07 | 10.41 003
120 2171 271 2.98 1.27 750 i1.76 | 15.78 | 11.19 002
130 236 | 3.05 342 1.47 800 1443 | 1995 | 13.83 002
140 2,70 | 3.69 4.35 212 850 2528 | 43.64 | 3545 005
150 240 | 3.04 3.31 1.03 900 44.66 | 97.42 | 54.63 g
9350 43,38 | 87.18 | 7541 {005
1000 54.60 | 116.98 [103.54 .005

Table 1 shows the results of an illustrative sampling experiment. We
suppose that the investor can place his funds in either cash or a particular
security. The probability distribution of returns on the security are

return

—

—.1 0

+.1

+.2

probability

2 3

3

1
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One thousand obscrvations! were used: e.g., about 83 years of monthly
gains and losses. Let @ represent the proportion of the individual's
portfolio which is devoted to the security; (1 — z) is devoted to cash.
The table shows the performances over time of portfolios with

(1) X= .50,
Q) x= .76
(3) X = 1.00,
(4) X = 2.00,

X = 2.00 represents the purchasing of the security with 50%; “margin.”
The investor borrows §1 for every 81 of his own and invests both of these
in the security. Of the four policies listed above, this one has the highest
expected return.  On the other hand, it has the lowest geometric mean of
{1 + r}. This geometric mean, in fact, is less than 1. The investor who
persists in this policy is almost certain to end with less than his initial
investment. In our sampling experiment the “virtually certain” did in
fact happen: The policy had highly variable returns in the short run and
was decidedly unprofitable in the long run. The $1 initial investment
ended as 12 cent.

Policy (3), with X = 1.00, would have the greatest expected return if
buying on margin were excluded. It has the second highest geometric
mean of the four palicies. In the sampling experiment it ended second
best after the 1000 random drawings. We see below that luck was with
this policy—it ran a closer second than may be usually expected.

Policy (2), with X = .76, has the greatest geometric mean. At the end
of the 1000 drawings-it emerged best of the four policies. If in the 1000
drawings a return of —.2 appeared exactly 100 times, a return of —.]
appeared exactly 200 times, and so on, then X = .76 would have proved
better than any other value of X. It rarely happens, however, that the
expected proportions are exactly realized. Usually a different value of X
is, ex post, the most profitable. In the present sample X = .84 was the
most profitable in retrospect. As sample size increases, the observed
frequencies “tend” to stay closer to the expected. Eventually the policy
which maximizes the geometric mean not only almost certainly does better
than X = 2, but almost certainly does better than even X' = .84 (or
X =.770r X =.75.

Policy (1), with X = .5, has a lower geometric mean than policy (2).
It is, however, less variable than the latter. One might prefer (1) to (2),
sacrificing return in the long run for stability of return in the short run.

1 One thousand random digits were interpreted as follows: a random digit = ©
indicated a —.2 return; a random digit = 1 or 2 indicated a —.] return, etc.
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THE MEAN VALUE OF THE LOGARITHM

Logarithms can be used fo facilitate the calculation of the geometric
mean. The concept of the logarithm can also help us understand the
approximate relationship among the mean, the variance, and the
geometric mean.

Two types of logarithms are in general use. 'The common logarithm is
constructed so that the number 10 has a logarithm equal to 1. The
natural logarithm is constructed so that the number e, approximately
2.7183, has a logarithm equal to 1. The natural logarithm of a number is
always equal to approximately 2.3026 times the common logarithm of the
number. We shall let log(4) represent the common logarithm of 4; we
shall let Ln(A) represent the natural logarithm of 4.

Both the common logarithm and the natural logarithm have the follow-
ing extremely important properties:

1. The logarithm of A times B equals the logarithm of 4 plus the
logarithm of B. More generally, the logarithm of Ay~ Ay~ 4~ - - 4,
equals the logarithm of 4, plus the logarithm of A, plus the logarithm of
A, etc,

2. The logarithm of A" equals # times the logarithm of 4.

3. The logarithm of VA equals the logarithm of A divided by n.

To calculate v/(1.15)(.95)(1.20)(1.00)(.95)(1.05)(1.00)1.10) by using com-
mon logarithms we consult one of the published tables of logarithms to find
that

log(1.15) = 061,  log(1.00) = .000,

log ( .95) = —.022, log (1.05) == .021,

log(1.20) = 079, log(1.10) = .04l
From this it follows that the logarithm of (1.15)(.95)(1.20X(1.00)(.95)(1.05)
(1.00)(1.10) equals

.061 — 022 + .079 + .000 — .022 4 .021 + .000 + .041 = .158.
The logarithm of vV (1.15).95)(1.20) - - - (1.10) equals .158/8 = .020.
Once again consulting a table of logarithms, we find that the anti-log of
02—the number whose logarithm is .02—equals 1.047. Thus we have
found, by addition and division rather than by the taking of an eighth root,
that the rate of growth on the portfolio was 4.77%, per annum.
In general, the common logarithm of the geometric mean of the numbers
A+ r), Q4+ r) Q0+ r,)equals
log(1 + ) + log(1 + rg 4 - 4 log(l + 1)

n
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This is either the average or the expected value of log(l + r) de-
pending on the nature of r. The natural logarithm of the geometric
mean of (1 + r), similarly, equals the average or expected value of
Ln(l + 7).

Or, to put it another way, the rate of growth is the anti-log of the average
log of (* + 7) minus I.

QUADRATIC APPROXIMATIONS

For returns (r), from about a 307 loss (r = —.3) to about a 309 gain
{(r = +.3), the natural logarithm of 1 + r is approximately equal to

r— (122
Outside the range from —.3 to 4 .3 the approximation becomes increasingly

poor. Table 2 compares the approximation r — (1/2)r? with the actual

TAsLE 2

COMPARISON OF Ln(l 4+ r) AND r — (1f2)*

r Ln{l + #} r— (1/2)*
-.50 —.69 —.63
— 40 —.51 —.48
—.30 —.36 —-.35
—.20 -.22 —.22
—.10 —.11 —.11
+.00 .00 00
+.10 .10 10
4-.20 A8 18
+.30 .26 .26
+ .40 .34 32
+.50 41 .38

values of Ln{l + r). The approximation r — (1/2)r% like any weighted
sum of r and r2, is referred to as a quadratic.

If Ln(1 + r) is approximately r — (1/2)%, then the expected value of
Ln(1 + r) is approximately

expt(r) — (1/2) expt(r?).
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It is shown in the footnote® that
expt(r?) = var(r) + [expt(r)]2.
Thus the expected valve of Ln(l + r) may be approximated by
expt(r) — (1/2) var(r) — (1/2) [expt(n]*

“ — (1/21¥ is an approximation ‘“centered” around r=0. A
similar approximation centered around r = E, where E = expt(r), is

¢ —E) 1(¢—Ef

Il + B+ 5 F = 3 T B

The expected value of the above expression is

Ln(l + E) — %(%1VT(2)2'

Both the first approximation,
E— % [var(r) + E7],

and the second,

1 wvar(r)
Lo(l + E) ST+ EP
allow us to estimate expt[Ln(1 + r)], and hence the rate of growth of the
portfolio, from its expected return and variance,

The accuracy of these estimates in the case of past returns is illustrated
by Table 3, which presents the expected return, standard deviation,
Ln(l + r}, and the values of the two approximations for the nine securities
of Chapter I. It presents similar information for portfolios P and Q.
Portfolio P maximizes £ — (1/2)[var(r) + E%. Portfolio Q is the corner
portfolio with greatest Ln(l 4+ E) — [(1/2) var(r){{1 + E)¥.

Columns § and 7 of the table show the ratio of approximate to actual
for each of our approximations. The approximation £ — (1/2){c* + E%
shows a2 marked downward bias. In every case the approximation was
less than the actual. In one case (security 8) the approximation exhibited

1 var{r} = exptfr — expt(r)f

= expi{r?) — 2 exptr - expi(r)] + expt{expt(r)}*}
expi(r?} —'2 expt(r) . exptly) + [expt(r)P
expt(r®) — fexpl(r)I.

Hence
expt(r®) = var(r) -+ [expt(r)].



TABLE 3

TWO APPROXIMATIONS TO Elog(l + r}

(n @ 3 4 &) ®) )
U |Etog+n| B a - apE ) @0 | gty ©0
1 0406 0659 0535 0370 Ol 0403 592
2 0530 0616 0146 0524 91 0533 1,008
3 .1068 .1461 0854 0927 .869 1039 973
4 1196 1734 0956 1106 924 1252 1.046
5 .129% 1981 279 1145 .882 1362 1.049
6 0347 0551 0413 0329 949 0351 1011
7 1073 1276 0289 1050 979 1087 1013
8 1247 1903 1468 0988 793 1224 982
9 0738 1156 0793 0693 939 o775 1051
Portfolio P | 1356 1756 0620 1292 952 1393 1.027
Portfolio Q | 1369 1878 0853 14275 932 1419 1036

NOA ONOT FHL NI NYIrrgd
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an error of 20%,. In two other cases it had an error in excess of 10%.
The approximation Ln{l + E) — [(1/2) var(r)/{]1 + E)?] fared better. lIts
largest error in the cases examined was 5.19; (security 9). It was particu-
larly accurate in cases with small standard deviations. Its error was less
than 1.5% for the four securities with the lowest standard deviations
(securities 1, 2, 6, and 7 with standard deviations of ,231, .§21, .203, and
.169 respectively).

In Figure 2, Ln(l + r) is plotted against log(l + £) — [(1/2} var(r)/
(1 + E) for the securities and portfolios considered. There seems to be

16—
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Figure 2. Quadratic approximation to Elog(l + r).

an upward bias in the region of high Ln(l 4 #), but as a whole the
approximation seems good.

Using the approximation Ln(l + E) — [(1/2) var{(r)/{1 + E)?] we can
estimate the rate of growth to be expected in the long run from constantly
reinvesting in portfolios with expected return E and variance of return
var(r). For example, if £ = .1 and var(r) = .04, then the expected value
of the natural logarithm of (I + r) is approximately

Lo(1.1) — [(1/2)(.04)/(1.1)?}] = .095 — 017 = .078.

The anti-log of .078 is 1.08. The rate of growth over the long run may
be expected to be about 8%, per annum.
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The combination of expected return and variance which promises the
greatest return in the long run is not necessarily the combination which
best meets the investor’s needs. The investor may prefer to sacrifice
long-run return for short-run stability. In the nine-security example of
Chapter II the portfolio with greatest average logarithm had an average
return of approximately .188 and standard deviation of return of approxi-
" mately .292.  If the reader will locate this point on the curve in Figure 4,
Chapter 11, he will probably find that, if these means and standard devia-
tions reflected probability beliefs, he would prefer a more stable portfolio
than that which provides greatest long-run potential.

Although it is not the sole consideration in the selection of a portfolio,
rate of growth is not without interest. The rate of growth associated with
a portfolio—the rate of growth to be expected in the long run from always
reinvesting in portfolios with the mean and variance the portfolio in
question has currently—can be estimated by the formula of this section.






PART 11

EFFICIENT PORTFOLIOS






CHAPTER VII

GEQOMETRIC ANALYSIS OF EFFICIENT SETS

INTRODUCTION

A portfolio is inefficient if it is possible to obtain higher expected (or
average) return with no pgreater variability of return, or obtain greater
certainty of return with no lfess average or expected return.  The problem
of separating efficient from inefficient portfolios, when standard deviation
or variance is used as a measure of uncertainty, is treated in the present
chapter, in the following chapter, and in Appendix A. The present
chapter presents a geometric analysis of portfolios containing three or four
securities. The following chapter presents computing procedures for
obtaining efficient portfolios from the means, variances, and covariances
of any number of securities. Appendix A shows that the portfolios
produced by these procedures are, in fact, efficient.

For readers who prefer to omit purely computational discussions, the
present chapter presents a general description of the concepts and rela-
tionships used in deriving efficient portfolios. For readers who wish to
pursue further the problems and techniques of computation, the present
chapter presents concrete examples to illustrate the general discussions of
Chapter VIII and Appendix A.

1t will not be possible to prove all relationships asserted in this chapter.
To have supplied such proofs would have required a more extensive
exposition of analytic geometry and calculus than seems appropriate here.
The reader who is familiar with these branches of mathematics should be
able to confirm most assertions himself. Since it is still true for the
contents of this chapter, as it was for the preceding ones, that an under-
standing of its proof is essential to the understanding of a theorem, we can
only hope to communicate information about, rather than an understand-
ing of, the topics covered.

We shall consider first analyses involving three securities; then analyses
involving four securities. The four-security analysis introduces all the

129
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main concepts needed for the analysis of portfolios involving any number
of securities,

THE SET OF LEGITIMATE PORTFOLIOS

In the three-security analysis of the present and following sections we
shall let '

X, represent the fraction of the portfolio invested in a first security;

X, represent the fraction of the portfolio invested in a second security;
and

X, represent the fraction of the portfolio invested in a third security.

If, for example,

X; = .75,
X, = 00,
Xy = .25,
then 757 of the value of the portfolio is in security 1; 25% in security 3, If
X, = 1.00,
X, = .00,
Xz = .00,

the entire portfolio is invested in security 1.
In a three-security analysis

X+ X, + X, =1

The fraction invested in a third security follows from the fractions invested
in the other securitics:
X3 - l el Xl lanad X2.

A portfolio may be represented geometrically as in Figure 1. The
horizontal axis of the graph indicates the value of X,. The vertical axis
indicates the value of X,. The value of X, is given implicitly by the
relationship
X3 = 1 - Xl - Xg.
The point labeled P, for example, represents the portfolio with X, = .25,
X, =.30,and X; =1 — .25 — .50 = .25,
The standard portfolio analysis requires that
X]_ ;:_’ 0:
Xy =0,
Xz =0
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This forbids negative investments (short sales). Thus in the standard
portfolio analysis a portfolio is considered legitimate if, and only if, its
X1, Xy, and Xj are each equal to or greater than zero and the sum X, +
X + X; equals 1. Any portfolio represented by a point below the X,
axis in Figure 1 is not legitimate, since it violates the condition X, > 0.
Any portfolio represented by a point to the left of the X, axis is not
legitimate, since it violates the condition X; > 0. Any portfolio repre-
sented by a point above the line labeled X, = 1 — X; — X, = 0 is not

X;
Xz . )
4
\ N
C /
10 63;»
75 g
<,
50 R
I
25 S &
L b °
& 25 5y JS 1.0\ X, a b X,
Figure 1. Geometric representation Figure 2. A non-standard set of legiti-
of portfolios. mate portfolios.

legitimate, since it violates the condition X, > 0. A portfolio is legiti-
mate, therefore, if and only if it lies on or in the triangle abc. The area on
and in this triangle is referred to as the ser of legitimate portfolios.

The requirement that X; > 0 is a restriction on the choice of portfolio.
Such restrictions are usually referred to as constraints, The standard
portfolio analysis has four constraints:

X, 20, X,>0, X;,>=0, and
XN+ X+ X5=1
The constraints determine the set of legitimate portfolios. The set of
legitimate portfolios is a geometric representation of the constraints, The
standard N-security analysis has N + 1 constraints. In the standard
five-security analysis, for example, the six constraints are
4120, 4,>20, X;=0, X;,>0, X,=0, and
HN+XN+ 54+ X+ =1
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The constraints of a portfolio analysis need not be those of the standard
analysis. Suppose that, as in the example security analysis based on
probability beliefs in Chapter I1, there is a minimum requirement on the
current “income” of the portfolio. Suppose that the current incomes of
the three securities are .04, .02, and .03, respectively, and the income
requirement for the portfolio is .03. A portfolio, then, is legitimate only if

04X, + .02X, + .03X; > .03.

Substituting X; = 1 — X; — X,, we may express the requirement as

01X, — 01X, = 0.

To be legitimate the portfolio must be represented by a point below the line
labeled .01X; — 01X, = 0 in Figure 2. Legitimate portfolios, in the
present case, are represented by points in and on the triangle abd.

The computing procedures presented in the next chapter apply when
constraints have one or more of the following forms:

A Xy 4 Az Xy + Az X + -+ AyXy =B

or
A X+ AKX, + Az X + 4+ AyXy =B

or
A Xy + A X + 43X+ - - + AyXy < B,

where A, A,, As,* * -, Ay and B represent numbers. An example of the
first type of constraint is the standard

X+ Xo+ Xt - -4 Xy =1
An example of the second type of constraint is the standard

X, =0.

An example of the third type of constraint is the non-standard requirement

X, < .05.

The computing procedures of the next chapter apply to analyses involving
any number of such constraints.!

! The computing procedure is based on the assumption that X; = 0. If we wish to
allow short sales in security 1, but keep the convention that X; > 0, we can let the
amount invested in security 1 equal the difference between two variables:

X=4-1,

where Z, is the amount purchased and ¥; is the amount sold short. Both Z, and ¥;
must be non-negative,
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NOTATION
Henceforth:

o,; will represent the covariance between the returns of the ith and jth
securities; oy, for example, represents the covariance between the first
and second securities, as in previous chapters.

p; will represent the mean (average or expected) return on the ith
security. (u is the small Greek letter mu, pronounced myoo.)

X, will continue to represent the fraction of the portfolio invested in the
ith secuarity.

E will represent the expected (or average) return on the portfolio as a
whole.

I will represent the variance of return on the portfolio as a whole.

Jso-MEAN LINES

In a three-security analysis the expected return E on the portfolios as a
whole is

E = Xy + Xopty + Xgua

This relationship expresses the results of Chapter I1I in the notation of the
last section. It says that the expected (or average) return on the portfolio
is a weighted average of the expected (or average) returns of its securities.
The weights involved are the amounts invested in each security.
If we substitute 1 — X; — X, for X, in the above equation, we obtain
E = Xy + Xputg + (1 — Xy — XoJusg

= X,(; — iz} + Xolpz — Us) + s
Thus

E = X(pt, — pp) + Xopta — Us) + s

relates the expected value of the portfolio to the amounts invested in X,
and X, Suppose that

4y =.10, uy=.05 and p;=~ .07
Then the expected return on a portfolio would be
E = .03X; — 02X, + .07.
All portfolios with expected return equal to .08 must satisfy the equation

08 = 03X, — 02X, + 07,
or
01 = 03X, — .02X,.



134 PORTFOLIO SELECTION

This equation is represented by the line labeled E = .08 in Figure 3. The
point with X = 1/3 and X, = 0 is on the line; therefore X, = 1/3 and
X, = 0 satisfy the above equation; that is (.03 times 1/3) minus (.02 times
zero) does equal (.01). Conversely, X; = 2/3 and X, = 1/2 satisfy the
equation; therefore the point with X, = 2/3 and X, = 1/2 is on the line.
A portfolio has an expected return equal to .08 if, and only if, it is repre-
sented by a point on the line labeled £ = 08.

Figure 3. Iso-mean lines.

All portfolios with expected return equal to .06 must, similarly, have
X, and X, which satisfy the equation

—.01 = .03X; — 02X,

This equation is represented by the line labeled £ = .06. The line is the
locus of all points representing portfolios with £ = .06. Figure 3 also
presents lines which are the loci of all points representing portfolios with
expected returns equal to .05, .07, .09, and .10.

Such loci of points with the same expected return will be referred to as
iso-mean lines. 'The arrow in Figure 3 indicates the direction of increasing
expected return. As we move in this direction we find iso-mean lines
associated with increasing expected returns.  As long as we do not have
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1y = fa = {3, the iso-mean lines form a system of parallel lines, with a
direction of increasing E, as illustrated in Figure 3.

If 4y, = py = gy, all portfolios have the same expected return. In this
case the only efficient portfolio is that (or those) with smallest variance.
Unless otherwise stated we shall assume that the @’s are not the same.

In Figure 3 we have included the triangle on and in which are contained
all legitimate portfolios for the standard three security analysis. The iso-
mean lines are not confined to this triangle. An expected return can be
ascribed to a portfolio even though it is not legitimate for a particular
analysis.

Iso-vARIANCE CURVES

The variance of a three-security portfolio may be expressed as
V= X0, + Xiop + X504 + 2X1X001, + 2X, X305 + 2X, X505
Substituting 1 — X; — X, for X, we obtain
V= Xioy + Xiou + on(l — X1 — X0 + 2X, X0,
+ 203 X(1 ~ X; — Xp) + 205 X5(1 — X; — Xo),
which, upon expanding squares and rearranging terms, becomes
V = X{loy — 2013 + 6] + Xilog — 205 + 03]
+ 2X, Xplo10 — 015 — 0ug + U3l
+ 2Xi[015 — 035l + 2Xs[o95 — Og5] + G
This expresses V in terms of X; and X,. For three securities with
gy4 = Oy = .01,
gy = 04,
615 = 005, and
O = Oy =0,
the variance of the portfolio equals
V= X301 4+ .04] + X301 + .04] + 2X,X,[.005 + .04]
+ 2X,[—.04] + 2X,[—.04] + .04
= 05X} 4+ .05X2 + .09X X, — .08X, — .08X; + .04.
All portfolios with variance equal to .01 must satisfy the equation
01 = .05x% 4+ .05X2 + 09X, X, — .08X, — .08X, 4 .04;

that is,
05X+ 05X% 4+ 09X, X, — 08X, — 08X, + .03 =0.
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The curve marked ¥ = .01 in Figure 4 is the locus of all points satisfying
the above equation. This iso-variance curve is an ellipse. {An ellipse can
be roughly described as a flattened circle, the circle itself being a special
case of an ellipse. The paths of the planets about the sun are examples of
ellipses.) Figure 4 also presents iso-variance eilipses for ¥ = .02, V' = .03,
and V = 04. Allthese ellipses have the same center, the same orientation,
and the same ratio of longest diameter to shortest diameter. The iso-
variance curve for ¥ == .01 is contained within the iso-variance curve for

.6}

i, W

Figure 4. Iso-variance curves.

V = .02. Thisin turn is contained in the iso-variance curve for ¥ = .03.
As V increases, its iso-variance curve expands without ehanging its general
shape, its center, and its orientation.

The point labeled ¢, with X, = X, = 8/19, is the center of the system of
iso-variance ellipses. The variance, .006, of the portfolio represented by
the point ¢ is smaller than that for any other legitimate or non-legitimate
portfolio. There is no iso-variance curve for ¥ less than .006, for no
portfolic has a variance this small. There is, on the other hand, an iso-
variance curve, centered at ¢, for any V greater than .006.

Typically the iso-variance curves for any set of three securities form a
system of ellipses as illustrated above. Each ellipse of the system has the
same shape, orientation, and center. The center ¢ represents the legiti-
mate or non-legitimate portfolio with smallest variance. ¢ may lie inside
or outside the set of legitimate portfolios. There is an iso-variance ellipse
associated with every value of variance greater than that of c.  As variance
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increases, the iso-variance ellipse expands. Examples of systems of iso-
variance ellipses are presented in Figures 5a through 5d.

@) )
S S ER\\?

y

(a) (b)
Xy
Xz
-—.-_.-__-—'-‘"‘
e g
-~ --\
< "-_~'\
" \(@ )
)

@

Figure 5, Systems of iso-variance ellipses.

The iso-variance curves are not systems of ellipses if, and only if, one or
more of the following conditions hold:

(1) 0y — 2613 + 633 = 0; that is, the random variable (r; — r;) has
zero variance;

() 0y — 2055 + g5 = 0; that is, the random variable (r, — ry) has
zero variance; or

(3) the random variables {r; — ry) and {r, — ry) have a correlation
coeflicient equal to either 41 or —1.

The first condition occurs either when oy, and og4 are both zero, or when
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r, and ry are perfectly corrclated. The second condition occurs under
analogous circumstances. In the present chapter we shall assume that
none of the three conditions occurs; hence the iso-variance curves are
always ellipses. (The correctness of the calcuiations described in Chapter
VIl does not depend on these assumptions. The assumptions do,
however, simplify the geometry of the analysis.)

THE CRrITICAL LINE FOR THREE SECURITIES

Figure 6 contains both iso-mean lines and iso-variance ellipses. The
line labeled E = E, is the locus of points representing portfolios with
expected returns equal to E,. The lines labeled E = E,, E = £, are,
similarly, loci of points representing portfolios with other expected

1
O
P
e
A

Figure 6. The critical line.

returns. The ellipse labeled ¥ = V¥, is the locus of points representing
portfolios with variance equal to ¥;. Those labeled V = ¥,, V = ¥,
and V' = ¥, are other iso-variance ellipses.

Imagine starting at the point @ and moving along the line labeled
£ = £, in the direction indicated by the arrow connected to the point a.
As we thus move along this iso-mean line we successively meet the iso-
variance curves V=1V, V=V, V=V, V=V, V=1V, The
expected return is the same at every point along the line. The variance
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falls as we move from ¥, to ¥, to ¥, 1t rises again as we move from
V,to Vyto ¥, Of all points on the E, iso-mean line the point b, at which
the line touches the }, iso-variance eliipse, has the smallest variance.
Any iso-variance line contained within the ¥, curve does not touch the E,
line. Any iso-variance curve which surrounds the ¥, curve has a higher
variance than V.

At b the V, curve is rangent to the K line: it touches but does not
cross the E, line. All other iso-variance curves either do not touch the
line at all or else cross it twice. Only the ¥V, curve is tangent to the E,
line.

On any other iso-mean line the point with the smallest variance is
similarly the point at which the line is tangent to an iso-variance curve.
Thus the point 4 has smaller variance than any other on the line £ = E,;
the point ¢ has smaller variance than any other on the line £ = Ej; the
point ¢ has smaller variance than any other on the line £ = E,. The
point f similarly represents the portfolio which gives smaller variance than
any other, legitimate or non-legitimate, portfolio with expected return
equal to E;.

The [ine labeled # is the locus of all tangencies between iso-mean lincs
and iso-variance ellipses. It is the locus of all points which minimize
variance among portfolios with the same expected return. We refer to it
as the critical line. If a point is on the critical line, it minimizes variance
for some value of expected return. Conversely, if a point minimizes
variance for some value of expected return, it is on the critical line.

The critical line is a straight line rather than a curve. It always passes
through e, the center of the iso-variance lines. The critical line may or
may not pass through the set of legitimate portfolios.

EFFICIENT PORTFOLIOS

Figure 7 includes the following information concerning a standard
analysis of three securities:

(1) the point ¢ representing the portfolio with smaller variance than any
other portfolio, legitimate or non-legitimate; in the present example ¢ is
legitimate;

(2) the point X representing the portfolio with greater expected return
than any other legitimate portfolio;

(3). the direction of increasing £; and

(4) the critical line, /.

We shall argue that the above information implies that the heavy line,
caX, represents the set of efficient portfolios. That is, we shall argue that
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a portfolio is efficient if, and only if, it is represented by a point on this
heavy line,
To be efficient a portfolio P must meet the following three conditions:

(1) Pis a legitimate porifolio;
(2) if any legitimate portfolio has a greater expected return, it must also
“have a greater variance of return than the portfolio P; and
(3) if any legitimate portfolio has a smaller variance of return, it must
also have a smaller expected return than the portfolio P.

An inefficient portfolio meets the first condition but fails to meet either the
sccond or the third condition. A portfolio which fails to meet the first

Figure 7. The set of efficient portfolios.

condition is neither efficient nor inefficient, but simply non-legitimate. It
is possible for a portfolio to meet conditions 1 and 2 but fail to meet
condition 3. It is also possible for a portfolio to meet conditions 1 and 3
but fail to meet condition 2. All three conditions, therefore, must be
confirmed to ensure efficiency.

The portfolio represented by the point ¢ meets the three conditions for
efficiency:

(1) it is legitimate;

(2) it has a smaller variance than any other portfolio, so no legitimate
portfolio can have a greater expected return with the same or smaller
variance; and
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(3) no portfolio can have smaller variance, so a fortiori no portfolio can
have smaller variance with the same or greater expected return.

Therefore ¢ s efficient.

No portfolio with an expected return smaller than that of c—no port-
folio represented by a point above the iso-mean line E = E—can be
efficient. All such portfolios have a lower expected return and a higher
variance than that of ¢. In particular, if we move along the critical
line from ¢ in the direction of decreasing E, we do not reach efficient
portfolios.

“On the other hand, if we move along the critical Jine from ¢ in the
direction of increasing E, we do encounter efficient portfolios. Consider
any portfolio represented by a point P on the critical line between ¢ and a.
Such a portfolio is efficient since

(1) it is legitimate;

(2) if a portfolio has greater expected return it must lie below the iso-
mean line which passes through P; but the iso-variance curve passing
through P, and all iso-variance curves inside this one, lie above the iso-
mean line passing through P; hence any portfolio with a higher expected
return must have a higher variance of return; and

(3) if a portfolio has a smaller variance than is associated with P, then
it must be represented by a poini inside the iso-variance ellipse which
passes through P; but all such points are above the iso-mean line passing
through P; hence any portfolio with a smaller variance must also have a
smatller expected return than P.

Thus dny point P on the critical line between ¢ and a is efficient.

The points on the critical line below @ cannot be efficient since they are
not legitimate. The critical line and the set of efficient portfoltos must
part ways at this point.

Let us consider any iso-mean line (E = E*) which passes between a and
X. The non-legitimate point & represents a portfolio with smaller variance
than that of any other point on this line. As we move from b, variance
increases. The point Q, on the boundary of the set of legitimate port-
folios, is closer to b than any other legitimate pointon £ = E¥. Thusthe
portfolio represented by @ has a smaller variance than any other legitimate
portfolio with expected return equal to E*. The portfolio represented by
Q satisfies the three criteria of efficiency:

(1) it is legitimate; and

(2) all pomts with either greater expected return and no greater variance
or less variance and no less expected return—the cross-hatched area 4 in
Figure 8—are not legitimate.
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Figure. 8. Efficient and inefficient port- Figure 9. Efficient portfolios.

folios.

Thus any portfolio represented by a point Q between a and ¥ is efficient.
The portfolio represented by X, with expected return greater than that of
any other legitimate portfolio, is itself efficient.

The portfolios represented by the points on the heavy line in Figure 7
are therefore efficient. Figure 8 illustrates why other portfolios are not

Xy

Figure 10. Efficient portfolios. Figure 11.  Efficient portfolios.
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efficient. Points within the cross-hatched area B represent portfolios with
both less variance and greater expected return than those of a typical
legitimate point Z not on the heavy bent line. (Why is the portfolio
represented by the point ¥ inefficient 7)

Figure 9 illustrates a case in which ¢ is not legitimate. The legitimate
point X with smallest variance is that at which the iso-variancc curve
(V = ¥)is tangent to the X; axis. This point is efficient, as are all points
between it and the intersection of the X axis and the critical line. The
scgment of the critical line which lies within the legitimate set is efficient;
as is the segment of the X, axis from b to X.

Figure 10 illustrates a case in which gy = f, > p5 and c is within the
set of legitimate portfolios. The set of efficient portfolios is simply
the segment of the critical line from ¢ to a. b represents a portfolio
which fulfills conditions 1 and 2 but fails to meet condition 3 for
efficiency.

Figure 11 illustrates a case in which the legitimate point X with minimum
variance is the same as the point X with maximum expected return. In
this case the set of efficient portfolios consists of exactly one point, X = X.

Figure 12. Efficient portfolios.

Figure 12 illustrates a case in which the critical line does not intersect
the set of legitimate portfolios. Oné¢ interesting feature of this case is that
the set of efficient portfolios seems to reverse directions at the point a.
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The reader will note, however, that it always moves in the direction of
increasing return as it moves from X to X. Another interesting feature of
this case will be noted later in connection with the relationship between
the cxpected return and variance of return of efficient portfolios.
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Figure 13,  Efficient portfolios.
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Figure 13 illustrates a case with a non-standard set of legitimate port-

folios, polygon abedef. The set of efficient portfolios is the heavy line
XghX.

THE STANDARD FOUR-SECURITY ANALYSIS

Certain features of the many-securities analysis, not apparent in the
three-security analysis, appear when we add a fourth security. The next
few sections discuss efficient portfolios for the standard four-security case.
This discussion illustrates concepts crucial to the analyses, in Chapter VIIT
and Appendix A, of standard and non-standard cases imvolving any
number of securities.

Just as the three-security case required only two-dimensional geometry,
the four-security case requires only three-dimensional geometry. Any
portfolio can be identified by X, X,, and Xj, since X, =1~ X, — X, —
X3 In Figure 14, X, is plotted along one axis; X, along another; and
Xjalongthe third. The standard set of legitimate portfolios is represented
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by points in and on the tetrahedron whose corners, g, b, ¢, and d, represent
the portfolios with, respectively, 1009 invested in security 1, 1005

Xz

X3

Figure 14. Standard legitimate set for four securities.

invested in security 2, 100% invested in security 3, and 1007 invested in
security 4. '

SUBSPACES

In this section we define and label various subsets of portfolios.  These
subsets, or subspaces as we shall call them, are defined without regard to
the inequalities

>0, X,>0, X,=0, X,=0.

We shall, however, consider only portfolios which satisfy the equation
H+X;+ X5+ Xx=1

Our procedure will first be to present the definitions of, and notation for,
various particular subspaces, and then discuss the general definition and
notation applicable to ali these subspaces. The purpose of these distinc-
tions and notation will become clear in the two following sections.

The subspace s, 5 4 consists of all points (portfolios) which satisfy the
following two conditions:

(1) X, =0,
(2) Xi+ X+ X+ X =1
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The portfolio with
=12, X,=1/2, X;=0, and X,=0

is in the subspace s, o, since it meets the two conditions: X, does equal
zero, and X; + X, + X; 4+ X, does equal 1. The portfolio with

X, =34, X,=3/4, X,=0, and X = —1)2

is also in 5, 5 4: nothing in the definition of £, , , rules out negative values
of X’s. The portfolio with

X,=1/4, X,=1/4, X,=1/4, and X,=1/4

1s not in &y, 4 since it violates the condition that X, = 0. Geometrically
81,04 18 the plane in Figure 14 which contains both the X, axis and the
X, axis. Any point on this plane has X, = 0; any point with X; = 0.is
on this plane. The presence of subscripts !, 2, and 4 indicates that
X1, Xy, and X, vary within s, , , subject only to the constraint

Y+ X(+X)+ X, =L

The absence of a subscript 3 indicates that X, = 0 for all points in the
subspace 57,34
The subspace s, 5 , consists of all points with

X2=O,
X+ Yot X+ Xa= 1.

The absence of the subscript 2 reflects the fact that all points in 5, 3, have
Xy = 0. The presence of the subscripts 1, 3, and 4 indicates that X,
X;, and X vary within s, 4, Geometrically the subspace s34 is the
plane containing both the X7 axis and the X; axis.

The subspace s, ; , consists of all points with X; =0, and X; + X, +
X; 4+ X, =1. Geometrically 5,5, is the plane which contains the
X; and X| axes.

The subspace sy ,; contains all points with X; =0 and X, + X, +
X, + Xy = 1. Geometrically s, 5 is the plane which passes through the
points a, b, ¢ in Figure 14

The subspace s, , is the set of all points satisfying the constraints

X, =0, X; =0,

Xi+ Xo4+ X+ Xy =1
The absence of the subscripts 3 and 4 indicates that X, and X, equal zero
for any point in 5; ,. Geometrically s, , is the X, axis in Figure 14. All

points on this line have X, = X, = 0. The points on this line differ only
in the amount invested in X3 and X, =1 — X,.
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The absence of subscripts t and 3 indicates that s5;, contains only
points with X; = X; = 0. Geometrically s, is the X; axis of Figure 14.
53,4 cOntains only points with X, = X, = 0. It is represented, geometric-
ally, by the X, axis.

5.2 contains only points with X; = X, = 0. Geometrically it is the
line passing through the points @ and b of Figure 14. Similarly s, is the
line passing through a and ¢; s, is the line passing through the points
band ¢

The subspace s, consists of all points satisfying the conditions:

Xy =0, X; =90, X, =0,
Xi+x+x+x =1

But the point a in Figure 14 is the only one which satisfies these four
constraints, s, is the set containing only the onc point, a. s,, 53, and 54
are, similarly, subspaces containing one point each.

The subspace 5§, 53,4 consists of all points with

X1+X2+X3+X4=1.

The presence of all subscripts indicates that none of the X”s is required to
equal zero. Geometrically s, ;54 consists of all points which can be
portrayed in Figure 14 (ignoring the limitations of the page). These
points already incorporate the constraint Xy + X, + X3 + X; = 1.

In general, we distinguish 15 subspaces which we divide into four groups:

(A) 512345

(B) $1.2.3 S1.2.40 S1.3.40 S2,3.45
(©) 81,9, 51,3 $1.00 52,95 Sp.05 53,45
(D) sls 52, 53, 54'

Each subspace consists of points satisfying two types of constraints: first,
Xy + X, + X; + X, = 1; second, if the number i does not appear as a
subscript of s, then X, = 0.

$).2.3.4 is referred to as a three-dimensional subspace, since it consists of
all points in the three-dimensional Figure 14.  The subspaces in group B
are two-dimensional, since each is represented by a plane. The subspaces
in group C are one-dimensional, since they are represented by lines. The
subspaces in group D are referred to as zero-dimensional, since they
consist of only one point each.

CrITICAL LINES

In the three-security analysis the critical line played a crucial role in
separating efficient from inefficient portfolios. In a four-security analysis
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several critical lines are needed to serve the same purpose. For each
subspace distinguished in the last section we define a crifical ser.  In most
cases the critical set is a straight line; in some cases the critical set is a
single point. We keep track of critical sets by means of a notation similar
to that used for subspaces, For example,

l.0.5.4 is the critical set associated with the subspace §; 5 5.4:
{54 Is the critical set associated with the subspace s, , 4;
1,5 is the critical set associated with the subspace 5 ,;

/1 is the critical set associated with the subspace s,.

Critical sets associated with other subspaces are similarly denoted.

We shall first define the critical set /54, for the three-dimensional
subspace 5444 Next we shall define the critical set for a representative
two-dimensional subspace; then for a representative one-dimensional
subspace; and finally for a zero-dimensional subspace. The relationship
between critical sets and efficient portfolios is discussed in the next section.

Implicit in the discussions of the present and next section is an assump-
tion concerning variances and covariances. This assumption is a generali-
zation of those made in the three-security case to ensure that the iso-
variance curves were cllipses.  In the four-security analysis the assumption
ensures that the iso-variance sets are ellipsoids—flattened spheres, the
three-dimensional generalization of the ellipse. [Technically we assume
that the covariance matrix of {r; — rp), (ry — ry), and {ry — r,) is non-
singufar.] This assumption is used every time we presuppose that there
is one and only one portfolio with smallest variance among certain sets of
portfolios which arise in our discussion of the geometry of efficient
sets. The assumption implicit in the present discussion is not essential
to the computing procedures presented in the next chapter.

The nature of /y , » , depends on whether

(1) phy = 3 = py = 4y, or, alternatively,
(2) atleast two u's have different values.

In the first case all securities, and therefore all portfolios, have the same
expected return. /) 5 54, in this case, is a single point, that representing the
legitimate or non-legitimate portfolio with smallest variance. In the
second case, when two y's are different, it is possible to find portfolios with
any level of expected return. They may not be legitimate; they may be
represented by points beyond the printed page. Still it is possible to find
values of X;, Xy, Xy, X; =1 — X; — X, — X which satisfy the equation

E =X + Xy + 3 X5 + py Xy

for any value of expected return £. Of all portfolios with expected return
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equal to .1, there is one with smallest variance. The point representing this
portfolio 1s on /, ; 5, Of all portfolios with expected return equal to .2,
there is one with smallest variance. The point representing this portfolio
ison /4, asare the points which give smallest variance for any other
level of expected return.

! 2.3.4 is thus, by definition, the locus of all points P which satisfy the
following conditions:

(1) Pisin 5544 (e, ithas X; + Xo 4+ X3 + Xy = 1);
(2) of all portfolios in s, 5 54 with the same expected return as P, P has
the smallest variance.

This definition applics whether the p’s are all equal or not. When all y's
are equal, only one value of P satisfies the above criteria. When the u’s
are not all equal, the set of points satisfying the above criteria form a
straight line. In the typical case, therefore, /; ;54 i5 a straight line rep-
resenting those portfolios which minimize variance for various values of E.

The definition of /| , , is similar to that of [ ;5 54, except that [ 5 is
defined exclusively in terms of the points of the subspace 5,5 A point
Pisinf 4 Ef it meets the following conditions:

{1} Pis in the subspace 5, 44; and

(2} of all points in g, , 4 with the same expected return as P, P has the
smallest variance.

