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Abstract

A Machine Learning Approach to Detecting Attacks by Identifying Anomaliesin Network Traffic
by
Matthew Vincent Mahoney

Dissertation Advisor: Philip K. Chan, Ph.D.

The current approach to detecting novel attacks in network traffic isto model the normal
frequency of session | P addresses and server port usage and to signal unusual combinations of these
attributes as suspicious. We make four major contributions to the field of network anomaly
detection. First, rather than just model user behavior, we aso model network protocols from the
data link through the application layer in order to detect attacks that exploit vulnerabilitiesin the
implementation of these protocols. Second, we introduce atime-based model suitable for the bursty
nature of network traffic: the probability of an event depends on the time since it last occurred rather
than just its average frequency. Third, we introduce an algorithm for learning conditional rules from
attack free training data that are sensitive to anomalies. Fourth, we extend the model to cases where
attack-free training data is not available.

On the 1999 DARPA/Lincoln Laboratory intrusion detection evaluation data set, our best
system detects 75% of novel attacks by unauthorized users at 10 false alarms per day after training
only on attack-free traffic. However thisresult is misleading because the background traffic is
simulated and our algorithms are sensitive to artifacts. We compare the background traffic to real
traffic collected from a university departmental server and conclude that we could realistically
expect to detect 30% of these attacksin this environment, or 47% if we are willing to accept 50 false

alarms per day.
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Chapter 1

| ntroduction

Computer security isagrowing problem. The Computer Emergency Response Team, or
CERT (2003b) reported 82,094 incidents and 4129 new vulnerabilitiesin 2002. Both of these
numbers have approximately doubled each year since 1997. Likewise, the number of web page
defacements per year has approximately doubled each year, growing to about 15 per day in 2000,
according to www.attrition.org. While much of this growth can be attributed to the growth of the
Internet, there is also an increase in the number of incidents per computer. According to the ICSA
1998 Computer Virus Prevalence Survey, the rate of virusinfections per computer per month in
large North American organizations increased from 0.1% in 1994 to 3% in 1998.

Most vulnerabilities are software errors, avery old problem. For example, both the Morris
Internet worm (Spafford, 1988) and the SQL Sapphire worm (CERT, 2003a) exploit buffer
overflows, a common type of error occurring in many C programs in which the length of the input is
not checked, allowing an attacker to overwrite the stack and execute arbitrary code on aremote
server. Both worms spread quickly all over the world and caused widespread damage, but with one
major difference. In 1988, patchesto fix the vulnerability were devel oped, distributed, and installed
worldwide within aday of the attack. 1n 2003, the vulnerability was known months in advance and
patches were available, but many people had not bothered to install them.

Patches and updated software versions are almost always available soon after a
vulnerability is discovered. Unfortunately updating software takes time and computer skills, and
sometimes introduces new bugs or incompatibilities. In reality, many people leave their systems

insecure rather than try to fix something that already appears to be working. This might explain



why in an audit of U.S. federal agencies by the General Accourting Officein 200Q investigators
were &leto pierceseaurity at nealy every system they tested (Wolf, 2000).

Even if the software update problem were solved, there would still be atime lag between
the development of new exploits and the avail ability of teststo detedt the atadk (e.g. virus definition
filesor firewall rules) or patches to fix the vulnerability. Although patches may be availablein a
day or so, thiswould not stop the spread of "flash™ worms, which could paentially infed all
vulnerable mmputers on the Internet within a few minutes of release (Staniford, Paxson, & Weaver,
20). The SQL Sapphire worm is one such example, doublingin population every 8.5 seconds and
infeding 90% of vulnerable computers worldwide within 10 minutes of its release (Beverly, 2003
Moore & al., 2003).

Software patches also donot help for the more ammon case where the victim does not
know that his or her computer has been compromised. Attackers may go to grea lengthsto conced
their backdoars. Websites like www.rootkit.com and www.phrad.org provide tools and describe
techniques such as modifying the kernel to hide files and processes or modifying TCP/IP protocols
to set up stedth channelsto penetrate firewalls.

Furthermore, people ae generally unaware that their computers are probed many times per
day, either with tools pedfically designed for that purpose, such as NMAP (Fyodar, 2003), or by
network security toolslike SATAN (Farmer & Venema, 1993), which are intended to all ow network
administrators to test their own systems for common vulnerabiliti es. Probes often originate from
compromised machines, so identifying the source can be helpful to their owners. Thus, it is not
enough just to seaure our systems. |t is also important just to know that a probe or an attadk
(espedally anovel attack) has taken place

Our goal isto deted novel attacks by unauthorized usersin network traffic. We nsider
an attadk to be novel if the vulnerabili ty is unknown to the target's owner or administrator, even if
the dtack is generally known and patches and detedion tests are available. We ae primarily

interested in threetypes of remotely launched attacks: probes, denial of service (DOS), and



intrusions in which an unauthorized user is able to bypass normal login procedures and execute
commands or programs on the target host. The latter is also known as aremoteto local (R2L)
attack (Kendall, 1998). Our goal is not to detect viruses, or attacks in which the attacker already has
login privileges or physical access and gains root or administrative access (a user to root or U2R
attack). Such attacks are easy to conceal from a network sniffer by using a secure shell, and are best
detected by monitoring incoming files or the operating system locally.

Our goal isdetection, not prevention. We could block suspicious traffic, as afirewall does,
but our goal is simply to identify such traffic. Thisisadifficult problem in the absence of rulesto
identify such traffic. Although rulesto detect many attacks have been developed for network
intrusion detection systems such as SNORT (Roesch, 1999) and Bro (Paxson, 1998), our goal isto
detect novel attacks. By focusing on detection, we can test our algorithms off-line on sniffed traffic.

The normal approach to detecting novel attacks is anomaly detection: modeling normal
behavior and signaling any deviation as suspicious. This process generates false alarms, and is one
reason the approach is not widely used. Another problem is that the system often cannot help a
user, who istypically not an expert in network protocols, decide if an unusua event (say, aUDP
packet to port 1434) is hostile or not. In fact, thisisthe signature of the SQL Sapphire worm, but it
could also be legitimate traffic if one were running a server vulnerable to this attack. Nevertheless,
an anomaly detection system could help bring unusual events buried in masses of datato the
attention of a network administrator, either in real time, or in aforensic analysis of sniffed traffic
after something has gone wrong. Thus, our goal issimply to identify the events most likely to be

hostile while accepting some false alarms.

1.1. Problem Statement

The problem we are trying to solve is to detect attacks in network traffic with no prior

knowledge of the characteristics of possible attacks. We assume that a history of attack-free (or



mostly attack-free) traffic is available from the system we are monitoring. The types of attacks we
wish to detect are those that could be detected in network traffic if we knew what to look for. These
are attacks by remote, unauthorized users: probes, DOS, or R2L. We assume that our system will be
part of amore comprehensive intrusion detection system (IDS) that also uses hand-coded rules to
detect known attacks, and host-based methods (monitoring file system and operating system events)

to detect U2R attacks, viruses, and backdoors.

1.2. Approach

Our approach to detecting novel attacks is anomaly detection: using machine learning to
generalize from attack-free traffic, with the assumption that events which do not fit the model are
likely to be hostile. Currently most network anomaly models are based on source and destination 1P
addresses and server ports. For example, an IDS might signal an alarm in response to a packet
addressed to UDP port 1434 if such packets are normally rare, which would be the case afor system
not running a database server. If it were, it might signal an alarm if the source address was unusual
for that port. In either case, the IDS would assign an alarm score or confidence level inversely
proportional to the probability of the event, based on the average frequency in the past. This
approach can detect many port scans and many attacks on servers with trusted clients.

Our approach differsin two respects. First, we model protocols, rather than just addresses
and ports. Many attacks exploit bugs in protocol implementations. For example, the Morris worm
exploits a buffer overflow vulnerability in fingerd, a UNIX based server which tells whether a user
islogged in. This attack would not be detected using normal methods (unusual client addresses)
because finger accepts requests from untrusted clients. However, by modeling the finger protocol,
we could detect this attack. Normal requests are short one-line commands containing ASCI| text,

but the exploit is 576 characterslong and contains VAX executable code. In addition to application



protocols like finger, HTTP (web), and SMTP (email), we also model the transport layer (TCP,
UDP, and ICMP), network layer (IP) and datalink layer (Ethernet).

Second, our model estimates the probability of an event using the time since it last
occurred, rather than average frequency. This model is better suited to bursty (non-Poisson)
processes with long range dependencies (Leland et a.; 1993, Paxson & Floyd, 1995). For example,
afast port scan might generate arapid burst of alarms using a frequency based model, but in atime
based model only the first packet would generate a high score, effectively consolidating the alarms.

Because we model alarge number of attributes, it is necessary to form conditional rulesto
constrain the protocols, such as"if server-port = 80 then word-1 = GET or POST". We describe an
algorithm for generating such rules automatically from a sample of attack-free training data. Many
attacks can be detected by events that have never occurred before (i.e. word-1 = QUIT), but itisalso
effective to model eventsthat have occurred, perhaps many times, but not recently, for example the
first occurrence of word-1 = POST in aweek. The second model is more appropriate when we do
not use explicit training and test periods. We compare these two approaches.

We evaluate our systems on the 1999 DARPA/Lincoln Laboratory DS off-line evaluation
(IDEVAL) data set (Lippmann et al., 2000; Lippmann & Haines, 2000),which simulates severa
hosts on alocal network connected to the Internet under attack by published exploits. Unfortunately
the properties that make an IDS sensitive to attacks also make it sensitive to ssmulation artifacts.

For example, the simulation uses different physical machines with the same IP address to simulate
some of the attacks and some of the background traffic (Haines et a., 2001). Thisleadsto the
unexpected result that many attacks can be detected by anomaliesinthe TTL, TCP window size and
TCP option fields caused by idiosyncrasies of the underlying simulation. Additional artifacts occur
in the distribution of client 1P addresses and in many application level protocols. We analyze these
artifactsin detail by comparing the background traffic with real traffic collected on a university

departmental server. We find that by injecting real traffic into the simulation and by some



modification to our algorithms that most simulation artifacts can be removed and the methods we

describe remain effective.

1.3. Key Contributions

The key contributions are as follows:
» A time-based model appropriate for bursty traffic with long range dependencies.
* Modeling application protocols to detect attacks on public servers.
» A randomized algorithm that efficiently learns an anomaly detection model represented by
aminimal set of conditional rules.
* Anomaly detection without labeled or attack-free training data.

*  Removing background artifacts from simulated evaluation data by injecting real traffic.

1.4. Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we review network
security and attacks, intrusion detection, properties of network traffic, and the IDEVAL test set. In
Chapters 3 through 6, we introduce four anomaly detection algorithms to illustrate our first four key
contributions. These four systems are PHAD (packet header anomaly detector) (Mahoney & Chan,
2001), ALAD (application layer anomaly detector) (Mahoney & Chan, 2002b), LERAD (learning
rules for anomaly detection) (Mahoney & Chan, 2002a), and NETAD (network traffic anomaly
detection) (Mahoney, 2003).

In Chapter 3, we use PHAD to illustrate time-based modeling. The attributes are the
Ethernet, 1P, TCP, UDP, and ICMP packet header fields. The model is global. No conditiona rules
are used, and no distinction is made between incoming and outgoing traffic. An anomaly occurs

only if afield has avalue never seen training. The anomaly scoreis proportional to the number of



training packets and the time since the last anomaly, and inversely proportional to the number of
allowed values.

In Chapter 4, we use ALAD to illustrate the use of conditional rulesto model application
protocols. ALAD modelsinbound client traffic. It combines atraditional model based on addresses
and ports with a keyword model of the application payload. For example, it signals an anomaly
when the first word on alineinan SMTP or HTTP header is novel.

In Chapter 5, we use LERAD to illustrate arule learning algorithm. LERAD uses a
training sample to generate candidate rules that should generate high anomaly scores, then tests
these rules on the full training set, keeping those not likely to generate false alarms. LERAD
models inbound client requests, but could be used on any type of datathat can be expressed as
tuples of nominal attributes.

PHAD, ALAD, and LERAD signal anomalies only when avalue is never seen in training.
In Chapter 6, we introduce NETAD (which tests inbound client packets with fixed conditional rules)
to compare these models with those that assign anomaly scores to previously seen values. Thistype
of model does not require an explicit attack-free training period. We conclude that both types are
effective, but attack-free training data should be used if it is available.

In Chapter 7, we analyze the IDEVAL training and background data by comparing it to real
traffic collected on a university departmental server. Although the IDEV AL developers took great
care to make the simulated Internet traffic as realistic as possible, we find that the simulated traffic
istoo "clean" and predictablein subtle ways that a good anomaly detection system could root out.
This would explain some (but not all) of the attacks we detected earlier, and suggests that the false
alarm rates we measured are unrealistically low.

In Chapter 8 we inject real network traffic into the IDEVAL data to better simulate a real
environment. Thisraisesthe false alarm rate and masks the detection of attacks by artifacts,
yielding more credible results, not just on our systems, but also on another network IDS, SPADE

(Hoagland, 2000). We conclude that our systems could legitimately detect 20% to 40% of novel



attacks at false alarm rates of 10 to 50 per day, with atradeoff between detection and false alarm
rate. We believe thisis an improvement over current methods.

In Chapter 9, we summarize our contributions and discuss limitations and future work. Our
contribution is not to build a network anomaly IDS, but to describe the general principles by which

one should be built and tested.



Chapter 2

Related Work

Our goal isto distinguish hostile network traffic from normal traffic. Thus, we review
hostil e traffic, normal traffic, current methods of distinguishing them, and how these methods are

evauated.

2.1. Network Vulnerabilities

There ae thousands of known exploits. Kendall (1998 describes a taxonomy of attacks,
grouping them into four major caegories.
»  Probes—testing a potentia target to gather information. These ae usually harmless (and
common) unless a vulnerability is discovered and later exploited.
» Denia of service(DOS) — attadks which prevent normal operation, such as causing the
target host or server to crash, or blocking retwork traffic.
» Remoteto locd (R2L) — attacks in which an unauthorized user is able to bypass normal
authentication and exeaute dmmands on the target.
» Usertoroot (U2R) — attadksin which a user with login accessis able to bypassnormal
authentication to gain the privileges of another user, usually roat.
We aeinterested in deteding the first threetypes, becaise they generall y exploit network protocol
implementations. U2R attadks exploit bugs or misconfigurationsin the operating system, for

example abuffer overflow or incorredly set file permissonsin asuid root program. The adions of



an attadker can be eaily hidden from a network sniffer by launching the atack from the mnsole or
through a secure shell.

Kendall describes many of the attadks we will describein this sdion. Hisanalysis does
not include self-repli cating attadks such as worms or viruses, athough they normally propagate by
exploiting R2L vulnerabiliti es. They may also contain DOS attadks as payloads, for example,

erasing al fileson an infeded computer on a cetain date.

2.1.1. Probes

Probes gather information to search for vulnerable systems. For example:

* IPsweg —testing arange of | P addresses with ping to determine which ones are dive
(Kendall, 1998. Another way to gather alist of potential targetsisto spod a zne transfer
request to a DNS server, asis done by the Iscommand in NSLOOKUP.

»  Port scans—testing for ports with listening servers. Toals sich asNMAP (Fyodar, 2003)
and HPING (Sanfilippo, 2003) use sophisticated techniques to make scans hard to deted,
for example, scanning with RST or FIN padkets (which are lesslikely to be logged), or
using slow scansto defea an intrusion detedion system (IDS) looking for a burst of
padkets to arange of ports.

»  Fingerprinting — determining the operating system version of the target based on
idiosyncrasies in responses to unusual padkets, such as TCP padets with the reserved flags
set. This method, implemented by QUESO and NM AP, distinguishes among hundreds of
operating system versions usingonly 7 padkets (Fyodar,1998).

*  Vulnerahility testing— Network administration tools such as SATAN (Farmer & Venema,
199), SAINT (Kendall, 1998), MSCAN (Kendall, 1998, and NESSUS (Deraison, 2003
test for awide range of vulnerabiliti es. These todls srve the dual purpose of allowing

network administratorsto quickly test their own systems for vulnerabilities, and all owing
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attadkers to test someone dse's system. NESSUSis open source and uses a scripting
language and has an extensive library of tests, which is updated as new vulnerabiliti es are
discovered. Asof February 2003 NESSUS tests for 1181 vunerabilities.

» Inside sniffing — An attacker with physical accessto a broadcast medium such as Ethernet,
cable TV, or wireless, could sniff traffic addressed to athers on the locd net. Many
protocols such astelnet, FTP, POP3, IMAP, and SNMP transmit passwords unencrypted.

Probes (other than sniffers) normally cannot use spodfed source | P addresses because they require a
response bad to the dtacker. However there ae anumber of methods to make it harder to deted
the true source, for example:

»  Sendinglarge numbers of spodfed padkets in additi on to true source aldresses, so that the
victim will not know which addressisthe red probe.

» Launching a probe from a cmpromised host.

» ldle scanning through a 2mbie (Fyodar, 2002).

Idle scanning, afeaure of NMAP, allows an attacker to conced its addressby exploiting any
intermediate host (a zombie) that islightly loaded and that yields predictable IP fragment 1D val ues,
as many operating systems do. For example, the ID may be incremented after each padcket sent.
The dtadker probes the zombie on an open port (say, a web server on port 80) to get the current 1D,
then sendsa TCP SYN padket to the target port to be probed, with the spodfed source aldressof the
zombie. The sourceport is %t to 80 Thetarget responds to the zombie on port 80 either with a
SYN-ACK packet if the port isopen, or aRST if closed The 2mbie then replies (with aRST) to
the target in case of a SYN-ACK (sinceno TCP connedion was open), but does not respond to a
RST from thetarget. The atadker then probes the zombie a seaond time to seewhether the IPID is

incremented by one or two, thus learning whether the port is open or closed.

11



2.1.2. Denial of Service Attacks

Denial of service atacks can target a server, a host, or anetwork. These ather floodthe

target with data to exhaust resources, or use malformed data to exploit abug. Kendall (1999 gives

the foll owing examples, al of which are used in the IDEVAL test set.

Apache? — Some versions of the apache web server will run aut of memory and crash
when sent avery long HTTP request. Kendall describes one version in which the line
"User-Agent: sioux" isrepeaed 10000times.

Bad — Some versions of apache consume excessve CPU and slow down when the
requested URL contains many sashes, i.e. "GET /i ..."

Land — SunOS 4.1 crashes when it reca@ves a spoded TCP SYN padket with the source
addressequal to the destination address

Mailbomb — A user isflooded with mail messages.

SYN flood (Neptune) — A server isflooded with TCP SYN padkets with forged source
addresses. Because eab pending connedion requires saving some state information, the
target TCP/IP stadk can exhaust memory and refuse legitimate connedions urtil the dtack
stops.

Ping of deah — Many operating systems could be aashed (in 199 when the exploit was
discovered) by sending a fragmented |1P padket that resseemblesto 65536 bytes, one byte
larger than the maximum legal size It iscdled "ping of deah" becaise it could be
launched from Windows 95 a NT with the cmmand "ping - 65510 target".
Processtable — An attacker opens alarge number of connedions to a service such as finger,
POP3 or IMAP urtil the number of processes exceals the limit. At this point no new

processes can be aeaed until the target is reboaed.
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Smurf — An attadker floods the target network by sending ICMP ECHO REQUEST (ping)
padkets to a broadcast address(x.x.x.255) with the spodfed source aldressof the target.
The target is then flooded with ECHO REPLY padkets from multiple sources.

Syslogd — The syslog server, which could be used to log alarms remotely froman IDS, is
crashed by sending a spodfed message with an invalid source|P address Due to abug, the
server crashes when areverse DNS lookup on the IP addressfail s.

Teadrop — Some operating systems (Windows 95, NT, and Linux up to 20.32) will crash
when sent overlapping | P fragments in which the second packet is whally contained inside
thefirst. Thisexploitsabug in the TCP/IP stadk implementation in which the C function
memcpy() is passed a hegative length argument. The agument isinterpreted as avery
large unsigned number, causing al of memory to be overwritten.

UDP storm — This attack sets up a network flood ketween two targets by sending a spodfed
UDP padket to the echo server of one target with the spodfed source aldressand pat

number of the chargen server of the other target.

2.1.3. Remoteto Local Attacks

While probes and DOS attadks may exploit TCP/IP protocols, R2L attacks always exploit

appli cation protocols to gain control over the target. Kendall describes sveral attacks, which can be

grouped as follows:

Password guessing — Many users tend to choose weak or easily guessed passwords. An
attack could try common passwords such as guest, the user name, or no password. If this
fail s, an attacker could use ascript to exhaustively test every word in adictionary. Any
servicerequiring a password is vulnerable, for example, telnet, FTP, POP3, IMAP, or SSH.
Server vulnerability — An attacker exploits a software bug to exeaute ammmands on the

target, often asroot. For example, buffer overflow vulnerabiliti es have been discovered in
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2.1.4.

sendmail (SMTP), named (DNS), and imap. Other bugs may allow a mommand to be
unwittingly exeauted. For example, the PHF attack exploits a badly written CGI script
installed by default on an old version of apache. The following HTTP command will
retrieve the password file on a vulnerable server:

CGET / cgi - bi n/ phf ?Qal i as=x%®a/ usr/ bi n/ ypcat ¥20passwd
Configuration error — An attacker exploits an unintended security hole, such as exporting
an NFS partition with world write privileges. One common error is tting Y an open X
server (using the mommand xhost +) when runningaremote X application. The xlock
attack scans for open X servers, then displays a fake screensaver which prompts the user to
enter a password, which isthen cgptured. xsnoop does not display anything; it merely
captures keystrokes.

Baddoas— Once ahost has been compromised, the atacker will usually modify the target
to makeit easier to brea in again. One method isto run a server such as netcat, which can

listen for commands on any port and exeaute them (Armstrong, 2007).

Attacks on the Intrusion Detection System

It isreasonable to exped that if asystem isrunningan IDS, then the IDS might be

attacked. This could either be an evasion, such as port scanning with FIN or RST padkets, which

arelesslikely to be logged, or adenial of service atad such as syslogd.

Ptacek and Newsham (1998 and Horizon (1998) contend that it is not possble for a

network sniffer to see xadly the same traffic as the target without an impradical level of

knowledge @out the target environment. For example, if two TCP segments overlap with

inconsistent data, some operating systems will use the first padket, and athers will use the second. If

the IDSis unaware of which method is used, then an attadker could exploit thisto present innocuous

datato the IDS whil e presenting tostil e data to the target. Another technique would be to use short

TTL values to expire padkets between the IDS and the target. Also, if the IDS does not verify IP or
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TCP chedksums, then an attacker could present the IDS with innocuous packets with bad chedksums
that would be dropped by the target. Many other exploits could exist, depending on how accurately
the IDS implements the TCP/IP protocols. Many do so poaly. Ptace and Newsham found that out
of four commercia systemsthat they tested, all were vulnerable to some of these dtadks, and
furthermore, none could properly resssemble fragmented | P padkets.

Newman et al (2002 tested one open source and seven commercial network intrusion
detedion systems costing $2500to0 $25,000 a a high speed (100Mbs.) network Most systems
flooded the user with false darms. Seven of the @ght systems crashed at least once during their 31
day test period, often because the logsfilled up. This gudy suggests that many intrusion detedion
systems would be eay targets of floodng attads.

Even if the IDS properly reassembled | P padkets and TCP streams (handling chedsums,
retransmissions, timeouts, invalid TCP flags, etc. corredly), it is gill possible to elude detedion by
making small changesto the attadk. Consider the PHF attack described in Sedion 2.1.3. AnIDS
might deted this by searching for the string " GET /cgi-bin/phf?" or something smilar. NESSUS
employs a number of features to evade simple string matching, such as the foll owing.

« URL encoding —repladng charaders with %XX, e.g. "GET %2F%63%69..."
* Modifying the path, e.g. "GET /fodl../cgi-bin/phf?* or "GET "/cgi-bin/./phf?"
* Repladng spaces with tabs, e.g. "GET<tab>/cgi-bin/phf?'. This syntax is nonstandard, but
acceted by the target web server.
Thus, it seemsthat an IDS must not only fully model the IP and TCP protocols of the hosts it
proteds, with al their idiosyncrasies and bugs, but also application protocolsas well. If it does not,

then a determined attacker could find away to evade it.
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2.2. Propertiesof Network Traffic

A network intrusion detection must distinguish between hostile and benign traffic, and
must do so quickly to keep up with a high speed network. Depending on whether the IDS uses
signature or anomaly detection, it must either model attacks (of which there are thousands) or
normal traffic. There are two main challenges for modeling normal traffic (for anomaly detection).
First, network traffic is very complex, and second, the model changes over time.

Many internet protocols are described in the Request for Comments (RFC), a set of
documents dating back to 1969, which can be found at www.ietf.org. Asof Feb. 14, 2003, there
were 3317 documents totaling 147 megabytes of text. The set is growing at arate of about 250 new
documents per year. However, the documentation describes how protocols should behave, not how
the thousands of different clients and server versions actually implement them, with al their
idiosyncrasies and bugs. Nor do the RFCs cover every protocol. Some protocols may be
proprietary and not documented anywhere.

Bellovin (1993) and Paxson (1998) found that wide area network traffic contains a wide
range of anomalies and bizarre data that is not easily explained. Paxson refers to this unexplained
dataas"crud'. Examplesinclude private |P addresses, storms of packets routed in aloop until their
TTLsexpire, TCP acknowledgments of packets never sent, TCP retransmissions with inconsistent
payloads, SYN packets with urgent data, and so on. Bellovin found broadcast packets
(255.255.255.255) from foreign sites, ICMP packets with invalid code fields, and packets addressed
to nonexistent hosts and ports. Many of these were investigated and found to be not hostile.
Instead, many errors were caused by misconfigured routers or DNS servers.

