
A Toolset for Automated Failure Analysis

Leonardo Mariani‡

mariani@disco.unimib.it
Fabrizio Pastore‡

pastore@disco.unimib.it
Mauro Pezzè†,‡

mauro.pezze@unisi.ch
†University of Milano Bicocca ‡University of Lugano

20126, Milan, Italy 6904, Lugano, Switzerland

Abstract

Classic fault localization techniques can automatically
provide information about the suspicious code blocks that
are likely responsible for observed failures. This informa-
tion is useful, but not sufficient to completely understand
the causes of failing executions, which still require further
(time-consuming) investigations to be exactly identified.

A useful and comprehensive source of information is fre-
quently given by the set of unexpected events that have been
observed during failures. Sequences of unexpected events
are usually simple to be interpret, and testers can guess
the expected correct sequences of events from the faulty se-
quences.

In this paper, we present a tool that automatically identi-
fies anomalous events that likely caused failures, filters the
possible false positives, and presents the resulting data by
building views that show chains of cause-effect relations,
i.e., views that show when anomalous events are caused by
other anomalous events. The use of the technique to inves-
tigate a fault in the Tomcat application server is also pre-
sented in the paper.

1 Introduction

In most software projects, large part of the total develop-
ment effort is spent to localize, identify and fix faults. To re-
duce this effort, researchers defined several techniques and
tools to (semi-)automatically localize faults [13, 10, 7, 14].
Even if many of these techniques can provide useful infor-
mation in terms of code blocks likely responsible for a given
failure, they provide little support to interpret and under-
stand faults, which is almost entirely left to the intuition of
developers and testers.

To better understand failure causes, information about
suspicious code blocks can be complemented with data
about the anomalous events that likely caused a given
failure. Sequences of unexpected events are usually

simple to be interpreted, and can be easily juxtaposed
to the expected sequence of legal events. For in-
stance, if we apply techniques for fault localization to
identify the cause of the Apache Tomcat failure doc-
umented at http://issues.apache.org/bugzilla/show

bug.cgi?id=40820, we would identify a few code frag-
ments in JspFactory and JspServlet classes as
likely responsible for the failure. This information is correct
and useful, but it does not fully explain the failure. On the
other hand, if we look at the anomalous events, i.e., events
that are not usually observed in legal executions, we can dis-
cover that the defaultFactory attribute is exception-
ally null in the failing execution, and that the invocation
of the static constructor of class JspFactory has been un-
expectedly anticipated. This information can be extremely
effective to identify, understand and fix faults.

Techniques that can automatically detect anomalous be-
haviors work in two main phases: training and verifica-
tion. In the training phase, they monitor the target system,
collect sequences of events generated during legal execu-
tions, and synthesize models that summarize and generalize
all the events that have been observed. In the verification
phase, they compare events observed in failing executions
with the learned models, to find the unexpected sequences
of events likely responsible for failures. Anomaly detection
techniques essentially differ for the type of collected data
and the kind of generated models [12, 6, 9, 2, 3].

The major limitation of anomaly detection techniques is
the generation of a high number of false positives, i.e., many
of the events that are initially indicated as anomalous result
to be legal in effect. As a consequence, testers spend a large
amount of time in inspecting non-erroneous events, with a
huge reduction of the cost-effectiveness of these techniques.
Moreover, when a single fault causes multiple anomalous
events, e.g., like in the Tomcat example, the anomalous
events are not presented to testers with an aggregated view,
but they are presented as many single anomalies. Thus,
testers are forced to inspect multiple times the same con-
ceptual problems.



In this paper, we present the BCT technique, and the
corresponding toolset, that automatically identifies anom-
alous events, filters likely false positives, aggregates related
anomalous events and presents the resulting data with effec-
tive views. Anomalous events are identified by initially gen-
erating models of the interactions between components, and
then comparing these models with events generated during
failing executions.

To eliminate false positives, anomalous events detected
in failing executions are processed in three steps before be-
ing presented to testers. In the first step, we automatically
remove the anomalous events that are likely unrelated with
the observed failure. In the second step, we use clustering
algorithms to automatically generate clusters of likely re-
lated anomalous events. In the third step, we eliminate the
clusters that resemble the structure of false positives, and
we prioritize the remaining clusters. Our solution visually
presents the resulting ordered set of clusters to testers. Clus-
ters provide a coherent and complete view of the detected
problems. This analysis is completely automated and can
provide a significant reduction of debugging effort.