I 25, in other words, is the locus of points in s ,5 which minimizes
variance for various levels of expected return.  If gy = pp == pg, 55882
single point—that which represents the portfolio with'smallest variance.
If gy, to, and gy are not all equal, /1, , 4 is a straight line. It is exactly the
same as the critical line of a three-security analysis involving Xj, X, X;.
If we add a fourth sceurity to a three-security analysis we add new critical -
lines, but the critical line / , , stays the same.

The critical sets, £ 5.4, /1 2.4 f2.3.4» 2ssociated with the other two-dimen-
sional subspaces are defined similarly and have similar properties.

The definition of the critical set / , for the one-dimensional subspace
8.5 is formally the same as the definitions of critical sets for higher-
dimensional subspaces. A point P is in /, , if, and only if, it satisfies two
conditions:

(1) Pisin 8, ,; and :
(2) of all Pin g, with the same expected return as P, P has the smallest
variance.

Since s, , is itself a straight line, /, , is cither a single point or else is the same
as sy o Ifpy = py, thenly yis a point.  If uy # gy, then /4 is the same as
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Sy.0-  Similar remarks apply to the critical set of any other one-dimensional
subspace.

The critical set /; is exactly the same as the subspace 5, The critical
sets /y, I, and /; are similarly the same as the subspaces s,, 53, and s,,
respectively,

Figure 15 shows a system of critical sets for a four-security analysis.
The relationship between the critical lines and the set of efficient portfolios,
also shown in Figure 15, is discussed in the next section.  Critical sets for

X, Efficient portfolios — >

Xy

Figure 15. Critical lines and efficient portfolios.

one- and zero-dimensional subspaces could have been defined for the
three-dimensional analysis of previous sections. In that analysis such a
proliferation of critical lines would have added little. In tracing out
efficient sets for many securities, however, critical sets for one- and zero-
dimensional subspaces play an important role.  The geometric description
of the present chapter, in particular, is simplified by the notion of critical
lines for one-dimensional subspaces. The computing procedures of the
next chapter require the notion for both one- and zero-dimensional
subspaces.

EFFICIENT PORTFOLIOS

We shall let X represent the legitimate portfolio with variance smaller
than that of any other portfolio. X is to be distinguished from ¢, the
portfolio with variance smaller than any other portfolio, legilimate or
non-legitimate. If ¢ is legitimate, then X = c. If ¢ is not legitimate,
X #e.

Every efficient portfolio is on some critical line. The converse is not
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true. Not every legitimate portfolio represented by a point on a critical
line is efficient.

The relationship between critical lines and efficient portfolios can be
described by a simple device. Imagine the critical lines as railroad tracks.
Imagine, further, that a passenger boards a train at X and travels in the
direction of increasing expected return. The first time his train crosses
another track—as soon as the first critical line intersects a second critical
line-~the passenger transfers to the new track, the new critical line, and
again travels in the direction of increasing E. Again he reaches another
track, an intersection of critical lines, and again he transfers to the new,
continuing in the direction of increasing E. This continues until the
passenger reaches X with maximum E. There his journey ends.

Every point through which the travcler passes on his journey represents
an efficient portfolio. Conversely, every efficient portfolio was reached
en route. In Figure 15, for example, the set of efficient portfolios is
represented by the heavy bent line that starts at X, moves along /; 54,4
until this intersects /| , 5, moves along the latter until it reaches /, 5, moves
along Iy 5 until it finally reaches X.

How do we know that the traveler always remains within the set of
legitimate portfolios? How do we know he passes only through points
representing efficient portfolios? How do we know that he will ever
arrive at X7 Unless we can answer these questions satisfactorily we can
place no confidence in the computing techniques of the next section. The
assurance that the traveler’s route has the properties ascribed to it is
presented in Appendix A,

PORTEOLIO ANALYSES INVOLVING ANY NUMBER OF SECURITIES

The basic features of analyses involving large numbers of securities are
already found in the four-security analysis. These basic features arc

(1) the definitions of, and notations for, subspaces;

(2) the definitions of, and notations for, critical lines;

(3) the tracing of the set of efficient portfolios from X to X along critical
lines.

If there are, say, seven securities altogether in an analysis, then the sub-
space §) 4 45,7 consists of all portfolios with

NHH0OF G+ XX+ X+ K=
Xe=10, and X;=0.

! Actuaily the usual procedure is to trace the efficient set from X to X. In this case
the question is how can we be sure that the computation will finaily arrive at .
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The critical set /, 3 4 5., consists of all points P such that

(1) Pisins; g5+ and
(2) of all points in sy 3 4,5,; With the same expected return as P, P has the
smallest variance,

With the various critical sets (mostly lines) defined similarly, the set of
efficient portfolios is traced as before, by starting with X and moving in
the direction of increasing E, transferring from one critical line to another
whenever these intersect, until X is reached.

The reader may find it instructive to apply this general procedure to the
three-security examples of Figures 7 and 9 through 12.

EFFICIENT COMBINATIONS: E AND ¥V, E AND STANDARD DEVIATION

In tracing the set of efficient portfolios, our imaginary passenger first
moves in a straight line, then turns and moves in another straight line,
then turns again and moves in another straight line, continuing until he
reaches a point with maximum £. The path thus traced is a connected
series of straight line segments.

As long as our passenger moves along a single critical line, the relation-
ship between expected return and variance of return is represented by a

v

| _
E E, E

Ey By B, By
Figure 16. ¥ and E along a critical line. Figure 17. Relationship between
consecutive efficient parabolas.

parabola, such as that in Figore 16. The solid segment of the parabola
corresponds to the segment of the critical line which is efficient. The
broken portion of the parabola corresponds to the remainder of the critical
line. When our passenger first reaches the particular critical line, he is at



GEOMETRIC ANALYSIS OF EFFICIENT SETS 153

a point with expected return Ey and variance V. As he continues along
the critical line, he passes through a point with expected return E, and
vartance V3. The point at which he transfers to the next critical line has
E; and ¥, for expected return and variance. If he had continued along
the critical line beyond the region in which it was efficient, he wouild have
reached a point with expected return E; and variance of return ¥,. Along
the new critical line a new parabola. describes the relationship between
Eand V.

The set of points representing efficient portfolios turns a corner, forms a
sharp kink, as our passenger transfers from one critical fine to another.
There is typically no such kink, however, in the curve describing the
relation between £ and ¥ for efficient portfolios. The point ¢ in Figure 17
iltustrates the typical relationship between their parabolas at the inter-
section of two successive critical lines of the efficient set. The parabolas
are tangent: they touch but do not cross. The relationship between ¥
and E transfers from one parabola to the other without discontinuity
or kink.

If our traveler was on the critical line corresponding to parabola 2 for
£ less than Ej, he finds that this critical line intersects that of parabola 1
at £ = £, and it becomes non-legitimate for E greater than £,. He is
forced, therefore, to transfer critical lines. 1f, on the other hand, our
passenger was on the critical line corresponding to parabola 1 for E less
than E,, he finds that the critical line corresponding to parabola 2 goes
from being non-legitimate to being legitimate at E = E,. To stay with
efficient portfolios he must transfer to this new and better critical line at E,.

It is, however, possible for the curve relating efficient ¥ to efficient £ to
have a kink. This cccurs when the set of efficient portfolios turns corner a

in Figure 12. Whenever a kink occurs, it must be of this nature J
rather than of this nature / .

The curve relating efficient standard deviation to efficient expected
return has properties similar to the curve relating E and V. The chief
difference is that the former is principally made of segments of hyperbolas
rather than parabolas. If the analysis includes a security with zero
variance, one segment of the curve relating efficient standard deviation to
efficient expected return is a straight line, as illustrated by the segment
starting at (F, o) = (0, 0) in Figure 4 of Chapter II. The curve relating
efficient standard deviation and efficient expected return has a kink, if,
and only if, the E, V curve has one.



CHaPTER VIII

DERIVATION OF E, ¥V EFFICIENT PORTFOLIOS

INTRODUCTION

This chapter presents the *“critical line method” for deriving efficient

portfolios, This method, based on principles illustrated in the last
chapter, processes the means, variances, and covariances of any number
of securities, From this information it obtains the implied efficient
portfolios.
" Several early sections of this chapter are devoted to matrix algebra.
Although it is possible to present the critical line method without
reference to matrices, a discussion of this subject is included for three
reasons:

1. The required principles of vectors and matrices are not difficult to
learn, even for the reader with a meager mathematical background.

2. A much greater insight into the rationale of the computing procedure
is possible for the reader familiar with matrices.

3. If the reader is to pursue problems of computation, if he wishes to
ook into the closely related field of linear programming, for example, a
knowledge of matrix algebra is invaluable.

Notions such as the addition, subtraction, and “scalar multiplication™ of
matrices are easily grasped, since they closely parallel ordinary opera-
tions of arithmetic. “Row by column multiplication” of matrices is
less natural but a little practice gets the reader over this hurdie. The
notion of an inverse and its modification, which may present another
hurdle, 1s essential for an understanding of much of the computing
procedure.

The concepts and notation of the sections up to and including that on
“Addition, Scalar Multiplication” are used in later chapters. The reader
who decides to omit or postpone discussions of computing procedures is
advised to read these preliminary sections before going on to the next
chapter.

154
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THE SUMMATION SIGN

T is commonly employed to denote summation. Thus

says the same thing as
H+EXN+H XN+ 4+ Xy=1

¥ is the Greek capital letter sigma, not to be confused with the small
letter . The expression '

N

hIR ¢

t—~1

may be read as “the sum of X; for i from I to N,” or as “sigma X; for i
from | to N Here are some other examples involving X:

AY
z X, = E
=1
is a compact way of saying
Ky + Xty + Xopy + - -+ Xypy = E.
In the three-security case we may write
3
E] Xu, = E

rather than
Xy + Koty + Xgpty = E.

The letter under % indicates what 18 to be summed. Thus
N
E ¢
i=1

represents
GaXy + X + 0uXs + 0 - - + oy X

In particular wheni=1and N = 3
3
_Ela.l:iXJ' = o Xy + 012X, + 033 XG
i=

(This is the contribution made to the variance of a portfolio by the first of
three securities.) 'When the nature of the summation is clear from context,
- it is permissible to write, for example,

X
> Xu; oreven » Xu instead of ¥ Xu,.
i1
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N N N
> 2 X.X,o;; represents a sum of sums 3 ( > XX, cl,)
i=1j=1 i=1 \j=1

Thus
Xy X160 Xy X103, XsXyoy
. + + +
iz}jlestf’u‘= X Xo0ps | + | XaXoOyy | + | XpXo0y |-
+ + +
X1 X301 Xy X300 X3 X303

Or, equivalently,
XiXo + XNXeop + AXpoy

Zl ZIXXO'U =+ XAiom + KXo + XpXoy
t i
+ XXioy + Xdopm + X3Xp0u.

The general relationship between the variance of a portfolic and the
covariances (including the variances) of securities may be expressed as

N N

V= szXazﬁ

i=1j=

When the nature of the summation is clear from confext, we may write

N N
¥ X X0, insteadof ¥ 3 X, X0,

i=1j=1

MATRICES, VECTORS

A matrix is a rectangular array of numbers enclosed by brackets, for

example:
! 3 6 9 1
[ ] ] [ ] 1 [4] 3
§ —4 4 8 3

000 8 —~1 0
0 0 0f [1,6, —4,1], 9 G ~1].
6 0 0 -3 4 0

If a matrix has m rows and » columns, we say that it is an m by n matrix.
Thus the matrices listed above are, respectively, 2 by 2, 3 by 1, 2 by 3,
1byl,3by3,1by4, and 3 by 3. The numbers within a matrix are called
its elements.
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If m = n the matrix is said to be sguare. The first, fourth, fifth, and
seventh of the above matrices are square. If n = 1 the matrix is called a
column vector. The second and fourth matrices are column vectors. If
m = [ the matrix is called a row vector. The fourth and sixth matrices
are row vectors.

In ordinary arithmetic the opcrations of addition, subtraction, multi-
plication, and division “combine™ two numbers to “produce™ a third
number.  Tn matrix algebra there are standard operations which combine
two matrices to produce a third matrix. These matrix operations include
addition, subtraction, and “scalar” multiplication (discussed in the
succeeding scction); and matrix multiplication (discussed in the next
succeeding section).

ADDITION, SCALAR MULTIPLICATION

Suppose that 4 and B represent two matrices, each with m rows and »
colomns. ~ Then
C=A+8

isanm by nmatrix. Each component of Cis the sum of the corresponding
elements of 4 and B: if a;, b,;, and ¢;; are the elements of the ith row and
Jjth column of A4, B, and C, respectively, then

€y = Ay + by

4 29 3 -1 8 + 1 31
-2 1 1] {2 01 —4 1 o]
The difference between two m by n matrices D = A — Bisan m by n
matrix each of whose components is the difference of the corresponding

components of 4 and B. Thus, if d; is the clement in the ith row, jth
column of D, then

EXAMPLE:

dij = a; — by
ExaMPLE:
3 -2 5
2| - 1| = 1
1 2 -1

We shall discuss two kinds of multiplication involving matrices, The
first, called scalar multiplication, is discussed in this section. The second,
called matrix multiplication, is discussed in the next section.

If A is an m by n matrix with efements «;, and ¢ is any number, then

B=rcA
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is an m by n matrix whose elements are
b;, = ca;.

cA is referred to as the “scalar product” of ¢ times A.

EXAMPLES:
2 6 1 3
-2 o)
[4 —2] 2 -1
-1 -—3:‘_ 1|:1 3i]
~2 +1 2 1]
EXERCISES
1. Compute
3 2 1 —1 3 1
(a) 1{4 81; (b) —-11+ 11{; ) 12| — 81;
4 —1 0 L 0 1 —1
1 2 6‘| 1
(dy |6j—14}; () 3j41; (fy =2 21
1 2 1.2 —1

2. A matrix all of whose components equal zero is called a zero matrix.
Thus the 2 by 3 zero matrix is
000
00 o]

A=A4+0
where 0 represents a zero matrix with the same number of rows and columns as
the matrix A.
3. Show that, as with numbers, 4 + B= B + A,

4. We have defined matrix addition only for pairs of matrices. Show that,
as with numbers,

Prove that, as with numbers,

[A+Bl+ C=4A+[B+C]
Thus we may write
A+ B+ C

5. Show that, as with nembers, if
C=A4-—B,
then
A=C+ B
6. If 0 is the number zero and 0 is an m by a zero matrix, show that
04=0
for any m by n matrix 4.
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7. Show that, as with numbers,
A—B=4+ (—1)B.
8. Show that, as with numbers,
oA+ B)y=cA + ¢B,

where 4 and B are m by # matrices and ¢ is a number.

ANSWERS

1: 5 0 2
{a) [9} {b) {0}; (c) {-G:I;
3 0 21
—1 18 -2
(d) l: 2]; @ ‘:12} 63 [—7}-
—1 6 2

MATRIX MULTIPLICATION

The definition of a matrix product, 4- 8 or AB, is not so straight-
forward as the definitions of sums and differences. A special case of a
matrix product is the product of a row vector and a column vector. The
rule for forming such a product is illustrated by the following example:

2
4

[, 3,57 P =1-24+3-445-647-8=100,

3
or, more generally,
by

b
[ay, @y, a5, ] ; = aby + @by + azby + agb,.
3

by

Thus, in general, if

a=[a, - a] and b=} - |,
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then their product is defined to be
arb=ab, = ab, + ab, + - * * + a,b,.

Such a “matrix product” of a row vector by a column vector is referred to
as an inner product. The reason for, and the usefulness of, this definition
will emerge subsequently.

The “inner product™ is defined only for the multiplication of a row and
a column vector with the same number of elements. The matrix product,
A+ B, is in general defined only when A4 has the same number of columns

as B has rows. If 4 is an m by r matrix, and B is an r by # matrix, then
AB is an m by n matrix. For example,

a 3 by 4 matrix times a 4 by 6 matrix produces a 3 by 6 matrix;
a 1 by 5 matrix times a 5 by ! matrix produces 2 1 by 1 matrix;
a 5 by 1 matrix times a 1 by 5 matrix produces a 5 by 5 matrix;
a 4 by 4 matrix times a 4 by 4 matrix produces a 4 by 4 matrix.

Multiplication is not defined for
a 3 by 2 matrix times a 4 by 6 matrix;

a 5 by | matrix times a 5 by 1 matrix;
a 3 by 3 matrix times a 4 by 4 matrix.

Thus the number of columns in 4 must equal the number of rows in B

for AB to be defined. 4B has the same number of rows as 4, and the
same number of columns as A.

The definition of 4 - B is illustrated by the following examples:

1 3] M2 4 1-2+43-6, 1'4+43-8
{5 7:|-|:6 8] [5-2+7-6, 5-4+7-8]
2 4] [1 3 2-144-5 2-344-

[6'8][5 7]=I:6-1+8-5, 6-3+8-:]
2 2
=I:46 ‘ﬂ'

20 28
52 76
For any 2 by 3 matrix A and 3 by 2 matrix B, A - B equals

I

11912
liaualza:a} b _ [allbll + aabay + aygbey, anbra 4 apbey + alabsj
o Anbyy + by + Axbyy, ambrs + Gubey + assby

Q9 8oatlys
3153
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a 2 by 2 matrix. In general, if the ith row of A is (a1, @i, * * *, a,), and
the jth coltmn of B is

by,

by;
br:'

then the element in ith row, jih column of 4B is
anby; + @by + ¢ ¢ - + ayby,.

Thus, if C = AB, c,; is the inner product of the ith row of A and jth column
of B. The restriction that the number of columns of 4 equal the number
of rows of B is required for this inner product to be defined. Note that,
unlike ordinary arithmetic, 4B does not necessarily equal BA. For

YL
MR

Two matrices are “‘equal” if and only if each element of one is equal to

the corresponding element of the other. Thus, given our definition of
multiplication,

S8

b2

3 4 1[x, 1

2 8 6ijX,|=19

1 9 4l X, 2
means that

3, +H4X,+ A =1,
(1 2X +8X, + 6X; =9,

X; +9X, 44X, =2

If we let
3 41 X, 1
A=12 8 6|, X=X}, b=19|,
Ll 9 4 X, 2

then the equations (1) may be written

AX =),
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Y X

Yon X,
and A is an m by n matrix, then
Y=A4X

expresses the ¥, as weighted sums (linear combinations) of the X

EXERCISES
1, Confirm that
2 8 6] 4 16 10
(a) 3 -1 {4 2 =15 20 16|;
2 4 - 8 32 20
1 -3 1 2
(b) 3113,1,21=1.9 3 6{;
6 |18 6 12
=
() [3,1,2}| 3| = [18].
6
2, Compute
()[286]; ? (b)|:286:|(1)(1)g
a =11
1 4 2 2 4 I 4 2 o 0 1
3. Show that o
AT =D

)

where § represents a zero matrix.
4. Suppose that ¥ = 4X as above; suppose that
Z
Z =
ZT'
is defined by a p by m matrix B, as follows:
Z = BY.
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Either show in general or confirm for some special case that
z = (AB)X,
where (48) is the p by n product of 4 and B,
5. What three equations in three unknowns are represented by

341
[X], X, X312 8 6 =1(1,9,2).
1 9 4
Note: The answer is not equations (1) of the text.

6. Either show in general, or confirm in some example, that (4B)C = A(BC)
(that is, the product of 4 and B multiplied by C equals 4 times the product of
Band ). Because of this relationship we may write ABC without ambiguity.

ANSWERS

@ [38 20] o [2 g 6]
SRR ET AN {4 2|
53X+ 2X, 4+ X,=1;

4X, + 8X, + 9X; = 9;
X+ 6X, + 4X, = 2.

TrANSPOSE, SYMMETRY, MAIN DIAGONAL

A’ represents the franspose of A. A’ is the matrix which has the same
rows as A4 has columns, has the same columns as 4 has rows. For

example,
1 317 [1 2
2 4] [3 4/

(1,2,6) = |2},
6

Mo —
Ja oo
[ NN ]

N
At = B =]
L= .S -

1
) e
N W
| I
I

I
[FE R
M9
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A matrix is symmetric if 4 = A’; for example,

1 3 1 3
if A= then A = ;
3 2 3 2

hence 4 is symmetric. On the other hand,

1 3 P2
if A= then A = :
2 4 3 4

hence in this case A4 is not symmetric since

00 ]

Only a square matrix can be symmetric.

The main diagonal of a matrix consists of the elements ay,, @y, a4y, etc.
The elements of the main diagonals of the following two matrices are
circled:

(D 3 8 4
2 ® 7 1
9 3 @ 4/
1 6 8 @]
(@ 2 1 97
3 @ 8 6
19 6 & 4]
EXERCISE

1. Show that for any matrix A4 the main diagonal of A is the same as the main
diagonal of 4"

THE INVERSE

A square matrix with ‘“ones” along its main diagonal and “zeros”
elsewhere is called a unit matrix. Thus the 3 by 3 unit matrix is

10090
01 0]
0 01
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A unit matrix is frequently represented by the symbol 1. The reader
should confirm that, whenever the sizes of the matrices are such that
multiplication is defined,

Al = A,
4 = A.

Thus the product of any matrix 4, multiplied (on the left or right) by a
unit matrix, is A itself. The matrix ! plays a role in matrix algebra
similar to that played by the number 1 in ordinary arithmetic.

As the reader may confirm,

1 0 O 1 0 0] 1 0 0

I 3 0f[—-13 1/3 0|= 1 0y;

10 2 1 2[3  =2[3 1] 10 0 1]
also

1 0 o1 o 07 1 0 07

-3 13 0]|1 3 0l={(0 1 0.

L 23 —=2/3 1j]0 2 1] 10 0 1]

Whenever two such square matrices have the property that
AB = BA =1,

we say that B is the inverse of A (and, conversely, 4 is the “inverse” of B).
If a square matrix 4 has an inverse at all, it has only omne inverse
[Proof: Suppose that both B and C were inverses of 4. Since CA = [
and AB = I, we have (CA)B = B and C(AB) = C; hence C = B.]
The symbol A-11is frequently used to represent the “inverse of A.”

If we know A7, we can easily solve a set of equations

(1) AY = b,
Multiplying (1) on the left by 4-1, we get
AIAY = 471p,
Y= A7,
For example, the solution to
1 0 0fx, 1
1 3 ofjXx,|=|—-2
0 2 1]]lX; 0
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is . _
X, 1 0 0 l 1

Xpl=1|—=13 1y3 0}i-21={ ~1
X3 23 =203 1 0 —2/3
If 4 is an m by m matrix which has an inverse, then the solution to
by 1
: 0
Al - |=10
b 0

is the first columns of 4~1. Let E; be an m element column vector with
a “1” in the ith place and zeros everywhere else; for example, if m = 3,

1 0 0
E =|0], E, =11}, E=1]0]
1] 0 1
Then the solution to
blz’
Ay - | =E,
bmi

is the ith column of the inverse. Not all square matrices have inverses,
For example, the matrix

2 2

11

has no inverse since it is impossible to solve either
2 21X I 2 2w 0
— Qar = .
I 1} X; 0 11 1
1 4
00

has no inverse since it is impossible to solve

o ollul-L]
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The following properties of inverses are noted without proof.

1. A square matrix A has an inverse if and only if there is no vector

X
X= ,
X
other than the vector
G
Xy = )
_0_
such that
0
AX =
_0—
2. A square matrix 4 has an inverse if and only if there is no vector
Y=1Y,,- - - Y,], other than ¥, = [0, - -, 0], such that
Y4 =0.
3. If A and B are m by m matrices such that
AB = I,
then we also have
B4 =1

4. A matrix has an inverse if and only if its “determinant” is not zero.

A square matrix which does not have an inverse is called singular. A
matrix which does have an inverse is called non-singular.

EXERCISES
1. Suppose that 4 = [alis a 1 by | matrix. What is its inverse? When is a
1 by 1 matrix singular? Docs the rule
if AX=256 then X= A"
apply to 1 by 1 matrices?
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2, Construct a singular and a non-singular 2 by 2 matrix.

3. Use
1 0 0] X, =1,
1 3 0 tosolve X, +3X;=1,
0 21 2X;+ X;=1

MODIFYING AN INVERSE

Suppose 4 is an m by m matrix with an inverse 4; suppose that B is
m by m with an inverse 8-1. Then A8 is an m by m matrix whose inverse
is B~1- A7 (note the change in order). This is easily proved:

(ABYXBA™) = A(BB YA = A4 = 1.

Suppose that A is an m by m matrix,

4y, T alm’_]
A= ,
Lmts " " A,
with an inverse
all , . alm
A1 =
_aml, SRR qmm

Suppose that A4 is a2 matrix which is the same as A except that the kth
column of A4 has been replaced by the vector

iy
m,
Thus
A1, * a1 o Dx+ts " " T um
_‘4-. —_—
L2 PN ¢ o R ﬁm’ Qugtts " " 5 0mm

Suppose that 4 also has an inverse (4)L There is a simple formula
which relates the coefficients of 4! and 4. This relation will prove



DERIVATION OF E, ¥ EFFICIENT PORTFOLIOS 169

useful in our E, V' computing procedures. It may be derived as follows:
The vector

41
y =
which satisfies Ay = 8 may be expressed as
y=A75
With y thus defined we may express A as
"1 % 07
1 Y2
1 .
A=4- o = AE,
Ye
1
L0 Yon 1
where E, as indicated above, is a matrix whose elements e,; satisfy
y, ifj=k
gy =141 ifi=j#k,
0 otherwise,
The inverse of E is the m by m matrix
1 Y1/ 07
— %/t
E? = 1y i

_0 "'ym/ Y 1 _
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whose elements é;; satisfy

—¥:{ Y if j=/kbuti£k,

1y, ifi=Fkandj=F,
= ifi=/ %k,

0 otherwise.

This may be shown by confirming that
EE- = ElE =T

(Left for the reader.) Applying the rule for the inverse of a product, we
find that
(A = (4AdEY' = EtA°L

Hence, as the reader should confirm, the coefficients @ of (4)~ satisfy

» {a"" — Wy ifi#k,
G’ =

a*ify, fori = k.

EXERCISES
1. Show that
(ABCY! = C1B 1471,

2. What is this relationship between @ and a¥ if the kth row, rather than the
kth column, is modified ?

3. How can one obtain the inverse of
M o o ay By dy
0 ayp ay| fromthatof |ay dp ay|?
L0 ayp ag Ay P dn

4, How can one obtain the inverse of

Tay a2 1 0 o

Gy Qo gy | fromthatof |0 ww apl?

Léy1 dga dg 0 ap az

THE PORTFOLIO SELECTION PROBLEM

A portfolio is represented by a vector
X
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where X; is the fraction invested in the jth security. We shall assume
X; =0 forallj.

The X, are also subject to constraiats:

anXy + apXe +apXy + 0 e X, = by,

anXy + apX +anX; + 0+ @ Xy = by

Ay Xy + O Xo + g Xa + 0+ + @un X = D
In the standard case m = 1,

ap =@ =ag=""'"'=4a,=1

That is, the only constraint other than X; == 0is

3Xx, =1
An inequality such as
04X, + 02X, + .03X; > .03

can be expressed as an equality by introducing a “dummy” security. Thus
the above inequality can be represented by an equality if we let

04X, + 02X, + .03%; — X, = .03,
where X, > 0; py = 0; 05 = 0forj=1,2,3,4. Aninequality such as
X, <5 |
can be represented by an equality
X+ X =5,

where X; is another dummy security with X; = 0; g5 = 0; a5 = 0 for
all j. If there are, for example, three securities (other than dummies)
purchased subject to constraints:

(1) Xj.>—0> J= 1i2: 33
3
) 2 X=1
i=
{3) 04X, + 02X, + 03X, = .03,
Q)] X; <5 j=123,

we can express the system as inequalities X, > 0 plus a set of equalities
by letting

N+ X+ X =1,
04X, + 02X, + 03X, — X, = .03,
X, + X, = .5
' X, + X, = .5,
X, + X, = .5

XJEO for j=l,2,3,4,5,6,79
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where X, X;, X;, and X; are dummy securities with mean and variance
equal to zero.
A system of m equations can be written as

AX = b,
where A is an m by n matrix, X is as previously defined, and b is an M
element column vector. We can alsorepresent X; >0 for j=1,- - -, Nby
X =0

The expected return on a portfolio is

E e ZXJ'I”J"
where y; is the expected refurn on the jth security. (u; = 0 for dummy
securities.) We shall let u be the column vector of 4. Its transpose is

w= (g fha,* %5 fhon)-
The expected return on the portfolie is the inner product
E=yux.
The variance of return on the portfolio,
V= EZ X X0y
may also be written i

_Xl_l
0-111 6123 Y oln
o J x,
V=[Xl’ X2:' Y Xﬂ] ’
Ouly Tngs* 7 s Oy )
LXn,J

(Confirm this.)
If we let X' be the row vector [X,,- - -, X,] and C be the matrix of
covariances, then we can write
V=XCX.
Since 5, = oy, C is symmetric.

NOTATION

The inputs to the efficient portfolio analysis, we have seen, are

C, the n by » matrix of covariances;

#, the (column) vector of expected returns;
A, an m by n matrix;

b, an m element vector.

A and b form the constraint equations 4AX = b.
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The following new matrices are used in the computation:

r . .. . . n

Oy %1 Gn Ay

Tu " " " Gun Gyt An
M=

@y e, 0--+0

2 I L 0.-- 0 -

That is,

C A
M= R
A

where A" is the transpose of 4. M thus is an (m + n) by (m + n) matrix,
made out of C, 4, A" and an m by m zero matrix. M is symmetric.

I"O'

R is an (m 4 n) element column vector. Its first n elements are zeros;
its last m elements arc those of the vector b.
Y

Lo
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Sis an (m + n) element column vector. Its first #» elements are those of
the vector u; its last m clements are zeros.

We define a unit cross to be an intersecting coluran and row vector with
zeros everywhere except for a 1 at their intersection; for example,

0 0 10000
01000 0 0

0 00100 0

0 0 0

0 0 0

Suppose that
Gny O O3 &
Og1 Oy Oy da
Oy Oz Oy dy
a a, a; 0

Then to “replace™ the second row and colummn by a “unit cross’ means to
change M into

oy 0 oy a
O 1 0 ¢
oy 0 oyp a J

aq 0 a 0

CrITICAL LINES

The set of efficient portfolios is made up of segments from critical lines.
Associated with any critical line is a set of variables which are referred to
as fn. Those which are not in are referred to as our. The formula for a
critical line is the following:

X))

%)) M = R+ Sip;
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that is,

- X -
M [ :] = R + Sig.
A

M is the matrix M except that the rows and columns corresponding to
variables which are out are replaced by unit crosses. For example, if
n = 4, if variables 1 and 3 are in and 2 and 4 are out, then # is M with the
2nd and 4th rows and columns replaced by unit crosses. Our computing
procedure is such that A is always non-singular (has an inverse). The
variables X in (1) are, as defined before, the amounts allocated to various

securities. We have not yet met the variables 4,,- - -, 4,,. There is one
for each constraint equation. Thus, when
3K =1
is the only constraint equation, m = 1 and
X
HeR
L A

The role which the A play in our computation will emerge subsequently.
R is the (m + n) component column vector defined previously. S is the
column vector S, except with zeros corresponding to variables which are
out. For example, if # = 4, m = 1, and j = 2 and 4 are out, then

151
0

L
It

Hy |-

0

Ag is a number (rather than a vector or matrix). If a particular value of
Ay is specified, equations (1) can be solved for X.
The formula for the critical line may be written

@ [ﬂ = (M)1R + (M)§ip.
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M1 has a unit cross in every row and column which is out. It is
computationally more convenient to write A~ with a zero cross instead of
a unit cross for rows and columns that are out. (A zero cross is like a unit
cross except that it has zeros everywhere, including at the intersection,)
We therefore define N(i) to be M~ (for the ith critical line we arrive at in
tracing out the efficient set) except with zero crosses in out positions.
With this notation (2) may be written

X
3) [J = NR + NG)+ S+ Ap.
Note that § may now be used instead of S.

THE CoMPUTING PROCEDURE

It will be convenient to illustrate the general instructions by a particular

example. We shall use the following portfolio selection problem for this
purpose:

n =3, The covariance matrix is

0146 0187 .0145
C = |.0187 .0854 .0104|.
0145 0104 .0289

The expected returns are
062

u=|.146 .
128

The only constraint equation is
Xl + X2 + Xa = 1.

Of course, X; >0forj=1,2,3.
From C and u follow
0146 0187 .0145 1
0187 0854 .0i04 1
0145 0104 .0289 1
1 1 1 0
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0 062
0 .146

R="|, s= )
0 128
1 0

Step 1 finds the efficient portfolio XV with maximum E. This is easy
when the only constraint equation is

Sx=1.

The portfolio with maximum E consists entirely of the security with the
maximum ;. In the example presented above the portfolio which
maximizes E is

0
X0 = (1]
0

When a more general set of equations 4X = & constrains the choice of
portfolio, it may be necessary to use /inear programming to find the port-
folio which maximizes E.! (Linear programming is discussed in a subse-
quent section.)

More than one portfolic may maximize £. When

EX=1

is the only equality, for example, more than one security might have the
same (maximum) f;. One way to handle this is to alter the u; slightly
(e.g., change a .125 to .125]) to obtain a unique maximum. Another
method, which does not require alteration of the problem, is presented in
[11}. In, the present discussion we shall assume that the maximum is
unique.

Step 2 finds the formula for the critical line associated with Y. We
illustrate the procedure with our example before describing it for the
general case.

! The present discussion assumes that there exists a portfolio which maximizes E.
This could fail to be so only if

(a) no X satisfied AX = b,
X=0, or
(b} there was no upperbound to the obtainable E.

Either condition would be revealed by the linear programming compuiations. In
case (a) the computation is over. In case (b) the efficient set must be traced by starting
from X rather than from X.
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J=1land j=3are out. The equation

is

1 0 0 0[x, 0 0

0 .0854 0 11X, 0 146
=| |+

0o o 1 0l|lx, 0

0 1 0 0] 4 1 0

The inverse of a matrix with unit crosses can be obtained by

(a) eliminating from the matrix the rows and columns with unit crosses,

(b} inverting the matrix which remains, and

(c) reinserting umit crosses in the inverse in the same position as in the
original matrix.

Thus to invert A7 above we first invert

0854 1
1 o]

This is done with dispatch since, in general,

H[ }-

Hence
0834 11— 0
1 0 1 —.0854
and
1 00 0
~ 0 0 ¢ 1
M1l=
0O 01 0
0 1 0 —.0854]

Substituting zero crosses for the unit crosses of variables which are out,
we gel
0 0 1
0 1
0 0
0 —.0854]

N =

o o o Q
-0 O O
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The values of X and 4 along the critical line are given by

X
[J = N()R + 2zN(1)S;

X 0 0
Xy I 0

X | o 0|
A ~ 0854 146

On the present critical line only 4, changes as 1 changes. The X, remain
constant. This is always true of the first critical line of the computation.
It can also happen, but rarely does, in subsequent steps of the computation.
(It happens, for example, at point 2 in Figure 12 of Chapter VII.) It
proves convenient to handie such “degenerate” critical lines in the same
manner as we handle the more usual critical lines.

A similar Step 2 procedure is followed when the portfolio is subject to
a more general system of linear constraints, 4X = p. If there are m
constraint equations, then m variables will be in for the portfolic which
maximizes E. In linear programming parlance these are the “basis
variables” of the optimal solution. If we eliminate all the out rows and
columns from M, we have a matrix

& a
1)

where C is an m by m submatrix of C; A is a non-singular m by m sub-
matrix of 4; A’ is the transpose of 4; 0 is an m by m matrix of zeros.

& A 0 it
[z o] B [ww _(z')ﬂc‘z—l]‘

N(1) is obtained by introducing zero crosses into the above inverse for
rows and columns of the out variables. The formula for the first critical
fine is '

that is,

X
[J = N(1)- R + AgN(1)S.

Letting
T(1) = N(D)R,
(1) = N(1)S,
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then the first critical line is

X _
[x] = T(1) + UQ) - Ag.

On this first critical line only the 4, not the X, changes as Az changes.
Step 3 finds the values of 1, at which our first critical linc intersects each
critical line with the following three properties:

{a) all variables are in which were in on the first critical line,
(b) one additional variable is also in, and
(c) all other variables are out.

In the language of Chapter VII, the first critical line of our example was
I-  We must now find the values of 4;; at the intersection of /, and /; , and
at the intersection of /; and /, ;. At the intersection of /, and /; , we have

onXy 4 01 Xs + 03X + 4 = g

as well as

X

X = T(1) + ig - U(1).
Thus

[612, 12, O3 T{T) + Az U(D} = pydg;
that is,
0
[.0146, .0187, .0145, 1]
— 0854

+ 10146, 0187, 0145, 1)} | A = 0624y,

146
Thus, at the intersection,

—.0667 + 1464, = 0621,
Ag = .794.
Similarly at the intersection of /, and 4, we have
1931, Tas 00, I{T() + U(DAz} = ol

that is,
—.0750 4 14645 = .128i,

Ag = 4.17.
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The first segment of the efficient set lies along the critical line which
intersects [, at the highest value of 2,: in the present example the first
segment lies along /, 5.
Step 3 in the general case may be described as follows. Let v; be the
jth component of the vector
V= M- T(1).

Let w; be the jth component of the vector
W= MU1)— S

v; = w; = 0 for j which are in. 2§} = —u;/w; is the value of Ay at which
the first critical line intersects the one for which the jth variable is also in.
(If w; = O there is no intersection.) The next critical line to be efficient
is the one which intersects at the highest* 5. (If this largest Ay is zero or
negative, the problem is over and X gives minimum ¥ as well as
maximum E.)

Step 4 sets up the formula for the new critical line, In the example the
new M difiers from the old M in that j=3 “gocs in.  AN(1) must be
modified accordingly to give us N(2). A general procedure for doing this
is the following:

Suppose, in general, that the variable j, goes in for the (i 4+ I) critical
line. Let C;, be the joth column of M. Let

B = N(i)C,n,
b= B'C,
c=ny,; — b,

where m; ; is the element in the j,th row, jth column of M. The elements
g of N(z + 1) can be expressed in terms of the elements of f;; of N(J) as
follows:

1
Bigig = P

b;
[

i, = &ig = — for i # jo,

where b, is the ith component of B.

b.b; L o
go=tu+ C’ fori#j, and j# jo

! Fies may be broken arbitrarily. There is a small danger of cycling (eventually
coming back to the same critical line a second time) with this procedure. In this event
see [11].
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Thus, changing N(1) into N(2) for our example:

000 0 7 .0145) 0
L0000 0104 ]
“lo0 0 0 ol o |
0 1 0 —.0854]1.0000] — 0750
r 01457
0104
b =[0,1,0, —.0750] = —.0646,
0289
| 1.0000
¢ = 0289 4 .0646 = .0935,
ro 0 0 0
1 I 0750
0935 0935 0935
N)=|o __L _1 0750
0935 0935 10935
— 0854
o 1 070 0750 + (—.0750p
i 0935 0935 0935
0 0 0 T

0 10.6951871 —10.6951871 19786096
0 -10.6951871 10.6951871 .8043904
0 19786096 80213904 —.02523957

If N(2) and M are multiplied, the product has unit crosses corresponding to
in variables and a zero cross corresponding to the out variable (j = 1).
The formula for our new critical {ine is

X
LJ = NQ2)R + N(2)SAg;

that is, :
X, 0 0
0 X, 196 i 193
x{ | soa| ™ "Fl—193|

L4 — 025 132
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When 4z cquals the value established in Step 3,

M0 =417,
then

Xy, = 1.00
and

Xy = 00,

As g is reduced, X, falls and X; increases. The points generated by (1)
above are efficient for A5 from 4.17 down to the value of 1, at which the
present critical line intersects another (or until Az = 0, whichever happens
first).

Step 5 finds the critical line which is first! intersected by our present
critical line as A falls. In the notation of Chapter VII, our present
critical line is /, ;. 'We need only consider its intersection with /; and /, , 4.
[We need not consider /,, from which we just came.] 1/, , intersects /, when

X, =.198 4 1931, = 0,
that is, when

hg <O
I, 5 intersects [, , 5 when

(611, 012, G4 T{T(2) + UQ)Ag) = pyig,

where

T2y = N2}- R
and

U(2) = N(2)S.
At the intersection, then,

—.0097 + 13345 = 0624
J’E = .14.

Thus the first critical line to be intersected, as we reduce Ag from 4.17, is
/,.2.3 Intersected at
A2 = 14,

The portfolio at which the efficient set turns from /, 4 to /4 , 5 has

X
[J = T(2) + A2U(2).

