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Abstract 

A Machine Learning Approach to Detecting Attacks by Identifying Anomalies in Network Traffic 

by 

Matthew Vincent Mahoney 

Dissertation Advisor: Philip K. Chan, Ph.D. 

 

 The current approach to detecting novel attacks in network traffic is to model the normal 

frequency of session IP addresses and server port usage and to signal unusual combinations of these 

attributes as suspicious.  We make four major contributions to the field of network anomaly 

detection.  First, rather than just model user behavior, we also model network protocols from the 

data link through the application layer in order to detect attacks that exploit vulnerabilities in the 

implementation of these protocols.  Second, we introduce a time-based model suitable for the bursty 

nature of network traffic: the probability of an event depends on the time since it last occurred rather 

than just its average frequency.  Third, we introduce an algorithm for learning conditional rules from 

attack free training data that are sensitive to anomalies.  Fourth, we extend the model to cases where 

attack-free training data is not available. 

 On the 1999 DARPA/Lincoln Laboratory intrusion detection evaluation data set, our best 

system detects 75% of novel attacks by unauthorized users at 10 false alarms per day after training 

only on attack-free traffic.  However this result is misleading because the background traffic is 

simulated and our algorithms are sensitive to artifacts.  We compare the background traffic to real 

traffic collected from a university departmental server and conclude that we could realistically 

expect to detect 30% of these attacks in this environment, or 47% if we are willing to accept 50 false 

alarms per day. 
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Chapter 1 

Introduction 

 Computer security is a growing problem.  The Computer Emergency Response Team, or 

CERT (2003b) reported 82,094 incidents and 4129 new vulnerabilities in 2002.  Both of these 

numbers have approximately doubled each year since 1997.  Likewise, the number of web page 

defacements per year has approximately doubled each year, growing to about 15 per day in 2000, 

according to www.attrition.org.  While much of this growth can be attributed to the growth of the 

Internet, there is also an increase in the number of incidents per computer.  According to the ICSA 

1998 Computer Virus Prevalence Survey, the rate of virus infections per computer per month in 

large North American organizations increased from 0.1% in 1994 to 3% in 1998.   

  Most vulnerabilities are software errors, a very old problem.  For example, both the Morris 

Internet worm (Spafford, 1988) and the SQL Sapphire worm (CERT, 2003a) exploit buffer 

overflows, a common type of error occurring in many C programs in which the length of the input is 

not checked, allowing an attacker to overwrite the stack and execute arbitrary code on a remote 

server.  Both worms spread quickly all over the world and caused widespread damage, but with one 

major difference.  In 1988, patches to fix the vulnerability were developed, distributed, and installed 

worldwide within a day of the attack.  In 2003, the vulnerability was known months in advance and 

patches were available, but many people had not bothered to install them. 

 Patches and updated software versions are almost always available soon after a 

vulnerability is discovered.  Unfortunately updating software takes time and computer skills, and 

sometimes introduces new bugs or incompatibilities.  In reality, many people leave their systems 

insecure rather than try to fix something that already appears to be working.  This might explain 
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why in an audit of U.S. federal agencies by the General Accounting Office in 2000, investigators 

were able to pierce security at nearly every system they tested (Wolf, 2000). 

 Even if the software update problem were solved, there would still be a time lag between 

the development of new exploits and the availabil ity of tests to detect the attack (e.g. virus definition 

files or firewall rules) or patches to fix the vulnerabil ity.  Although patches may be available in a 

day or so, this would not stop the spread of "flash" worms, which could potentially infect all 

vulnerable computers on the Internet within a few minutes of release (Staniford, Paxson, & Weaver, 

2002).  The SQL Sapphire worm is one such example, doubling in population every 8.5 seconds and 

infecting 90% of vulnerable computers worldwide within 10 minutes of its release (Beverly, 2003; 

Moore et al., 2003). 

 Software patches also do not help for the more common case where the victim does not 

know that his or her computer has been compromised.  Attackers may go to great lengths to conceal 

their backdoors.  Websites like www.rootkit.com and www.phrack.org provide tools and describe 

techniques such as modifying the kernel to hide files and processes or modifying TCP/IP protocols 

to set up stealth channels to penetrate firewalls. 

 Furthermore, people are generally unaware that their computers are probed many times per 

day, either with tools specifically designed for that purpose, such as NMAP (Fyodor, 2003), or by 

network security tools like SATAN (Farmer & Venema, 1993), which are intended to allow network 

administrators to test their own systems for common vulnerabiliti es.  Probes often originate from 

compromised machines, so identifying the source can be helpful to their owners.  Thus, it is not 

enough just to secure our systems.  It is also important just to know that a probe or an attack 

(especially a novel attack) has taken place. 

 Our goal is to detect novel attacks by unauthorized users in network traffic.  We consider 

an attack to be novel i f the vulnerabili ty is unknown to the target's owner or administrator, even if 

the attack is generally known and patches and detection tests are available.  We are primarily 

interested in three types of remotely launched attacks: probes, denial of service (DOS), and 
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intrusions in which an unauthorized user is able to bypass normal login procedures and execute 

commands or programs on the target host.  The latter is also known as a remote to local (R2L) 

attack (Kendall, 1998).  Our goal is not to detect viruses, or attacks in which the attacker already has 

login privileges or physical access and gains root or administrative access (a user to root or U2R 

attack).  Such attacks are easy to conceal from a network sniffer by using a secure shell, and are best  

detected by monitoring incoming files or the operating system locally. 

 Our goal is detection, not prevention.  We could block suspicious traffic, as a firewall does, 

but our goal is simply to identify such traffic.  This is a difficult problem in the absence of rules to 

identify such traffic.  Although rules to detect many attacks have been developed for network 

intrusion detection systems such as SNORT (Roesch, 1999) and Bro (Paxson, 1998), our goal is to 

detect novel attacks.  By focusing on detection, we can test our algorithms off-line on sniffed traffic. 

 The normal approach to detecting novel attacks is anomaly detection: modeling normal 

behavior and signaling any deviation as suspicious.  This process generates false alarms, and is one 

reason the approach is not widely used.  Another problem is that the system often cannot help a 

user, who is typically not an expert in network protocols, decide if an unusual event (say, a UDP 

packet to port 1434) is hostile or not.  In fact, this is the signature of the SQL Sapphire worm, but it 

could also be legitimate traffic if one were running a server vulnerable to this attack.  Nevertheless, 

an anomaly detection system could help bring unusual events buried in masses of data to the 

attention of a network administrator, either in real time, or in a forensic analysis of sniffed traffic 

after something has gone wrong.  Thus, our goal is simply to identify the events most likely to be 

hostile while accepting some false alarms. 

1.1.  Problem Statement 

 The problem we are trying to solve is to detect attacks in network traffic with no prior 

knowledge of the characteristics of possible attacks.   We assume that a history of attack-free (or 
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mostly attack-free) traffic is available from the system we are monitoring.  The types of attacks we 

wish to detect are those that could be detected in network traffic if we knew what to look for.  These 

are attacks by remote, unauthorized users: probes, DOS, or R2L.  We assume that our system will be 

part of a more comprehensive intrusion detection system (IDS) that also uses hand-coded rules to 

detect known attacks, and host-based methods (monitoring file system and operating system events) 

to detect U2R attacks, viruses, and backdoors. 

1.2.  Approach 

 Our approach to detecting novel attacks is anomaly detection: using machine learning to 

generalize from attack-free traffic, with the assumption that events which do not fit the model are 

likely to be hostile.  Currently most network anomaly models are based on source and destination IP 

addresses and server ports.  For example, an IDS might signal an alarm in response to a packet 

addressed to UDP port 1434 if such packets are normally rare, which would be the case a for system 

not running a database server.  If it were, it might signal an alarm if the source address was unusual 

for that port.  In either case, the IDS would assign an alarm score or confidence level inversely 

proportional to the probability of the event, based on the average frequency in the past.  This 

approach can detect many port scans and many attacks on servers with trusted clients. 

 Our approach differs in two respects.  First, we model protocols, rather than just addresses 

and ports.  Many attacks exploit bugs in protocol implementations.  For example, the Morris worm 

exploits a buffer overflow vulnerability in fingerd, a UNIX based server which tells whether a user 

is logged in.  This attack would not be detected using normal methods (unusual client addresses) 

because finger accepts requests from untrusted clients.  However, by modeling the finger protocol, 

we could detect this attack.  Normal requests are short one-line commands containing ASCII text, 

but the exploit is 576 characters long and contains VAX executable code.  In addition to application 
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protocols like finger, HTTP (web), and SMTP (email), we also model the transport layer (TCP, 

UDP, and ICMP), network layer (IP) and data link layer (Ethernet). 

 Second, our model estimates the probability of an event using the time since it last 

occurred, rather than average frequency.  This model is better suited to bursty (non-Poisson) 

processes with long range dependencies (Leland et al.; 1993, Paxson & Floyd, 1995).  For example, 

a fast port scan might generate a rapid burst of alarms using a frequency based model, but in a time 

based model only the first packet would generate a high score, effectively consolidating the alarms. 

 Because we model a large number of attributes, it is necessary to form conditional rules to 

constrain the protocols, such as "if server-port = 80 then word-1 = GET or POST".  We describe an 

algorithm for generating such rules automatically from a sample of attack-free training data.  Many 

attacks can be detected by events that have never occurred before (i.e. word-1 = QUIT), but it is also 

effective to model events that have occurred, perhaps many times, but not recently, for example the 

first occurrence of word-1 = POST in a week.  The second model is more appropriate when we do 

not use explicit training and test periods.  We compare these two approaches. 

 We evaluate our systems on the 1999 DARPA/Lincoln Laboratory IDS off-line evaluation 

(IDEVAL) data set (Lippmann et al., 2000; Lippmann & Haines, 2000),which simulates several 

hosts on a local network connected to the Internet under attack by published exploits.  Unfortunately 

the properties that make an IDS sensitive to attacks also make it sensitive to simulation artifacts.  

For example, the simulation uses different physical machines with the same IP address to simulate 

some of the attacks and some of the background traffic (Haines et al., 2001).  This leads to the 

unexpected result that many attacks can be detected by anomalies in the TTL, TCP window size and 

TCP option fields caused by idiosyncrasies of the underlying simulation.  Additional artifacts occur 

in the distribution of client IP addresses and in many application level protocols.  We analyze these 

artifacts in detail by comparing the background traffic with real traffic collected on a university 

departmental server.  We find that by injecting real traffic into the simulation and by some 
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modification to our algorithms that most simulation artifacts can be removed and the methods we 

describe remain effective. 

1.3.  Key Contributions 

The key contributions are as follows: 

• A time-based model appropriate for bursty traffic with long range dependencies. 

• Modeling application protocols to detect attacks on public servers. 

• A randomized algorithm that efficiently learns an anomaly detection model represented by 

a minimal set of conditional rules. 

• Anomaly detection without labeled or attack-free training data. 

• Removing background artifacts from simulated evaluation data by injecting real traffic. 

1.4.  Dissertation Organization 

 The rest of this dissertation is organized as follows.  In Chapter 2, we review network 

security and attacks, intrusion detection, properties of network traffic, and the IDEVAL test set.  In 

Chapters 3 through 6, we introduce four anomaly detection algorithms to illustrate our first four key 

contributions.  These four systems are PHAD (packet header anomaly detector) (Mahoney & Chan, 

2001), ALAD (application layer anomaly detector) (Mahoney & Chan, 2002b), LERAD (learning 

rules for anomaly detection) (Mahoney & Chan, 2002a), and NETAD (network traffic anomaly 

detection) (Mahoney, 2003). 

 In Chapter 3, we use PHAD to illustrate time-based modeling.  The attributes are the 

Ethernet, IP, TCP, UDP, and ICMP packet header fields.  The model is global.  No conditional rules 

are used, and no distinction is made between incoming and outgoing traffic.  An anomaly occurs 

only if a field has a value never seen training.  The anomaly score is proportional to the number of 
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training packets and the time since the last anomaly, and inversely proportional to the number of 

allowed values. 

 In Chapter 4, we use ALAD to illustrate the use of conditional rules to model application 

protocols.  ALAD models inbound client traffic.  It combines a traditional model based on addresses 

and ports with a keyword model of the application payload.  For example, it signals an anomaly 

when the first word on a line in an SMTP or HTTP header is novel. 

 In Chapter 5, we use LERAD to illustrate a rule learning algorithm.  LERAD uses a 

training sample to generate candidate rules that should generate high anomaly scores, then tests 

these rules on the full training set, keeping those not likely to generate false alarms.  LERAD 

models inbound client requests, but could be used on any type of data that can be expressed as 

tuples of nominal attributes. 

 PHAD, ALAD, and LERAD signal anomalies only when a value is never seen in training.  

In Chapter 6, we introduce NETAD (which tests inbound client packets with fixed conditional rules) 

to compare these models with those that assign anomaly scores to previously seen values.  This type 

of model does not require an explicit attack-free training period.  We conclude that both types are 

effective, but attack-free training data should be used if it is available. 

 In Chapter 7, we analyze the IDEVAL training and background data by comparing it to real 

traffic collected on a university departmental server.  Although the IDEVAL developers took great 

care to make the simulated Internet traffic as realistic as possible, we find that the simulated traffic 

is too "clean" and predictable in subtle ways that a good anomaly detection system could root out.  

This would explain some (but not all) of the attacks we detected earlier, and suggests that the false 

alarm rates we measured are unrealistically low. 

 In Chapter 8 we inject real network traffic into the IDEVAL data to better simulate a real 

environment.  This raises the false alarm rate and masks the detection of attacks by artifacts, 

yielding more credible results, not just on our systems, but also on another network IDS, SPADE 

(Hoagland, 2000).  We conclude that our systems could legitimately detect 20% to 40% of novel 
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attacks at false alarm rates of 10 to 50 per day, with a tradeoff between detection and false alarm 

rate.  We believe this is an improvement over current methods. 

 In Chapter 9, we summarize our contributions and discuss limitations and future work.  Our 

contribution is not to build a network anomaly IDS, but to describe the general principles by which 

one should be built and tested. 
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Chapter 2 

Related Work 

 Our goal is to distinguish hostile network traffic from normal traffic.  Thus, we review 

hostile traffic, normal traffic, current methods of distinguishing them, and how these methods are 

evaluated. 

2.1.  Network Vulnerabilities 

 There are thousands of known exploits.  Kendall (1998) describes a taxonomy of attacks, 

grouping them into four major categories. 

• Probes – testing a potential target to gather information.  These are usually harmless (and 

common) unless a vulnerabili ty is discovered and later exploited. 

• Denial of service (DOS) – attacks which prevent normal operation, such as causing the 

target host or server to crash, or blocking network traffic. 

• Remote to local (R2L) – attacks in which an unauthorized user is able to bypass normal 

authentication and execute commands on the target. 

• User to root (U2R) – attacks in which a user with login access is able to bypass normal 

authentication to gain the privileges of another user, usuall y root. 

We are interested in detecting the first three types, because they generall y exploit network protocol 

implementations.  U2R attacks exploit bugs or misconfigurations in the operating system, for 

example a buffer overflow or incorrectly set file permissions in a suid root program.  The actions of 
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an attacker can be easily hidden from a network sniffer by launching the attack from the console or 

through a secure shell . 

 Kendall describes many of the attacks we will describe in this section.  His analysis does 

not include self-replicating attacks such as worms or viruses, although they normally propagate by 

exploiting R2L vulnerabiliti es.  They may also contain DOS attacks as payloads, for example, 

erasing all files on an infected computer on a certain date. 

2.1.1.  Probes 

 Probes gather information to search for vulnerable systems.  For example: 

• IP sweep – testing a range of IP addresses with ping to determine which ones are alive 

(Kendall , 1998).  Another way to gather a list of potential targets is to spoof a zone transfer 

request to a DNS server, as is done by the ls command in NSLOOKUP. 

• Port scans – testing for ports with listening servers.  Tools such as NMAP (Fyodor, 2003) 

and HPING (Sanfilippo, 2003) use sophisticated techniques to make scans hard to detect, 

for example, scanning with RST or FIN packets (which are less likely to be logged), or 

using slow scans to defeat an intrusion detection system (IDS) looking for a burst of 

packets to a range of ports. 

• Fingerprinting – determining the operating system version of the target based on 

idiosyncrasies in responses to unusual packets, such as TCP packets with the reserved flags 

set.  This method, implemented by QUESO and NMAP, distinguishes among hundreds of 

operating system versions using only 7 packets (Fyodor,1998). 

• Vulnerabili ty testing – Network administration tools such as SATAN (Farmer & Venema, 

1993), SAINT (Kendall , 1998), MSCAN (Kendall , 1998), and NESSUS (Deraison, 2003) 

test for a wide range of vulnerabiliti es.  These tools serve the dual purpose of allowing 

network administrators to quickly test their own systems for vulnerabil ities, and allowing 
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attackers to test someone else's system.  NESSUS is open source and uses a scripting 

language and has an extensive library of tests, which is updated as new vulnerabiliti es are 

discovered.  As of February 2003, NESSUS tests for 1181 vulnerabil ities. 

• Inside sniff ing – An attacker with physical access to a broadcast medium such as Ethernet, 

cable TV, or wireless, could sniff traffic addressed to others on the local net.  Many 

protocols such as telnet, FTP, POP3, IMAP, and SNMP transmit passwords unencrypted. 

Probes (other than sniffers) normally cannot use spoofed source IP addresses because they require a 

response back to the attacker.  However there are a number of methods to make it harder to detect 

the true source, for example: 

• Sending large numbers of spoofed packets in addition to true source addresses, so that the 

victim will not know which address is the real probe. 

• Launching a probe from a compromised host. 

• Idle scanning through a zombie (Fyodor, 2002). 

Idle scanning, a feature of NMAP, allows an attacker to conceal its address by exploiting any 

intermediate host (a zombie) that is lightly loaded and that yields predictable IP fragment ID values, 

as many operating systems do.  For example, the ID may be incremented after each packet sent.  

The attacker probes the zombie on an open port (say, a web server on port 80) to get the current ID, 

then sends a TCP SYN packet to the target port to be probed, with the spoofed source address of the 

zombie.  The source port is set to 80.  The target responds to the zombie on port 80 either with a 

SYN-ACK packet if the port is open, or a RST if closed  The zombie then replies (with a RST) to 

the target in case of a SYN-ACK (since no TCP connection was open), but does not respond to a 

RST from the target.  The attacker then probes the zombie a second time to see whether the IP ID is 

incremented by one or two, thus learning whether the port is open or closed. 
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2.1.2.  Denial of Service Attacks 

 Denial of service attacks can target a server, a host, or a network.  These either flood the 

target with data to exhaust resources, or use malformed data to exploit a bug.   Kendall  (1998) gives 

the following examples, all of which are used in the IDEVAL test set. 