Rather than try to specify the extremely complex behavior of network traffic, one could
instead use a machine learning approach to model traffic asit is actually seen. For example, an IDS
could be trained to recognize the client addresses that normally access a particular server by

observing it over sometraining period. Unfortunately, research by Adamic (2002) and Huberman
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and Adamic (1999 suggest that this approac would fail for some atributes (such as client
addresses) because the list of observed values would grow at a constant rate and never be completed
no matter how long the training period. Adamic found that the distribution of Internet domains
accessd by alarge number of HTTP clients (web browsers) has a power law or Pareto distribution,
where the r'th most frequent value occurs with frequency cr ¥, where ¢ and k are a onstants and k
isusually closeto 1(inthiscase, 1.07). When k = 1, the r'th most frequent value occurs with
frequency propartional to Ur. Zipf (1939 observed this behavior in the distribution of word
frequenciesin English and several other languages (with c~ 0.1). Since then, power law
distributions have been observed in many natural phenomena such as city populations or incomes
(Mitzenmacher 2001), and CPU memory accesses (Stone, 1993). We found that many attributes of
network traffic collected on a university departmental server have Zipf-like distributions, for
example, HTTP and SSH client versions and client addresses in TCP connections (Mahoney &
Chan, 2003).

The problem with a power law distributed random variable is it implies that the "normal”
set of values cannot be learned no matter how long the observation period. If we make n
observations of a Zipf-distributed random variable and observe r distinct values, then the expected
number of values occurring exactly once (denoted r;) isr/2. By Good-Turing (Gale & Sampson,
1995), the probability that the next value of any discrete random variable will be novel is E[r,]/n,
which for a Zipf variableis estimated by r/2n. Thisimpliesthat r (the size of the vocabulary to be
learned) grows without bound. A similar argument can be made for power law distributions where k
isnot exactly 1.

A confounding problem in traffic modeling isthat it is not possible to determine the
average rate of many types of events (for example, bytes per second or packets per second for some
packet type), regardless of the duration of the sampling period. It had long been assumed that
network traffic could be modeled by a Poisson process, in which events are independent of each

other. |f we measured packet rates, for example, we would find random variations over small time
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windows (e.g. packets per second), but these would tend to average out over longer periods (e.g.
packets per month).

However, Leland et a. (1993) and Paxson & Floyd (1995) showed that thisis not the case
for many types of events. If we graphed packets per second or packets per month, they would both
show bursts of high traffic rates separated by gaps of low activity. Furthermore, both graphs would
look the same. A burst or gap could last for afraction of a second or for months. The distribution
of traffic rates would be independent of time scale. This behavior isa property of self-similar or
fractal processes. Leland et al. formalizes the notion of a self-similar process as follows.

» Long range dependency. (For aPoisson process, events separated by along time interval
are independent).
* A nonsummable autocorrelation correlation, such as 1/t. For a Poisson process, the
autocorrel ation decays exponentially, e.g. €" for some time constant T.
* A Hurst parameter greater than 0.5.
The Hurst parameter characterizes the self-similarity of aprocess. It is defined as the rate at which
the sample standard deviation of an aggregate process decreases as the aggregate size increases. For
example, the aggregate size increases by afactor of M = 60 when going from packets per second to
packets per minute. If the sample standard deviation of this process decreases by a factor of M*",
then the processis said to have a Hurst parameter of H. For a Poisson process, H = 0.5. For a
purely self-similar process, H = 1. Leland et al. measured H in the range 0.7 to 0.9 for Ethernet
packet rates and byte rates on networks of various sizes, with higher values of H when traffic rates
were higher.

These results suggest that for some attributes it isimpossible to either learn the full set of
possible values of an attribute, or the average rate at which any individual value should be observed.
Fortunately all isnot lost. Paxson and Floyd found that some events, such as session interarrival

times, can be modeled by a Poisson processes. Processes may also have predictable time-dependent
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behavior. For example, traffic rates are higher during the day than at night. Also, not all attributes

have power law distributions, and it may be possble to distinguish these dtributes from the others.

2.3. Intrusion Detection

Intrusion detedion systems can be cdegorized along threedimensions.

* Host or network based — A host based system monitors operating system events and the file
system to deted unauthorized use (viruses, R2L or U2R attadks). A network based IDS
monitors network traffic to and from one or more hosts to deted remote atadks (usually
probes, DOS, or R2L).

»  Signature or anomaly detedion — A signature (or misuse) detedion system seaches for
patterns or events sgnaling known attadks. An anomaly detedion system signals a
possble novel attack in the case of events that differ from a model of normal behavior.

» Hand coded or machine learning— A hand coded system requires the user to spedfy rules
for normal behavior or spedfic atadks. A machine leaning system generalizes from
training data, which is either normal or contains labeled attacks.

For example, avirus detedion program is host based (it examines fil es on the computer on which it
runs), uses sgnature detedion (pattern matching for known viruses), and is hand coded (using
vendor-updated virus definition files). The subjed of this dissertation isthe exad oppaite: network
anomaly detedion using machine learning to generalizefrom normal traffic. These methods differ
in the types of attacks they deted (U2R or probe, known or novel). A good system will combine

different techniques to increase mverage.

2.3.1. Machine Learning

Some intrusion detedion systems use machine leaning to model attadks (signature

detedion) or normal behavior (anomaly detedion). The general problem of machine leaningis
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described in (Mitchell, 1997). We ae given a set of instances (e.g. network padets or user
sessons), some of which have caegory labels (e.g. normal or hostile). The problemisto assign
labels to the remaininginstances. In general, an instanceis a set of attribute-value pairs (e.g. { port =
80, duration = 2.3 sec}). An attributeis said to be nominal if the values are unordered. For
example, port numbers are nominal because port 80 (HTTP) and 79(finger) are no more related to
ead other than they are to pat 21 (telnet), numeric values notwithstanding. An attribute with
ordered values (such as duration) is continuous. In general, an instance can be represented as a
vedor of continuous values by assgning elements with values O or 1 to eat nominal value, e.g.
(port21 = 0, port79= 0, port80 = 1, duration = 2.3).

Madhine leaning can be gplied to either signature or anomaly detedion. If we ae given
training instances labeled bah normal and hostil e (or labeled with the type of attack), then we ae
using signature detedion. Such datais difficult to oltain. More commonly, we label all traffic as
normal (perhapsincorredly). Inthiscase, any instancefar outside the training set is assumed to be
hostile. Thisisthe basis of anomaly detedion.

The followingisasummary of some mmmon madine leaning agorithms. There ae
many others.

* Memorizaion —We cdegorizetest instances by finding a matching traininginstance 1f no
exad match isfound (a ammon problem), then this method fail s (or we assume an
anomaly).

* Neaest neighbor — We define adistance function between instances, perhaps Euclidean
distance between vedors. A test instanceis assigned the same cdegory asits neaest
neighbors from the training set. If atest instance has no nearby neighbors, it is anomalous.

* Nalve Bayes— We use the training data to estimate aset of probabiliti es, P(category |
attribute = value) for eat caegory and ead attribute. We then estimate the probabilit y of
the cdegory of atest instance by taking the product of the probabiliti es for ead attribute,

e.g. P(hostile | port = 80, duration = 2.3) = P(hostile | port = 80)P(hostil e | duration = 2.3)..
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Thisapproach is cdled naive becaise we ae asuming that the atributes are independent.
However this method dten works well even when they are not.

Neural networks —We assgn an input neuron (amodel of abrain cdl) to ead vedor
element and an output neuron to ead caegory. These neurons and pcsshbly other
intermediate neurons are cnneded by weights, w. Given an instance, X, we compute the
relative probability y; that the caegory isi by yi = g(%; w; x;), where g is abounding
function that limits the output to the range 0 to 1 The network is trained by incrementally
adjusting the weights w; to corredly caegorizethe training set, i.e. y; = 1if the cdegory is
i, and O dherwise. By adding intermediate neurons, nonlinear functions of the input can be
leaned.

Dedsion Tree— A nested set of if-then-else rules are wnstructed of the form "if attribute <
valuethen ...". Theserulesform atree where the leaf nodes edfy adistribution of
caegories, e.g. "P(hostile) = 2%". A treeis constructed reaursively using a greedy
algorithm by finding the rule that maximizes the separation of caegories (information gain)
on the portion of the training set at ead node.

RIPPER (Cohen, 1995 finds a rule sequence of the form "if ... then ... elseif ... then ... else
if ..." to asdgn categoriesto atraining set. A condition may be a @mbination of attributes,
such as"if port = 80 and duration > 100sec then caegory = hostile, elseif ...". It usesa
gredaly algorithm so that the first few tests apply to most of the training instances, and
extends the rule until no more traininginstances can be cdegorized.

APRIORI (Agrawal & Srikant, 1994) finds assciation rules. 1t makes no distinction
between the cdegory and ather attributes. Given atraining set, it allows any attribute to
serve asthe label and finds if-then rules that predict it based on other attributes. APRIORI
isuseful for market basket analysis. For example, does port number predict duration, or

does duration predict port number?
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2.3.2. Network Signature Detection

We review arepresentative sample of intrusion detection systems. For a more complete
survey, see (Axelsson, 1999).

Network intrusion detection is usually rule based, although the rules may specify the
behavior of an attack (signature detection) or rules that specify acceptable traffic (strict anomaly
detection). For example, the user could specify that packets addressed to unused ports are not
allowed, and list those ports. SNORT (Roesch, 1999) and Bro (Paxson, 1998) are two such systems.
Both systems allow rules to be specified using scripts. For example, the SNORT distribution
includes the following rule to detect PHF by searching for the string "/phf" in TCP data packets
addressed to the normal HTTP port.

alert tcp SEXTERNAL_NET any -> $SHOME_NET 80 (msg:"IDS128 - CVE-1999-0067 -

CGl phf attempt”;flags:PA; content:"/phf";flags.AP; nocase;)

Other rule-based systems are components of larger systems that also use host based methods. These
include P-BEST (Lindquist & Porras, 1999), which is one component of EMERALD (Newmann &
Porras, 1999), and NetSTAT (Vigna& Kemmerer, 1999), which is a component of the STAT suite

(Vignaet al., 2000).

2.3.3. Host Based Anomaly Detection

Many of the early anomaly detection systems surveyed by Axelsson (1999) model user
behavior, for example, client |P addresses and normal login times. A login from an unusual address
or at an unusual time of day would be deemed suspicious. Rules could either be learned or
programmed.

DERBI (Tyson et al., 2000) is afile system integrity checker designed to detect signs of an
intrusion, such as a backdoor. It can be considered an anomaly detection system in the sense that

normal behavior is defined such that operating system files should never be modified.
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Forrest et al. (1996) uses the analogy of a computer immune system to apply anomaly
detection to program behavior in a host-based system by monitoring operating system calls. It was
found that servers and operating system components make predictable sequences of operating
system calls. When a programsis compromised in an R2L or U2R attack (for example, a buffer
overflow), it executes code supplied by the attacker and deviates from the system call sequences
observed during training. Forrest et al. used atype of nearest-neighbor approach: an n-gram model
with n = 3to 6 and would signal an anomaly if a program made a sequence of n calls not observed
in training.

Other models are possible. For example, Ghosh and Schwartzbard (1999) trained a neural
network with delayed feedback (an Elman network) on system calls to generalize from normal
sequences. Schwartzbard and Ghosh (1999) also applied this technique to Windows NT audit logs.
The neural networks were trained by labeling attack-free data as normal and by generating random
training data labeled as hostile.

NIDES (Anderson et a., 1999) compares short and long term program behavior by
comparing vectors of host-based attributes, such as number of files open, CPU time, and so on. The
short term behavior (asingle event or a small time window) represents the test instance, and the
long term behavior (alarge time window) represents the training model. Aswith most practical
systems where guaranteed attack-free training data is not available, we just make the assumption
that most of the data observed so far is attack free. Obvioudly if there are attacksin the training

data, then repeat attacks of the same type are likely to be missed.

2.3.4. Network Anomaly Detection

Network anomaly detection systems usually monitor |P addresses, ports, TCP state
information, and other attributes to identify network sessions or TCP connections that differ from a
profile trained on attack free traffic. They are usually combined with signature detectors as

componentsin larger systems.
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SPADE (Hoagland, 2000), a SNORT plug-in, is an anomaly detection system which
monitors addresses and ports of inbound TCP SY N packets (normally the first packet in a client-
server session). By default, it models only the destination (server) address and port, and constructs a
joint probability model by counting address/port combinations. P(address, port) = count(address,
port) / count(all). If the current packet (included in the counts) has a probability below athreshold,
it is deemed anomalous, and an alarm is generated. The threshold is varied slowly in order to keep
the alarm rate constant. SPADE also has probability modes that include the source address and port.
Unusual source addresses on servers that accept only asmall list of trusted clients might indicate an
unauthorized user.

ADAM (Barbaraet al., 2001a; Barbara et al., 2001b) combines an anomaly detector trained
on attack-free traffic with a classifier trained on traffic containing known, labeled attacks. Like
SPADE, it monitors TCP connections. In addition to addresses and ports, ADAM also monitors
subnets (the first 1-3 bytes of a 4-byte IP address), TCP state flags, the day of the week, and time of
day. The anomaly detection component performs offline market basket analysis on attack-free
traffic using techniques similar to RIPPER or APRIORI to find conditional rules among these
attributes with high support and confidence. During testing, sessions which violate these rules are
passed to the second component, a classifier (a decision tree) trained on traffic containing labeled
attacks. Sessions which cannot be confidently classified as known attacks or normal are classified
as unknown attacks.

eBayes (Vades & Skinner, 2000), a component of EMERALD (Newmann & Porras, 1999)
measures several attributes of a session, such as event intensity, error intensity, number of open
connections, number of ports, number of addresses, and distributions of services and connection
codes. Unlike SPADE and ADAM, eBayes considers a group of TCP connections within a short
interval to be asingle session. eBayes maintains a set of probability models, P(attribute = value |
category) and uses naive Bayesian inference to assign a category to a session based on the observed

attributes, which are assumed to be independent. Like ADAM, categories correspond to known
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attacks, normal behavior, and a category for unknown attacks (which requires training data with
labeled attacks). Unlike ADAM, eBayes adapts during the test phase in two ways. First, the
probabilities are slowly adjusted to reinforce the most likely category, and second, thereisa
mechanism to automatically add new categories when there is not a good match between the

observed values and existing categories.

2.4. Intrusion Detection Evaluation

Ideally an IDS should be evaluated on areal network and tested with real attacks.
Unfortunately it is difficult to repeat such tests so that other researchers can replicate the evaluation.
To do that, the network traffic would have to be captured and reused. This raises privacy concerns,
because real traffic can contain sensitive information such as email messages and passwords. Thus,
network traffic archives such as I TA (Paxson, 2002), and the University of New Mexico data set
(Forrest, 2002) are sanitized by removing the application payload and some packet header fields,
and scrambling | P addresses.

The DARPA/Lincoln Laboratory IDS evaluation (IDEVAL) data sets (Lippmann et a.,
2000; Lippmann & Haines, 2000) overcome this difficulty by using synthetic background traffic.
The goal of this project was twofold. First, the goal was to test a wide variety of systems (host or
network, signature or anomaly, four different operating systems) on a wide range of attacks. The
second goal was to provide off-line data to encourage development of new systems and algorithms
by publishing a standard benchmark so that researchers could compare systems and replicate results.

Evaluations were conducted in 1998 and 1999. The 1999 evaluation improved on the 1998
evaluation by simplifying the scoring procedure, providing attack-free data to train anomaly
detection systems, adding many new attacks, and one new target (Windows NT) to the three UNIX-

based targetsin 1998.
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Figure2.1. The 1999 DARPA/Lincoln Laboratory IDS Evaluation Test Configuration

Figure 2.1 shows the configuration of the 1999 evaluation test bed. A local area network is
set up to resemble a portion of atypical Air Force base network. There are four main "victim"
machines, running SunOS, Solaris, Linux, and Windows NT. Traffic generators simulate hundreds
of other hosts and users running various applications and an Internet connection (Haines et al.,
2001). The mix of protocols (HTTP, SMTP, telnet, etc.) and hourly variations in traffic volume are
similar to traffic collected on areal Air Force network in 1998. Content istaken from public web
sitesand mailing lists, or synthesized using English word bigram frequencies.

The evaluation data set is collected from the four victim machines and from two network
sniffers, an "inside" sniffer between the router and the victims, and an "outside" sniffer between the
router and the Internet. The host based data consists of audit logs and nightly file system dumps and

directory listings, in addition to Solaris Basic Security Module (BSM) system call traces. This data
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isanalyzed off-line to detect attacks. Attacks may originate from either the Internet, from
compromised hosts on the local network, or from attackers who have physical accessto the victims
or the local network. Most attacks are against the four main victim machines, but some are against
the network, the Cisco router, or against simulated hosts on the local network.

The 1999 evaluation had two phases separated by about three months. During the first
phase, participants were provided with three weeks of data (collected Monday through Friday, 8:00
AM to 6:00 AM local time each day). The second week of data contained 43 labeled instances of
18 attacks which were taken from the Bugtrag mailing list, from published sources such as
www.rootshell.com, or which were developed for the evaluation. Many of these attacks are
described in Section 2.1. Attacks were sometimes made stealthy or hard to detect, for example, by
slowing down a port scan or obfuscating suspicious shell commands. Attacks were labeled with the
start time and the name of the victim. The first and third weeks contained no attacks, and could be
used to train anomaly detection systems.

During the second phase, participants were provided with two weeks of test data (weeks 4
and 5) containing 201 unlabeled instances of 58 attacks, 40 of which were not in the training data.
Participants were required to provide alist of alarmsidentifying the target address, time, and a
numerical score indicating a confidence level in the alarm, and optionally, the type of attack.
Participants also provided a system specification which describes the types of attacks their systemis
designed to detect. Attacks are classified by category (probe, DOS, R2L, U2R), the type of data
examined (inside sniffer, outside sniffer, BSM, audit logs, file system dumps, or directory listings),
victim operating system (SunOS, Solaris, Linux, or NT), and whether the attack is new (not in week
2). Systems are evaluated by the fraction of attacks detected out of those they are designed to detect
at various false alarm rates (say, 10 per day, or 100 total) by ranking the alarms by score and
discarding those which fall below athreshold that would alow more false alarms. An attack is
counted as detected if there is an alarm with a score above the threshold that identifies the victim

address (or any address if there is more than one) and the time of any portion of the attack with 60
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seconds leeway before the start of the attack or after the end. Alarmsthat detect attacks that the
systemis not designed to detect (out of spec attacks), and duplicate alarms detecting the same attack
are discarded without penalty. Any other alarm is considered afalse alarm.

Eight organizations participated in the 1999 evaluation, submitting 18 systems. Thetop
four systems reported by (Lippmann et al., 2000) are shown in Table 2.1. The best systems detected
about half of the attacks they were designed to detect at afalse alarm rate of 10 per day. Subsequent
to the evaluation, the five weeks of training and test data were released to encourage research in

intrusion detection. The dataand truth labels are available at http://www.ll.mit.edu/I ST/ideval/.

System In-Spec Attacks Detected at 10 false alarms per day
Expert 1 (EMERALD) 169 85 (50%)
Expert 2 (STAT) 173 81 (47%)
Dmine (ADAM) 102 41 (40%)
Forensics (DERBI) 27 15 (55%)

Table2.1. Top resultsin the 1999 IDS evaluation (Lippmann et al., 2000)

Of the 58 attack types, there were 21 that were classified as poorly detected. None of the
18 systems detected more than half of the instances of any of these attacks. Often these were missed
because the systems did not monitor the relevant protocols or because they were new attacks not
found in the labeled training data. The attacks are as follows:
»  Stealthy ipsweep (probe, sow ECHO REQUEST scan for active | P addresses).
»  Stealthy portsweep (probe, slow port scan, or using stealthy techniques such as FIN
scanning).

* Is domain (probe, obtainsalist of hosts using a DNS zone transfer).
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gueso (probe, operating system fingerprinting using malformed TCP packets).

resetscan (probe, port scan using unsolicited RST packets).

arppoison (DOS, disrupting local traffic by forging replies to ARP-WHO-HAS packets).
dosnuke (DOS, crashes Windows by sending urgent datain a NetBIOS request).
selfping (DOS, crashes SunOS by sending an ICMP ECHO REQUEST to seif).

tcpreset (DOS, disrupts local traffic by forging RST packets to close TCP connections).
warezclient (DOS, downloading illegal software from alocal anonymous FTP server).
ncftp (R2L, FTP client bug exploit).

netbus (R2L, a backdoor server).

netcat (R2L, another backdoor, uses a stealthy DNS channel).

snmpget (R2L, exploits an easily guessed router password).

sshtrojan (R2L, fake SSH server upgrade with login backdoor).

loadmodule (U2R, exploits atrojan shared library to gain root).

ntfsdos (U2R, an attacker with console access copies the disk, bypassing file system
protection).

perl (U2R, exploitsabug in a setuid root Perl script).

sechole (U2R, exploits a bug in Windows NT).

sglattack (U2R, arestricted user escapes from a database application to the UNIX shell).

xterm (U2R, gains root using a buffer overflow).

Out of 201 attack instances, 77 are poorly detected. Only 15 instances were detected by any system.
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Chapter 3

Time-Based Protocol Modeling

This chapter introduces PHAD (Mahoney & Chan, 2001), a Packet Header Anomaly
Detector. PHAD isunusual in two respects among network anomaly detection systems. First, it
models protocols rather than user behavior, because many attacks exploit errorsin protocol
implementations that can be detected by unusual inputs or outputs. Second, it uses atime-based
model, which assumes that network statistics can change rapidly in ashort period of time. When
PHAD seesaburst of unusual events, only the first event of that burst ought to be surprising and

reported as an anomaly. This cuts down on false alarm floods.

3.1. Protocol Modeling

Most network anomaly detection systems are designed (perhaps implicitly) to distinguish
authorized and unauthorized users. For example, an authorized user would know the environment
and not attempt to contact nonexistent hosts or services as a port scan would. Also, servers
requiring passwords (telnet, FTP, POP3, etc.) would have aregular set of authorized clients that
could be identified by their source | P addresses, and perhaps other idiosyncrasies, such as time of
day. Thus, unusual source addresses on these services would hint at unauthorized access. These
methods are quite distinct from host based techniques that model program behavior. Forrest uses
the model of an immune system to detect when a vulnerable server or operating system component
is executing code that was not part of the original program, such as aroot shell in a buffer overflow

attack. Because program code does not change over time, programs tend to make characteristic
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sequences of operating system cdls. Any novel code exeauted by these processesislikely to result
in sequences that deviate from this pattern.

Program modeling could be used in a network intrusion detection system by monitoring the
output of vulnerable servers. Like system cdl sequences, we would exped a program's output to
deviate from normal behavior when it executes novel code. For example, it would be unusual to see
aroat shell prompt coming from a mail server, as during a sendmail buffer overflow attadk. Such
an attadk could not be caight by user modeling, becaise no unusual ports or addresses are acced
and mail serverswill accept any client addresswithout authentication.

Another approad is protocol modeling. In sedion 2.1, we saw that many attacks expl oit
bugsin protocol implementations. For example, sendmail, imap, and named exploit improper
implementation of SMTP, IMAP, and DNS, in which the length of the input is not checked in some
cases. Teardrop and ping of death exploit bad implementations of IP protocol, such that the target
crashes when presented with unusual |P fragments that do not reassemble properly. Queso isableto
identify some operating system versions because of bugs in their TCP implementations which cause
them to give nonstandard responsesto urusual data, such as TCP padets with the reserved flags «t.
A common theme of such attacks is that the input is unusual in some sense. Thereisareason for
this. If the error could be invoked by commonly occurring data, then the bug would have been
quickly discovered and fixed.

Another source of protocol anomali es could come from bugs in the dtacking code. Just as
it is hard for the developer of a server or client and get all the detail s of a protocol right, it is hard for
the dtacker too. For example, attadks that spod'sthe source aldresshave to be programmed at the
IP level using atechnique such asraw sockets. Thisrequiresthe dtacker tofill inall of the other IP
header fields, such as TTL, header length, checksum, fragmentation pointer, and so on. It ishard to
get thisright. Not only must the padket satisfy the protocol requirements, but if it isto elude
detedion, it must also duplicate the idiosyncrasies of the protocolsin the target environment. For

example, many operating systems generate predictable sequences of |P fragment ID numbers or
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TCPinitial sequence numbers (afaa exploited by attadks such as queso). The same reasoning
appliesto applicdion protocols. For example, anorma SMTP sesdon starts with aHELO/EHLO
handshake. It is not required for an attadk like sendmail, but if it was omitted, the atack could be
deteded.
A third source of protocol anomalies could come from attacks on the IDS. Many of the
IDS vulnerabiliti es described in Sedion 2.1.4 are the result of differencesin the IDS's and the
target's implementation of TCP/IP. Because of the nature of software testing, differences expaosed
by the most common cases will be discovered and fixed first. Any remaining inconsi stencies will
only be exposed by rare events, such as small TTL values, |P fragmentation, inconsistent
overlapping TCP segments, and so on.
To summarize, there ae five potential waysto deted attacks.
1. Unusua ports and addresses, signs of an unauthorized user (traditional model).
2. Unusual outputs, signs of a successful attadk.
3. Unusual inputsthat exploit hidden bugsin the target.
4. Unusual inputs due to bugsin the atacking code.

5. Unusual inputsto exploit hidden bugsin the IDS.

3.2. TimeBased Modeling

In Sedion 2.2 we saw that many types of network events occur in bursts separated by gaps,
over both short and long time scdes. Many network processes tend to be self-similar or fradal
rather than Poison, and to have anonsummable autocorrelation function such as 1/t (wheret is
time). Events eparated by long time intervals are not independent, asin a Poisson model. Instead
there isalong range dependency.

Anomaly detedion isthe identification of rare events. 1n afrequency-based model, the

average rate of eventsis estimated by counting the number of events and dividing by the

32



observation period. Thisisapoa way to model a bursty processbecause there is no average rate.
For example, consider the following (bursty) sequence of 20 olservations of an attribute:
00000000000000001111. What is the probabili ty that the next observation will be al? If we
assume that each event isindependent, then 1 occurs 4 out of 20times, so P(1) = 4/20 =0.2.