Specifically
X 0 0 0
Ay l=1.196] + .14 J93 1 = | .22,
Xz .804 —.183 T8

! Sec footnote on page 181.
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Step 6 is like Step 4. We now set up the formula for the critical line
/123 As described there, we derive the new N(3), which turns out to be

1112486  —27.00904 —84.23964  1.102313
—27.00904  17.25246 9.75658  —.069760
NOY=1 _g4.23964 975658 74.48306 —.032552]
1102313 —.069760  —.032552 —.014317

From this we calculate that 4 4 4 is

X
[J = T(3) + AzU(3) = N)R + AzN(3)S,

that is,
X, 1.10 —7.79
X, —.07 2.05
= AE .
X5 —.03 5.74
A —.01 .54

Step 7 is like Step 5. As i moves down from .14, we find that [, ;,
intersects /, , when
X, = —.07 + 2.054, = 0;

that is, when ip = .034. [, ; intersects /; , when
X, = —.034 4+ 5742 =0,

that is, when Az = .005. Thus the first intersection is at A% = 034 and
the next segment of the efficient set lies along £, 5.
The portfolio at which the efficient set turns from /; 5 5 t0 /) 3 is

X, 1.10 —7.79 84
X,|=|-07]+.034| 205{=].00]
X, —.03 5.74 16

Step 8, like Steps 2, 4, and 6, produces the formula for the new critical
fine. This time, fo obtain N(4), we must replace 2 row and column
(namely, the second) by a unit cross. Whenever a zero cross replaces a
row and column (), the g;; of the new N(i + 1) can be obtained from f;;
of the old N(i) by the following formula:

_ ST,
g =Ji —fa'.f.
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From this we derive

6896554 0 —68.96554 99310

0 0 0
N(4) = :
—68.96554 0 6896554  .00690
99310 0 00690 —.01460

The formula for the new critical line is

[ﬂ = Ty + AzU4);

that is,
X, 9911 —4.552
X .00 .00
- + Ag
X, 0069 +4.552
A —.0146 06245

As 1z moves from .034 downward, it reaches 1, = 0 before it intersects
another critical line. Hence the efficient set ends at

X
[J = T(4) + 0- U(4) = T(4).

Specifically, the portfolio which minimizes ¥ is

X, 9931
X2 = .00
X, 0069

Since the set of efficient portfolios is piecewise linear, it may be described
by its starting point, the points at which it turns, and its end point. , These
we have found for our particular example to be

begin Ist turn  2nd turn end
Xy 0 00 .84 .99
X, 1 22 00 00
X; Ju 78 .16 01

Any linear interpolation of adjacent pairs of such *““corner” portfolios is
efficient. In this manner a portfolio associated with any efficient E,
combination can be constructed, as was illustrated in Chapter II.
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The set of efficient E, ¥ (or E, o) combinations can be sketched by
evaluating and plotting the combinations associated with various efficient
portfolios. Or a method such as that in [11] can be used to obtain
tormulz describing the curve,

LiNeaR PROGRAMMING

A linear programming computation seeks the maximum (or minimum})
of a linear function of n variables,

"
2 XC,
j=1
subject to s linear constraints,
2o X; = by,
Eaijﬂ' = bm’

X;20 for j=1,-+-mn

and subject to

G. Dantzig’s “simplex method” is a general and efficient computing
technique for solving such problems. Descriptions of two variants of
this method are to be found in [14] and [}5].

Techniques have also been developed to find all solutions of the resulting
lincar programming problems as the b; vary according 1o a linear rule

by = b2 + b},

This is a case of “parametric” linear programming [16].

A number of portfolio analysis problems can be reduced to either a
linear programming or a parametric linear programming computing
problem: '

1. The problem of maximizing expected return subject to linear con-
straints, as at the beginning of an E, V efficient set calculation, is a linear
programming problem.

2. Suppose security i had return r;, at time ¢.  The return on a portfolio
Xy, X, at time ¢ is

R, = Yr X,

By suitably introducing dummy X, the problem of finding the portfolio
whose smallest (i.e., most negative) R, is as large (i.e., least negative) as
possible can be formulated as a linear programming problem. We could
also require

ZXM;-' = E°
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Parametric programming can give us the optimum portfolios for all
values of E°.

3. Rather than maximize minimum return (i.e., minimize maximum
loss) we could formulate a linear programming problem to minimize
average loss or average absolute deviation from E.

The simplex method of linear programming and the critical line method
of quadratic programming are sufficiently similar that a machine program
for the former can be easily modified to serve as a machine program of
the latter. This is shown in Appendix B.

Other computing techniques may also prove valuable in the analysis of
portfolios. These include

{a) Dynamic programming [17]; see Chapter X1I§

(b) Monte Carlo techniques {18]; see Chapter IX; and

{(c) Gradient methods [20] (for maximizing a linear or a “well-behaved”
non-linear function subject to linear andfor “well-behaved’” non-linear
constraints. In the purely linear case the simplex method is superior).

(d) Our E, V efficient set computation is an example of quadratic
programming. [L1], {12}, and {13] diseuss methods of quadratic program-
mmg‘



CuaptER IX

THE SEMI-VARIANCE

INTRODUCTION

In this chapter we consider the semi-variance as a measure of risk.
First, we define the semi-variance; next we compare the semi-variance
with the variance, noting similarities and differences and pros and cons of
each. After this we consider a geometric analysis and computing proce-
dures for the derivation of efficient portfolios based on expected return
and semi-variance.

DEFINITIONS
By definition,
{r if r is equal to or less than zero,
o=

G if r is greater than zero.
For example,

if r equals, then r— equals:
1 0
5 0
—.4 -4
0 0
—.1 —.1

Sy 1s defined to be the mean value of (P )2 If r is a random variable or a
future event subject to probability beliefs, then

8o = expt(r)=.

If r is the past return on a portfolio, Sy is the average (r)*>. If r takes on
the values .1, .5, —.4, 0, and —.1, as in the above example,

AP (=) 17
=(_‘”+5#=?=.034.

188

So
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By definition,

r ~ by = {(r — &) if (r — b) is less than or equal to zero;
0 if (r — b) is greater than zero.
For example, with & = .2,
if r equals: then (r — .2)~ equals
. —.1
.5 0
—4 —.6
0 -2
—-.1 -3

S, is the mean value of [(r — 5)~1% If r takes on the values of the above
example, then
(=P (=P (2P 4 (=3 .50

Sy = =.— =]0,
2 5 3

If b = 0, 5, is the same as S, defined previously.
Sy is the mean value of [(r — E)}7]%, where F is the mean vaiue of r.
In the example above, E == .02; hence
(=42 + (—.127 1908

Sp=Sgp= = .038.
E 02 5 5 03

SYMMETRY

The distributions in Tigures 1A and 1B illustrate the notion of a
reflection about £. The two asterisks labeled (a), .075 unit below E in
Figure 1A, correspond to the two asterisks labeled (a'), .075 unit above E
in Figure 1B. The asterisks labeled (b), (), and (d) in Figure 1A similarly
correspond to asterisks (5), (¢"), and (d") in Figure 1B.

We could reflect a distribution about a point other than E. The
distribution in Figure 1C, for example, results if we reflect the distribution
in Figure 1A about the point 7 = 0. When we reflect a distribution about
its expected return, the resulting distribution has the same expected return.
When we reflect a distribution about any other point, the resulting distri-
bution has a different expected return.  If we wish to confine our attention
to distributions which all have the same expected return, we must restrict
ourselves to reflections about E.

Henceforth, when we speak of the reflection of a distribution we mean
its refiection about E.
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A distribution is symmetric if reflecting it about E reproduces exactly
the same distribution. The distribution in Figure 2 is symmetric; those
in Figure 1 are not.

(a}
* (&) l {c) (d)
x * * *
| 1 ] [ | i 1 ] J
-.20 -.15 -.10 - .05 0 05 10 15 20
(A
£ (@)
() () l ) o+
* * - E 3
L ! | ] | ] | ] |
=20 -.15 -.10 - 05 0 5 10 15 20
(B)
. E' (")
@) «) l R
* * * *
{ | ] ] ] } | } J
=20 =15 .10 —.05 0 05 A0 15 20
©

Figure 1. Reflections.

The variance of a distribution is always the same as the variance of its
reflection. The variance of the distribution in Figure 1A, for example, is
the same as the variance of the distribution in 1B. An analysis based on
E and V would consider these two distributions equally desirable.

{c} {c)
fﬂ.) * E * (ﬂ-')
* (bj * l * (b') *
* * * *® * *
L 1 I ] i | I J
=15 -1 ~05 0 05 10 15

Figure 2. A symmetric distribution,

The semi-variance of a distribution, on the other hand, is not always the
same as that of its reflection. S, for example, is smaller for the distri-
bution in 1A than it is for that in 1B. S, for 2 wide range of b, is also
smaller in 1A than in 1B.

A distribution which shows greater extremes to the right than to the left
of E, as in Figure 1A, is referred to as skewed to the right. A distribution
which shows greater extremes to the left of E is referred to as skewed to
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the left. ¥/2S5; may be used as a measure of skewness. For symmetric
distributions V/2Sy equals 1. If extremes to the right outweigh those to
the left, V/28y is greater than 1; in the opposite case it is less than 1.

When all distributions are symmetric, or have the same degree of
skewness, the efficient portfolios produced using 5} are the same as those
using ¥ as the measure of variability. If the degree of skewness varies
from pertfolio to portfolio, analyses based on S, and ¥ may differ in their
choice of efficient portfolios. Among portfolios with the same expected
return and variance, an analysis based on S chooses the portfolio with
the greatest skewness to the right, or the least skewness to the lefi in its
distribution.

SIMILARITIES AND DIFFERENCES

Let us consider changes in distributions, particularly changes which
keep the mean of the distribution the same. Let us compare the effects
which such changes have on variance with those they have on semi-
variance. Such a comparison will illuminate the objectives of an analysis
which minimizes S for given E, as contrasted with an analysis which
minimizes V for given E.

Distributions with the same mean may be thought of as being related by
a series of changes, each change involving only two points.! The distri-
bution in Figure 3D, for example, may be derived from that in Figure 3A
by first changing the points (a) and (5) in 3A to (¢') and (¥} in 3B; then
changing (c) and (d) in 3B to (¢’} and (4"} in 3C; and finally changing (¢)
and (/') to (¢") and (/") in 3D. In each of these changes the two points
move equal distances in opposite directions. This is necessary to keep
the mean E constant at each step.

We shall refer to such movements of two points, equal in distance but
opposite in direction, as binary changes.

Any binary change which moves two points closer decreases variance.
Any binary change which further separates two points increases variance.
This is true irrespective of the Iocation of the points. Thus binary changes
which move together the points (#) and ('} in Figure 2, or the points (a)
and (b) or (a") and (b") in the same figure, would all decrease variance.
The opposite binary changes, which further separate these points, would
each increase variance,

1 Here, as elsewhere, we restrict ourselves to distributions represented by a finite
number of asterisks in a figure such as Figure 3. 1t is not necessary that both distri-
butions be represented by the same number of points, since a distribution represented
by k, points and one represented by k, points can both be represented by k| times k,
points.



192 PORTFOLIO SELECTION

The amount by which variance changes does depend on the location of
the points. The effect on variance of a small change in the position of a
point is roughly proportional to the distance of the point from E. A small
change of a point at (@) or (a') in Figure 2 has about five times the effect
on variance as does an equal change in a point at (¢) or (¢'). A small
binary change in (a) and (a) has about five times the effect of an equal
binary change in (¢} and (¢’).  Since (a) and (@) are on opposite sides of E,

* {a} (b} *
* * * * *
| ] ] ! i | ]
-.15 -.10 -.05 0 05 .10 .15
(A}
w (b7} *(c)
3 *
et 1 | | @
-.15 -.10 -.05 0 .05 .10 15
B
* (c')
* d
* *{e) *{f) * (‘ij
| | | } | | |
-.15 =10 -.05 4] 05 .10 15
©)
»*
* (€'} *
1 A l. 1 l i
-.15 =10 =05 0 .05 .10 15

)

Figure 3. Rinary changes.

a binary change bringing (a) and (&) closer to each other brings both
closer to E. Both the movement of (@) toward E and the movement of
(a") toward E contribute to the reduction in variance. Since (b} and (a)
are on the same side of E, a binary movement bringing (') and (a') closer
together moves (b") away from E and (a') toward E. The movement of
(a') toward E reduces variance; the movement of (b') away from E
increases variance. The reduction due to the movement of (¢') is greater
than the increase due to the movement of (5"}, because {a'} is farther from
E than is (b").

A binary change which moves two points together decreases Sp, as long
as one or both points are below E.  If both points are above E, the binary
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change does not affect Sg.  Thus the movement of (2) and (b) together or
the similar movement of (b) and (¢’), in Figure 2, would decrease Sz
The movement of {¢') and (a") toward each other would have no effect on
Sg- The movement of points below E affects S5, exactly as such move-
ments affect V.

Similar remarks apply to S, for & not necessarily equal to E. Binary
movements which bring together two points, one or both of which are
below b, reduce S;,. Binary changes in points which are and remain above
b have no effect on §;,. In the case of movements of points to the left of 5,
the effect on §, is exactly the same as the effect on V.2

To the left of &, S, evaluates changes (which keep E the same) exactly as
V evaluates them. To the right of 4, changes do not affect S,. Out-

comes greater than b enter an analysis based on S, only in so far as they
affect E.

Pros aND CONs

Several conflicting considerations influence the ctroice of ¥ or § as the
measure of variability in a portfolio analysis. These considerations
include cost, convenience, familiarity, and the desirability of the portfolios
produced by the analysis.

Variance is superior with respect to cost, convenience, and familiarity.
For example, roughly two to four times as much computing time is required
(on a high speed electronic computer) to derive efficient sets based on Sy,
than is required to derive efficient sets based on V. In an analysis based
on V, only means, variances, and covariances must be suppiied as inputs;
whereas an analysis based on .§ requires the entire joint distribution of
returns. Unlike semi-variance, variance and standard deviation are
known by many people acquainted with modern statistics.

1 . .
15, = 7 Z(r, — b)®, where this sum is confined to r, < b, Since r, — b=
7

(rn—E)+(£E—5,

i
Sb=ﬁ§{(n—s)+(E*b)}a

= (Tl — EF + 2E - (S — KE] + K(E — by),
é [4

where K is the number of asterisks below E. Since binary changes do not affect 37,
the effect on S, is the same as the effect on (I{N)Z(r, — Ey.
i
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This superiority of variance with respect to cost, convenience, and
familiarity does not preclude the use of semi-variance. The computing
cost involved even in the use of semi-variance is small compared with the
other research costs involved in supervising one or more large portfolios.
The requirement, by analyses based on variance, for covariances be-
tween each pair of securities leads to models for derived covariances-—
models which are sometimes equivalent to, sometimes little less than,
models of the entire joint distribution required by an analysis based
on S. Familiarity, finally, is a transient thing: use can make S as
familiar as V.

Analyses based on S tend to produce better portfolios than those based
on V. Variance considers extremecly high and extremely low returns
equally undesirable. An analysis based on V seeks to eliminate both
extremes. An analysis based on S5, on the other hand, concentrates on
reducing losses.

Efficient portfolios based on variance, however, cannot be characterized
as bad or undesirable. If al} distributions of returns are symmetric, or
have the same degree of asymmetry, V and Sz produce the same set of
efficient portfolios. Since a portfolio with very low variance avoids both
extremes, it must have a low Sy as well.  The only complaint one can
raise about such a portfolio is that it sacrifices too much expected return
in eliminating both extremes.

Clearly there are pros and cons on each side. The proper procedure, it
seems to me, is to start with analyses based on variance. Analyses based
on semi-variance, and those based on still other criteria, such as the
specially constructed utility functions discussed in Part 1V, can be con-
sidered after experience is gained with simpler measures. In the choice
of criteria, as well as in other respects, the form of analysis must be
expected to evolve,

GEOMETRIC ANALYSIS

This section will present a geometric analysis of E, S, efficient portfolios
based on the historic returns of the three securities in Table 1. We shall
assume the standard constraints,

z; =0, j=1,23,
X+ Xy 2y = 1.

Modifications of this analysis required by the use of §, or § rather than
S, are noted.

Suppose that a particular portfolio (X7, X, X,) incurred a loss (had
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TaBLE 1

RETURNS ON THREE SECURITIEST

Security
Year
1 2 3
AT &T. U.S.S. Bdn.
1937 —.173 —-.318 —~.319
1938 098 285 076
1939 .200 —.047 381
1540 .030 104 —.051
1941 —.183 -.171 087
1942 067 —.03% 262
1943 .300 149 34
1544 .103 .260 227
1945 216 A1Y 352
1946 —.046 —.078 153
1947 —.071 169 —.059
1948 056 —.035 .038
1949 .038 133 273
1950 089 732 091
1951 090 021 054
1952 083 131 109
1953 035 006 210
1954 176 .908 32

T Securities 1, 2, and 3 of this table are 2, 3, and 7, respectively, of Table I,
Chapter 11.

SXr; << 0)in years ;, - * -, fx, and made a profit in years £, * *, fqn
For example, the portfolio (1, 0, 0) has
(ty, © o 1) = (1937, 1941, 1946, 1947),
(rons® * ) = (1938, 1939, 1940, 194245, 1948-54).

In this case K = 4. S, for such a portfolio is, by definition,

K

2 X ity *

S k=17
¢ T

where r,,, is the return on the ith security in year £,. 8, is also equal to
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(l) Sﬂ = Zzsi:ﬁ(rh T tk) ) XiX:,is
i
where
I K
(2) St ) = Tkgl"uk"m'

[Note the similarity between the definition of s5;; and that of o,; also the
similarity between (1) and the formula

V=3%0,X.X,]

If portfolios P and Q have the same unprofitable years (¢, - -, 1,), the
81ty * * -, #) used in computing S, by {1} are the same.
For any year ¢, the portfolios which satisfy

2Xxr i, = 0
are unprofitable. Those which satisfy
2Xry, >0
are profitable. For example, for 1 = 1948 the unprofitable portfolios

satisfied
056X, — .035X, + 038X, << 0

or, substituting X, = 1 — X; — X,, unprofitable portfolios in 1948 had
018X, — .073X, + .038 << 0.

The line marked 1948 in Figure 4 is the locus of all portfolios with zero
profit in 1948. The arrow attached to this line indicates the portfolios
which were unprofitable in that year. Thus any portfolic above or to the
left of the 1948 line was unprofitable in that year, Lines and arrows in
Figure 4 similarly indicate the unprofitable regions for other years. Thus
portiolios below the 1947 line were unprofitable then; portfolios above
the 1941 line were unprofitable then. Some years do not appear either
because all portfolios were unprofitable (1937) or all portfolios were
profitable (1938, 194345, 1949-54).

The “profitability lines” divide the set of obtainable portfolios into
“profitability polygons.” The polygon labeled 41, 46 consists of all
portfolios which were unprofitable in 1941, 1946, and 1937, That
labeled 41, 42, 46, 48 contains all portfolios which were unprofitable in
1941, 1942, 1946, 1948 as well as 1937.

Portfolios within the same profitability polygon have the same
siffy,* * *, tg).  Thus for all portfolios in the polygon labeled 41 we have

I
5u(1937, 1941) = o {(—173)* + (183 = 00352,
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Associated with any profitability polygon is a critical line similar to that
in the three-security analysis based on £ and ¥. The critical line for the
polygon is the locus of points which give minimum Sy, - - -, t,) for
given E, ignoring the inequalities X, = 0 (where Sy(ty, - + -, 1,) is defined
to be

Ssltn XX,
i

Except in certain degenerate cases ignored here, the critical line is, in fact,
a straight line.

X [—

\ 39,41,42, 46,48

41,42.46,48

| 41,46,48

&
&
;-N'w/’b-imL&h-ubn'\og
o1

40, 41,47

0

Figure 4. Profitability lines and polygons.

The portfolio (0, 1, 0) is efficient since it has maximum £. This point
is in the polygon 39, 41, 42, 46, 48. It critical line is computed, therefore,
with 5,{37, 39, 41, 42, 46, 48). If we compute this critical line, we find
that it passes to the left of the point (0, 1, 0). Hence the E, S efficient set
starts by moving down the left side of the set of obtainable portfolios. As
E decreases, the efficient set intersects the 41, 42, 46, 48 polygon before the
critical line of 39, 41, 42, 46, 48 intersects the set of obtainable portfolios.
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Hence the efficient set moves down along the X, axis (Figure 4) to the
polygon 41, 42, 46, 48 without turning. Similarly the critical line of the
polygon 41, 42, 46, 48 does not intersect the sct of obtainable portfolios
before the efficient set reaches 41, 46, 48.  The story s repeated for poly-
gons 41, 46, 48 and 41, 48. The critical line associated with 41, on the
other hand, intersects the attainable set before the efficient set intersects a
new polygon. Hence the efficient set (shown by a heavy line in Figure 4)
moves along the critical line of the 41 polygon. This critical line next
intersects the 41, 47 polygon. The efficient set then moves along the
critical line of the 41, 47 polygon, as indicated in the figure. The critical
line of 41, 47 intersects the X, axis before intersecting any new polygon.
The efficient set then moves along the X, axis until it reaches the point
with minimum S,

5, efficient sets for b 7= 0 may be similarly derived. Polygons are
defined with boundaries

2raX; = b;

the s,,(1, + - -, tx) are defined as
1 E .
};kgl("'uk — b)(ry,, — b).

The efficient set is traced out as in the E, §; analysis.
When E and S are used as criteria of efficiency, the boundaries of the
polygons are
z Xriyp = p) = 0.

The s,{t;, - - -, t;.) is defined as
1 K
}kzl("uk - Mi)(rﬁk — ).

The efficient set is traced out as above.

COMPUTING PROCEDURES

We shall now discuss computing procedures for deriving efficient sets
based on Eand S,. Slight medifications of these procedures, as indicated
at the end of the last section, make them applicable when S is used as the
measure of risk. The procedures of the present section permit any
number of securities (&) and any number of constraint equations (A1)
The procedures assume, however, as in the last section, that there is a
finite number of “years.” Procedures applicable when there are an
infinite number of possible combinations of returns r, or when the number
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of combinations, though finite, is extremely large, are presented in the
next section.
The present section will draw on the notation and results of Chapter VIII.
In an £, § analysis the critical line is determined by

(a) the set of X; which arc in as opposed to those which are out (as in
the E, I analysis), and
(b) the set of years 7, - - -, f5 which are unprofitable.

The critical line associated with a set of ““in” variables is the same as in the
E, V case except that o is replaced by

e
T' St‘j(’l’ vy, tK) =kzl(r1‘t}; el b)(i‘,-,k -_ b).

As Ay decreases, the critical line may

(i) first! intersect another critical lne defined in terms of the
st © - - 1), This is recognized and handled cxactly as in the E, V
analysis; or

(ii) first intersect a profitability line:

SXry=b

The Ay at which each such intersection takes place is computed from

(', O{NHR + N()SAx} = b,
where
(I’t, O) = (rlb Y r'nti 01 Tt 0)

In case (ii) the s;; must be modified and a new N(i) produced. Case (ii)
has two subcases:

(a) a year (¢,) goes from the profitable to the unprofitable set; and
(b) a year (t,) goes from the unprofitable to the profitable set.

In case (a) the new §,; is obtained from the old s; by
T8y =T 55 + Fi i

where §; = s.,(fg, t, - * %5 Exc) Sy = 5(t, - - tg), and F =1 — b

In case (b} we abtain the new §,; from the old s; by T+ 5, = T 5
— Fiyfsr, with the variables defined as above.

In case (a) the M matrix becomes

Mrew = jfold 4 (S) (7, 0,

! Ties are broken arbitrarity. Anti-cycling techniques can be built if needed.
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where

(R0) = (Fgp s * = Fagp 00+ +,0) and ((:) is its transpose.
In case (b) the M matrix becomes

Mrew — pfold — ((;) (7, 0).

The new N(i) can be obtained by the general rule that, if
B=A+w,
where B and A are matrices, u a column vector, and v’ a row vector, then

B g AT A
14 v'Au
With the new N{(i), the computation proceeds as before.

MONTE CARLO PROGRAMMING OF E, S EFRICIENT PORTFOLIOS

The computing procedures presented in the last section apply when there
are a small number of possible combinations of returns. An analysis
based on past annual returns, for example, has only one combination for
each year. An analysis based on probability beliefs—as expressed, for
example, in the models for derived covariances discussed in Chapter IV—
can admit extremely large numbers of combinations of returns. It would
be impractical to apply the methods of the last section to all such possible
combinations.

Approximate, but fairly accurate, results can be obtained by applying
the techniques of the last section to a random sample of possible combina-
tions of r. For an analysis involving 100 securities, a sample of 200
combinations seems to be a reasonable compromise between the needs for
accuracy and the burdens of computation.! The portfolio which mini-
mizes S based on such a sample will have a true S almost as small as that
of the porifolio which minimizes true S.

* Itis desirable for the sample of combinations of returns to be larger than the number
of securities contained in the analysis. This would apply if we sampled from a modei
to obtain covariances for an analysis based on V, as well as if we sample combinations
for an analysis based on .  If an analysis of 100 securities is based on 99 combination:
of returns, there is at least one (legitimate or non-legitimate) portfolio with zero variance
We have here a “degrees of freedom™ problem similar to that in multiple regression
An analysis based on a random sample of 200 combinations of returns provides 10(
degrees of freedom.
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Questions concerning the proper manner of selecting a sample of returns,
and the accuracy afforded by such a sample, are in the realm of Monte
Carlo analysis. The reader is referred to {18] for a discussion of this mode
of analysis beyond the few remarks to be made here.

Correlated sampling is a Monte Carlo technique for increasing the
accuracy of comparisons. Suppose, by way of illustration, that portfolio
1 and portfolio 2 have the same expected return. Let S) and S, be the
true values of Sg for the two portfolios. Let S) be the estimate of §;
provided by a sample of combinations of returns; let S, be the estimate of
S, We wish to estimate whether §; > S,; that is, we wish to estimate
whether §, — §, is positive or negative. The variance of S; — S, equals

var(S)) + var(S;) — 2 cov(Sy, 5y)-

The aceuracy of the estimate of S, — S is improved if S, and S, are
positively correlated.  Var(S; — S) decreases as cov(S;, S,) increases.

Correlation between S, and S, is automatically obtained, as a rule, when
the same combinations of returns are used to evaluate both portfolios. If
a particular sample has a disproportionately large number of bad years, it
will tend to overestimate both S, and §,; and conversely if the sample
contains a disproportionately large number of good years. Thus the
procedure of basing estimates of S for all portfolios on the same sample
gives more accurate comparisons than if independent samples were drawn
for each portfolio.

Another Monte Carlo technique for increasing accuracy is that of
importance sampling. 'This technique directs that combination of returns
with extreme effects on § should be sampled more heavily than other
combinations. The sample must be weighted afterward to remove the
bias in selection. If importance sampling is used in selecting combinations
of returns for an E, S analysis, the objective of reducing computing require-
ments, as well as that of increasing accuracy, must be kept in mind.
Profitability lines (planes) which do not intersect the set of legitimate
portfolios add little to computing time. Thus extremely bad years in
which all portfolios have return less than E {or b} should be sampled most
heavily, since they give rise to both large effects on S and small require-
ments for computation.

Usually Monte Carlo techniques and techniques of mathematical
programming are thought of as competitive: the former is used when the
problem is too complicated for the latter. 1In the present case, however,
the two techniques are complementary. Both techniques of Monte Carlo
and those of quadratic programming are required to provide portfolios
with S reasonably close to the minimum § attainable for given E.
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CHAPTER X

THE EXPECTED UTILITY MAXIM

THE THEORY OF RATIONAL BEHAVIOR

A portfolio analysis is characterized by

(1) the information concerning securitics upon which it is based;

(2) the criteria for better and worse portfolios which set the objectives
of the analysis; and

(3) the computing procedures by which portfolios meeting the criteria in
(2) are derived from the inputs in (1).

The results of a portfolio analysis are no more than the logical conse-
quences of its information concerning securities. Although they may not
be apparent to unaided reason, the results, nevertheless, are but restate-
ments of these inputs,

Broadly conceived, criteria include that for distinguishing legitimate
from non-legitimate as well as that for distinguishing better from worse
portfolios. The criteria determine the type of conclusions sought. It is
impossible to derive all consequences of inputs. The criteria of an
analysis is its guide to what is important and unimportant, relevant and
irrelevant.

The computing procedures are the means by which the information
about securities is transformed into conclusions about portfolios. With-
out effective computing procedures, an analysis cannot be applied to real
portfolio selection problems.

Computing procedures are based on the relationships between securities
and portfolios, as well as on the theory of mathematical programming.
Part II of this monograph dealt with relationships between securities and
portfolios. Part I dealt with principles and rules of computation.
Appendices A and B cover some aspects of computing procedures which
require more mathematical background than was assumed in Part III of
the text.

Thus, in farge part, this monograph is a discussion of the relationships
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and procedures by which information about securities is transformed into
conclusions about portfolios.

Problems concerning the proper information to serve as the basic inputs
concerning securities are outside the scope of this monograph. There are
no magic formulas to supplant the sources of infermation and the rules of
judgment of the security anatyst. The portfolio analyst requires that the
final judgments of the security analyst be cast in a somewhat new form.
He cautions the security analyst against jumping too directly from the
properties of a security Lo s place in a large portfolic. Other than this,
the problem of arriving at reasonable beliefs about individual securities
lies, as always, in the realm of the security analyst.

The remaining chapters discuss matters relevant to the choice of
criteria. Part 1V is based on studies of “rational behavior” in the face of
risk and uncertainty. These studies seek principles of reasonable action
when the future is not certain. They seek maxims to guide us in, among
other things, the choice of criteria for the analysis of portfolios.

The theory of rational behavior is usually presented as a study of the
principles upon which a rational man would act. This Rational Man is
unlike you or me in that he makes no errors in arithmetic or logic in
attempting to achieve his clearly defined objectives. He is like you and
me, on the other hand, in that he is neither omnipotent nor omniscient.
He must make decisions, such as the selection of a portfolio, in the face of
uncertainty. Since his information is limited, he may take less than
perfect actions. Since his powers are limited, his achievements may fall
short of the best conceivable. Every action, however, is perfectly thought
out; every risk is perfectly calculated.

The Rational. Man, like the unicorn, does not exist. An attempt to see
general principles by which he would act, however, can be suggestive for
our own actions.

Another interpretation can be given to the theory of rational behavior.
Rather than visualizing a Rational Man we can visualize a Perfect Com-
puting Machine with unlimited speed and capacity. This computing
machine instantly processes all available information to determine a best
portfolio for us. The study of rational behavior may be viewed as an
enquiry into the principles by which we would have this Perfect
Computing Machine proceed.

The Perfect Computing Machine, like the unicorn and the rational man,
does not exist. Limitations of speed and storage will always constitute a
practical as well as a theoretical restriction, Reflection on what we would
ask of such a machine, however, can provide a perspective on what we
should ask of our real machines,

The theory of rational behavior is not a substitute for human judgment.
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There is no integrated theory by which we could dispense with human
beings if we had a sufficiently large and fast computer. The study of
rational behavior has produced only general principles to be kept in mind
as guides. Even the significance of some of these principles is subject to
controversy. The value of the study of rational behavior is that it supplies
us with a new viewpoint on problems of criteria—a viewpoint to be added
to common sense to serve as a basis of good judgment.

ExpeECTED UTILITY

When early mathematicians first formulated principles of behavior in
chance situations, they assumed that the proper objective of the individual
was to maximize expected money return. It was later found that this
objective can be incredibly bad.

Rather than reproduce the classic example! which first convinced some
eighteenth-century scholars that something was wrong with the expected
return maxim, we shall consider an equally convincing argument from the
field of portfolio selection. An investor who sought only to maximize the
expected return would never prefer a diversified portfolio. 1f one security
had greater expected return than any other, the investor would place all
his funds in this security. If several securities had the same (greatest)
expected return, the investor would be indifferent among portfolios,
diversified or not, which contained only these securities. Thus, if we
consider diversification a sound principle of investment, we must reject
the objective of simply maximizing expected return.

The expected utifity rule was proposed as a substitute for the expected
return rule. A return of 207, it was argued, is not necessarily twice as
good as a 10% return; a loss of 209 is not necessarily twice as bad as a
loss of 10%,. Perhaps there is a curve, such as that in Figure 1, relating
utility to various levels of return.  According to the curve in Figure 1, for
example, the utility of a zero return is zero, the utility of a 109} gain is 1,
the utility of a 109 lossis —1.3. Perhaps, instead of maximizing expected
return, the rational man would maximize the expected value of the utility
of return. The expected utility of a bet with a 50-50 chance of a 109 loss
and a 50-50 chance of a 107 pgain equals

U= ({1/2(1) + (1/2(—1.3) = —.15.

This is less than the utility of having zero return with certainty. Thus the
individual maximizing the expected value of utility, as represented by the
¢urve in Figure I, would prefer the certainty of ne return rather than a

1 See [32], page 93, on the St. Petersburg paradox.
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50-50 chance of a 109 loss or gain. Expected utility is lower in the
second case, even though expected return is the same in both cases.

The modern notion of utility avoids any hedonistic interpretation of the
curve in Figure 1. We are not to think of the vertical axis as representing
pleasure and pain. It simply represents the degree to which the individual
is willing to take risks for outcomes presented along the horizontal axis.
As to the philosophic, introspective, and psychological interpretation of
this varying willingness to take risks—this, the modern school says,
brings us from firm ground to tangential areas of controversy.

Utility
Fy.

3_

1 i 1 N IO
=20 ~10 10 20 30 40 Retun, %

Figure 1. A utility curve,

The expected utility maxim, stripped of any hedonistic interpretation,
says that the individual should act as if

(1) he attaches numbers, called their utility, to each possibie outcome,
and

{2} when faced with chance alternatives he selects the one with the
greatest expected value of utility.

We shall refer to this formulation as the expected utility maxim.

The expected utility maxim avoids the difficulties which condemned the
expected return maxim. If his utility curve is shaped like that in Figure 1,
with increasingly great returns adding less and less to utility, the investor
will generally prefer a diversified portfolio. If, over the range of possible
returns, his utility (U) depends on return (v), according to a formula of

the form
U=y — Ar?,
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the investor will select one of the efficient portfolios of an analysis based on
expected return and variance. The particular portfolio preferred depends
on the valué¢ of the positive number 4.

The expected utility maxim appears reasonable offhand. But so did the
expected return maxim when first used. The latter maxim, we saw, is
quite unacceptable. Perhaps there is some equally strong reason for
decisively rejecting the expected utility maxim as well.

In recent years a justification has been presented that goes beyond the
apparent piausibility of the expected utility maxim. The new axiomatic
approach begins with basic principles which seem beyond denial, then
demonstrates that the expected utility maxim follows from these principles.
The axiomatic approach has revived interest and gained a large number of
adherents for the two hundred year old expected utility maxim,

Some recent commentators, on the other hand, have argued that the
expected utility maxim is nof the essence of rational behavior. They show
instances in which human action differs from that dictated by the maxim.
More pertinent, they show instances where reasonable action and the
expected utility rule apparently contradict, These opponents of the
maxim claim that, while the axioms upon which the modern argument is
based have immediate appeal, they conceal objectionable assumptions.

The adherents of the expected utility maxim argue, to the contrary, that
the existence of conflicts between actual behavior and the maxim is
irrelevant to the problem of rational behavior—the human is frequently
confused and contradictory. As for the apparent contradictions between
the expected utility maxim and reasonable behavior, adherents claim that
opponents have misunderstood and misapplied the maxim.

The matter is still not settled. At least two well-known economists who
first wrote as opponents later became adherents of the expected utility
maxim. The writer knows of no equally famous conversion in the other
direction. Such counting of ayes and nays, however, does not affect the
merits of the case. Arguments for and against are presented later. The
reader may find the pro and con discussions in the literature; see, for
example, [25], [26], [27], [28], [29], and {30]. Since this writer is essentially
a proponent of the expected utility maxim, the reader may particularly
wish to read arguments by one or more of the opponents of the maxim.

EXPECTED UTILITY AND THE ANALYSIS OF PORTFOLIOS

There is no inevitable connection between the validity of the expected
utility maxim and the validity of portfolio analyses based-on, say, expected
return and variance. It is logically possible to accept the expected utility
maxim and either accept or reject the use of mean and variance as criteria
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of portfolio selection. Conversely, it is logically possible to accept the use
of mean and variance and either accept or reject the expected utility maxim.

The expected utility maxim, nevertheless, will be central to our subse-
quent discussions. There are two reasons for this:

1. This writer believes that the arguments in favor of the expected
utility maxim are quite convincing, especially for its application in. areas
such as portfolio selection. The maxim has to be stretched, perhaps
intolerably, to apply to the making of decisions in which surprise and the
fun of gambling are important motivations. These, however, are not
important objectives for the direction of a machine in the allocation of
large amounts of other people’s money.

2. The expected utility maxim, if accepted, provides a basis for discus-
sing questions of criteria in the analysis of portfolios. For example, if we
know that an individual

(a) acts on the basis of expected utility;

{(b) never makes an error in logic or arithmetic; and

{(c) inevitably chooses a portfolio which is efficient in terms of an
analysis based on mean and variance;

then we also know that his utility curve must be of a particular shape. If,
on the other hand, a second individual acts according to (a) and (b) above,
but instead of (c) he

(¢') inevitably chooses a portfolio which is efficient in terms of mean and
probability of loss,

then we know that the second individual has a utility curve of different
shape. An inspection of the utility curve associated with variance shows
it to be reasonable over a wide range of returns. An inspection of the
utility curve associated with the “‘probability of loss” shows us that in
certain portfolio situations the measure would have quite unacceptable
implications.

Thus the inspection of the utility curve associated with a measure of risk
can direct us to peculiarities in its evaluation of portfolios. In other
problems as well, such as the extent to which non-portfolio factors must
be reflected in a portfolio analysis, the expected utility maxim provides a
framework of analysis.

When we argue the pros and cons of the expected utility maxim, we are
not directly argning the pros and cons of particular portfolio analyses.
Rather we are arguing about the rules to be used in evaluating alternative
types of analyses. Inso far as it is applicable, the expected utility analysis

provides a new viewpoint on the choice of criteria for the selection of
portfolios.
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OUTLINE OF PART IV

The remainder of this chapter is devoted to the analysis of choices in
single time period choice situations.  This case avoids problems of decisions
made sequentially through time. It assumes that first a decision is made;
the consequences of the decision occur next. There are no intervening
decisions in the single time period analysis.  Chapter X1 discusses rational
behavior over time. Chapter XII discusses probability beliefs, a concept
upon which much of this monograph is based. Chapter XIII, finally,
presents applications of the theory of rational behavior to problems of
portfolio selection.

DEFINITIONS

We shall imagine an individual who must choose between alternative
probability distributions such as
[probability .001 of winning $1000,

bability distribution 1 .
probabilily GETBHION ™ probability .999 of winning nothing;

e {probability .01 of winning $100,

probability distribution 2 . L .
probability .99 of winning nothing,

After the individual selects one of these distributions, a wheel is spun and
the outcome is announced. The individual makes no relevant decisions
between the choice of a probability distribution and the announcement of
the outcome, The absence of intervening decisions characterizes this as
a single time period choice sitvation. The present chapter is concerned
with such single stage situations. The problem of choice over time is
dealt with in the next chapter.

We shall speak of outcomes,” “probability distributions of outcomes,”
“preferences among probability distributions of outcomes,” and *ihe
expected utility maxim.” This section defines these concepts for the
single time period discussion.

By definition, one and only one outcome can result. If it is possible for
the individual to win, for example, both $1000 and a car, then this com-
bination is defined as a single outcome. If it is possible for the individuat
to neither win nor lose, this is defined as another outcome. We can
imagine a situation whose outcomes, thus defined, are

(1) win a car;

(i) win $1000:
(ii}) win both a car and §1000;
(iv) not win anything.
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It will be convenient to assume that there are only a finite number () of
outcomes. This is not a serious practical limitation on the analysis, since
n can equal a million, a billion, or more. We may represent a probability
distribution among the n possible outcomes by a vecior

P = (PI’P?A. Y ST 'spn):

where p; is the probability that the ith outcome will be the one to occur.
Since one and only one outcome is possible,

EP:‘ = L

We can think of two probability distributions,
P=(p, " p) and Q=(q," " " g

as “lottery tickets™ offering different probabilities of outcomes. We can
imagine flipping a coin, then engaging in lottery P if heads appears, or
lottery Q if tails appears. If this is done, the probability of obtaining the
ith outcome is

(the probability of engaging in lottery P) times

(the probability of obtaining outcome i if P is engaged in) plus

(the probability of engaging in lottery () times

(the probability of obtaining outcome i if lottery Q is engaged in).