• Apache2 – Some versions of the apache web server will  run out of memory and crash 

when sent a very long HTTP request.  Kendall describes one version in which the line 

"User-Agent: sioux" is repeated 10,000 times. 

• Back – Some versions of apache consume excessive CPU and slow down when the 

requested URL contains many slashes, i.e. "GET /////////////..." 

• Land – SunOS 4.1 crashes when it receives a spoofed TCP SYN packet with the source 

address equal to the destination address. 

• Mailbomb – A user is flooded with mail messages. 

• SYN flood (Neptune) – A server is flooded with TCP SYN packets with forged source 

addresses.  Because each pending connection requires saving some state information, the 

target TCP/IP stack can exhaust memory and refuse legitimate connections until the attack 

stops. 

• Ping of death – Many operating systems could be crashed (in 1996 when the exploit was 

discovered) by sending a fragmented IP packet that reassembles to 65,536 bytes, one byte 

larger than the maximum legal size.  It is called "ping of death" because it could be 

launched from Windows 95 or NT with the command "ping –l 65510 target". 

• Process table – An attacker opens a large number of connections to a service such as finger, 

POP3 or IMAP until the number of processes exceeds the limit.  At this point no new 

processes can be created until the target is rebooted. 
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• Smurf – An attacker floods the target network by sending ICMP ECHO REQUEST (ping) 

packets to a broadcast address (x.x.x.255) with the spoofed source address of the target.  

The target is then flooded with ECHO REPLY packets from multiple sources. 

• Syslogd – The syslog server, which could be used to log alarms remotely from an IDS, is 

crashed by sending a spoofed message with an invalid source IP address.  Due to a bug, the 

server crashes when a reverse DNS lookup on the IP address fails. 

• Teardrop – Some operating systems (Windows 95, NT, and Linux up to 2.0.32) will crash 

when sent overlapping IP fragments in which the second packet is wholly contained inside 

the first.  This exploits a bug in the TCP/IP stack implementation in which the C function 

memcpy() is passed a negative length argument.  The argument is interpreted as a very 

large unsigned number, causing all of memory to be overwritten. 

• UDP storm – This attack sets up a network flood between two targets by sending a spoofed 

UDP packet to the echo server of one target with the spoofed source address and port 

number of the chargen server of the other target. 

2.1.3.  Remote to Local Attacks 

 While probes and DOS attacks may exploit TCP/IP protocols, R2L attacks always exploit 

application protocols to gain control over the target.  Kendall describes several attacks, which can be 

grouped as follows: 

• Password guessing – Many users tend to choose weak or easily guessed passwords.  An 

attack could try common passwords such as guest, the user name, or no password.  If this 

fails, an attacker could use a script to exhaustively test every word in a dictionary.  Any 

service requiring a password is vulnerable, for example, telnet, FTP, POP3, IMAP, or SSH. 

• Server vulnerabili ty – An attacker exploits a software bug to execute commands on the 

target, often as root.  For example, buffer overflow vulnerabiliti es have been discovered in 
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sendmail (SMTP), named (DNS), and imap.  Other bugs may allow a command to be 

unwittingly executed.  For example, the PHF attack exploits a badly written CGI script 

installed by default on an old version of apache.  The following HTTP command will 

retrieve the password file on a vulnerable server:  

 GET /cgi-bin/phf?Qalias=x%0a/usr/bin/ypcat%20passwd 

• Configuration error – An attacker exploits an unintended security hole, such as exporting 

an NFS partition with world write privileges.  One common error is setting up an open X 

server (using the command xhost +) when running a remote X application.  The xlock 

attack scans for open X servers, then displays a fake screensaver which prompts the user to 

enter a password, which is then captured.  xsnoop does not display anything; it merely 

captures keystrokes. 

• Backdoors – Once a host has been compromised, the attacker will  usually modify the target 

to make it easier to break in again.  One method is to run a server such as netcat, which can 

listen for commands on any port and execute them (Armstrong, 2001). 

2.1.4.  Attacks on the Intrusion Detection System 

 It is reasonable to expect that if a system is running an IDS, then the IDS might be 

attacked.  This could either be an evasion, such as port scanning with FIN or RST packets, which 

are less likely to be logged, or a denial of service attack such as syslogd. 

 Ptacek and Newsham (1998) and Horizon (1998) contend that it is not possible for a 

network sniffer to see exactly the same traffic as the target without an impractical level of 

knowledge about the target environment.  For example, if two TCP segments overlap with 

inconsistent data, some operating systems will use the first packet, and others will use the second.  If 

the IDS is unaware of which method is used, then an attacker could exploit this to present innocuous 

data to the IDS while presenting hostile data to the target.  Another technique would be to use short 

TTL values to expire packets between the IDS and the target.  Also, if the IDS does not verify IP or 
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TCP checksums, then an attacker could present the IDS with innocuous packets with bad checksums 

that would be dropped by the target.  Many other exploits could exist, depending on how accurately 

the IDS implements the TCP/IP protocols.  Many do so poorly.  Ptacek and Newsham found that out 

of four commercial systems that they tested, all were vulnerable to some of these attacks, and 

furthermore, none could properly reassemble fragmented IP packets. 

 Newman et al (2002) tested one open source and seven commercial network intrusion 

detection systems costing $2500 to $25,000 on a high speed (100 Mbs.) network  Most systems 

flooded the user with false alarms.  Seven of the eight systems crashed at least once during their 31 

day test period, often because the logs filled up.  This study suggests that many intrusion detection 

systems would be easy targets of flooding attacks. 

 Even if the IDS properly reassembled IP packets and TCP streams (handling checksums, 

retransmissions, timeouts, invalid TCP flags, etc. correctly), it is still possible to elude detection by 

making small changes to the attack.  Consider the PHF attack described in Section 2.1.3.  An IDS 

might detect this by searching for the string "GET /cgi-bin/phf?" or something similar.  NESSUS 

employs a number of features to evade simple string matching, such as the following. 

• URL encoding – replacing characters with %XX, e.g. "GET %2F%63%69..." 

• Modifying the path, e.g. "GET /foo/../cgi-bin/phf?" or "GET "/cgi-bin/./phf?" 

• Replacing spaces with tabs, e.g. "GET<tab>/cgi-bin/phf?".  This syntax is nonstandard, but 

accepted by the target web server. 

Thus, it seems that an IDS must not only fully model the IP and TCP protocols of the hosts it 

protects, with all their idiosyncrasies and bugs, but also application protocols as well .  If it does not, 

then a determined attacker could find a way to evade it. 
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2.2.  Properties of Network Traffic 

 A network intrusion detection must distinguish between hostile and benign traffic, and 

must do so quickly to keep up with a high speed network.  Depending on whether the IDS uses 

signature or anomaly detection, it must either model attacks (of which there are thousands) or 

normal traffic.  There are two main challenges for modeling normal traffic (for anomaly detection).  

First, network traffic is very complex, and second, the model changes over time. 

 Many internet protocols are described in the Request for Comments (RFC), a set of 

documents dating back to 1969, which can be found at www.ietf.org.  As of Feb. 14, 2003, there 

were 3317 documents totaling 147 megabytes of text.  The set is growing at a rate of about 250 new 

documents per year.  However, the documentation describes how protocols should behave, not how 

the thousands of different clients and server versions actually implement them, with all their 

idiosyncrasies and bugs.  Nor do the RFCs cover every protocol.   Some protocols may be 

proprietary and not documented anywhere. 

 Bellovin (1993) and Paxson (1998) found that wide area network traffic contains a wide 

range of anomalies and bizarre data that is not easily explained.  Paxson refers to this unexplained 

data as "crud".  Examples include private IP addresses, storms of packets routed in a loop until their 

TTLs expire, TCP acknowledgments of packets never sent, TCP retransmissions with inconsistent 

payloads, SYN packets with urgent data, and so on.  Bellovin found broadcast packets 

(255.255.255.255) from foreign sites, ICMP packets with invalid code fields, and packets addressed 

to nonexistent hosts and ports.  Many of these were investigated and found to be not hostile.  

Instead, many errors were caused by misconfigured routers or DNS servers. 

 Rather than try to specify the extremely complex behavior of network traffic, one could 

instead use a machine learning approach to model traffic as it is actually seen.  For example, an IDS 

could be trained to recognize the client addresses that normally access a particular server by 

observing it over some training period.  Unfortunately, research by Adamic (2002) and Huberman 
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and Adamic (1999) suggest that this approach would fail for some attributes (such as client 

addresses) because the list of observed values would grow at a constant rate and never be completed 

no matter how long the training period.  Adamic found that the distribution of Internet domains 

accessed by a large number of HTTP clients (web browsers) has a power law or Pareto distribution, 

where the r'th most frequent value occurs with frequency cr-1/ k, where c and k are a constants and k 

is usually close to 1 (in this case, 1.07).  When k = 1, the r'th most frequent value occurs with 

frequency proportional to 1/r.  Zipf (1939) observed this behavior in the distribution of word 

frequencies in English and several other languages (with c ��������� .  Since then, power law 

distributions have been observed in many natural phenomena such as city populations or incomes 

(Mitzenmacher 2001), and CPU memory accesses (Stone, 1993).  We found that many attributes of 

network traffic collected on a university departmental server have Zipf-like distributions, for 

example, HTTP and SSH client versions and client addresses in TCP connections (Mahoney & 

Chan, 2003). 

 The problem with a power law distributed random variable is it implies that the "normal" 

set of values cannot be learned no matter how long the observation period.  If we make n 

observations of a Zipf-distributed random variable and observe r distinct values, then the expected 

number of values occurring exactly once (denoted r1) is r/2.  By Good-Turing (Gale & Sampson, 

1995), the probability that the next value of any discrete random variable will be novel is E[r1]/n, 

which for a Zipf variable is estimated by r/2n.  This implies that r (the size of the vocabulary to be 

learned) grows without bound.  A similar argument can be made for power law distributions where k 

is not exactly 1. 

 A confounding problem in traffic modeling is that it is not possible to determine the 

average rate of many types of events (for example, bytes per second or packets per second for some 

packet type), regardless of the duration of the sampling period.  It had long been assumed that 

network traffic could be modeled by a Poisson process, in which events are independent of each 

other.  If we measured packet rates, for example, we would find random variations over small time 
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windows (e.g. packets per second), but these would tend to average out over longer periods (e.g. 

packets per month). 

 However, Leland et al. (1993) and Paxson & Floyd (1995) showed that this is not the case 

for many types of events.  If we graphed packets per second or packets per month, they would both 

show bursts of high traffic rates separated by gaps of low activity.  Furthermore, both graphs would 

look the same.  A burst or gap could last for a fraction of a second or for months.  The distribution 

of traffic rates would be independent of time scale.  This behavior is a property of self-similar or 

fractal processes.  Leland et al. formalizes the notion of a self-similar process as follows. 

• Long range dependency.  (For a Poisson process, events separated by a long time interval 

are independent). 

• A nonsummable autocorrelation correlation, such as 1/t.  For a Poisson process, the 

autocorrelation decays exponentially, e.g. e-t/T for some time constant T. 

• A Hurst parameter greater than 0.5. 

The Hurst parameter characterizes the self-similarity of a process.  It is defined as the rate at which 

the sample standard deviation of an aggregate process decreases as the aggregate size increases.  For 

example, the aggregate size increases by a factor of M = 60 when going from packets per second to 

packets per minute.  If the sample standard deviation of this process decreases by a factor of M1-H, 

then the process is said to have a Hurst parameter of H.  For a Poisson process, H = 0.5.  For a 

purely self-similar process, H = 1.  Leland et al. measured H in the range 0.7 to 0.9 for Ethernet 

packet rates and byte rates on networks of various sizes, with higher values of H when traffic rates 

were higher. 

 These results suggest that for some attributes it is impossible to either learn the full set of 

possible values of an attribute, or the average rate at which any individual value should be observed.  

Fortunately all is not lost.  Paxson and Floyd found that some events, such as session interarrival 

times, can be modeled by a Poisson processes.  Processes may also have predictable time-dependent 
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behavior.  For example, traffic rates are higher during the day than at night.  Also, not all attributes 

have power law distributions, and it may be possible to distinguish these attributes from the others. 

2.3.  Intrusion Detection 

 Intrusion detection systems can be categorized along three dimensions. 

• Host or network based – A host based system monitors operating system events and the file 

system to detect unauthorized use (viruses, R2L or U2R attacks).  A network based IDS 

monitors network traffic to and from one or more hosts to detect remote attacks (usually 

probes, DOS, or R2L). 

• Signature or anomaly detection – A signature (or misuse) detection system searches for 

patterns or events signaling known attacks.  An anomaly detection system signals a 

possible novel attack in the case of events that differ from a model of normal behavior. 

• Hand coded or machine learning – A hand coded system requires the user to specify rules 

for normal behavior or specific attacks.  A machine learning system generalizes from 

training data, which is either normal or contains labeled attacks. 

For example, a virus detection program is host based (it examines files on the computer on which it 

runs), uses signature detection (pattern matching for known viruses), and is hand coded (using 

vendor-updated virus definition files).  The subject of this dissertation is the exact opposite: network 

anomaly detection using machine learning to generalize from normal traffic.  These methods differ 

in the types of attacks they detect (U2R or probe, known or novel).  A good system will combine 

different techniques to increase coverage. 

2.3.1.  Machine Learning 

 Some intrusion detection systems use machine learning to model attacks (signature 

detection) or normal behavior (anomaly detection).  The general problem of machine learning is 
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described in (Mitchell , 1997).  We are given a set of instances (e.g. network packets or user 

sessions), some of which have category labels (e.g. normal or hostile).  The problem is to assign 

labels to the remaining instances.  In general, an instance is a set of attribute-value pairs (e.g. { port = 

80, duration = 2.3 sec.} ).  An attribute is said to be nominal if the values are unordered.  For 

example, port numbers are nominal because port 80 (HTTP) and 79 (finger) are no more related to 

each other than they are to port 21 (telnet), numeric values notwithstanding.  An attribute with 

ordered values (such as duration) is continuous. In general, an instance can be represented as a 

vector of continuous values by assigning elements with values 0 or 1 to each nominal value, e.g. 

(port21 = 0, port79 = 0, port80 = 1, duration = 2.3). 

 Machine learning can be applied to either signature or anomaly detection.  If we are given 

training instances labeled both normal and hostile (or labeled with the type of attack), then we are 

using signature detection.  Such data is difficult to obtain.  More commonly, we label all traffic as 

normal (perhaps incorrectly).  In this case, any instance far outside the training set is assumed to be 

hostile.  This is the basis of anomaly detection. 

 The following is a summary of some common machine learning algorithms.  There are 

many others. 

• Memorization – We categorize test instances by finding a matching training instance.  If no 

exact match is found (a common problem), then this method fails (or we assume an 

anomaly). 

• Nearest neighbor – We define a distance function between instances, perhaps Euclidean 

distance between vectors.  A test instance is assigned the same category as its nearest 

neighbors from the training set.  If a test instance has no nearby neighbors, it is anomalous. 

• Naive Bayes – We use the training data to estimate a set of probabiliti es, P(category | 

attribute = value) for each category and each attribute.  We then estimate the probabilit y of 

the category of a test instance by taking the product of the probabiliti es for each attribute, 

e.g. P(hostile | port = 80, duration = 2.3) = P(hostile | port = 80)P(hostile | duration = 2.3)..  
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This approach is called naive because we are assuming that the attributes are independent.  

However this method often works well even when they are not. 

• Neural networks – We assign an input neuron (a model of a brain cell ) to each vector 

element and an output neuron to each category.  These neurons and possibly other 

intermediate neurons are connected by weights, w.  Given an instance, x, we compute the 

relative probabilit y yi that the category is i by yi = g(Σj wij xj), where g is a bounding 

function that limits the output to the range 0 to 1.  The network is trained by incrementall y 

adjusting the weights wij to correctly categorize the training set, i.e. yi = 1 if the category is 

i, and 0 otherwise.  By adding intermediate neurons, nonlinear functions of the input can be 

learned. 

• Decision Tree – A nested set of if-then-else rules are constructed of the form "if attribute < 

value then ...".  These rules form a tree, where the leaf nodes specify a distribution of 

categories, e.g. "P(hostile) = 2%".  A tree is constructed recursively using a greedy 

algorithm by finding the rule that maximizes the separation of categories (information gain) 

on the portion of the training set at each node. 

• RIPPER (Cohen, 1995) finds a rule sequence of the form "if ... then ... else if ... then ... else 

if ..." to assign categories to a training set.  A condition may be a combination of attributes, 

such as "if port = 80 and duration > 100 sec. then category = hostile, else if ...".  It uses a 

greedy algorithm so that the first few tests apply to most of the training instances, and 

extends the rule until no more training instances can be categorized. 

• APRIORI (Agrawal & Srikant, 1994) finds association rules.  It makes no distinction 

between the category and other attributes.  Given a training set, it allows any attribute to 

serve as the label and finds if-then rules that predict it based on other attributes.  APRIORI 

is useful for market basket analysis.  For example, does port number predict duration, or 

does duration predict port number? 
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2.3.2.  Network Signature Detection 

 We review a representative sample of intrusion detection systems.  For a more complete 

survey, see (Axelsson, 1999). 

 Network intrusion detection is usually rule based, although the rules may specify the 

behavior of an attack (signature detection) or rules that specify acceptable traffic (strict anomaly 

detection).  For example, the user could specify that packets addressed to unused ports are not 

allowed, and list those ports.  SNORT (Roesch, 1999) and Bro (Paxson, 1998) are two such systems.  

Both systems allow rules to be specified using scripts.  For example, the SNORT distribution 

includes the following rule to detect PHF by searching for the string "/phf" in TCP data packets 

addressed to the normal HTTP port. 

alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (msg:"IDS128 - CVE-1999-0067 - 

CGI phf attempt";flags:PA; content:"/phf";flags:AP; nocase;) 

Other rule-based systems are components of larger systems that also use host based methods.  These 

include P-BEST (Lindquist & Porras, 1999), which is one component of EMERALD (Newmann & 

Porras, 1999), and NetSTAT (Vigna & Kemmerer, 1999), which is a component of the STAT suite 

(Vigna et al., 2000). 