However, if the events were independent, it is unlikely that all the"0"sand "1"swould be
grouped asthey are. (Thistype of pattern is common in network traffic). Such a sequenceis more
likely to originate from a processthat has a state. At a minimum, the state might represent the
previous output, such that the next output repeas with high probability. Without knowing more
about the underlying process we @n propase the foll owing model, which we will cdl the 1/t model:
the probability of an event isinversely propattional to the time sinceit last occurred. The last
observation of a"0" occurred 5time units ago, so P(0) ~ 1/5. The last observation of "1" occurred 1
time unit ago, so P(1) ~ 1. Combining these, P(1) = 1/(1/5 + 1) = 5/6. We note that thisis almost
the same a we would oltain with a frequency based model going bad just far enough to avoid
probabiliti es of exactly 0 or 1. In this example, we must go bad 5 olservations, and observe the
value"1" in 4 out of 5 times, for P(1) = 4/5. Thus, if the eventsredly are independent, then the 1/t
model will not be too far off.

Another possbility to consider isthat of novel values. We did not explicitly state in our
examplethat "0" and "1" are the only possibiliti es. By Good-Turing, P(novel) = E[r]/n, wherer, is
the number of values occurring exadly once (0 in our example), and n is the number of observations
(20). However, GoodTuring only appliesif the events are independent. |f events occur in bursts,
then there may be fewer values occurring exadly once, so Good-Turing is probably an
underestimate.

The PPMC (prediction by partia match — method C) model proposed by (Bell et al., 1989)
for data compression algorithms, does not require that events be independent. PEMC predicts
P(novel) = r/n, wherer isthe number of observed values. In our example, r =2 and n = 20, so

P(novel) =0.1. PPMC assumes that the number of observed values (r) grows at a steady rate so
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that r/n is constant and independent of n. Thisis actually the case for attributes with a Zipf
distribution, but is usually an overestimate for Poisson processes becauser > r;.

To apply time-based modeling to anomaly detection with explicit training and test periods,
we assign an anomaly score for novel values of 1/P(nhovel) = tn/r, where n and r are counted during
the training period, and where t is the time since the last anomaly. An anomaly may occur during
either training or testing, with the difference that if anovel value is observed in training it is added
to the set of allowed values, but if it occurs during testing it isnot. Note that in our model, P(hovel)
= (r/n)(1/t), which accounts for both the baseline rate of novel events, r/n, and atime-based model
for events occurring outside the set of allowed values, 1/t. For example, suppose we are given the

following training and test sequences:

Training (time 0-19): 00000000000000001111 Test (time 20-24): 01223

During training, we record the set of allowed values {0, 1}, the size of thisset, r = 2, and the
number of observations, n = 20. If observations are made at unit time intervals starting at 0, then the
last anomaly intraining is"1" at time 16. Thevaues"2","2", and "3" at times 22, 23, and 24 in
testing are anomalies because they are not in the training set. The anomaly score of thefirst "2" is
tn/r = (22-16)20/2 = 60. The anomaly scores of the second "2" is (23-22)20/2 = 10. Theanomaly
score of the"3" is(24-23)20/2 = 10. The anomaly scores of "0" and 1" are 0 because the values
occur at least once in training.

The anomaly score of an instance with more than one anomalous attribute is Z tn/r, where
the summation is over the anomalous attributes. It should be noted that there is no theoretical
justification for summing inverse probabilities. |f the attributes were independent and our
probability model is correct, then we should use the product, N tn/r. If the attributes were fully

dependent, we could just select one arbitrarily, or perhaps take the maximum. In redlity, the
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attributes are neither independent or fully dependent, and we found experimentally that a summation
works better in practice than these other possibilities.
We could also assign anomaly scores to values seen one or more timesintraining. For

now we do not. Thistopic will be addressed in Chapter 6.

3.3. PHAD

PHAD isasimple time-based protocol anomaly detector for network packets. It scores
every packet and makes no distinction between incoming and outgoing traffic. It models 33
attributes which correspond to packet header fields with 1 to 4 bytes. Fields smaller than one byte
(such as TCP flags) are combined into one byte. Fields larger then 4 bytes (such as 6 byte Ethernet
addresses) are split. The attributes are as follows:
»  Ethernet header (found in all packets): packet size, source address (high and low 3 bytes),
destination address (high and low 3 bytes), and protocol (usually 1Pv4).
» |Pheader: header length, TOS, packet size, IP fragment 1D, IP flags and pointer (asa 2
byte attribute), TTL, protocol, checksum (computed), and source and destination addresses.
*  TCP header: source and destination ports, sequence and acknowledgment numbers, header
length, flags, window size, checksum (computed), urgent pointer, and options (4 bytesif
present).
»  UDP header: source and destination ports, checksum (computed), and length.
* |CMP header: type, code, and checksum (computed).
PHAD computes an anomaly score of Z tn/r over the anomalous attributes. n isthe number of
packets of the type appropriate for each field, e.g. the number of ICMP packets for the ICMP type
field.
In order to store potentially large sets of training values (e.g. 2* source or destination

addresses), PHAD treats the attributes as continuous and clusters them into a maximum of C = 32
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ranges. If the number of ranges ever exceeds C, then PHAD finds the smallest gap between
adjacent ranges and merges them, effectively adding the valuesin the gap to the set of allowed
values. For example, given the set { 3, 5-10, 14-16} and C = 2, the smallest gap is between 3 and 5-
10, so the new set becomes { 3-10, 14-16}. r iscomputed as the number of anomaliesin training,
i.e. the number of times an element is added to the set, not including merges.

The method of approximating large setsis not critical, because it only affects attributes
with large r, and therefore low scores. PHAD detects about the same number of attacks whether it

uses C = 32, C = 1000, or stores a hash (mod 1000) of the value with no clustering.

3.4. Experimental Procedure

PHAD (and all systemsto be described later) was tested on the 1999 DARPA/Lincoln Labs
IDS evaluation (IDEVAL) data set described in Section 2.4. It was trained on the attack-free inside
sniffer traffic from week 3, which contains 7 days of traffic (including two "extra' days). It was
tested on weeks 4 and 5, which contains 201 attacks. We used the inside sniffer traffic because it
can seeinside attacks. However, one day is missing (week 4, day 2). In the evaluation, systems that
used this data were not penalized for missing attacks on thisday. The IDEVAL truth labelslist 177
attacks visible in the inside sniffer traffic after removing this missing day and also removing attacks
which do not generate any evidence in the traffic, such as attacks from the console.

We evauated PHAD using the EVAL3 and EVAL4 programs (Mahoney, 2003b), which
are our implementations of the 1999 IDEV AL detection criteria. as described in Section 2.4. PHAD
identifies the target by using the destination | P address from the packet header. For an outgoing
packet, this would actually be the source address, but the truth |abels lists both the source and
destination addresses for each attack, so we allowed a match to either. We consider thisto be fair
because it would be trivial to add knowledge of the home network to PHAD and have it output the

appropriate address.
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EVAL3 implements an alarm consolidation step prior to evaluation in which duplicate
alarms identifying the same target address within a 60 second period are merged into asingle alarm
by keeping only the alarm with the highest score and discarding the others. This step can reduce
false alarms from nearly any system because if there is an attack, the duplicates would be discarded
anyway, and if not, only one false alarm is generated. Although the factor t in the anomaly score
usually prevents consecutive high scoring alarms, it is possible that this could still occur if the
anomalies are in different attributes of different packets. Alarm consolidation typically adds severa

detectionsto PHAD.

3.5. Experimental Results

EVAL3 computes the number of detections at several false alarm rates by sorting the
alarms by descending score and discarding alarms after the false alarm limit isreached. At 100 false
alarms (10 per day), PHAD detected 72 of the 201 attacks. PHAD was instrumented so that each
alarm identifies the attribute which contributes the most to the anomaly score, the percentage of that
contribution, and the anomalous value. An analysis of these results showed that the TTL field was
responsible for more detections than any other attribute. We attributed these detections to
simulation artifacts. TTL (timeto live) isan 8-bit counter which is decremented each time an IP
packet isrouted. When TTL reaches 0, the packet is discarded in order to prevent infinite loops due
to misconfigured routers. Many systems use afixed TTL value for outgoing packets, such as 128 or
255, so the TTL value often indicates the number of network hops between the source and the
sniffer. Inthe simulation, different physical machines simulating the same host | P address were
used to generate some of the background traffic and some of the attacks (Haines et al., 2001).
Apparently these machines may have been on different parts of the real network, and PHAD

detected this difference.
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3.5.1. Attacks Detected

Weremoved the TTL attribute from PHAD and detected 54 attacks at 100 false dlarms
with alarm consolidation (by EVAL3), or 48 attacks without consolidation (by EVAL4). The
following list groups the 54 attacks by the attribute that contributes the most to its detection. Of
these, 32 appear to be detected by features of the attack, 20 detections (marked with *) are not easily
explained and might be simulation artifacts, and 2 (marked with **) are coincidental. The pair of
numbers after each attribute shows the number of readily explained detections and the total number.
For instance, out of the 11 attacks detected by source address, only 1 (syslogd) is easily explained.

» |Psource address: 1/11 (syslogd, portsweep*, smurf*, ncftp*, sendmail*, processtable*,
xlock*, fdformat*, yaga*)

* TCPflags: 9/9 (portsweep, queso, dosnuke)

* |Pfragment pointer/flags: 7/7 (teardrop, pod)

» |P packet length: 5/5 (satan, syslogd, portsweep)

»  Ethernet packet size = 52: 4/4 (ipsweep)

»  |CMP checksum = x0000: 0/3 (smurf*)

* |Pdestination address: 0/3 (portsweep*, warez*, sendmail*)

» Urgent pointer: 3/3 (dosnuke)

* TCPoptions: 0/2 (apache2*)

»  TCP source port: 0/2 (portsweep*)

»  UDP checksum: 2/2 (udpstorm)

*  TCP checksum: 0/1 (insidesniffer**)

»  Ethernet source address: 0/1 (insidesniffer**)

»  Ethernet destination address: 1/1 (mscan, actually arppoison)
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It is unfortunate that anomaly detection systems such as PHAD are sensitive to simulation artifacts

inthe IDEVAL data. Thistopic will be explored in more depth in Chapter 7. The artifacts

important to PHAD are as follows:

TTL, as previously discussed.

Remote client |P addresses. There are too few (only 29 in week 3) to simulate adiverse
range of clients on public services such as HTTP (web), SMTP (mail), and anonymous
FTP. This affects detections of incoming packets by source address and outgoing packets
by destination address. Although some attacks on private services should be detected this
way (e.g. thetelnet flood, processtable), PHAD makes no distinction between services.
fdformat and yaga are U2R attacks and should not be detected at all. The only detection
we consider legitimate is syslogd, in which the source addressis forged so that reverse
DNS lookup fails.

TCP options. These are highly predictable on single hosts and in the IDEV AL background
traffic, but not in real traffic. The anomaly in outgoing apache2 packets (an HTTP flood)
is a maximum segment size option (MSS = 1024), most likely aresponse to an
idiosyncrasy of the attacking host. While areal attack might result in the same response, it
isunlikely that it could be detected this way without alot of false alarms.

Source port. Only values up to about 33K appear in the IDEVAL background data, as
opposed to real traffic (and portsweep) which uses the full range of values up to 64K.
Coincidental detections. Both instances of insidesniffer are detected by coincidental false
alarms. Insidesniffer (a sniffer on the local network) is a prolonged attack (hours) with
multiple victims (all local hosts). Thus, any alarm on any host during this time would be
counted as a detection.

Overlapping attacks. The detection of mscan by invalid Ethernet addressis actually due to

a detection of arppoison, which occurs simultaneously. In an arppoison attack, an attacker
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with access to the local network sends forged replies to ARP-who-has packets to disrupt
local traffic. Thisattack cannot be detected directly because ARP packets do not have an
IP address as required by IDEVAL criteria. Other arppoison detections appear as false
alarms.

Smurf. Thisisone of the few simulated attacks. Smurf floods a network with ICMP
ECHO REPLY packets by sending ECHO REQUEST (ping) packets to a broadcast address
with the spoofed source address of the target. These replies had to be simulated because
the broadcast network did not really exist. Real replies would probably not have invalid

checksums.

3.5.2. False Alarms

Thetop 100 false alarms are listed below. They are grouped by the attribute that

contributes the greatest fraction to the anomaly score.

TCP checksum: 32 errors

| P destination address: 9

UDP length: 9

Ethernet source address: 8

TOS (type of service): 7

Ethernet destination address: 6

TCP urgent pointer: 5 (values pointing outside the packet)
TCP window size: 5

TCP options. 4

IP source address: 3

2 each: TCP acknowledgment number, TCP destination port, TCP flags (urgent data), IP

fragmentation.
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» 1 each: Ethernet packet size, |P packet size, TCP sequence number, |P type.
TCP checksum errors account for about athird of the false dlarms. There are no checksum errors
(IP, TCP, UDP, or ICMP) in any of the training data. Had there been, these false alarm scores
might have fallen below the threshold. Other than TCP checksum and TOS, there is not much
difference between the set of attributes that detect attacks and those that generate false alarms.
The eight Ethernet source address fal se alarms and one destination alarms are due to non-1P

packets without an |P address. Five of these alarms occur during arppoison attacks.

3.5.3. Detedion — False Alarm Tradeoff

In the previous sections, we analyzed PHAD at athreshold allowing 100 false alarms (10
per day). In Figure 3.1 we show the effects of varying this threshold in a detection-false alarm
(DFA) curve. Asthethreshold is adjusted, there is a tradeoff between fal se alarms and missed
attacks. Asthe threshold islowered, both the number of attacks detected and the number of false

alarmsincreases. However, after 100 false alarms, the number of detections levels off.
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Figure 3.1. PHAD detedion-false alarm curvefor 0to 500 false alarms.
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3.5.4. Detections by Category

Table 3.1. lists the number and percentage of attacks (in-spec or not, legitimate or not)
detected in each category at 100 false alarms. PHAD detects mostly probe and DOS attacks that
exploit the protocols that it analyzes, namely those at the transport layer and below. It does poorly
on R2L attacks, which generally exploit application layer protocols, as well as probe and DOS
attacks on servers. It also misses most U2R and data attacks, which are not easily detected in
network traffic by any means.

Among the 77 poorly detected attacks described in Section 2.4, PHAD detects 17: 9
stealthy portsweep, 1 stealthy ipsweep, 3 aueso, and 4 dosnuke. The detection rate for these attacks
(22%) is not much lower than the overall rate (27%) which suggests that PHAD could be integrated

with other systemsto fill the gap.

Attack Type Detected/Total at 100 false alarms
Probe 24/37 (65%)

DOS 22/65 (34%)

R2L 6/56 (11%)

U2R/Data 2/43 (5%)

Total 54/201 (27%)

Poorly Detected in 1999 evaluation 17/77 (22%)

Table 3.1. PHAD detections by attack category.
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3.5.5. Implementation and Run Time Perfor mance

PHAD was implemented with about 400 lines of C++. On a Sparc Ultra-60 with a 450
MHz 64-bit processor, PHAD processes 2.9 gigabytes of training data and 4.0 gigabytes of test data
in 364 seconds (310 user + 54 system). Thisis about 95,900 packets per second, or 23 seconds per
simulated training/test day. Training and testing speeds are approximately equivalent.

On a Compaq Presario with a 750 MHz AMD Duron processor running Windows Me,
PHAD runsin 15 minutes on the same data. The primary limitation appears to be disk speed,
although no tests were done to confirm this.

Memory requirements are negligible. PHAD allocates about 4K bytes of memory to store
the anomaly model.

Source code is available at (Mahoney, 2003b).

3.6. Summary

PHAD introduces two innovations in network anomaly detection: time based modeling and
protocol modeling. Time-based modeling regulates the flood of alarms that would otherwise be
caused by bursts of anomalous events. Protocol modeling allows PHAD to detect four of the five
attack categories described in Section 3.1. Examples of each are given below.

» Unusual outputs as symptoms of a successful attack: arppoison causes victimsto send
packets with the wrong Ethernet addresses.

» Unusual inputsto exploit bugs: Attacksthat exploit | P fragmentation (teardrop, ping of
death) are detected by the presence of fragments, which are normally rare. Dosnuke, which
crashes Windows by sending urgent data to the NetBIOS port, is detected by the URG flag
and urgent pointer. Urgent datais ararely used feature of TCP.

» Bugsintheattack: Theinitiating packet in udpstorm has an incorrect checksum. The

checksum is apparently not verified, but failing to set it correctly alows the attack to be
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detected. (The actual stormis missed). |Psweep could also be hidden by using larger
packets (a parameter to ping).
» AttacksontheDS. Some of the portsweep probes are FIN scans, which are used because
FIN packets are less likely to be logged. (The attack is detected because the ACK flagis
not set).
No attacks are detected (legitimately) by user modeling, the dominant form of detection in most
other systems. PHAD cannot detect attacks by source address because it makes no distinction
between public and private services. It does not detect attacks by server port because it makes no
distinction between server and client traffic. Also, PHAD detects (legitimately) only probes and
DOS attacks. It does not detect R2L attacks because these normally exploit application protocols,

which PHAD does not examine. We address these shortcomingsin the next chapter.



Chapter 4

Application Layer Modeling

This chapter introduces ALAD (Mahoney & Chan, 20028, an Application Layer Anomaly
Detedor. ALAD differsfrom PHAD in two respeds. First, it modelsthe gplication payload of
TCP connedionsto deted attadks on servers. Most R2L attacks, which PHAD misses, are of this
form. Seaond, ALAD uses conditional models, such as P(source aldress| destination port), rather
than gobal models such as P(source aldresg. Thisallows ALAD to model public and
authenticated services sparately in order to deted anomalous client addresses only on those
services where novel addresses are not expeded. Conditional models could be gplied to arbitrary

combinations of attributes.

4.1. ALAD

ALAD hastwo stages, one to reasssemble inbound client TCP padets into streams, and a
semnd stage to perform anomaly detedion on these reassembled streams. We examine only
inbound TCP traffic from clientsto servers (identified by alow numbered destination port). Most
R2L attacks, as well as probes and DOS attacks on applications, target servers. Althoughthereis
useful information in the server's response, we examine only the request to the server because four
of the five sources of anomalies described in Sedion 3.1 occur in input rather than output. Also,
very few attacksin PHAD (just arppoison) were deteded by monitoring output. Restricting the data
set to inbound client traffic gredly reduces the load on the IDS.

We mnsider the following six attributes of reassembled client TCP streams.
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»  Source (remote client) 1P address.

» Dedtination (local server) IP address.

» Dedtination (server) port number (which identifies the protocol).

» TCPflags of thefirst packet and last two packets, e.g. "SYN/FIN-ACK/ACK".

»  Application keywords (the first word on aline, delimited by white space).

»  Application arguments (the rest of the line, delimited by alinefeed).
The first three attributes should allow usto detect user anomalies. TCP flags should allow usto
detect unusual states, such as connections that are never closed. Protocol modeling takes placein
the application payload. The application protocols are assumed to be text based, with lines of the
form "keyword arguments’, and ending with alinefeed, which is often true. For example, in theline
"GET / HTTP/1.0" , the keyword would be "GET" and the argument would be "/ HTTP/1.0". For
HTTP and SMTP, we model only the header, which is delimited by a blank line. For all protocols,
we examine no more than the first 1000 bytes.

ALAD uses the same time-based model as PHAD, anomaly score = tn/r for novel values
and O for any value observed at least oncein training. For a conditional model such as P(source
address | port), aseparatet, n, r, and set of observed values is maintained for each value of the
condition (i.e. for each port). nisthe number of times the condition was met, r isthe number of
values for that condition (addresses for that port), and t is the time since the last anomaly for that
condition. ALAD computes the anomaly score for a TCP stream by summing the anomaly score
tn/r over al of the attributes for each complete line of text, then summing those scores to get the
final score.

Itisnot immediately clear which combinations of attributes should be modeled and which
should be conditions. Any combination of one or more attributes may be in the consequent, and any
of the zero or more remaining attributes may be in the antecedent. In general, if therearem

attributes, then there are 5o ; - ., 2 m!/(i!(m-i)!) possible combinations, which grows exponentially
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with m. For m= 6, there ae 665 pssblerule forms. Rather than test all of these rule forms, we
hand pick combinations for testing based on the assumption that arguments depend on keywords
and that the other attributes depend on the server addressand/or port.

Once we have selected asmall set of rule forms, we can combine them in at least two ways.
One way isto add the asciated anomaly scores, as previousy mentioned. Another isto use e&h
rule form by itself in a separate IDS, then runthem in parallel and merge the darms. In this mode,
we would want to set each IDS threshold so that they all produce the same number of alarms, then
consolidate the duplicate darms when two or more systems identify the same target at the same
time. Our approachisto find asmall number, k, of rule forms that do well individually in terms of
deteding attacs, then to exhaustively test all 2 — 1 possble mergers of these systems. It is not
always optimal to merge dl the systems, becaise if we merge two systems that deted the same
attadks then no new attadks are discovered but we could doulle the number of false darms.
However, if two systems detect diff erent attacks in roughly equal numbers, then there is a passhbili ty
that the merged combination could improve on both componrents.

We build our final system by adding together the anomaly scores of those rule forms from
an optimal merge. Thisis not optimal, becaise merging and adding do not give the same resullts,
althoudh they are similar. However, we use this approacd rather than exhaustively test all
combination of sums because evaluating combinations of merges can be done quickly. To evaluate
merged systems, we sort the darms by score, consoli date dupicates, and eval uate equal numbers of
alarms from eat system in around-robin fashion until the false darm threshold is readied.
Evaluation run time is dominated by sorting the darms by score, which only hasto be done oncefor
ead system. If we exhaustively tested summations rather than merges, then each combination

would require asort operation.
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4.2. Experimental Results

We evaluated ALAD on the same data s PHAD. It wastrained on week 3 of the 1999
IDEVAL inside sniffer traffic, and tested on weeks 4 and 5. Results were evaluated with EVALS at
100false darms (10 per day). Wefound k = 11 rule formsthat deted between 13 and 44 attacks,
as srownin Table4.1. Next we used EVAL3 to exhaustively test all 2'* — 1 = 2047 merged
combinations of these 11 outputs. The optima merged combination was found to consist of 5 of the
top 6rule formsas shown in Table 4.1, deteding 63 attads. When we replacethe merge with a
summation, ALAD deteds 60 attads.

PHAD and ALAD deted sufficiently different attads that their results can be merged.

PHAD deteds 54 attadks by itself, but the merger with ALAD deteds 73.
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Rule Form

Attacks detected at 100 false alar ms

1. P(client address | server address) 44
2. P(client address | server address and port) 42
3. P(keyword | server port) 34
4. P(TCP flags | server address) 29
5. P(arguments | keyword) 26
6. P(server address and port) (unconditional) 26
7. P(server port | server address) 25
8. P(TCP flags) (unconditional) 23
9. P(arguments | port, keyword) 23
10. P(TCP flags | server address and port) 13
11. P(server address | client address) 13
ALAD =models1+2+3+4+6 60
PHAD 54
PHAD + ALAD 73

Table4.1. Attacksdetected by ALAD ruleformson IDEVAL inside weeks 3-5 at 100 false

alarms.

The attacks detected by ALAD are best understood by examining the results from

individual rule forms rather than their combination.
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4.2.1.

Client Address Detections

Rule forms 1 and 2 (client address) detect almost the same attacks. Form 2, which is more

specific (modeling each server address/port combination separately, rather than modeling each

server address) detects fewer attack instances (42 vs. 44) but more attack types. As expected, most

of these are attacks on servers rather than the TCP/IP stack, asin PHAD. Aswith PHAD, we mark

detections that seem unlikely to occur in real traffic with an asterisk. The detections are as follows:

4.2.2.

Probes: mscan, ntinfoscan, satan. These test awide range of server vulnerabilities.

DOS: apache2* (HTTP), crashiis* (HTTP), mailbomb* (SMTP), warezclient*
(anonymous FTP), warezmaster* (anonymous FTP, form 2 only), arppoison* (ARP, form
2 only). Unfortunately the most likely explanation for the detection of these attacks on
public servicesisthat the range of legitimate addressesis unrealistically small in the
IDEVAL simulation. Arppoison is probably coincidental.

R2L: dict (password guessing), ftpwrite* (form 2 only), netbus*, netcat* (backdoors using
DNS/TCP), phf* (HTTP), ppmacro* (an emailed trojan), sendmail* (SMTP), sshtrojan.
Only sshtrojan (a backdoored server) uses an authenticated protocol (SSH).

UZ2R: casesen*, gect*, fdformat* (form 2 only), ffbconfig*, xterm*, yaga*. These are most
likely cases of detecting the FTP upload of the exploit code or the shell session that
executes the attack. We could not expect these attacks to be detected if they were executed

by authorized users.

TCP State Detections

Rule forms 4, 8, and 10 detect three kinds of anomalies.
Locally initiated FTP data connections on port 20, identified by an initial SYN-ACK rather

than SYN. Attacks are detected this way only because the anonymous FTP server is never
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used to upload filesin training. Uploadsinclude U2R exploit code: casesen*, gject*,
fdformat*, sechole*, and xterm*, and the FTP server exploits satan, warez* and ftpwrite.
* Unclosed connections in response to a DOS attack, indicated by the absence of atrailing
FIN or RST. Theseinclude apache2, crashiis, and tcpreset.
» Reset connections. Detects ntinfoscan. It isunusual for a client to open a connection and
then close it with a RST packet.
Rule form 4, which models each server address separately and is used in ALAD, detects all types of
anomalies. The unconditional model (8), detects FTP uploads almost exclusively, and would
probably be of little use in a more realistic environment. The most specific rule form (10), which
models by address/port combination, detects mostly unclosed or reset connections.

Out of 60 false alarmsfor rule form 4, 53 are for outgoing sessions (FTP uploads) 5 are
client initiated RST packets, and 2 are unclosed connections. For the unconditional model (8), there
are 59 uploads and one RST. For the most specific model (10), there are 25 false alarms distributed
asfollows: port 22 (SSH): 6 RST by the client, 3 unclosed (no FIN), 2 unopened and unclosed.(no
SYN or FIN); for port 23 (telnet): 2 RST and one unopened and unclosed; for port 80 (HTTP): 8
unopened (no SYN), 2 unclosed, and one RST. All of these distributions are similar to the hostile

traffic.