This equals

(1/2)p; + (1/2)q..
In general, if there is a probability & of engaging in P and a probability
(1 — a) of engaging in (, then the probability of obtaining the ith outcome
is

ap; + (1 — a)g;.
The probability distribution of ultimate outcomes associated with a

probability a of Pand (1 — a) of  is therefore the probability distribution
indicated by the vector

lapy + (1 — @)gy, ape + (1 — @)y, -+ =y ap, + (1 — a)p,]-
But this is exactly the vector
aP + (1 —a)0,

using scalar multiplication and vector addition as described in Chapter
VIOI.» Thus

“aP + (1 —a) Q"
1 Pages 157-158.
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may be interpreted as either a chance of P or O, or as a new vector of
probabilities obtained from vectors P and O by the ordinary rules of
vector algebra.

We shall consider a “rational man” who has preferences among
probability distributions. If P and Q represent any two probability
distributions the rational man either prefers P to Q, or prefers Q to P, or
considers both equalily good.

A set of preferences may or may not be in accord with the expected
utility maxim. If preferences are in accord with the expected utility
maxim, there are numbers

Uy, Ua, Uy, * * U,

such that the probability distribution
(Pls -t "y Pn)
is preferred to the probability distribation

(‘h; Yy qn)
Zuipi
2.,

The weighted sum 3u,p; describes the individual’s preferences among

probability distributions. Preferences which cannot be thus described
are not in accord with the expected utility maxim.

if and only if

is greater than

UNIQUENESS
Suppose that a set of preferences can be described by the weighted sum
U= 3p, + 4p; + 8p,.
The very same preferences can also be described by the weighted sum
U' = 6p, + 8p, + 16p,.
The reason is that U’ = 2U:
3p, + 4p, + 8p, is greater than 3, + 4q, + 8¢,
if and only if
6p + 8py + 16p;  is greater than  6q, + 84, + 16g;.
Preferences which may be described by

U=3p, +4p, + 8p,
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can also be described by

U" = 5p;, + 6p, + 10p;.
Since, with p; + py + py = L, U" = U + 2;

3p. + 4pp + 8py = 3gy + 44, + 85
if and only if

5p1 + 6ps + 10p; = 5q; + 64, + 10g5.

In general, if utilities u,, gy, ug, * * *, u,, describe preferences, so do utilities
uy = a + buy,
Uy = a -+ bu,,

uy = a + bu,,

where a is any number and b is any number greater than zero. With u
and #' thus related,

Sup; = zuiqi if and only if Yuip, = Duig,
[PrOOF:
U'= Ypau:= Y pla+ buy)
=ayp; + bY pati;

= a + hU.
But, since & > 0,

U3 = Uy if and only if, correspondingly,
U, = Uy

Returning to the example with w#; = 3, u, = 4, and u; = 8; suppose
that it were desirable to describe the same preferences in such a way that
the utility attached to the first outcome equaled zero, while that attached
to the third outcome equaled 1. If we first subtract 3 from each utility
and then multiply each utility by .2 we obtain the utilities #; = 0, u; = .2,
and u; = 1. The u describe the same set of preferences as the u but have
the desired utilities equal to zero and one.

In general, any outcome can be assigned utility equal to zero, any better
outcome can be assigned utility equal to one.  On a utility curve, such as
that in Figure 1 for example, the level of return with zero utility and the
(higher) level of return with unit utility can be chosen arbitrarily. The
zero-and unit of the utility scale, therefore, is a matter of convention and
convenience.

It is shown in the footnote that, once the zero and unit of the utility
scale are chosen, the rest of the utility curve follows from the individual’s
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preferences. - No more points may be arbitrarily selected without affecting
the preferences represented by the curve.!

CHARACTERISTICS OF EXPECTED UTILITY MAXIMIZATION

This section considers attitudes toward money risks by an individual
who maximizes expected utility. To postpone problems of utility maxi-
mization ovet timie, we consider only chance situations whose outcomes
are determined “immediately” after the choice of probabilities is made.

We consider situations which, except for this matter of timing, are like
the problem of buying or not buying insurance: a choice must be made
‘whether to take

(i) a small loss with certainty, or
(it) a large chance of no loss versus a small chance of large loss.

' Suppose that outcome 1 is assigned zero wtility; outcome 2 is assigned utility equal
to 1. We shall consider the utilities associated with: a third outcome preferred to the ]
first but not to the second; a fourth outcome preferred to both the first and second;
and a fifth outcome preferred to neither the first nor the second.

If outcome (2) is preferred to outcome (3), outcome (3) is preferred to outcome (1),
and, if the individual acts according to the expected utility maxim, then there is a proba-
bility p such that “a probability p of getting outcome (1) and a probability (1 — p)
of getting outcome (2)” is exactly as good as getting “outcome (3) with certainty.”
Herice

g =pity + {1l —ply =p) + {1 —p)() =1 -p.

If outcome (4) is preferred to outcome (2), then there is a probability ¢ such that “a
probability of ¢ of getting cutcome {4} and a probability {[ — g) of getting outcome
(1)” 13 exactly as good as “‘outcome (2) with certainiy.” Hence

ty =gty + (1 — @ey;
that is,
1 =gn,,
1

Hy = -,

Finally, if cutcome (1) is preferred to outcome (5), then there is a probability » such
that *‘a probability r of (2) versus (1 — r) of (5)" is exactly as good as “certainty of (1).”
Hence )
iy = rity + (1 = rhie;;
that is,
G=r 4+ —ru,,

—r

Uy =
I —r

Thus, once the zero and urit are chosen, the utilities attached to other outcomes follow
from the individual’s preferences.
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We see that, even if odds are such that on the average the “insurance
company” makes money, the individual who maximizes expected utility
may buy the insurance rather than take the chance. We similarly consider
situations which are like the problem of choosing a diversified or un-
diversified portfolio, or that of buying, or not buying, a lottery ticket. We
see how the individual’s propensity to assume such risks depends on his
utility curve.

A curve shaped like /" in Figure 2 is said to be concave; one shaped
like ss' is called convex. The property which identifies a concave curve

Figure 2. Convex and concave utility curves,

(or a concave segment of a curve) is that a straight line drawn between two
points on the curve everywhere lies on or below the curve. If it actually
lies below the curve everywhere, as it would in the case of I/, we may say
more strongly that the curve is strictly concave. With a convex curve a
straight line drawn between two points of the curve lies on or above it.
If the line lies above the curve everywhere, it may also be referred to as
strictly convex.

Consider an individual who acts according to the strictly concave
utility curve /",  Suppose that he has the choice of either

{i) a 50-50 chance of a gain of §(a) or loss of §(a); or
(iiy the certainty of no change.

The expected income in both cases is zero. The expected utility of (ii) is
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zero (by the convention used in drawing Figure 2). The utility attached
to (i) is: '
1DU(+a) + (1/2)U(—a).

This equals the level of utility at the point b midway between the points on
the curve corresponding to g and —a. Because of strict concavity, the
atility at 4 is less than zero—the certainty is preferred to the uncertainty.

The same sort of geometric argument will show that an individual with
a concave utility function will prefer to pay a small premium rather than
incur a small chance of a large loss.  This is even true, up to a point, when
the expected money loss of the risk is less than the money amount paid as
premium. In other words, the individual, depicted by utility curve ',
would prefer to insure against large losses even if the insurance company
makes some profit,

Suppose that the random variables R and § are the returns on two
different portfolios. Suppose further that, although the probability
distribution of R and § may not be the same, the individual considers
them to be equally good. It is shown in the footnote that, if R and § are
not perfectly correlated and if the utility function is strictly concave, then
a mixed portfolio with returns T = (1/2}R + (1/2)S is preferred to R or S.
Even if R and § are perfectly correlated, T can be no worse than R or .
Thus, if an individual's utility curve is strictly concave, diversification
between two equally good portfolios cannot produce a worse portfolio
and generally will produce a better one.!

A concave utility function, therefore, is a conservative -one, consistent
with the purchase of insurance and the diversification of portfolios.

The implications of a convex utility curve are opposite those of the
concave curve. The utility of the bet —a versus a, represented by ¢ in
Figure 2, is greater than that of no bet. An individual who maximizes the
expected value of the utility curve ss” would not buy insurance, even if the
insurance company made no profits. He would prefer the probability
distribution of R or § to that of the diversified portfolio T. Action based
on a convex utility curve is even more reckless than that based on the
maximization of expected return—in contrast with the conservative
implications of the concave curve. The expected return rule itself is the
same as the maximization of utility when the utility curve is a straight line

' EW(T) = EUIUHR + (1/2)8] = (IIDEU(R) + (I{HEU(S) = EU(R) = EU(S).

But, given strict concavity,

UI1/2R + (1/2)8] > (1/2YU(R) + (1/2)TKS)
when
R =S
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A utility function need not be everywhere concave or everywhere convex.
The utility function in Figure 3, for example, is first concave, then convex,
then concave again. A curve of this sort can be consistent with insurance
against losses, taking small bets, and the diversification of the portfolio.?

U

Return

Figure 3. A utility curve consistent with insurance, betting, and diversification.

Utility functions with convex segments raise serious computing problems
in portfolio selection. On the other hand, while concave utility functions
differ in their adaptability to computation, all are manageable after a
fashion. TIn the case of the allocation of “important money,” it seems
reasonable to use a strictly concave utility function.  This is equivalent to
assuming that it is always at least as desirable to obtain a return R with
certainty as it is to take a chance with expected outcome equal to R.

CONTRADICTIONS

The writer feels that the most interesting and relevant arpuments against
the expected utility maxim involve specific cases in which human subjects,
after careful deliberation, choose alternatives inconsistent with the maxim.
The sitvations are reasonably simple, the human cheice fairly definite, the
contradiction between choice and maxim apparently inescapable. Tither
we must conclude that the expected utility maxim is not the criterion of
rational behavior, or else we must conclude that the human being has a
natural propensity toward irrationality, even in his most reflective
moments.

1 SBee [23], [24].
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Three examples are given below in which it is possible for an individual
to prefer an alternative inconsistent with the expected utility maxim. In
each case the “wrong” alternative has a plausible appearance and is
chosen by many persons questioned. The first example is one of the
author's quoted in [23]. The other two are due to Allais [29]. The
conclusion which Allais drew from his examples is that, since rezsonable
men choosing among simple alternatives contradict the expected utility
maxim, this rule must be a poor one. The conclusion which this writer
drew was that the individuals choosing the ‘‘wrong™ alternative acted
irrationally. The argoment to support this contention and similar
arguments! for the two examples of Allais are presented.

Exampik 1: The individual is given his choice of three lottery tickets.
In lottery A there is one chance in a thousand of winning $1000; in
lottery B there is one chance in one hundred of winring $100; in lottery C
there is one chance in two thousand of winning $1000, and one chance in
two hundred of winning $100. The alternatives may be summarized as
follows:

Alternative Chances (out of 2000) Outcome
A 2 31000
1998 0

B 20 8100

_ 1980 0

C 1 $1000

10 100

1989 0

Subjects asked to choose between A, B, and C frequently express a definite
preference for C.  This preference for C is contrary to the expected utility
rule, since

1989

1 1
Ug= 3000 ($1000) + 200 U(8100) 4+ 3000 U($0)

1 999 11 1k

99
1000 U(3100) + 155 U(O)]

Thus {/; cannot be larger than both U, and Uy.

! Essentially due to L. J. Savage,
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Which is wrong, the expected utility maxim or the individual who
chooses C?

Those who respond with a preference for C may be further interrogated
whether they prefer A to B or vice versa. The argument is essentially the
same whichever is chosen. For concreteness we shall assume that A is
preferred to B. Remembering that the individual prefers A to B, we may
further inquire whether he would rather have A with certainty or a 50-50
chance of obtaining A or B. In other words, shall we engage in lottery A
directly or shall we first flip a coin to decide between A or B? The
unanimous response of those who prefer A to B is that they would prefer
to have A outright than a chance of A or B.

The alternative of flipping a coin between A or B has certain probabilities
of ultimately gaining $1000, $100, or nothing. The probability of winning
$1000 equals the probability of obtaining lottery A times the probability
of winning $1000 if A is obtained. Thus

Ps1000 = 22000 ~ 2000
Similarly,

And, finally,
Py =1 — Psiow — P10

1989
2000
Note that the probability distribution of outcomes from flipping the coin
to choose A or B is exactly the same as the probabilities offered in C.
Thus, if we assume that it is the probabilities of outcomes which count
rather than the particuar way in which they are generated, we may express
the individual’s preferences as follows:

C is preferred to A; A is preferred to a 50-30 chance of A or B; but a
50-50 chance of A or B is exactly the same thingas C. Thus Cis definitely
preferred to A and A is definitely preferred to C—an inconsistency.

ExampLE 2: Allais asked subjects to consider the following two
alternatives:!

Aliernative A: receive $1,000,000 with certainty.

Alternative B:  receive $5,000,000 with probability .1,
receive $1,000,000 with probability .89,
receive nothing with probability .01,

1 T have taken liberties in translating from francs to dollars.
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He found that his subjects preferred alternative A to B. He further
asked them to consider the following:

Situation C: receive $1,000,000 with probability .11,
receive nothing with probability  .89.
Situation D: receive $5,000,000 with probability .10,
receive nothing with probability .90

He found that his subjects preferred D to C. If we assume that it is the
probabilities of final outcomes and not the particular manner in which
they are generated that count, then to choose A when A and B are the
alternatives and to choose D when C and D are the alternatives contra-
dict the expected utility maxim. This may be seen as follows: letting
U(0), (1), TA5) represent the utilities of receiving nothing, $1 million,
and $5 million, respectively, we find that the preference of A over B implies

W) > 1US) + 89U(1) + 0LU(0).
Adding
[.89TH(0) — .891X(1)]

to both sides of the above tnequality, we find that
U 4 .89U(0) = 1U(5) + .9TH0).

Hence, if an individual who follows the expected utility maxim prefers A
to B, he must prefer Cto D.  Allais concludes that, since reasonable men
preferred A to B and D to C, the expected utility maxim must be
unreasonable.

I cannot further interrogate Allais’ subjects, but T have found that my
colleagues and acquaintances give similar responses. 1 have further
questioned them as follows: which would you choose

(a) $1,000,000 with certainty, or
(b) $5,000,000 with probability 10/11 and nothing with probability 1/11?

Either response in itself is consistent with the expected utility rule. In fact,
however, everyone indicated a preference for the $1,000,000 with certainty.
Now consider the following situation.

A wheel with numbers 1 through 100 (each equally probable) is spun.
If any number from 1 through 89 appears, you receive $1,000,0600. If,
instcad one of the eleven numbers, 90 through 100 appears, then you have
a choice: you may either

(a) have $1,000,000 with certainty, or
(b) have a 10/11 chance of $5,000,000 and a 1/11 chance of nothing.
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This situation is never to be repeated. The possibilities and alternatives
may be represented schematically as follows:

89 probabitity $1,000,000 with certainty

]’ (a} $1,000,000 with certainty

Choice < or
10 babilit
() /11 probabily . $5,000,000

/1]
pfObabJﬁty $00.

Suppose that one of the numbers 90 through 100 appears on the spin:
which would you choose, the million with certainty or the chance? The
response was invariably “the million with certainty.” Suppose you had
to commit yoursclf in advance. Suppose that, before the first wheel was
spun, you had to say “I will take (a} if the choice arises™ or I will take (b)
if the choice arises.” To which would you commit yourself? The
unanimous preference was to commit oneself (*“of course”) to (a).!

Consider another situation: a wheel marked with the equally probable
numbers 1 through 100 is spun. If one of the numbers 1 through &9
appears on this spin, you receive nothing. If, instead, one of the eleven
numbers 90 through 100 appears, then you have the choice:

(a) $1,000,000 with certainty, or
(b) a 10/11 chance of $5,000,000 and a 1/11 chance of nothing.

Schematically:

89 probability $00 with certainty

{z) $1,000,000 with certainty

Choice ar
10f11 probability

(b) $5,000,000
I probabi!ity $00.

As before, the situation is never to be repeated. Suppose that one of the
numbers 90 through 100 appears on the spin: which would you choose,
the million with certainty or the chance? Again the response is unanimous,
the million with certainty. Suppose that beforehand you had to commit
yourself to (a) or {(b). Again (a) is chosen.

! This is a single stage choice situation. Once the individual commits himself 10
(a) or (b), no decisions are made before the final outcome is announced.
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But now let us calculate some probabilities. Suppose that in the first
situation the individual decides to take (a) if the choice arises. Then he is
certain of winning $1,000,000. Thus the person who commits himself to
{(a) in the first situation faces the same probability distribution of final
outcomes as did the person who chose alternative A in the Allais example.
Suppose that the individual instead commits himself to (b) in the first
situation. Then he has a .89 probability of winning $1,000,000; a
(.11)(10/11) = .1 probability of winning $5,000,000; and a (.11¥1/11) = .01
probablity of winning nothing. Thus the individual who commits him-
self to (b) in the first situation faces the same probability distribution of
final outcomes as did the person who chose alternative B in the Allais
example.  Suppose that the individual commits himself to () in the second
situation. Then he has a .89 probability of winning nothing and a .11
probability of winning $1,000,000. His probability distribution of final
outcomes is the same as that of aiternative C in the Allais example. And
finally, as the reader may confirm, if the individual commits himself to (b)
in situation 2 his probabilities of final cutcomes are the same as if he chose
alternative D in the Allais example.

Thus, if the individual prefers to take the million with certainty when the
opportunity is presented—whatever the non-occurring alternative—then
he prefers the probability distribution of alternative A to that of alternative
B, and prefers the probability distribution of alternative C to that of
alternative D. The person who preferred D to C in the Aliais example
now prefers the probability distribution of C to D, when this is presented
in terms of a random process in which the meaning of the difference
between a .11 and a .10 probability is made sharper.

ExampLe 3: In the second example of Allais we again have two situa-
tions, each with two alternatives. 1In the first situation we may choose
between

Alternative A: certainty of $1,000,000.
Alternative B:  a .98 probability of $5,000,000, and
a .02 probability of obtaining nothing.

In the second situation we may choose between:

Alternative C:  a probability of .01 of getting $1,000,000, and
a probability of .99 of getting one cent.
Alternative D:  a probability ofg098 of getting §5,000,000,
a probability ofp002 of getting nothing, and
a probability of .99 of getting one cent.
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Allais found that reasonable men prefer A to B and D to C. Tleave it as
an exercise for the reader to prove, as was done in Example 2, that these
choices are in fact inconsistent with the expected utility maxim. He may
also confirm that the probabilities associated with C and ID are the same
as those associated with the two possibilities in the following situation.
A wheel with 100 numbers is spun. If any number between 1 and 99
appears, the individual receives one cent. [If 100 appears, the individual
has the choice of aceepting one million with certainty or taking a chance
with
a probability of .98 of §5,000,000

and

a probability of .02 of nothing.

Surely the individual who originally preferred alternative A to alternative
B will again choose the §1,000,000 with certainty if the occasion arises.
But, again, as the reader may confirm, this is the same as preferring the
probability distribution of C to that of D, contrary to the previous
expression of preference.

What may we say concerning the individual who in Example 1 preferred
alternative C to A or B, yet preferred A to a 50-50 chance of A or B?
What can we say about the individual who, in either Example 2 or 3,
preferred A to B and D to C, yet chose the million dollars with certainty
whatever the contingency which was not realized? One of two comments
can be made, depending on whether the individual accepts or rejects the
statement that choice should depend on the probabilities and not on how
they are generated.  If he rejects the statement “Choice should depend on
the probabilities, not on how they are generated,” he must feel that life is
either more or less worth while if numbers are drawn from a single barrel
and a million dollars received than if numbers are drawn from two barrels
and a million dollars received. If this is the case, then there is no conflict
between the expected utility rule and the person’s choice.  Ultility is then
attached not to the one million dollars but to the enjoyment of a certain
kind of lottery and the receipt of the sum.

If, on the other hand, the individual accepts the statement that for ali
practical purposes it is the probabilities of the outcomes rather than the
way they are generated that count, then our conclusion must be that the
individual has simply made a mistake in one of his choices. When the
probabilities are presented in one manner, he prefers one distribution to a
second; when they are presented in a different manner, he prefers the
second to the first. His preferences are not only inconsistent with the
expected utility maxim, they are also inconsistent with themselves.
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EXCEPTIONS, ASSUMPTIONS, AND EXTENSIONS

A basic assumption of the expected utility maxim is that, if probability
distribution (1) is considered as good as probability distribution (2), and
(2) is considered as good as probability distribution (3), then (1) will be
considered as good as (3). This may not hold true in fact. By analogy
consider the perception of loudness: sound (1) may seem exactly as loud
as sound (2), and (2) exactly as loud as sound (3), yet, when sounds (1)
and (3) are compared, the first may seem definitely louder than the second.
Men surely have as much fuzziness in their perception of preferences as
they have in their perception of sounds. When we assume that a rational
man exactly follows the expected utility maxim, we rule out any fuzziness
in his perception of preferences.

The last section considered cases in which human choice was not
consistent with the expected utility maxim. We argued that, in these
particular cases, the person was in error. Other cases can be cited,
however, in which human choice apparently contradicts the expected
utility maxim but the person is not “in error,” These include cases in
which the pleasures or displeasures of suspense, surprise, and the fun of
playing the game are an important part of the individual’s motivation.
The expected utility maxim can be extended to include such considerations;
but a large number of such “‘extensions” transform the maxim from a
convenient rule to a useless formality.

When we assume that utility is attached to money outcomes, we are
assuming that any way of generating probabilities is as good as any other
way of generating the same probabilities. In fact, however, the “fun of
gambling” may be greater if probabilities are generated by the spin of
wheels than by the use of a random number table. Even if there are no
dice, cards, wheels, or companions to liven the game, suspense may be
increased by employing a sequence of drawings to determine an outcome
(best of seven rather than heads or tails).

The assumption that, if outcome A is better than outcome B, then it is
also better than having a 50-50 chance of A or B is not always true of
human preferences. I may prefer to receive socks for my birthday rather
than a tie, yet I may insist on not revealing my preferences so that I may be
“surprised” when my birthday arrives. I might be equally delighted to
have apple pie or pecan pie for supper, yet I may feel it worth the effort to
call and find out which is in the oven.

The expected utility rule can be extended to incorporate considerations
such as surprise, cutiosity, suspense, and the fun of playing the game, We
could attach a different utility to “watching wheels go round and then win-
ning a jackpot of $20” than is attached to “finding $20 on the sidewalk.”
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We could attach a different utility to asking for socks and getting them
than is attached to wondering whether socks or ties are forthcoming
and being pleasantly surprised to find the latter. We could attach 2
different utility to “anticipating the pleasures of apple pie and being
presented with pecan” than is attached to “anticipating the pleasures of
pecan pie and being presented with pecan.”

By thus elaborating the set of outcomes we can remove the differences
between human preferences and the cxpected utility maxim.

The fun of playing the game is no doubt important in actual gambling
situations. ~ It may also be important for persons who take pleasure in
following their security investments, especially when these represent a
small fraction of their carning power. We shall assume, however, that
the “fun of the game™ can be ignored in deciding on a rationale for the
selection of a portlolio, especially when this involves the allocation of
large amounts of other people’s money.

Some “‘contradictions” between human preference and the expected
utility maxim are not contradictions at all, but misapplications or mis-
interpretations of the maxim. It is important to avoid such errors, both
in deciding on the reasonableness of the rule and in applying it if adopted.
A common error is the application of a single time period analysis to an
essentially multi-time period situation. Another common error is the
misinterpretation of the notion aP + (1 — a)Q.

Suppose that an individual is indifferent between

(iy receiving an extra §10,000 one year from now, or
(ii) receiving an extra $10,500 two years from now.

He would not, as a rule, be indifferent between

(a) knowing that (i) will happen,

(b) knowing that (ii) will happen, and

(c) knowing only that there is a 50-50 chance of (i) or (ii), the exact
outcome to be revealed a year from now.

Situations (a) and (b) are clearly better than (c). Actions can be taken,
between now and a year from now, if one or the other outcome is known
with certainty, that cannot be taken in the state of uncertainty. This is
not a contradiction of the cxpected utility rule but an example of a multi-
time period situation. The application of the expected utility rule to such
situations is discussed in the next chapter,

At first sight the following seems like a contradiction of the expected
utility maxim:
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I would prefer to go to the mountains next Saturday than stay at home;

I would prefer to go to the seashore next Saturday than stay at home;

Yet | would prefer to stay at home than to be uncertain as to whether 1
was going to the mountains or the scashore.

Such preferences illustrate the effect of intermediate decisions. It would
be unpleasant to prepare for the mountains and find that one was going to
the seashore. 1t would be equally unpleasant to prepare for the seashore
and find that one was going to the mountains. To prepare for both
would be more trouble than the trip is worth. The effect of these inter-
mediate decisions s clear when this situation is contrasted with one in
which no intermediate decisions are required, or in which the same
intermediate actions must be taken in any case. For example,

1 would prefer 1o go to beach A than stay at home;
1 would prefer to go to beach B than stay at home.

The same preparations must be made in either case. Surely

I would prefer to be uncertain as to whether [ was going to beach A or
B than to be sure that 1 was going to stay home.

A sccond type of error is the misinterpretation of the idea of “mixing
probabilities.”  Suppose that security (1) has a probability distribution of
returns P; and security (2) has a probability distribution of returns Q.
Suppose further that P is considered to be exactly as good as ¢. The
expected utility maxim asserts that having either of these outright is
exactly as good as flipping a coin to choose between them. The proba-
bility distribution in the latter case is the “mixture” (1/2)F + (1/2)Q.
Ncophytes sometimes conclude that the statement *<(1/2)P + (}/2)0 is
exactly as good as P or @ implies the statement “diversification does no
good.”

This is a non sequitur. The probability distribution associated with
flipping a coin to choose between two securities is nof the same as the
probability distribution which results from investing equally in each.
Suppose, as an extreme example, that there were one hundred securities
all with the same probability distribution. Suppose further that the
returns on these securities were uncorrelated. Diversification among the
one hundred securities would considerably reduce variability of return.
Choosing a single stock at random, on the other hand, would result in
exactly the same probability distribution of returns as investing in any of
them outright. Clearly, the mixing of probabilities and the mixing of
portfolios are not to be confused.

It has been argued that the assumption that “if P is exactly as good as O
then either is exactly as good as aP + (1 — a)Q” should be doubted or
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rejected in the case of probabilities because there are other things to which
the assumption clearly does not apply. But the fact that the assumption
clearly does not apply to the planning of a meal, the blending of gasoline,
or the decision about a family budget does not affect its reasonableness or
unreasonableness when applied to probabilities. The fact that people
prefer martinis to 10057 gin or 100 %, vermouth proves that the assumption
does not necessarily hold in the case of mixtures of ingredients, This is
still consistent with the statement that “if a martini is preferred to straight
gin, then a 50-50 chance of a martini is preferred to the certainty of
straight gin.” _

The reader will find it instructive if he produces for himself apparent
contradictions between human preference and the expected utility maxim.
He should consider whether these “contradictions” are due to limitations
of the person, limitations of the maxim, or limitations of the method of
analysis. He might start by analyzing the following situation.

We argued in the case of the Allais examples that, if probability distri-
bution 1 is preferred to probability distribution 2, then it should be
preferred whatever the alternative that did not occur. In the next section
we shall see that this is a crucial assumption behind the expected utility
maxim. Is it contradicted by the following example?

I prefer to stay for dinner than play with the cat.
I prefer to play with the cat than to feave for home.

It is pointed out that the middle alternative is no longer available: the cat
has disappeared. I leave for home without staying for dinner.

THE AXIOMATIC APPROACH

In a previous discussion we assumed that, if an individual preferred
lotery ticket A to lottery ticket B, he should prefer A with certainty to a
50-50 chance of A or B. This might be viewed as a basic principle in terms
of which less obvious decisions could be judged. Suppose that you and
I were discussing “reasonable behavior.” We might systematize our
discussion by writing a set of “basic principles” and then confine our
arguments to

(a) the agreed-upon principles,

(b) statements of general mathematical or logical validity, such as
24 2=4, and

(¢) statements inferred from (a) and (b).

We might decide that in one context one set of basic principles is approp- -
riate, while in another a different set of principles should be used. We
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might find that some patterns of preferences are consistent with a set of
principles while other patterns are not. We might find that preferences in
accord with the expected utility maxim cannot be consistent with our
principles.  Or we might find that preferences, both some in accord and
some not in accord with expected utility, are consistent with our principles.
Or, finally, we might find that only preferences in accord with the expected
utility maxim could be consistent with our principles.

If we set down a set of basic principles in advance, we can argue from
them as Euclid argued from his basic Axioms, Postulates, and Definitions
of Geometry. Inthe modern manner, we can drop the distinction between
axioms and postulates and refer to the initial propositions of our deductive
system as either axioms or definitions. We can keep in the back of our
mind that our “statements of general mathematical and logical validity”
are themselves consequences of axioms and definitions of logic and
mathemalics. In short we can use the axiomatic approach.

THE AXIOMS

This section presents and discusses axioms of rational behavior. The
following sections derive implications of these axioms. The axioms are
offered as basic principles which we would expect to be consistent with the
choices of a rational man or perfect computing machine. We cannot
“prove” our axioms: if we knew more plausible principles from which
they could be deduced, then these more plausible principles should have
been used as axioms instead. Our discussion can only attempt to make
clear the assumptions and conditions which the axioms impose.

It is not required that the axioms presented here be an exhaustive list of
plausible principles. In deriving their consequences we assume only that
the axioms are plausible, not that other plausible principies do not exist.

Our first principle is expressed in

Axiom Ia: If P and Q are any two probability distributions of outcomes, then
cither P is preferred to @, or Q is preferred to P, or both are considered equally
good.

Part (a) of Axiom I implicitly assumes that it is the probability distri-
butions that count and not the way they are generated. It explicitly
assumes that our Rational Man or Perfect Computing Machine is not
subject to indecision: either P is better than Q, or Q is better than P, or
¢lse the choice between them is a matter of indifference.

The second principle is expressed in

Axiom Tb: If P is considered at least as good as Q, and ¢ is considered at
least as good as R, then P is considered to be at least as good as @ R,
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Part (b} of Axiom I says that we should be rather disappointed with our
perfect machine if it told us that portfolio 1 is better than 2, portfolio 2 is
better than portfolio 3, and at the same time-—with no change of informa-
tion or circumstances—it told us that portfolio 3 is better than portfolio 1,
Part (b) also rules out fuzziness in the perception of preferences, since it
implies that, if P is exactly as good as Q, and (J is exactly as good as R,
then £ must be exactly as good as R. _

Axiom I says that preferences define an ordering of probability distri-
butions (just as age defincs an ordering of people, hardness defines an
ordering of objects, and luminosity defines an ordering of stars). The
various properties of orderings can be deduced from Axiom 1. We need
not assume separately, for example, that, if P is considered better than
@, and @ is considered exactly as good as R, then P is considered better
than R. This follows from Axiom I without additional assumptions.!

The next principle concerns situations similar to those in which a coin
is flipped to determine in which of two lotteries to engage. The principle
is expressed in '

Axiom I1: If probability distribution £ is preferred to probability distribution
Q. and if R is any probability distribution at ail, then

a probability a of obtaining P and (1 — a) of obtaining R is preferred to
a probability a of obtaining @ and (1 — ) of obtaining R—as long as « is
not zero.

In other words, if P is preferred to Q, if a is greater than zero, and if R is any
distribution whatever, then

aP + (1 — a)R s preferred to  aQ + (1 — a}R.

Axiom 1l requires a word of explanation. Previcusly we considercd
situations in which there was a probability (1 — a) of receiving probability
distribution R and a probability @ of having a choice of P versus 0.
Schematically:

0 ) k

P
or

It seems reasonable that, if Pis preferred to @, then it should be preferred

1 Strange to say, even the assumption that “if P is better than @, and O is better than
R, then P is betler than R has been objected to as a principle of rational behavior.
The main argument is that human beings, and even rats, do not always behave
according to this rule. Granting this immediately, 1 would still be rather shocked if my
perfect machine did not follow it.
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to 0 whatever the alternative that did not occur and whatever the proba-
pility with which it did not occur.  Axiom 1 is simply a formalization of
this principle. aP + (1 — @)R is the over-all probability if one commits
oneself to choose P if the opportunity arises; a@ + (I — a)R is the over-
all probability if one commits oneself to choose  if the opportunity arises.
If we assume that different ways of generating the same probability distri-
butions are equally good, the statement that P should be chosen instead of
@, whatever a or R, is the same as the statement that aP 4 (1 — a}R
should be preferred to @Q + (1 — a}R.

Another way of looking at Axiom II is the following: In alternative 1 a
coin is flipped: if it comes out heads the lottery P is chosen; if it comes out
tails then lottery R is chosen. In alternative 2 a coin is flipped: if it comes
out heads lottery € is chosen; if it comes out tails lottery R is chosen.
In tabular form:

if heads if tails

Alternative 1 P R

Alternative 2 Q R

Alternative 1 is surely superior to alternative 2. For, if a head appears,
alternative 1 results in the choice of a preferred distribution; whereas, if a
tail appears, they both result in the choice of the same distribution. The
argument applies even if the probability of a head is a rather than.5.  But
the probability distribution associated with alternative 1isaP + (1 — )R,
while that associated with alternative 2isaQ + (1 — @)R. Thus Axiom 11
is nothing more than a formalization of the statement that, if P is better
than @, aiternative 1 is better than alternative 2,

In Axiom II the probability distribution R can be any probability
distribution. In particular, we can have R = P. In this case the axiom
says that, if P is preferred to @, then P is preferred to aP + (1 — a)Q.
Or we can let R = (, in which case the axiom says that, if P is preferred to
0, then aP + (1 — @)@ is preferred to Q.

Let us consider a situation with three possible outcomes whose proba-
bilities are py, py, ps- I an individual’s prefercnces are in accord with the
expected utility maxim, they may be described by an ordering function such
as

(1) U=3p; — 2p; + 8p,.

One probability distribution is preferred to another if and only if it has a
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higher U, as computed in equation {I). We can conceive of countless
other ordering functions:

@ - U=logp, + 2logp, + 4log p,,
(3 U=pi-py ps

4) U=>5p + 4psps,

(3) U=p, + {(p:)* + (pa)%

and so on. Ordering functions (1) through (5) are continuous: small
changes in the p’s do not lead to jumps in U.

Of the five continuous functions listed above, only the first satisfies
Axiom Il. In fact, of all possible continuous ordering functions the only
ones which satisfy Axiom I1 are weighted sums

e

U= '21 Up,)
i=
and disguised versions of linear functions; for example,
V=U=(3Up)
More precisely, if a set of preferences

(a) can be described by any continuous ordering function, and
{b) satisfies Axiom II,

then these preferences are in accord with the expected utility maxim.
{Axiom Iis implicitly included in the assumption that an ordering function
exists. 'The proof that (a} and (b) imply the expected utility maxim is a
corollary of the main result of the following sections.)

It 1s possible to construct preference patterns not describable by a
continuous ordering function. Suppose that an individual prefers to
smoke a cigarette rather than not smoke one; and prefers not to smoke
than be struck dead instantly. He must choose between

(i) smoking a cigarette with probability a and being struck dead with
probability (1 — a), or
(i) having neither happen with certainty.

Suppose that the individual chooses (i) for alt values of a less than I, and
chooses (i) fora = 1. His preferences cannot be described by a continuous
ordering function.

But people do cross busy streets to buy a package of cigarettes, and in
other ways affect the probability of death. When we say “any” proba-
bility other than “1” we include probabilities such as

-99999999999999999999999999999999999999999999999999999999995
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One minus this probability may be thought of as the chance that lightning
will strike every telephone post in the country tomorrow, thus forcing
A. T. & T. into bankruptcy. I am sure that most people who are in the
mood for a cigarette would be willing to put up with this much risk.

The third of our axioms rules out discontinuities as illustrated by our
cigarette example. We shall actually present three versions of a third
axiom: IIT, ITI", and 111", It is unnecessary to assume all three. Axioms
I, II, and 11T have exactly the same implications as Axioms I, I, and III".
The implications of Axioms 1, I, II1” differ from the preceding in only one
minor respect.  Axiom IIL is the easiest to use. It is the version employed
later in this chapter to show the relationship between the axioms and the
expected utility maxim. Axiom III’ seems to me more fundamental, but
it is more difficult to work with than Axiom III. We state it here as an
alternative formulation; we show in Appendix C that it may be used in
place of III. Except for one small restriction, Axiom 11" would be
unambiguously superior to Axiom IIL. As with Axiom III', we simply
state it here as an alternative formulation and discuss it technically in
Appendix C. Appendix C also considers other matters related to the
axiom systems, such as the possibility of an alternative formulation of
Axtom I

Let us begin with

Axiom III': If probability distribution P is preferred to distribution 2, and
Q is preferred to probability distribution R, then there are numbers @ < 1 and
b > 0 such that

(i) gP + (1 — a)R is preferred to O,
(ii) O is preferred to bP + (1 — HIR.

In other words, if P is preferred to @, and Q is preferred to R, there is

(i) a probability a—perhaps infinitesimally close, but not quite equal
to 1—such that this much chance of P instead of R is preferred to @ with
certainty; and

(i) a probability b—perhaps .00000000001 or smaller—such that this
much chance of P is not as good as having @ with certainty.

~ Axiom 11U formalizes the argument against discontinuities presented in
the cigarette example.

An axiom which is easier to use says that, between the value of a that
makes aP + (1 — a)R preferable to Q, and the value of b that makes
bP 4 (1 — b)R less desirable than Q, there is a value of ¢ such that
¢P + (1 — ¢)Ris exactly as good as Q. The existence of ¢ can be deduced
from Axioms I, 11, and 1II". [t is convenient in the text, however, to
assume its existence from the outset. Thus in the discussion of the
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retationships between the axioms and the expected utility maxim we shall
use

Axiom 1I1: 1f P is preferred to Q, and Q is preferred 10 R, then therc is a
number ¢ such that
cP + (1 — )R is exactly as good as Q.

Essentially the same implications which follow from Axioms L, 11, and 111
also follow if we assume Axioms I, II, and II1", when Axiom III” is
defined as:

(a) There is at least one set of three outcomes such that eutcome 1 is preferred
to outcome 2, and outcome 2 is preferred to outcome 3,

(b) In the case of every triplet of outcomes (J, j, and k) such that outcome i is
preferred to outcome j, and outcome j is preferred to outcome &, there is a
number ¢ such that

a probability ¢ of obtaining outcome / plus
a probability (1 — ¢) of obtaining outcome (k)
is exactly as good as () with certainty.

The statement that outcome i is preferred to outcome j is the same as the
statement that the probability distribution which gives | with certainty is
preferred to the probability distribution which gives j with certainty.
Axiom 11l makes an assumption concerning any probability distribution
P preferred to Q preferred to R. Part (b) of III"” requires only that this
assumption, the existence of ¢, holds true for probability distributions
which give outcomes with certainty. Thus part (b) of I11” assumes much
less than I1I; yet under certain conditions it has exactly the same implica-
tions. These conditions, as expressed in part {a) of 11", are that at least
one triplet of outcomes exists such that outcome 1 is better than outcome 2,
and outcome 2 is better than outcome 3.

We have wandered from the objective of setting down a set of principles
and deducing their consequences. We are now in the realm of starting
with one set of reasonable principles which give certain consequences and
then searching for slightly more reasonable, slightly simpler, slightly more
general principles from which the same conclusions can be deduced.
While such excursions in “‘comparative axiomatics™ may be interesting,
they are somewhat removed from portfolio selection. The mathematically
trained reader who wishes to pursue the subject is referred to Appendix C.

For the rest of this chapter the fundamental principles used in analyzing
rational behavior arc those expressed in Axioms I, 11, and I1I.

THE AxioMs AND EXPECTED UTILITY

Axioms I, 11, and III of the last section express principles which we
would expect our Rational Man or our Perfect Computing Machine to
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follow. What is the relationship between these principles and the expected
utility maxim ?

The relationship is as close as a relationship between a maxim and a set
of principles can be. If a set of preferences is consistent with Axioms 1,
H, and TH, then it is in accord with the expected utility maxim. If a set
of preferences is in accord with the expected utility maxim, it is consistent
with the axioms. An individual acts according to the axioms if and only
if he acts according to the maxim. If we understand the conditions and
requirements imposed by the axioms, we understand the assumptions
behind the use of expected utility.

If we were to add other principles, not implied by those of the last
section, 1o our set of axioms we would further limit the sets of preferences
consistent with our axiom system. If, for example, we assume that
diversification between two equally good portfolios never produces a worse
portfolio, then only concave utility curves would be consistent with our
axioms. In any case, a set of preferences consistent with all three of the
axioms of the last section must be in accord with the expected utility
maxim.