2.3.3.  Host Based Anomaly Detection 

 Many of the early anomaly detection systems surveyed by Axelsson (1999) model user 

behavior, for example, client IP addresses and normal login times.  A login from an unusual address 

or at an unusual time of day would be deemed suspicious.  Rules could either be learned or 

programmed. 

 DERBI (Tyson et al., 2000) is a file system integrity checker designed to detect signs of an 

intrusion, such as a backdoor.  It can be considered an anomaly detection system in the sense that 

normal behavior is defined such that operating system files should never be modified. 
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 Forrest et al. (1996) uses the analogy of a computer immune system to apply anomaly 

detection to program behavior in a host-based system by monitoring operating system calls.  It was 

found that servers and operating system components make predictable sequences of operating 

system calls.  When a programs is compromised in an R2L or U2R attack (for example, a buffer 

overflow), it executes code supplied by the attacker and deviates from the system call sequences 

observed during training.  Forrest et al. used a type of nearest-neighbor approach: an n-gram model 

with n = 3 to 6 and would signal an anomaly if a program made a sequence of n calls not observed 

in training. 

 Other models are possible.  For example, Ghosh and Schwartzbard (1999) trained a neural 

network with delayed feedback (an Elman network) on system calls to generalize from normal 

sequences.  Schwartzbard and Ghosh (1999) also applied this technique to Windows NT audit logs.  

The neural networks were trained by labeling attack-free data as normal and by generating random 

training data labeled as hostile. 

 NIDES (Anderson et al., 1999) compares short and long term program behavior by 

comparing vectors of host-based attributes, such as number of files open, CPU time, and so on.  The 

short term behavior (a single event or a small time window) represents the test instance, and the 

long term behavior (a large time window) represents the training model.  As with most practical 

systems where guaranteed attack-free training data is not available, we just make the assumption 

that most of the data observed so far is attack free.  Obviously if there are attacks in the training 

data, then repeat attacks of the same type are likely to be missed. 

2.3.4.  Network Anomaly Detection 

 Network anomaly detection systems usually monitor IP addresses, ports, TCP state 

information, and other attributes to identify network sessions or TCP connections that differ from a 

profile trained on attack free traffic.  They are usually combined with signature detectors as 

components in larger systems. 
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 SPADE (Hoagland, 2000), a SNORT plug-in, is an anomaly detection system which 

monitors addresses and ports of inbound TCP SYN packets (normally the first packet in a client-

server session).  By default, it models only the destination (server) address and port, and constructs a 

joint probability model by counting address/port combinations: P(address, port) = count(address, 

port) / count(all).  If the current packet (included in the counts) has a probability below a threshold, 

it is deemed anomalous, and an alarm is generated.  The threshold is varied slowly in order to keep 

the alarm rate constant.  SPADE also has probability modes that include the source address and port.  

Unusual source addresses on servers that accept only a small list of trusted clients might indicate an 

unauthorized user. 

 ADAM (Barbara et al., 2001a; Barbara et al., 2001b) combines an anomaly detector trained 

on attack-free traffic with a classifier trained on traffic containing known, labeled attacks.  Like 

SPADE, it monitors TCP connections.  In addition to addresses and ports, ADAM also monitors 

subnets (the first 1-3 bytes of a 4-byte IP address), TCP state flags, the day of the week, and time of 

day.  The anomaly detection component performs offline market basket analysis on attack-free 

traffic using techniques similar to RIPPER or APRIORI to find conditional rules among these 

attributes with high support and confidence.  During testing, sessions which violate these rules are 

passed to the second component, a classifier (a decision tree) trained on traffic containing labeled 

attacks.  Sessions which cannot be confidently classified as known attacks or normal are classified 

as unknown attacks. 

 eBayes (Valdes & Skinner, 2000), a component of EMERALD (Newmann & Porras, 1999) 

measures several attributes of a session, such as event intensity, error intensity, number of open 

connections, number of ports, number of addresses, and distributions of services and connection 

codes.  Unlike SPADE and ADAM, eBayes considers a group of TCP connections within a short 

interval to be a single session.  eBayes maintains a set of probability models, P(attribute = value | 

category) and uses naive Bayesian inference to assign a category to a session based on the observed 

attributes, which are assumed to be independent.  Like ADAM, categories correspond to known 
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attacks, normal behavior, and a category for unknown attacks (which requires training data with 

labeled attacks).  Unlike ADAM, eBayes adapts during the test phase in two ways.  First, the 

probabilities are slowly adjusted to reinforce the most likely category, and second, there is a 

mechanism to automatically add new categories when there is not a good match between the 

observed values and existing categories. 

2.4.  Intrusion Detection Evaluation 

 Ideally an IDS should be evaluated on a real network and tested with real attacks.  

Unfortunately it is difficult to repeat such tests so that other researchers can replicate the evaluation.  

To do that, the network traffic would have to be captured and reused.  This raises privacy concerns, 

because real traffic can contain sensitive information such as email messages and passwords.  Thus, 

network traffic archives such as ITA (Paxson, 2002), and the University of New Mexico data set 

(Forrest, 2002) are sanitized by removing the application payload and some packet header fields, 

and scrambling IP addresses. 

 The DARPA/Lincoln Laboratory IDS evaluation (IDEVAL) data sets (Lippmann et al., 

2000; Lippmann & Haines, 2000) overcome this difficulty by using synthetic background traffic.  

The goal of this project was twofold.  First, the goal was to test a wide variety of systems (host or 

network, signature or anomaly, four different operating systems) on a wide range of attacks.  The 

second goal was to provide off-line data to encourage development of new systems and algorithms 

by publishing a standard benchmark so that researchers could compare systems and replicate results. 

 Evaluations were conducted in 1998 and 1999.  The 1999 evaluation improved on the 1998 

evaluation by simplifying the scoring procedure, providing attack-free data to train anomaly 

detection systems, adding many new attacks, and one new target (Windows NT) to the three UNIX-

based targets in 1998. 
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Figure 2.1.  The 1999 DARPA/Lincoln Laboratory IDS Evaluation Test Configuration 

 

 Figure 2.1 shows the configuration of the 1999 evaluation test bed.  A local area network is 

set up to resemble a portion of a typical Air Force base network.  There are four main "victim" 

machines, running SunOS, Solaris, Linux, and Windows NT.  Traffic generators simulate hundreds 

of other hosts and users running various applications and an Internet connection (Haines et al., 

2001).  The mix of protocols (HTTP, SMTP, telnet, etc.) and hourly variations in traffic volume are 

similar to traffic collected on a real Air Force network in 1998.  Content is taken from public web 

sites and mailing lists, or synthesized using English word bigram frequencies. 

 The evaluation data set is collected from the four victim machines and from two network 

sniffers, an "inside" sniffer between the router and the victims, and an "outside" sniffer between the 

router and the Internet.  The host based data consists of audit logs and nightly file system dumps and 

directory listings, in addition to Solaris Basic Security Module (BSM) system call traces.  This data 
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is analyzed off-line to detect attacks.  Attacks may originate from either the Internet, from 

compromised hosts on the local network, or from attackers who have physical access to the victims 

or the local network.  Most attacks are against the four main victim machines, but some are against 

the network, the Cisco router, or against simulated hosts on the local network. 

 The 1999 evaluation had two phases separated by about three months.  During the first 

phase, participants were provided with three weeks of data (collected Monday through Friday, 8:00 

AM to 6:00 AM local time each day).  The second week of data contained 43 labeled instances of 

18 attacks which were taken from the Bugtraq mailing list, from published sources such as 

www.rootshell.com, or which were developed for the evaluation.  Many of these attacks are 

described in Section 2.1.  Attacks were sometimes made stealthy or hard to detect, for example, by 

slowing down a port scan or obfuscating suspicious shell commands.  Attacks were labeled with the 

start time and the name of the victim.  The first and third weeks contained no attacks, and could be 

used to train anomaly detection systems. 

 During the second phase, participants were provided with two weeks of test data (weeks 4 

and 5) containing 201 unlabeled instances of 58 attacks, 40 of which were not in the training data.  

Participants were required to provide a list of alarms identifying the target address, time, and a 

numerical score indicating a confidence level in the alarm, and optionally, the type of attack.  

Participants also provided a system specification which describes the types of attacks their system is 

designed to detect.  Attacks are classified by category (probe, DOS, R2L, U2R), the type of data 

examined (inside sniffer, outside sniffer, BSM, audit logs, file system dumps, or directory listings), 

victim operating system (SunOS, Solaris, Linux, or NT), and whether the attack is new (not in week 

2).  Systems are evaluated by the fraction of attacks detected out of those they are designed to detect 

at various false alarm rates (say, 10 per day, or 100 total) by ranking the alarms by score and 

discarding those which fall below a threshold that would allow more false alarms.  An attack is 

counted as detected if there is an alarm with a score above the threshold that identifies the victim 

address (or any address if there is more than one) and the time of any portion of the attack with 60 
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seconds leeway before the start of the attack or after the end.  Alarms that detect attacks that the 

system is not designed to detect (out of spec attacks), and duplicate alarms detecting the same attack 

are discarded without penalty.  Any other alarm is considered a false alarm. 

 Eight organizations participated in the 1999 evaluation, submitting 18 systems.  The top 

four systems reported by (Lippmann et al., 2000) are shown in Table 2.1.  The best systems detected 

about half of the attacks they were designed to detect at a false alarm rate of 10 per day.  Subsequent 

to the evaluation, the five weeks of training and test data were released to encourage research in 

intrusion detection.  The data and truth labels are available at http://www.ll.mit.edu/IST/ideval/. 

 

System In-Spec Attacks Detected at 10 false alarms per day 

Expert 1 (EMERALD) 169 85 (50%) 

Expert 2 (STAT) 173 81 (47%) 

Dmine (ADAM) 102 41 (40%) 

Forensics (DERBI) 27 15 (55%) 

 

Table 2.1.  Top results in the 1999 IDS evaluation (Lippmann et al., 2000) 

 

 Of the 58 attack types, there were 21 that were classified as poorly detected.  None of the 

18 systems detected more than half of the instances of any of these attacks.  Often these were missed 

because the systems did not monitor the relevant protocols or because they were new attacks not 

found in the labeled training data.  The attacks are as follows: 

• Stealthy ipsweep (probe, slow ECHO REQUEST scan for active IP addresses). 

• Stealthy portsweep (probe, slow port scan, or using stealthy techniques such as FIN 

scanning). 

• ls_domain (probe, obtains a list of hosts using a DNS zone transfer). 
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• queso (probe, operating system fingerprinting using malformed TCP packets). 

• resetscan (probe, port scan using unsolicited RST packets). 

• arppoison (DOS, disrupting local traffic by forging replies to ARP-WHO-HAS packets). 

• dosnuke (DOS, crashes Windows by sending urgent data in a NetBIOS request). 

• selfping (DOS, crashes SunOS by sending an ICMP ECHO REQUEST to self). 

• tcpreset (DOS, disrupts local traffic by forging RST packets to close TCP connections). 

• warezclient (DOS, downloading illegal software from a local anonymous FTP server). 

• ncftp (R2L, FTP client bug exploit). 

• netbus (R2L, a backdoor server). 

• netcat (R2L, another backdoor, uses a stealthy DNS channel). 

• snmpget (R2L, exploits an easily guessed router password). 

• sshtrojan (R2L, fake SSH server upgrade with login backdoor). 

• loadmodule (U2R, exploits a trojan shared library to gain root). 

• ntfsdos (U2R, an attacker with console access copies the disk, bypassing file system 

protection). 

• perl (U2R, exploits a bug in a setuid root Perl script). 

• sechole (U2R, exploits a bug in Windows NT). 

• sqlattack (U2R, a restricted user escapes from a database application to the UNIX shell). 

• xterm (U2R, gains root using a buffer overflow). 

Out of 201 attack instances, 77 are poorly detected.  Only 15 instances were detected by any system. 
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Chapter 3 

Time-Based Protocol Modeling 

 This chapter introduces PHAD (Mahoney & Chan, 2001), a Packet Header Anomaly 

Detector.  PHAD is unusual in two respects among network anomaly detection systems.  First, it 

models protocols rather than user behavior, because many attacks exploit errors in protocol 

implementations that can be detected by unusual inputs or outputs.  Second, it uses a time-based 

model, which assumes that network statistics can change rapidly in a short period of time.  When 

PHAD sees a burst of unusual events, only the first event of that burst ought to be surprising and 

reported as an anomaly.  This cuts down on false alarm floods. 

3.1.  Protocol Modeling 

 Most network anomaly detection systems are designed (perhaps implicitly) to distinguish 

authorized and unauthorized users.  For example, an authorized user would know the environment 

and not attempt to contact nonexistent hosts or services as a port scan would.  Also, servers 

requiring passwords (telnet, FTP, POP3, etc.) would have a regular set of authorized clients that 

could be identified by their source IP addresses, and perhaps other idiosyncrasies, such as time of 

day.  Thus, unusual source addresses on these services would hint at unauthorized access.  These 

methods are quite distinct from host based techniques that model program behavior.  Forrest uses 

the model of an immune system to detect when a vulnerable server or operating system component 

is executing code that was not part of the original program, such as a root shell in a buffer overflow 

attack.  Because program code does not change over time, programs tend to make characteristic 
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sequences of operating system calls.  Any novel code executed by these processes is likely to result 

in sequences that deviate from this pattern. 

 Program modeling could be used in a network intrusion detection system by monitoring the 

output of vulnerable servers.  Like system call sequences, we would expect a program's output to 

deviate from normal behavior when it executes novel code.  For example, it would be unusual to see 

a root shell prompt coming from a mail server, as during a sendmail buffer overflow attack.  Such 

an attack could not be caught by user modeling, because no unusual ports or addresses are accessed 

and mail servers will accept any client address without authentication. 

 Another approach is protocol modeling.  In section 2.1, we saw that many attacks exploit 

bugs in protocol implementations.  For example, sendmail, imap, and named exploit improper 

implementation of SMTP, IMAP, and DNS, in which the length of the input is not checked in some 

cases.  Teardrop and ping of death exploit bad implementations of IP protocol, such that the target 

crashes when presented with unusual IP fragments that do not reassemble properly.  Queso is able to 

identify some operating system versions because of bugs in their TCP implementations which cause 

them to give nonstandard responses to unusual data, such as TCP packets with the reserved flags set.  

A common theme of such attacks is that the input is unusual in some sense.  There is a reason for 

this.  If the error could be invoked by commonly occurring data, then the bug would have been 

quickly discovered and fixed. 

 Another source of protocol anomalies could come from bugs in the attacking code.  Just as 

it is hard for the developer of a server or client and get all the details of a protocol right, it is hard for 

the attacker too.  For example, attacks that spoofs the source address have to be programmed at the 

IP level using a technique such as raw sockets.  This requires the attacker to fill in all  of the other IP 

header fields, such as TTL, header length, checksum, fragmentation pointer, and so on.  It is hard to 

get this right.  Not only must the packet satisfy the protocol requirements, but if it is to elude 

detection, it must also duplicate the idiosyncrasies of the protocols in the target environment.  For 

example, many operating systems generate predictable sequences of IP fragment ID numbers or 



 32 

TCP initial sequence numbers (a fact exploited by attacks such as queso).  The same reasoning 

applies to application protocols.  For example, a normal SMTP session starts with a HELO/EHLO 

handshake.  It is not required for an attack like sendmail, but if it was omitted, the attack could be 

detected. 

 A third source of protocol anomalies could come from attacks on the IDS.  Many of the 

IDS vulnerabiliti es described in Section 2.1.4 are the result of differences in the IDS's and the 

target's implementation of TCP/IP.  Because of the nature of software testing, differences exposed 

by the most common cases will be discovered and fixed first.  Any remaining inconsistencies will 

only be exposed by rare events, such as small TTL values, IP fragmentation, inconsistent 

overlapping TCP segments, and so on. 

 To summarize, there are five potential ways to detect attacks. 

1. Unusual ports and addresses, signs of an unauthorized user (traditional model). 

2. Unusual outputs, signs of a successful attack. 

3. Unusual inputs that exploit hidden bugs in the target. 

4. Unusual inputs due to bugs in the attacking code. 

5. Unusual inputs to exploit hidden bugs in the IDS. 

3.2.  Time Based Modeling 

 In Section 2.2 we saw that many types of network events occur in bursts separated by gaps, 

over both short and long time scales.  Many network processes tend to be self-similar or fractal 

rather than Poisson, and to have a nonsummable autocorrelation function such as 1/t (where t is 

time).  Events separated by long time intervals are not independent, as in a Poisson model.  Instead 

there is a long range dependency. 

 Anomaly detection is the identification of rare events.  In a frequency-based model, the 

average rate of events is estimated by counting the number of events and dividing by the 
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observation period.  This is a poor way to model a bursty process because there is no average rate.  

For example, consider the following (bursty) sequence of 20 observations of an attribute: 

00000000000000001111.  What is the probabili ty that the next observation will be a 1?  If we 

assume that each event is independent, then 1 occurs 4 out of 20 times, so P(1) = 4/20 = 0.2. 

 However, if the events were independent, it is unlikely that all the "0"s and "1"s would be 

grouped as they are.  (This type of pattern is common in network traffic).  Such a sequence is more 

likely to originate from a process that has a state.  At a minimum, the state might represent the 

previous output, such that the next output repeats with high probabili ty.  Without knowing more 

about the underlying process, we can propose the following model, which we will call the 1/t model: 

the probabilit y of an event is inversely proportional to the time since it last occurred.  The last 

observation of a "0" occurred 5 time units ago, so P(0) ~ 1/5.  The last observation of "1" occurred 1 

time unit ago, so P(1) ~ 1.  Combining these, P(1) = 1/(1/5 + 1) = 5/6.  We note that this is almost 

the same as we would obtain with a frequency based model going back just far enough to avoid 

probabiliti es of exactly 0 or 1.  In this example, we must go back 5 observations, and observe the 

value "1" in 4 out of 5 times, for P(1) = 4/5.  Thus, if the events really are independent, then the 1/t 

model will not be too far off . 