4.2.3. Keyword Detections

Rule form 3 models keywords by server port number. Although every server port is
modeled, all attacks are detected on ports 21 (FTP), 23 (telnet), 25 (SMTP) or 80 (HTTP), which
makes up most of the background TCP traffic. The attacks detected are as follows:

* apache?, an HTTP flood: an invalid command "x" on port 80 in 1 of 3 instances.
* casesen* (U2R): "PWD" and "STOR" on port 21 (uploading the exploit code), or "QUIT"

on port 25 (possibly emailing the code with a nonstandard mail client).
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crashiis*, gect*, fdformat*, ftpwrite, mscan, sechole*, warez, xterm*: "STOR" on port 21
(FTP upload).

framespoofer*: " Content-Transfer-Encoding:" on port 25, commonly found in email
headers but apparently absent in the training traffic. This attack uses an email to direct the
victim to awebsite.

ftpwrite*, insidesniffer*: "QUIT" on port 25. Possibly coincidental because neither attack
uses email.

mailbomb (an email flood): "mail" on port 25. Normally this command is upper case.
ncftp (an FTP client exploit): "PWD" or "RSET" on port 21. "PWD" (print working
directory) should be common.

ntinfoscan: "HEAD" on port 80, avalid HTTP command but not used by older browsers,
"quit" and "user" on port 21, unusual but valid use of lower case.

phf: anull byte on port 80 in one instance, not valid, but not part of the attack either.
processtable*: "~ boundary="KAA04098.922893276/169-215-104" on port 25, a
coincidental detection because the attack does not use email. Most (60%) of the top 100
false darms are of thisform.

satan: "QUIT" on ports 23, 25 and 80, "user" on port 21,

sendmail*: " Sender:" on port 25, should be common in email headers.

The top 100 false alarms are distributed as follows.

73 on port 25 (mail): 59 of the form "~lboundary="..."" (used to delineate attachments), 9
"QUIT", 5 others.

17 on port 21 (FTP): 14 "STOR" (upload) and 3"SY ST "@" (null byte appended).

6 on port 23 (telnet): various commands.

3 on port 80 (HTTP): 1 "HEAD", 2 with null bytes.

1 on port 515 (printer): "AC517".
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4.2.4. Keyword Argument Detections

Although ALAD does not include amodel for keyword arguments, this rule form by itself
(conditioned on keyword) deteds 26 attadks. Most are detected in SMTP arguments, but would
probably be missed in an environment receiving email from many sources.

» ffbconfig*, netbus*, sshtrojan*, xterm*: EHLO arguments, e.g. "EHLO ppp5
213att.net.hk", identifying the client from which the exploit code is email ed.
*  mailbomb*: "mail from:<asdfg@hotli ps.com>" identicd in all threeinstances.
e ps*:"MAIL From:<suzannac@marx.eyrie.af . mil> SIZE=1989".
e sendmail*: "Content-Type: text/plain; charset=us-ascii".
» ntinfoscan*: "HELO hobbes.eyrie.af.mil ".
One FTP attad is deteded.
e ncftp: "LIST -d y2kfix" in al 4 instances. y2kfix isa program containing the exploit.
The following HTTP attadks are deteced.
e apache2: "User-Agent: sioux". The atad repeas this line thousands of timesto slow
down the web server.
» phf*: "Accept: applicaion/applefil e, appli cation/x-metamail-patch, ...", anovel HTTP
client, probably would be missed.
*  portsweep*, queso*: "User-Agent: Mozill &/4.08 [en] (WinNT; I)", coincidental, neither
attadk uses HTTP. Thisexad string makes up 28% of the false darms.
Of the top 100false darms, 59 accur in HTTP commands, mostly in the aguments to User-Agent,
Accept, and Content-Type. Usually these values are fixed for agiven client. Most of the remaining
fase darmsarein SMTP, mostly in the "EHLO" and "Received:" fields, which contain the sender's

address
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4.25. Server Address/Port Detedions

Rule form 6 unconditionally models server address/port combinations, which ought to
detect probes that access unused ports, such as portsweep. However, the surprising resultsis that
very few of the attacks detected are probes. Instead, the following are detected.

e casesen*, crashiis®, gect*, fdformat*, ftpwrite*, sechole*, warez*: port 20 (FTP uploads).
* ncftp*, xterm*: port 21 (FTP). These attacks would only be detected if the FTP server was
otherwise unused. One ncftp instance is aso detected on port 113 (authentication).
* netcat, netcat_breakin: port 53 (DNS). This backdoor uses DNS/TCP as a stealth channel
to penetrate firewalls. However all of the normal DNStraffic is UDP.
e guesspop: port 110, guessing passwords on an unused POP3 server.
e satan: ports 20 and 70, probing for FTP and gopher servers.
* mscan: ports 20, 21, and 111, probing FTP and the portmapper service.
There are 37 false alarms. Of these, 28 are on port 20 (FTP data), 3 on ports 21 and 113, and one
each on ports 22, 139, and 1023. Rule form 8 (port given server address) gives similar results for
both attacks and false alarms. In both cases the attacks and false alarms have similar distributions

with no easy way to distinguish them.

4.2.6. Detedion — False Alarm Tradeoff

Figure 4.1 showsthe DFA curve for ALAD using the optimal combination of rule forms
(1,2, 3,4,and 6). Aswith PHAD, most attacks are detected at a threshold allowing 100 false
alarms (10 per day), although the number of detections continuesto rise slowly, from 60 up to 72 at

500 false dlarms.
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Figure4.1. ALAD detection-false alarm curvefor 0to 500 false alar ms.

4.2.7. Detections by Category

Table 4.2 lists detections by category for the optimal combination of rule forms. The
detection rate is highest for R2L attacks, which normally exploit the application layer. In addition,
most of the DOS attacks (all but one tcpreset) and probes (all but one coincidental insidesniffer)
exploit application protocols aswell. ALAD detects more R2L attacks but fewer probes than
PHAD.

The poorly detected attacks (from the 1999 evaluation) include ncftp, netbus, netcat,
sechole, sshtrojan, tcpreset, warezclient, and xterm. ALAD detects 18% of these, compared with

30% of attacksin general.
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Attack Type Detected/Total at 100 false alarms
Probe 6/37 (16%)

DOS 19/65 (29%)

R2L 25/56 (47%)

U2R/Data 10/43 (23%)

Total 60/201 (30%)

Poorly Detected in 1999 evaluation 14/77 (18%)

Table4.2. ALAD detections by category.

4.2.8. Implementation and Run Time Performance

ALAD was implemented in two parts: a400 line C++ program to reassemble TCP packets
into streams, which isinput to a 90 line Perl program. TCP reassembly of 6.9 GB of training and
test data (inside weeks 3-5) takes 17 minutes on the 750 MHz PC described in Section 3.5.5. The
output of this program istwo text files: 20 MB of training data and 40 MB of test data. The Perl

script processes this datain 60 seconds. Source code is available at (Mahoney, 2003b).

4.3. Summary

ALAD introduces the following new concepts.

* Modeling text-based protocols at the application layer. Keywords can be conditioned on
server port, or arguments on keywords.

* Modeling using conditional rule forms. A rule form consists of a set of rules, one for each

possible value in the condition.
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* Merging alarms. This seemsto work best when both systems are equally strong but detect
different kinds of attacks. However, the technique we used is off-line because it would
require setting thresholds in advance to produce the same number of alarms from each
system.

ALAD detects each of the five categories of anomalies described in Section 3.1.
» Unauthorized users: sshtrojan by source address, mscan and satan by destination port.
» Unusual datato exploit bugs: "QUIT" from satan, RST packets from ntinfoscan.
* Bugsinthe attack: lowercase commands in mailbomb and ntinfoscan, garbage datain phf.
» Evasion: DNS/TCP traffic from netcat.
o Symptoms from the victim: missing FIN packets from apache2, crashiis, and tcpreset
indicating interrupted TCP connections.
Attacks and false alarms usually have similar distributions, regardless of the attribute. Thereisno
obvious way to distinguish them to improve the results. However there are afew exceptions, such
asthe "~Mboundary=..." keywordsin SMTP, which makes up most of the keyword false alarms.
Each keyword is unique because there is no space to separate what should be the argument. This
could be fixed by limiting the length of a keyword.

A shortcoming of ALAD isthat it requires an ad-hoc approach to selecting rule forms. We

address this problem in the next chapter.
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Chapter 5

L ear ning Conditional Rules

This chapter introduces LERAD (Mahoney & Chan, 20023), Learning Rules for Anomaly
Detedion. It differsfrom ALAD in that it generates rules from arbitrary combinations of nominal
attributes, eliminating the need to seled rulesin an ad-hoc fashion. Rules have the general form "if
Ar=viand A, = v, and ... and A = Vi then Ay 0 V = { Vi1, Viezs -, Vier} ", Where the A's are
attributes and v's are values. LERAD seleds those rules from this huge rule spacethat would
generate the highest anomaly scores, i.e. those that have high n and low r, where n is the number of
training instances that satisfy the antecedent (A, = vy ... and Ax = vy, k> 0), and r = |V|, the number
of allowed valuesin the consequent. Thisgoal is different from algorithms such as RIPPER
(Cohen, 1995) or APRIORI (Agrawal & Srikant, 1994), which have the goal of finding rules that
predict asingle value in the consequent with high probability (i.e. high confidence). Although all
three algorithms find rules with high support (large n), the goal of LERAD isto find rules with
small r, regardless of the distribution within V.

For example, one rule might be "if port = 25 then wordl O {"HELO", "EHLQO"}". Unlike
ALAD, there need not be arule for every value of port. During training, LERAD counts n, the
number of instances where port = 25, and records V, the set of values for wordl. During testing, if
LERAD aobserves an instance where port = 25 but word1 is not "HELO" or "EHLO", then it assigns
an anomaly score of tn/r (aswith PHAD and ALAD) wherer = V| =2 and t isthe time since the
rule was last violated. The total score assigned to atest instance is the sum of the anomaly scores

assigned by each rule in the rule set for which the antecedent is satisfied but the consequent is not.
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5.1. RuleLearning

The challenge of generating good rules (high n/r) is searching the huge rule space, which
grows exponentially with the number of attributes. RIPPER and APRIORI use greedy deterministic
algorithms that gradually add conditions to the antecedents while satisfying the constraint of high
support and confidence. LERAD differsin that it uses arandomized algorithm to generate
candidate rules, then tests them on increasingly large subsets of the training data, discarding
redundant rules and those that do not satisfy the constraint of high n/r. The steps are as follows:

1. Randomly generate rules with n/r = 2/1 on pairs of training instances.

2. Discard redundant rulesin favor of those with higher n/r on alarger training sample, S.

3. Discard rulesthat perform poorly on the full training set (where r increases near the end).
LERAD makes two passes through the training data, one to sample training instancesin steps 1 and

2, and asecond pass to fully train the rulesin step 3.

5.1.1. Generating Candidate Rules

Thefirst step in LERAD isto generate a pool of candidate rules. Thisis done by randomly
selecting pairs of instances from the training set and finding rules that satisfy both instances. Such
rules can be found whenever one or more attributes have the same value in both instances. When
this happens, one attribute becomes the consequent and any subset of the remaining attributes can
become the antecedent. For example, suppose we are given the following two training examples.

port = 80 wordl=GET  word2 =/ word3 =HTTP/1.0

port = 80 wordl = GET  word2 = /index.html word3 =HTTP/1.0
There are three matching attributes, port, wordl, and word3. Some of the 12 possible rules with n/r
=2/1are

e wordl="GET"

e if word3 ="HTTP/1.0" then port = 80
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e if port =80 and wordl = "GET" then word3 = "HTTP/1.0"
In general, if there are k matching attributes, then there are k possible consequents and 2 possible
subsets of the remaining attributes to form the antecedent, allowing for k2" possible rules. In
practice, LERAD picks arandom subset of these rules as candidates. There are many waysto do

this, but LERAD uses the following a gorithm:

* Randomly select a sample Straining instances
* Repeat L times
» Randomly select a pair of training instances from S
» Randomly order the k matching attributes in a sequence, but not more than K
*  Generate k rules using 1 through k attributes, making the first one the consequent

and the others the antecedent.

Figure5.1. LERAD candidaterule generation algorithm.

For example, if the matching antecedents of the pair above were picked in the order wordl, port,
word3, then the rules would be:

 wordl ="GET"

» if port = 80 then wordl = "GET"

e if port =80 and word3 = "HTTP/1.0" then wordl = "GET"

Experimentally, we find it makes little difference whether the random pairs are selected
from S or from the full training set, even with |S| as small as 20. We use |S| = 100. Theset Sisalso
used in step 2. We select L = 1000 pairs, again experimentally finding little improvement after a
few hundred. We stop at k. = 4 matching attributes because rules that make the final rule set

rarely have more than 2 conditions in the antecedent, and many have none.
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5.1.2. Removing Redundant Rules

The second major step in LERAD isto remove rulesthat do not give us any new
information about a small sample training set, S. When two rules predict the same values, we keep
the one with the higher n/r (when trained on S), or in case of atie, the one with fewer conditionsin

the antecedent. For example, suppose Sis as follows:

port = 25 wordl =HELO word2 = pascal
port = 25 wordl =HELO word2 = hume
port = 80 wordl=GET  word2 =/

And suppose we have the following rules, sorted by descending n/r:

1. if port = 25 then wordl = "HELO" (n/r = 2/1)

2. wordl ="HELO" or "GET" (n/r = 3/2)

3. if word2 ="pascal" then wordl ="HELO" (n/r = 1/1, 1 condition)

4. if wordl ="GET" and word2 ="/" then port = 80 (n/r = 1/1, 2 conditions)
Rule 1 predicts wordl in the first two training instances. Rule 2 is not redundant because it predicts
wordl in the third training instance, which was not predicted by apreviousrule. Rule 3is
redundant because the only value it predicts was also predicted by rule 1 (and rule 2). Thus, rule 3
isremoved. Rule4 is not redundant because none of the previous rules predicted port in the third

training instance. The algorithm is as follows:
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»  Sort the candidate rules by descending n/r on S, or by ascending size of the antecedent in
case of ties.
* Foreachrule
o For eachsamplein S
= If the sample satisfies the antecedent, then mark the consequent valuein
S unless already marked

o If nonew valuesin S could be marked, then remove the rule

Figure5.2. LERAD redundant rule elimination algorithm.

LERAD uses |S| = 100. Experimentally, values between 20 and several thousand work well. Very
large values can result in too few rules being found redundant and slightly reduce the number of

detections.

5.1.3. Removing Poorly Performing Rules

The third major step in LERAD isto remove any remaining rulesthat are likely to generate
alot of false alarms, based on their behavior towards the end of training on the full training set. The
best attributes for anomaly detection are those whose distribution is stable over time, for example,
the set of client addresses seen on a POP3 server where the same people log in every day to retrieve
their mail. A poor attribute would be one in which the potential set of valuesis very large and the
values seen each day varies, for example, the set of client addresses seen on a web server which
could be viewed by millions of people. In this case only a small subset of addresses would be seen

during training, and we would expect new values to appear in testing, resulting in false alarms.
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Fortunately it is easy to distinguish these two cases from the training data. We simply
count the number of novel values are added to the set V of allowed values near the end of the
training period, for example, the last day. Had this been during the test period, all of these new
values would be false alarms, since we know that there are no attacks in training. We would expect
this false alarm rate to continue during the test period, so if the rate is high, we remove the rule.

LERAD usesthe following algorithm:

» Trainall rulesfrom step 2 on the full training set.

» Ifrincreasesat al during the last T,y percent of the training data, then remove the rule.

Figure5.3. LERAD rulevalidation algorithm.

We found that T,y = 10% maximized accuracy on the IDEVAL test set.

5.1.4. Alarm Generation

Once LERAD generates a set of rules on the training data and fixes n/r for each rule, the
test dataisevaluated. If atest sample meets the conditions of a rule antecedent but the consequent
is not one of the allowed values, then LERAD adds tn/r to the anomaly score for that sample, where
t isthe time since the last anomaly for that rule, either in training or testing. We found
experimentally that using a sample count for t rather than real time gives dightly better results
(more attacks detected in IDEVAL). This could be due to gaps in the training and test data from
6:00 to 8:00 AM each day and on weekends. Using real time would inflate the scores of anomalies

seen on Monday mornings.
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5.2. Experimental Evaluation

5.2.1. Experimental Data and Procedures

LERAD models 23 attributes of inbound TCP client data streams. TCP isfirst reassembled
aswith ALAD. All attributes are nominal. The attributes are as follows:
+ Date
» Time of day (to the nearest second).
»  Source (remote) IP address as 4 1-byte attributes.
» Last 2 bytes of the destination (local) |P address as 2 1-byte attributes. (Thefirst 2 are
fixed from the home network, 172.16.x.x).
*  Source port.
* Destination port.
» TCPflagsof thefirst, next to last, and last packet, as 3 attributes.
* Log base 2 of the duration in seconds, truncated to an integer.
* Log base 2 of the length (number of application data bytes sent) truncated to an integer.
»  First 8 words of the payload. Words are delimited by white space or the non-ASCI|
characters x80 to XxFF and truncated to 8 characters.
Although it makes no sense to include the date or time as attributes, we included them as an
implementation convenience and to test the robustness of the rule learning algorithm.

A second version of LERAD includes inbound client UDP and inbound ICMP packetsin
order to detect attacks that use these protocols. The attributes are the same except that the first TCP
flag attribute is replaced with "UDP" or "ICMP" and the remaining flags are blank. To reduce
traffic load, UDP destination ports 53 (DNS), 123 (NTP) and 1024 and above (clients) are excluded.

LERAD was tested on the same data as PHAD and ALAD: trained on inside sniffer traffic

from week 3 of the 1999 IDEV AL data, and tested on weeks 4 and 5. The TCP data has 35,456
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training instances and 178,100 test instances. The data with UDP and ICMP has 68939 training
instances and 937,334 test instances. The results were evaluated with EVAL3 at 100 false alarms.
Because LERAD uses a randomized algorithm, results were averaged over 5 runs with different

seeds.

5.2.2. Experimental Results

LERAD with TCP detects 114 to 119 attacks (average 117). A typical run generates 1000-
1200 candidate rules, reduced to about 70-85 after the redundancy test, and to about 55-70 final
rules. With UDP and ICMP, LERAD generates sightly morerulesin steps 2 and 3 (typically 100-
125, 70-80). However it detects fewer attacks than TCP aone, 108 to 115 (average 112). There are
few UDP and ICMP attacks compared to TCP, and the additional data adds false alarms.

The following analysisis for one typical run of LERAD with UDP and ICMP which
detects 111 attacks. There are 69 rules, with n/r ranging from 34906/1 to 34887/297 (listed in
Appendix A). nranges from 3521 to the maximum of 68,939. The average number of conditionsin
the antecedent is 0.84. There are 11 rules with no antecedent, and 2 with the maximum of 3
conditions in the antecedent. Attributes appear in the antecedent/consequent of the following
number of rules: payload 16/22, TCP flags 12/15, source address 8/10, destination address 8/7,
destination port 5/7, duration 3/6, length 1/5, source port 2/0, date 0/0, time 0/0. All parts of multi-
part attributes such as addresses (4 bytes), payload (8 words), and flags (3) appear in at |east once
consequent, and most but not all appear in at least one antecedent.

LERAD isinstrumented to indicate which rule contributes the most to an alarm score.
Usually asingle rule contributes at least half of the total anomaly score, but the fraction is
occasionally aslow as 20%. We say that this arule generates the alarm or detects an attack. Of the
69 rules, 31 generate alarms that detect at |east one attack (at 100 false alarms), and 25 rules
generate at least one false alarm. These rules overlap substantially. There are 18 rulesthat detect

both attacks and false alarms, 13 that detect attacks without false alarms, and 7 that generate false
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alarms with no detedions. Of the 111 attadks deteded, 34 (31%) are deteded by "good" rules that
generate no false darms. Of the 100false darms, and 18(18%) are generated by "bad" rules that
deted no attadks. Whether aruleis good a bad does not depend on n/r, except posshly at the high
and low ends. The median rank of goodrules (on ascde of 1 to 69, with the highest n/r being 1), is
33for goodrules and 31for bad rules. However, out of the top 3ranking rules (1, 7, and 12) that
generate darms, all are good Out of the bottom threerules (62, 65, and 68), one is good and two
are bad.

The greaest number of attacks deteded by asingleruleis20. This rule has no antecedent:
"SA3=172 196 19 194 195 135192 1% (n/r = 68,9398, ranked 29th). SA3isthefirst byte of
the source|P address Such detedions are probably due to an artificially low number of client
addresses, as discussed previously, becaise it makes no dstinctions between public and private
services. Thisrule dso generates the most false darms, 18.

If we disregard detedions by source aldress then we ae left with 75 detedions by 26
rules. No rule deteds morethan 7 attacks. The deteded attadks can be grouped by the anomalous
attribute:

» Dedtination port deteds|s domain and named on port 53 (both DNS attacks), portsweep on
ports 19 (chargen) and 143 udpstorm on port 7 (echo port, which it exploits), and ftpwrite
on port 515 (printer).

» Dedtination address neptune (SYN flood) conditioned on port 520 (route), and portsweep
by acessng an unused address

» Flagl (first padket): apache2, gect, tcpreset. The first TCP flags are ACK-PSH, when they
should be SYN, indicaing a connedion open before the sniffer was garted. Probably
coincidental.

» Flag 2 (next to last padket): dosnuke by URG-ACK-PSH, queso by 1-0-SYN. Both are

attack signatures.
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5.2.3.

Flag 3 (last packet): back and netbus by the absence of FIN, ntinfoscan by RST, portsweep
and queso by FIN without ACK.

Length: apache2, back, netbus, and warez by unusually long payloads, phf by an unusually
short payload.

Duration: arppoison, back, casesen, crashiis, guest, ntfsdos, ntinfoscan, secret, teardrop.
guest (testing for a guest account) is unusually short; the others are long. ntfsdosisa
console attack that generates no traffic, but because it requires a reboot, it sometimes
resultsin hanging TCP connections. Many of the other attacks may have been detected this
way.

Payload: The most common anomaly is an empty string, omitting details irrelevant to the
attack (back, crashiis, mscan, ncftp, phf). apache2 ("User-age") and ncftp ("/etc/hos") are
detected by stringsin the exploit. mailbomb is detected by lowercase SMTP commands.
sendmail is detected by an opening "MAIL" rather than "HELO" or "EHLO". satanis
detected by an SMTP null byte. The other detections are guessftp, guesspop (bad
passwords), guesstelnet (anull byte), insidesniffer (coincidental), ipsweep, smurf (binary

data), and netcat_breakin. ("ver").

Detedion — False Alarm Tradeoff

Figure 5.4 shows the DFA curve averaged over 5 runs of LERAD with different random

number seeds. Like PHAD and ALAD, the number of detections increases rapidly up to about 100

false alarms and then levels off. However, the total number of detections at all false alarm levelsis

almost twice as high.
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Figure5.4. LERAD detection-false alarm curvefor 0 to 500 false alarms.

5.2.4. Detections by Category

Table5.1. liststhe range and average number of attacks in each category detected by the 5
runs of LERAD in the previous section. Although each run generates a different rule set, thereis
very little variation between runs. LERAD does about equally well for probes, DOS, and R2L
attacks, which are exactly those types for which a network IDS is best suited. Recall that ALAD
was poor at detecting probes, even though it examines the same data.

The poorly detected attacks (from 1999) detected by LERAD are: arppoison, dosnuke,

Is domain, ncftp, netbus, netcat, ntfsdos, perl, portsweep, queso, resetscan, sechole, sglattack,
sshtrojan, tcpreset, warezclient, and xterm. LERAD does almost as well at detecting these attacks

(52% of them are detected) as detecting attacks in general (58%).
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Attack Type Deteded — Range over 5runs Average/Total at 100 FA
Probe 2324 23.6/37 (64%)

DOS 36-39 37.8/65 (58%)

R2L 3536 35.4/56 (63%)

U2R/Data 17-22 20.6/43 (48%)

Total 114119 117.2/201 (58%)

Poorly Detected 3941 40.0/77 (52%)

Table5.1. LERAD detedions by category at 100 false alarms.

5.2.5. Implementation and Run Time Performance

LERAD isimplemented in threeparts. It first uses the same 4001ine C++ program as
ALAD to reassemble TCP. It reduces 6.9 GB of tcpdump filesinto 60MB of TCP streamsin atext
format in 17 minutes on the 750 MHz PC described in Sedion 3.5.5. The second part isa26line
Per| script that reads this data and constructs database tables of training and test instances. It runsin
5 seoonds producing 4.4 MB of training data and 17MB of test data & two text files. LERAD isa
470line C++ program that reads these tables and produces alist of dlarmsin 23 seands. Source

codeisavail able & (Mahoney, 2003b).

5.3. Summary

LERAD introduces an algorithm for finding goodrules for anomaly detedion — those with
high n/r — given atraining set. It isasignificant improvement over ALAD, which models mostly
the same atributes, but uses an ad-hoc goproach to seleding conditional rules. The LERAD

algorithm israndomized. Theideaisto generate apod of candidate rules suggested by matching
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attributes in pairs of training samples, remove redundant rulesin favor of those with high n/r, and
remove rulesthat generate false darms on an attadk-freevalidation set. LERAD was demonstrated
on network session attributes, but in theory the dgorithm could be gplied to any set of nominal
attributes. It isrobust enough to eliminate useless attributes such as date and time from the rule set.

Our implementation of the dgorithm is reasonably fast. Most of the runtimeisin reading
the 6 GB of raw padet data to reasssemble TCP streams, which takes about 10-15 minutes of mostly
disk I/O time on our 750MHz PC. The adual program, implemented in C++ and Perl, takes about
1 minute, alittl e slower than PHAD or ALAD.

LERAD has ome limitations. Oneisthat it requirestwo passes through the training data.
We cannot sample just the start of the data because the bursty nature of network traffic would make
any small window unrepresentative. This problem isunsolved. However, another limitation —
which is shared with PHAD, ALAD, and any system that uses an anomaly score of tn/r, isthat it
requires attadk-freetraining datain the first place Inredity, we must train the system on whatever
traffic is avail able, which we assume to be mostly attack free. This suggests another approach —
flagging rare but previously seen values so that if an attadk occurs during training that subsequent

instances are not completely masked.
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Chapter 6

Continuous M odeling

This chapter introduces NETAD (Mahoney, 2003a), a Network Traffic Anomaly Detector.
Unlike PHAD, ALAD, and LERAD, which detect only novel events, NETAD also classifies non-
novel events as anomalousif they are sufficiently rare and have not occurred recently. Thistype of
model is more suitable for the realistic case where we must update the anomaly model continuously
on livetraffic to keep up with changes in the network and we cannot guarantee that the training data

is attack-free.