The rest of this chapter is devoted to showing that the expected utility
maxim follows from Axioms I, 11, and ITI.  First we discuss notation and
then discuss relationships useful in deriving the maxim. Finally we show
that the maxim follows from the axioms through a series of intermediate
results.

MNOTATION

P, Q. R will represent, as above, vectors describing probability dis-
tributions among # possible outcomes. Anything which is true in general
concerning probability vectors is irue of our P, O, R.

We shall let the symbols >, ~, >> represent relationships among
preference:

P> @ means “Pis preferred to Q.7
P~ QO means “Pisexactly as good as 0.
P> means *Pis at least as good as Q.”

In an axiom system some symbols are “undefined”; others are defined in
terms of these undefined symbols. Generally there is a choice as to which
concepts are “primitive” and which “defined.” In the present case we
could take > and ~ as undefined ideas and then define “P > Q™ to mean
“‘either P == Q or else P ~ 0. Alternatively, we could take = as the
undefined symbol and let:

“P ~ 0" mean “P=> (Qand Q= P";

“P=>@” mean “P=(Qandnot Q =P,
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The first approach seems more natural; the second, which minimizes the
number of undefined terms, would probably be preferred by the connoisseur
of axiomatics. We shall adopt the second since it is slightly more
convenient.

Our formal axiom system, including axioms and definitions, can be
expressed in terms of the relationship =" as follows:

Axiom Ta: If P and @ are any n component probability vectors, either P = @,
or O = P, or both.

AxiomIb: IfP = Qand Q = R, then P > R,

Definitions:
“P> @ means “P>Qandnot Q =P
“Pm~ 0”7 means “P>Qand @ >P”

AxioMm 1i: If P > O, then
aP+(l—a)R>a@+ (1 —aR forany Rand1 =4 >0
Axtom III: If P> @ and Q > R, then there is a number a such that
Q ~aP + (1 —a)R.
Ia, above, is equivalent to a formulation used previously, namely,
Axtom Ia’: Either P> Qor QO > PorP~ (.
We shall let
E, =(0,0,---1,---0

be the vector with 1 in the ith place and 0 everywhere else. E; is the
probability vector which represents the certainty of receiving the ith out-
come. (Since we will not need E tb represent “expected return™ in this
chapter, this use of E; should cause no confusion.)

PRELIMINARY RESULTS

Any vector
Pz (Pls T ‘spn)
can be represented as an average of the vectors E; = (0,: - -, 0,1,0,
-« -, 0} Specifically,
(Pr," " P =pEr B + - - -+ puE,

More important for our purposes is the fact that any P can be obtained by
letting

Pl = E,

P?=q,Ey + (1 — g)P,

P? =g,y + (1 — gP3,
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and so on,until
. P= ann + (1 - %)Pn_l,
where 0 <{ g, =< 1. For exampie,
P = (1/8,3/8, 2/8, 2/8)
may be formed as follows:
P1=(1,0,0,0),
P2 =(3/4)0,1,0,0) 4 (1/4)1,0,0,0) = (1/4, 3/4, 0, 0),
P3=(1/3)0,0,1,0) + (2/3)1/4, 3/4,0,0) = (2/12, 6/12, 4/12, 0),
Pt = (1/4)0, 0,0, 1) -+ (3/4X2/12, 6/12, 4/12, )
= (1/8, 3/8, 2/8, 2/8).
In general, if we let

Pi=E,

P? = Py P pl— P2 E P

= E + = +
ntp b ntp pEp b ot
Pa P3 E + Pl +P2 P2

PPt ps  pitptps

E]_,

Ps P2 P1
= E, + E+—"1  FE,
Prtpytp $ st e+ ops : ¥ Pt py !

etc.,

we will finally arrive at
P=pE, +- -+ pkE.

Subsequently we shall consider a relationship v(P) between numbers v
and vectog;{P = (P Po Pas * * P} We will know some properties of
the relationship but will not have an exact formula for it. The following
will be valuable in helping us further characterize v(P):

If, for every pair of probability distributions P and @, we have

vfaP+ (1 —a)0l=a - v(P)+ (1l —a)  o(Q),
forO0<Ca<C1,
then o(P) may be written
P =7 pu,

That is, if the » associated with aP + (1 — @)Q is always a times v(P)
plus (I — a) times (), then v may be expressed as a weighted sum of
the p;.
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Proor: Define ; to be v(E;). We saw previously that we may express any
P as
P = PnEn + {1 — [)n}P’T-l,
wherc
Pni] = [”1 - pn] : [Pn-—lEu—l + (i - Pu—l)Pu-%]’ etc.

Repeatedly applying

vlaP + [| ~ al@) = alP) + (1 — a)p(Q),
we find that
U(P) = UppPy + [l - pn] ) U(Pn_l)

= Uyt Uy g Puq+ [ —p, — .Pﬂ—I] - u(P1-2)
= ‘uupu +- -+ “1P1- Q.E.D.

THE DERIVATION

We now show that, if preferences are consistent with Axioms I, 11, and
III, they are in accord with the expected utility maxim. The proof
proceeds through a series of intermediate results:

1. First we note properties of orderings implicit in Axiom L.
2. Next we show that Axioms I and I imply that if P ~ Q and p is any
number between 0 and 1,

PP+ —pO~P~0
3. Next, if P ~ Q, then
PP+ (1 —pR~pO + (1 —pR

4. If P> Rand P > @ > R, then there is one and only one probability
p such that
Q ~pP+ (1l —pR

5. There are E' and £° such that
E =>P>FE®

That is, the most preferred and the least preferred probability distributions
involve E,, which give outcomes with certainty.
6. For every P there is one and only one probability u(P) such that

p~vE 4+ (1 —n)E

7. 0[pP 4+ (1 = p)Ol = p- o{P) + (1 — p) - Q).
The last result implies that
o(P) = > up,.
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Thus the preferences consistent with Axioms I, 11, and HI can be described
by a weighted sum. If preferences are consistent with the axioms, they
are in accord with the expected utility maxim.

The converse result may be readily confirmed by the reader.

PROOF

1. A number of properties of ~, >, >, can be derived from Axiom I.
These include:

(2) P> Qand @ = Rimply P > R,

(b) P~ Q and Q ~ R imply P ~ R,

(¢) P> Qand Q ~ R imply > R,

(d) P~ @Qand 0 > Rimply P> R,

We shall prove (a) by way of illustration. The reader should prove one
other as an exercise.

Since P > (3, we have, by definition, P > Q but not Q > P. Since
Q>R wehave Q = Rbutnot R> Q. P> 0, @ > R, and Axiom I
mply P> R. Suppose R=F; then P> Q would imply R > Q,
contrary to assumption. Therefore we have P> R and not R = P;
that is, P > R.

2. We now show that Axioms I and IT imply that, if 7 ~ Q, then

[pP + (1 = p)Q] ~P.
Suppose, to the contrary, that

‘ PP+ (1 —p)Q) = P~ Q,
then, by Axiom II,

[pP + (1 — Q1 > (1/D[pP + (1 — pQ] + (1/2)Q > @ ~P.
But

(1/D[pP + (1 — p)Q] + (/2)Q = {(1/2)plP + [1 — (1/2)p] 0.
Hence
[(/2)p]P + [t — (1/2)p}Q > P,

which implies, again by II, that

[(%p)ﬂ(l—%”)g] (i/z)p (;P) (“%P)Q}

* {1 [ l;fg)p]} P

The expression on the right, however, is simply

PP+ (1 —po.
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Thus we have
PP+ (1 = p)@ > [(1/Dp]P + (1 — (1/2)p]1 02 > pP + (1 — p)O,

a contradiction.
The reader may show that a similar argument applies if we assume that

PP + (1 — p)Q] < P.
3. Next we show that, if P ~ @, then
PP+ (1 —pR~pQ + (1 —pR
Suppase, on the contrary, that in some instance
PP+ (1 —=pR>pQ + 1 —pR.
Because of (2) we know that we cannot have R ~ P. For then
Q~P~pP+ (1 —pR~pQ +(l —p)R~R

Let us assume that
R>=P

Essentially the same argument applies if P > R. Since
R>pP+ (1 —=pR>pQ+ (1 —=pR>P~Q,
according to Axiom III there is a probability ¢, such that

glpQ + (1 —pRI+ (1 — )R ~pP + (1 — p)R;

that is,
g2 + (1 ~ pg)R ~pP + (1 — p)R.
Let us use the g defined above to define a new vector (1 — ¢)R + ¢0Q.
We have
(l —pR+40>P~Q.

Hence, by Axiom II

P — R +qQ1 + (1 —~ p)R > pP + (1 — pR.
But

Pl — R + 901 + (1 — p)R = pgQ + (1 — pg)R.
Thus

PaQ + (1 —ppR > pP + (L — PR,
which contradicts our previous conclusion that
P42+ (1 —pg) R ~pP + (1 — p)R.
4. If P> Rand P = Q = R, then there is one and only one p such that
Q~pP+(1—pR
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We prove this in three parts:

(a) if P~ Q, then 11 implies that only p = 1 will make Q ~pP +

(b) if R ~ Q, then Il implies that only p = O will make Q ~ pP +
(1 - PR,

(c) if P> Q > R, then liI implies that there is some p such that

But II implies that for any p’ > p. p'P + (1 — p'}R > 0, and for p” << p,
it is true that

g>p'P+4 (1 —p)R.

5. Let E’ be at least as good as any other certain outcome; let E° be
no better than any other certain outcome. Thus

E' > E, > E°

for any outcome E; We shall show that, for any probability distri-
bution P,

E >P>=E

We have already seen that P may be developed as follows:
P'=E,
Pt =g,E, + (1 — g,)PY, etc.,

until
P=gqg.E, +(1-—g)P"

Clearly,

E = p.
Suppose

E' = Ph
Then, since E' = E¥,

E = P,

Therefore £’ = P, by induction. A similar argument shows that
P> E,
6. For every P there is one and only one probability v such that
P ~0vE 4 (1 — 0)E".

This is a corollary of 4 and 5. The number v as a function of P, o(P), is
an ordering function in that »(P) = o(Q) if and only if # == Q. To show
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that it is a linear ordering function, and that the individual’s preferences
are therefore consistent with the expected utility maxim, we nced only show

7. opP + (1 — p1Q) = po(P) + (1 — p(Q). Let
Ul = U(P)s

vy = v(Q).
Then

P~y E + (I —0)E",
Q ~uE 4 (1 — v)EC,
It follows from 3 that

PP+ (0 = p)Q ~pl ' + (1 — 0)E% + (1 ~ p}E’ + (1 — p)E"].
But the expression to the right of the ~ is

Por + (1 — o) £ + 11 — poy — (1 — pivg] E°.
Therefore

vlpP + (1 — p)Q] = pv, + (1 — pry
= po(P) + (1 — py(Q).

Hence we may write U = o(P), u; = (E,), and order the individual's
preferences by

U= Ypu, Q.ED.



‘CHAPTER X1

UTILITY ANALYSIS OVER TIME

REPRESENTATION

We now turn to the problem of rational behavior over time, still assuming
that objective probability distributions are known. The problem of
behavior when probability distributions are not known is discussed in
Chapter XIL

In Part 11 we used random wheels to represent chance situations. In the
present chapter it will be convenient to employ such wheels similarly.
Specifically we shall let a serics of related wheels describe the opportunities
available to an individual over time. -

Suppose that the individual must choose one and only one of the bands
on a wheel as in Figure 1. Associated with each band.is a level of current
consumption (e.g., consumption expenditures in constant dollars). Each
place on the band indicates the wheel to be spun next. Thus, if the
individual chooses band 3, he receives C = 43 current consumption; and,
if the wheel stops as in the figure, wheel number 14 is spun next. The
number of “bands™ and “places™ may vary from wheel to wheel. There
may be wheels on which there is only one band, and therefore no choice;
there may be bands on which there is only one outcome. We assume that
the individual knows the characteristics of all wheels.

Such a system of wheels can represent the probabilities associated with
a wide variety of situations. Consider first the case of an individual who
divides his funds between consumption and sccurities. One band of our
wheel would represent the decision to consume amount D and invest the
rest in portfolio A; another would represent the decision to consume
amount D and invest the rest in portfolio B; a third would represent the
decision to consume amount E and invest in A; and so on. The next
wheel to be spun (i.e., the next opportunities for consumption and invest-
ment) would depend on the choice of band and the result of the spin,

Our wheels can also describe the probabilities associated with illiquid
assets. The bands on a first wheel might represent various combinations

243
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of consumption, security purchases, borrowing, purchases of real capital,
or other business decisions. The opportunities available the next time
depend on the amounts of goods in process, obligations contracted, value
of liquid assets, and so on.  Different combinations would correspond to
different wheels. The wheels (opportunities) of the next period depend
on the choice of band this period and the outcome of this period’s spin.

Band Consumption
1 39
2 51
3 43

Figure 1. Random future opportunities.

In our general discussion the reader has the option of interpreting C,
either as a single number (c.g., consumption expenditures in constant
dollars) or as a vector of goods and services enjoyed. In particular
contexts C, is further specified. Consumption could also be a random
variable (or random vector) that depends on where the wheel stops.  This
is 2 question of convenience of analysis, since any situation which can be
described with random C, can also be described by suitable wheels with
non-random C,; and vice versa.

We assume that each wheel has a finite number of bands; each band
has a finite number of places; and there is a fixed finite number (7) of
spins to be made. T might represent a longest possible lifetime. If the
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individual dies at time 1° << T, every wheel after ¢* has only one band with
one possible outcome: stay dead.

Psychological considerations (such as the pleasures or displeasures of
suspense, surprise, regret, and playing the game for its own sake} can also
be included. This requires an elaboration of the set of outcomes as
discussed in Chapter X, page 225. “Mood” is an important psychological
variable in the present discussion. 1 may postponc decisions (such as
tomorrow’s menu, tomorrow’s entértainment, or tomorrow’s total con-
sumption expenditure} because I cannot perfectly predict tomorrow’s
“mood” or “tastes.” In keeping with this chapter’s assumption of known
probability distributions, we could assume mood to be a random variable
with known probabilities. These probabilitics may depend on previous
occurrences, The effects of mood, therefore, may be incorporated into
the outcome of our system of wheels.

DEFINITIONS

We shall refer to “the world,” “strategies,” “outcomes,” “probability
distributions of outcomes,” and the “expected utility maxim.” The present
section defines these terms for the current discussion.

The world may be thought of as either

(a) a set of wheels as described in the last section; or
(b) the physical reality which they represent.

The “world,” in short, refers to the set of opportunities and possibilities
over time,

A strategy is a set of rules which prescribes action over time for all
possible contingencies. A strategy might, say, “Choose band | on the
first wheel. If the second wheel is number 4, choose band 5; but, if the

second wheel is number 6, choose band 8 . . . If in the first 19 periods
consumption has been Cy, - - +, Cyg and if wheel 32 represents the oppor-
tunities at time 20, then choose band 2 . . .”

A strategy can depend on future mood. The strategy might specify,
for example, that if at time 20 the individual is faced with wheel 32
(representing a certain financial position and a feeling of fatigue) he should
choose band 2 (take a vacation). But if at time 20 the wheel to be spun is
number 3! (same financial position but no fatigue) then choose band 1
(postpone the vacation).

An outcome, in the present discussion, is a time pattern of consumption
(Cy, Cor+ - -, Cp). If the C, represent amounts of money devoted to
consumption, an outcome is a “history” of consumption expendlturcs
If the C, are vectors of goods and services cnjoyed, then consumption isa
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time series of such enjoyments. Since we assume that there is a finite num-
ber of wheels and time periods, there is also a finite number of possibie
outcomes. We can therefore label possible outcomes with numbers
L2, s for s o

The nature of the world and the choice of a strategy determine a
probability distribution of time patterns (€, Gy, ¢ - -, Cp).  Any such
probabitity distribution can be described in two different ways:

(i) Each possible ) has a probability. Given that a particular C; has
occurred, there are conditional probabilities associated with each possible
C,. Given that a particular C; and C, have occurred, there are conditional
probabilities associated with each possible C, etc.

(ii) Each of the » possible time patterns (C;, - * -, Cp) hasa probability.
These probabilities may be denoted by p,. - - . p,,* * -, p,.

The probabilities of (i) are equivalent to those of (ii). Either set can be
inferred from the other.! Formulation (i) emphasizes a dynamic, un-
folding view of the subject. Formulation (ii) presents the same informa-
tion in a manner more convenient for our purposes. We shall generally
employ {ormulation (ii).

We assume that our Rational Man chooses a strategy on the basis of the
resulting probability distribution of outcomes.  Thus the choice of strategy
is reduced to choice among alternative probability distributions
(Prs* * s Pu)-

The expected utility maxim asserts that a number u, should be attached
to the jth possible outcome; probability distributions (p,, - - -, p,) should
be ranked according to the linear ordering function:

U=2up,

A utility function is any rule which associates a number u to each possible
time pattern {C,,- - -, Cp). For example, with 7= 3 and C, = the
amount of money devoted to consumption in period f, we might have
u=1log C; + 9log C, + .8 log C; — .5 log [max (1, C;/C,)]
— .4 log [max (1, C,/C,)],

1 Specifically
Pr(C}." + -, C8) = PH(CDPH(CHCY) - - - PHCRCY, - - -, Cy);

and conversely
Pr(Cl 1, CLCrny Cp)
Prcct,- -, 0 ) = Aniasespr(co’. T G Gy

All cases
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where max (1, C,_,/C)) is either 1 or C,_,/C,, whichever is larger. In this
example, if C rises through time, u is the (discounted) value of the loga-
rithms of consumption. But, if a C is lower than the preceding C, u
reflects the extra disutility of reducing consumption compared to keeping
it at an intermediate level. We attach no special significance to the above
baut present it as illustrative of considerations which can be incorporated in
the utility function.

Suppose that the probability distribution of outcomes of some strategy
is (pr,* * . p.). Suppose that a second strategy has a probability dis-
iribution of outcomes (gq;, - * *.¢,). We can imagine a new strategy which
begins with the flip of a coin. If the coin comes up heads, strategy 1 is
followed thereafter.  If the coin comes up tails, then strategy 2 is followed
thereafter. The probabilities of outcomes associated with this new

strategy are
(1/2)([’1’ Yy Pn) + (1/2)(9’11 Y qn)

AXIOMATIC TREATMENT OF MULTI-PERIOD CHOICES

In the last chapter we showed that certain axioms concerning probability
distributions P, @, R, and the preference relationships =, >, and ~ imply
that preferences are in accord with the expected utility maxim: if P, Q, R,
==, >, and ~ are consistent with the axioms, P is preferred to Q if and only
if

> u,p; is greater than Y ug,.

The symbols P, 0, R, =, >, ~ can still be used in the analysis of
behavior over time. P, Q, R still represent probability distributions, but
now probability distributions of time patterns of consumption. =, >, ~
can still represent preferences among P, @, R. The relationships of
Axioms 1, II, and IlT—as expressed formally on page 236, Chapter
X—can stilf be asserted concerning the present F, ¢, R, =, >, and ~.
If the axioms about the probability distributions (P) of outcomes
(Cy, €y - -, Cp} are accepted, then the multi-period expected utility
maxim must also be accepted for this case. The proof at the end of the
last chapter, based on the formal properties of the axioms, applies equally
to the single period or multi-period analysis.

We must consider, however, whether formal relationships expressed in
the axioms appear as plausible when applied to probability distributions of
outcomes spread over time as they do when applied to outcomes resulting
from single period choice situations. The present section considers the
plausibility of the axioms in their new application. [ believe the reader
who found the axioms convincing in the last chapter will find them equally
convincing now.
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The axioms can be interpreted either in terms of preferences among
probability distributions £ or else in terms of preferences among the strat-
egies which give rise to these probability distributions. The former
approach emphasizes the formal identity between the present axioms and
those of the last chapter. The second approach, in terms of strategies,
parallels an argument to be used in Chapter XII concerning probability
beliefs.

The formal statement of the first axiom is

Axiom Ia: For any two probability disiributions P and (,
P> or Q=2 (orboth).
AxiomIb: If P> Qand Q = R, then P = R.

The first part of the axiom says that the Rational Man, or Perfect Com-
puting Machine, can make up its mind about a course of action. He can
tell whether he prefers the strategy which gives rise to probability distri-
bution P, or prefers the strategy which gives rise to the probability
distribution Q, or considers choice among these two courses of action a
matter of indifference. The second part of the axiom says that, if he
prefers a first course of action to a second, and a second to a third, then he
will a fortiori prefer the first to the third. This ordering axiom seems to
me to be as compelling when applied to strategies and the probability
distributions associated with them as it does when applied to probability
distributions of single period outcomes.
The formal statement of the second axiom is

Axiom I1: 1If P = @, if R is any probability distribution, and a is any number
greater than 0, then
aP+ (1l — )R > a@ + (1 — a)R.

Let us illustrate this axiom in terms of a mythical example: as the Rational
Man is about to leave his native land to journey through the Real World,
the Keeper of Strategies presents him with two large, finely printed volumes
describing two complete strategies 81 and 2.  The Rational Man quickly
determines that he would prefer to follow Sl than to follow S2. The
Keeper of Strategies declares that he will spin a wheel marked with the
numbers 1 through 100. If any number from 1 through 62 resuits, the
Rational Man will be required to follow strategy 3, contained in a third
book. If a number from 63 through 100 results, the Rational Man will
have his choice of 81 or 52, The on¢ he chooses must be followed forth-
with and henceforth. The Keeper of Strategies asks the Rational Man to
choose between S1 and 52. Remembering that he preferred S1 to S2, the
Rational Man announces “Proceed with the spin, I will choose 81 rather
than S2" even before he opens the book S3 to examine its contents.
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In the above example the Rational Man had a choice of two situations
which can be represented schematically:

probabitity 62 strategy 1
Probability 35 strategy 3
pmbabi\'lty 62 strategy 2
Situation 2 <
Probabiity 3g strategy 3
If P is the probability distribution of outcomes associated with strategy 1,
Q the probability distribution associated with strategy 2, and R the

probability distribution associated with strategy 3, then the probability
distribution associated with situation 1 is

.62P + 38R, _
while the probability distribution associated with situation 2 is
620 + .38R.

Assuming that choice should be based on the probability distribution of
outcomes and not on the particular way they are generated, Axiom IT is
equivalent to the assumption that the Rational Man should always take
S1 rather than S2 whatever S3 and whatever the probability with which 53
versus the choice of S1 or S2 is determined.

One version of the third axiom is:

Axiom III'; If P > Q > R, then
(i) there is a probability 2 % 1 such that
aP+( — R > 0, and
(i) there is a probability & 5 0 such that
0> bP + (1 — DR

That is, if strategy S1 is preferred to 52, and strategy S2 is preferred to S3,
then there 1s a probability (perhaps .999999) such that this large a chance of
St instead of S3 is preferred to 82 with certainty; while, on the other hand,
there is a probability (perhaps .0000000001) such that this small a chance
of obtaining S1 rather than 83 makes 52 preferable.

Axioms I, 11, and 1II' are not subject to proof. If there were more
plausible principles from which these could be derived, then these more
plausible principles should be used as axioms. All that is subject to
mathematical proof is the relationship between the axioms and the expected
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utility maxim. The Rational Man would give equal assent to both the
axioms and the maxim since each is a verbilization of the other.

INTERMEDIATE DECISIONS, INCOMPLETE OUTCOMES

In the last chapter we saw that errors can be made in applying the ex-
pected utility maxim if relevant intermediate decisions are omitted from
the analysis, or if the set of “outcomes™ is incompletely or incorrectly
spefled out. We now illustrate a corollary: even if the expected utility
maxim applies to action-as-a-whole, it may not apply to some isolated
aspect of action. This is pertinent to portfolio sclection, since the
selection of a portfolio is almost always one of a number of activities
carried out by the individual investor, the imvesting institution, or the
benefactor of the investing institution.

Let us consider a hypothetical illustrative example: at time 1 an
individual must choose a portfolio. At time 2 he must decide whether or
not to take possession of a factory. -At time 3 his portfolio (which we
assume to be his enly source of funds) is worth either $2,000,000, $1,000,000,
or $500,000. The probabilities of these three outcomes depend on the
portfolio chosen. Also at time 3 the individual is required to pay
$1,000,000 for the factory, if he has taken possession. If unable to pay,
he loses everything. At time 4 he gets $10,000,000 from the factory, if he
took possession and made payment at time 3. Thus the amount which
he has at the end of period 4 may be summarized as follows:

If he took possession and the value

of the portfolio became $2,000,000 | $1,000,000 $500,000
then he would have . 11,000,000 | 10,000,000 00
If he did not take possession and
the value of the portfolio became. $2,000,000 | $1,000,000 $500,000
then he would have . 2,000,000 1,000,000 500,000
Let us assume that utility depends on final fortune as follows:
g 500,000 1,000,000 | 2,000,000 | 10,000,000 | 11,000,000
u 3 5 7 10 10.5

Let py, pa, ps be the probabilities that the portfolio will be worth two
million, one million, and five hundred thousand, respectively. If the
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individual takes possession of the factory, then the combinations of
P Pa Py Which yield the same utility U = U" satisfies the equation
U, = 10.5p; + 10p, + Ops.  If the individual does not take posscssion,
the combinations which yield U = U? are those satisfying U® = 7p, +
5p, + 3ps.  The factory is taken if

10.5p, + 10p, = Tpy + 5pg + 3ps.

Probability combinations which yield the same utility are illustrateg in
Figure 2. p, is on the horizontal axis; p, is on the vertical axis; p, is

Figure 2, Iso-utility curves.

given implicitly by p; — I — p; — p,. The “indifference curve,” all of
whose points have U = U,, is a bent line. On one side of the break it has
the formula

U, = 10.5p, + 10p,.

On the other side of the bend it has the formula
Uy =Tpy + 5pe + 3ps
= 4P1 + 2P2 + 3.
The break occurs at the heavy line whose formula is

10.5p, + 10p, = 4p; + 2py + 3
or

6.5p, + 8p. = 3.

No weighted sum U;p, + Upp, + Uspy can represent the (non-linear)
preferences portrayed by the indifference curves of Figure 2.
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In this case the Rational Man acts on the basis of the expected utility
for action-as-a-whole, but not for portfolio selection by itself. The
investor has preferences among probability combinations {p,, p,, ps) of
portfolio returns; but these preferences are not in accord with any
weighted sum 3 U;p,. Later we shall consider an example in which the
investor cannot order portfolios by (p,, p,, ps) at all, but must consider a
joint distribution which is incompletely reflected in the p,.

If the individual takes the factory, the utility which he attaches to
various portfolio returns is:

¥ (in millions) l .5 1.0 2.0 l

U 0 10 10.5

Another way of saying the same thing is that, in this case, the utilities
attached to three possible returns (r) are given by the following utility-of-
money function:

H U= —1517 + 37.5r — 12.33+%

Since there are only three possible returns, the quadratic U = o 4 r 4 2
can be made to fit exactly. In the next chapter we consider the ability of
the quadratic to approximate a true utility curve when many outcomes are
possibie. The negative sign of (= —12.33) follows from the concavity
of the utility function. The portfolio which maximizes the expected value
of U above is one with minimum variance for given expected return. Thus
the Rational Man needs to know only the set of portfolios which minimize
variance for various levels of expected return in order to find the portfolio
which gives greatest utility—asswming that the factory has been taken. 1If
the factory is not taken, then the utilities associated with the three possible
outcomes are:

& (in millions) 5 1.0 2.0

U 3 5 7
L

These arc combinations of  and U indicated by the following utility-of-
money function:

) U= —567+ 12r — 1.332

The portfolio which maximizes (2) once again gives smallest ¥ for some
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value of E.  Hence, if he knew only the set of portfolios which minimizes
V for various £, the Rational Man could

UTILITY ANALYSIS OVER TIME

(a) determine the maximum expected utility if the factory were taken,

(b) determine the maximum expected utility if the factory were not
not taken, and

{c) compare these to determine whether or not the factory should be
taken and, depending on this, which portfolio should be selected.

Let us amend our previous example so that there is a probability ¢ that
the factory will have a small (§500,000) return in period 3, in addition to
its large return in period 4. The return from the factory in period 3 is not
necessarily independent of that from the portfolio. The correlation
between portfolio return and factory return may vary from portfolio to

portfolic. The return to the individual if he takes the factory may be
summarized:

Tota! Return, Depending on Factory Return

and Portfolio Return
. Value of Portfolio
Factory Yield,
r=3
2,000,000 1,000,000 500,000
500,000 11,500,000 10,500,000 10,000,000
0 11,000,000 10,000,000 (]

In the present case the decision-as-a-whole, including choice of portfolio
and buying the factory, depends on the available joint distributions whose
probabilities p,; are defined:

Factory Yield,

Value of Portfolio

=3
! 2,000,000 1,000,000 500,000
500,000 Pu Pz Pz
0 P2 Des Pes

The probabilities p;, p, p; of returns on the portfolio, and the probabilities
g and (1 — g) of different returns from the factory, are sums of the p,,.
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Thos Total
P gt Pz q 1
3| Pz Pas 1~¢q

Total|  py P Ps 1

A given set of probabilities p;, pa, py, g, (1 — g) are usually consistent with
a variety of joint distributions (p;;). It is therefore not always possible to
determine which of two portfolios is more desirable when only their
probabilities p,, p,, p, are specified.

In the present example it is impossible to rank portfolios solely on the
basis of their probabilities of returns {r). We must also consider their
correlations with other things.

In contrast to the above examples, there are conditions under which one
can ignore the details, or even the existence of some aspects of action in
deciding on the details of others. The footnote presents an illustrative
set of conditions which allow one to separate two areas of decisions.!

! The following are sufficient but, presumably, not necessary conditions, A more
thorough analysis of such conditions might prove interesting.

Suppose that the strategies (S) among which an individual chooses are combinations.
of two substrategics (4 and B). A4 might be the strategy followed in earning and spend-
ing money; B might be the strategy followed during weekly walks in the woods.
Similarly outcomes () can be split into two parts, O, and G,. The first might represent
the amounts of goods and services bought; the second, the animals and landscapes
enjoyed while on strolls. The probability distribution of outcomes O depends on the
choice of A; the probability distribution of outcomes O, depends on the choice of B.
0, and O, may be correlated, depending on the pair of strategies 4 and B.

We shall assume that the set of opportunities available with respect to 4 does not
depend on the 8 chosen, and vice versa. The individual aitempts to maximize the
expected value of a utility function L{(0y, @,). We shall say that O, is preferentially
independent of O, if, for any two possible O, outcomes (e.g., OF and OF*), the indi-
vidual’s preferences among probability distributions of O, if 0F were certain is the
same as his preferences among probability distributions if OF* were certain, To put it
another way, O, is preferentially independent of O, if L(0,, OF) and U(0,, OF*) are
the same function of O, {except for choice of zero and unit). Hence U0y, 0,) can be
writien

0 U(0y, 0y) = WO + W(OIT(0)).
Special cases of the above function are

2 U= W(09T(0)

and

(3) U= V(0,) + T(O).
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THE SEQUENCE OF DECISIONS

Consider an individual who follows a strategy S so as to maximize the
expected value of a utility function U(Cy, - - -, Cp). At time 4, the indi-
vidual has already consumed CY,- - -, CP .. Depending on his current
choice and luck, he will consume C, and face a next wheel w,,;. For
simplicity let us suppose that there are two possible C, (namely, Cand C?)
and two possible w,,, (namely, w! and w?). The result of curreat choice
and chance then is

(CLwY or (CLw?) or (CEul) or (CZ wh).

Let ¢1. ¢2. ¢35, and g,, respectively, be probabilities associated with each of
these. Different bands on the current wheel have different g,.

Suppose that, in fact, (C?, W) results. We may define a conditional
expected utifity given that:

(a) CP,- - -, CY_; have already been consumed,
{b} Cis the current consumption, w' is the next wheel to be spun, and
(c) strategy S will continue to be followed.

This “conditional expected utility™ is the expected value of final utility,
starting with a situation in which (a) and (b) hold, and following strategy S
until the fast period, . For the present discussion let

u, equal the conditional expected utility associated with (C%, w');
u, cqual the conditional expected utility associated with (C2, w2);
u, equal the conditional expected utility associated with (C2, w'};
u, equal the conditional expected utility associated with (C2, w?).

The expected utility associated with a band with probabilities p,, p,, ps, pais

U=wp, + wsps + typy + patty.

If the choice of bands from the current wheel is to be consistent with an
optimum strategy it must maximize the above expression. Similar con-
siderations apply when there are morc than four (C, w) combinations.

In the [ast chapter we considered an individual who maximized expected
utility for a single period. *“Outcomes” in a single period utifity analysis
might include amounts of money won or lost, a new car, a new job. Such

In these two cases O, is independent of O as well as vice versa. If [/ is of form (3),
then 4 and B can be chosen without regard for the choice of the other. If U/ is of form
(2), then .4 and B can be chosen separately, withdut regard for the other, if O, and O,
are independent random variables. 1l U is of the first form but cannot be reduced to
the second or third form, then O, may be chosen without regard to ©,; but the converse
may not hold.
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objects constitute opportunities for the future as well as items of immediate
consumption. In the terminology of the present chapter, the outcomes of
last chapter’s single period analyses were combinations (C,, wy,).  The
discussion of the present section indicates that, when an individual maxi-
mizes the expected value of a multi-period utility function, he also
maximizes the expected values of a sequence of single period utility func-
tions. The form of each of these functions depends on past consumption.
In othei words, at each period ¢ the individnal maximizes the expected
value of
U=UCp, wy I CL s Gl

where C},- - -, C}_, is already determined, while (C,, w,.,} is a single
period outcome. .

In some cases the relation between a multi-period analysis and single
period analysis is of great convenience. In others this relation is of much-
fess practical value. Business decisions in general may involve the buying
of new machinery, the construction of new buildings, the accumulation of
work in progress, and so on. Suppose that, at the beginning of a period,
decisions are made which by the end of the period will result in items of new
and used machinery being on hand or on order, various amounts of
inventory being on hand or in process, and so on. 1f we could attach a
utility to every possible end-of-period combination of assets, we could (in
principle) derive the best decision for the beginning of the period. But the
problem of attaching a utility to possible end-of-pericd combinations of
machinery, buildings, inventory, cash on hand, and so on, is generally as
difficult as the original problem of choosing a best beginning-of-period set
of actions. Thus the relationship between multi-period and single period
utility maximization does little, in itself, to simplify the general problem of
business decisions through time.

In Chapter XIII we discuss problems involving liquid assets. In such
cases the relationship between single period and multi-period utility
functions can be of appreciable value.



CHAPTER XII

PROBABILITY BELIEFS

INTRODUCTION

The present chapter considers rational choice when objective proba-
bilities are not known for some or all contingencies. Our discussion will
draw heavily on the work of Ramsey [31], Savage [32].1 We shall see that,
if the individual follows principles similar to those expres$ed in the axioms
of Chapter X, he will act in the face of such uncertainty as if he attached
“personal probabilities™ to each contingency. He will maximize expected
utility, using these personal probabilities when objective probabilities are
not known.

To some, the maxim based on personal probabilities may seem self-
evident. Not all persons who have reflected on this subject, however,
have come to the same conclusions. (See Keynes [35], Shackle [33], [34].)
It is necessary to relate the maxim to more fundamental principles, as we
did for the expected utility maxim.

It will be unnecessary to discuss the implications of personal probability
beliefs for the diversification of portfolios, the purchase of insurance, and
gambling. The implications of Chapter X for such matters still apply,
with subjective probabilities taking the role which objective probabilities
played there.

It would be convenient to have some undeniable principle which told us
what probabilities to attach to possible outcomes. The obvious principle,
one suggested in many forms for hundreds of years, is that all possibilities
should be considered equally likely. Such a precept could be given two
interpretations, One is that at the current time every possibility is as
likely as every other: for example, it is as likely that A. T. & T. will pass a
dividend as it is that some recently organized company will. Such an
assumption is completely untenable. The other interpretation is that all
possibilities were equally probable at some point in the past, presumably
when man (or the particular individual) first began to collect information

1 J am also indebted to Norman Dalkey for illuminating conversations on the subject.
257
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about the world. The proper beliefs to use at this time are those which
can be deduced from the information accumulated since this beginning.
Although such a rule might be correct in principle,! it is impossible to
apply in practice.

Rather our approach is to admit that, at least by this time, subjective
probabilities are not necessarily equal. We seck from the security analyst
opinions on a limited number of basic possibilities and derive from them
relevant implications,

CONCEPTS

% §c

Our analysis will use concepts such as “‘outcome,” “decision,” *“Nature
of the World.” The purpose of this section is to define and clarify our
present use of these terms,

Our analysis will concern itself directly with the problem of behavior
over time. An outcome will mean in this chapter, as it meant in Chapter
XI, a time pattern of consumption. This time pattern, in concrete
problems, may be a series of money expenditures {perhaps deflated). Or,
when we are concerned with theory rather than with actual computation,
it may be a series of vectors of enjoyments. It will be convenient to
assume that there is a finite number of such possible outcomes,

We shall also assume that there is a finite (though perhaps extremely
large) number of hypotheses about the world, one and only one of which
is true. One hypothesis about the world might include the statement that
stock prices behave as if generated by a joint probability distribution which
remains the same through time. Another hypothesis might assert that
this probability distribution changes through time in a particular way.
Each such hypothesis will be referred to as a possible Nature of the World.
As these examples illustrate, we admit the possibility that objective random
variables and probability distributions may be used in the definition of a
Nature of the World.

A decision, in the present context, is the choice of a complete strategy
which starts now and continues until “the end.” This strategy does not
necessarily specify “‘buy A. T. & T. on January 16, 1964.” Rather it may
say buy it then if such and such circumstances prevail; buy even more of
it if other circumstances prevail; sell it if still other circumstances prevail.
In short, the strategy is a rule which relates action at each time to informa-
tion available at that time. The strategy may even specify that under
certain circumstances the next act is to depend on the flip of a coin, or the
entry in a random number table. Clearly only a Rational Man could
contemplate a typical strategy or, a fortiori, choose an optimal one.

1 It raises certain technical difficulties when the number of possibilities is infinite.
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If the individual chooses decision 4, and if a possible Nature of the World
N is in fact true, then there is a probability distribution P of possible out-
comes. For example, if the hypothesis were true that security returns are
gencrated by the same (particular) probability distribution through time,
and if the individual selected the strategy of always consuming 1% of his
wealth and investing the rest in equal amounts in every security, then there
would result a probability distribution of possible time patterns of con-
sumption C,. Some such distribution is associated with every combination
of decision and strategy. In case both the strategy and the Nature of
the World do not involve objective random variables, the probability
distribution of outcomes contains only probabilities of zero and one.

Decisions and Natures of the World must be defined so that the choice
of a strategy does not alter the Nature of the World. For example, if the
individual were cerfain that his purchase or sale of a sccurity would not
alter its price, then the statements about possible natures could be in terms
of various prices, On the other hand, if the individual entertains the idea
that his action might change prices, then the Nature of the World would
have to be stated in terms of supply curves. Insuch a case the decision to
buy might increase the price, but it would not change the supply curve.
In this way we meet the requirement that the choice of strategy does not
alter the true Nature of the Worid.

We assume that the individual has a preference ordering among certain
decisions. Among the decisions which he mentally orders are, of coursc.
those which are open to him. In addition, we shall assume that he is
capable of ordering some “what if it were so™ decisions which may not in
fact be open to him. Two such “imaginary” decisions are the following:

(a) ““What if it were so that you could have a particular cutcome with
certainty? How would such an alternative rank with the other decisions
considered ?”

(b) “What if there existed a random variable with probability p of
generating a ‘ome’ versus a probability {1 — p) of generating a ‘zero’?”
Suppose further that we consider the decision of first flipping or spinning
{or whatever) this random device and then embarking on strategy A if 1 is
generated, or embarking on strategy B if zero is generated. How would
such a random decision be ranked among the others?

We are not assuming that a random device does in fact exist, but only
that the individual can order in his preferznce scale hypothetical decisions
involving such a device.