 Another possibil ity to consider is that of novel values.  We did not explicitly state in our 

example that "0" and "1" are the only possibiliti es.  By Good-Turing, P(novel) = E[r1]/n, where r1 is 

the number of values occurring exactly once (0 in our example), and n is the number of observations 

(20).  However, Good-Turing only applies if the events are independent.  If events occur in bursts, 

then there may be fewer values occurring exactly once, so Good-Turing is probably an 

underestimate. 

 The PPMC (prediction by partial match – method C) model proposed by (Bell et al., 1989) 

for data compression algorithms, does not require that events be independent.  PPMC predicts 

P(novel) =  r/n, where r is the number of observed values.  In our example, r = 2 and n = 20, so 

P(novel) = 0.1.    PPMC assumes that the number of observed values (r) grows at a steady rate so 
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that r/n is constant and independent of n.  This is actually the case for attributes with a Zipf 

distribution, but is usually an overestimate for Poisson processes because r 	 r1. 

 To apply time-based modeling to anomaly detection with explicit training and test periods, 

we assign an anomaly score for novel values of 1/P(novel) = tn/r, where n and r are counted during 

the training period, and where t is the time since the last anomaly.  An anomaly may occur during 

either training or testing, with the difference that if a novel value is observed in training it is added 

to the set of allowed values, but if it occurs during testing it is not.  Note that in our model, P(novel) 

= (r/n)(1/t), which accounts for both the baseline rate of novel events, r/n, and a time-based model 

for events occurring outside the set of allowed values, 1/t.  For example, suppose we are given the 

following training and test sequences: 

 

  Training (time 0-19): 00000000000000001111    Test (time 20-24): 01223 

 

During training, we record the set of allowed values {0, 1}, the size of this set, r = 2, and the 

number of observations, n = 20.  If observations are made at unit time intervals starting at 0, then the 

last anomaly in training is "1" at time 16.  The values "2", "2", and "3" at times 22, 23, and 24 in 

testing are anomalies because they are not in the training set.  The anomaly score of the first "2" is 

tn/r = (22-16)20/2 = 60.  The anomaly scores of the second "2" is (23-22)20/2 = 10.  The anomaly 

score of the "3" is (24-23)20/2 = 10.  The anomaly scores of "0" and "1" are 0 because the values 

occur at least once in training. 

 The anomaly score of an instance with more than one anomalous attribute is Σ tn/r, where 

the summation is over the anomalous attributes.  It should be noted that there is no theoretical 

justification for summing inverse probabilities.  If the attributes were independent and our 

probability model is correct, then we should use the product, Π tn/r.  If the attributes were fully 

dependent, we could just select one arbitrarily, or perhaps take the maximum.  In reality, the 
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attributes are neither independent or fully dependent, and we found experimentally that a summation 

works better in practice than these other possibilities. 

 We could also assign anomaly scores to values seen one or more times in training.   For 

now we do not.  This topic will be addressed in Chapter 6. 

3.3.  PHAD 

 PHAD is a simple time-based protocol anomaly detector for network packets.  It scores 

every packet and makes no distinction between incoming and outgoing traffic.  It models 33 

attributes which correspond to packet header fields with 1 to 4 bytes.  Fields smaller than one byte 

(such as TCP flags) are combined into one byte.  Fields larger then 4 bytes (such as 6 byte Ethernet 

addresses) are split.  The attributes are as follows: 

• Ethernet header (found in all packets): packet size, source address (high and low 3 bytes), 

destination address (high and low 3 bytes), and protocol (usually IPv4). 

• IP header: header length, TOS, packet size, IP fragment ID, IP flags and pointer (as a 2 

byte attribute), TTL, protocol, checksum (computed), and source and destination addresses. 

• TCP header: source and destination ports, sequence and acknowledgment numbers, header 

length, flags, window size, checksum (computed), urgent pointer, and options (4 bytes if 

present). 

• UDP header: source and destination ports, checksum (computed), and length. 

• ICMP header: type, code, and checksum (computed). 

PHAD computes an anomaly score of Σ tn/r over the anomalous attributes.  n is the number of 

packets of the type appropriate for each field, e.g. the number of ICMP packets for the ICMP type 

field. 

 In order to store potentially large sets of training values (e.g. 232 source or destination 

addresses), PHAD treats the attributes as continuous and clusters them into a maximum of C = 32 
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ranges.  If the number of ranges ever exceeds C, then PHAD finds the smallest gap between 

adjacent ranges and merges them, effectively adding the values in the gap to the set of allowed 

values.  For example, given the set {3, 5-10, 14-16} and C = 2, the smallest gap is between 3 and 5-

10, so the new set becomes {3-10, 14-16}.  r is computed as the number of anomalies in training, 

i.e. the number of times an element is added to the set, not including merges. 

 The method of approximating large sets is not critical, because it only affects attributes 

with large r, and therefore low scores.  PHAD detects about the same number of attacks whether it 

uses C = 32, C = 1000, or stores a hash (mod 1000) of the value with no clustering. 

3.4.  Experimental Procedure 

 PHAD (and all systems to be described later) was tested on the 1999 DARPA/Lincoln Labs 

IDS evaluation (IDEVAL) data set described in Section 2.4.  It was trained on the attack-free inside 

sniffer traffic from week 3, which contains 7 days of traffic (including two "extra" days).  It was 

tested on weeks 4 and 5, which contains 201 attacks.  We used the inside sniffer traffic because it 

can see inside attacks.  However, one day is missing (week 4, day 2).  In the evaluation, systems that 

used this data were not penalized for missing attacks on this day.  The IDEVAL truth labels list 177 

attacks visible in the inside sniffer traffic after removing this missing day and also removing attacks 

which do not generate any evidence in the traffic, such as attacks from the console. 

 We evaluated PHAD using the EVAL3 and EVAL4 programs (Mahoney, 2003b), which 

are our implementations of the 1999 IDEVAL detection criteria. as described in Section 2.4.  PHAD 

identifies the target by using the destination IP address from the packet header.  For an outgoing 

packet, this would actually be the source address, but the truth labels lists both the source and 

destination addresses for each attack, so we allowed a match to either.  We consider this to be fair 

because it would be trivial to add knowledge of the home network to PHAD and have it output the 

appropriate address. 
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 EVAL3 implements an alarm consolidation step prior to evaluation in which duplicate 

alarms identifying the same target address within a 60 second period are merged into a single alarm 

by keeping only the alarm with the highest score and discarding the others.  This step can reduce 

false alarms from nearly any system because if there is an attack, the duplicates would be discarded 

anyway, and if not, only one false alarm is generated.  Although the factor t in the anomaly score 

usually prevents consecutive high scoring alarms, it is possible that this could still occur if the 

anomalies are in different attributes of different packets.  Alarm consolidation typically adds several 

detections to PHAD. 

3.5.  Experimental Results 

 EVAL3 computes the number of detections at several false alarm rates by sorting the 

alarms by descending score and discarding alarms after the false alarm limit is reached.  At 100 false 

alarms (10 per day), PHAD detected 72 of the 201 attacks.  PHAD was instrumented so that each 

alarm identifies the attribute which contributes the most to the anomaly score, the percentage of that 

contribution, and the anomalous value.  An analysis of these results showed that the TTL field was 

responsible for more detections than any other attribute.  We attributed these detections to 

simulation artifacts.  TTL (time to live) is an 8-bit counter which is decremented each time an IP 

packet is routed.  When TTL reaches 0, the packet is discarded in order to prevent infinite loops due 

to misconfigured routers.  Many systems use a fixed TTL value for outgoing packets, such as 128 or 

255, so the TTL value often indicates the number of network hops between the source and the 

sniffer.  In the simulation, different physical machines simulating the same host IP address were 

used to generate some of the background traffic and some of the attacks (Haines et al., 2001). 

Apparently these machines may have been on different parts of the real network, and PHAD 

detected this difference. 
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3.5.1.  Attacks Detected 

 We removed the TTL attribute from PHAD and detected 54 attacks at 100 false alarms 

with alarm consolidation (by EVAL3), or 48 attacks without consolidation (by EVAL4).  The 

following list groups the 54 attacks by the attribute that contributes the most to its detection.  Of 

these, 32 appear to be detected by features of the attack, 20 detections (marked with *) are not easily 

explained and might be simulation artifacts, and 2 (marked with **) are coincidental.  The pair of 

numbers after each attribute shows the number of readily explained detections and the total number.  

For instance, out of the 11 attacks detected by source address, only 1 (syslogd) is easily explained. 

• IP source address: 1/11 (syslogd, portsweep*, smurf*,  ncftp*, sendmail*, processtable*, 

xlock*, fdformat*, yaga*) 

• TCP flags: 9/9 (portsweep, queso, dosnuke) 

• IP fragment pointer/flags: 7/7 (teardrop, pod) 

• IP packet length: 5/5 (satan, syslogd, portsweep) 

• Ethernet packet size = 52: 4/4 (ipsweep) 

• ICMP checksum = x0000: 0/3 (smurf*) 

• IP destination address: 0/3 (portsweep*, warez*, sendmail*) 

• Urgent pointer: 3/3 (dosnuke) 

• TCP options: 0/2 (apache2*) 

• TCP source port: 0/2 (portsweep*) 

• UDP checksum: 2/2 (udpstorm) 

• TCP checksum: 0/1 (insidesniffer**) 

• Ethernet source address: 0/1 (insidesniffer**) 

• Ethernet destination address: 1/1 (mscan, actually arppoison) 
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It is unfortunate that anomaly detection systems such as PHAD are sensitive to simulation artifacts 

in the IDEVAL data.  This topic will be explored in more depth in Chapter 7.  The artifacts 

important to PHAD are as follows: 

• TTL, as previously discussed. 

• Remote client IP addresses.  There are too few (only 29 in week 3) to simulate a diverse 

range of clients on public services such as HTTP (web), SMTP (mail), and anonymous 

FTP.  This affects detections of incoming packets by source address and outgoing packets 

by destination address.  Although some attacks on private services should be detected this 

way (e.g. the telnet flood, processtable), PHAD makes no distinction between services.  

fdformat and yaga are U2R attacks and should not be detected at all.  The only detection 

we consider legitimate is syslogd, in which the source address is forged so that reverse 

DNS lookup fails. 

• TCP options.  These are highly predictable on single hosts and in the IDEVAL background 

traffic, but not in real traffic.  The anomaly in outgoing apache2 packets (an HTTP flood) 

is a maximum segment size option (MSS = 1024), most likely a response to an 

idiosyncrasy of the attacking host.  While a real attack might result in the same response, it 

is unlikely that it could be detected this way without a lot of false alarms. 

• Source port.  Only values up to about 33K appear in the IDEVAL background data, as 

opposed to real traffic (and portsweep) which uses the full range of values up to 64K. 

• Coincidental detections.  Both instances of insidesniffer are detected by coincidental false 

alarms.  Insidesniffer (a sniffer on the local network) is a prolonged attack (hours) with 

multiple victims (all local hosts).  Thus, any alarm on any host during this time would be 

counted as a detection. 

• Overlapping attacks.  The detection of mscan by invalid Ethernet address is actually due to 

a detection of arppoison, which occurs simultaneously.  In an arppoison attack, an attacker 
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with access to the local network sends forged replies to ARP-who-has packets to disrupt 

local traffic.  This attack cannot be detected directly because ARP packets do not have an 

IP address as required by IDEVAL criteria.  Other arppoison detections appear as false 

alarms. 

• Smurf.  This is one of the few simulated attacks.  Smurf floods a network with ICMP 

ECHO REPLY packets by sending ECHO REQUEST (ping) packets to a broadcast address 

with the spoofed source address of the target.  These replies had to be simulated because 

the broadcast network did not really exist.  Real replies would probably not have invalid 

checksums. 

3.5.2.  False Alarms 

 The top 100 false alarms are listed below.  They are grouped by the attribute that 

contributes the greatest fraction to the anomaly score. 

• TCP checksum: 32 errors 

• IP destination address: 9 

• UDP length: 9 

• Ethernet source address: 8 

• TOS (type of service): 7 

• Ethernet destination address: 6 

• TCP urgent pointer: 5 (values pointing outside the packet) 

• TCP window size: 5 

• TCP options: 4 

• IP source address: 3 

• 2 each: TCP acknowledgment number, TCP destination port, TCP flags (urgent data), IP 

fragmentation. 
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• 1 each: Ethernet packet size, IP packet size, TCP sequence number, IP type. 

TCP checksum errors account for about a third of the false alarms.  There are no checksum errors 

(IP, TCP, UDP, or ICMP) in any of the training data.  Had there been, these false alarm scores 

might have fallen below the threshold.  Other than TCP checksum and TOS, there is not much 

difference between the set of attributes that detect attacks and those that generate false alarms. 

 The eight Ethernet source address false alarms and one destination alarms are due to non-IP 

packets without an IP address.  Five of these alarms occur during arppoison attacks. 

3.5.3.  Detection – False Alarm Tradeoff 

 In the previous sections, we analyzed PHAD at a threshold allowing 100 false alarms (10 

per day).  In Figure 3.1 we show the effects of varying this threshold in a detection-false alarm 

(DFA) curve.  As the threshold is adjusted, there is a tradeoff between false alarms and missed 

attacks.  As the threshold is lowered, both the number of attacks detected and the number of false 

alarms increases.  However, after 100 false alarms, the number of detections levels off. 
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Figure 3.1.  PHAD detection-false alarm curve for 0 to 500 false alarms. 
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3.5.4.  Detections by Category 

 Table 3.1. lists the number and percentage of attacks (in-spec or not, legitimate or not) 

detected in each category at 100 false alarms.  PHAD detects mostly probe and DOS attacks that 

exploit the protocols that it analyzes, namely those at the transport layer and below.  It does poorly 

on R2L attacks, which generally exploit application layer protocols, as well as probe and DOS 

attacks on servers.  It also misses most U2R and data attacks, which are not easily detected in 

network traffic by any means. 

 Among the 77 poorly detected attacks described in Section 2.4, PHAD detects 17: 9 

stealthy portsweep, 1 stealthy ipsweep, 3 aueso, and 4 dosnuke.  The detection rate for these attacks 

(22%) is not much lower than the overall rate (27%) which suggests that PHAD could be integrated 

with other systems to fill the gap. 

 

Attack Type Detected/Total at 100 false alarms 

Probe 24/37 (65%) 

DOS 22/65 (34%) 

R2L 6/56 (11%) 

U2R/Data 2/43 (5%) 

Total 54/201 (27%) 

Poorly Detected in 1999 evaluation 17/77 (22%) 

 

Table 3.1.  PHAD detections by attack category. 
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3.5.5.  Implementation and Run Time Performance 

 PHAD was implemented with about 400 lines of C++.  On a Sparc Ultra-60 with a 450 

MHz 64-bit processor, PHAD processes 2.9 gigabytes of training data and 4.0 gigabytes of test data 

in 364 seconds (310 user + 54 system).  This is about 95,900 packets per second, or 23 seconds per 

simulated training/test day.  Training and testing speeds are approximately equivalent.  

 On a Compaq Presario with a 750 MHz AMD Duron processor running Windows Me, 

PHAD runs in 15 minutes on the same data.  The primary limitation appears to be disk speed, 

although no tests were done to confirm this. 

 Memory requirements are negligible.  PHAD allocates about 4K bytes of memory to store 

the anomaly model. 

 Source code is available at (Mahoney, 2003b). 

3.6.  Summary 

 PHAD introduces two innovations in network anomaly detection: time based modeling and 

protocol modeling.  Time-based modeling regulates the flood of alarms that would otherwise be 

caused by bursts of anomalous events.  Protocol modeling allows PHAD to detect four of the five 

attack categories described in Section 3.1.  Examples of each are given below. 

• Unusual outputs as symptoms of a successful attack: arppoison causes victims to send 

packets with the wrong Ethernet addresses. 

• Unusual inputs to exploit bugs:  Attacks that exploit IP fragmentation (teardrop, ping of 

death) are detected by the presence of fragments, which are normally rare.  Dosnuke, which 

crashes Windows by sending urgent data to the NetBIOS port, is detected by the URG flag 

and urgent pointer.  Urgent data is a rarely used feature of TCP. 

• Bugs in the attack:  The initiating packet in udpstorm has an incorrect checksum.  The 

checksum is apparently not verified, but failing to set it correctly allows the attack to be 
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detected.  (The actual storm is missed).  IPsweep could also be hidden by using larger 

packets (a parameter to ping). 

• Attacks on the IDS.  Some of the portsweep probes are FIN scans, which are used because 

FIN packets are less likely to be logged.  (The attack is detected because the ACK flag is 

not set). 

No attacks are detected (legitimately) by user modeling, the dominant form of detection in most 

other systems.  PHAD cannot detect attacks by source address because it makes no distinction 

between public and private services.  It does not detect attacks by server port because it makes no 

distinction between server and client traffic.  Also, PHAD detects (legitimately) only probes and 

DOS attacks.  It does not detect R2L attacks because these normally exploit application protocols, 

which PHAD does not examine.  We address these shortcomings in the next chapter. 
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Chapter 4 

Application Layer Modeling 

 This chapter introduces ALAD (Mahoney & Chan, 2002b), an Application Layer Anomaly 

Detector.  ALAD differs from PHAD in two respects.  First, it models the application payload of 

TCP connections to detect attacks on servers.  Most R2L attacks, which PHAD misses, are of this 

form.  Second, ALAD uses conditional models, such as P(source address | destination port), rather 

than global models such as P(source address).  This allows ALAD to model public and 

authenticated services separately in order to detect anomalous client addresses only on those 

services where novel addresses are not expected.  Conditional models could be applied to arbitrary 

combinations of attributes. 

4.1.  ALAD 

 ALAD has two stages, one to reassemble inbound client TCP packets into streams, and a 

second stage to perform anomaly detection on these reassembled streams.  We examine only 

inbound TCP traff ic from clients to servers (identified by a low numbered destination port).  Most 

R2L attacks, as well as probes and DOS attacks on applications, target servers.  Although there is 

useful information in the server's response, we examine only the request to the server because four 

of the five sources of anomalies described in Section 3.1 occur in input rather than output.  Also, 

very few attacks in PHAD (just arppoison) were detected by monitoring output.  Restricting the data 

set to inbound client traffic greatly reduces the load on the IDS. 

 We consider the following six attributes of reassembled client TCP streams. 
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• Source (remote client) IP address. 

• Destination (local server) IP address. 

• Destination (server) port number (which identifies the protocol). 

• TCP flags of the first packet and last two packets, e.g. "SYN/FIN-ACK/ACK". 

• Application keywords (the first word on a line, delimited by white space). 