6.1. Modeling Previoudy Seen Values

A fundamental problem in anomaly detection is modeling, or estimating the probability of
events, because it is assumed that as the probability decreases, the likelihood that the event is hostile
increases. PHAD, ALAD, and LERAD all use an anomaly score of the form 1/P;P,, where P; and P,
are frequency and time-based probability estimates, respectively. The frequency based component
is P; = r/n, the average rate of anomalies during the entire training period. (A valueisanomalousin
training when it is seen for the first time). The time based component is P, = 1/t, the average rate of
anomalies over the shortest possible history for which the rateis not O, i.e. back to the last anomaly.

We can apply the same approach to modeling values which have been previoudly observed
innormal data. If the value i occurs n; times out of n training instances, then its average frequency
isf,= n/n. Welet P; = f; be our frequency based model. If the valuei last occurred t; seconds ago,
then its average rate since that event is 1/t;. Welet P, =t; be our time based model. Combining

these as before, we let our anomaly score be 1/P;P, = ti/f; = tin/n;.
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The next problem is to combine the novel and non-novel modelsinto a single model.
Unfortunately the problem is not as smple a slecting the gpropriate model depending on whether
the event isnovel or not. We neeal to know the asolute (not relative) probability of novel events ©
that the two models can be weighted appropriately. This problem, known as the zero frequency
problem has been studied extensively in the data compresson literature (Bell et al., 1989; Witten &
Bell, 1991). For frequency-based models (where events are asumed to be independent), a common
approach isto add some small value € > 0 to the observed counts, i.e. P; = (n; + €)/(n + Re) for some
small constant, € > 0, and Ris an estimate of the (possbly unknown) size of the set of posshle
values. For € = 1, we have Laplaceés estimate, which assumes a-priori auniform distribution over
all posshble probability distributions of a random variable with R posgble values. However, Cleay
& Teahan (1995 found that small er values of € often gve better predictions for many types of data.
Some of the best compression programs, such as PEMD (Shkarin, 2002 and RK (Taylor, 2000)
adapt the novel event probabili ty to the data using second level modeling.

A second approach is to maintain two models, one for novel events (n; = 0), such as score
= tn/r, and another model for non-novel events (n; > 0), such as score = t/f. This approach requires
that the two models be gpropriately weighted acardingto the novel event probability. Ata
minimum, we should ensure that if avaluei occurs a secondtime, it should receve alower anomaly
score than if it occurs for the first time. This means that we should choase aweight W such that
WAn/r > ti/f; = tin/n; = tin when n; = 1. Fadoring n, we have the requirement Wt/r > t;. Now if thisis
a"good" rule (which we aan distinguish from "bad" rules by using an attack-freevali dation set as
with LERAD), then all of the possble valuesin normal traffic will be seen ealy in thetraining
period, which impliest =~ n (using unit time per instance). Also, if there aer posdble values and
these ae distributed fairly uniformly (true for "good" rules), then on average, each valueis seen
with probability 1/r, so t; = r on average. Making these substitutions into Wt/r > t;, we now have the

requirement Wh/r > r or W> r%n. Whiler¥nissmall for "good' ruleswherer issmall, it may not
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be for "bad" rules, which as we discussed in Section 2.2, are quite common in real traffic. In
particular, we have t << n (recent novel events), t; >>r (non-uniform distribution of values, e.g.

Zipf), and larger, all of which tend to make Win/r < t/f; unless Wis sufficiently large.

6.2. NETAD

NETAD isanetwork traffic anomaly detector. It models single packets like PHAD, uses
ad-hoc conditional rules like ALAD, and rule validation like LERAD. Its main contribution isin
modeling non-novel values.

NETAD uses two stages, afiltering stage to select the start of inbound client sessions, and
amodeling phase. The attributes are ssimply the first 48 bytes of the | P packet, which are considered
to be nominal attributes with 256 possible values. For most packets, these attributes include all of
the header information and a portion of the application payload. For normal TCP data packets, there
are 40 bytes of header information and the first 8 bytes of payload. TCP streams are limited to
packets containing the first 100 bytes, which is normally one data packet, so under normal
circumstances NETAD only sees what would be the first 8 bytes of the TCP stream if it were
reassembl ed.

The filtering stages removes 98% to 99% of the traffic, greatly reducing the load on the
modeling stage and passing only the type of traffic most likely to contain evidence of attacks, i.e.
unsolicited inbound traffic. We assume that attacks can be detected quickly, using only the first few
packets of along session. Thus, filtering removes the following packets:

*  All non-IP packets (e.g. ARP), because an alarm needs an | P address to identify the target.
» All outgoing packets.
* All TCP streamsthat begins with SYN-ACK (i.e. the response to alocal client).

»  UDP packetsto port number higher than 1023 (i.e. the response to alocal client).
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TCP packets with sequence numbers more than 100 past the initial sequence number (i.e.
after the first 100 bytes of incoming client data).
Packets addressed to any address/port/protocol combination (TCP, UDP, or ICMP) after

the first 16 packetsin 60 seconds (to limit bursts of UDP or ICMP traffic).

The last two filters use hash tables of size 4K to look up destination addresses, ports, and protocols.

This fixed-memory design thwarts memory exhaustion attacks against the IDS, but a small number

of packets may be dropped due to hash collisions. Ideally, the hash function would need to be secret

(selected randomly) to prevent collisions from being exploited in an evasion attack.

The second stage of NETAD models nine types of packets, for atotal of 9 x 48 = 432 rules.

The rules have the same form asin LERAD, in that the antecedent is a conjunction of conditions of

the form attribute = value, where each attribute is one packet byte. The nine models represent

commonly used (and commonly exploited) protocols. The rules were selected because they give

good results experimentally.

All IP packets (no antecedent).

All TCP packets (if protocol = TCP (6))

TCP SYN (if TCP and flags= SYN (2))

TCP data (if TCP and flags = ACK (16))

TCP datafor ports 0-255 (if TCP and ACK and DP1 (destination port high byte) = 0)
telnet (if TCP and ACK and DP1 = 0 and DPO = 21)

FTP (if TCP and ACK and DP1 = 0 and DPO = 23)

SMTP (if TCP and ACK and DP1 = 0 and DPO = 25)

HTTP (if TCP and ACK and DP1 = 0 and DPO = 80)

The anomaly score assigned to a packet is the sum of the anomaly scores reported by each of the

432 rules. Individual rules can be scored in several ways.
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1. Novel valuesonly. Score =tn/r, wheret isthe time (padet court, training or test) sincean
anomaly was last observed for thisrule, n isthe number of training padets satisfying the
antecedent, and r is the number of values sen at least oncein training (1 to 256).

2. Vadlidation weighed novel values. Score = tn,/r, where n, is the number of padets
satisfying the antecadent from the last training anomaly to the end of training. This hasthe
effect of giving greder weight to rules that generate no false darms nea the end of
training, but without introducing a parameter asin LERAD. In LERAD, thistechnique
was found to have the same effed as using the empiricaly determined optimal size
validation set (10%).

3. Fast uniformity detedion. Score = tn,(1—r/256)/r. Thisgiveslessweight to rulesthat
generate most of the 256 passble byte values, which has the dfect of discovering and
removing uniform distributions more quickly.

4. Non-novel values. Score = tin/(n; + 1), wheret; isthe time (padket count, training or test)
sincethe value i waslast seen, and n; isthe number of timesi was ®enintraining. It
reducesto t;n for novel events and ti/f; (with a Laplace gproximation of f;) for non-novel
events.

5. Weighed model. Score = tin/(n; + r/W), where W = 256is an experimentally determined
weight emphasizing novel events. It reduces to Wn/r for novel events and approximately
t/f; for non-novel events.

6. NETAD combined model. Score = tny(1 —r/256)/r + tin/(ny + r/W), combining scoring

functions 3 and 5.

6.3. Experimental Results

NETAD was first tested on the same data & PHAD, ALAD, and LERAD, trained oninside

sniffer week 3 and tested on weeks 4-5 (177 detedable dtacks) of the 1999IDEVAL data set. It
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was evaluated at false darm rates from 20to 500(2 to 50 per day) using EVAL3 with alarm
consolidation for ead of the six anomaly scoring functions described in Sedion 6.2. Because we
know from the PHAD experiments that the TTL field contains a simulation artifact, it was removed
from NETAD.

Theresultsare shown in Table 6.1. The combined scoring function (6) deteds the most
attacks at 100false darms, but either of the two components (3 or 5) dowell by themselves. The
weighted function (5) gives better results than any model that considers only novel events,
espedally at low false darm rates. Rule validation improves the results smewhat. Fast uniformity

detedion has a small benefit.

NETAD scoring function 20FA 50 FA 100 FA 500 FA
1. tn/r (novel values only) 56 78 104 141
2. tny/r (novel values with validation) 57 89 118 149
3. thy(1—r/256)/r (fast uniformity detedion) 60 92 120 149
4. tin/(n; + 1) (non-novel values) 33 52 81 130
5. tn/(n; + 1/256) (weighted) 78 115 127 142
6. tny(1—r/256)/r + tin/(n; +r/256) (3 +5) 66 97 132 148

Table6.1. Attacksdetected by NETAD at 20 to 500 false alarmsfor each of six scoring

functions.

NETAD isinstrumented to indicae dl bytesthat contribute to at least 10% of the total

anomaly score. Out of 132 attadks deteded using combined scoring function 6 at 100false darms,

the number of attadks and false darms deteded by ead field is distributed as follows. The total
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attacks is more than 132 because some attacks are detected by more than one field. Detections that
do not appear to be "legitimate" are marked with an asterisk.

»  Source address: 72 (anypw*, apache2*, arppoison, crashiis*, gject*, ffbconfig*, guessftp,
guesstel net, guesspop, guest, imap*, insidesniffer*, ipsweep*, Is domain*, mailbomb*,
ncftp*, netbus*, netcat_setup*, perl*, pod*, portsweep*, ppmacro*, processtable, ps*,
satan, sechole*, secret*, smurf, sglattact*, sshtrojan, syslogd, tcpreset*, warez*,
warezclient*, xlock, xsnoop, xterm*, yaga*), 43 false alarms.

»  Packet size/TCP header size: 21 (back*, land, named*, pod, portsweep, queso, smurf), 10
falseaarms.

» Application data: 20 (back, land, named, neptune, portsweep, queso, sendmail, udpstorm),
16 false alarms.

*  TCPwindow size: 18 (apache2*, casesen*, Is_domain*, neptune, netcat, netcat_breakin*,
ntinfoscan, phf*, portsweep, resetscan), 13 false alarms.

» Dedtination address. 11 (guesstelnet, mscan, ncftp, netbus, perl*, portsweep, xterm*), 8
falseaarms.

» |Pfragmentation: 8 (insidesniffer*, pod, teardrop), 9 false alarms.

» TCPflags: 5 (portsweep), 3 false alarms.

» Dedtination port: 4 (guesspop, imap, Is_ domain), 1 false alarm.

» Urgent data: 4 (dosnuke), O false alarms.

 TOS: 2 (ftpwrite*), 3 fasealarms.

e Source port: 6 false alarms.

*  TCP checksum (not computed), 1 false alarm.

Aswith ALAD and LERAD, the majority of detections are by source address, and many of these
attacks are on public services and would probably be missed if the background traffic simulated the

distribution of remote client addresses more realistically. TCP window size and TOS also appear to
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be simulation artifacts, similar to TTL, in that many of the detected attacks manipulate only higher
level protocols. The detection of insidesniffer is probably coincidental.

Nevertheless, there are many detections that we could consider legitimate. For example,
sendmail is detected because the SMTP payload starts with "MAIL" instead of "HELO" or "EHLO".
dosnuke, which exploits a NetBIOS bug in handling urgent data, is detected by the urgent pointer
field. portsweep is detected by TCP flags (FIN scan, no ACK), destination address (probing
inactive addresses), unusually small packet sizes (ho TCP options, which are usually present in a
SY N packet), and window size (set to an arbitrary value by the attack code). Evenif some of these
anomalies are masked by background traffic, there are enough anomalies to make some detections

likely.

6.3.1. Detections by Category

Table 6.2 lists the attacks detected by NETAD (scoring function 6) by category. NETAD
scores lowest in detecting U2R attacks, which isto be expected for anetwork IDS. Like PHAD,
which also models single packets, NETAD scores highest for probes.

The poorly detected attacks from the 1999 evaluation detected by NETAD are: arppoison,
dosnuke, ipsweep, Is_domain, ncftp, netbus, netcat, perl, portsweep, queso, resetscan, sechole,
sglattack, sshtrojan, tcpreset, warezclient, and xterm. Like PHAD, ALAD, and LERAD, NETAD

scores dightly lower for these attacks, detecting 57% of them, compared to 66% in general.
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Attack Type Deteded/Total at 100false alarms
Probe 32/37 (86%)

DOS 43/65 (66%)

R2L 38/56 (68%)

U2R/Data 19/43 (44%)

Total 132/201 (66%)

Poorly Detected in 1999 evaluation 44177 (57%)

Table6.2. NETAD detedions by category.

6.3.2. Detedion — False Alarm Tradeoff

Figure 6.1 showsthe DFA curve for NETAD using scoring function 6. Aswith PHAD,
ALAD, and LERAD, the number of detections rises rapidly up to around 100 false alarms, then

tendsto level off.
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Figure 6.1. NETAD detedionsat 0to 500 false alarms.
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6.4. Unlabeled Attacksin Training

The purported benefit of modeling non-novel valuesisthat it is more gpropriate for a
redi stic environment where we ladk attadk-freetraining traffic and where network statistics change
over time. Inthiscase, we train and test smultaneously —we use dl of the past traffic up to the
previous padket to train the anomaly model being wsed to evaluate the aurrent packet. After
evaluation, we add this packet to the training model. This method should be lesseffedive &
deteding attadks because dtacks are added to the "normal" training model, masking similar attadks
in the future. Also, attadks near the beginning of the data ae likely to be missed becaise the model
is not sufficiently trained.

To test these two effects sparately (masking and undertraining), we first ran NETAD
(using each of the six scoring functions) on weeks 3, 4, and 5 as before, but left NETAD intraining
mode throughout the entire period, while continuingto output alarms during the atack period
(weeks 4 and 5). Thisteststhe masking effed. Seoond, we ran NETAD on weeks4 and 5 anly,
with no training data prior to the start of the atack period. Thistests the undertraining effect in
addition to masking. This mode is the most redistic scenario.

For both modes, we measured the number of attadks deteded at 100false darms. These
are shown in the columns labeled W3-5 (training on weeks 3-5) and W4-5 (training on weeks 4-5).
For comparison, we show the original results from the previous edion where we trained NETAD
on week 3 and frozethe model (W3).

For al six scoring functions, masking and undertraining result in fewer detedions than W3.
The percent difference averaged over 20, 50, 100, and 500 false darmsis shown in the two columns
labeled D3-5 and D4-5. For example, using scoring function 6, NETAD in mode W3 deteds 66, 97,
132 and 148 attacks at 20, 50, 100, and 500false alarms, respedively (seelast row of Table 6.1).
In mode W3-5, it deteds 47, 80, 111, and 120 attacks at these levels. Thisis71%, 82%, 84%, and

81% (average 79.5%) as many attacks in mode W3-5 as mode W3. In mode W4-5, NETAD deteds
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41%, 55%, 58%, and 78% (average 58%) as many attacks asin mode W3. The results for all six

scoring functionsis shown in Table 6.3.

NETAD scoring function W3 W35 | D3-5 | W4-5 | D4-5
1. tn/r (novel valuesonly) 104 88 83% 65 64.5%
2. tny/r (novel values with validation) 118 84 74% 67 5%
3. thy(1—r/256)/r (fast uniformity detedion) 120 94 755% | 71 58.5%
4. tin/(n; + 1) (non-novel values) 81 77 985% | 41 5%
5. tn/(n + 1/256) (weighted) 127 82 85% | 82 69%
6. tna(1—r/256)/r + tn/(n; + r/256) (3 +5) 132 111 | 795% | 76 58%

Table6.3. NETAD attacks detected by scoring function in weeks 4-5 at 100 false alarms when
trained on week 3 (W3), weeks 3-5 (W3-5), or weeks 4-5 (W4-5). Percentage of attacks
detected in modes W3-5 (D3-5) or W4-5 (D4-5) compar ed to mode W3 averaged over 20, 50,

100, and 500 false alar ms.

From Table 6.3 we seethat the masking effed (D3-5) and combined masking and
undertraining effeds (D4-5) are more severe for scoring functions 1, 2, and 3 (novel values only)
than scoring functions 4 and 5 (novel and non-novel modeling). Thisisthe behavior that we exped,
given our assumption that modeling ron-novel valuesis more gpropriate for continuous training.
Infad, in the ésenceof attack-freetraining data (W4-5), function 5 beds the combined function 6,
of which it isa component, just asit did for low false darm ratesin W3.

Another effect of continuoustraining is that rule validation (function 2) hurts rather than
helps (compared to function 1). The ideaof validation isto reducethe dfeds of rulesthat generate

false darms during an attack freevalidation period, but this makes no sense when such datais
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lacking because we might instead be removing arule that detects a genuine attack. 1ndeed, during

training, N, = t, so scoring function 2 isreally t4r.

6.5. Implementation and Run Time Performance

NETAD isimplemented as two programs, a 200 line C++ program to filter packets, which
isinput to NETAD, a290 line C++ program. The filter program reads 6.9 GB of tcpdump files
(inside weeks 3-5) in about 15 minutes on the 750 MHz PC described in Section 3.5.5. It outputs 37
MB of training data and 72 MB of test data as new tcpdump files. NETAD reads these files and

outputs alist of alarmsin 30 seconds. Source code is available at (Mahoney, 2003b).

6.6. Summary

NETAD introduces a model which can be used in an environment where attack-free
training data is not available and the model is trained continuously to keep up with changing
statistics while simultaneously detecting attacks. One way to accomplish thisis by adding a
component of the form t;/f; for non novel valuesi, wheret; isthe time since it was last seen and f; is
the average frequency so far. For novel values, we can use Wtn/r, where W is aweight (we used
256), n isthe number of instances satisfying the rule antecedent, and r is the number of values
observed at least once. Thiswas approximated by scoring function 5, which resultsin more
detections on the IDEV AL test data than the other five scoring functions we tried, including tn/r. It
is also more resistant to the masking and undertraining effects caused by the lack of attack-free
training data.

Analysis of the detected attacks rai ses some nagging questions about the validity of the
IDEVAL dataand the four systems we tested on it. Some attacks seem to be detected by legitimate
features of the attack, while others seem to be detected by simulation artifacts. We address these

guestions in the next chapter.
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Chapter 7

A Comparison of Simulated and Real

Network Traffic

In chapters 3 through 6 we evaluated PHAD, ALAD, LERAD, and NETAD on the
IDEVAL dataset. Aswe mentioned in Section 2.4, the background network traffic on which these
systems are trained is synthesized. It isdifficult to do thisright (Floyd & Paxson, 2001). Anomaly
detection evaluation depends critically on the accuracy of this background traffic becauseit is used
to construct amodel of "normal”. Although great care was taken to ensure that the datais realistic,
our detailed analyses of detected attacks suggests that some simulation artifacts may have crept in.

*  PHAD detects more attacks by the TTL field than any other (until we removed the rule).

Most of the anomalous TTL values are smaller by 1 than the trained values. According to

the technical report describing the traffic synthesis (Haines et al., 2001), hostile and

background traffic was generated on two different real machines simulating the same IP
address. Although the exact configuration was not described, our observations are
consistent with a configuration in which the attack simulator was further from the sniffer
by one router hop than the background simulator.

« ALAD, LERAD, and NETAD detect alarge number (about half) of attacks by source
address anomalies. These include attacks on public services (web, mail, and DNS), where

novel addresses are to be expected. According to the technical report, simulated client

83



traffic was generated by randomly selecting one of only 10 IP addresses. This number is
clearly unrealistic.
 ALAD and LERAD detect many U2R attacks because an anonymous FTP server was used
to upload the exploit code, and no uploads ever occur in training.
» NETAD detects several attacks by anomalies by packet size, TCP header size, and TCP
window size fields, including some application protocol exploits which should not affect
these fields.
*  PHAD detects no IP, TCP, UDP, or ICMP checksum errorsin over 12 million packets of
training data.
Indeed, it issurprisingly easy to detect attacksin the IDEV AL data using anomaly detection. In
(Mahoney & Chan, 2003) we describe a simple anomaly detector called SAD that examines only
one byte of inbound TCP SY N packets and outputs an alarm (with score = 1) when it observes a
value never seen in training (limited to one alarm per minute). When trained on the 1999 IDEVAL
inside sniffer week 3 and tested on inside weeks 4 and 5, SAD detects 71 out of 177 attacks with 16
false alarms by examining just the low order byte of the source address. This result is competitive
with the top systemsin the original 1999 evaluation, some of which used a combination of signature
and anomaly detection techniques on both host and network data. Many different SAD bytes give
good results, in particular the other source address bytes, TTL, |P packet size, TCP header size, TCP
window size, TCP options, and the high byte of the source port. Many of the detected attacks are
application protocol exploits or U2R attacks, which should not influence these values. Similar
results can be obtained when SAD istrained on attack-free traffic in week 1 and tested on a subset
of the evaluation attacks in week 2, data which was provided in advance to the eight original
IDEVAL participants in order to develop their systems.

We address the problem of possible simulation artifacts by collecting real traffic from a
university departmental server and injecting it into the IDEVAL data. We use this approach rather

than creating a whole new data set because it allows usto use therich set of labeled attacks rather
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than simulate new ones. Most of these attacks use actual exploit code available from published
sources and real target machines running real software. Thus, the attacks should not be subject to
the same kind of simulation artifacts as the background traffic. Our approach isto "fix" the training
and background traffic by making it appear asif the real server and the real Internet traffic visible to
it are part of the IDEVAL network. When necessary, we modify the IDS to ensure that it is unable
to defeat this mixing by modeling the simulated and real traffic separately. To test whether this
strategy is successful, we evaluate the attacks detected by the modified IDS for legitimacy on mixed
traffic compared with simulated traffic.

This chapter is organized as follows. In Section 7.1 we describe the environment from
which the real traffic was collected. In 7.2 we analyze the real data and compare it with the
simulated IDEVAL training data. I1n 7.3 we describe how the mixed evaluation data set is
constructed. In 7.4 we describe how PHAD, ALAD, LERAD, and NETAD are modified to force all
of the rulesto be trained on real data. In 7.5 we compare these systems on the simulated and mixed
evaluation data sets. In 7.6 we conclude. Most of the work described in this chapter is from

(Mahoney & Chan, 2003).

7.1. Traffic Collection

Our goal was to collect network traffic from an environment similar to the IDEVAL
network, but practical considerations raise many barriers. Sniffing traffic on a network used by
others without their knowledge raises many privacy and security issues. A sniffer captures email,
web surfing habits, and passwords of unsuspecting users. Obtaining permission to collect data
limits our choice of environments. A sniffer also raises performance issues, asit can collect huge
amounts of data, which must be stored securely. Care must be taken that the sniffer does not also
generate traffic visible to itself, for example by storing the data on aremote host viaFTP or NFS

while the sniffer is active.
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7.1.1. Environment

We collected traffic from a university departmental server, www.cs.fit.edu. Likethe

IDEVAL network, the server is connected by Ethernet to a number of local machines and to two

routers, oneto alarger local area network (eyrie.af.mil or fit.edu) and another router to the Internet.

The server isa Sun running Solaris, like the victim host pascal in IDEVAL. The server hosts a

website with several thousand pages maintained by several faculty members via UNIX shell

accounts. Thereisalso an SMTP server for sending mail and POP3 and IMAP serversfor receiving

mail. In all these respects, the server resembles the victim hosts on the IDEV AL network (although

pascal does not run aweb server). However there are many differences.

The real traffic was collected in 2002, as opposed to 1999. During thistime new operating
system, server, and client versions were released, new protocols were introduced, and
others updated.

Security istighter. Our server runs behind afirewall, unlike the IDEVAL network. Also,
there is no telnet server. Communication is by SSH and secure FTP. (However POP3 and
IMAP passwords are not encrypted).

Our server ison an Ethernet switch rather than a hub. Only traffic addressed to the server
(other than multicast or broadcast) isvisible.

Some remote | P addresses are dynamically assigned using DHCP and may change daily.
All IP addressesin the IDEVAL network are static.

The real traffic contains many protocols not present in the IDEVAL background traffic.
Among these are undocumented network protocols (in addition to |P and ARP), the
transport protocols OSPFIGP, IGMP and PIM (in addition to TCP, UDP, and ICMP), and
application payloads such as NFS, RMI, portmap, and several othersthat do not use well

known port numbers.
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Another problem isthat red training/background data may contain unlabeled attadks. In one
informal experiment using the author's dialup Windows PC, probes (usually to asingle port) were
ohserved about once per hour, arate higher than in the IDEVAL test data. The server firewall
undoubtedly filters many probes, but cannot block attadks on open ports. We found (by manual
inspedion) about 30 suspicious HT TP requests in 600 hours of traffic. Two of these ae shown

below.

GET / MSADC/ root . exe?/c+dir HTTP/ 1.0

Thisisaprobe for abadkdoa dropped by the Code Red worm.

CGET /scripts/..%55¢c%255c../w nnt/systenB2/cnd. exe?/c+dir

This probe appeasto exploit aURL deadingbuginIIS. The string"%25" decodesto "%". A
seond deaoding of "%5c¢" decodesto "\" which Il Streasthe same a&"/". Furthermore, Windows
treadsadouble slash (e.g. .\\..) like asingle dlash (..\..). Of course, this exploit has no effect ona

UNIX machine.