We could state our axioms in terms of decisions, including those des-
cribed in (a) and (b). These axioms would imply that the individual’s
behavior is consistent with probability beliefs. They would not imply,
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however, that his preferences are neccssarily consistent with only one set
of probability beliefs. Whether or not the probability beliefs can be
uniquely determined depends on whether the set of decisions ordered by
the preferences of the Rational Man is sufficiently large and varied. 1fthe
original set of decisions is not sufficient to uniquely determine the proba-
bilities, there is a variety of “suppose it were so” alternatives which, if
ranked with the rest, would serve to determine the subjective probabilities
uniquely. For purpose of “proofs” the simplest such set may be con-
structed as follows: let us assume that there is an outcome O, which is pre-
ferred to an outcome O (i.e., all outcomes are not equally good).  Suppose
further that O, is at least as good as any other outcome, and O, is no better
than any other outcome. Let the decision g, be one which gives Oy with
certainty if state of nature N, is true, and gives O, with certainty if any
other state is true. If the individual ranks g, g, - - -, g, for us, along
with the other decisions mentioned above, then we could uniquely
determine his personal probabilities.

Let us summarize these concepts in a more formal manner. Let m be
the number of possible outcomes and » the number of possible Natures of
the World. A decision 4 can be represented by a matrix with 7 rows and
n columns. The entry p,; in the ith row and jth column of the matrix is
the probability that the ith outcome will occur if the jth state of nature
is true (and if the particular decision is taken). The jth column P; of such
a matrix is the probability distribution of outcomes if the jth state of
nature is true. Clearly the entries of every column must sum to ogne.

The individual has a preference ordering among decisions d in a certain
set D. This set includes the decisions e, e, - - ', e,, where ¢, is a
hypothetical decision which gives outcome i with certainty whatever is the
true state of nature. The matrix associated with e; has ones in the jith row
and zeros everywhere else. If decision d” and decision 4% are in D, then
s0 is the decision of spinning a wheel and having a probability of & of
following 4! and a probability of (1 — a) of following d2. If pj; is the
probability of outcome i if nature j is true and decision 1 is taken, and if
P3 is the corresponding probability for decision 2, then the probability of
the ith outcome if the wheel is spun is ap}; + (1 — a)pf;. In other words,
if we think of 4! and @2 as the m by n matrices of the p}; and pJ;, then the
matrix of the new degision is exactly d% = ad® + (1 — a)d®. We assume
then that, if the matrices 4 and d2 are in D, so is the matrix ad* + (1 — a)d*
for any 0 < a4 = 1. By taking probability combinations of matrices
ey, €q, " * °, €,, We can arrive at any matrix (P) which has the same proba-
bility distribution P; in every column, This corresponds to the (hypo-
thetical) decision which gives the same probability distribution of out-
comes whatever the Nature of the World.
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For two outcomes # and i, (such that e; is preferred to e, and e; >
¢, == ¢e; for all ;) we assume that D includes matrices glj=1,-+n),
which corresponds to obtaining i; if nature j is true and i, otherwise. The

elements of the matrix g; satisfy

1 ifr'=ilandj=j0,
pa=-1 Wi=iand ;£ j,
0 otherwise,

ExampLES. Suppose that there are three possible outcomes and four possible
Natures of the World. Then a decision or strategy is characterized by a matrix
such as

H2 6 1/3 0
/4 b 13 12,
14 0 1/3 12
If a strategy with this matrix is followed, and if the third possible Nature of the

World is true, then each possible outcome is equally likcly. A decision which
inevitably results in outcome 1 has a maftrix

1 1 1 1
e=10 0 0 0).
0000

A decision which gives probabilities 1/4, 1/2, and 1/4, respectively, to the three
outcomes whate_vcr the Nature of the World is

1/4 1/4 1/4 1/4

/2. 12 172 127,

1/4 1/4 1/4 1/4
which equals

] 11 11 { 00 00 ) 00 00
ZOOOO -{»—51 T | +10000.
0000 0 0 0 0 1 1 1 ¢

AXIOMS

In this section we first present and then discuss four axioms of behavior
when some or all probabilitics may or may not be known. The first
three of these axioms are essentially those used in the case of expected
utility. The fourth axiom says that, if decision | has a better probability
distribution than decision 2, whatever the Nature of the World, then
decision I is better than decision 2. The following section shows that the
axjoms imply that choice should be based on probability beliefs.

D is a set of matrices (decisions) including the matrices e; previously
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defined. I ' and 42 are in D, then gd* + (1 — a)d? is in D for all
0 =a <1. By delinition,
dl ~d?* means d!'>d> and d%=dl
dl> d? means d'>d? and not d? =dL
Axiom 1:
(a) For any two matrices d! and «? in D, either
dt=>d?® or d* =d' (or both).
(b) 1f d* = of* and 42 = 4%, then d! == d3.
(c) There is an /; and 7, such that e;, > ¢;

"

(d) For some particular pair i; and i, such that

_ e;, e e, foralli,
D contains gy, j = 1,* + *, n, where the elements of g;, satisfy
1 ifi=i and j=/,
po=+1 ifi=1i and j+#fq
0 otherwise.
Axiom IT: For dY, d% d%in D: 1If d' = 2, then
adl + (1 — a)d® > ad? + (1 — a)d® foranya, 0 <a =<1,
Axiom HI: If dY, d% and &% are in D, and if d* > % > d3, then there exists
and @, 0 < g < [, such that
d? ~ad' + (1 — a)d3
We define the probability distribution P* (among ouicomes) to be at
least as good as P2 (written P! = P?) if the matrix (P!) all of whose columns
equal P! is preferred to the matrix (P?) all of whose columns equal P2
That is,

141 13
12 =13
14y 13

means, by definition, that
1/4 14 14 147 743 13 1/3 13
12 12 12 2 =13 13 1j3 1/3|.
/4 14 1/4 143  LYy3 1/3 1/3 13

This definition is required since we have not, heretofore, defined or
postulated an ordering of the vectors
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Axiom IV: Let PV be the jth column of 4, and PY be the jth column of d*:
if PV is preferred to P¥ for every j, then d* = 42

Axiom 1 says that the individual has a definite ordering of decisions in
the set D and is subject to no fuzziness of perception. Part (c) asserts that
we are considering a case in which all cutcomes are not equally desirable.
Part (d) says that for any two possible Natures, j, and j,, the individual can
tell us whether he would, so to speak, rather bet on the truth of j; or of j,.
Parts {c) and (d) will provide the uniqueness of our probability beliefs.

Axiom II says that, if decision 1 is better than decision 2, then a chance
of decision | versus decision 3 is better than the same chance of decision 2
versus decision 3. This axiom may be illustrated by the mythical example
for Axiom IT in Chapter XI. The Keeper of Strategies has selected three
Jlarge books, cach containing a complete strategy, which tells (among
other things) what to buy and sell under specific circumstances at various
times.! Our Rational Man has inspected each of these volumes and has
decided that he prefers strategy 1 to strategy 2. The Keeper of Strategies
announces that he will spin a wheel with probability p of generating a 1,
and probability (I — p) of generating a zero. If a 1 appears, then
strategy 3 must be followed. If a zero appears, then our Man has his
choice of strategy | or strategy 2. Our Man is required to state which he
will choose. Our axiom asserts that he will choose 1 rather than 2, if the
opportunity arises, whatever the strategy 3 that he does not get and the
probability p with which he did not get it.

Axiom 111 is a “continuity axiom™ similar to that used in Chapter X.
It can be given a Raticnal Man interpretation in the spirit of the last
paragraph.

Axiom IV says that, if, for every possible Nature of the World, decision
1 has a probability distribution which is at least as good as that of decision
2, then decision 1 is at least as good as decision 2.  Alternatively, if there
were objective probabilities attached to the possible Natures, then, given
the conditions stated, the first decision would be at least as good as the
second—no matter what probabilities were attached to the various
possible Natures. Axiom IV states that, under such circumstances, the
first decision is at least as good as the second, even when no objective
probabilities are attached to Natures. Savage [32] refers to this as a Sure
Thing principle since, whatever the true Nature, the probability distribu-
tion associated with d! is at least as good as that associated with o2

As shown in the next section, if the individual acts according to Axioms
1, I, HY, and 1V, he then acts according to the expected-utility personal

¥ They may cven contain tables of random numbers to be used in agricultural
experiments or in friendly poker games 1o fool an opponent occasionally.
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probability rule: there are numbers uy, * - -, u,, and 7, * -, 7, (where
the 7, are non-negative and sum to 1) such that the matrices d = (p;;) may

be ordered by
EWJ(EPz‘j“i)-

Or, in matrix notation,
M

= (”1: Y um)(pi}')

Wﬂ
describes the preferences among decisions d.

DERIVATION

In this section we show that Axioms I, I1, 11I, and 1V imply the existence
of both utility and personal probability. The present proof relies heavily
on results already derived in Chapter X, pages 236 through 242,

First consider decisions e; and (P) whose matrices have the same
probability distribution in every column. These decisions give the same
probability distribution of final outcomes whatever the Nature of the
World. Axioms I, 11, and III of the last section, applied to such decisions,
are equivalent to Axioms I, 11, and III of Chapter X. These axioms, as we
saw in the latter chapter, imply the existence of expected utility; that is,
there exist numbers uy, * - °, u,, such that, if P = pe; +* - - + p,e,, then

Up)= ZP:%

indicates the ranking of P among such probability distributions.

Axiom IV implies that, if P17 is exactly as good as P¥ for all j, then 4!
is exactly as good as d% In particular, if UV = U¥ for all j (where U% is
the utility associated with the jth column of decision (i)}, then 4! is exactly
as good as 2. Thus decisions can be ordered according to their vectors of
utilities (U, U,, - - +, Uy,), where U; is the expected utility of the decision
if the jth Nature of the World is true. To prove the existence of personal
probabilities we must show that the vectors (U7, - - +, U} can be ordered
by a linear function

f= zwiU{a

where the =; are non-negative and sum to |.

We may assume that ouicome /; has utility equal to 1, and i, has utility
equal to O (Axiom I, part c). With these conventions, let us state the
immediate implications of Axioms I, II, I11, and IV for the ordering of the
vectors V = (U, - - -, U)).



PROBABILITY BELIEFS 265

Axiom I implies that the individual has an ordering for a set £ of vectors
V={(U,- - U). Since the utility of iy is zero, all U, = 0. The
definition of D implies that F contains

the vectors (1,1,- - - 1) and (0,0,: - -,0) and
all the unit vectors (0,- - -,0,1,0,- - -, 0).
It also implies that, if ¥* and V2 are in F, so is
aVl4+ (1l —a)¥Vt for O0<<a<<1.

Axioms II and IIT imply corresponding statements with vectors V2, V2,
and V3 replacing decisions d', 4% and d°
Axiom IV implies that, if

V= (Ub Tt Un) and V= (U%’ o U'rla)

are in F, and U, > U2 for all , then ¥ is at least as good as V'L
We show below that Axioms I, I, 111, and IV imply that the vectors

V= (Ula e U
can be ordered by a linear function
zﬂiUis

2m;=1 and =, >0

where

In the course of our argument we shall meet a function f(V), defined for all
V in F, with the following properties

(1) flo) =0,

where Q is the zero vector; and
@ flavl+ (0 —-aV]=a(VH)+ (1 — af(V?)
forO0<Cao<C 1.

We shall now show
SV =AU, - - Uy = 3ImU,
for suitably chosen #;. If 1> b > 0, then
SV = f6V + (1 — b)) = BAV).
If 5> 1 and bV is in F, then
JBV)Y=bf(V) for fU1/DBV] = (1/B)(bV).
Hence for b > Oand Vin F: f(bV) = bF(V)if bV isin F. Lete,- - -, e,
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be the nunit vectors{0,- - -, 0, 1,0, - -, 0). Anyvector V=(U,,---,U)
with all U, > 0, can be expressed in terms of the e; as follows:

YW =g,
VO = pV W+ (1 — pye®,
Vi = p g (1 — pel,

V(n.] =PnV(R_” + (1 _ Pn)fﬁ,
and finally
V= (CUrr

for suitably chosen p,;: 0<Cp,<C 1. This follows from the result in
Chapter X, page 236, which implies that 174" can be expressed as

(ELEz”)
Suyse )
Repeatedly applying
SlpVit + (U —phel = p VD) + (1 — pfte)

and finally
SEU- V) = EUAV™,

.f(V) =f(U1! Y Uu)
= ZUsf(e,-)
= ZU{“’i-

The proof that the ¥ in Fcan be ordered by a weighted sum closely follows
the derivation of expected utility in Chapter X.

1.If VY, ¥2 arein F, and V! ~ V2 then
all+ {1 —a)yV2~Vp if 0<<a<1.

Proof as in Chapter X.
2.IE VY V2 and VRare in F, and if V1 ~ 72 then

gVl 4+ (1 —ayVP~aV?4+ (1l —a)V® for 0<<a=1.

Proof as in Chapter X.
3.1V, Vand VEarein F,if V! > V2 = V3 andif V! > V3 then there
is one and only one number {a} such that

Vi~abVr 4 (1 — a)le

we find that

Proof as in Chapter X.
4. For any V in F we have

VvV,
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where
Pe=(L1,---1 and ¥ =(0,0,---0
This follows from Axiom 1V,
For every V in F we define f{}') to be the number /such that
V~fP+ (1 -1V
Clearly f(¥) = 1 and f(¥) = 0.
5. If0<"ag<-1and V', V2are in F, then
flavr + (1 — &)V = afiVh + (1 — a)f(V?).
Proof as in Chapter X.
6 V= (U, - - UlisinF,
f(V) = zuif(ez')
= z'mUﬁ
where ; = fle,}, as shown earlier in this section.

7. 3w, = 1,since | = f(P) = 3=,

8. m, = 0 follows from Axiom [V.

it
=]

NATURE OF THE 7,

In the last section we argued that decisions may be ordered by their
vectors of utilities ¥V = (U,,- - -, U,), where U, is the cxpected utility
associated with a decision if the ith Nature is true. We saw that, if the
individual’s choice is consistent with the axioms of the preceding section,
then his ordering of the V' can be described by a function

p=>ml, where Ym =1a,=0

The present section considers the justifications for referring to the 7, as
“probabilities.” We shall see that: (a) when objective probabilitics are
associated with possible Natures, the =, equal these objective probabilities;
(b) when some objective probabilities are known, the subjective probabilities
7, and the objective probabilities mix “on a par” with each other; (c) the
subjective probabilities obey the same arithmetic relations as do objective
probabilities.

(a) When objective probab111t1es are known for all contingencies, the
Rational Man, following the axioms, maximizes expected utility. In
particular, if objective probabilitics are known for the various possible
Natures, the weights in

v = >mU,

would be these objective probabilities.
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(b) Suppose it is known that one Nature of the World, 4, B, or C, is
true. Suppose it is further known that, if either B or C is true, there is a
50-50 chance that it is the former rather than the latter.  Since there is no
objective probability attached to 4 versus (8 or C), we cannct attach an
objective probability to either B or C individually. However, if subjective
probabilities are to mix “‘on a par’” with objective probabilities, we must
have 7, = my = (1/2)m 4 or ;- Is this necessarily true for consistent
rational behavior?

The present situation may be analyzed in two different ways: on the
one hand, we can say that there are three possible Natures, A, B, and C,
and that each decision is characterized by three probability distributions,
P4, Py, Py Or, on the other hand, we could say that there are two states
of nature, A and D, where D represents either B or C being true. In the
latter form of analysis each decision is represented by two distributions,
P, and Pp, where Pp = (1/2)P;, + (I/2}P,. The Rational Man’s
preferences are such that the way we analyze the situation does not
influcnce Ais ranking of alternatives. Therefore 4, 7g, m,, must be such
as to produce the same orderings in both modes of analysis. Considering
the latter form of analysis, we find that there are numbers 74 and =, such
that preferences among decisions are described by

Ve, Uy+ mpUp=m, Uy + 7p{(1/2)Ug + (1/2)Ug}
= "AUA + [(1/D7p)Up + [(1/ 27 plU.

Therefore we must have mp = 7o = (1/2)7,,.

A different kind of situation containing both objective and subjective
probabilities is one in which there is a 50-50 chance either that 4 will ocour
or that (8 or C)will occur. However, no objective probabilities are known
for B versus C given that (B or C) is true. In this case, if subjective and
objective probabilities are to mix *‘on a par,” we must have gy + w, = 1/2.
Suppose that this were not so; then the utility v = ey + 7pug + 7weug
attached to the utility vector (0, 1, 1) would not equal 1/2. (0, 1, 1) would
not be considered exactly as good as (1/2)(0, 0, 0) + (1/2)(1, 1, 1). But
this cannot be so since these both represent the same objective probability
distribution.  For, by hypothesis, the decision (0, I, 1) has a 50-50 chance
of receiving U = 1, as does the decision (1/2)(0, 0, O) + (1/2)(1, 1, 1).
Thus we must have nrg + 7y = 1/2.

(c} Suppose there are three possible Natures, A, B, and C. Suppose
further that we are considering a set of decisions all of which have U7, = U,
Then V=n,U; + 75U+ nclUp=Uylny, +7p) + 7oUp If the m
were objective probabilities, m, 4 75 would be the probability that either
Aor Bistrue. But we see from the above equation that this interpretation
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is perfectly satisfactory in the case of subjeciive probabilities as weil. In
general, we may define the probability of a sct of possible Natures to be
the sum of their probabilities.! Whenever utility is the same for all
members of the set, we may say that a utility is attached to the statement
“one of the Natures in this set is true,” and we may multiply this utility
by the “probability of the set,” as illustrated above.

When there are a finite number of possibilities, all the mathematical
relations among probabilities follow from the facts that: {a) the proba-
bility of a set of (mutually exclusive) possibilities is the sum of the
probabilities of the individual possibilities; and (b) the probability
associated with the set of all possibilities is 1. All other relationships
among probabilities follow from these properties and from definitions
of concepts of interest. If definitions are made for probability beliefs
which parallel those for objective probabilities, then similar relationships
follow,

A posteriori BELIEFS

As information accumulates, a priori beliefs become @ posteriori beliefs.
We shall illustrate, by means of a two-period example, how information
affects subjective belief. (A more complete discussion of this subject will
be found in [32].)

Suppose that, at the beginning of the first period. an investor has $1.00.
He may either invest this all in cash or all in a particular security. If
invested in cash, he has $1.00 at the end of the period with certainty.
If invested in the security, the $1.00 becomes either §.90 or §1.20. At the
begitining of the second period, the investor must again place all his funds
in either cash or the security. Again there is inevitably a zero return on
cash, while the return on the security wilt be either —.1 per dollar invested,
or +.2 per dollar invested.

There are four Natures of the World: (1) the security will yield first
—.1 and then —.1; (2) it will yield —.1 and then +.2; (3) it will yield
+.2, then —.1; and (4) it will yield +.2 and then +.2. There are eight
possible strategies which we assume the investor can employ; two of these
are: (1) invest in cash in both the first and second periods; (2) invest in
cash in the first period; invest in cash in the second period if the return in
the first is —.1, but invest in the security in the sccond if the return was
+.2.

! Since one and only one Nature is possible, these alternatives are “mutually ex-
cusive.”  Tn the case of objective probabilities the probability of any of several mutually
exclusive events is the sum of their probabilities.
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The four possible Natures of the World and the eight possible strategies
are listed in Table 1. CSC represents the strategy which first invests in

TaABLE 1

DOLLAR AND UTILITY QUTCOMES

Strategy Nature
. Period 2, if 5 9 9, .Y (L2, 9 12,12
Period
!
9 1.2 5§ U L $§ U 8 U
1 C C C 1.00 5 1.00 5 1.00 35 1.00 5
2 C C R 100 5 1.00 5 80 3 120 7
3 C S C 90 3 1.20 7 1.00 5 1.00 5
4 C S S 90 3 S0 3 90 3 120 7
5 S C C 80 3 50 13 1.20 7 120 7
6 S C S 90 3 .90 3 1.08 6 144 §
7 S 8 C 81 1 108 6 1.20 7 120 7
8 S s S 811 "1.08 6 1.08 6 144 8

cash; then invests in the security if return was —.1, in cash if the return
was .2, (9, 1.2) is the Nature in which return is first —.1 and then 4.2,
To each combination of strategy and Nature of the World we may associ-
ate a final money outcome; for example, if the individual uses strategy 3
and Nature of the World 2 turns out to be correct, then the final money
outcome is $1.20. This follows from the fact that the individual invested
in cash in the first period, invested in the security in the second period
{because of the ~-.1 return in the first period), and made §1.20 per dollar
invested in the second. The possible final money outcomes are: .81, .90,
1.00, 1.08, 1.20, and 1.44. We shall arbitrarily assume that the utility
function of final money outcome is:

-] .81 .50 1.00 1.08 1.20 1.44

U 1 3 5 6 7 3

The utility as well as the money outcome attached to each combination of
strategy and Nature of the World is presented in Table 1.
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Let us consider the conditions under which our individual will prefer
strategy 5 to strategy 6. In order for this to be so, we must have

3m, + 3w + Tmy + Tmy > 3my + 3wy + 6my + 87y
This will be so if and only if
Try + Trry = 6my + 87y,
which in turn is true if’ and only if
T3

Ty T3 Ty

H 7 +7 +8

Ty + 7y my Ty g+ 7y Ty + 74

74)(m, + m,) may be defined, analogous to the corresponding definition for
objective probabilitics, as the conditional probability that Nature of the
World 3 is true given that —.1 is the return on the security in the first
period; and similarly for y/(m; + mg). If there is a —.1 return in period
1, then both a person following strategy 5 and one following strategy 6
would find themselves m the same position at the beginning of period 2.
Both would have .90 plus the information that a .9 return had occurred in
period 1. Inequality (1) says that the individual’s choice at this point
is such as to maximize utility given the a posteriori probabilities based on
the evidence thus far.

Similar conclusions are reached if we compare strategies 1 and 2 if a
+.2 return occurs in the first period; or strategies 2 and 4 if a —.1 return
occurs in the first period. Similar relationships between a priori proba-
bilities, information, a posteriori probabilities, and utility maximizations
occur if we consider choices involving more than two periods.

PrOBABILITY BELIEFS AND THE INDIVIDUAL

Suppose that an individual attaches subjective probabilities .6, .2, and
.2, respectively, to the possibility that a coin has a probability of .5, .4,
and .6 of coming up heads. The individual believes, however, that, what-
ever the probabifity of a head, it will remain the same for ever. He further
believes that each flip of the coin is independent of every other flip (in
terms of the true objective probabilities). On the basis of these beliefs, he
attachesa .5 probabﬂlty to the statement, “A head will appear on the first
fiip of the coin.” Before the coin is tossed he also attachcs a .5 probability
to the statement, “A head will appear on the ith toss.”” At first sight, it
might seem that, since he attaches a .5 a priori probability to a head appear-
ing on each flip, the law of large numbers must force him to conclude that
in the long run heads will almost certainly appear approximately 5077 of
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the time. Yet our initial assumption was that he attached only a .6
probability to this statement.

There is no inconsistency here: the probability belief he attaches to the
statement, *Heads will appear on the second flip,” is not independent of
what happens on the first flip. In terms of probability beliefs, the out-
comes of the flips are correlated to such an extent that the average of a
large number of flips has a variance substantially greater than zero.

Similar remarks apply if a large number of coins are to be flipped
simultaneously. The individual may believe that every coin has the same
true probability of appearing heads. He may also believe that, in terms of
the true probabilities, each flip is independent of every other. Finally, he
may attach a subjective probability of .5 to the statement, “Heads will
appear on the ith coin.” Yet he may not be sure that the proportion of
heads will be close to .5. The reason, as in the previous case, is that the
conditional probability he attaches to the statement, “Coin number 100
turns up heads,” is not independent of the statement, “Coins number |
through 99 all turn up tails.”

He may similarly attach an a priori probability to the statement that in
estimating security prices he either generally estimates too high or gener-
ally estimates too low. Thus part of the subjective correlation among
estimates may be due to possibilities about the individual as well as
possibilities concerning the world.

Suppose that we note an event to which the individual attaches a .6
probability of occurrence. We wait until the prediction proves to be
either irue or false, and then find another event to which the individual
attaches a .6 personal probability—given the information then available,
including the fact that the first prediction was or was not true. We repeat
this process, at each stage noting a prediction to which the individual
attaches a .6 probability.! By construction the probability belief that the
ith prediction will be correct is independent of the outcomes of the
preceding predictions. The variance (in terms of probability beliefs)
associated with the average number of correct predictions is close to
zero if the number of repetitions is Iarge.

Two morals can be drawn from the above discussion:

1. The existence of personal probabilities does not necessarily imply that,
as of the moment, the individual is positive that his beliefs are “good
beliefs.”” He may admit the possibility that he currently is either always
overoptimistic or always overpessimistic, or in some other way subject to
biased judgment. However, the idea of probability beliefs does imply a
belief in an ability to Jearn with time and experience, to end a long life

! This procedure assures that such a prediction can be found at each stage.
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of predictions and constant education without substantial biases on the
whole,

2. The connection between objective and subjective probabilities is
quite close. We noted that they mixed on a par with each other in the
calculation of expected utility. The discussion of this section indicates
another connection. To assert that some physical experiment has a .6
probability of producing a result 4 is to assert that, if this physical experi-
ment is carried out and if a large number of other physically independent
experiments {(of the same or different kinds) all with a probability of .6 of
producing some particular (though perhaps different) result 4 are also
carried out, then the relative frequency of 4 will almost certainly be .6.
Similarly, to assert that a .6 personal probability is associated with an
event is to assert the belief that it is virtvally certain that the relative
frequency of correct predictions among a set including this and a large
number of other psychologically independent events is .6. Thus personal
probabilities and subjective probabilities are connected via the notion of
relative frequency in the long run.
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APPLICATIONS TO PORTFOLIO SELECTION

ASSUMPTIONS

The first sections of this chapter consider portfolio sclection when the
following three conditions are satisfied:

(1) the investor owns only liquid assets;

(2) he maximizes the expected value of U{C,, Cy, - - -, Cp), where C, is
the money value of consumption during the #th period (C, could, alter-
natively, represent money expenditure deflated by a cost of living index);

(3) the set of available probability distributions of returns from port-
folios remains the same through time (if C, is deflated consumption, then
it is “real return,” taking into account changes in price level whose
probability distribution is assumed constant).

Later we consider modifications of these assumptions.
An asset is ““perfectly liquid”™ if

{a) the price at which it can be sold, at a particular time, always equals
the price at which it can be bought at that time; and
(b) any amount can be bought or sold at this price.

Even though securities are not “perfectly liquid,” they are sufficiently
liquid for an analysis based on liquidity to be instructive. The effects of
illiquidities, among other things, are considered later,

Condition (3) does not imply that the same security offers the same
opportunities at all times. The new and promising firm of today may be a
well-established or a defunct firm tomorrow—at which time the role of
being “new and promising” is taken over by other firms.  The assumption,
made at first and modified later, is that the opportunities from the market
as a whole remain constant.

Perfectly liquid assets may be converted into cash, and cash may be
converted into liquid assets. without loss. If available probability dis-
tributions remain the same through time, the investor's opportunities
depend only on the value of his portfolio. If we let ,,, be the value of

274
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the portfolio at the begirining of period ¢ + 1 (i.e., at the end of period ¢),
then, under our present assumptions, the single period utility function

U= U(Ch Wiits Cla CZ! T Ct—Al)
can be written
U= HCpy1, G Cow - -, Co g

Although it may not be apparent at first glance, the second expression
represents a substantial simplification of the first. w,,; identifies a
“wheel”” which may differ from other wheels in many respects, such as the
amounts of various illiquid assets held. w,,,, on the other hand, is but a
single number—the value of the portfolio.

Under our present assumptions, therefore, the jnvestor maximizes a
single stage utility (C,, y,.,) in which utility U depends only on current
consumption C; and the value of the portfolio y,., at the end of the period.
The form of the current utility function U(C, ¥,,,) may depend on past
consumption Cj, Cy, - * -, C,_;. His present opportunities with respect
to C, and ¥, are determined by his current wealth y,.

The following three sections discuss three types of portfolio analysis
which, in principle, could be performed under the assumed conditions.
The first of these analyses provides an exact solution to the problem of
portfolio selection through time. It may be thought of as a procedure
which a Rational Man might employ in determining his course of action.
This exact method of analysis is 'well beyond the capabilities of real men
and real machines. Its vajue to us is that it heips complete our picture of
rational action by which more feasible modes of analysis may be judged.

The second mode of analysis has the person reproduce his utility function
{AC), y,4,) and has a computing machine find the portfotio which maxi-
mizes the expected value of utility thus described. The third mode of
analysis is the efficient set approach generally employed in this monograph.
We consider the extent to which each approach provides an approximation
to the exact solution of the rational portfolio selection problem.

Each of the three types of analysis could, in principle, be adopted for
machine calculations. In each case there would be a division of {abor
between men and machine. Some information would be supplied by
human judgment; some calculations would be accomplished by the
computer. For each type of analysis we consider the reasonableness of
the division of labor.  Can the individual supply the required information ?
Can the machine perform the required calcuiations?

Tite DyNAMIC PROGRAMMING ANALYSIS

Techniques for obtaining best strategies over time are studied in the
field of dynamic programming [17]. Without going into computational
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details, let us consider how the Rational Man could apply such techniques
to derive his optimum strategy from

(a) his utility function I{C}, Cs, €y, + -, Cp), and
{b) the “wheels,” described in the last chapter, which characterize his
opportunities over time.

The general approach is backward through time, starting with the last
period and ending with the first. The best action is derived for each
possible circumstance in the last period. With this information it is
possible, in principle, to derive the best solution for each possible circum-
stance in the next to last peried. From this it is possible, in turn, to
derive the best possible action for cach possible situation in the second
from last period; and so on, until the proper action for the first period is
determined. The proper action in the first period, plus the proper actions
for each possible situation in succeeding periods, constitute the solution
to the dynamic programming problem. These rules of action for all
circumstances are the strategy which the Rational Man would follow.

We define the stare at the beginning of time ¢ to be consumption thus far
plus the wheel that characterizes available opportunities. The state at
time f, in other words, is represented by the vector (C), Co, Gy, - - -,
C,1;w,). Attime f = [, the state is simply (w;). At time T the state is
(Cy, Coo v - =, Cpoqiwyp). It is convenient to define the state at time
(T 4+ 1) to be the vector of consumptions (Cy, Gy, Cs,* * =, Cg). The
number of different possible states which could occur at time £ equals the
number of possible combinations of past consumptions Cy, Cy,+ * -, C,;
and present opportunities w,.

The utility function U(C,, C,, Cy, * * -, Cy) attaches a utility to each
time pattern of consumption, Thatis, it attaches a utility to each possible
state at time T + 1. For each possible state at time 7—for each possible
combination (C,, C,, + * -, Cy_y; wp)—there is an action, a choice of band
on wyp, with greatest expected value of U(C,, Cy,* - -, Cp). The optimum
strategy specifies that under the conditions (Cy, Cy,* * *. Cp_y; wy) the
proper choice is this band with maximum expected U(Cy, Cy, - - +, Cop).
The expected utility associated with choosing the proper band of wr may
be referred to as U(Cy, Gy, - -+, Cpy; wyp). It is the expected utility
associated with arriving at the state (Cy, Gy, - * *, Cpyi wy) and taking
the proper action at that point. We can, in principle, attach such a
utility to each possible state at time T.

For each state (Cy, Cy, - + *, Cp_p; Wpy) at time (T — 1), there is a
choice of band on wheel w,_; which maximizes the expected value of
(Cy, Cy, + * +, Cp_yq; wp).  This maximum expected value may be denoted
by U(Cy, Gy, -+, Cpgs wany). Tt is the expected utility associated with
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arriving at the state (Cy, Cp, » * +, Cp_yp; wp. ) and following the optimum
strategy from that point forward. The derivation of the best action and
utility associated with the state (Cy, Co, -+ +, Cp 51 3p.4) uses the utilities
associated with the next period’s state U(C), + - -, Cp_,; Wwy) as determined
by the previous step in the calculation.

Continuing backward through time, for each possible state at time

(T'—2) we can find a best action and a utility U(Cy, * + -, Cg_gi Wy_g)
associated with pursning an optimum strategy after arriving at siate
(Cy,+ * * Cp_gy wyp_p). From this we can compute U(Cy, -+, Cpy;

wp_y) associated with arriving at any possible state at time (T — 3), and
pursuing an optimum strategy thereafter. This procedure continues
backward through time until z = 1.

Thus, for each time ¢, the computation derives

(a) the best action for each state, and
(b) the utility associated with arriving at the state and following an
optimal strategy from that time forward.

The choices in (a) form the optimum strategy. The utility functions in
{b) are needed to work backward through time to the complete best
strategy. (b) is essentially the single stage utility function discussed
earlier.

The difficulty of actually performing this computation depends on the
nature of the “wheels” and the utility function. The general dynamic
programming problem is orders of magnitude beyond anything we can
expect to compute now or in the foresecable future. Even under the
conditions enumerated in the last section, whereby w, is completely
characterized by the value of portfolio y,, computation of a best strategy
through time, for an arbitrary utility function, must be left for the Rational
Man and the Perfect Computing Machine. It is far beyond the available
or foreseeable computers.

Particular functions U(C, C,, Cy, - - -, Cp) simplify the dynamic
programming computation. Suppose, for example, that the utility
function is one of the following forms:

U=10_gC1+10gC2+- w4 log Cp,
or
U=VC + (VG +- - -+ (9VC,,
or, in general,
U= U(C) + U(Co) + -+ - + UglCq),

where U,(C,) ts a function which associates a utility U, to each value of C,.
In these cases it can be shown that the proper choice at time { does not
depend on previous consumption. It is not necessary to compute 2 best
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choice for each combination (Cy, Cp,* * *, Coqs 3. It is sufficient to
compute one best choice for each value of .  This itself can be a sizable
task. Depending on the nature of the utility functions, the computation
of the best portfolio for a single ¥, may be greater than required for.an
entire efficient set analysis. Multiplying this by the number of y, for «
from I to T, we see that we can easily have computing costs far beyond any
possible gain from the analysis. If the utility function were

U=1logC, + 9log C; + .8llog Cy + + - + + (:9) log Cy

—.5log [max (l, %)} — = (5} log [max (], Cg:)}

such as discussed on page 246, the best action at time 7 would depend on
C, , as well as on ¥, We would have to compute a best action for each
combination of y, and C,_;. With this, or a slightly more complicated
function, we pass from the realm of uneconomical to the realm of currently
infeasible problems.

For some types of problems, dynamic programming has proved to be a
practical computing procedure, Certain problems of machinery replace-
ment and inventory control, for example, lend themselves naturally and
conveniently to the dynamic programming approach. There are also
illustrative portfolio selection problems where dynamic programming
techniques can be applied. Suppose, for example, we wish to see how the
rational investor would shift between bonds and stocks if a particular
picture of the world were correct. For this purpose it might be sufficient
to distinguish only two or three “‘securities,” for example, bonds, stocks,
and cash, rather than include the many individual securities of an actual
portfolio selection problem. It might also be permissible to use a some-
what simplified utility function, rather than painstakingly seck a “true”
function. Under such conditions current dynamic programming proce-
dures could produce an optimum solution.

For the actual choice of portfolio, however, the dynamic programming
techniques cannot be used. They require too much both from man and
machine:

1. From the investor they require a utility function U(C, Gy, - + -, Cop).
In the next section we see that it is no small task to derive a reasonable
single period utility function U(C,, #,.,) by questioning the investor. To
attempt to derive a representative utility function for consumption over
time, if feasible at all, is nothing short of a major research project.

2. Even with the simplest of utility functions, the requirements for the
dynamic programming computation are far beyond economic justification.
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For a function which adequately describes the dependence of present
choices on past consumption, the computation is probably infeasible.

The value of the dynamic programming analysis does not lie in its immedi-
ate application to the selection of portfolios. It lies, rather, in the insight
it supplies concerning optimum strategies and how, in principle, they could
be computed. It emphasizes the use of the single period utility function.
it shows how the sequence of single period utility functions could, in
principle, be derived by starting with the final utility of consumption
U(Cy, Cy,+ + +, Cp) and working backward through time, associating
utilities with intermediate situations.

THE SINGLE TIME PERIOD UTILITY ANALYSIS

As of time ¢ the Rational Man maximizes the expected value of a single
period utility function U(C,, w,;,). The exact shape of this function may
depend on previous consumption. When the choice situation meets the
three conditions presented in the first section of this chapter-—when only
liquid assets are held, when C, refers to money consumption, and when
available probability distributions are the same through time—the wheel
w,+; may be characterized by y,,,, the value of the portfolio at the begin-
ning of time ¢ + 1.

Suppose that a Rational Man told us his current U(C,, ;). We could
compute the value of C and the combination of securities which maximizes
its expected value. It 15 not necessary to know how this single period
utility function was influenced by past consumption. As long as we know
the current U{C,, y,.;} we can, in principle, compute the best current
choice of portfolio. This suggests a possible division of labor between
real men and real machines. The investor could specify a function
U(C,, ¥,.y); the machine could compute the value of C and the proper
choice of portfolio to maximize the expected value of utility thus defined.

Rather than require the investor to present us with a utility function
U(C, y), we could ask him a series of questions whose answers would imply
U(C,y). The questions could be of the following types:

(i) suppose that consumption equais C° what probability combination
of wealths y' and »? is exactly as good as having wealth 3°® with certainty;
and

(it} what probability combination of (C? %) and (C!, 3') is exactly as
good as (C% ¢1)?

It would not be necessary to ask such questions for all possible combina-
tions of Cand y. If the investor answered with perfect accuracy, it would
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be possible to construct his utility function from the answers to {m times »)
minus 2 suitably chosen questions (where m represents the number of
possible values of C, and n represents the number of possible values of y),
The need to check the internal consistency of the human respondent
increases the number of questions required: The acceptability of an
approximate rather than an exact portrayal of U(C, y) reduces the number
of questions required.

In some cases it is possible to separate the choice of portfelio from the
choice of C. This is so if either

(a) the proper value of consumption C does not depend on oppor-
tunities available from investments, or

(b) the questions “What probability combination of wealths y' and ?
is exactly as good as wealth y° with certainty?”” always have the same
answer whatever the value of C.

If one or both of the above conditions holds, then the portfolio can be
chosen on the basis of a function associating a utility to each value of final
wealth y,,,;. Alternatively, since ¥,., = (1 + R)y, (Where R is return on
the portfolio and ¥ is present wealth), the portfolio can be chosen on the
basis of a function U(R) associating a utility U to each value of portfolio
return R.

A utility function U(R) can be determined from the answers to questions
such as “What probability combination of returns R® and R! are exactly
as good as return R? with certainty?” If answers were perfectly
accurate, only (# — 2) such questions would be required—substantially
less than the [{(m times #) minus two] questions required to determine
U(C, ).

A division of labor in which the investor supplies U(R) and the machine
computes the portfolio which maximizes its expected value is feasible for
both man and machine.

Human requirements are rcasonable; perhaps twenty or so questions
concerning preferences among probability combinations can provisionally
establish the general shape of the utility curve. An examination of the
provisional curve and some of its implications can produce refinements
which better represent the investor’s attitude toward risk. At most, a few
hours’ time is required.  If the utility function is a committee product, on
behalf of an investment institution, somewhat more {ime may be necessary.
Subjects generally find the derivation of their utility function an interesting
activity.

Machine requirements are not excessive if the utility function is of the
conservative, concave variety. It is unnecessary and uneconomical to
require an “exact” solution. Good approximate solutions can be obtained
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with cxisting methods.!  The computing costs involved in (approximately)
maximizing the expected value of concave U(R) will generally be greater
than those involved in performing an efficient set analysis based on mean
and semi-variance. The latter costs, in turn, are greater than those
involved in performing an efficient set analysis based on mean and variance.
Although not negligible, the computing costs involved in maximizing
expected U/(R) are not prohibitive.?

The advantage of a utility function, as compared with an efficient set
analysis, is that the utility function is a specially constructed representation
of the investor’s willingness to bear risk. 1 derived with care, it is 2 more
accurate portrayal of the investor’s attitude toward losses and gains than
are the general purpose utility functions implicitly assumed in the use of an
efficient set analysis.

In addition to its greater computation cost, the disadvantages of the
utility analysis approach concern matiers of convenience and appeal to
the investor.  The investor, the investment manager, or someone else who
can speak definitively concerning the objectives of the investor must answer
questions concerning preferences among probability distributions of return,
If the respondent has little or no experience with matters such as the theory
of rational behavior, he may consider such questioning a queer way 1o go
about selecting a portfolio. Afterward, when the optimum portfolio is
finally produced, we can tell the investor only that this portfolio is best
because it best suits his utility function. This approach will probably have
less immediate meaning and intuitive appeal for him than an analysis in
which the investor is shown combinations of “risk” and “return” and is
then asked to pick carefully the combination which best suits his needs.
Choosing a combination of risk and return is a more natural procedure
than expressing attitudes toward risk in terms of a utility function and then
leaving the choice to a machine.