• Application arguments (the rest of the line, delimited by a linefeed). 

The first three attributes should allow us to detect user anomalies.  TCP flags should allow us to 

detect unusual states, such as connections that are never closed.  Protocol modeling takes place in 

the application payload.  The application protocols are assumed to be text based, with lines of the 

form "keyword arguments", and ending with a linefeed, which is often true.  For example, in the line 

"GET / HTTP/1.0" , the keyword would be "GET" and the argument would be "/ HTTP/1.0".  For 

HTTP and SMTP, we model only the header, which is delimited by a blank line.  For all protocols, 

we examine no more than the first 1000 bytes. 

 ALAD uses the same time-based model as PHAD, anomaly score = tn/r for novel values 

and 0 for any value observed at least once in training.  For a conditional model such as P(source 

address | port), a separate t, n, r, and set of observed values is maintained for each value of the 

condition (i.e. for each port).  n is the number of times the condition was met, r is the number of 

values for that condition (addresses for that port), and t is the time since the last anomaly for that 

condition.  ALAD computes the anomaly score for a TCP stream by summing the anomaly score 

tn/r over all of the attributes for each complete line of text, then summing those scores to get the 

final score.   

 It is not immediately clear which combinations of attributes should be modeled and which 

should be conditions.  Any combination of one or more attributes may be in the consequent, and any 

of the zero or more remaining attributes may be in the antecedent.  In general, if there are m 

attributes, then there are Σ0 
���
��  2i m!/(i!(m-i)!) possible combinations, which grows exponentially 
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with m.  For m = 6, there are 665 possible rule forms.  Rather than test all of these rule forms, we 

hand pick combinations for testing based on the assumption that arguments depend on keywords 

and that the other attributes depend on the server address and/or port. 

 Once we have selected a small set of rule forms, we can combine them in at least two ways.  

One way is to add the associated anomaly scores, as previously mentioned.  Another is to use each 

rule form by itself in a separate IDS, then run them in parallel and merge the alarms.  In this mode, 

we would want to set each IDS threshold so that they all produce the same number of alarms, then 

consolidate the duplicate alarms when two or more systems identify the same target at the same 

time.  Our approach is to find a small number, k, of rule forms that do well individuall y in terms of 

detecting attacks, then to exhaustively test all 2k – 1 possible mergers of these systems.  It is not 

always optimal to merge all the systems, because if we merge two systems that detect the same 

attacks then no new attacks are discovered but we could double the number of false alarms.  

However, if two systems detect different attacks in roughly equal numbers, then there is a possibili ty 

that the merged combination could improve on both components. 

 We build our final system by adding together the anomaly scores of those rule forms from 

an optimal merge.  This is not optimal, because merging and adding do not give the same results, 

although they are similar.  However, we use this approach rather than exhaustively test all 

combination of sums because evaluating combinations of merges can be done quickly.  To evaluate 

merged systems, we sort the alarms by score, consolidate duplicates, and evaluate equal numbers of 

alarms from each system in a round-robin fashion until the false alarm threshold is reached.  

Evaluation run time is dominated by sorting the alarms by score, which only has to be done once for 

each system.  If we exhaustively tested summations rather than merges, then each combination 

would require a sort operation. 
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4.2.  Experimental Results 

 We evaluated ALAD on the same data as PHAD.  It was trained on week 3 of the 1999 

IDEVAL inside sniffer traffic, and tested on weeks 4 and 5.  Results were evaluated with EVAL3 at 

100 false alarms (10 per day).   We found k = 11 rule forms that detect between 13 and 44 attacks, 

as shown in Table 4.1.  Next we used EVAL3 to exhaustively test all 211 – 1 = 2047 merged 

combinations of these 11 outputs.  The optimal merged combination was found to consist of 5 of the 

top 6 rule forms as shown in Table 4.1, detecting 63 attacks.  When we replace the merge with a 

summation, ALAD detects 60 attacks. 

 PHAD and ALAD detect sufficiently different attacks that their results can be merged.  

PHAD detects 54 attacks by itself, but the merger with ALAD detects 73. 
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Rule Form Attacks detected at 100 false alarms 

1. P(client address | server address) 44 

2. P(client address | server address and port) 42 

3. P(keyword | server port) 34 

4. P(TCP flags | server address) 29 

5. P(arguments | keyword) 26 

6. P(server address and port) (unconditional) 26 

7. P(server port | server address) 25 

8. P(TCP flags) (unconditional) 23 

9. P(arguments | port, keyword) 23 

10. P(TCP flags | server address and port) 13 

11. P(server address | client address) 13 

ALAD = models 1 + 2 + 3 + 4 + 6 60 

PHAD 54 

PHAD + ALAD 73 

 

Table 4.1.  Attacks detected by ALAD rule forms on IDEVAL inside weeks 3-5 at 100 false 

alarms. 

 

 The attacks detected by ALAD are best understood by examining the results from 

individual rule forms rather than their combination. 
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4.2.1.  Client Address Detections 

 Rule forms 1 and 2 (client address) detect almost the same attacks.  Form 2, which is more 

specific (modeling each server address/port combination separately, rather than modeling each 

server address) detects fewer attack instances (42 vs. 44) but more attack types.  As expected, most 

of these are attacks on servers rather than the TCP/IP stack, as in PHAD.  As with PHAD, we mark 

detections that seem unlikely to occur in real traffic with an asterisk.  The detections are as follows: 

• Probes: mscan, ntinfoscan, satan.  These test a wide range of server vulnerabilities. 

• DOS: apache2* (HTTP), crashiis* (HTTP), mailbomb* (SMTP), warezclient* 

(anonymous FTP), warezmaster* (anonymous FTP, form 2 only), arppoison* (ARP, form 

2 only).  Unfortunately the most likely explanation for the detection of these attacks on 

public services is that the range of legitimate addresses is unrealistically small in the 

IDEVAL simulation.  Arppoison is probably coincidental. 

• R2L: dict (password guessing), ftpwrite* (form 2 only), netbus*, netcat* (backdoors using 

DNS/TCP), phf* (HTTP), ppmacro* (an emailed trojan), sendmail* (SMTP), sshtrojan.  

Only sshtrojan (a backdoored server) uses an authenticated protocol (SSH). 

• U2R: casesen*, eject*, fdformat* (form 2 only), ffbconfig*, xterm*, yaga*.  These are most 

likely cases of detecting the FTP upload of the exploit code or the shell session that 

executes the attack.  We could not expect these attacks to be detected if they were executed 

by authorized users. 

4.2.2.  TCP State Detections 

 Rule forms 4, 8, and 10 detect three kinds of anomalies. 

• Locally initiated FTP data connections on port 20, identified by an initial SYN-ACK rather 

than SYN.  Attacks are detected this way only because the anonymous FTP server is never 
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used to upload files in training.  Uploads include U2R exploit code: casesen*, eject*, 

fdformat*, sechole*, and xterm*, and the FTP server exploits satan, warez* and ftpwrite. 

• Unclosed connections in response to a DOS attack, indicated by the absence of a trailing 

FIN or RST.  These include apache2, crashiis, and tcpreset. 

• Reset connections.  Detects ntinfoscan.  It is unusual for a client to open a connection and 

then close it with a RST packet. 

Rule form 4, which models each server address separately and is used in ALAD, detects all types of 

anomalies.  The unconditional model (8), detects FTP uploads almost exclusively, and would 

probably be of little use in a more realistic environment.  The most specific rule form (10), which 

models by address/port  combination, detects mostly unclosed or reset connections. 

 Out of 60 false alarms for rule form 4, 53 are for outgoing sessions (FTP uploads) 5 are 

client initiated RST packets, and 2 are unclosed connections.  For the unconditional model (8), there 

are 59 uploads and one RST.  For the most specific model (10), there are 25 false alarms distributed 

as follows: port 22 (SSH): 6 RST by the client, 3 unclosed (no FIN), 2 unopened and unclosed.(no 

SYN or FIN); for port 23 (telnet): 2 RST and one unopened and unclosed; for port 80 (HTTP): 8 

unopened (no SYN), 2 unclosed, and one RST.  All of these distributions are similar to the hostile 

traffic. 

4.2.3.  Keyword Detections 

 Rule form 3 models keywords by server port number.  Although every server port is 

modeled, all attacks are detected on ports 21 (FTP), 23 (telnet), 25 (SMTP) or 80 (HTTP), which 

makes up most of the background TCP traffic.  The attacks detected are as follows: 

• apache2, an HTTP flood: an invalid command "x" on port 80 in 1 of 3 instances.   

• casesen* (U2R): "PWD" and "STOR" on port 21 (uploading the exploit code), or "QUIT" 

on port 25 (possibly emailing the code with a nonstandard mail client). 
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• crashiis*, eject*, fdformat*, ftpwrite, mscan, sechole*, warez, xterm*: "STOR" on port 21 

(FTP upload). 

• framespoofer*: "Content-Transfer-Encoding:" on port 25, commonly found in email 

headers but apparently absent in the training traffic.  This attack uses an email to direct the 

victim to a website. 

• ftpwrite*, insidesniffer*: "QUIT" on port 25.  Possibly coincidental because neither attack 

uses email. 

• mailbomb (an email flood): "mail" on port 25.  Normally this command is upper case. 

• ncftp (an FTP client exploit): "PWD" or "RSET" on port 21.  "PWD" (print working 

directory) should be common. 

• ntinfoscan: "HEAD" on port 80, a valid HTTP command but not used by older browsers, 

"quit" and "user" on port 21, unusual but valid use of lower case. 

• phf: a null byte on port 80 in one instance, not valid, but not part of the attack either. 

• processtable*: "^Iboundary="KAA04098.922893276/169-215-104" on port 25, a 

coincidental detection because the attack does not use email.  Most (60%) of the top 100 

false alarms are of this form. 

• satan: "QUIT" on ports 23, 25 and 80, "user" on port 21,  

• sendmail*: "Sender:" on port 25, should be common in email headers. 

The top 100 false alarms are distributed as follows. 

• 73 on port 25 (mail): 59 of the form "^Iboundary="..."" (used to delineate attachments), 9 

"QUIT", 5 others. 

• 17 on port 21 (FTP): 14 "STOR" (upload) and 3 "SYST^@" (null byte appended). 

• 6 on port 23 (telnet): various commands. 

• 3 on port 80 (HTTP): 1 "HEAD", 2 with null bytes. 

• 1 on port 515 (printer): "^C517". 
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4.2.4.  Keyword Argument Detections 

 Although ALAD does not include a model for keyword arguments, this rule form by itself 

(conditioned on keyword) detects 26 attacks.  Most are detected in SMTP arguments, but would 

probably be missed in an environment receiving email from many sources. 

• ffbconfig*, netbus*, sshtrojan*, xterm*: EHLO arguments, e.g. "EHLO  ppp5-

213.att.net.hk", identifying the client from which the exploit code is emailed.   

• mailbomb*: "mail from:<asdfg@hotlips.com>" identical in all three instances. 

• ps*: "MAIL From:<suzannac@marx.eyrie.af.mil> SIZE=1989". 

• sendmail*: "Content-Type: text/plain; charset=us-ascii ". 

• ntinfoscan*: "HELO hobbes.eyrie.af.mil ". 

One FTP attack is detected. 

• ncftp: "LIST -d y2kfix" in all 4 instances.  y2kfix is a program containing the exploit. 

The following HTTP attacks are detected. 

• apache2: "User-Agent: sioux".  The attack repeats this line thousands of times to slow 

down the web server. 

• phf*: "Accept: application/applefile, application/x-metamail-patch, ...", a novel HTTP 

client, probably would be missed. 

• portsweep*, queso*: "User-Agent:  Mozill a/4.08 [en] (WinNT; I)", coincidental, neither 

attack uses HTTP.  This exact string makes up 28% of the false alarms. 

Of the top 100 false alarms, 59 occur in HTTP commands, mostly in the arguments to User-Agent, 

Accept, and Content-Type.  Usually these values are fixed for a given client.  Most of the remaining 

false alarms are in SMTP, mostly in the "EHLO" and "Received:" fields, which contain the sender's 

address. 
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4.2.5.  Server Address/Port Detections 

 Rule form 6 unconditionally models server address/port combinations, which ought to 

detect probes that access unused ports, such as portsweep.  However, the surprising results is that 

very few of the attacks detected are probes.  Instead, the following are detected. 

• casesen*, crashiis*, eject*, fdformat*, ftpwrite*, sechole*, warez*: port 20 (FTP uploads). 

• ncftp*, xterm*: port 21 (FTP).  These attacks would only be detected if the FTP server was 

otherwise unused.  One ncftp instance is also detected on port 113 (authentication). 

• netcat, netcat_breakin: port 53 (DNS).  This backdoor uses DNS/TCP as a stealth channel 

to penetrate firewalls.  However all of the normal DNS traffic is UDP. 

• guesspop: port 110, guessing passwords on an unused POP3 server. 

• satan: ports 20 and 70, probing for FTP and gopher servers. 

• mscan: ports 20, 21, and 111, probing FTP and the portmapper service. 

There are 37 false alarms.  Of these, 28 are on port 20 (FTP data), 3 on ports 21 and 113, and one 

each on ports 22, 139, and 1023.  Rule form 8 (port given server address) gives similar results for 

both attacks and false alarms.  In both cases the attacks and false alarms have similar distributions 

with no easy way to distinguish them. 

4.2.6.  Detection – False Alarm Tradeoff 

 Figure 4.1 shows the DFA curve for ALAD using the optimal combination of rule forms 

(1, 2, 3, 4, and 6).  As with PHAD, most attacks are detected at a threshold allowing 100 false 

alarms (10 per day), although the number of detections continues to rise slowly, from 60 up to 72 at 

500 false alarms. 
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Figure 4.1.  ALAD detection-false alarm curve for 0 to 500 false alarms. 

 

4.2.7.  Detections by Category 

 Table 4.2 lists detections by category for the optimal combination of rule forms.  The 

detection rate is highest for R2L attacks, which normally exploit the application layer.  In addition, 

most of the DOS attacks (all but one tcpreset) and probes (all but one coincidental insidesniffer) 

exploit application protocols as well.  ALAD detects more R2L attacks but fewer probes than 

PHAD. 

 The poorly detected attacks (from the 1999 evaluation) include ncftp, netbus, netcat, 

sechole, sshtrojan, tcpreset, warezclient, and xterm.  ALAD detects 18% of these, compared with 

30% of attacks in general. 
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Attack Type Detected/Total at 100 false alarms 

Probe 6/37 (16%) 

DOS 19/65 (29%) 

R2L 25/56 (47%) 

U2R/Data 10/43 (23%) 

Total 60/201 (30%) 

Poorly Detected in 1999 evaluation 14/77 (18%) 

 

Table 4.2.  ALAD detections by category. 

4.2.8.  Implementation and Run Time Performance 

 ALAD was implemented in two parts: a 400 line C++ program to reassemble TCP packets 

into streams, which is input to a 90 line Perl program.  TCP reassembly of 6.9 GB of training and 

test data (inside weeks 3-5) takes 17 minutes on the 750 MHz PC described in Section 3.5.5.  The 

output of this program is two text files: 20 MB of training data and 40 MB of test data.  The Perl 

script processes this data in 60 seconds.  Source code is available at (Mahoney, 2003b). 

4.3.  Summary 

 ALAD introduces the following new concepts. 

• Modeling text-based protocols at the application layer.  Keywords can be conditioned on 

server port, or arguments on keywords. 

• Modeling using conditional rule forms.  A rule form consists of a set of rules, one for each 

possible value in the condition. 



 57 

• Merging alarms.  This seems to work best when both systems are equally strong but detect 

different kinds of attacks.  However, the technique we used is off-line because it would 

require setting thresholds in advance to produce the same number of alarms from each 

system. 

ALAD detects each of the five categories of anomalies described in Section 3.1. 

• Unauthorized users: sshtrojan by source address, mscan and satan by destination port. 

• Unusual data to exploit bugs: "QUIT" from satan, RST packets from ntinfoscan. 

• Bugs in the attack: lowercase commands in mailbomb and ntinfoscan, garbage data in phf. 

• Evasion: DNS/TCP traffic from netcat. 

• Symptoms from the victim: missing FIN packets from apache2, crashiis, and tcpreset 

indicating interrupted TCP connections. 

Attacks and false alarms usually have similar distributions, regardless of the attribute.  There is no 

obvious way to distinguish them to improve the results.  However there are a few exceptions, such 

as the "^Iboundary=..." keywords in SMTP, which makes up most of the keyword false alarms.  

Each keyword is unique because there is no space to separate what should be the argument.  This 

could be fixed by limiting the length of a keyword. 

 A shortcoming of ALAD is that it requires an ad-hoc approach to selecting rule forms.  We 

address this problem in the next chapter. 
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Chapter 5 

Learning Conditional Rules 

 This chapter introduces LERAD (Mahoney & Chan, 2002a), Learning Rules for Anomaly 

Detection.  It differs from ALAD in that it generates rules from arbitrary combinations of nominal 

attributes, eliminating the need to select rules in an ad-hoc fashion.  Rules have the general form "if 

A1 = v1 and A2 = v2 and ... and Ak = vk then Ak+1 ∈  V = { vk+1, vk+2, ..., vk+r} ", where the A's are 

attributes and v's are values.  LERAD selects those rules from this huge rule space that would 

generate the highest anomaly scores, i.e. those that have high n and low r, where n is the number of 

training instances that satisfy the antecedent (A1 = v1 ... and Ak = vk, k ������������� r = |V|, the number 

of allowed values in the consequent.  This goal is different from algorithms such as RIPPER 

(Cohen, 1995) or APRIORI (Agrawal & Srikant, 1994), which have the goal of finding rules that 

predict a single value in the consequent with high probability (i.e. high confidence).  Although all 

three algorithms find rules with high support (large n), the goal of LERAD is to find rules with 

small r, regardless of the distribution within V. 