The paper is structured as follows. Section 2 presents
the BCT technique. Section 3 presents the related toolset.
Finally, Section 4 provides conclusions.

2 Automated Failure Analysis

The BCT technique works in four phases, as shown in
Figure 1. In the first phase (Capture Behavior), we execute
test cases and capture interactions between components. We
record both sequences of inter-component method invoca-
tions and data exchanged between components.

In the second phase (Derive Models), we generate mod-
els that summarize and generalize the observed executions.
In particular, we use Daikon to generate properties about
the exchanged data [4] and kBehavior to generate finite
state automata (FSA) that represent component interac-
tions [9]. For instance, if we monitor invocations of method
addItem(Item it, int qt), we can automatically
generate the property qt>0 that indicates a positive value
for the quantity. Similarly, if we monitor the use of a li-
brary for accessing files, we can automatically generate an
automaton that indicates that files are first open, then read
several times and finally closed.

In the third phase (Detect Anomalies), the events gen-
erated during a failing execution are checked with the in-
ferred models. Checking can take place either in-the-field,
while the system is under use, or in-house, when a failing
execution is replicated to debug a failure. Events that vi-
olate models, i.e., data values that violate properties and
sequence of method invocations that are not accepted by
FSA, are collected as anomalous events that deserve further
investigations.

Figure 1. The BCT technique.

In the fourth phase (Analyze Anomalies), the detected
anomalous events are filtered, aggregated and presented
with suitable views. In the filtering step, we remove the
anomalous events that are observed in both successful and
failing executions. The rationale is that the events highly
related to failures should be observed only when failures
occur. On the contrary, anomalies observed independently
from failures are likely to be false positives and can be ig-
nored.

The filtered set of events are then aggregated according
to likelihood to be related to a same run-time problem. In
fact, a single run-time problem can generate many anom-
alous events. A typical example is the generation of an ex-
ception that may cause the violation of many interaction and
data models, before being handled by the application. The
inspection of each single anomalous event is not a cost ef-
fective strategy, and does not provide to testers an adequate
and complete view of the run-time problem that affected the
system. To build a precise presentation of the detected prob-
lems, we first measure distance between anomalous events
and then we automatically build clusters of related anom-
alies. Distance between two anomalous events that have
been detected during the execution of methods m1 and m2
is measured as the minimum number of nodes that need
to be traversed to move from the node that corresponds to
m1 to the node that corresponds to m2 in the dynamic call
tree [1] of the failing execution. The rationale is that related
anomalies are frequently observed close to each other. In
fact, corrupted executions usually run abnormally and gen-
erate many anomalous events until the application recovers



or crashes. The clustering algorithm used to isolate closely
related anomalous events is the Within Clustering Disper-
sion [5].

Each cluster conceptually represents a possible explana-
tion to a different run-time problem that has been observed.
To further reduce the number of false positives that can be
incidentally presented to testers, we eliminate clusters com-
posed of a single node (outliers), which likely represents
false positives incidentally included in the final result.

Finally, clusters are prioritized according to their size.
In fact, complex clusters frequently describe complex and
highly unexpected executions that the system did not han-
dle correctly, while the simplest clusters are usually less rel-
evant. Results reported in [8] show that the final set of prior-
itized clusters provide an effective explanation of observed
failures by inspecting only few entries.

Figure 2 shows the result generated by our technique for
the Tomcat fault presented in Section 1. A high number
of false positives have been automatically filtered and the
resulting cluster is extremely simple, easy to interpret and
effective in explaining the cause of the failure. The only
selected cluster includes two nodes: one indicating an un-
expected null value due to a postponed method invocation
(indicated by the second node).

Note that nodes within a cluster are ordered according
to order of appearance of the corresponding unexpected
events, and each cluster has at a list a root node. Root nodes
indicate the first event of the cluster that should be analyzed
by testers, while the links indicate a cause-effect relation
between anomalies, i.e., anomalous event e1 is linked to e2

if e1 likely caused e2. Multiple root nodes may indicate ei-
ther multiple causes of a problem or an imprecision in the
construction of the cluster.

Figure 2. The result for the Tomcat fault.

3 A Toolset for Automated Failure Analysis

Figure 3. The tool environment.

BCT is implemented as an Eclipse Plugin and can be
used to analyze Java programs. Figure 3 shows a screen-
shot of the application, Figure 4 shows the architecture of
the core components of the tool, and Figure 5 shows the
architecture of the presentation layer.