7.1.2. Data Set

We mlleded daily traces coll ected from Sept. 30 through Dec. 13, 2002. Each traceis
2,000,000 padkets, starting at 12:01 AM locd time and ending about 10to 15hours later. Padets
aretruncated to 200 kytes. For our analysis, we used only traffic collected on Monday through
Friday (like IDEVAL) for the 10 weeks from Sept. 30 through Oct. 25 and Nov. 4 through Dec. 13.
We skipped one week because no data was avail able on one of those days.

To reducethe dataload in our analyses, we filtered the data set using the first stage of

NETAD, asdescribed in Sedion 6.2. This preserves only the beginning of inbound client to server
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requests, which isthe traffic of most interest. Thisfiltering reduces the data from 100,000,000
packets to 1,663,608 packets (1.6%). Similar filtering on IDEVAL inside week 3 reduces the data
from 12,814,738 packets to 362,934 packets (2.8%). The differencein datareduction is due mainly
to alower percentage of UDP in the real traffic. For our analysis, we use both attack-free weeks 1

and 3 from the inside sniffer, which contain atotal of 658,801 packets after filtering.

7.2. Comparison with Real Traffic

We are interested in evaluating the realism of the background traffic in the IDEVAL data
set with respect to our anomaly detection algorithms. For agorithms that use a scoring function of
tn/r for novel values (e.g. PHAD, ALAD, and LERAD), there are at least four conditions under
which our algorithms would seem to work well using the IDEVAL data but then fail in practice,
assuming that the attack simulations arerealistic. These are asfollows:

1. A vauethat isanomalousin simulation appearsin real background traffic, resulting in the
detection being missed.

2. The number of training instances, n, issmaller in rea traffic due to insufficient training
data

3. Thenumber of values observed in training, r, islarger in real traffic due to greater variation
in the protocols.

4. rgrowsat afaster ratein rea traffic due to changing network statistics or insufficient
training time to observe all possible traffic sources, resulting in more false darms. If the
algorithm uses rule validation, this would instead result in more "bad" rules being
discarded.

In addition, algorithms that model non-novel values using t/f; = tin/n; (e.g. NETAD) could be
affected by smaller n (condition 2), or larger n; (higher frequency of anomalous value i in normal

traffic, similar to condition 1).
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We can measure n and r (conditions 2 and 3) using any of our anomaly detection
algorithms. In addition, alarge value of r would imply that fewer values are likely to be reported as
anomalies (condition 1), and could imply a faster growth rate of r (condition 4). However, the
growth rate can be approximated more accurately if we measure it near the end of the training
period. We define three statistics that estimate the rate of growth of r.

* ryisdefined the fraction of values (out of r) that occur exactly onceintraining. ryisa
Good-Turing estimate of the probability that the next value will be novel (i.e. afalse
alarm), assuming that each value isindependent. If thisis not the case (e.g. for bursty
traffic with long range dependencies), then ry is an underestimate.

* ryisdefined the fraction of values (out of r) seen for the first timein the second half of the
training data. Thus, the probability of a novel value over this period is estimated at 2r,

* ryisdefined asthe fraction of training time needed to observe half of all the values.

For example, given the sequence ABCDAB, thenn=6,r =4, r; =2/4=0.5(C and D occur once),
rn = 1/4 (D occurs only in the second half), and r, = 1/3 (the time to observe 2 of the 4 values, A and
B). Ingeneral, "good" rules have large n, and small r, ry, r,, and r. The distribution of values can be
learned quickly, and it does not change over time. |If the values have a Zipf distribution (whichis
often the case), then thisisa"bad" rule. Inthe worst case, r grows at a constant rate, indicated by ry,
=r;=n/2. Thesetwo cases areillustrated in Figure 7.1. If aruleis"bad", it will either generate a
lot of false alarms or be removed by rule validation. 1f not removed, it will likely miss some attacks
(because the value is more likely to be seen in training) or generate a smaller anomaly score
(because n/r issmaller).

In all of our measurements, we use packet count in lieu of real timeto calculater, and .
This removes any bias due to gaps between traces in either the simulated or real data. For example,
to calculate r,, we count all values that occur for the first timein the last 329,400 out of 658,801

simulated packets. The datain Section 7.2 also appearsin (Mahoney & Chan, 2003).
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Figure7.1. Growth in the number of unique values(r) over timefor " good" and "bad" rules
with the samen and r. Small values of ry, (new valuesin the second half of training) and r,

(timeto learn half the values) areindicators of good rules.

7.2.1. Comparison of All Filtered Packets

We first compare the training traffic (inside sniffer weeks 1 and 3) with the 10 week data
set, both after filtering. In most of the attributes we examined, the rate of anomaliesis higher in the
real traffic, asindicated by higher values of r, ry, ry, and r; (listed as four consecutive valuesin Table
7.1), even after taking into account the larger n of thereal dataset. Wherethe differenceis
significant (a somewhat subjective judgment), the higher values are highlighted in italics. These
fieldsinclude the Ethernet source address, TTL, TOS, TCP options, UDP destination port, and

ICMP type.
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I ry, e,

Simulated

Real

Ethernet source aldress

8, 0, 0, .00001

76, .01, .11, .03

|P source aldress

1023.26, .71, .73

27632, .08, 53,53

I P destination address 32,0, 0, .0002 1,0,0,0

TCP header size 2,0, 0, .000003 19, .16, .05, .024
ICMP types 3,0,0, 001 7,.14, 14, 16
TTL 9,0,.1,.00002 177, .04, .12, .023
TOS 4,0, 0, .0003 44, .07, .64, .53

TCP destination port

8649, .35, .66, .65

32855,.001, .002, .3

TCPflags 8, 0, 0, .00002 13, 3, 0, .00009
TCP options 4 hytes 2,0, 0, .00002 104, .22, .31, .18
UDP destination port 7,0,0,.0001 31, .52, .55, 45

Table7.1. Comparison of r, ry, ryp and r; for nominal attributes of inside sniffer weeks1 and 3

(simulated) with 10 weeks of real traffic after filtering (real).

The following binary events occur only in the red traffic (Table 7.2): fragmented |P
padkets (with the "don't fragment” flag set), TCP and ICMP ched<sum errors, nonzero hitsin TCP
reserved fields and reserved flags, and nonzero data in the urgent pointer when the URG flag is not

set. These events are present even after removing TCP padets with bad chedksums.
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Per cent Simulated Real
Packets n=658801 n=1663608
IP options None None

IP fragments 0 0.45%
Dont fragment (DF) 52% set 90% set

DF set in fragment No fragments 100% bad
IP chedksum No errors No errors
TCP chedksum No errors 0.017% bad
UDP chedksum No errors No errors
ICMP chedksum No errors 0.020% bad
TCP reserved flags Always 0 0.093% bad
TCP reserved field Always0 0.006% bad
Urgent data, no flag None 0.022% bad

Table 7.2. Comparison of binary attributes of inside sniffer weeks 1 and 3 (simulated) with 10

weeks of real traffic after filtering (real).

For al continuous attributes (Table 7.3.) we measured, the range is higher in red traffic.

Thisincludes padket size, UDP payload size, TCP header size, urgent pointer, and window size

However it isdifficult to judge the significance of these diff erences based on range done.
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Range Simulated Real

|P packet size (38-1500) (24-1500)
TCP window size (0-32737) (0-65535)
TCP header size (20-24) (20-48)
Urgent pointer (0-1) (0-65535)
UDP packet size (25-290) (25-1047)

Table 7.3. Comparison of continuous attributes of inside sniffer weeks 1 and 3 (simulated)

with 10 weeks of real traffic after filtering (real).

Most attributes are less predictable in real traffic than in ssmulation. However the situation
is opposite for TCP ports. The rate of novel valuesislower inthe real traffic. Most of the
simulated TCP ports are high numbered FTP data ports negotiated during FTP sessions. The real

traffic has a much lower rate of FTP sessions. Also, some real ports may be blocked by the firewall.

7.2.2. Comparison of TCP SYN Packets

In Table 7.4 we compare inbound TCP SY N packets in the simulated and real traffic. This
exposes some potential artifacts that were not apparent in the larger set of all filtered packets. The
most striking differenceisin IP source addresses. The number and rate of novel addressesis
thousands of times higher in real traffic than in simulation. Thisis not the case when UDP and
ICMP traffic (or outbound TCP) isincluded.

Other differences include TCP options (which determine packet size and TCP header size)
and window size. Every inbound TCP SY N packet uses the exact same four TCP option bytes,
which set the maximum segment size (MSS) to 1500. In redlity, the number of options, their order,

and the option types and values varies widely.
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Window size (used to quench return traffic) is allowed to range from 0 to 65535. The full
range of valuesis seen only in real traffic. Simulated traffic is highly predictable, always one of
severa values. A differencein rangeis also observed in source ports (selected randomly by the
client) and high numbered destination ports (often negotiated). One other type of anomaly seen

only inreal traffic is a nonzero value in the acknowledgment field, even though the ACK flag is not

Set.
Attribute Simulated Real
Packets, n 50650 210297 + 6 errors
Source addressr, rq, I, I't 29, 0, .03, .001 24924, .45, 53, .49
Dedtination address, r 17 1(163.118.135.1)
Source port, r 13946 (20-33388) 45644 (21-65534)
Dedtination port, r 4781 (21-33356) 1173 (13-65427)
IP packet size, r 1 (44, 4 option bytes) 8 (40-68)
TCP options, r 1 (MSS=1500) 103 infirst 4 bytes
Window size, r 7 (512-32120) 523 (0-65535)
TCP acknowledgement Always0 0.02% bad

Table 7.4. Comparison of simulated and real inbound TCP SYN packets (excluding TCP

checksum errors).
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7.2.3. Comparison of Application Payloads

We compare HTTP requests in the simulated data (weeks 1 and 3) with 10 weeks of real
traffic. Because the real packets were truncated to 200 bytes (usually 134-146 bytes of payload), we

examine only the first 134 bytesin both sets. Table 7.5 summarizes the differences we found.

Inbound HT TP Requests Simulated Real
Number of requests, n 16089 82013
Different URLs requested, r, r; 660, .12 21198, .58
HTTP versions, r 1(1.0) 2(1.0,11)
Commands (GET, POST...), r 1(GET) 8

Options, r 6 72
User-agents, r, ry 50 807, .44
Hosts, r 3 13

Table 7.5. Comparison of HTTP requestsin smulated traffic (inside weeks 1 and 3) and 10

weeks of real traffic.

There are two simulated web servers (hume and marx). However, the one real web server
receives more traffic and has more web pages. The distribution of real URLsis approximately Zipf,
consistent with findings by Adamic (2002). A characteristic of a Zipf distribution isthat about half
of all values occur exactly once. The simulated URL s are distributed somewhat more uniformly.
Many of the singletons are failed requests which were simulated by replacing the last 4 characters of
the file name with ox (e.g. "GET /index.xxxx HTTP/1.0").

Thereis ahuge disparity in the number of user-agents (client types). The simulated traffic

has only five, al versions of Mozlla (Netscape or Internet Explorer). Rea web serversare
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frequently acessed by seach engines and indexing services. We found the top five user-agentsin
thered datato be (in descending order) Scooter/3.2, googlebot/2.1, ia_archiver, Mozlla/3.01, and
http: //imww.almaden.ibm.com/cs/crawler. They also have aZipf distribution.