 For example, one rule might be "if port = 25 then word1 ∈ {"HELO", "EHLO"}".  Unlike 

ALAD, there need not be a rule for every value of port.  During training, LERAD counts n, the 

number of instances where port = 25, and records V, the set of values for word1.  During testing, if 

LERAD observes an instance where port = 25 but word1 is not "HELO" or "EHLO", then it assigns 

an anomaly score of tn/r (as with PHAD and ALAD) where r = |V| = 2 and t is the time since the 

rule was last violated.  The total score assigned to a test instance is the sum of the anomaly scores 

assigned by each rule in the rule set for which the antecedent is satisfied but the consequent is not. 
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5.1.  Rule Learning 

 The challenge of generating good rules (high n/r) is searching the huge rule space, which 

grows exponentially with the number of attributes.  RIPPER and APRIORI use greedy deterministic 

algorithms that gradually add conditions to the antecedents while satisfying the constraint of high 

support and confidence.  LERAD differs in that it uses a randomized algorithm to generate 

candidate rules, then tests them on increasingly large subsets of the training data, discarding 

redundant rules and those that do not satisfy the constraint of high n/r.  The steps are as follows: 

1. Randomly generate rules with n/r = 2/1 on pairs of training instances. 

2. Discard redundant rules in favor of those with higher n/r on a larger training sample, S. 

3. Discard rules that perform poorly on the full training set (where r increases near the end). 

LERAD makes two passes through the training data, one to sample training instances in steps 1 and 

2, and a second pass to fully train the rules in step 3. 

5.1.1.  Generating Candidate Rules 

 The first step in LERAD is to generate a pool of candidate rules.  This is done by randomly 

selecting pairs of instances from the training set and finding rules that satisfy both instances.  Such 

rules can be found whenever one or more attributes have the same value in both instances.  When 

this happens, one attribute becomes the consequent and any subset of the remaining attributes can 

become the antecedent.  For example, suppose we are given the following two training examples. 

 port = 80 word1 = GET word2 = /  word3 = HTTP/1.0 

 port = 80 word1 = GET word2 = /index.html word3 = HTTP/1.0 

There are three matching attributes, port, word1, and word3.  Some of the 12  possible rules with n/r 

= 2/1 are: 

• word1 = "GET" 

• if word3 = "HTTP/1.0" then port = 80 
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• if port = 80 and word1 = "GET" then word3 = "HTTP/1.0" 

In general, if there are k matching attributes, then there are k possible consequents and 2k-1 possible 

subsets of the remaining attributes to form the antecedent, allowing for k2k-1 possible rules.  In 

practice, LERAD picks a random subset of these rules as candidates.  There are many ways to do 

this, but LERAD uses the following algorithm: 

 

• Randomly select a sample S training instances 

• Repeat  L times 

• Randomly select a pair of training instances from S 

• Randomly order the k matching attributes in a sequence, but not more than kmax 

• Generate k rules using 1 through k attributes, making the first one the consequent 

and the others the antecedent. 

 

Figure 5.1.  LERAD candidate rule generation algorithm. 

 

For example, if the matching antecedents of the pair above were picked in the order word1, port, 

word3, then the rules would be: 

• word1 = "GET" 

• if port = 80 then word1 = "GET" 

• if port = 80 and word3 = "HTTP/1.0" then word1 = "GET" 

 Experimentally, we find it makes little difference whether the random pairs are selected 

from S or from the full training set, even with |S| as small as 20.  We use |S| = 100.  The set S is also 

used in step 2.   We select L = 1000 pairs, again experimentally finding little improvement after a 

few hundred.  We stop at kmax = 4 matching attributes because rules that make the final rule set 

rarely have more than 2 conditions in the antecedent, and many have none. 
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5.1.2.  Removing Redundant Rules 

 The second major step in LERAD is to remove rules that do not give us any new 

information about a small sample training set, S.  When two rules predict the same values, we keep 

the one with the higher n/r (when trained on S), or in case of a tie, the one with fewer conditions in 

the antecedent.  For example, suppose S is as follows: 

 port = 25 word1 = HELO word2 = pascal 

 port = 25 word1 = HELO word2 = hume 

 port = 80 word1 = GET word2 = / 

And suppose we have the following rules, sorted by descending n/r: 

1. if port = 25 then word1 = "HELO" (n/r = 2/1) 

2. word1 = "HELO" or "GET" (n/r = 3/2) 

3. if word2 = "pascal" then word1 = "HELO" (n/r = 1/1, 1 condition) 

4. if word1 = "GET" and word2 = "/" then port = 80 (n/r = 1/1, 2 conditions) 

Rule 1 predicts word1 in the first two training instances.  Rule 2 is not redundant because it predicts 

word1 in the third training instance, which was not predicted by a previous rule.  Rule 3 is 

redundant because the only value it predicts was also predicted by rule 1 (and rule 2).  Thus, rule 3 

is removed.  Rule 4 is not redundant because none of the previous rules predicted port in the third 

training instance.  The algorithm is as follows: 
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• Sort the candidate rules by descending n/r on S, or by ascending size of the antecedent in 

case of ties. 

• For each rule 

o For each sample in S 

�  If the sample satisfies the antecedent, then mark the consequent value in 

S unless already marked 

o If no new values in S could be marked, then remove the rule 

 

Figure 5.2.  LERAD redundant rule elimination algorithm. 

 

LERAD uses |S| = 100.  Experimentally, values between 20 and several thousand work well.  Very 

large values can result in too few rules being found redundant and slightly reduce the number of 

detections. 

5.1.3.  Removing Poorly Performing Rules 

 The third major step in LERAD is to remove any remaining rules that are likely to generate 

a lot of false alarms, based on their behavior towards the end of training on the full training set.  The 

best attributes for anomaly detection are those whose distribution is stable over time, for example, 

the set of client addresses seen on a POP3 server where the same people log in every day to retrieve 

their mail.  A poor attribute would be one in which the potential set of values is very large and the 

values seen each day varies, for example, the set of client addresses seen on a web server which 

could be viewed by millions of people.  In this case only a small subset of addresses would be seen 

during training, and we would expect new values to appear in testing, resulting in false alarms. 
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 Fortunately it is easy to distinguish these two cases from the training data.  We simply 

count the number of novel values are added to the set V of allowed values near the end of the 

training period, for example, the last day.  Had this been during the test period, all of these new 

values would be false alarms, since we know that there are no attacks in training.  We would expect 

this false alarm rate to continue during the test period, so if the rate is high, we remove the rule.  

LERAD uses the following algorithm: 

 

• Train all rules from step 2 on the full training set. 

• If r increases at all during the last Tval percent of the training data, then remove the rule. 

 

Figure 5.3.  LERAD rule validation algorithm. 

 

We found that Tval = 10% maximized accuracy on the IDEVAL test set. 

5.1.4.  Alarm Generation 

 Once LERAD generates a set of rules on the training data and fixes n/r for each rule, the 

test data is evaluated.  If a test sample meets the conditions of a rule antecedent but the consequent 

is not one of the allowed values, then LERAD adds tn/r to the anomaly score for that sample, where 

t is the time since the last anomaly for that rule, either in training or testing.  We found 

experimentally that using a sample count for t rather than real time gives slightly better results 

(more attacks detected in IDEVAL).  This could be due to gaps in the training and test data from 

6:00 to 8:00 AM each day and on weekends.  Using real time would inflate the scores of anomalies 

seen on Monday mornings. 
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5.2.  Experimental Evaluation 

5.2.1.  Experimental Data and Procedures 

 LERAD models 23 attributes of inbound TCP client data streams.  TCP is first reassembled 

as with ALAD.  All attributes are nominal.  The attributes are as follows: 

• Date. 

• Time of day (to the nearest second). 

• Source (remote) IP address as 4 1-byte attributes. 

• Last 2 bytes of the destination (local) IP address as 2 1-byte attributes.  (The first 2 are 

fixed from the home network, 172.16.x.x). 

• Source port. 

• Destination port. 

• TCP flags of the first, next to last, and last packet, as 3 attributes. 

• Log base 2 of the duration in seconds, truncated to an integer. 

• Log base 2 of the length (number of application data bytes sent) truncated to an integer. 

• First 8 words of the payload.  Words are delimited by white space or the non-ASCII 

characters x80 to xFF and truncated to 8 characters. 

Although it makes no sense to include the date or time as attributes, we included them as an 

implementation convenience and to test the robustness of the rule learning algorithm. 

 A second version of LERAD includes inbound client UDP and inbound ICMP packets in 

order to detect attacks that use these protocols.  The attributes are the same except that the first TCP 

flag attribute is replaced with "UDP" or "ICMP" and the remaining flags are blank.  To reduce 

traffic load, UDP destination ports 53 (DNS), 123 (NTP) and 1024 and above (clients) are excluded. 

 LERAD was tested on the same data as PHAD and ALAD: trained on inside sniffer traffic 

from week 3 of the 1999 IDEVAL data, and tested on weeks 4 and 5.  The TCP data has 35,456 
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training instances and 178,100 test instances.  The data with UDP and ICMP has 68939 training 

instances and 937,334 test instances.  The results were evaluated with EVAL3 at 100 false alarms.  

Because LERAD uses a randomized algorithm, results were averaged over 5 runs with different 

seeds. 

5.2.2.  Experimental Results 

 LERAD with TCP detects 114 to 119 attacks (average 117).  A typical run generates 1000-

1200 candidate rules, reduced to about 70-85 after the redundancy test, and to about 55-70 final 

rules.  With UDP and ICMP, LERAD generates slightly more rules in steps 2 and 3 (typically 100-

125, 70-80).  However it detects fewer attacks than TCP alone, 108 to 115 (average 112).  There are 

few UDP and ICMP attacks compared to TCP, and the additional data adds false alarms.   

 The following analysis is for one typical run of LERAD with UDP and ICMP which 

detects 111 attacks.  There are 69 rules, with n/r ranging from 34906/1 to 34887/297 (listed in 

Appendix A).  n ranges from 3521 to the maximum of 68,939.  The average number of conditions in 

the antecedent is 0.84.  There are 11 rules with no antecedent, and 2 with the maximum of 3 

conditions in the antecedent.  Attributes appear in the antecedent/consequent of the following 

number of rules: payload 16/22, TCP flags 12/15, source address 8/10, destination address 8/7, 

destination port 5/7, duration 3/6, length 1/5, source port 2/0, date 0/0, time 0/0.  All parts of multi-

part attributes such as addresses (4 bytes), payload (8 words), and flags (3) appear in at least once 

consequent, and most but not all appear in at least one antecedent. 

 LERAD is instrumented to indicate which rule contributes the most to an alarm score.  

Usually a single rule contributes at least half of the total anomaly score, but the fraction is 

occasionally as low as 20%.  We say that this a rule generates the alarm or detects an attack.  Of the 

69 rules, 31 generate alarms that detect at least one attack (at 100 false alarms), and 25 rules 

generate at least one false alarm.  These rules overlap substantially.  There are 18 rules that detect 

both attacks and false alarms, 13 that detect attacks without false alarms, and 7 that generate false 
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alarms with no detections.  Of the 111 attacks detected, 34 (31%) are detected by "good" rules that 

generate no false alarms.  Of the 100 false alarms, and 18 (18%) are generated by "bad" rules that 

detect no attacks.  Whether a rule is good or bad does not depend on n/r, except possibly at the high 

and low ends.  The median rank of good rules (on a scale of 1 to 69, with the highest n/r being 1), is 

33 for good rules and 31 for bad rules.  However, out of the top 3 ranking rules (1, 7, and 12) that 

generate alarms, all are good.  Out of the bottom three rules (62, 65, and 68), one is good and two 

are bad. 

 The greatest number of attacks detected by a single rule is 20.  This rule has no antecedent: 

"SA3 = 172 196 197 194 195 135 192 152" (n/r = 68,939/8, ranked 29'th).  SA3 is the first byte of 

the source IP address.  Such detections are probably due to an artificially low number of client 

addresses, as discussed previously, because it makes no distinctions between public and private 

services.  This rule also generates the most false alarms, 18. 

 If we disregard detections by source address, then we are left with 75 detections by 26 

rules.  No rule detects more than 7 attacks.  The detected attacks can be grouped by the anomalous 

attribute: 

• Destination port detects ls_domain and named on port 53 (both DNS attacks), portsweep on 

ports 19 (chargen) and 143, udpstorm on port 7 (echo port, which it exploits), and ftpwrite 

on port 515 (printer). 

• Destination address: neptune (SYN flood) conditioned on port 520 (route), and portsweep 

by accessing an unused address. 

• Flag1 (first packet): apache2, eject, tcpreset.  The first TCP flags are ACK-PSH, when they 

should be SYN, indicating a connection open before the sniffer was started.  Probably 

coincidental. 

• Flag 2 (next to last packet): dosnuke by URG-ACK-PSH, queso by 1-0-SYN.  Both are 

attack signatures. 
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• Flag 3 (last packet): back and netbus by the absence of FIN, ntinfoscan by RST, portsweep 

and queso by FIN without ACK. 

• Length: apache2, back, netbus, and warez by unusually long payloads, phf by an unusually 

short payload. 

• Duration: arppoison, back, casesen, crashiis, guest, ntfsdos, ntinfoscan, secret, teardrop.  

guest (testing for a guest account) is unusually short; the others are long.  ntfsdos is a 

console attack that generates no traffic, but because it requires a reboot, it sometimes 

results in hanging TCP connections.  Many of the other attacks may have been detected this 

way. 

• Payload: The most common anomaly is an empty string, omitting details irrelevant to the 

attack (back, crashiis, mscan, ncftp, phf).  apache2 ("User-age") and ncftp ("/etc/hos") are 

detected by strings in the exploit.  mailbomb is detected by lowercase SMTP commands.  

sendmail is detected by an opening "MAIL" rather than "HELO" or "EHLO".  satan is 

detected by an SMTP null byte.  The other detections are guessftp, guesspop (bad 

passwords), guesstelnet (a null byte), insidesniffer (coincidental), ipsweep, smurf (binary 

data), and netcat_breakin. ("ver"). 

5.2.3.  Detection – False Alarm Tradeoff 

 Figure 5.4 shows the DFA curve averaged over 5 runs of LERAD with different random 

number seeds.  Like PHAD and ALAD, the number of detections increases rapidly up to about 100 

false alarms and then levels off.  However, the total number of detections at all false alarm levels is 

almost twice as high. 
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Figure 5.4.  LERAD detection-false alarm curve for 0 to 500 false alarms. 

 

5.2.4.  Detections by Category 

 Table 5.1.  lists the range and average number of attacks in each category detected by the 5 

runs of LERAD in the previous section.  Although each run generates a different rule set, there is 

very little variation between runs.  LERAD does about equally well for probes, DOS, and R2L 

attacks, which are exactly those types for which a network IDS is best suited.  Recall that ALAD 

was poor at detecting probes, even though it examines the same data. 

 The poorly detected attacks (from 1999) detected by LERAD are: arppoison, dosnuke, 

ls_domain, ncftp, netbus, netcat, ntfsdos, perl, portsweep, queso, resetscan, sechole, sqlattack, 

sshtrojan, tcpreset, warezclient, and xterm.  LERAD does almost as well at detecting these attacks 

(52% of them are detected) as detecting attacks in general (58%). 
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Attack Type Detected – Range over 5 runs Average/Total at 100 FA 

Probe 23-24 23.6/37 (64%) 

DOS 36-39 37.8/65 (58%) 

R2L 35-36 35.4/56 (63%) 

U2R/Data 17-22 20.6/43 (48%) 

Total 114-119 117.2/201 (58%) 

Poorly Detected 39-41 40.0/77 (52%) 

 

Table 5.1.  LERAD detections by category at 100 false alarms. 

5.2.5.  Implementation and Run Time Performance 

 LERAD is implemented in three parts.   It first uses the same 400 line C++ program as 

ALAD to reassemble TCP.  It reduces 6.9 GB of tcpdump files into 60 MB of TCP streams in a text 

format in 17 minutes on the 750 MHz PC described in Section 3.5.5.  The second part is a 26 line 

Perl script that reads this data and constructs database tables of training and test instances.  It runs in 

5 seconds producing 4.4 MB of training data and 17 MB of test data as two text files. LERAD is a 

470 line C++ program that reads these tables and produces a list of alarms in 23 seconds.  Source 

code is available at (Mahoney, 2003b). 

5.3.  Summary 

 LERAD introduces an algorithm for finding good rules for anomaly detection – those with 

high n/r – given a training set.  It is a significant improvement over ALAD, which models mostly 

the same attributes, but uses an ad-hoc approach to selecting conditional rules.  The LERAD 

algorithm is randomized.  The idea is to generate a pool of candidate rules suggested by matching 
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attributes in pairs of training samples, remove redundant rules in favor of those with high n/r, and 

remove rules that generate false alarms on an attack-free validation set.  LERAD was demonstrated 

on network session attributes, but in theory the algorithm could be applied to any set of nominal 

attributes.  It is robust enough to eliminate useless attributes such as date and time from the rule set.  

 Our implementation of the algorithm is reasonably fast.  Most of the run time is in reading 

the 6 GB of raw packet data to reassemble TCP streams, which takes about 10-15 minutes of mostly 

disk I/O time on our 750 MHz PC.  The actual program, implemented in C++ and Perl, takes about 

1 minute, a littl e slower than PHAD or ALAD. 

 LERAD has some limitations.  One is that it requires two passes through the training data.  

We cannot sample just the start of the data because the bursty nature of network traffic would make 

any small window unrepresentative.  This problem is unsolved.  However, another limitation – 

which is shared with PHAD, ALAD, and any system that uses an anomaly score of tn/r, is that it 

requires attack-free training data in the first place.  In reali ty, we must train the system on whatever 

traffic is available, which we assume to be mostly  attack free.  This suggests another approach – 

flagging rare but previously seen values so that if an attack occurs during training that subsequent 

instances are not completely masked. 
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Chapter 6 

Continuous Modeling 

 This chapter introduces NETAD (Mahoney, 2003a), a Network Traffic Anomaly Detector.  

Unlike PHAD, ALAD, and LERAD, which detect only novel events, NETAD also classifies non-

novel events as anomalous if they are sufficiently rare and have not occurred recently.  This type of 

model is more suitable for the realistic case where we must update the anomaly model continuously 

on live traffic to keep up with changes in the network and we cannot guarantee that the training data 

is attack-free. 

6.1.  Modeling Previously Seen Values 

 A fundamental problem in anomaly detection is modeling, or estimating the probability of 

events, because it is assumed that as the probability decreases, the likelihood that the event is hostile 

increases.  PHAD, ALAD, and LERAD all use an anomaly score of the form 1/PfPt, where Pf and Pt 

are frequency and time-based probability estimates, respectively.  The frequency based component 

is Pf = r/n, the average rate of anomalies during the entire training period.  (A value is anomalous in 

training when it is seen for the first time).  The time based component is Pt = 1/t, the average rate of 

anomalies over the shortest possible history for which the rate is not 0, i.e. back to the last anomaly. 