It seems to me that the more convenient, more natural efficient set type
of analysis is a logical first step in the formal analysis of portfolios. When

! One approach is to approximate the curve by quadratic segments, and then use
computing procedures similar to those described in Chapter 1X for minimizing semi-
variance.

% The cost associated with the approach of the preceding footnote depends on the
number of quadratic segmenis used in the approximation. If a single guadratic can
be used to approximate the utility curve, as in the case of three curves deseribed in the
next section, then the portfolio with maximum expected utility can be produced as a
by-product of an efficient computation based on mean and variange. If two segments
are required, then essentially the procedures for an ordinary efficient set analysis based
on mean and semi-variance are required. 1 more segments are used, the computing
time required increases in proportion to the number of iterations necessary to reach the
optimum portfolic.



282 PORTFOLIO SELECTION

efficient set analyses become familiar, when the use of computing machines
to help select portfolios is more commonplace, when investment managers
are ready to consider additional sophistications, this is the time to apply
directly the single time period utility analysis to the selection of actuai
portfolios,

EFFICIENT SET ANALYSES

Let us imagine three Rational Men, each about to select a portfolio.
Each is attempting to maximize the expected value of a utility function
U(R). For the first Rational Man U(R) equals the natural logarithm of
(1 + R). Thus U; = Ln(l + R), where U, represents the utility of return
to the first man. For the second Rational Man U(R) equals the square
root of {1 + R); U, = VI + R= (14 R¥2% For the third Rational
Man U(R) equals the cube root of (1 4+ R); U;= (I + R)¥%. The
utility function of each of these rational men reflects his personal willing-
ness and ability to bear risk. Each of these utility functions is of the
conservative, concave type.

Suppose, for illustrative purposes, that

(1) the portfolio is to be selected from the ten securities, including cash,
used in Chapter II; and

(2) the three men agree that the past returns presented in Chapter IT
exactly reflect the probabilities of future returns.

In short, we shall use the analysis of Chapter 1I to illustrate principles
concerning our three Rational Men.

Now let us suppose that (for some reason) the Rational Men must choose
one of the portfolios represented by a point on the curve in Figure 4 of
Chapter II. The portfolios which the three men choose when thus
restricted are not necessarily the same as they would otherwise choose.
The portfolio which maximizes the expected value of Ln(l + R) does not
necessarily minimize variance for some value of mean, nor necessarily do
the portfolios which maximize the expected values of (1 + R)** and
(1 + R)Y3. The best portfolio on the curve may, in each case, have less
expected utility than some portfolio represented by a point off the
curve.

Is the loss to the Rational Men great or small? Are they almost as
well off when restricted to portfolios represented by points on the curve as
they would be if not thus restricted? Or does the restriction impose a
sertous hardship?

To start, let us consider these questions in the case of the first Rational
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Man. In Chapter VI we saw that the expected value of Ln(l 4+ R) could
be well represented by

. a2y

Ln(l + F)y] — ——_,
[Ln(t + B — s
where V' = var(R) and £ = expt(R). If portfolio 1 has the same E and a
smaller V' than portfolio 2, it would have a greater value of

(V¥
[Lnll 4+ £Y] (l_—|:ﬁE_)2
Thus the portfolio which maximizes [Ln(l + E)] — {(1/2)¥V/(1 4+ E)}
must minimize V for some value of £, In the present example, the port-
folio which maximizes [Ln(1 -+ £)] — [(1/2)V/(1 4+ E)* is represented by
one of the points on the curve of Figure 4 in Chapter 1. Since it is
a reasonably good approximation to Ln{l 4+ R), we may expect that the
portfolio which maximizes {Ln(1 + E)] — [(}/2)V/(1 + E)?], represented
by a point on the curve, has an expt[Ln(l + R)] almost as great as the
maximum obtainable.

The resiriction of choice, in short, apparently imposes little hardship on
our first Rational Man.

Are our second and third Rational Men as fortunate? The function
(1 + R)"? may be approximated by the quadratic

L+ (/DR — (1/8)R2
The function (1 + R)"® may be approximated by the quadratic
1 4 (1j3)R — (1/9)R2,

The accuracy of these approximations is illustrated in Table 1. Tis
quadratic approximation deviates from {1 + R)¥% by .00 or .01, to two
decimal places, for R from about a 50, loss to about a 709{ gain. Ata
loss of 609, the approximation is only .03 greater than {1 + R)%. Ata
gain of 1009 the approximation is only .03 less than (1 4+ R)V2. The
quadratic approximation to (1 + R)® is about as good. It deviates by
.00 or .01 to two decimal places, from about a 409 loss to about a 709,
gain. At a 609 loss the approximation is .02 greater than (1 4 R)1/3,
At a 100%, gain the approximation is .04 less than (1 4 R)V/3.

Since these quadratic approximations to (1 + R)"? and (1 + R)!/® are
substantially more satisfactory than the approximation to Ln{l 4+ R},
their expected values must be fairly good approximations to the expected
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TABLE 1

APPROXIMATIONS TO (1 + R} AND (1 + R)/3

R (0 + Ry2 Approx. (1 + Ry Approx.
—.6 .63 .66 74 76
—.5 71 72 79 .81
—.4 17 I8 .84 .85
—.3 .84 .54 .89 .89
-2 .89 .90 93 93
—.1 95 95 .97 97

0 1.060 1.00 1.00 1.00
1 1.05 1.05 1.03 1.03
2 1.10 1.10 1.06 1.06
3 1.14 1.14 1.09 1.09
4 1.18 1.18 1.12 1.12
5 1.22 1.22 1.14 1.14
6 1.26 1.26 1.17 1.16
J 1.30 1.29 1.19 118
R 1.34 1.32 1.22 1.20
9 1.38 135 1.24 1.21
1.0 1.41 1.38 1.26 1.22

values of (1 + R)V2 and (1 + R}3. The expected values of 1 + (1/2)R
— (I/8)R%and 1 4 (1/3)R — (1/9)RE are, respectively,

L+ (I/2)E — (1/8)}V + E®
and
1+ (1/3)E — (1/9(V + E®).

These are approximations centered about R = 0, corresponding to
E — (1/2)(V + E® for Ln(l 4 R). The approximations centered about
R = Efor (1 + R and (1 + R)V* are, respectively,

(O 4+ EY:2 — (1)1 + Ey %2 and (1 + EY? — (I/9W(1 + E)-53,

The latter approximations are presumably slightly better than the former.

The portfolios which maximize any of the above approximations mini-
mize variance for some mean. In the present cxample, all are represented
by points on the curve in Figure 4, Chapter I1.  Since each is a reasonable
approximation to the utility function in question, the portfolioc which
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maximizes the approximation gives a utility little less than the maximum
obtainable utitity.

The restriclion to portfolios represented by points on the curve, there-
fore, imposes little hardship on cither the second or third Rational Man.
Each can find a portfolio which is almost as good as the best he could have
otherwise obtained.

While it cannot be claimed thar all such utility functions can be accurately
approximated by a quadratic, the quadratic nevertheless shows a surprising
flexibility in approximating smooth, concave curves. Whenever the
individual’s utility function can be reasonably approximated bya quadratic,
one of the portfolios which minimizes variance for some value of expected
return provides almost the maximum obtainable expected utility.

Each of our Rational Men has his own utility function, Each examines
the curve showing efficient combinations of mean and variance. Each
selects the portfolio most appropriate to his own needs. Each obtains a
portfolio almost as good as the very best available for him.

This provides a viewpoint with respect to the actual use of efficient set
analyses. If the person carefully selects among the efficient combinations
of mean and variance, and if his true utility function is approximately
quadratic, then his final choice of portfolio is about as suitable as a port-
folio can be. It is not essential for the investor to understand that he is
imitating a Rational Man maximizing a quadrafi¢ approximation to his
true utility function. It is only necessary for him to understand what mean
and standard deviation represent, and to consider his choice carefully.

Our three Rational Men choose portfolios on the basis of utility func-
tions U(R). Their utility functions U(C,, ¥,,.;) must satisfy one of the
conditions which permit a choice of portfolic without, at the same time,
requiring a choice of C. Let us consider a fourth Rational Man whose
U(C,, y,.,) does not mect such a condition. For one value of C perhaps
the relationship between U/ and R is equivaient to Ln(l + R). For
another value of C perhaps the relationship between {/ and R is equivalent
to (I + R)/2. For a third value of C we may imagine that the relation-
ship between U and R is equivalent to (1 + R)/3.  Each of these relation-
ships can be reasonably approximated by a quadratic. Let us assume
that, in general, for any choice of C the relationship between U and R,
for our fourth Rational Man, may be approximated by a quadratic. In
this case our Rational Man can examine the curve in Figure 4, Chapter II,
to determine

(a) the (approximately) best portfolio associated with each valuc of C;
{b) the desirability of each such portfolio; and, hence,
(c) the best combination of both € and portfolio.
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Thus the use of an efficient set analysis based on mean and variance does
not necessarily assume that the choice of portfolio is independent of the
choice of C.

UTILITY FUNCTIONS AND MEASURES OF Risk

Suppose a Raticnal Man chooses a portfolio solely on the basis of its
mean and variance. If two portfolios have the same mean and variance,
they are considered equally good. Since the value of variance can be
derived from the values of mean and expt(R?), this Rational Man can also
be said to act on the basis of mean and expt(R%). If two portfolios have
the same expt(R) and cxpt(R®), they have the same var(R) and, by
assumption, must be considered equally good.

If a Rational Man maximizes the expected value of a quadratic utility
function U = ¢ + aR 4 bR?, then he acts on the basis of expt(R) and
expt(R?), since

expt{U) = ¢ 4+ aexpt(R) 4 b expt(R?).

It follows from the main result of this section that the converse is also true.
If a Rational Man

(i) maximizes the expected value of some utility function, and
(ii) acts solely on the basis of expt(R) and expt(R*), then his utility
function is quadratic.

More generally, the theorem in this section is concerned with any
measure of risk F which equals the expected value of some function of R.
The theorem asserts that

(i) if f(R} is a rule which associates a number f to each valuc of R,
(ii) if F is the expected value of f(R),
(iii} if the individual does maximize expected utility, but
(iv) the individual acts solely on the basis of expected return £ and the
measure of risk F, then

the individual’s utility function is of the form
¢+ aR+ b-f(R).

Without loss of generality it may be assumed that the zero of the utility
scale is chosen so that ¢ = 0.

This relationship between utiiity functions and measures of risk will be
valuable in the subsequent discussion of alternative measures of risk.

THEOREM: Let E = expl(R), F = expt[f(r)]. An individual maximizes the
expected value of a utility function aR + & - f(R), if and only if

(i) he maximizes the expected value of some utility function, and
(ii) his preferences are based solely on E and F.
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Proor: That I/ = aR + b - f(R) implies (i) and (ii) is trivial. We shall prove
the converse, that (i) and (i) imply U = aR + & f(R). If (£}, F)) and (E,, F,)
are the E, F combinations associated with two portfolios, the £, F combination
associated with

a probability p of portfolio 1 and
a probability (1 — p) of portfolio 2
is
E"=pE + (1 ~ ME,,
FO ax PFI + (1 -P)F2.
From this it follows that Axioms 1, I, and II1 {Chapter X) apply to the pairs
(£, F). For cxample, if (£}, F;) is preferable to (£,, F,), then according to

Axiom
a probability p of (Ey, Fy) and (1 — p} of (E,, F))

is preferable to
a probability p of (E,, F) and (1 — p) of (E;, F3).
That is, if (E;, Fy) > (E,, Fy) then
PEL F) 4 (L= pXES, o) > p(Ey, Fy) + (1 — pKEy, Fy)

for p = 0.

Thus Axiom II applies to £, F combinations as well as to the underiying
probability distributions. Axioms I and III can similarly be shown to apply
to the E, F combinations. These axioms, applied to E, F combinations, imply
that these combinations can be ordered by a linear ordering function

EU = aFE + bF.

But EU is the expected value of
U= aR — b f(R). Q.ED.

AssOCIATED UTILITY FUNCTIONS
The present and following section discuss six measures of risk:

(1) the standard deviation;

(2) the semi-variance;

(3) the expected value of loss;

{4) the expected absolute deviation;
(5) the probability of loss; and

(6) the maximum loss,

We consider the desirability of selecting portfolios on the basis of
expected return and one or another of these measures of risk. The above
list is not an exhaustive enumeration of all possibly worth-while measures
of risk. The measures listed arc used to illustrate a method of evaluation
applicable to other measures of risk, and to measures of central tendency

as well.
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In the present section we consider the utility functions associated with
each of the six measures. In all but one case the associated utility function
of each measure can be inferred from the theorem of the last section. Tn
the one remaining case it is shown that no utility function can be consistent
with choice based on the particular measure.

In the foliowing section we consider the desirability of the different
types of associated utility functions, and hence the desirability of the six
measures of risk.

The Standard Deviation. We have seen that, if an investor

(a) maximizes the expected value of some utility function, and

(b} his choice among portfolios depends only on their expected returns
and standard deviations,

then his utility function must be a quadratic: U = ¢ + aR + bR® If the
investor prefers smaller standard deviation to larger standard deviation
(expected return remaimng the same), then b < 0.

The quadratic can, in some cases, provide a satisfactory approximation
to a concave utility function over a reasonable range of returns. An
investor whose utility function equals either Ln(1 4 R), (1 + R} or
(1 + R)*"3, and whose probability beliefs are similar to (cover about the
same range as) the past experience portrayed in the ten-security example of
Chapter II, could find a quadratic approximation sufficiently close to his
true utility function that the portfolio which maximizes the former would
necessarily be excellent in terms of the latter.

Figures la and 1b present two examples of quadratics. The example in
Figure !a is the approximation to the logarithm U = R — (1/2})R2. That
in Figure b is the quadratic I’ = R — 2.3R%.  The latter quadratic is
associated with the choice (from among the portfolics represented by the
line in Figure 4, Chapter H) of the portfolio with

expected return = .1, and
standard deviation = .11.

The efficient portfolio with this combination of expected return and stan-
dard deviation, in other words, is also the portfolio that gives maximum
expected value of the utility function presented in Figure |b.

The quadratic in Figure 1b reaches a maximum at R = .22. For R
greater than .22, utility decreases as R increases. At least for R = .22,
this quadratic is an extremely bad approximation o an investor’s utility
function.

Every quadratic ¢ + aR + bRE, with b < 0, reaches such a maximum.
In some cases this maximum occurs above the range of “relevant returns.”
In other cases the maximum occurs within the range of ““relcvant returns.”
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The upper limit of the range of “relevant returns™ may be defined as the
greater of

(a) the largest return experienced by the portfolio which maximizes the
approximate utility function, and

(b) the largest return experienced by the portfolio which maximizes the
true utility function.

As long as the true and the approximate utility functions are similar up to
(a) or (b), whichever is larger, the portfolio that maximizes the approximate
utility function will also nearly maximize true utility function.

-2 =1 12 3 N4
i | ] | | L1
t bt
E-2¢ / E E+v E+2g
E~v

(b}

Figure 1. (2) U =R — (1/2)R?; (b) U = R — 2.3R®,

The utility function in Figure 1b, maximized by a portfolio with expected
return .] and standard deviation .11, has its maximum within the range of
relevant returns. The values of expected return, and one- and two-unit
standard deviations, are indicated along the horizontal axis of Figure 1b.
The maximum of the quadratic occurs, not well beyond £ + 2o, but at
R=FE+ (1.1)a.

The seriousness of such a maximum within the range of relevant returns
is discussed in the next section.
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The Senti-variance. The semi-variance S, is the expected value of
[min(R — b, O)]%. Figure 2a shows the curve

U = fmin(R — .22, O)]%.

Except for choice of zero and unit, for R << .22 the curve in Figure 2a is
exactly the same as that in 1b. Thus, for choices only involving returns

(a)

U
-4 =3 =2 =1 1 2 3 4
I i I ! | | LT
R
(c)

Figure 2. (a) U = — [min{R — .22), 0F%; (b} U = ()R — [min(R — .1}, 0F — 01;
(©) U= (1R + [min(R — .3),0F — 03,

below .22, the curve in Figure 2a gives exactly the same results as that in
1b. For return greater than .22, however, utility remains constant in
Figure 2a rather than falling as in Figure 1b. The curve in Figure 2a is
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clearly a more desirable type of approximation to an investor’s utility

function than is that in lb.

For any quadratic (¢ + aR + PR% b < 0) it is possible to define a
number & so that the semi-quadratic curve [min(R — ), 0]* is (except for

choice of zero and unit) the same as the quadratic
until the latter reaches its maximum, and then
it remains constant rather than falls. If the
maximum of the quadratic occurs within the
range of relevant returns, the semi-quadratic is
more desirable than the corresponding quadratic.
If the maximum of the quadratic occurs above
the relevant range, both the quadratic and the
semi-quadratic are equally good.

Thus, if choice were restricted to portfolios
which minimized S, no attention being paid
to expected return, the best portfolio available
under such a restriction would be at leastas good
as the best portfolio produced by an analysis
based on expected return and standard deviation.

If an analysis considers expected return as
well as Sy, minimizing the latter for given values
of the former, the associated utility function is
of the form

U=c4 aR + b[min(R — 4, 0))%, for b <0.

As iltustrated in Figures 2b and 2¢, this func-
tion is the conservative quadratic for returns less
than ¢; it is the more devil-may-care straight
line for returns greater than 4.

Expected Loss. Loss may be formally de-
fined as —min(R, 0). Thus, when R >0,
loss = —min(R, 0) = 0; when R <0, loss =
—min(R, 0) = —R. Expected loss, then, equals

expt[—min(R, 0)].
If an investor

U
R
(a)
U
R
(b)
u
R
(c)

Figure 3. {a) min(R, 0);
(b) R + min(R, 0};
(¢) R + 2 min(R, 0).

(a) maximizes the expected value of some utility function, and
(b) chooses among utility functions solely on the basis of expected

return and expected loss,

then his utility function must be of the form

U=c+ aR + b min(R, 0).



292 PORTFOLIO SELECTION

Figures 3a, 3b, and 3c show, respectively, the functions min(R, 0),
R + min(R, 0), and R 4+ 2 min{R, 0).

The function ¢ + aR + » min{R, 0) consists of two line segments that
meet at R = 0. To commit oneseif to choose a portfolio which minimizes
expected loss for some value of expected return is the same as to commit
oneself Lo choose a portfolio which maximizes a utility function similar to
those in Figures 3a, 3b, and 3c. The desivability of thus committing
oneself is discussed in the following section.

U U
R R
() (b}
u U
R R
(c) {d)

Figure 4. (@) — |Rl; () R— (1|R|; ©) R~ |R]; (d) R—2]R].

Rather than expected loss, one could use expected return below b:
expt[—min{R — b, 0)}. The utility function associated with choice
based on this measure is, again, a pair of connected straight line
segments. These line segments, however, meet at R = b rather than at
R=0

Expected Absolute Deviation. |R| equals R when R is greater than
zero; equals minus R when R is less than zero.  The expected value of the
absolute deviation from zero is defined as expt|R|. 1f a utility maximizing
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investor acted solely on the basis of expected returns and expected absolute
deviations of portfolios, then his utility function would have the form

¢+ aR + b]RI.

—|R], R — (1/2)|R], R ~ |R|, and R — 2|R] are shown in Figures 4a, 4b,
4c, and 4d, respectively. W hja = 1, c + aR + b{R| reaches a maximum
at R =0. If bja <1, the untility function associated with expected
absolute deviation is of the same

form as that associated with expected U
loss. !

If action were based on the expected
value of the absolute deviation about #
some number d, expt|R — 4|, then the
associated utility function would be of
the form ¢ + aR + bR — d|. This would
be represented by two straight line seg-
ments which meet at R = d.

Probability of Loss. The probability
that R will equal zero or less may be
expressed as the expected value of a
function g(R), where ] (b)

0 IfR>0,

(a)

8B = {1 if R <0, )
Figurcs 5a, 5b, and S5c, respectively, 1

present g(R), R — (1/2)g(R), and R —

2g(R). Like the two measures last dis-

cussed, the utility function associated -2

with “probability of loss™ consists of two / )
straight line segments. Unlike those of

the two previous measures, the straight Figure 5. (a) g(R):

lines are parallel and are separated by a  (b) R — (1/2)g(R); (¢) R = 2g(R).
discontinuity at R = 0.

Maximum Loss. If an investor chooses among portfolios solely on the
basis of expected return and maximum loss, insisting on a minimum loss
for any given value of return, then the investor’s actions could not be
based on a single stage utility function U(R). This may be shown by
exhibiting a contradiction between maximum loss and the axioms of
expected utility presented in Chapter X. Suppose that two probability
distributions of return (e.g., those associated with two portfolios) have the
same expected returns but different *‘maximum losses.” We may assume
that maximum loss M, assoctated with probability distribution 1, is
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greater (greatest Joss is more negative) than that (M) associated with
probability distribution 2. By hypothesis, probability distribution 2 is
preferred to probability distribution 1. The probability distribution
associated with a 50-50 chance of distribution 1 or 2 has the same expscted
return as distributions 1 and 2 and has the same maximum possible loss as
distribution 1.  Since the 50-50 chance of distribution 1 or 2 has the same
expected return and maximum loss as does distribution 1, and since these
are the only properties of the distributions the investor considers, the
investor must be indifferent between distribution 1 and a 50-30 chance of
lor2. But,since distribution 2 is preferred to 1, this contradicts Axiom II
of Chapter X.

THE EVALUATION OF MEASURES OF RISK

The assumption that the investor acts on the basis of some single stage
utility function U(R) rules out the possibility that he acts on the basis of”
expected return and maximum loss. A combination of expected returi
and any of the other five measures of risk, on the other hand, would be
consistent with the existence of a single stage utility function U(R). Each
has an associated utility function. A portfolio which gives an efficient
combination of expected return and probability of loss, for example, is
also the portfolio which maximizes a utility function similar in form to
those illustrated in Figures 5a to Sc. To restrict oneself to portfolios
which are efficient in terms of expected return and probability of loss is
also to restrict oneself to portfolios which maximize one or another of such
utility functions. I we judge the desirability of the latter restriction, we
simultaneously judge the desirability of the former restriction.

There are a number of ways in which the associated utility functions in
Figures 1 through 5 differ from the concave utility function of Figure 1,
Chapter X. Several of the curves have one or two long linear segments;
one has a discontinuity; one always reaches a maximum. By evaluating
the seriousness of these “peculiarities,” we can evaluate the utility func-
tions, and hence the associated measure of risk.

Linear Segments. The utility functions associated with “expected loss,”
“expected absolute deviation,” and “probability of loss™ are made up of
two straight line segments. The utility function associated with semi-
variance S, is linear for return greater than b.

Let us consider changes in probabilities within a region where a utility
function is linear. [For example, let us consider the effect of changes of
probabilities on the expected vatue of the utility function in Figure 3b in
the region R =0, while probabilities of returns in the region R >0
remain unchanged.
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For such changes in probabilities, expected utility increases if and only
if expected return increases. If the utility function were as in Figure 3b
the investor would be indifferent between

(i) a .5 probability of a 10% loss, and
(ii) a .1 probability of a 509 loss and a .4 probability of no change.

A linear segment over the region R<Z 0 is quite objectionable. A
consumer with a linear utility function for R << 0 would never buy in-
surance. If the insurance company had no expected gain at all, the con-
sumer would be indifferent between insuring and not insuring. If the
insurance company had the slightest expected gain, the individual would
prefer to take the chance of a large loss rather than pay the premium, A
portfolio analysis based on such a utility function might similarly chance a
substantial loss in fortune rather than select a much more conservative
alternative with slightly less expected return.

Every point on the curve relating minimum expected loss to expected
return corresponds to a utility curve as in Figure 3. No matter how
“conservative” the point chosen, the associated utility function is still
linear in the region R<C0. It still may have a foolhardy lack of con-
servatism. The portfolio chosen on the basis of an analysis implicitly
assuming a linear utility function for R < 0 may be worse than that which
would be chosen by unaided common sense. Common sense might avoid
major pitfalls to which such an analysis is insensitive.

Linear segments for returns greater than 0, or greater than some larger
number b, are not as objectionable. The utility function in Figure 2b, for
exampile, has a conservative attitude toward losses, but a more devil-may-
care attitude about gains greater than 30%,. As long as it does not affect
the probabilities of gains of 309 or less, the utility function in Figure 2b
prefers changes which increase expected return. This does not seem
unreasonable, even if not precisely an optimum.

On the basis of the linear segments of their associated utility functions
for R <2 0, we must reject expected loss, expected absolute deviation, and
probability of loss. We might attempt to avoid the difficulty in the case
of expected loss by using expected return below . To affect the previous
argument, & would have to be negative. If b were quite negative, an
undesirably large range of returns above & (including a wide range of
losses) would be subject only to the expected return rule. If b were not
large, the original argument would apply with little abatement. Similar
arguments apply against the use of expected absolute deviation from b or
probability of return below b.

The argument against utility functions consisting of two line segments
does not imply that all piecewise linear functions should be rejected. The
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utility function in Figure 6, composed of a number of small line segments,
gives essentially the same results as a smooth curve drawn through thest
segments.

Discontinuities. A curve with a discontinuity can never be a concave
curve. This implies that there is some risk situation which the investor
prefers to having the same expected return with certainty.  With the curves
in Figures 5b and 5c, for example, a 50-50 chance of a 607 gain or loss
would be preferred to zero return with certainty. Such preferences would
lead us to reject this type of curve,
even if it had not been previously
rejected on other grounds.

Small discontinuities in an other-
wise reasonably shaped curve, how-
ever, can be as excusable as the
small linear segments of the curve in
Figure 6.

Non-monotonicity. The utility func-
iion in Figure 1b reaches a maximum
within the relevant range of returns.
The curve is clearly a bad approxi-
mation to a rcasonable utility func-
Figure 6. A piecewise linear function.  tion for returns greater -than this

maximum.

The objection to such a quadratic is different in nature from the objection
to curves which are linear for R =< 0. In the latter case the utility func-
tion may be excessively speculative in the face of losses. The quadratic,
on the other hand, while conservative in the face of loss, may foolishly
ignore opportunities for greater gain.

In the case of the measures whose utility functions were linear for
R <2 0 we argued that a portfolio selected on the basis of such an analysis
could be undesirable—substantially worse than that based on rule-of-
thumb judgment. This is not so for the portfolio corresponding (in the
ten-security analysis} to the quadratic in Figure 1b. The information
presented by the curve in Figure 4, Chapter 11, is sufficient to indicate that
the portfolio is “fair to good™ and is probably better than could be selected
on the basis of unaided judgment. Consider what we know about the
portfolio selected and the investor who selected it: We know that the
investor is quite conservative—the utility function in Figure 1b is the
quadratic which comes closest (for present purposes) to representing his
true utility function. Concerning the portfolio we know that

(a) it has an expected return equal to 109,
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(b) it has a standard deviation of return equal to 11%57; and
(c) it has highest expected value of the utility function in Figure 1b,

Since the utility function in Figure b drops quite rapidly as we move in
the direction of increasing losses, since expected return minus two stan-
dard deviations is only a 12%, loss, we can be assured that large losses are
carefully avoided. Nevertheless, expected return is 107 It seems
unlikely that unaided judgment would have chosen an equally conservative
combination of the ten securities with a higher long-run return.!

Conceivably a similar argument applied to a portfolio from another
E, V analysis might not preduce an equally encouraging result. At least
this approach provides some check on the suitability of the results of such
an analysis.

Summary. There is always a portfolio efficient in terms of expected re-
turn and S, (for suitable #) which is at least as good as the best portiolio
based on analysis using expected return and variance. It is not unlikely,
however, that the portfolio produced by an analysis based on expected re-
turn and variance is betier than one formed by unaided judgment.®? The
associated utility function can provide insight as to the suitability of the
portfolio based on such an analysis. Portfolios selected on the basis of
expected loss, expected absolute deviation, or probability of loss are not to
be trusted. They can be foolishly speculative even when apparently con-
servative. The assumption that a utility function exists rules out maximum
loss as a measure of risk.

An analysis of desirability based on associated utility functions can be
applied to other measures of risk, and to measures of central tendency as
well.

(GENERALIZATIONS

In this chapter we have thus far assumed that

(1) the investor owns only liquid assets;

(2) he maximizes the expected value of a multi-time period utility
function U(Cy, Cy, + -+, Cp), where C, is the money value of consumption
{perhaps adjusted for cost of living); and

(3) the set of available probability distributions of returns from port-
folios remains the same through time.

1 Throughout this discussion we assume, of course, that the means, variances, and
covariances are probability beliefs rather than simply past performance.

2 This is based on the assumptions that we have the investor’s, or investment man-
ager’s, probability beliefs, and that the conditions implicit in the analysis (e.g., those
enumerated in the first section of the chapter) are substantially correct.
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We shall now discuss cases in which one or more of the above assumptions
does not hold.. Specifically we shall consider instances involving

(a) consumer durables;

(b) non-portfolio sources of income;
(c) changing probability distributions;
(d) illiquidities; and

(e) taxes.

* In each case we shall discuss how the additional consideration changes the
single period utility function, and how the efficient set analysis can be
accordingly modified.

In the instances considered, our approach leads to one of three genera)
conclusions:

i. No modification is needed. The additional consideration is one
which the investor should take into consideration in selecting a portfolio
from among those offered by an ordinary efficient set analysis.

ii. Modifications are required and are feasible. Portfolios deemed
efficient while ignoring the consideration may be inefficient when the
consideration is introduced. The consideration may be introduced into
the efficient set analysis without excessive cost.

iii. It is impossible or patently uneconomical to introduce the modi-
fication in a theoretically correct manner. Perhaps formal analysis can
be valuable, however, if modified to account roughly for the consideration
in question.

If we tried to apply our efficient set technique to the general problem of
business uncertaintics through time, we would probably come to a fourth
conclusion:

iv. The particular mode of analysis is too removed from the needs of
the subject to be bolstered by intuitive modifications.  Another approach
(such as Monte Carlo analysis [18]) merits consideration.

Consumer Durables. Now let us admit the possibility that the investor
owns “‘consumer durables” while continuing to assume that available
probability distributions are constant through time. Consumption is a
bundle of goods and services “enjoyed.” Consumption at any time is
subject to constraints set by

(a) the amount of money devoted to current consumption; and
(b) the amounts of various kinds of consumer durables available.

We continuc to assume that the portfolio is the only source of money.
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The investor faces a complicated set of decisions. He must allocate his
junds between porifolio and non-portfolio expenditures; within his port-
folio he must allocate funds among a large number of securities; in his
non-portfolio expenditures he must allocate funds between various forms
of immediate consumption expenditures and durable purchases. He does
this to maximize the expected value of a single stage utility function which
depends on

{a) current consumption,
(b) amounts of durables at the end of the period, and
{c) the value of the portfolio at the end of the period.

In the terminology of the last section, (a) is current consumption C,;
(b} and (c) identify the next wheel w,,,.

If, for any given (a) and (b), utility is a quadratic function of the value
of the portfolio, then all the investor need know concerning available
portfolios is summarized in an E, V efficient analysis. Given one set of
non-portfolio decisions, one K, V efficient portfolic maximizes expected
utility.  For another set of non-portfolio decisions, perhaps another E, ¥
efficient portfolio maximizes vtility. Given the whole set of E, ¥ efficient
combinations, the rational investor can determine which portfolio is
optimum while considering both his portfolio and non-portfolio
opportunities.

Exogenous Assets. Suppose that the portfolio is not the investor’s only
source of income, but that he has additional income, ¢.g., in salary form.
We shall assume that decisions with respect to employment will not be
immediately influenced by available portfolio opportunities. The indi-
vidual has decided to retain his job whatever the outcome of the portfolio
analysis.

The probability distribution of returns from other sources is thus assumed
given; but it is not irrelevant to the selection of a portfolio, Stability of
return as a whole depends, not only on the variance of portfalio return and
variance of non-portfolio return, but also on the correlation between these
two. This may be considered in an efficient set analysis by treating non-
portfolio returns as an “‘exogenous asset™—an asset whose amount cannot
be varied in the portfolio analysis, but whose return is random like that of
the other assets,

Changing Distributions. Let us consider a particular case of probability
distributions changing through time. Specifically, suppose that available
distribuitons depend on some number & which measures the “bullish-
ness” or “bearishness™ of the market. For given decisions concerning
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non-portfolio expenditures, the single stage utility function to be maxi-
mized depends on the value of the portfolio ¥ and the level of b:

U= U(Y,b).
If U is approximately quadratic, that is,
U=Y+ab+ Y24 ybY + 6b%
then expected utility is
EU=E+ akb + SEY®* 4+ yEBY + SEY2

The choice of portfolio cannot affect Eb and Eb%.  The selection of
portfolio depends on the mean and variance of ¥ and the correlation
between ¥ and b. Efficient combinations of E, EY?, and EbY can be
generated by treating b as if it were an exogenous asset.  Several ordinary
efficient set analyses, with greater or lesser weights on b in the value of the
portfolio, are required to survey possible combinations of expected return,
variance of return, and correlation with b.

Hliquidities. Securities are not, in fact, perfectly liquid. For the
moment we shall consider two sources of illiquidity:

{i} costs of transactions, and
(ii) thinness of the market.

A third source of illiquidity, the capital gains tax, is discussed later.

If securities were in fact perfectly liquid, a Rational Investor would
move instantly from his present portfolio to his desired portfolio. He
would change portfolio with each change in belief or need. If an investor
were to follow such a procedure, the above-mentioned illiquidities would
cause him to fare quite poorly. Constant buying and selling would
accumulate transaction costs; attempts to make rapid radical changes in
the portfolio, to buy or sell large amounts of a security, would adversely
affect the price for the large investor. The Rational Investor must move
more slowly toward his desired portfolio because of the existence of these
illiquidities.

We cannot solve the problem of the optimum strategy over time with
itliquidities. Ewven if it were feasible, it would be uneconomic to compute
moment-by-moment, or even day-by-day, the optimum sequence and
timing of purchases and sales for a large portfolio. If formal analysis is
to be used at all, it musi incorporate some explicit or implicit judgment
on the proper procedure in the presence of both illiquidities and the limited
capability of performing analyses.

Let us note what seems to be a “natural” procedure in performing
portfolio analyses, and then consider how the outcome of such a procedure
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is likely to differ from the actions of the rational man. The procedure
conststs of:

I. Choosing a *period of analysis” (e.g., 3 months, a year, 3 years);
the means, variances, and covariances are defined for this period. The
mean and variance of the portfolio are those which would apply if we
bought the portfolio now and held it until the end of the period of analysis.

2. Moving slowly, on the basis of judgment, in the direction of the
desired portfolio. The desired portfolio itself may be modified, on the
basts of judgment, to account for considerations not incorporated into the
formal analysis.

3. Periodically recomputing the formal analysis. Even if the “period
of analysis” were 3 years, the “‘frequency of analysis™ might be 3 months to
indicate changes in the desired portfolio based on accumulated informa-
tion. Stand-by analyses might also be performed in advance, to indicate
how the desired portfolio is to be modified if some major event (war,
precipitous drop in market, threatened major strike) shouid occur,

Such a procedure may be expected to produce near optimum results if

(a) among different sccurities, long-run means, variances, and co-
variances are about proportional to short-run means, variances, and
covariances, and

(b} the portfolios which seem most desirable today are most likely to
scem desirable “tomorrow.”

If {a) and (b} do not hold, we should consider whether some intuitive
modification of procedure would not produce more optimal results,
Suppose, for example, that a particular security does not seem likely to be
worth holding for the entire “period of analysis” (say 2 years) but seems to
have some desirable short-ierm possibilities {for 6 to 12 months). This
consideration could be incorporated in one of two ways: One would be to
perform the analysis without taking the exceptional short-run possibilities
into account, then intuitively increasing the amount allocated to the
particular security. A second way would be not to let the security’s
mean, variance, and covariances reflect probabilities of outcomes over the
“period of analysis™; but, rather, let them reflect the probabilitics of gain
or lossif: (i) the security is purchased now and held until it is propitious to
sell (either because the time is right to take a gain or cut short a loss); then
(ti) the proceeds from this sale are reinvested in the portfolio until the end
of the “period of analysis.”

Other failures to meet condition (a) or (b) above can be similarly treated,
by adjusting either the inputs or the outputs of the analysis.

Two questions which must be settled before undertaking an analysis are
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“What should be the frequency of analysis?” and “What should be the
period of the analysis?” No precise answers can be given to these
questions, but factors meriting consideration can be pointed out. The
frequency of analysis should depend on (among other things) the cost of
analysis and the rate at which new information accumulates. If new
information accumulates slowly, if few serious changes in probability
beliefs occur from month to month, then a quarterly analysis may be all
that is needed (even if the cost of the analysis were quite reasonable). If it
were felt that a quite complicated, fairly expensive analysis is absolutely
essential for the particular investment situwation, then perhaps a yearly
analysis would be appropriate.

Between dates of successive analyses, judgment would be required to
revise the “desired portfolio” to account for new information and to
determine the rate at which the desired portfolio is to be approached.

Taxes. Taxes would pose no special problem of analysis if it were not
for the provision that capital gains are taxed only when “realized” (i.e.,
only when the security is sold). Without this consideration we could
simply define means, variances, and covariances in terms of return after
taxes, and perform an ordinary efficient set analysis with our inputs thus
defined. Even if tax rates changed with changes in the fevel of income, an
E, Voran E, S, analysis could be performed using procedures similar to
those required for deriving an E, S, efficient set.

Problems of illiquidity arise, however, when capital gains are taxed when
realized. The utility of a portfolio to an investor depends not solely on
its market value, but also on whether taxes would be incurred if he sold
particular securities in order to move from his present portfolio to a more
desirable one. Even if there were no other illiquidities, taxes on realized
capital gains would retard movements from present portfolios to desired
portfolios.

We cannot calculate exactly the manner by which the portfolio should
be modified to account for capital gains provisions. 'We shall, however,
offer a possible method of handling this consideration and discuss how
judgment might improve the results. Perhaps future conceptual research
plus practical experience can produce improved procedures in this area.

Proposal: Define the “worth™ of a security or portfolio at the end of
the year to be

(the market value of the portfolio} minus
(taxes payable on realized gains and income) minus
(b) times {unrealized capital gains) plus
() times (unrealized capital losses),
where b is a constant reflecting the “likely” tax incurred next year per
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dollar of unrealized capital gain at the end of this year, and ¢ is a constant
reflecting the “likely” tax savings from realizing capital gains next year per
dollar of unrealized capital gains at the end of this year. & and ¢ must be
between zero and the capital gains tax. For fixed b and ¢, estimated
perhaps on the basis of past realized capital gains and losses, an ordinary
analysis could be performed in terms of the mecans, variances, and
covariances of worth thus defined.

The means, variances, and covariances of return that serve as input to
the analysis, or the portfolio which is the output of the analysis, may be
modified by judgment to reflect, for example, that capital gains on some
particular security are more likely to be realized than they are on the
average security.

TrHE CHOICE OF ANALYSIS

In designing a portfolio analysis, two objectives should be kept in mind.
First. an attempt shouid be made to keep the analysis simple; second, an
attempt should be made to understand the salient implications of major
simplifications.

Simplicity of analysis means less work in developing inputs, less com-
puting time in obtaining the outputs. The simpler analysis, donc in less
time for less cost, can be revised more frequently.

Simplicity, however, can be bought at too high a price. We could
greatly simplify the analysis, for example, by considering the maximization
of expected return alone. But our analysis, showing a one-security
portfolio as optimal, would be of little aid to judgment. Judgment
(among its other applications) must be used to decide what refinements are
worth incorporating into the analysis.

The rigorous mathematical analysis, the electronic computer capable of
tens of thousands of calculations per second, the experienced investment
manager who can grasp intuitively a wider range of considerations than
can ever be incorporated into a computer—each has a role to play in the
supervision of large portfolios of securities.
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APPENDIX A

THE COMPUTATION OF EFFICIENT SETS

THE E, V' EFFICIENT SET PrROBLEM

The purpose of Appendix A is to show that the computing procedures
presented in Chapter VI produce the desired efficient sets. 1t is assumed
that the reader of this appendix is familiar with matrix algebra and
Lagrangian multipliers. Itis advisable to read Chapters VILand V1L, by
way of introduction and illustration, before reading this appendix.