The only simulated HTTP command is GET, which requests aweb page. Thered traffic
has 8 dfferent commands. GET (99% of requests), HEAD, POST, OPTIONS, PROPFIND, LINK,
and two malformed requests, No and tcp_close,. Thereis also a much wider variety of options,
although some of these ae dueto the introduction of HTML/1.1. Neverthelessthereiswide
variation in capitali zation and spadng. In the simulated traffic, HTTP options invariably have the
form Keyword: value, with the keyword capitali zed, no spacebefore the colon and one space
afterwards. Thisis usually but not alwaysthe aseinred traffic. Furthermore, we occasionally
find spelli ng variations, such as Referrer: (it is normally misspelled Referer:) or the even more
bizarre Connnection: with threen's. Some keywords are dearly malformed, such as XXXXXXX: or
~~~~~~~ .. A few requests end with alinefeed rather than a cariage-return and linefeed as required
by HTTP protocol. Finally there ae some requests which are dealy suspicious, as mentioned
previously.

We look only briefly at SMTP (mail) and SSH (secure shell). These ae the only other
TCP application protocols besides HTTP that exist in sufficient quantity in both data setsto doa
useful comparison. Like HTTP, we onceagain find that red traffic is "messy", high in benign

anomalies. Table 7.6 summarizes the results.

96



Inbound Request Simulated Real
SMTP requests, n 18241 12911
First command, r 2 7

HELO hosts, r, ry 3,0 1839, .69
EHLO hosts, r, ry 24, .04 1461, .58
No initial HELO or EHLO 0 3%
Lower case commands 0 0.05%
Binary datain argument 0 0.1%
SSH requests, n 214 666

SSH versions, 1, ry 1,0 32,.36

Table 7.6. Comparison of inside sniffer weeks 1 and 3 with 10 weeks of real inbound SMTP

and SSH requests.

A normal SMTP session starts with HELO or EHL O (echo hello), but these are optional.
In the simulated traffic, every session starts with one of these two commands. However, about 3%
of real sessions start with something else, usualy RSET, but also QUIT, NOOP, EXPN, or
CONNECT. About 0.2% of real commands are lower case. One command (EXPN root) is
suspicious.

The number of simulated remote hosts sending and receiving mail (argumentsto HELO
and EHLO) isclearly unredlistic. Thisisalso reflected in the small number of source IP addresses
ingeneral. The simulated traffic has one malformed command, an EHLO with no argument. The

real traffic does too, and a variety of other malformed arguments, including binary strings (1-21
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bytes, probably too short to be a buffer overflow). The host name arguments are roughly Zipf
distributed, with over half appearing only once.
An SSH session opens with the client version string. The simulated traffic usesasingle

client version. Inreal traffic there are many versions, again Zipf distributed.

7.3. Summary

In this chapter we collected real network traffic and compared it with the simulated training
and background traffic inthe IDEVAL dataset. We concluded that many attributes have a wider
range of values (r) in real traffic, and that the range grows more rapidly. This meansthat an
anomaly detection system will learn many more "bad" rulesin real traffic. Thisshould resultin
masked detections, lower anomaly scores, and higher false alarm rates, or if rule validation is used,
fewer rules. Among the worst offenders are remote client addresses, TTL, TCP options, TCP
window size, and application payload keywords and arguments. A large percentage of the attacks
detected by PHAD, ALAD, LERAD, and NETAD are detected by these attributes.

However, we cannot conclude that these al gorithms would not work. Our analysis of the
data suggests that there are till some "good" rules, although not as many asthe IDEVAL simulation
would suggest. Our analysis does not reveal whether the additional values that appear in real traffic
are the same ones that would appear in an attack, so we cannot say whether the alarm score would
be zero or just smaller. All of our algorithms adapt to data with bad rules either by reducing the
alarm score (larger r) or by rule validation. If there are any good rules, then these algorithms should
find them, just as they are very good at finding simulation artifacts. Although many attacks appear
to be due to simulation artifacts, others appear to be due to legitimate features of the attack. In the
next chapter, we address the question of how many of these attacks would actually be detected if

thisreal traffic had been used in the evaluation.
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Chapter 8

Evaluation with Mixed Traffic

In Chapter 7 we found strong evidence that the IDEV AL data would not reliably predict
the performance of some network anomaly detection algorithms because the synthesized data
appears to be too predictable. Unfortunately there is no reasonable aternative data set, due to the
great expense of producing this type of data. We would prefer to "fix" the background and training
data, if possible, then useit to test our algorithms with the original labeled attacks. Thus, our goal is
to answer two questions.

1. Canthe |DEVAL databe "fixed" by injecting real traffic?

2. Would PHAD, ALAD, LERAD, and NETAD work on real traffic?
We approach both questionsinjecting real background traffic into the IDEVAL datato make it
appear asif there was areal host receiving real Internet traffic during the evaluation. To answer the
first question, we evaluate PHAD, ALAD, LERAD, NETAD, and another network anomaly
detection system, SPADE (Hoagland, 2000), on this mixed traffic and test whether more of the
detections are "legitimate”. If the answer is yes, then the results of these tests will answer our
second question.

We propose to add redl traffic to the IDEVAL datato make it appear asif it were being
sent and received during the simulation. We believe it is not necessary to remove the simulated
background traffic because the combination should be similar (in the statistical sense of Section 7.2)

to thereal traffic alone. To seethis, let Agbe the set of values of attribute A seen in simulation up
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to the present time, and let Ay be the corresponding set of values seen in real traffic. Then the set of

values Ay seen in merged traffic would be at all times:

AM=A5DAR

Note that the r statistic for attribute As, which we denotersissimply |Ag|. Likewise, we definerg =

|Ar| and ry = |JAn|. Therefore, we have at all times:

max(rs, Ir) <ry <rs+rr

In cases where we suspect r is an artifact, we have rg << rg, and therefore ry = rg, so removing the
simulated traffic would have little effect. Furthermore, because this is true at all times, ry, and rg
would have similar growth rates.

A problem can occur when A istoo small or empty, i.e. thereislittle or no real traffic of
types where A is defined to mix with the simulation. In this case, ry =~ rs, and the artifact, if thereis
one, would not be removed. One such example is the destination address of incoming traffic, where
there are rg = 16 simulated hosts and rg = 1 real host. We are unable to test whether the destination
addressis an artifact in the simulation (although we have no reason to believe that it would be).
Other untestable attributes are those of FTP and telnet payloads, because there islittle FTP and no
telnet traffic in our real data. (Remote login and FTP are available only viathe SSH protocal).

We wish to evaluate network anomaly detection systems on mixed data. Our approach is
asfollows. First, we analyze the system to determine which attributes are monitored. Then we test
the simulated and real data to determine which attributes are present in the simulation, but absent or

rareinthereal data. Then we modify the system to ignore these attributes.
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8.1. Data Preparation

For our mixed traffic, we use the same large, filtered data set as described in Section 7.2.
We have 579 hours of traffic, which is more than enough to mix into the 146 hours of trafficin
inside sniffer week 3 plusthe 198 hoursin weeks 4 and 5. We mix thetrafficinal:1ratio, i.e. one
hour of simulated traffic is mixed with one hour of real traffic. Other ratios would be possible by
stretching or compressing the real traffic, but we do not do this.

We mix the traffic to make it appear asif all of the collected data occurs during the
simulation. We do this by adjusting the time stamp of the first real packet to match the time stamp
of the first simulated packet, then maintain the relative times of the other real packets, excluding

gapsin thetwo collections. Thisisillustrated in Figure 8.1. Time reads from left to right.

Real

—

Simulated

Figure 8.1. Mapping real time into simulation time when there are gapsin collection in both

data sets.

The real traffic consists of 50 traces, divided into 10 weeks. We mix these into weeks 3 (training),
4, and 5 (test) of the inside sniffer data to prepare three mixed data sets, which welabel A, B, and C
asshown in Table 8.1. Prior to mixing, both the simulated and real traffic are filtered as described
in Section 7.1 to pass only truncated and rate limited inbound client to server requests. In particular,
the simulated packets are truncated to 200 bytes so that they are indistinguishable from the real

packets. We denote the unmixed data (after filtering) asset S.
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Set Training data Test data

S IDEVAL inside week 3 IDEVAL inside weeks 4-5
A S+ real weeks 1-3 S+ real weeks4-7

B S + real weeks 4-6 S+ real weeks 7-10

c S+ real weeks 7-9 S+ real weeks 1-4

Table8.1. Mixed data setsused for evaluation. All dataisfiltered.

8.2. Algorithm Preparations

In this section we describe how we modify PHAD, ALAD, LERAD, NETAD, and SPADE
to meet the requirement that it not test any attributes where rg << rs. We can do this by determining
if there are any rules that would be conditioned on mostly simulated data and removing them. For

SPADE, we modify the input data rather than the al gorithm.

8.2.1. PHAD Modifications

Recall that PHAD is atime-based global model of packet header fields. |f any packet
(inbound or outbound, client or server) displays avalue never seen in training, then PHAD assigns a
score of X tn/r, where t is the time since the previous anomaly, n is the number of training packets,
and r isthe number of allowed values, and the sum isover al of the anomalous attributes. There are
34 attributes corresponding to the various 1 to 4 byte fieldsin the Ethernet, IP, TCP, UDP, and
ICMP packet headers. The conditions for these fields to be present, is that the packet be of the
corresponding type. Therefore, if all of these packet types exist in the real data, then no
modification is necessary. If there are any packet types that PHAD tests for and which exist in the

simulated but not the real data, then we would have to remove all of the attributes for that packet.
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For example, if there were no real ICMP packets, then we would remove the ICMP type, ICMP
code, and ICMP checksum fields.

Table 8.2 shows the number of packets for each type tested by PHAD insets S, A, B, and
C. Thereisasignificant increasein A, B, and C over Sfor all packet types, indicating the addition
of asignificant number of real packets. Thus, no modification is needed to PHAD. However we

still expect PHAD to give adifferent result on set S than on the original data because the packets are

filtered.
Packet Type S A B C
Ethernet 362,934 789,504 813,011 740,479
IP 362,934 789,504 813,011 740,479
TCP 170,435 407,858 482,351 395,693
UbDP 186,051 325,742 318,761 325,002
ICMP 6448 55,904 11,899 19,784

Table 8.2. Number of packets of each typetested by PHAD in filtered IDEVAL inside week 3

(S) and in mixed sets A, B, and C.

8.2.2. ALAD Modifications

Recall that ALAD models inbound client TCP streams and that the optimal combination of
11 rule forms was found to be the following five:
* P(client address | server address)
»  P(client address | server address and port)
» P(TCPflags| server address)

*  P(server address and port)
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*  P(keyword | server port)
Thefirst three of these rule forms are conditioned on the server (local) address, which differsin the
simulated and real traffic. Each rule form consists of two sets of rules, one which models traffic on
the simulated servers, and one set on the real server.

The fourth rule is unconditional, and therefore makes no distinction between ssimulated and
real traffic. However, because thereisonly one real server address, we know that any novel
addresses must come from the simulation. We can test the port number by itself, however.
Therefore, we modify the first four rules to remove the server address, so that the modified ALAD
uses the following rule forms:

*  P(client address)

* P(client address | server port)

* P(TCPflags)

*  P(server port)

»  P(keyword | server port)
In addition, we must modify the TCP reassembly algorithm to work with the filtered and truncated
packets, and do so consistently with the simulated and real traffic. Recall that packets are truncated
to 200 bytes (header plus 134 to 146 payload bytes), and that only packets containing the first 100
bytes of the sequence are passed. This means that we cannot capture the closing TCP flags as
before. Instead, we let the TCP flag attribute be the sequence of flags for the first three packets.
Also, to avoid gapsin the TCP payload, only the first 134 bytes of the first TCP data packet are used
in the reassembled stream (instead of the first 1000 bytes).

Of all the TCP protocols, only SSH, SMTP, and HTTP (ports 22, 25, and 80) exist in
significant quantities in both the simulated and real traffic. Therefore, the rulesthat are conditioned

on server port are restricted to these three ports.
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8.2.3. LERAD Modifications

Recall that LERAD is atime-based model, like PHAD and ALAD, assigning a score of

2 tn/r to novel attribute values, summed over the rules. It creates conditional rules of the form

if A;=v;and A, =v,and ... then Ay, O {Vk+1, VK42 onn Vk+r}

where the A, are attributes and the v; are values. The rules are randomly selected such that they are
always satisfied in training and have high n/r.

LERAD modelsinbound TCP streams from client to server. The attributes are date, time,
single bytes of the source and destination address, source and destination ports, TCP flags of the
first, next to last or last packet, duration, length, and the first 8 words in the application payload.

There are many potential rules that could exclude real traffic, for example "if destination
address = pascal and destination port = FTPthen ...". 1t would be error prone to manually modify
LERAD to avoid such rules. Instead, we experimented with modifying LERAD to record the
number of simulated and real training instances (by using the destination address to distinguish
them) that satisfy the rule antecedent, then weight each rule by the fraction of real traffic when
computing the anomaly score. In other words, we use the scoring function tng/r, where ng isthe
number of training instances from the real data. The set of r allowed values can still come from
either source. This should have the effect of removing rules that depend only on the simul ated
traffic.

In practice, this modification had practically no effect. Only asmall fraction of the rules,
less than 5%, were affected significantly (removing more than 80% of the training data). When we
compared the original and modified LERAD on mixed sets A, B, and C, both versions usually
detected the same number of attacks (about 30) at 100 false dlarms. The difference, if any, was at

most one detection.
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Although we did not modify LERAD, we did modify the TCP stream reassembly algorithm
aswith ALAD. ThethreeTCP flag attributes are for the first threepadkets, or blank if there aeless
than three padkets after filtering. The word attributes (up to 8) are extraded only from the first 134

bytes of the first data padket.

8.2.4. NETAD Modifications

Recdl that NETAD models nine types of padkets: IP, TCP, TCP SYN, and TCP ACK for
al ports, ports 0-255, telnet, FTP, SMTP, and HTTP. NETAD arealy usesfiltered traffic, so al
that remains is to test whether the nine padket types are present in sufficient quantitiesin the red
traffic. Ascan be seen from Table 8.3, two are not — telnet and FTP — so we remove them and

modify NETAD to test only the seven remaining types.
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Packet Type S A B C

IP 362,934 789,504 813,011 740,479
TCP 170,435 407,858 482,351 395,693
TCPSYN 29,263 83,660 79,686 80,520
TCPACK 56,923 141,426 124,214 132,041
ACK 0-255 50,356 90,002 96,284 90,243
ACK FTP 4668 4719 4743 4726
ACK telnet 13,947 13,947 13,947 13,947
ACK SMTP 20,944 28,392 29,290 28,363
ACK HTTP 8458 31,020 33,382 31,556

Table 8.3. Number of packets of types modeled by NETAD in thefiltered inside sniffer

training traffic from IDEVAL week 3 (S) and in mixed setsA, B, and C.

8.2.5. SPADE Modifications

SPADE (Hoagland, 2000) is a network anomaly detection plug-in to SNORT (Roesch,
1999). It models ports and addresses of inbound TCP SY N packets (requests to servers). It usesa
pure frequency based model, in which the joint probability of a combination of ports and addresses
depends only on the number of times that the combination was observed (including the current
packet) divided by the total number of observations. The anomaly scoreisinversely related to the
probability. Thereisno explicit training period. Every packet istested, then added to the training
model.

SPADE has four probability modes, which can be selected by the user.

0. UP(SA, SP, DA)P(SA, SP, DP)/P(SA, SP)
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1. 1/P(DA, DP, SA, SP)

2. 1/P(DA, DP, SA)

3. 1/P(DA, DP) (default)
where SA, DA, SP, and DP are the source and destination | P addresses and port numbers. All four
models depend on the destination address (DA), which distinguishes the simulated and real traffic.
Rather than modify these models (which we could do; it is open source), we modify the input data.
For each real inbound TCP SYN packet, we randomly replace the destination address with one of
the four main victim machines (pascal, marx, hume, or zeno). Thus, to SPADE, it appears asif the
real servers (HTTP, SMTP, etc.) are running on these victim machines rather than on a separate

host.

8.3. Evaluation Criteria

We described a procedure for making it appear to an IDS that it is monitoring real trafficin
the IDEVAL data. Thisrequiresinjecting the traffic into the simulated data (adjusting time stamps),
and possibly modifying or removing rules from the IDS so that it makes no distinction between
simulated and real traffic. We wish to test whether this procedure works. To do this, we compare
the output of the IDS on simulated and mixed traffic. If the procedure works, then we would expect
that only "legitimate" detections appear in the IDS output on real traffic, and that detections that
appear to be due to simulation artifacts would not. We already identified suspicious detectionsin
our analyses of previous results, for example, detectionsby TTL or detections of attacks on public
servers by source address. In (Mahoney & Chan, 2003) we use the following criteria to decide
whether a particular anomaly legitimately detects an attack.

*  Source addressis legitimate for denial of service (DOS) attacks that spoof it, or if the

attack is on an authenticated service (e.g. telnet, auth, SSH, POP3, IMAP, SNMP, syslog,
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etc), and the system makes such distinctions (i.e. conditioned on server port number). FTP
isanonymousin the IDEVAL data, so we consider it public.

» Destination address is legitimate for probes that scan addresses, e.g. ipsweep.

» Dedtination port is legitimate for probes that scan or access unused ports, e.g. portsweep,
mscan, satan. It is debatable whether it is legitimate for attacks on a single port, but we
will allow them.

* TCP state anomalies (flags, duration) are legitimate for DOS attacks that disrupt traffic
(arppoison, tcpreset), or crash the target (ntfsdos, dosnuke).

» |Pfragmentationislegitimate in attacks that generate fragments (teardrop, pod).

»  Packet header anomalies other than addresses and ports are legitimate if a probe or DOS
attack requires raw socket programming, where the attacker must put arbitrary valuesin
these fields.

» Application payload anomalies are legitimate in attacks on servers (usually R2L attacks,
but may be probes or DOS).

»  TCPstream lengthis legitimate for buffer overflows.

» No feature should legitimately detect a U2R (user to root) or Data attack (security policy
violation).

In (Mahoney & Chan, 2003), we evaluated PHAD, ALAD, LERAD, and NETAD using the EVAL
implementation of the 1999 IDEV AL detection criteria (Mahoney, 2003b). Thisdiffers from
EVAL3, which we had been using, in three minor respects.

e |f anaarm occurs during two overlapping attacks, then EVAL counts both as detected.
EVAL3 counts only the attack listed first in the IDEVAL truth labels.

* Thealarm IP address must be the target and not the source. The IDEVAL truth labels

contain both source and target addresses. EVAL3 allowed a match to either. This change
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affects only PHAD on the original unfiltered data because no other system sees remote
destination addresses.

» EVAL does not count out-of-spec detections. A detection is out-of-spec if it is nhot one of
the 177 attacks that the IDEV AL truth label s lists as having evidence in the inside sniffer
traffic. EVAL3 countsthese. The differenceistypically about 2%. It is possible to detect
an out-of-spec attack by coincidence or if it overlaps an in-spec attack. I1n afew cases,
attacks that generate no traffic (e.g. ntfsdos) and are labeled as such, can still be detected

because the IDS detects interrupted TCP connections when the target is rebooted.

8.4. Experimental Results

We tested the modified PHAD, ALAD, LERAD, and NETAD on simulated set S and
mixed sets A, B, and C as described in Section 8.1. We evaluated the results with EVAL at 100
fasealarms. Alarms were consolidated using AFIL (Mahoney, 2003b). The results are shownin
Table 8.4. For comparison, the number of detections for the unmodified systems (but using
AFIL/EVAL rather than EVALS3) are also shown.

For sets S and C, we manually inspect each detection and classify it aslegitimate or not
according to the criteria described in Section 8.3. The results are presented in the form of afraction,
legitimate/total, and a percentage. We analyze set C because it appears to be the most representative
of the three mixed sets. For al four systems, the number of attacks detected using C falls between

the numbersfor A and B.
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System Original Total | SLegit/Total A Total | BTotal | CLegit/Total
PHAD 39 31/51 (61%) 17 31 19/23 (83%)
ALAD 57 16/47 (34%) 11 17 10/12 (83%)
LERAD 109 49/87 (56%) 29 30 25/30 (83%)
NETAD 129 61/128 (48%) 38 46 27/41 (67%)
SPADE-2 3/6 (50%) 2 1 1/1 (100%)

Table 8.4. Number of attacks detected at 100 false alarms (measured using EVAL) using the
original IDEVAL inside sniffer week 3-5 data, data after filtering (S), and after injecting real
traffic (A, B, and C). For Sand C, the number and per centage of detectionsjudged legitimate

isshown. SPADE isevaluated in mode 2 at 200 false alar ms.

For each of the four systems, the fraction of legitimate detectionsis higher in set C thanin
set S. This suggests that the technique of injecting real data and removing rules dependent on
simulated data effectively removes simulation artifacts. In (Mahoney & Chan, 2003), asimilar
result was also obtained with SPADE (Hoagland, 2000), and with PHAD with the TTL field active.
Most of the attacks detected by TTL on set S were absent in set C.

In the following sections, we summarize results for PHAD (without TTL), ALAD,

LERAD, and NETAD for sets Sand C.

8.4.1. PHAD Results

PHAD detects 51 attacks (plus 3 out of spec) on set S and 23 attacks (plus 1 out of spec) on
set C. These are grouped by the attribute that contributes the greatest fraction of the anomaly score.

An asterisk indicates the detection is not legitimate according to our criteria.
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Ethernet destination address: mscan* in Sand C. The anomaly is most likely caused by an
overlapping arppoison attack against another 1P address, which is missed.

Ethernet source: insidesniffer* in S. Coincidental.

Ethernet packet size: ncftp* in C.

ICMP checksum: 5 smurf* in S. Thisis dueto abug in the attack, one of the few attacks
that was simulated.

I P destination: portsweep, 2 in Sand 1 in C; 3 ncftp* in Sand C; guesstelnet* in S. Since
thereisonly onereal |P destination address, this attribute cannot be tested.

IP fragment ID: neptunein S. Although unlikely, it is legitimate by our criteria because
neptune is programmed at the |P level to spoof the source address.

IP fragment pointer: pod, 4in Sand 2 in C, teardrop, 3 in Sand C, insidesniffer* in S
(coincidental). The others exploit IP fragmentation.

IP source address: only in S: 2 portsweep*, neptune, back*, xlock*, syslogd, ncftp*,
processtable*, sendmail*. neptune and syslogd are legitimate because they spoof the
source address. Although processtable attacks an authenticated service, it is not legitimate
because the ruleis not conditioned on port number.

TCP checksum: apahce2* in S (probably coincidental).

TCPflags: 5 portsweepin Sand 4in C, 3quesoin Sand 2in C, 3 dosnukein C. All are
legitimate. portsweep and queso are detected by FIN without ACK. dosnuke is detected
by the URG flag.

Urgent pointer: 4 dosnukein Sand 1in C.

TCP window size: 1 portsweep in Sand 2 in C, ntinfoscan in S. Although window sizeis
probably an artifact, these are legitimate by our criteria because both attacks are
programmed at the IP level.

UDP checksum: udpstormin S.
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8.4.2.

UDP destination port: al in S: 2 satan, 2 portsweep, 1 udpstorm.

UDP length: sysdlogd in S, satan in C.

ALAD Results

ALAD was modified to remove the destination address, telnet, and FTP from rule

conditions. The modified ALAD detects 47 attacksin Sand 12 in C, al of them in-spec. They are

grouped by attributes that contribute at least 10% of the anomaly score. Some attacks are therefore

listed more than one. A single detection may be legitimate for one attribute and not for another

(marked with *). A detection must have one legitimate attribute to be classified as legitimate

overdl.

Source address: 43in S, 9in C. In S: 2 apache2*, arppoison*, casesen*, 5 crashiis*,
fdformat*, ffbconfig*, 2 guessftp*, guesspop, guesstelnet*, mailbomb*, mscan, 2 ncftp*, 2
netbus*, 2 netcat*, netcat_breakin*, netcat_setup*, 3 ntinfoscan*, 2 phf*, 1 ppmacro*, 2
satan*, 2 sendmail*, sshtrojan*, 3 warezclient*, warezmaster*, xterm*, 2 yaga*. In C:
guessftp*, mailbomb*, ncftp*, 2 netcat*, netcat_breakin*, satan, 2 sendmail*. Except
satan, the source address scores are lower in C. All of the detectionsin C are by at least
one other attribute. In S, guesstelnet is detected on port 80 (not 23) and sshtrojan on port
25 (not 22), so these are not legitimate (probably coincidental).

TCPflags: 3, al in S: loadmodule*, 2 sendmail*. Two anomalies are due to connections
without an initial SYN, and one due to SYN-ACK-ACK.

Destination port: 2 netcat in Sand C, netcat_breakinin Sand C, 2 satanin Sand 1in C,
mscan in S, guesspop in S. All are legitimate by our criteria. netcat is detected on port 53
(DNS) because it uses TCP rather than the usual UDP. satan is detected on port 70

(gopher), mscan on port 111 (portmap), and guesspop on 110 (POP3). We consider
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guesspop legitimate although it would only be detected if the POP3 server were running
but never used.
»  Keyword: 3 mailbomb in Sand C by "mail", 2 sendmail in Sand C by "MAIL", 2

ntinfoscan on S only by "HEAD" on port 80. All are legitimate by our criteria

8.4.3. LERAD Results

LERAD was not modified except for the TCP reassembly algorithm, which was adjusted to
deal with filtered and truncated packets as with ALAD. Inonetest run of LERAD, it detects 87
attacks on set S (plus 2 out of spec), and 30 (all in spec) on set C. These are grouped by the one
attribute that contributes the largest portion of the anomaly score. Non-legitimate detections are
marked with an asterisk.

» Source address: 27, all in S: anypw*, casesen*, crashiis*, dict, fdformat*, ffbconfig*, 2
guessftp*, 2 guesstelnet, 3 guest, netbus*, netcat_setup, 2 perl*, 2 ps, sechole*, sglattack*,
sshprocesstable, sshtrojan, warezclient*, warezmaster*, xterm*.

* Destination address: 6 in S and C: guesstelnet*, mscan, 4 ncftp. There isno difference
probably because only one new destination addressis added by the real traffic.

* Dedtination port: 14in S, 11in C. On both: 2 ftpwrite, 2 Is_domain, 3 named, 2 netcat,
netcat_breakin, satan. On S only: guesspop, imap, neptune. ftpwrite is detected on port
513 (rsh) whichis not available in the real traffic. satan is detected on port 70 (gopher).
The others are detected on TCP port 53 (DNS), normally a UDP service. POP3 and IMAP
mailbox service traffic isfound in the real traffic but not in the IDEV AL background.

 TCPflags: In Sand C: 4 dosnuke (URG flag set). In Sonly: 3 back*, insidesniffer*,
loadmodule*, sendmail*.

* Length: in S: netbus*, ppmacro*. In C: sendmail (a buffer overflow).

» Duration: insidesniffer* in S (coincidental).
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» Payload: 8 in C: back (word 1 ="G"), 2 imap (word 3 =""", aquote character), 2

ntinfoscan (word 3 = "EOEBFECNFDEMEJDB"), phf (word 1 ="G"), satan (word 1 =
"QUIT" on port 80), sendmail (word 3 ="root@calvin.worl"). 29in S: 3 apache2, back, 6
crashiis, guesstelnet, imap, 3 mailbomb, 3 ntinfoscan, 3 phf, portsweep, queso, satan,
sendmail, 4 yaga*. Theyaga (U2R) detectionsinclude a crasiisto reboot the target (after
aregistry edit) which is detected by the absence of word 3, normally the HTTP version.
The back and phf anomalies ("G") could be due to the HTTP GET command being split
among packets in an interactive telnet session to the HTTP port. These would be missed
using a better TCP reassembly agorithm.

The difference between set S (87 detections) and the original results (117 detections) is mainly due

to theloss of trailing TCP data. This affects the closing flags, length, duration, and part of the

payload. On the modified data, LERAD is unable to detect broken TCP connections which are

often asign of a DOS attack.

8.4.4. NETAD Results

NETAD was modified to remove telnet and FTP rules. The modified NETAD detects 129
(plus 3 out of spec) attackson S, and 41 (plus one out of spec) on set C. The detections below are
grouped by attributes that contribute at least 10% of the anomaly score. Non-legitimate detections
are marked with an asterisk.

* Sourceaddress: 65in S, 3in C. Mogt are not legitimate. On S: anypw*, apache2*,
arppoison*, 4 crashiis*, 2 gject*, fdformat*, 2 guessftp*, 2 guesstelnet*, 2 guest*, imap*,
insidesniffer*, 3 ipsweep*, Is_domain*, mailbomb*, ncftp*, 3 netbus*, netcat_setup*, 2
perl*, pod*, 3 portsweep*, ppmacro*, processtable*, 2 ps*, satan*, sechole*, secret*, 4
smurf*, sglattack*, sshtrojan*, 4 syslogd, tcpreset*, 3 warezclient*, 3 xlock*, 3 xsnoop*, 2

xterm*, 2 yaga*. On C: ncftp*, xlock*, xsnoop*. Only source address forgeries (syslogd)
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can be considered | egitimate because the modified NETAD does not have any rules
conditioned on private ports (telnet and FTP were removed).

Destination address: 8in S, 10in C. This cannot be tested because C adds only one
address. In S: guesstelnet*, mscan, 4 ncftp*, netbus*, portsweep. In C: 2 additional
netbus*.

Destination port: 8in S, 2in C: In S: guesspop, 2 imap, 2 Is_ domain, 2 netcat, 1 satan. In
C: 2 satan (port 70, gopher).

IP fragmentation: 7in Sand C: In S: 4 pod, 3 teardrop. In C: 3 pod, 3 teardrop, 1
insidesniffer* (coincidental).

TCPflags: 5in S, 12inC. In S: 5 portsweep (FIN scan). In C: 5 portsweep, 3 queso
(FIN), 4 dosnuke (URG).

TOS: 2in Sand C: 2 ftpwrite*.

Payload: 22in S, 6in C. In S: 3 back, casesen*, ffbconfig*, land, 3 named*, neptune, 6
portsweep, 3 queso, 2 sendmail, udpstorm. In C: back ("E" in first byte), 3 named (8-bit
ASCII), 2 sendmail ("A" in"MAIL"). The payload anomaliesin neptune, portsweep, and
gueso in S are actually due to the absence of TCP options (an artifact) where the payload
would normally appear. The back anomaly is probably due to TCP fragmentation of the
HTTP"GET" command.

IP length/TCP header length: 23, al in S: 2 back*, ffbconfig*, land, 3 named, neptune, 2
pod, 6 portsweep, 3 queso, 4 smurf. Although many of these attacks produce unusually
large or small packets, there is probably enough natural variation in real packet size to

mask these detections.

116



8.4.5. SPADE Results

We evaluated SPADE version 092200.1 within SNORT version 1.7 Win32 in each of the
four user selectable probability modes, with all other SNORT rules turned off and with all other
SPADE parameters set to their defaults. SPADE has a variable threshold that adapts over a period
of hoursto regulate alarms, but we used the raw anomaly score reported by SPADE instead. As
mentioned, SPADE does not have an explicit training period. Instead it tests each packet based on