 We can apply the same approach to modeling values which have been previously observed 

in normal data.  If the value i occurs ni times out of n training instances, then its average frequency 

is fi = ni/n.  We let Pf = fi be our frequency based model.  If the value i last occurred ti seconds ago, 

then its average rate since that event is 1/ti.  We let Pt = ti be our time based model.  Combining 

these as before, we let our anomaly score be 1/PfPt = ti/fi = tin/ni. 
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 The next problem is to combine the novel and non-novel models into a single model.  

Unfortunately the problem is not as simple as selecting the appropriate model depending on whether 

the event is novel or not.  We need to know the absolute (not relative) probabilit y of novel events so 

that the two models can be weighted appropriately.  This problem, known as the zero frequency 

problem has been studied extensively in the data compression literature (Bell et al., 1989; Witten & 

Bell , 1991).  For frequency-based models (where events are assumed to be independent), a common 

approach is to add some small value ε > 0 to the observed counts, i.e. Pf = (ni + ε)/(n + Rε) for some 

small constant, ε > 0, and R is an estimate of the (possibly unknown) size of the set of possible 

values.  For ε = 1, we have Laplace's estimate, which assumes a-priori a uniform distribution over 

all possible probabilit y distributions of a random variable with R possible values.  However, Cleary 

& Teahan (1995) found that smaller values of ε often give better predictions for many types of data.  

Some of the best compression programs, such as PPMD (Shkarin, 2002) and RK (Taylor, 2000) 

adapt the novel event probabili ty to the data using second level modeling. 

 A second approach is to maintain two models, one for novel events (ni = 0), such as score 

= tn/r, and another model for non-novel events (ni > 0), such as score = ti/fi.  This approach requires 

that the two models be appropriately weighted according to the novel event probabili ty.  At a 

minimum, we should ensure that if a value i occurs a second time, it should receive a lower anomaly 

score than if it occurs for the first time.  This means that we should choose a weight W such that 

Wtn/r > ti/fi = tin/ni = tin when ni = 1.  Factoring n, we have the requirement Wt/r > ti.  Now if this is 

a "good" rule (which we can distinguish from "bad" rules by using an attack-free validation set as 

with LERAD), then all of the possible values in normal traff ic will be seen early in the training 

period, which implies t � n (using unit time per instance).  Also, if there are r possible values and 

these are distributed fairly uniformly (true for "good" rules), then on average, each value is seen 

with probabili ty 1/r, so ti � r on average.  Making these substitutions into Wt/r > ti, we now have the 

requirement Wn/r > r or  W > r2/n.  While r2/n is small  for "good" rules where r is small , it may not 
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be for "bad" rules, which as we discussed in Section 2.2, are quite common in real traffic.  In 

particular, we have t << n (recent novel events), ti >> r (non-uniform distribution of values, e.g. 

Zipf), and large r, all of which tend to make Wtn/r < ti/fi unless W is sufficiently large. 

6.2.  NETAD 

 NETAD is a network traffic anomaly detector.  It models single packets like PHAD, uses 

ad-hoc conditional rules like ALAD, and rule validation like LERAD.  Its main contribution is in 

modeling non-novel values. 

 NETAD uses two stages, a filtering stage to select the start of inbound client sessions, and 

a modeling phase.  The attributes are simply the first 48 bytes of the IP packet, which are considered 

to be nominal attributes with 256 possible values.  For most packets, these attributes include all of 

the header information and a portion of the application payload.  For normal TCP data packets, there 

are 40 bytes of header information and the first 8 bytes of payload.  TCP streams are limited to 

packets containing the first 100 bytes, which is normally one data packet, so under normal 

circumstances NETAD only sees what would be the first 8 bytes of the TCP stream if it were 

reassembled. 

 The filtering stages removes 98% to 99% of the traffic, greatly reducing the load on the 

modeling stage and passing only the type of traffic most likely to contain evidence of attacks, i.e. 

unsolicited inbound traffic.  We assume that attacks can be detected quickly, using only the first few 

packets of a long session.  Thus, filtering removes the following packets: 

• All non-IP packets (e.g. ARP), because an alarm needs an IP address to identify the target. 

• All outgoing packets. 

• All TCP streams that begins with SYN-ACK (i.e. the response to a local client). 

• UDP packets to port number higher than 1023 (i.e. the response to a local client). 



 74 

• TCP packets with sequence numbers more than 100 past the initial sequence number (i.e. 

after the first 100 bytes of incoming client data). 

• Packets addressed to any address/port/protocol combination (TCP, UDP, or ICMP) after 

the first 16 packets in 60 seconds (to limit bursts of UDP or ICMP traffic). 

The last two filters use hash tables of size 4K to look up destination addresses, ports, and protocols.  

This fixed-memory design thwarts memory exhaustion attacks against the IDS, but a small number 

of packets may be dropped due to hash collisions.  Ideally, the hash function would need to be secret 

(selected randomly) to prevent collisions from being exploited in an evasion attack. 

 The second stage of NETAD models nine types of packets, for a total of 9 x 48 = 432 rules.  

The rules have the same form as in LERAD, in that the antecedent is a conjunction of conditions of 

the form attribute = value, where each attribute is one packet byte.  The nine models represent 

commonly used (and commonly exploited) protocols.  The rules were selected because they give 

good results experimentally. 

• All IP packets (no antecedent). 

• All TCP packets (if protocol = TCP (6)) 

• TCP SYN (if TCP and flags = SYN (2)) 

• TCP data (if TCP and flags = ACK (16)) 

• TCP data for ports 0-255 (if TCP and ACK and DP1 (destination port high byte) = 0) 

• telnet (if TCP and ACK and DP1 = 0 and DP0 = 21) 

• FTP (if TCP and ACK and DP1 = 0 and DP0 = 23) 

• SMTP (if TCP and ACK and DP1 = 0 and DP0 = 25) 

• HTTP (if TCP and ACK and DP1 = 0 and DP0 = 80) 

The anomaly score assigned to a packet is the sum of the anomaly scores reported by each of the 

432 rules.  Individual rules can be scored in several ways. 
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1. Novel values only.  Score = tn/r, where t is the time (packet count, training or test) since an 

anomaly was last observed for this rule, n is the number of training packets satisfying the 

antecedent, and r is the number of values seen at least once in training (1 to 256). 

2. Validation weighed novel values.  Score = tna/r, where na is the number of packets 

satisfying the antecedent from the last training anomaly to the end of training.  This has the 

effect of giving greater weight to rules that generate no false alarms near the end of 

training, but without introducing a parameter as in LERAD.  In LERAD, this technique 

was found to have the same effect as using the empirically determined optimal size 

validation set (10%). 

3. Fast uniformity detection.  Score = tna(1 – r/256)/r.  This gives less weight to rules that 

generate most of the 256 possible byte values, which has the effect of discovering and 

removing uniform distributions more quickly. 

4. Non-novel values.  Score = tin/(ni + 1), where ti is the time (packet count, training or test) 

since the value i was last seen, and ni is the number of times i was seen in training.  It 

reduces to tin for novel events and ti/fi (with a Laplace approximation of fi)  for non-novel 

events. 

5. Weighed model.  Score = tin/(n1 + r/W), where W = 256 is an experimentally determined 

weight emphasizing novel events.  It reduces to Wtin/r for novel events and approximately 

ti/fi for non-novel events. 

6. NETAD combined model.  Score = tna(1 – r/256)/r + tin/(n1 + r/W), combining scoring 

functions 3 and 5. 

6.3.  Experimental Results 

 NETAD was first tested on the same data as PHAD, ALAD, and LERAD, trained on inside 

sniffer week 3 and tested on weeks 4-5 (177 detectable attacks) of the 1999 IDEVAL data set.  It 
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was evaluated at false alarm rates from 20 to 500 (2 to 50 per day) using EVAL3 with alarm 

consolidation for each of the six anomaly scoring functions described in Section 6.2.  Because we 

know from the PHAD experiments that the TTL field contains a simulation artifact, it was removed 

from NETAD. 

 The results are shown in Table 6.1.  The combined scoring function (6) detects the most 

attacks at 100 false alarms, but either of the two components (3 or 5) do well by themselves.  The 

weighted function (5) gives better results than any model that considers only novel events, 

especially at low false alarm rates.  Rule validation improves the results somewhat.  Fast uniformity 

detection has  a small benefit. 

 

NETAD scoring function 20 FA 50 FA 100 FA 500 FA 

1.  tn/r (novel values only) 56 78 104 141 

2.  tna/r (novel values with validation) 57 89 118 149 

3.  tna(1 – r/256)/r  (fast uniformity detection) 60 92 120 149 

4.  tin/(ni + 1)  (non-novel values) 33 52 81 130 

5.  tin/(ni + r/256)  (weighted) 78 115 127 142 

6.  tna(1 – r/256)/r + tin/(ni + r/256)   (3 + 5) 66 97 132 148 

 

Table 6.1.  Attacks detected by NETAD at 20 to 500 false alarms for each of six scoring 

functions. 

 

 NETAD is instrumented to indicate all bytes that contribute to at least 10% of the total 

anomaly score.  Out of 132 attacks detected using combined scoring function 6 at 100 false alarms, 

the number of attacks and false alarms detected by each field is distributed as follows.  The total 
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attacks is more than 132 because some attacks are detected by more than one field.  Detections that 

do not appear to be "legitimate" are marked with an asterisk. 

• Source address: 72 (anypw*, apache2*, arppoison, crashiis*, eject*, ffbconfig*, guessftp, 

guesstelnet, guesspop, guest, imap*, insidesniffer*, ipsweep*, ls_domain*, mailbomb*, 

ncftp*, netbus*, netcat_setup*, perl*, pod*, portsweep*, ppmacro*, processtable, ps*, 

satan, sechole*, secret*, smurf, sqlattact*, sshtrojan, syslogd, tcpreset*, warez*, 

warezclient*, xlock, xsnoop, xterm*, yaga*), 43 false alarms. 

• Packet size/TCP header size: 21 (back*, land, named*, pod, portsweep, queso, smurf), 10 

false alarms. 

• Application data: 20 (back, land, named, neptune, portsweep, queso, sendmail, udpstorm), 

16 false alarms. 

• TCP window size: 18 (apache2*, casesen*, ls_domain*, neptune, netcat, netcat_breakin*, 

ntinfoscan, phf*, portsweep, resetscan), 13 false alarms. 

• Destination address: 11 (guesstelnet, mscan, ncftp, netbus, perl*, portsweep, xterm*), 8 

false alarms. 

• IP fragmentation: 8 (insidesniffer*, pod, teardrop), 9 false alarms. 

• TCP flags: 5 (portsweep), 3 false alarms. 

• Destination port: 4 (guesspop, imap, ls_domain), 1 false alarm. 

• Urgent data: 4 (dosnuke), 0 false alarms. 

• TOS: 2 (ftpwrite*), 3 false alarms. 

• Source port: 6 false alarms. 

• TCP checksum (not computed), 1 false alarm. 

As with ALAD and LERAD, the majority of detections are by source address, and many of these 

attacks are on public services and would probably be missed if the background traffic simulated the 

distribution of remote client addresses more realistically.  TCP window size and TOS also appear to 
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be simulation artifacts, similar to TTL, in that many of the detected attacks manipulate only higher 

level protocols.  The detection of insidesniffer is probably coincidental. 

 Nevertheless, there are many detections that we could consider legitimate.  For example, 

sendmail is detected because the SMTP payload starts with "MAIL" instead of "HELO" or "EHLO".  

dosnuke, which exploits a NetBIOS bug in handling urgent data, is detected by the urgent pointer 

field.  portsweep is detected by TCP flags (FIN scan, no ACK), destination address (probing 

inactive addresses), unusually small packet sizes (no TCP options, which are usually present in a 

SYN packet), and window size (set to an arbitrary value by the attack code).  Even if some of these 

anomalies are masked by background traffic, there are enough anomalies to make some detections 

likely. 

6.3.1.  Detections by Category 

 Table 6.2 lists the attacks detected by NETAD (scoring function 6) by category.  NETAD 

scores lowest in detecting U2R attacks, which is to be expected for a network IDS.  Like PHAD, 

which also models single packets, NETAD scores highest for probes. 

 The poorly detected attacks from the 1999 evaluation detected by NETAD are: arppoison, 

dosnuke, ipsweep, ls_domain, ncftp, netbus, netcat, perl, portsweep, queso, resetscan, sechole, 

sqlattack, sshtrojan, tcpreset, warezclient, and xterm.  Like PHAD, ALAD, and LERAD, NETAD 

scores slightly lower for these attacks, detecting 57% of them, compared to 66% in general. 
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Attack Type Detected/Total at 100 false alarms 

Probe 32/37 (86%) 

DOS 43/65 (66%) 

R2L 38/56 (68%) 

U2R/Data 19/43 (44%) 

Total 132/201 (66%) 

Poorly Detected in 1999 evaluation 44/77 (57%) 

 

Table 6.2.  NETAD detections by category. 

6.3.2.  Detection – False Alarm Tradeoff 

 Figure 6.1 shows the DFA curve for NETAD using scoring function 6.  As with PHAD, 

ALAD, and LERAD, the number of detections rises rapidly up to around 100 false alarms, then 

tends to level off. 
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Figure 6.1.  NETAD detections at 0 to 500 false alarms. 
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6.4.  Unlabeled Attacks in Training 

 The purported benefit of modeling non-novel values is that it is more appropriate for a 

realistic environment where we lack attack-free training traff ic and where network statistics change 

over time.  In this case, we train and test simultaneously – we use all of the past traff ic up to the 

previous packet to train the anomaly model being used to evaluate the current packet.  After 

evaluation, we add this packet to the training  model.  This method should be less effective at 

detecting attacks because attacks are added to the "normal" training model, masking similar attacks 

in the future.  Also, attacks near the beginning of the data are likely to be missed because the model 

is not sufficiently trained. 

 To test these two effects separately (masking and undertraining), we first ran NETAD 

(using each of the six scoring functions) on weeks 3, 4, and 5 as before, but left NETAD in training 

mode throughout the entire period, while continuing to output alarms during the attack period 

(weeks 4 and 5).  This tests the masking effect.  Second, we ran NETAD on weeks 4 and 5 only, 

with no training data prior to the start of the attack period.  This tests the undertraining effect in 

addition to masking.  This mode is the most realistic scenario. 

 For both modes, we measured the number of attacks detected at 100 false alarms.  These 

are shown in the columns labeled W3-5 (training on weeks 3-5) and W4-5 (training on weeks 4-5).  

For comparison, we show the original results from the previous section where we trained NETAD 

on week 3 and froze the model (W3).   

 For all six scoring functions, masking and undertraining result in fewer detections than W3.  

The percent difference averaged over 20, 50, 100, and 500 false alarms is shown in the two columns 

labeled D3-5 and D4-5.  For example, using scoring function 6, NETAD in mode W3 detects 66, 97, 

132, and 148 attacks at 20, 50, 100, and 500 false alarms, respectively (see last row of Table 6.1).  

In mode W3-5, it detects 47, 80, 111, and 120 attacks at these levels.  This is 71%, 82%, 84%, and 

81% (average 79.5%) as many attacks in mode W3-5 as mode W3.  In mode W4-5, NETAD detects 
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41%, 55%, 58%, and 78% (average 58%) as many attacks as in mode W3.  The results for all six 

scoring functions is shown in Table 6.3. 

 

NETAD scoring function W3 W3-5 D3-5 W4-5 D4-5 

1.  tn/r (novel values only) 104 88 83% 65 64.5% 

2.  tna/r (novel values with validation) 118 84 74% 67 59% 

3.  tna(1 – r/256)/r  (fast uniformity detection) 120 94 75.5% 71 58.5% 

4.  tin/(ni + 1)  (non-novel values) 81 77 98.5% 41 59% 

5.  tin/(ni + r/256)  (weighted) 127 82 85% 82 69% 

6.  tna(1 – r/256)/r + tin/(ni + r/256)   (3 + 5) 132 111 79.5% 76 58% 

 

Table 6.3.  NETAD attacks detected by scoring function in weeks 4-5 at 100 false alarms when 

trained on week 3 (W3), weeks 3-5 (W3-5), or weeks 4-5 (W4-5).  Percentage of attacks 

detected in modes W3-5 (D3-5) or W4-5 (D4-5) compared to mode W3 averaged over 20, 50, 

100, and 500 false alarms. 

 

 From Table 6.3 we see that the masking effect (D3-5) and combined masking and 

undertraining effects (D4-5) are more severe for scoring functions 1, 2, and 3 (novel values only) 

than scoring functions 4 and 5 (novel and non-novel modeling).  This is the behavior that we expect, 

given our assumption that modeling non-novel values is more appropriate for continuous training.  

In fact, in the absence of attack-free training data (W4-5), function 5 beats the combined function 6, 

of which it is a component, just as it did for low false alarm rates in W3. 

 Another effect of continuous training is that rule validation (function 2) hurts rather than 

helps (compared to function 1).  The idea of validation is to reduce the effects of rules that generate 

false alarms during an attack free validation period, but this makes no sense when such data is 
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lacking because we might instead be removing a rule that detects a genuine attack.  Indeed, during 

training, na = t, so scoring function 2 is really t2/r. 

6.5.  Implementation and Run Time Performance 

 NETAD is implemented as two programs, a 200 line C++ program to filter packets, which 

is input to NETAD, a 290 line C++ program.  The filter program reads 6.9 GB of tcpdump files 

(inside weeks 3-5) in about 15 minutes on the 750 MHz PC described in Section 3.5.5.  It outputs 37 

MB of training data and 72 MB of test data as new tcpdump files.  NETAD reads these files and 

outputs a list of alarms in 30 seconds.  Source code is available at (Mahoney, 2003b). 

6.6.  Summary 

 NETAD introduces a model which can be used in an environment where attack-free 

training data is not available and the model is trained continuously to keep up with changing 

statistics while simultaneously detecting attacks.  One way to accomplish this is by adding a 

component of the form ti/fi for non novel values i, where ti is the time since it was last seen and fi is 

the average frequency so far.  For novel values, we can use Wtin/r, where W is a weight (we used 

256), n is the number of instances satisfying the rule antecedent, and r is the number of values 

observed at least once.  This was approximated by scoring function 5, which results in more 

detections on the IDEVAL test data than the other five scoring functions we tried, including tn/r.  It 

is also more resistant to the masking and undertraining effects caused by the lack of attack-free 

training data. 