In the capture behavior phase, we use either aspects
or TPTP probes to record interactions between compo-
nents. Aspects/probes are automatically generated by our
tool from a specification of the components to be monitored
that is provided by testers. The recording aspects/probes in-
tegrate the object flattener component that can inspect pri-
vate fields of the objects that are exchanged between com-
ponents. For instance, if a component exchanges a parame-
ter of type Person with another component and the inter-
action is captured, the object flattener recursively inspects
attributes of the Person object to extract the concrete val-
ues that will be used to generate data models.

In the model generation phase, the Model Generator
component generates models from collected data. In partic-
ular, the Model Generator works as a driver of the different
inference engines integrated in our technology. If necessary,
a pre processing component can be used to transform the
collected data to be compatible with the specific inference
engines that are used. Additional inference engines can be
integrated in our solution by adapting the Model Generator.

The presentation layer provides functionalities to visual-
ize and edit all the generated models.

In the Detect Anomalies phase, our tool uses the same
configuration provided for the monitoring, to generate as-
pects/probes for comparing executions with models. As-
pects/probes are injected into the target system for forward-
ing events to the model comparator that matches events with
models, and logs the detected anomalies. Anomalies are
recorded in the CBE format [11]. Each anomaly includes
information about the name of the component and the val-
ues that caused the anomaly, the model that detected the



Figure 4. The BCT architecture.

Figure 5. The BCT presentation layer.

anomaly, the stack trace and the process identifier.
Finally, the Violation Analyzer is used to filter, aggregate

and present the anomalous events that have been detected.
All these steps can be controlled by the presentation layer
that provides functionalities to visualize the filtered anom-
alies and inspect the resulting clusters.

4 Conclusions

To reduce the effort required for fault localization and
identification, tools can be used to automate many of the
analysis steps otherwise manually executed by testers. In
this paper, we presented a technique and a toolset to auto-

matically identify anomalous events in failing executions,
filter false positives, aggregate related anomalies and build
effective views presenting the result of the analysis. A case
study based on a known Tomcat fault is used to show effec-
tiveness of the technology.

Acknowledgment This work has been supported by the Eu-
ropean Community under the Information Society Technologies
(IST) programme of the 6th FP for RTD - project SHADOWS con-
tract IST-035157.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive pro-
filing. In proceedings of the Conference on Programming
Language Design and Implementation. ACM, 1997.

[2] G. Ammons, R. Bod́ik, and J. R. Larus. Mining specifica-
tions. In proceedings of the 29th Symposium on Principles
of Programming Languages, pages 4–16. ACM Press, 2002.

[3] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight de-
fect localization for java. In proceedings of the 19th
European Conference on Object-Oriented Programming
(ECOOP’05), 2005.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Transactions on Software En-
gineering, 27(2):99–123, February 2001.

[5] A. Gordon. Classification. Chapman and Hall/CRC, 2 edi-
tion, 1999.

[6] S. Hangal and M. S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. In proceedings of the 24th
International Conference on Software Engineering, 2002.

[7] J. Jones, M. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In proceedings of the
Internation Conference on Software Engineering, 2002.

[8] L. Mariani, F. Pastore, and M. Pezzè. Dynamic analy-
sis for integration faults localization. Lta internal re-
port, University of Milano Bicocca, 2008. available at
www.lta.disco.unimib.it.

[9] L. Mariani and M. Pezzè. Dynamic detection of cots com-
ponents incompatibility. IEEE Software, 24(5):76–85, 2007.

[10] W. Masri, A. Podgurski, and D. Leon. An empirical study
of test case filtering techniques based on exercising infor-
mation flows. IEEE Transactions on Software Engineering,
33(7):454–477, July 2007.

[11] D. Ogle, H. Kreger, A. Salahshour, B. Horn, J. Corn-
propst, J. Gerken, E. Labadie, M. Chessell, T. Serviceability,
J. Schoech, and M. Wamboldt. Canonical situation data for-
mat: The common base event v1.0.1, 2004.

[12] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly de-
tection in online data sources. In proceedings of the 24th
International Conference on Software Engineering, 2002.

[13] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. In proceedings of the Internation Confer-
ence on Automated Software Engineering, 2003.

[14] A. Zeller. Why Programs Fail: A Guide to Systematic De-
bugging. Morgan Kaufman, 2005.