the joint frequency of the attributesin all previous packets. We ran SPADE on inside sniffer weeks
3-5 asasingle data stream and reported all alarms during weeks 4-5. Because SPADE was found to

perform poorly on our data, we evaluated it at a threshold of 200 false alarms.

SPADE Detections at 200 False Alarms S A,B,C
0: P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP) 6 6,6,7
1: P(DA, DP, SA, SP) 1 0,0,0
2: P(DA, DP, SA) 6 2,1,1
3: P(DA, DP) (default) 8 98,7

Table8.5. SPADE detectionsat 200 false alarmson filtered IDEVAL weeks 3-5 (S) and on

mixed sets A, B, and C.

Modes 0 and 1 include the source address, which does not normally contain meaningful
information, asit is picked arbitrarily by the client. The attacks detected in mode O on set Sare
insidesniffer, syslogd, mscan, tcpreset, arppoison, and smurf. All but mscan are probably
coincidental because none of them generate TCP SY N packets and most are prolonged attacks with

multiple targets.
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Modes 2 and 3 show the effect that we would expect if source address were an artifact, but
not the destination address or port, as Chapter 7 suggests. The six attacks detected by SPADE in
mode 2 (/P(DA, DP, SA)) on S are guest, syslogd, insidesniffer, perl, mscan, and crashiis. By our
previously mentioned criteria, three of these are legitimate: guest because it attacks a private service,
syslogd because it forges the source address, and mscan because it accesses unused ports. We do
not count insidesniffer (no TCP SYN packets), perl (U2R), or crashiis (a public server). On sets A,
B, and C, SPADE detects only mscan (and portsweep on A), both of which can be legitimately
detected by the destination port. Thus, the effect of injecting real traffic is to increase the
percentage of |egitimate detections from 50% to 100%. Thereis no effect in mode 3 because we did

not identify the destination address or port as being affected by artifacts.

8.5. Results Analysis

In this section, we analyze the combined results for each of our systems. Thetop two
systems are NETAD, which tests packets, and LERAD, which tests TCP streams. All of the
principles outlined in this paper are implemented in these two systems. We can think of LERAD as
an enhanced version of ALAD with rule learning and validation. We can think of NETAD asan
enhanced version of PHAD with conditional rules, filtering, and modeling of non-novel values.
These two systems cover al of the attributes modeled by the other two, e.g. packet fields and TCP
streams.

We had, up to this point, been evaluating our systems by the number of attacks detected,
whether or not it was reasonable to detect them. There are 201 attacks in weeks 4 and 5 of the
IDEVAL data, but only 189 when you subtract the 12 in the missing day of inside sniffer traffic

(week 4, day 2). If you consider only those attacks for which there is evidence in the traffic
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according to the IDEV AL truth labels, then there are 177. Occasionally we detected a few others,
due to coincidences, overlapping attacks, or unanticipated side effects of the attack.

In the 1999 evaluation, participants could classify their systems as to the types of attacks
they were designed to detect, so they were not penalized for missing out-of-spec attacks.
Participants categorized their systems not only by the data they examined, but also by the category
of attack: probe, DOS, R2L, U2R, or data. It isdifficult for a network anomaly detection system to
detect U2R attacks, where the attacker with user access gains the privileges of another user (usually
root). These attacks exploit operating system flaws using input data which is not directly observable
on the network. It might be possible to observe exploitsin atelnet session or an FTP upload, but the
attack could easily be hidden using encryption. Also, it is difficult to detect data attacks, which are
violations by authorized users of a written security policy for which the IDS has no knowledge, for
example, copying or transmitting secret but unprotected datafiles.

Therefore, a reasonable specification for a network anomaly detection system isthat it
should detect probes, DOS, and if it examines the application payload, R2L attacks. Intheinside
sniffer traffic, there are 148 such attacks. In Figure 8.2, we show the detection-false darm (DFA)
graphs for NETAD and LERAD on sets S (simulated, modified), and C (mixed with real traffic).
Recall that C gives the median number of detections out of A, B, and C at 100 false alarms for all
four systems. At 100 false alarms, LERAD detects 72 (49%) in-spec attacks on set S, and 30 (20%)
on set C. NETAD detects 111 (75%) on set Sand 41 (28%) on set C. If we are willing to tolerate
more false alarms, then we could detect 69 attacks (47%) in the mixed set C using NETAD at 500
false darms (50 per day), while LERAD levels off at 34 (23%). Remember that these results use
modified al gorithms to reduce the effects of simulation artifacts. LERAD and NETAD would
probably detect more legitimate attacks in real traffic if we had used more of the TCP payload for

LERAD or included telnet and FTP rules for NETAD.
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Detections out of 148
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Figure8.2. Probe, DOS, and R2L attacksdetected by NETAD and LERAD on simulated (S)

and mixed (C) traffic as 0 to 500 false alarms (0 to 50 per day).

In Table 8.6 we summarize the number of inside sniffer detections by category for LERAD
and NETAD on setsSand C. (The totals are more than 177 because there are some R2L -Data and
U2R-Data attacks). One striking effect of injecting real network data that we have already seenis
the near elimination of detections by source address, which account for about half of all detections
insimulation. These detections are, of course, mostly spurious. Another effect, which can be seen
in the table, is the elimination of U2R and data detections. Again, thisis the behavior we should be
seeing. It should be noted that PHAD and ALAD do not detect any U2R or data attacks on the
mixed traffic either.

The last column of Table 8.6 shows the number and percentage of attacks detected by the
combination of LERAD and NETAD on mixed set C when we take equal numbers of top scoring
alarms from each system and consolidate duplicates. The merged system detects 44 attacks, or 30%
of the 148 in-spec attacks, better than either system alone. Thisimprovement is possible because
the two systems monitor different attributes, and therefore detect different types of attacks. This

improvement does not occur when merging LERAD and NETAD on set S because there is
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significant overlap due to detections by the client source address artifact. This artifact is shared by

both systems.
Category | Total LERAD-S | LERAD-C | NETAD-S | NETAD-C | Merged-C
Probe 34 11 (32%) | 7 (21%) 30(88%) | 12(35%) | 15 (44%)
DOS 60 26 (43%) | 5(8%) 42 (70%) | 11(18%) | 9 (15%)
R2L 54 35(65%) | 18(33%) | 39(72%) | 18(33%) | 20 (37%)
U2R 27 15 (56%) | 0 (0%) 16 (59%) | 0 (0%) 0 (0%)
Data 7 1 (14%) 0 (0%) 2 (28%) 0 (0%) 0 (0%)
Total 177 87 (49%) | 30(17%) | 128(72%) | 41(23%) | 44 (25%)
In-Spec | 148 72 (49%) | 30(20%) | 111(75%) | 41(28%) | 44 (30%)

Table 8.6. Attacksdetected by modified LERAD and NETAD at 100 false alarmson
simulated set Sand mixed real set C. Merged resultsare LERAD and NETAD combined on
set C. Only attacksvisiblein theinside sniffer traffic are counted. In-spec refersto probes,

DOS, and R2L.

8.6. Summary

Wetested PHAD, ALAD, LERAD, and NETAD on the IDEVAL data set with real traffic
injected, modifying the algorithms as needed to ensure that all of the rules are trained at least
partially on real traffic to remove the effects of simulation artifactsin the background traffic. To
test whether we were successful, we used a somewhat subjective criteriato test whether the detected
attacks were legitimate, i.e. whether the system was detecting afeature of the attack. We found that

in every system we tested, that the fraction of legitimate attacks was higher in mixed traffic than in
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simulated traffic. However, our criteriais not perfect. On closer examination of some non-
legitimate detections, we often find reasonable explanations that do not fit our criteria. Also, some
legitimate detections in the simulated set are missed in the mixed set. This could be due to a greater
number of false alarms. If nothing else, having twice as much background traffic should generate
twice as many alarms.

In table 8.7, we summarize the number of probe, DOS, and R2L attacks (out of 148)
detected by the original PHAD, ALAD, LERAD, and NETAD at 100 false alarms on the IDEVAL
inside sniffer weeks 3-5, after modification in preparation for injecting real traffic (S), and after
injection (sets A, B, and C). All systems are evaluated with EVAL and exclude U2R and data
attacks, and attacks for which no evidence isvisible in the inside sniffer traffic. Alarmsare

consolidated with AFIL.

Attacks Deteded IDEVAL -Orig. Modified—S | Mixed —A, B, C | Average
PHAD 39 (26%) 51 (34%) 17,31, 23 24 (16%)
ALAD 45 (30%) 39 (26%) 11, 15, 12 13 (9%)

LERAD (average) | 97 (66%) 72 (49%) 29, 30,30 30 (20%)
NETAD 111 (75%) 111 (75%) 38, 46, 41 42 (28%)

Table8.7. Probe, DOS, and R2L attacksdeteded at 100false alarmson IDEVAL inside
sniffer weeks 3-5, on filtered traffic after modification to accept mixed traffic (S), on mixed

sets A, B, and C, and the aver age over the three mixed sets.
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Chapter 9

Conclusions

We described several methods of improving network anomaly detection systems and
implemented these methods in four systems. The best of these (NETAD) detects 75% of in-spec
attacks (probe, DOS, and R2L) at 10 false alarms per day in the 1999 DARPA/Lincoln Laboratory
intrusion detection evaluation (IDEVAL), compared to 40% to 55% for the top participants using a
combination of methods (signature, host based) in the original blind evaluation. However, an
analysis of the IDEVAL data compared to real traffic suggests that the IDEV AL data contains many
simulation artifacts that make attacks easy to detect. When we remove these artifacts by injecting
real traffic (and verify that most detections are legitimate), we find that the best combination of
systems (merging LERAD and NETAD) detects 30% of attacks (median of 3 mixed data sets). We
can detect more attacks if we are willing to accept more false alarms. At 50 false alarms per day,

modified NETAD detects a median of 69 of 148 attacks (47%) on this data.

9.1. Summary of Contributions

The following isasummary of our contributions.

Time Based Modeling. Inanomaly detection, it is common to model the probability of
events based on their average frequency in training. Because some events occur in bursts (leading
to alarm floods), we use a hybrid time-frequency model. We use a model in which an event is
anomalousif it is both rare on average, and has not occurred recently either. For novel events (score
=tn/r), the time-based part ist (time since the last anomaly), and the frequency-based part is n/r

(low rate of novel valuesin training). For non-novel events (score = t;/f;), the time-based part ist;,
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the time since value i was last observed, and the frequency part isf;, the average frequency of i in
training.

Protocol Modeling. Some anomaly detection systems monitor only afew attributes, such
as | P addresses and port numbers, because they can identify remote users or characterize their
behavior. These types of anomalies can detect port scans and some R2L attacks on private services
such astelnet or POP3, but cannot detect most DOS or R2L attacks on public services such as | P,
TCP, SMTP, or HTTP. An attack can introduce protocol anomaliesin one of four ways.

» By exploiting abug in the target. If the data which invoked the bug were common, the bug
would have been detected and fixed. (Example: detecting pod and teardrop by IP
fragmentation).

» Failing to duplicate the target environment. The more attributes we monitor, the harder it
isfor an attacker to get everything right. (Example: detecting mailbomb and sendmail
because the normal HEL O/EHL O handshake was omitted).

» Evasion. Low-level attacks on the IDS used to hide high-level attacks on the target can
backfire if we monitor low-level protocols. (Example: detecting portsweep in FIN
scanning mode).

»  Symptoms of a successful attack. The output of a compromised target differs from normal.
(Example: detecting DOS attacks by broken TCP connections).

Onreal traffic, many different attributes detect only afew attacks each. No single attribute
dominates.

RuleLearning. In LERAD we introduced arule learning algorithm that automatically
generates good rules for anomaly detection from training data with arbitrary nominal attributes.
Like association mining algorithms such as RIPPER or APRIORI, it is off-line, requiring more than
one pass through the training data. Unlike these algorithms, its goal is different (to find rules with
high n/r), and it israndomized. We use matching attributesin pairs of training samples to suggest

rule candidates, then remove redundant rulesin favor of higher n/r estimated on asmall sample.
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Rule Validation. In LERAD and NETAD we remove, or assign alow weight to, rules that
generate false alarms on an attack-free validation set taken from the end of the training data.

Filtering. Most attacks can be detected by examining just a very small fraction of the
traffic. Welook at only the first few client packets of inbound sessions, less than 2% of the total
traffic. All of our implementations can process 3 weeks worth of filtered datain times ranging from
afew seconds to one minute on a 750 MHz PC.

Continuous M odeling. A practical anomaly detection system must train and test
continuously on the same traffic. Some decrease in accuracy isinevitable asthe IDS trains on
hostile traffic asif it were normal. This effect is smaller if the system models non-novel values
(t/f). However, rule validation cannot be used without attack-free traffic. Also, off-line (multiple
pass) rule learning algorithms such as LERAD cannot be used.

IDEVAL Simulation Artifacts. We found several attributesin the IDEV AL training and
background traffic that make it artificially easy to detect attacks by anomaly detection, in spite of
great effortsto avoid this problem. These attributes are client |P addresses, TTL, TCP options, TCP
window size, SMTP and HTTP keywords, and HTTP and SSH client versions. Theserulesare
"good" inthe IDEVAL data (r is small and does not grow) and "bad" in real traffic (r islarge and
grows steadily).

Removing Artifacts. Some artifactsin the IDEVAL data can be removed by injecting real
traffic. Evaluation with mixed traffic requires that IDS rules not affected by the real trafficin
training be turned off. Onall of our systems plus SPADE, this technique increases the fraction of
detections judged legitimate. Onreal traffic, a greater fraction of LERAD rules are removed by
validation.

Merging IDS Outputs. Sometimes a combination of intrusion detection systems can
detect more attacks than any of its components. The techniqueis to take the highest scoring alarms
from each system and consolidate duplicates. This technique works best if the components are

equally strong but detect different types of attacks.

125



90.2. Limitations and Future Work

We described several network anomaly detection techniques and implemented them in four

experimental algorithms. However, our systems have a number of limitations.

False alarms are a problem because unusual events are not necessarily hostile.

Alarm reports are not helpful. The system can report anomalies but cannot help the user
decide whether the alarm is hostile or not. Making this decision requires the user to
examine the traffic and to be an expert in network protocols and security.

Rule validation requires attack-free training data, which is hard to obtain.

Rule learning requires multiple passes through the training data, which prevents the method
from being used online.

Application payload monitoring will become impractical with the increased use of
encryption. Eventually this problem will extend to lower level protocols as well (e.g.

virtual private networks).

In addition, there are problems with testing our systems.

They were not tested in alive environment.

Our systems were developed with access to the test data, which introduces abias. For this
reason, we cannot claim an improvement over the IDEV AL participants.

The IDEVAL data appears to contain many simulation artifacts. These are responsible for

the magjority of detectionsin our best systems, and an artificially low false alarm rate.

Our solution to the artifact problem was to inject real traffic into the simulation, but that introduces

new problems.

Real data contains unlabeled attacks.
Experiments with real data cannot be reproduced because privacy and security concerns do

not allow the data to be made public.
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* Thereisa3yea timelag between IDEVAL and the red traffic that we used. Protocols
evolve. The problem can only get worse.

* Not all of the protocols senin IDEVAL are availablein thered data (e.g. telnet).

» Evaluation with mixed traffic requires a caeful analysis and system modifications to make
surethat all rules depend at least partially on red traffic. Testing whether this was done
corredly is sibjedive.

Given that attadks are now common, the gproacd of Newman et al (2002 of using foneypotsin a
live eavironment might be amore pradicd solution to the evaluation problem. Still, thisisalabor
intensive and error prone processbecaiuse the atacks are not under control of the experimenter, and
must be identified and labeled. Running several independent systemsin parallel might be helpful
because dtacks could be labeled by consensus.

Despite these problems, anomaly detedion in its present form might still be useful as atool
for offline forensic analysis after an attadk, helping a network administrator pinpoint the atadk
within gigabytes of traffic, rather than as afirst line defense. In thisresped, there ae many small
improvements that could be made to our systems, for example:

» Adding sesdgon attributes, for example, padcet rate. Currently ead packet or TCP stream
is evaluated independently.

» Being smarter about parsing the gopli cation payload (espedally binary protocolslike
DNS). Tokenizing words using white spacedoes not work for every protocol.

e Adding user feadbad — all owing the user to spedfy whether an anomaly is hostile or not,
and thus whether it should be alded to the training data.

» Developing an onlinerule leaning algorithm. Currently LERAD requirestwo passes, but

this obstad e should not be insurmountable.



We do not expect that all of the problems with network anomaly detection will be easily solved.
Computer security will be a problem for quite some time. We do not pretend to have solved the

problem. Instead, we have outlined some principles by which the problem can be approached.
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Appendix A

Example LERAD Run

Appendix A lists the rules generated by one run of LERAD, the detected attacks, and the
top scoring alarms as described in Section 5.2.2. This run includes UDP and ICMP packets, and

detects 111 attacks at 100 false alarms according to EVAL3.

A.l. Rules

Therules are sorted by descending n/r, where n is the number of inbound TCP streams and
UDP and ICMP packets satisfying the antecedent, and r is the number of values observed in

training. The format is as follows:
Rule-number n/r if A;=v; A=, ... A=V then Agig = Vit Vi ... Vi

where the A; are attributes and v; are values. Values are represented by strings, and sometimes have
aleading dot so that empty strings can be represented. The attributes are as follows:
« DATE, TIMEintheform MM/DD/YY, HH:MM:SS.
» SA3, SA2, SA1, SAOQ: source IP address as 4 decimal bytes (0-255).
» DAZ1, DAO: lower two bytes of the destination IP address (always 172.16.x.X).
* F1, F2, F3:firgt, next to last, and last TCP flags, in the form ".10UAPRSF", where a
character is present if the corresponding flag bit is set to 1. The flags correspond to the two

reserved TCP flags, URG, ACK, PSH, RST, SYN, FIN. For example, ".AP" means that
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10

11

12

13

14

the ACK and PSH flags are set. A dot by itself indicates that no flags are set. For UDP
packets, F1 ="UDP, F2=F3=".". For ICMP packets, F1 ="ICMP", F2 isthe type field
(0-255), and F3 isthe code field (0-255).

»  SP, DP: source and destination port numbers (0-65535).

» LEN: floor(logx(payload length in bytes))

* DUR: floor(logy(duration in seconds))

*  W21-WS8: first 8 words of the payload, with aleading dot to distinguish empty strings.
Words are delimited by white space (spaces, tabs, carriage returns, linefeeds, etc.) and
truncated at 8 characters. Nonprintable characters are represented in the form ~C, where C
isthe character obtained by adding 64 to the ASCII code. For example, @ isa NUL byte

(ASCII code of 0).

39406/1 if SA3=172 then SA2 = 016

39406/ 1 if SA2=016 then SA3 172

28055/1 if F1=.UDP then F3

28055/1 if F1=.UDP then F2 = .

28055/1 if F3=. then F1 = . UDP

28055/1 if F3=. then DUR = 0

27757/1 if DAO=100 then DAl = 112

25229/1 if Wb=. then W = .

25221/1 if Wb=. then W6

25220/ 1 if Wi=. then W8

25220/1 if Wi=. then Wb

17573/1 if DA1=118 then W = ."B*"A"@ @
17573/1 if DA1=118 then SA1 = 112

17573/1 if SP=520 then DP = 520
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15 17573/1 if SP=520 then W = . "Pr@ @@

16 17573/1 if DP=520 then DAl = 118

17 17573/ 1 if DA1=118 SA1=112 then LEN = 5

18 28882/2 if F2=.AP then F1 = .S . AS

19 12867/1 if W=."@ET then DP = 80

20 68939/6 if then DA1 = 118 112 113 115 114 116
21 68939/6 if then F1 = .UDP .S .AF .ICW .AS .R
22 9914/1 if WB=.HELO then W = . @HLO

23 9914/1 if F1=.S WB=. HELO then DP = 25

24 9914/1 if DP=25 Ws=. MAIL then W8 . HELO

25 9898/1 if F1=.S F3=. AF Wb=. MAIL then W = . RCPT

26 28882/3 if F2=. AP then F3 = . AP . AF .R

27 28055/3 if F1=.UDP then SA1 = 112 115 001

28 34602/4 if F3=.AF then F2 = . .S .AP .AS

29 68939/8 if then SA3 = 172 196 197 194 195 135 192 152

30 68939/8 if then F3

.S .AP .AF .3 .0 .AS .R

31 68939/8 if then F2 =. .S .AP .3 .A .0 .AS .8

32 29549/4 if Fl=.Sthen F2 = . .S .AP . A

33 39406/6 if SA2=016 then SA1 = 112 113 115 114 000 116

34 12885/2 if DP=80 then W1 = . .~ @ET

35 12867/2 if WL=."@ET then WB = .HITP/1.0 .align=

36 25169/4 if WB=. then LEN =0 5 4 3

37 30237/5 if SA2=016 DUR=-0 WB=. then F2 = . .S .AP .0 .AS

38 28055/5 if F1=.UDP then DP = 520 137 514 138 161

39 68939/13 if then SA2 = 016 037 115 182 168 169 218 027 008 227

073 007 013
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40 20732/ 4 if SA3=172 WB=. then LEN =05 4 3

41 35132/7 if WB=. then F3 = . .S .AP .AF .0 .AS .R

42 28786/6 if F2=. then LEN =057 6 9 8

43 9585/2 if SA2=016 F3=. LEN=7 then SA0 = 234 050

44 12838/3 if DP=25 then WL = . .~ @HLO . "@ELO
45 25229/6 if W=. then W = . .~Ppd .syslogd: .lupitam@.randi p@
@Fr@@

46 68939/17 if then DUR

05117 1211315106 9 4 3 8 2 14 16

47 68939/17 if then LEN

05117 12 13 15106 9 4 3 8 14 16 18

17

48 35132/9 if WB=. then DUR =057 12 1 6 4 3 2

49 68939/18 if then SAl 112 113 075 115 091 114 218 251 060 000

001 033 151 248 177 216 116 215

50 58458/ 16 if DUR=0 then DP = 520 0 113 25 137 23 80 20 79 514 515
1023 22 138 1022 161

51 68939/19 if then DP = 520 0 113 25 137 23 80 135 20 79 21 514
515 1023 22 138 139 1022 161

52 68939/19 if then DAO = 255 020 105 100 234 084 168 148 169 204
194 050 207 149 005 010 087 044 201

53 12838/4 if DP=25 then W8 = . .HELO.MAIL ."@@ @ @

54 25229/8 if W=. then W8 = . ."@A ."@A @D . PASS .6667"M
.05:02:40 .05:02:41 . "@A @@

55 35132/13 if WB=. then W = . ."@A'@D ."@.! ."P"@A . "Pp"E"@
. SYSTAM* .AG ."Ppd .st4 .restart .QU TAM' .+ "F A B"

56 2398/1 if SA3=195 SA2=115 then SAl1 = 218
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57 35132/16 if W8=. then DAO = 255 020 105 100 234 084 168 148 169

204 194 050 207 149 005 010

58 39406/19 if SA2=016 then DAO = 255 020 105 100 234 084 168 148

169 204 194 050 207 149 005 010 087 044 201

59 27757/14 if DA0=100 then DUR=0511712110694382 16

60 14743/8 if DA1=112 W8=. then DAO = 020 100 194 050 207 149 005
010

61 3521/2 if DA0=100 F2=.AP W6=.User - Age then W4 = .Referer:

.Connecti

62 34887/20 if DUR=0 W8=. then W7 = . ."Ps .0"@"@"@" ."@"@"@" @
N@MHATA@ .espO:” Isbus@1f .Zr2r2r2” .UUUUUUN@ .Zg2g2g2" .iv @ @@
Zr@MNAN@N . ZTqTgTA uiciPy*@ .Zp Tph Tp .pleaP}*@ .Zqiqigi®
SHA@PYM@ +HNFMANBN youPYyr@n

63 25365/15 if W7=. then DP =520 0 113 25 137 23 80 135 20 79 21

514 1023 22 1022

64 15051/9 if LEN=7 then DUR=0571069482

65 14826/9 if DA1=112 LEN=7 thenDUR=057106948 2

66 35132/30  if W8=. then W6 = . ."@"F"@ ."Pp"E"@" .L"@"H .0"@"@"@"
.N*@"H .W ~@"H .Ppd PqT @ @ .P"@"H .M*"@"H ."@" @ "B f@"H "T"@
at .is .QUITAMA .y*@"H" .UUUUUU @ .I"@"H .,*@"H .Z*@"A"@" .@"@"H
SA@MHAW +A@MH AAM@MH . - 2"@NH WPAXANPA@ LOPAPAPA@ +MFAANBA

67 2805 5/25 if F1=.UDP then W8 = . ."Ps .waiting .135.13.2 .reverse

.authenti .for .768 .generati .196.227. .to .by .196.37.7 .197.182.

.ON .8mm .0" .driver .SMB%"@"@ .+"F"A"B" .135.8.60 .194.7.24

.195.115. .197.218. .195.73.1
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68 28055/34 if F1=.UDP then W6 = . . FAEDDACA f@"A"@"D ."@"F @
.Connecti .SYSERR(I .SYSERR(g .SYSERR(m .SYSERR(r .*Ppd .Could

.Password .SYSERR(c .Generati .RSA .Timeout .SYSERR(e .SYSERR(w

.SYSERR(s .Closing .to .SYSERR(y .root' .SYSERR(b .4 .LOGIN

.SYSERR(j .SYSERR(h .<Exabyte .at .is .SY SERR(f .EIFFENEF .+ FAAMNBA
69 34887/297 if DUR=0 W8=. then W3 =. *@"A .*"@"A"@"D ."AvL

6667 "M" NMAVK W NAV] A@0@ NAVIELMAVG NAVE MAVD AMAVC NAVB

NAVA NMAV@ NMAV? MAv= NMAv< My, MAv: 23:00:01 .ShM@M@ Ur@N@

we @ Y'e'@ .\ "e"@ ._"e"@

(remaining list of 297 values truncated)

A.2. Detected Attacks

This section lists the attacks detected at 100 false alarms by the ruleslisted in Section A. 1.

Theformat is as follows;

TP attack-name rule-number (percent contribution) A=v A?=V

TP indicates atrue positive. The rule number (001-169) is the number listed in the first column of
Appendix A.1. When more than one rule contributes to the anomaly, the rule that contributes the
greatest fraction is shown. The percent contribution isthe fraction of the anomaly score contributed
by the rule shown. The remainder of the scoreis from other rules. The conditions of the form
"A=v" are the rule antecedents. The consequent is shown by "A?=v" (with a question mark) where

v isthe anomalous value. For example, for the first detection below (of syslogd), rule 1 contributes
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65.56% of the anomaly score. Theruleis"if SA3=172 then SA2 =016". Theanomaly is"SA2 =

005".

TP sysl ogd 001 (65.56) SA3=172 SA2?=005
TP sysl ogd 001 (93.04) SA3=172 SA2?=005
TP sysl ogd 001 (96.79) SA3=172 SA2?=003
TP sysl ogd 001 (98.07) SA3=172 SA2?=005
TP portsweep 007 (99.98) DA1?=118 DA0=100
TP ncftp 012 (40.58) DA1=118 WL?=

TP ncftp 012 (40.83) DA1=118 WL7?=.

TP guesst el net 012 (45.3) DA1=118 W?=."@

TP ncftp 012 (45.66) DA1=118 WL?=

TP ncftp 012 (50) DA1=118 WL7?=.

TP mscan 015 (100) SP=520 We?-=.

TP neptune 016 (100) DA1?=112 DP=520

TP neptune 016 (100) DA1?=114 DP=520

TP ej ect 018 (55.67) F1?=. AP F2=. AP
TP apache2 018 (57.18) F17?=. AP F2=. AP
TP tcpreset 021 (66.73) F1?=. AP

TP net bus 026 (100) F2=. AP F3?=.S

TP satan 027 (27.65) SA1?=070 F1=. UDP
TP portsweep 027 (59.97) SA1?=124 F1=. UDP
TP portsweep 027 (73.62) SA1?=008 F1=. UDP
TP portsweep 029 (25.52) SA3?=204

TP yaga 029 (30.69) SA3?7=206

TP portsweep 029 (30.91) SA3?7=202
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TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

por t sweep
guest
guessftp

i psweep
smur f

nept une
port sweep
anypw
casesen
ffbconfig
net cat _set up
per |
guesst el net
smur f

ps

t cpreset
xterm

nti nf oscan
back

port sweep
por t sweep
gueso
por t sweep
dosnuke
gueso

dosnuke

029

029

029

029

029

029

029

029

029

029

029

029

029

029

029

029

029

030

030

030

030

030

030

031

031

032

(34.
(36.
(36.
(40.
(42.
(48.
(48.
(48.
(48.
(48.
(48.
(48.
(48.
(51.
(53.
(58.
(95.
(37.
(45.
(46.
(51.
(58.
(62.
(32.
(99.

(45.

04) SA3?=209
29) SA3?=153
45) SA3?=208
7) SA3?2=204
56) SA3?=023
42) SA3?=011
55) SA3?=153
55) SA3?=204
55) SA3?=204
55) SA3?=206
55) SA3?=207
55) SA3?=209
55) SA3?=209
32) SA3?=001
16) SA3?=209
16) SA3?=202
59) SA3?=202
21) F3?=. AR
85) F3?7=.A
38) F3?=.F
68) F3?=.F
63) F3?=.F
84) F3?=.F

53) F27=. UAP

97) F27=.10S

31)
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TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

dosnuke

sshprocesstab

di ct
crashiis
reset scan

i map
processtabl e
processt abl e
crashiis
crashiis
crashiis
phf

phf
crashiis
back

phf

back
dosnuke
queso

udpst orm
udpst orm
guesst el net
apache2

sat an
mai | bonb

mai | bonb

032

033

033

033

033

033

033

033

035

035

035

035

035

035

035

036

036

037

037

038

038

039

042

044

044

044

(52.
(45.
(71.
(83.
(88.
(94.
(99.

(99.

32)
36)
54)
71)
58)
75)
09)

77)

F1=.S F2?=. UAP

SA2=016

SA2=016

SA2=016

SA2=016

SA2=016

SA2=016

SA2=016

(100) W=, " @ET

(100) WL=. A@EET

(47.
(50.
(88.
(96.
(99.
(58.
(95.
(35.
(99.
(43.
(65.
(58.

(100) F2=.

82)
79)
39)
14)
82)
33)
98)
13)
21)
81)
85)

06)

SA1?7=118

SA1?7=118

SA1?7=117

SA1?=117

SA1?=117

SA1?7=118

SA1?=117

WB?=.

WB?=.

WL=. "@ET WB?=.

W=, "@ET WB?=.

WL=. "@ET WB?=.

WL=. "@ET WB?=.

W=, "@ET WB?=.

LEN?=6 WB=.

LEN?=14

SA2=016

SA2=016

WB=.

DUR=0 F2?=. UAP WB=.

DUR=0 F2?=.10S WB=.

DP?=7 F1=. UDP

DP?=7 F1=. UDP

SA2?=005

LEN?=

11

(100) DP=25 WL.?=."@

(43.53) DP=25 WL.?=. ~@mi |

(53.06) DP=25 WL?=. @i |
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TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

sendnmai

net cat _break

guesspop
ftpwite
apache2
guessftp
net bus
war ez

net bus

nt f sdos
nt f sdos

t eardrop
ar ppoi son
nti nfoscan
back
crashiis
named
por t sweep
named

I s_donmain
named
por t sweep
| s_domain
ftpwite
mai | bonb

sendnmai

044

045

045

045

045

045

047

047

047

048

048

048

048

048

048

048

050

050

050

050

050

051

051

051

053

053

(84.
(25.
(32.
(39.
(51.

(52.

99)
35)
01)
51)
37)

97)

DP=25 WL.?=. "@AIl L
WA?=. ver® W=

W?=.al i eO"M* V6=.
WA?=. /et c/ hos W6=.
WA?=. User - Age W6=

WE?=. r exnO"M* W6=.

(100) LEN?=19

(82.74) LEN?=19

(99.98) LEN?=19

(100)
(100)
(100)
(100)
(44.
(87.
(99.
(29.
(40.
(43.
(45.
(52.
(30.
(57.
(63.
(85.

(88.

76)
37)
99)
27)
72)
44)
38)
19)
6)

85)
05)
55)

41)

DUR?=8 W8=.

DUR?=8 W8=.

DUR?=8 W8=.

DUR?=9 W8=.

DUR?=10 W\B=.

DUR?=9 W8=.

DUR?=15 WB=.

DP?=53 DUR=0

DP?=143 DUR=0

DP?=53 DUR=0

DP?=53 DUR=0

DP?=53 DUR=0

DP?=19

DP?=53
DP?=513
DP=25 WB?=.r cpt

DP=25 WB?=.r oot @al
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TP insidesniffer 055 (59.26) W?=. RCPT W8=.

TP smurf 055 (28.83) Ws?=."F V8=,

TP smurf 055 (38.18) Wp?=."HH@"@ V8=.
TP i psweep 055 (65.77) Wb?=.V W3=.

TP i psweep 055 (68.62) Wb?=. "Pp2"H'@ V\8=.
TP casesen 059 (100) DAO=100 DUR?=13

TP guest 064 (44.49) DUR?=3 LEN=7

TP secret 064 (50.38) DUR?=11 LEN=7

TP guest 065 (90) DA1=112 DUR?=3 LEN=7

A.3. Top Scoring Alarms

This section shows the top scoring alarmsin the same format as Appendix A.2, sorted by
decreasing anomaly score. Thefirst column indicates a true positive (TP), afalse positive (FP), or a
duplicate detection of an attack detected by a higher scoring alarm (--). An IDSis evaluated by the
number of TP up to the first 100 FP, ignoring duplicates. The highest scoring alarm is a detection of
portsweep in which 99.98% of the anomaly scoreisfromrule 7 in Appendix A.1. Only alarms

through the first 10 false alarms are shown.

TP portsweep 007 (99.98) DA1?=118 DA0=100

TP sysl ogd 001 (98.07) SA3=172 SA2?=005

-- portsweep 012 (50) DA1=118 Wi?=.

TP sysl ogd 001 (96.79) SA3=172 SA2?=003

TP ncftp 012 (40.58) DA1=118 WL?=.

FP 017 (77.55) DA1=118 SA1=112 LEN?=6
-- portsweep 020 (100) DA1?=117
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TP

TP

TP

TP

FP

TP

FP

TP

FP

TP

FP

TP

TP

TP

TP

TP

TP

TP

TP

FP

FP

nept une
nscan
sysl ogd

apache2

nept une

tcpreset

t cpreset

ncftp

phf
queso
dosnuke

nept une

apache2
queso
sat an
sat an
sendnmi

net bus

ncftp

016

015

001

018

026

016

017

021

029

018

012

030

035

030

032

028

029

034

031

044

027

053

047

017

015

033

(100) DA1?=112 DP=520

(100) SP=520 W2°?=.

(93.04) SA3=172 SA2?=005
(57.18) F1?=. AP F2=. AP
(99.83) F2=. AP F3?=. AR

(100) DA1?=114 DP=520
(75.74) DA1=118 SA1=112 LEN?=6
(66.73) F1?=. AP

(48.55) SA3?=206

(100) F1?=. AP F2=. AP

(45.66) DA1=118 WL?=.
(63.08) F37=.F

(50.79) WL=. "@ET WB?-=.
(58.63) F3?=.F

(52.32) F1=.S F2?=. UAP

(100) F2?=. A F3=. AF

(61.83) SA3?7=206

(54.65) DP=80 W?=."@@ Q@@
(99.97) F2?=.10S

(100) DP=25 WL?=."@

(27.65) SA1?=070 F1=. UDP
(88.41) DP=25 WB?=.root @al
(100) LEN?=19

(76.76) DA1=118 SA1=112 LEN?=6
(100) SP=520 W2°?=.

(63.26) SA2=016 SA1?7=118
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TP processtabl e
-- queso

-- portsweep
TP queso

TP dosnuke

FP

FP

033

031

052

037

037

020

021

(99.77) SA2=016 SA1?=117

(100) F2?=.10S

(62.3) DA0?=030

(99.21) SA2=016 DUR=0 F2?=.10S WB=
(35.13) SA2=016 DUR=0 F2?=. UAP W\B=.
(81.53) DA1?=117

(45.72) F1?=. AR
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