We shall essentially employ the notation of Chapter VIIL.  Specifically,

X
X=1 is a portfolio.
X’!L
A portfolio is legitimare if 1t satisfies constraints
AX = b,
X =0,

where 4 is an m by » matrix and b is an m component column vector.
#; 1s the expected return on the jth security; o, is the covariance between
the jth and kth securities:

#1

1

an " Oy

O,° " "G

nn
The covariance matrix C is symmetric and positive semi-definite.
309
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The expected return E of a portfolio is
E = yux
The variance of return ¥ of a portfolio is
V=X'CX
An E, V combination (E?, V%) is obtainable if there is a legitimate
portfolio X'® with
EY = p/a0
and
Vo = XV(CX9,
An E, ¥ combination (E®, V?) is efficient if
(1) E®, V°is obtainable, and
(2) no obtainable combination E1, V1 ¢xists, such that
either El> E° and V1< V° orelse E!>E" and V! < VO,
A portfolio X is efficient if it is legitimate and if its £, ¥ combination is
efficient.
Our problem is to find

(a) the set of all efficient E, ¥ combinations, and
(b} a legitimate portfolio for each efficient £, V¥ combination.

THE CriTICAL LiNnt METHOD

As has been asserted before and will be shown below, the “critical line”
computing procedure of Chapter VIII traces out a continuous piecewise
linear set in the space of portfolios. Each portfolio in this set is efficient;
every efficient E, ¥ combination is represented by some portfolio in this
set.  After the set in the portfolio space is traced, the set of efficient E, V
combinations can be readily ascertained.

The linear segments in the portfolio space are computed in a series of
iterations. On the rth iteration, that is, along the rth segment, certain
variables are referred to as in; the rest are referred to as our. We shall let

O =1 i}
be the indices of the set of variables which are in.
The critical lines, segments of which make up the aforementioned piece-
wise linear set of efficient portfolios, are defined in terms of the following

vectors and matrices:
C A
M= ,
A 0

where C and A are as defined above, and 0 is an m by m zero matrix.
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[]

where b is as defined above, and 0 is an » component column vector of
ZETOS.

where u is as defined above, and 0 is an m component column vector of
ZEros.

J;variables are in on the rth iteration. Mppisan(m + 7y by (m+J)
matrix obtained from M by deleting rows and columns of out variables:
the jth column and row are deleted from M to form M,y if and only if
jt ). Sy is an (m + J)) component vector obtained from S by
deleting the g, if j ¢ #(1), that is, by deleting the p; of our variables.

i)
Rﬂn = 5

is an (m + J,) component vector, where 0 is a J, cotponent zero vector,
X g(p Is the column vector of in variables. X ., is the column vector of
our variables. A4 is an m component vector of Lagrangian multipliers,
Ag is an (m + 1)st Lagrangian.

The formula for the sth segment of the set of efficient portfolios is

Xy
(1a) M £ ; = Ry + 2SSz

(lb) Xp,r.(ﬂ —_ 0-

Or, assuming that M 4, is non-singular (we return to this assumption
later), and letting M () = M(1), (1a) and (1b) may be written

Xz
(2a) 3 = NOR sy + 4pNOS 700,
(Zb) ch“) = 0.
We define

= %:O':ka + 2 4k — App;
(1a) and (1b) may be written

X;,=0 forj¢ #(),
7, =0 forje #£(1),
Ax = b,
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The computing procedure of Chapter ViII traces the cfficient set in the
direction of decreasing A,. The rth segment in the portfolio space
consists of points on the #th critical line from Ay = A4™", previousty
determined, to A, = AY. A is the largest value of 4;; which satisfies

(2) AU = 20 and

(b) either
() X, =0 forsomej,e F(@), or
(i) n;, =0 forsomejo¢ F(1) or
iy dg=0.
In case (bi), j, “goes out”: the in variables on the (¢ + 1)st iteration are
all those which were in on the (th iteration, with the exception of jo. In
case (bii), j, “‘goes in”: the in variables on the (/ + 1)st iteration are all
those which were in on the sth iteration, plus j,.  In case (biii), the com-
putation terminates at Ay = 0.
For the first iteration,
KMV = 3 = w.

THE NRL(Q PAPER

The critical line procedure outlined above was presented in [11]. Our
present discussion will draw on a number of results in that paper. In[11],
restrictions were placed on the matrices 4 and C which are not, in fact,
required by the method. The purpose of the present discussion is to show
that the method still produces the desired results when these restrictions
are removed.

The exposition of the critical line method tends to become cluttered by
tedious special cases. These “special cas:s™ fead to little, if any, change in
computing procedure, but they must be covered to ensure that the method
works in all circumstances.?

The treatment of a number of special cases in [11] did not depend on the
restrictive assumptions about 4 and C. Those special cases will not be
treated here. Specifically the reader is referred to {11] for the following
cases.

1. The lincar programming problem
maximize FE=py'X
subject to AX = 5,
X =0
! Both the present discussion and that in [11] ignore the round-off error problem,
Experience with the simplex method of linear programming suggests that double-

precision floating point arithmetic should be adequate for problems involving 200 (and
perhaps more) securities.
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has no finite solution; either because

(a) there is no X with AX =6, X >0, or
(b} obtainable E is unbounded.

2. The linear programming problem in 1

(a) does not have a unique solution, or
(b) its unique solution is degenerate.

3. The computation to determine A% reveals that two or more variables
(X; andfor 7,} become zero simultaneously. In short, our present dis-
cussion will assume that the linear programming problem to maximize E
has a unique, non-degenerate solution, and that a unique X; or 7; becomes
zero to determine A%,

[11] discusses the construction of the first critical line, as described in
Chapter VIII, step 2, page 177.  [11] shows that on the first critical line,
under the non-degeneracy assumptions listed above, not only do we have

X;=0 forj¢ #(1), and
n; =0 forje #(I),

but also, for sufficiently large 1, we have

X; >0 forje #(1),
n; >0 forj¢ #(1).
Also
M 44, is non-singular.

We shall say that the critical line method “works™ (in the sense that its
prescriptions can be carried out) if

(1) at each iteration, after the new j “goes in™ or “goes out,” the new
M , is non-singular;
(2) the portfolio at iz = 2% on the rth critical line is the same as that on
the (¢ 4 D)st critical line at A, = A5
(3 ;>0 forj¢ #(r), and X;>0 forje #(1)
when
AV > Ag > AP

on the rth critical line,! and
(4) A% = 0 is reached for some finite 7.

! In the degenerate case, 2 must be replaced by 2':

n=0 for j¢f,
;=0 for je F(.
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In the section below on “The Efficiency of the Generated Portfolios” we
show that, if the method “works,” then it traces the desired set of efficient
portfolios. In the three succeeding sections after that one, we show that
the critical line method does *work.”

THE Kunn, Tucker PAPER

The Kuhn, Tucker results on non-linear programming [i9] are ex-
tremely vatuable in discussing the critical line method. We will not
review their general theorems but will state a corollary with immediate
applicability to our problem.

Suppose that we wish to choose X so as to minimize

f=XCX+yX
subject to
AX = b,
X=0,

where ' is an n component column vector whose typical element is y; and
where C, X, 4, and b are as defined above. Let

$X, ) = f+ 2WAX,

where A is an m component vector of Lagrangian multipliers whose ith
element is 4, We define
1 8(X,A)
Ut e
According to [19], X minimizes f subject to AX = b and X =0 if and
only if

(@) AX=5b,X=>0, and
(b) there exists a vector A such that

= Efb: o X+ ¥i + 2 Mg

(i) 5,20 forj=1,--+n and
i) mA;=0 forj=1,---n

Condition (bii) implies that if %, > 0 then X, =0, and conversely if
X; > 0 then 5, = 0.

There are no requirements on the signs of the 4, since the Lagrangians
are associated with equalities rather than inequalities.

The Kuhn, Tucker results presented above are closely related to the
older applications of Lagrangian multipliers. We shall use the fact that
a necessary and sufficient condition for X to minimize

f=XCX+y'X
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subject only to

AX=b
is that
(a)y AX = b, and
(b} there exists 4 such that
Of +20AX .
qJ=T=0 forall].

7

THe EFFICIENCY OF TUE GENERATED PORTFOLIOS

This section shows that, if the critical linc method works (as defined in
the section on the NRL{) paper above}, then

(a) all portfolios generated by the computation are efficient, and
(by if (E®, V9) is an efficient E, ¥ combination, then there is a portfolio
X* generated by the computation which has

EC= u'X°,
Vi = XYCX°.

The critical line procedure (if it works) associates a portfolio X to each
value of Ay = 0; that is, the procedure traces a single-valued function
X(Az). We shall first show that

Lemma: If 4% > O and

X* = X(2p),
then X'* minimizes
f=V—ALE
subject to
AX = b,
X =0

According to the Kuhn, Tucker results, a necessary and sufficient condition
for X* to minimize fis that

(a) AX=15,X>0,and
{b) there exist A such that

(i #; =0 forj=1+""n

(“) X,-?];=0 f()l’j: 1, - =n
where
1y = 3 0wl = ki + 3 ke
d (3
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These conditions are met by X* = X(4}) since
AX = b by construction;
7; = 0, X; = 0 by definition of “‘to work™; and X, = 0, since
X,=0 forj¢ ¢, and
;=0 forje #.
Tueorem 1: If X* = X (%) for 2% > 0, then X* is efficient.
This follows from the lemma:
Suppose X* minimizes f = V — ALE but is not efficient. Then there is
a portfolio X such that cither
X)) << V(X*) and E(X) = E(X%)
or else
MX)<< V(X*) and E(X)> E(X*).
In either case f(X) < f{X*). Contradiction.
Tueorem 2: If X* = X(0), X* is efficient.
The Kuhn, Tucker results directly imply that, when 1y =0, X(4,)
minimizes } subject only to
AX = b,
X =0
This does not prove that X * = X(0) is efficient since there might be another
obtainable portfolio X which has the same (minimum) V but has higher E

than does X*. Suppose that such an X existed. There exist obtainable
portfolios in all neighborhoods of X* and X, since all portfolios satisfying

X=08X*4+(1 -0, 0<<d<1

are obtainable. Since E and V are continuous, given any 4, > 0, there
exist neighborhoods, T* and 7, respectively, of X* and X such that, if

y* e T*
and

i eT,
then

fy®) = V") — AuBy*) > V(§) — AE@) = f).
But this is impossible since X'* is the limit of portfolios which minimize /.

CoroLLARY: If X* = X(ig) for 0 << 1 < w0, X* is efficient.
Tueorem 3: If (E® V% is an efficient E, V' combination, then there exists
A% = 0 such that
X0 = X029,
EO = ﬂ'XD,
Vo = XVCX",
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Under the non-degeneracy assumptions of the present discussion (page 312)
for A, sufficiently large, £(4;) = X, where X is the portfolio with maxi-
mum obtainable £. When 1, = 0, X(1z) is a portfolio with minimum
variance. Let E be the maximum obtainable E; let E be the £ of the
efficient portfolio with minimum V. No legitimate portfolio has E > E;
no efficient portfolio has E << £.  Since X(1z) and E(X) are continuous,
if E<< Ey=C E there is A% > 0 such that X° = ¥(2}) has E® = p'X*.
Since X" is efficient and since there is only one efficient (£, ¥) combination
with E = E®, the theorem follows,

THE NON-SINGULARITY OF M

We shail continue to assume the non-degeneracy conditions outlined on
page 312.  Frequently statements in this and the following section must be
qualified by a phrase such as “under the aforementioned non-degeneracy
conditions.” We state this qualification here, once and for all, rather
than repeat it at the beginning of each paragraph. The reader is once
again referred to [11] for the treatment of degenerate cases.

The critical line method is said “to work™ if

(1) at each iteration M ; is non-singular;

(2) the portfolio at A% on the rth critical line is the same as that at A5
on the (¢ + 1)st critical line;

(3) n; > Oforj ¢ £(1), X; > Oforje #(r), when A" > Ay, > 2%; and

(4) A% = 0 is reached for some finite 7.

Conditions (1) and (3) are satisfied on the first critical line. 'We shall show
that if they are satisfied on the rth critical line then they are satisfied on the
(r 4+ Dst critical line, and condition (2} is satisfied between the fth and
the {r 4+ 1)st critical line,

In the present section we show that M g, remains non-singular.

First consider the case in which a variable X, “goes in” for iteration
(¢t + 1). Without loss of generality we may assume that variables

X, + -, X; Were in at iteration ¢, and that X, is to ““go in” for iteration
t+ 1. Let
Gi1° Oy
C = ?
Oyt ° " Oy

¢ = [0y 1" " " Okrnls
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Fan L 1
A = . -,
L T L S
ay iyl
§ = N
_.a-m,k-l-l
-
H
= 1
LA
"X,
="
| X,

O = Opi1 41

Along the rth critical line

C A1X 0 i

- = + AE .

4 0 fl4 b 0
At 4, = 7%, ., becomes zero—),,, goes from positive to zero. Thus
at Ag = A% there is a unique solution to

c A g ,?1 0
A

¢ & = 0]
40 0 ][ —Ag b
If M 4,44, is non-singular, the formula for the (¢t 4- 1)st critical line will be
C ¢ AT ¥ 7 0
¢ o & 1 Xy 1=101.

A a 0 Al b
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By hypothesis

Mqp=1_ is non-singular.
g0 [A 0] g

Since 1., becomes zero on the rth critical line,

cC 4 &
¢ oy, | must be non-singular.
A 0 0
We shall show that
C o A
Mgn =|c o « | isnon-singular.
A a 0

If M 4,1y were singular, there would exist (Y, y, 8) 5= [0] such that
C o ATy 0
c o

a ]yl =10]
A a 0 iV 0

where Y has k components, ¢ has /1 components, and ¥ is a scalar. This
implies
AV + ay = (A"x)(;’) = (©),

I ME WL
|

WY,y = [Y’,y][

Hence

For any (1?, Xkﬂ)’

- o . - Ce
UE+ Y, Xot + 1) = V(X X)) + 2(X, Xio) ( ¢

ca

)+



320 PORTFOLIO SELECTION

But, since (Y, y) = 0, we must have

wn(C () =0

otherwise V(X + 0Y, X, + 0y) would be negative for suitably chosen 6.
Thus '
X+ Y, Xty = (X, Xppo)-
i1
AX 4+ aX, =0,
then
AR+ Y) + o Xeyy + 1) = b.

The classical Lagrangian results imply that the portfolio (X°) on the fth
critical line at A% (where #;,, becomes zero) minimizes V' — A%,E among
X which satisfy

(1) AX + aX,,, = b; and
(2) X;=0forj=k+2,--n
(No restrictions are placed on the signs of X; for j=1,- - k+ 1)}
This implies that
(e - )Y + ey = 0.

Otherwise
Y Y
X4+ y| or X'— 1y
0 0

would have higher £ and the same V (hence X° could not minimize
V — A,E over the aforementioned sct). But

Y
[, tr4a] [ :| =0
¥

implies
C A n 0
[Y,9.0H ¢ o wm|=|0]
4 0 0 0

This contradicts the assumption that

Mz | 18 non-singular.
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Next consider the case in which a variable that was in at the rth iteration
“goes out” for the (¢ + 1)st. Without loss of generality we shall assume
that the variables X,- - -, X;,, were in at iteration 1, and that X,,,

“*goes out” for iteration (t + 1). C, ¢, 4, «, &, X, and o remain as defined
above.

On the tth critical line

C ¢ A % 0 it
¢ o & || X | = |0+ | ey | 4z
A a0 A b 0

By hypothesis the above matrix, M 4(,, is non-singular. At the point on
the rth critical line at which X, becomes zero we have

C ¢ A4 pu X 0
¢ o o || Xen _ |0
A x 0 0 A bl
0 1 0 0 j|—ig 0

Since, by hypothesis, X,., did become zero, the matrix of these equations
must also be non-singular.

We must show that
c A
M =
F4D i o

is non-singular. The proof is similar to that of the previous case:
If M ;) were singular, there would exist (Y, 8) such that

ol

Hence ~ B
CY = — 49,
AY =0,
ViYy=Y'CY
= — Y46
=(,

From this it follows that V(X 4+ Y) = F(X)for any X.
If AX = b, then
AX+ ¥)=AX +0=5.
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O
The portfolio [)g :l on the rth critical line at 4, = 1, (where X}, became

Zero) minimizes
f=V—5E
subject to
AX =0,
Xk+l = 0’ XJH—Z = 05 Y },u =0.
{(No restrictions are placed on the signs of X,- + -, X,.) Hence
ZFY=0.
Otherwise either
X+ Yor
Xo—vy
would give lower f subject to the constraint AX = b.
But, since i’ ¥ = 0, we have

C ¢ A4 & 0

c o o . 0
[Y', 0, 6’, . Y'C' m 6'0'.] ~ G i —

A 0 0 0

o 1 0 0 0

Contradiction.
Thus, whether X, “goes in” or “goes out,” M ;. is non-singular.

THE NON-NEGATIVITY OF X AND %

Let us return to the case in which X; (j = I,- - +, k 4+ 1)are inalong the
1th critical line but X,,; goes to zero at A%. Both the equations which
define the rth critical line and those which define the (¢ + 1)st include:

X, =0 forj=k+2 and
n;, =0 forj<"k
The defining equations of the two critical lines differ only in that
ey = 0 along the #th critical line and
Xzsp = 0 along the (t + 1)st critical line.

The vector (X, 2, 2%) at A% on the rth critical line satisfies both 7., = 0
and X, = 0. Hence the portfolio at 1% on the rth critical line is the
same as that at A% on the (¢ -+ I)st critical line. A similar argument
applies when X, “goes in” at i}, In this case

X1 =0 along the sth critical line and

a1 = 0 along the (# 4 1)st critical line.
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Again the vector (X, 4, %) at A% on the rth critical line satisfies both;
hence the portfolio at A% on the rth critical line is the same as that at 4;;
on the (¢ 4+ st critical line.

We now show that, if M ;(, is non-singular, and if

X2>0 forjff(t),

: 77:>0 forjg‘j(t),
when A4~ < Ap < A on the rth critical line, then
X; >0 forje #(t + 1),
7?)>0 fol’j#f{!-}'l).
for Ay > Ap > A4*Y on the (¢ + 1)st critical line. We have already seen
that M g,y is non-singular under the above assumptions. We shall first
consider the case in which a variable “goes in.” As before, we shall
assume that variables X;,- - -, X, are in on the rth critical line and X,
“goes in” for the {r + T)st.
On the (z + 1)st critical line, at 1, = A%, we have

X;>0 forj=1,-+k,
Xk+1 = 0,
as well as
X;,=0 forj=k+2,-n
We must show that, as 1y is lowered, X;, increases,
Suppose that on the (¢ + I)st critical line

dXpy
Dim

L

0.

Then all points on this critical line satisfy

(D X,y =0;

@ X;=0forj=k + 2; abo

(3) gy =0forj=1,- - - k; as well as
@ =0

But this is impossible since (1), (2), and (3) are the conditions which define
the rth critical line. By hypothesis, (4) holds on the rth critical line only
at g = Ay Thus either

dXpp
T&E >0 or o,

Only in the latter case does the method “work.” Suppose dX, 1/dAg > 0;
then there is A such that )
MV = dy > i
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and such that on the (t + 1)st critical line at i we have

X; >0 forje #(t + 1),

X, =0 forj¢ #(t + 1),

775'> Y forj#f(t + 1),

n; =0 forje #{t -+ 1)
Since M g 1, is non-singular, the portfolio at 4 on the (¢ + 1)st critical
line uniguely minimizes

V — AgE
subject to
AX = b,

Xy=0 forjz=k+2
{no restrictions on the signs of the X,). But the point on the sth critical
line at Ay = 1, gives minimum obtainable ¥ — 1zE.  Contradiction.

A similar argument shows that, when X, ., “goes out,” di.,/diz < 0
on the (f + 1)st critical line.

FINITENESS

If on a particular critical line a variable (X; or %;) is positive for Az > 1%
and zero for Ay = Ay, then it must be negative for iz << A%. It follows
that no critical line can oceur more than once in tracing X(4z). Since
there are only a finite number of possible critical lines, 4z = 0 is reached
in a finite number of iterations.

E, 5, EFFICIENT SETS

The computing procedures for obtaining E, §, efficient portfolios,
described in Chapter I'X, are almost the same as those for the E, V
efficient set problem. In the E, S, case, as in the E, V case, an efficient
portfolio X(%;) is associated with each non-negative value of iz As
before, (1) is piccewise linear.

The procedures differ in the following respect: % is the largest value of
Az which satisfies

(1) A+ = 3% and
(2) either
(D X;=0 forsomeje _#(1), or
(i) n, =0 forsomej¢ #(z), or
(i) Az=0, or
(iv) p;X=0
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where p, is an # component column vector whose jth component is
pi, = (the return of the jth security in year 1) ~ (b).

In cases (2i), (2ii), and (2iii) the procedure is the same as in the E, V' com-
putation. In case (2iv) the matrix

C, A
M,m)= i 0]

o _[Ca
F 1) i 0 »

becomes

where either

CH—I = Ct + ﬁ-rf-’;
or else

C¢+1 = C, ~ pbrs

depending on whether p, X was positive or negative for Az > A}, (p, is
the return on X, where X, C, etc., remain as defined above, In the present
discussion we may write 5 instead of 5, without danger of confusion.)

We shall make essentially the same non-degeneracy assumptions in the
present discussions as were made in the E, V case. 1n particular we shali
assume

(a) that the linear programming problem, to maximize E, has a unique
non-degenerate solution, and

{b) that there is a unique variable (X, 5, or p; X) which determines 25
for¢ << T,

We shall say that the procedure for generating E, §, efficient sets
“works™ if

(1) M4, is nonsingular fort = 1,- - -, T;

(2) the point at A; = A on the rth critical line is the same as that on
2g = 25 on the (¢ 4+ 1)st critical line;

(3a) X, > 0 for je #(0), ;= 0 for j ¢ F(1), for AV > g > 1y on
the tth critical line;

(3b) ifp’X = 0 at Az = 1%,

p'X <0 for AV > Ay > A
implies

p'X >0 for iy dg > Al
and conversely

p'X >0 for A > Ap> yi
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implies

p'X <0 for iy > Ap > A4+,
and

(4) AL = 0 is reached for finite T,

~ We shall first show that, if the procedure “‘works,” it produces the desired
efficient sets. We then show that the procedure does work.

THE E, .S, EFFICIENCY OF THE POINTS GENERATED

S,(X) is the expected value of a function g(rX), where g is convex and r
is random. This implies that S, X) is itself a convex function of X. The
convexity of §;,(X) implies the convexity of

f=8X) — A,E.

The convexity of fimplies that, if a portfolio provides a local minimum, it
also provides a global minimum for /. But the Kuhn, Tucker conditions
assure us that X(iz) provides a local, and hence a global, minimum to

Sy(X) — AgE.

The minimization of S;(X) — AxF implies efficiency; and the argument
proceeds from here as in the £, V discussion.

THAT THE E, S, PROCEDURE “WORKS”

In case an X; or #, goes to zero, the procedure is the same as in the E, V'
efficient set computation, We have already seen that the procedure
“works”’ in this case.

In this section we show that the £, S, procedure “works” when a p/X
goes to zero. Parts of the proof which are very similar to corresponding
parts of the proof in the E, ¥ case will not be spelled out in detail.

By hypothesis,

M cn, ingul
£ [/i' 0} is non-singular.

Since p’ X" became zero,
c A
4 0
po

[ B T~}
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must also be non-singular. We shall show that the matrix
[C + 7

‘4“1
is non-singular.
A 0

Essentially the same argument will apply to
C—p A
i o

C+m A
D
were singular, there would exist a non-zero Y, & such that
C+pp A(Y 0
I HRK

In the same manner as in the F, ¥ case, we can show that

V(€ +m)Y =0,

If

and, from this, that

aY =0.
But this implies that
C 4 g
[¥,&, ¥Yplld4 0 0|=(0,00).
F 0o 0

Contradiction.

If o’ X = 0 at 1, = 2%, on the 7th critical line, then the portfolio X* at
A% on the rth critical line is the same as that at 4, = 2 on the (£ + 1)st
critical line, since in the former case we have

ool e )

while in the latter case we have
c & op 0O } X
- +
A 0 0 © A
c ATx 00 0 H
= _ + = +1_LE .
A 0] 4 00 b 0
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Finally we must show that, if p’X = 0 at A% on the tth critical line, then

pPX <0 for A~V > 2, > A,
implies

p'X >0 foriy> 2> ALY
and conversely

pPX >0 for A9 = g > A%
implies

p'X <0 for iy g > AYHY.

This follows as a corollary of the following

Lemma: If X uniquely minimizes
X'CX — igE
subject to

and X ¥ minimizes

subject to

AX = b,
then p' X > 0 implies 3’ X® >> 0. (The generalization to X'CX — X'pp' X —
AgE, or p’ X © < 0, is immediate.)

Suppose that 5'XP > 0 but 5’X® <7 0. Consider the straight line which
passes through X® and ¥®. Each point on this line is characterized by
its value of y = p'X. Along this line f = X¥'CX — AgE is a quadratic
which may be written

f=a+b(y—c)2’

where b > 0 and ¢ = 5’ X¥? > 0.
We also have
Xpp'X = (X'py =3
Thus
[+ XX
is of the form
a+ by — o + 92

which has its minimum at
¢

=39

0,
7 >

+
[l

contradicting the assumption that

§=p5X% <0,
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The above lemma implies that, if p’X would have become negative
(for Ag << A%) along the old critical line defined in terms of C, then it does
become negative along the new critical line defined in terms of C + 5'5.

Ag = Qs reached in a finite number of iterations since any combination
of in variables and years can give rise to at most one segment of X(Az),
and there are a finite number of such combinations.



APPENDIX B

A SIMPLEX METHOD FOR THE PORTFOLIO
SELECTION PROBLEM

Philip Wolfe [13] has shown that a slight variant of the simplex method
can be used to solve the problem

minimize flx) = a'Cg,
x>0,
Ax = b,

where @ is an 7 by 1 matrix, 2 is its transpose, C is an » by n positive
semi-definite matrix, and A is an m by » matrix.

To solve the above problem by Woife’s technique the simplex procedure
must be modified so that certain pairs of variables are not allowed in the
basis simuitaneously.

In the portfolio selection problem f{z) is minimized subject to the
constraints

Ax = b,
=0,

and
ux = E,

where 4 is a 1 by # matrix and E is a scalar. £ is not fixed in value;
rather the problem is to find min £ for all possible values of E.

This Appendix shows that the simplex method, with Wolfe’s amendment,
can be used to solve the whole portfolio selection problem.  Since one by-
product of the portfolio selection computation is the point x which mini-
mizes f(ir) subject only to Az = b and x > 0, the procedure presented in this
appendix also provides an alternative method of solving this problem.

We define
_ A Dfix) + Adx — Appx

ox;
= % O 2 Agy + AE/"’.is
330
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where c;; is the jkth element of C, a;; is the ijth element of 4, u; is the jth
element of g; and Ais a 1 by m matrix of Lagrangian multipliers whose ith
component is 4,.

The critical line method of quadratic programming uses the fact that
there is a piecewise linear set of points () which give minimum f{z) for
each value of £, Associated with any linear segment of this set is a set of
variables ¢ = (j,* - -, j;). Along the linear segment we have

77520} for all j
z, =0 ’
n; =10 forje £,
;=0 forjé¢ g.

fed
C A -1 0 “
R. = + A'E‘
A 0 0 b 0
Y
In the critical line procedure Ay is reduced until some #, ¢ . or x; ¢ ¥

reaches zero. If an #, reaches zero first, j, “goes into” the set #, so that
along the next critical line

We also have

Wiy = 0
as well as
1; =0 forjin the old #.

Conversely, if an z; reaches zero first, j, “goes out” of # for the next
critical line. The computing procedure continues until Az = 0 is reached.
At this point f{z) is minimized subject only to Az = b, x => 0.

Consider the “amended” linear programming problem:

minimize Az

x
C 4 =7 H 0
subject to Al — Ag = .
A 0 0 0 b
]

where (1) #; and x; can never be in a basis simultaneously; (2) 4 =
(4, * -, A,) is not constrained to be non-negative; and (3) 4, - -, 4,
are always in the basis. A basis to this problem contains {m + »)
variables. As long as i, > 0, the basis must consist of

Az,
byttt Ay, and
n — 1 of the x; and 7.
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(We shall assume that there are no degenerate bases. This is a convenient
but unessential assumption; see [1}] concerning degeneracy in the critical
line method.) By construction, if «; is in the basis, then #; is not; and
vice versa. Since there arc n — 1 of the &; or #; in the basis, there can be
only one j, for which both its z, and 5, are not in the basis. According to
the amended procedure, one of these must go into the basis.

As will be discussed below, the introduction of one of these into the
basis will increase Ag; the introduction of the other will decrease 1,
The variable (x;, or 7;) which decreases A is introduced into the basis by
increasing its value until some other variable (x; or #; with j  j3) goes to
zero. This again leaves us with one j, with x,; and 7, out of the basis.
The procedure is repeated until Az = 0 is reached.

Comparison of the amended simplex computation and the critical line
procedure shows that, if they are started out together, they will continue
together.! x and # vary with i along a critical line by exactly the same
formula that relates them to Az when the new variable is introduced into
the basis. The sequence of #’s of #’s which go to zero, and that of their
counterparts which become non-zero, are exactly the same.

The proof that the critical line method works, therefore, is a proof that
the amended simplex method produces the desired results. It is this
equivalence between the two procedures which implies that, when x; and
7;, are both outside the simplex basis, one will increase Az while the other
will decrease it.

The practical implication of the above result is that any of the linear
programming codes for high speed, internally programmed computers can
be conveniently converted to a quadratic programming code for solving,
among other things, the portfolio sefection problem.

1 See [11] for starting the portfolio problem.
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ALTERNATIVE AXIOM SYSTEMS
FOR EXPECTED UTILITY

In Chapter X we showed that the expected utility maxim is implied by
the following three axioms:
Axiom Ia.  For any probability veciors P, @,
P>=0 or Q=P (orboth)
AxiomIb. IfP> Qand Q@ = R, then P = R.
By definition
P~Qmeans P> Q and O > P;
P> Q means P > Q and not 0 = P;
P << @ means Q > P.
Axiom 11: If P > Q, then
aP+ (1 —aR>a@ + (1 —aR
for all probability vectors R, and
0<a<l
Axiom MI: If P> O > R, then there is an a such that
aP+(1—aR~Q.
We shall show that the expected utility maxim still follows if III is
replaced by either III" or III” below:
Axiom III': If P > Q > R, then

(a) there is an & << 1 such that «P -+ {1 — R > O, and
(b) there is a f > 0 such that 0 > 8P + (1 — f)R.

Axiom TI1": Let e; be the ith unit vector:

(a) there exist ¢;, e;, and ¢; such that

e; > e; > e, and
333



334 PORTFOLIO SELECTION

(b) for any triplet /, j, &k such that
€5 = €; =g €}
there exists an & such that
[ ~ ey -+ (I - ot)eh.
To show that 1, II, and II1" imply the expected utility rule, we need only
show that they imply III. We shall therefore assume I, II, IIl" and
P> (> R; we shall show that there is an & such that

4P 4+ (1 — &R ~ Q.

Axiom 1I implies that, if
«P+ (1 — )R> 0,

then
P4 (I —PlaP 4+ (1 - )R] > @Q;
that is,
aP 4+ (1 — DR > O,
where
a=f-14+—HNe for0<< <1,
Thus, if

afP +(1 — )R> 0,
then the same is true for all & > «. Conversely, if
aP 4+ (1 — x)R < Q,

then the same is true for all & << «. This, together with Axiom III"
implies that there is an & such that

D0z,
(ii) & is the greatest lower bound of « satisfying
4P + (1 — )R> O,
(iii) & is the least upper bound of « satisfying
aP + (I — xR < Q.

Does
GP+ (1 —&R>Q? or

aP+ (1 —8)R<< @7 or
EP 4+ (1 — R~ 07
We shall show that the first two cannot hold; hence Axioms I, I, and III"

imply ITL.  If
P+ (1 —®R> C,

there would exist # <C 1 such that
BlaP+ (1 — &R+ (1 — HR> Q;
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that is
faP 4+ (1 — @R > Q.

This contradicts the assertion that & is the g.L.b. of the « which satisfy
wP + (1 — )R> 0.

A si‘milar contradiction follows from the assumption that
&P+ (1 — &R < Q.

Hence 1, I1, and 11" imply 1il.

A different approach is used to show that I, 11, and 1" imply the
expected utility rule.

If P is an m component probability vector

Fo

P

then we will fet P be an (m — 1) component vector

2

P
with p,, omitted. It will be convenient to assume that
@ == =l
Let the kth outcome be such that
ey > €, T €y

Part (a) of 111" assures us that such a k exists. Fori=1,--m—1
define a P, in one of three ways:

ife, ~e,then P, =g,

if e; > e, then P, = ae; + (1 — a)e,, where « is chosen so that
Pi ~ €

ife, < e, then P, = we; + (1 — a)e;, where ais chosen so that P, ~ ¢,.

We thus have (m — 1) points P, such that

P!-"""ek.
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The P, corresponding to P, (i = 1, - -, m ~ 1) are linearly independent.
This may be seen by noting the location of non-zeros in the (m — 1) by
(m — 1) matrix whose jth column is P#,:

Fx Xx x X

L X

As Hlustrated by the x’s above, the non-zeros appear along the diagonal
and (perhaps) in the first row. (If this were a matrix of P, instead of 7,
there might also be non-zeros in the mth row.) The determinant of the
matrix is the produci of the diagonal elements, and thus is non-zero. The
.. therefore, determine a plane y in the £ space.

As the reader may confirm, Axioms ¥ and 1I imply

(a) if 0 and R are in y, then Q ~ R;
(b) if O and R are in a plane v’ parallel to ¥, then Q ~ R, and
(c) I, II, and 111" imply the expected utility rule.

We have discussed axiom systems which imply the expected utility rule.
Below we show that, if we weaken the axioms in certain respects, we can-
not derive the expected utility rule. None of the axiom systems discussed
below is inconsistent with expected utility. Their *drawback™ is that they
are consistent with other rules as well. They are not strong enough to
rule out certain preference systems which are ruled out by Axioms I, II,
and IIT, IIT, or 111",

Axiom I11” would be a genuine weakening of I1I except for the inclusion
of part (a). Part (a) is necessary, as may be shown by an example in
which I, 11, and part (b) of 111" are satisfied, but in which the expected
uttlity rule does not hold.

Suppose that there are three ouicomes, and that P = (p,, p,, py) is
preferred to Q = {4y, ¢, ¢3) if

(a} ps << g, or
(b) ps =¢3>> Oand p, > ¢,

P ~ @ if and only if
=g = 0.

The reader can confirm that the example has the desired attributes.
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Part (b) of III" is a weakening of I1l. One might conjecture that a
similar weakening could be applied to I1I'. 'We shall show, however, that
preferences inconsistent with the expected utility maxim can be consistent
with Axioms I, I, part (a) of IHI, and the foilowing modified version of
part (b) of I1I":

H1"b": If &; > ¢; > ¢, then
(i) there is an o 7= 1 such that
ag; + (1 — e, > ¢;, and
{ii} there is a § 3£ 0 such that
fe; + (1 = Bey < ¢5.
Suppose that there are three outcomes such that e, => e3> ;. P =
(P1 P2 p3} 1s preferred to Q = (gy, gy, ga) if

D pr—=p>q—¢gs or
(2) py — P2 =1 — 4o, and
PL > 4y

The reader can confirm that the preferences in the above example satisfy
I, 11, part (a) of 111", and the modified part (b") of 1il”, but they do not
satisfy the expected utility maxim.

In another axiomatic system (26] it was only necessary to postulate an
axiom similar to 1I for the case « = 1/2. This suggests that perhaps the
expected utility rule could still be derived if, in our present axiom structure,
1 were replaced by

I P> Q, then
(1/2P + (/2R > (1/DQ + (/DR

for any probability vector R. We shall show, however, that I, I, and
either 111, 1TV, or I1I” are consistent with preference patierns which are not
consistent with expected utility. Our examples will depend on Zorn’s
Lemma or, equivalently, the Axiom of Choice.

Suppose that there are two outcomes. A probability distribution, then,
is characterized by p = p,. In this case the expected utility rule is equiva-
lent to a requirement for a monotonic ordering of 0 <X p<C 1. Either we
have

(a) pis preferred to ¢ when it is numerically greater,
(b) pis preferred to ¢ when it is numerically less, or
(c}) p~gqforallp,gq.

Our discussion wili be based on the concept of a Hamel Basis which
in turn, 1s based on Zorn's Lemma. We shall state Zorn's Lemma, show
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the existence of a particular kind of basis for the numbers 0 < p < 1, and
finally show that a non-monotonic ordering of 0 < p =1 is consistent
with Axioms I, IT', and UT or III'.  (An example involving IT" will be
discussed subsequently.)

A set P is “partially ordered” with respect to a relation >

Ay ifaz=aforallaePp;
(2) fora,beP,
if a>=b and b >a,

then ¢ = b, and
(3) fora, b, ceP,
if a6 and b >,

then a4 > c.

A subset S ¢ P 1is linearly ordered ifa e Sand b e S implya > bor b < a.
z € P is an upperbound of § if

z>aforallaes.

(z need not be in §.) ¥y e P is a maximal element if there does not exist
a€P, a #y,such that a > y.

Zorw's LEMMA: If P is a partially ordered set such that every linearly ordered
subset has an upperbound, then P has a maximal element.

Let R be any subset of the real numbers r: 0 < r< 1. We shall say
that the numbers in R are “independent™ (with respect to the rationals) if
there does not exist a finite linear combination

"
i=1

withr; € R, n > 1,and ay, - - -, @, non-zero rational numbers. (R may be
infinite, but Zer is a finite sum involving a subset from R.) We shall say
that R is a basis for the numbers 0 << r<Z 1

(a) if R is a set of independent numbers satisfying 0 <Z r << 1, and
(b) if 0 <<y < 1, then

Y = Z a;r;
i=1
for suitably chosen rational a, 7= 0 and r, ¢ R,

In a moment it will be shown that Zorn's Lemma implies that such a basis
exists.  We now note that, if R is such a basis, the a; in

v = Zar,
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are unique. Otherwise we would have

"
Azlaz‘ri =¥y =.Z a;r;.
= .

-
I
-

Thus

contradicting the independence assumption.

Let Z be the set of all independent sets (S) of points in 0 << r<Z 1. We
shall define S; = S, to mean §; = §,. # is partially ordered with respect
to >=>. Suppose.7 is a linearly ordered subset of 27; that is, if S; € 7 and
S, €7, then

A= or Se > Sy

The union of all the § €., US, is in :#: {or otherwise there would exist
a finite sum,
Zar, =0,

with the a, non-zero rationals and r, ¢ US. But this would also hold true
for some S'e.7. Thus every lincarly ordered subset of % has an upper
bound. Hence % has a maximal element (R). But R is a basis for
0 << r< 1 since

(a} R e # implies that R is a (rationally) independent set; and
(b) if y¢ R but 0 <<y=_1i, then there exist non-zero rationals
ay.* -, a,and r; e R such that

n
¥=2 apt;
i=1

otherwise the union of {y} and R would be (rationally) independent,
contradicting the assertion that R is a maximal element of #.

We define a non-menotonic ordering function on 0 <C p << 1 as follows:
Let U(0) = 0.
Forr € R, LX(r) = any rational, provided only that U(r} s not monotonic.
Fory ¢ R,

Uly) = élaiwrf),

where
r,eR

and
y = Zay,.

Consider the ordering, p is preferred to ¢ if and only if
Ulp) > Ulg).
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This ordering is not consistent with the expected utility rule, since it is not
monotonic. [t is, however, consistent with Axioms I, II', IT1, and }I’:

Axiom 1 is satisfied trivially.
Axiom I{’ is satisfied since

Ullj2p + (1/2y = (.1/2)U(p) + (1/2)U(r)

for all 0<pr<1L.

That Axiom 111 is satisfied may be seen as follows: Suppose that p is
preferred to ¢ and g is preferred to r.  U(p), (g}, and U(r) are rationals
such that

U(p) > Uig) > U(r).

o= %:—g% is a rational.

Ulap + (1 — ar} = all(p) + (1 — )U(r) = Ulg).
The reader can readily verify that the ordering is also consistent with II1".
Since the above example involved oniy two possible outcomes, it could
not satisfy 1117, Consider, however, the following example: Let U(p) be

defined as above.
Uiy > 0.

Suppose that there are three outcomes whose probability vectors P =
(p1. Pa. py) are preferred according to the following ordering function:
Vipy, pa) = Ulpy) — U(py).

This ordering is clearly inconsistent with the expected utility rule, never-
theless:
11" is satisfied since

{a) e, > ¢, > e, and
(b) e3 ~(1/2e; + (1/2)e,.

I is satisfied trivially; and
11" is satisfied since we still have

VIARP + (12)0) = (H2)V(P) + (1/2)H(Q).
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