 Analysis of the detected attacks raises some nagging questions about the validity of the 

IDEVAL data and the four systems we tested on it.  Some attacks seem to be detected by legitimate 

features of the attack, while others seem to be detected by simulation artifacts.  We address these 

questions in the next chapter. 
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Chapter 7 

A Comparison of Simulated and Real 

Network Traffic 

 In chapters 3 through 6 we evaluated PHAD, ALAD, LERAD, and NETAD on the 

IDEVAL data set.  As we mentioned in Section 2.4, the background network traffic on which these 

systems are trained is synthesized.  It is difficult to do this right (Floyd & Paxson, 2001).  Anomaly 

detection evaluation depends critically on the accuracy of this background traffic because it is used 

to construct a model of "normal".  Although great care was taken to ensure that the data is realistic, 

our detailed analyses of detected attacks suggests that some simulation artifacts may have crept in. 

• PHAD detects more attacks by the TTL field than any other (until we removed the rule).  

Most of the anomalous TTL values are smaller by 1 than the trained values.  According to 

the technical report describing the traffic synthesis (Haines et al., 2001), hostile and 

background traffic was generated on two different real machines simulating the same IP 

address.  Although the exact configuration was not described, our observations are 

consistent with a configuration in which the attack simulator was further from the sniffer 

by one router hop than the background simulator. 

• ALAD, LERAD, and NETAD detect a large number (about half) of attacks by source 

address anomalies.  These include attacks on public services (web, mail, and DNS), where 

novel addresses are to be expected.  According to the technical report, simulated client 
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traffic was generated by randomly selecting one of only 10 IP addresses.  This number is 

clearly unrealistic. 

• ALAD and LERAD detect many U2R attacks because an anonymous FTP server was used 

to upload the exploit code, and no uploads ever occur in training. 

• NETAD detects several attacks by anomalies by packet size, TCP header size, and TCP 

window size fields, including some application protocol exploits which should not affect 

these fields. 

• PHAD detects no IP, TCP, UDP, or ICMP checksum errors in over 12 million packets of 

training data. 

Indeed, it is surprisingly easy to detect attacks in the IDEVAL data using anomaly detection.  In 

(Mahoney & Chan, 2003) we describe a simple anomaly detector called SAD that examines only 

one byte of inbound TCP SYN packets and outputs an alarm (with score = 1) when it observes a 

value never seen in training (limited to one alarm per minute).  When trained on the 1999 IDEVAL 

inside sniffer week 3 and tested on inside weeks 4 and 5, SAD detects 71 out of 177 attacks with 16 

false alarms by examining just the low order byte of the source address.  This result is competitive 

with the top systems in the original 1999 evaluation, some of which used a combination of signature 

and anomaly detection techniques on both host and network data.  Many different SAD bytes give 

good results, in particular the other source address bytes, TTL, IP packet size, TCP header size, TCP 

window size, TCP options, and the high byte of the source port.  Many of the detected attacks are 

application protocol exploits or U2R attacks, which should not influence these values.  Similar 

results can be obtained when SAD is trained on attack-free traffic in week 1 and tested on a subset 

of the evaluation attacks in week 2, data which was provided in advance to the eight original 

IDEVAL participants in order to develop their systems. 

 We address the problem of possible simulation artifacts by collecting real traffic from a 

university departmental server and injecting it into the IDEVAL data.  We use this approach rather 

than creating a whole new data set because it allows us to use the rich set of labeled attacks rather 
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than simulate new ones.  Most of these attacks use actual exploit code available from published 

sources and real target machines running real software.  Thus, the attacks should not be subject to 

the same kind of simulation artifacts as the background traffic.  Our approach is to "fix" the training 

and background traffic by making it appear as if the real server and the real Internet traffic visible to 

it are part of the IDEVAL network.  When necessary, we modify the IDS to ensure that it is unable 

to defeat this mixing by modeling the simulated and real traffic separately.  To test whether this 

strategy is successful, we evaluate the attacks detected by the modified IDS for legitimacy on mixed 

traffic compared with simulated traffic. 

 This chapter is organized as follows.  In Section 7.1 we describe the environment from 

which the real traffic was collected.  In 7.2 we analyze the real data and compare it with the 

simulated IDEVAL training data.  In 7.3 we describe how the mixed evaluation data set is 

constructed.  In 7.4 we describe how PHAD, ALAD, LERAD, and NETAD are modified to force all 

of the rules to be trained on real data.  In 7.5 we compare these systems on the simulated and mixed 

evaluation data sets.  In 7.6 we conclude.  Most of the work described in this chapter is from 

(Mahoney & Chan, 2003). 

7.1.  Traffic Collection 

 Our goal was to collect network traffic from an environment similar to the IDEVAL 

network, but practical considerations raise many barriers.  Sniffing traffic on a network used by 

others without their knowledge raises many privacy and security issues.  A sniffer captures email, 

web surfing habits, and passwords of unsuspecting users.  Obtaining permission to collect data 

limits our choice of environments.  A sniffer also raises performance issues, as it can collect huge 

amounts of data, which must be stored securely.  Care must be taken that the sniffer does not also 

generate traffic visible to itself, for example by storing the data on a remote host via FTP or NFS 

while the sniffer is active. 
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7.1.1.  Environment 

 We collected traffic from a university departmental server, www.cs.fit.edu.  Like the 

IDEVAL network, the server is connected by Ethernet to a number of local machines and to two 

routers, one to a larger local area network (eyrie.af.mil or fit.edu) and another router to the Internet.  

The server is a Sun running Solaris, like the victim host pascal in IDEVAL.  The server hosts a 

website with several thousand pages maintained by several faculty members via UNIX shell 

accounts.  There is also an SMTP server for sending mail and POP3 and IMAP servers for receiving 

mail.  In all these respects, the server resembles the victim hosts on the IDEVAL network (although 

pascal does not run a web server).  However there are many differences. 

• The real traffic was collected in 2002, as opposed to 1999.  During this time new operating 

system, server, and client versions were released, new protocols were introduced, and 

others updated. 

• Security is tighter.  Our server runs behind a firewall, unlike the IDEVAL network.  Also, 

there is no telnet server.  Communication is by SSH and secure FTP.  (However POP3 and 

IMAP passwords are not encrypted). 

• Our server is on an Ethernet switch rather than a hub.  Only traffic addressed to the server 

(other than multicast or broadcast) is visible. 

• Some remote IP addresses are dynamically assigned using DHCP and may change daily.  

All IP addresses in the IDEVAL network are static. 

• The real traffic contains many protocols not present in the IDEVAL background traffic.  

Among these are undocumented network protocols (in addition to IP and ARP), the 

transport protocols OSPFIGP, IGMP and PIM (in addition to TCP, UDP, and ICMP), and 

application payloads such as NFS, RMI, portmap, and several others that do not use well 

known port numbers. 
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Another problem is that real training/background data may contain unlabeled attacks.  In one 

informal experiment using the author's dialup Windows PC, probes (usually to a single port) were 

observed about once per hour, a rate higher than in the IDEVAL test data.  The server firewall 

undoubtedly filters many probes, but cannot block attacks on open ports.  We found (by manual 

inspection) about 30 suspicious HTTP requests in 600 hours of traffic.  Two of these are shown 

below. 

 

 GET /MSADC/root.exe?/c+dir HTTP/1.0 

 

This is a probe for a backdoor dropped by the Code Red worm. 

 

 GET /scripts/..%255c%255c../winnt/system32/cmd.exe?/c+dir 

 

This probe appears to exploit a URL decoding bug in IIS.  The string "%25" decodes to "%".  A 

second decoding of "%5c" decodes to "\" which IIS treats the same as "/".   Furthermore, Windows 

treats a double slash (e.g. ..\\..) like a single slash (..\..).  Of course, this exploit has no effect on a 

UNIX machine. 

7.1.2.  Data Set 

 We collected daily traces collected from Sept. 30 through Dec. 13, 2002.  Each trace is 

2,000,000 packets, starting at 12:01 AM local time and ending about 10 to 15 hours later.  Packets 

are truncated to 200 bytes.  For our analysis, we used only traffic collected on Monday through 

Friday (like IDEVAL) for the 10 weeks from Sept. 30 through Oct. 25 and Nov. 4 through Dec. 13.  

We skipped one week because no data was available on one of those days. 

 To reduce the data load in our analyses, we filtered the data set using the first stage of 

NETAD, as described in Section 6.2.  This preserves only the beginning of inbound client to server 
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requests, which is the traffic of most interest.  This filtering reduces the data from 100,000,000 

packets to 1,663,608 packets (1.6%).  Similar filtering on IDEVAL inside week 3 reduces the data 

from 12,814,738 packets to 362,934 packets (2.8%).  The difference in data reduction is due mainly 

to a lower percentage of UDP in the real traffic.  For our analysis, we use both attack-free weeks 1 

and 3 from the inside sniffer, which contain a total of 658,801 packets after filtering. 

7.2.  Comparison with Real Traffic 

 We are interested in evaluating the realism of the background traffic in the IDEVAL data 

set with respect to our anomaly detection algorithms.  For algorithms that use a scoring function of 

tn/r for novel values (e.g. PHAD, ALAD, and LERAD), there are at least four conditions under 

which our algorithms would seem to work well using the IDEVAL data but then fail in practice, 

assuming that the attack simulations are realistic.  These are as follows: 

1. A value that is anomalous in simulation appears in real background traffic, resulting in the 

detection being missed. 

2. The number of training instances, n, is smaller in real traffic due to insufficient training 

data. 

3. The number of values observed in training, r, is larger in real traffic due to greater variation 

in the protocols. 

4. r grows at a faster rate in real traffic due to changing network statistics or insufficient 

training time to observe all possible traffic sources, resulting in more false alarms.  If the 

algorithm uses rule validation, this would instead result in more "bad" rules being 

discarded. 

In addition, algorithms that model non-novel values using ti/fi = tin/ni (e.g. NETAD) could be 

affected by smaller n (condition 2), or larger ni (higher frequency of anomalous value i in normal 

traffic, similar to condition 1). 
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 We can measure n and r (conditions 2 and 3) using any of our anomaly detection 

algorithms.  In addition, a large value of r would imply that fewer values are likely to be reported as 

anomalies (condition 1), and could imply a faster growth rate of r (condition 4).  However, the 

growth rate can be approximated more accurately if we measure it near the end of the training 

period.  We define three statistics that estimate the rate of growth of r. 

• r1 is defined the fraction of values (out of r) that occur exactly once in training.  r1 is a 

Good-Turing estimate of the probability that the next value will be novel (i.e. a false 

alarm), assuming that each value is independent.  If this is not the case (e.g. for bursty 

traffic with long range dependencies), then r1 is an underestimate. 

• rh is defined the fraction of values (out of r) seen for the first time in the second half of the 

training data.  Thus, the probability of a novel value over this period is estimated at 2rh 

• rt is defined as the fraction of training time needed to observe half of all the values. 

For example, given the sequence ABCDAB, then n = 6, r = 4, r1 = 2/4 = 0.5 (C and D occur once), 

rh = 1/4 (D occurs only in the second half), and rt = 1/3 (the time to observe 2 of the 4 values, A and 

B).  In general, "good" rules have large n, and small r, r1, rh, and rt.  The distribution of values can be 

learned quickly, and it does not change over time.  If the values have a Zipf distribution (which is 

often the case), then this is a "bad" rule.  In the worst case, r grows at a constant rate, indicated by rh 

= rt = n/2.  These two cases are illustrated in Figure 7.1.  If a rule is "bad", it will either generate a 

lot of false alarms or be removed by rule validation.  If not removed, it will likely miss some attacks 

(because the value is more likely to be seen in training) or generate a smaller anomaly score 

(because n/r is smaller).   

 In all of our measurements, we use packet count in lieu of real time to calculate rh and rt.  

This removes any bias due to gaps between traces in either the simulated or real data.  For example, 

to calculate rh, we count all values that occur for the first time in the last 329,400 out of 658,801 

simulated packets.  The data in Section 7.2 also appears in (Mahoney & Chan, 2003). 
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Figure 7.1.  Growth in the number of unique values (r) over time for "good" and "bad" rules 

with the same n and r.  Small values of rh (new values in the second half of training) and rt 

(time to learn half the values) are indicators of good rules. 

 

7.2.1.  Comparison of All Filtered Packets 

 We first compare the training traffic (inside sniffer weeks 1 and 3) with the 10 week data 

set, both after filtering.  In most of the attributes we examined, the rate of anomalies is higher in the 

real traffic, as indicated by higher values of r, r1, rh and rt (listed as four consecutive values in Table 

7.1), even after taking into account the larger n of the real data set.  Where the difference is 

significant (a somewhat subjective judgment), the higher values are highlighted in italics.  These 

fields include the Ethernet source address, TTL, TOS, TCP options, UDP destination port, and 

ICMP type. 

 

 

"Good" rule 

"Bad" rule 

n/2                                                 n 

r 

rh 

rt 

r/2 
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r, r1, rt, rh Simulated Real 

Ethernet source address 8, 0, 0, .00001 76, .01, .11, .03 

IP source address 1023,.26, .71, .73 27632, .08, .53,.53 

IP destination address 32, 0, 0, .0002 1, 0, 0, 0 

TCP header size 2, 0, 0, .000003 19, .16, .05, .024 

ICMP types 3, 0, 0, .001 7, .14, .14, .16 

TTL 9, 0, .1, .00002 177, .04, .12, .023 

TOS 4, 0, 0, .0003 44, .07, .64, .53 

TCP destination port 8649, .35, .66, .65 32855,.001, .002, .3 

TCP flags 8, 0, 0, .00002 13, 3, 0, .00009 

TCP options 4 bytes 2, 0, 0, .00002 104, .22, .31, .18 

UDP destination port 7, 0, 0, .0001 31, .52, .55, .45 

 

Table 7.1.  Comparison of r, r1, rh and rt for nominal attributes of inside sniffer weeks 1 and 3 

(simulated) with 10 weeks of real traffic after filtering (real).   

 

 The following binary events occur only in the real traffic (Table 7.2): fragmented IP 

packets (with the "don't fragment" flag set), TCP and ICMP checksum errors, nonzero bits in TCP 

reserved fields and reserved flags, and nonzero data in the urgent pointer when the URG flag is not 

set.  These events are present even after removing TCP packets with bad checksums. 
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Percent Simulated Real 

Packets n = 658,801 n = 1,663,608 

IP options None None 

IP fragments 0 0.45% 

Don't fragment (DF) 52% set 90% set 

DF set in fragment No fragments 100% bad 

IP checksum No errors No errors 

TCP checksum No errors 0.017% bad 

UDP checksum No errors No errors 

ICMP checksum No errors 0.020% bad 

TCP reserved flags Always 0 0.093% bad 

TCP reserved field Always 0 0.006% bad 

Urgent data, no flag None 0.022% bad 

 

Table 7.2.  Comparison of binary attributes of inside sniffer weeks 1 and 3 (simulated) with 10 

weeks of real traffic after filtering (real). 

 

 For all continuous attributes (Table 7.3.) we measured, the range is higher in real traffic.  

This includes packet size, UDP payload size, TCP header size, urgent pointer, and window size.  

However it is difficult to judge the significance of these differences based on range alone. 
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Range Simulated Real 

IP packet size (38-1500) (24-1500) 

TCP window size (0-32737) (0-65535) 

TCP header size (20-24) (20-48) 

Urgent pointer (0-1) (0-65535) 

UDP packet size (25-290) (25-1047) 

 

Table 7.3.  Comparison of continuous attributes of inside sniffer weeks 1 and 3 (simulated) 

with 10 weeks of real traffic after filtering (real).  

 

 Most attributes are less predictable in real traffic than in simulation.  However the situation 

is opposite for TCP ports.  The rate of novel values is lower in the real traffic.  Most of the 

simulated TCP ports are high numbered FTP data ports negotiated during FTP sessions.  The real 

traffic has a much lower rate of FTP sessions.  Also, some real ports may be blocked by the firewall. 

7.2.2.  Comparison of TCP SYN Packets 

 In Table 7.4 we compare inbound TCP SYN packets in the simulated and real traffic.  This 

exposes some potential artifacts that were not apparent in the larger set of all filtered packets.  The 

most striking difference is in IP source addresses.  The number and rate of novel addresses is 

thousands of times higher in real traffic than in simulation.  This is not the case when UDP and 

ICMP traffic (or outbound TCP)  is included. 

 Other differences include TCP options (which determine packet size and TCP header size) 

and window size.  Every inbound TCP SYN packet uses the exact same four TCP option bytes, 

which set the maximum segment size (MSS) to 1500.  In reality, the number of options, their order, 

and the option types and values varies widely.   
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 Window size (used to quench return traffic) is allowed to range from 0 to 65535.  The full 

range of values is seen only in real traffic.  Simulated traffic is highly predictable, always one of 

several values.  A difference in range is also observed in source ports (selected randomly by the 

client) and high numbered destination ports (often negotiated).  One other type of anomaly seen 

only in real traffic is a nonzero value in the acknowledgment field, even though the ACK flag is not 

set. 

 

Attribute Simulated Real 

Packets, n 50650 210297 + 6 errors 

Source address r, r1, rh, rt 29, 0, .03, .001 24924, .45, .53, .49 

Destination address, r 17 1 (163.118.135.1) 

Source port, r 13946 (20-33388) 45644 (21-65534) 

Destination port, r 4781 (21-33356) 1173 (13-65427) 

IP packet size, r 1 (44, 4 option bytes) 8 (40-68) 

TCP options, r 1 (MSS=1500) 103 in first 4 bytes 

Window size, r 7 (512-32120) 523 (0-65535) 

TCP acknowledgement Always 0 0.02% bad 

 

Table 7.4.  Comparison of simulated and real inbound TCP SYN packets (excluding TCP 

checksum errors). 
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7.2.3.  Comparison of Application Payloads 

 We compare HTTP requests in the simulated data (weeks 1 and 3) with 10 weeks of real 

traffic.  Because the real packets were truncated to 200 bytes (usually 134-146 bytes of payload), we 

examine only the first 134 bytes in both sets.  Table 7.5 summarizes the differences we found. 

 

Inbound HTTP Requests Simulated Real 

Number of requests, n 16089 82013 

Different URLs requested, r, r1 660, .12 21198, .58 

HTTP versions, r 1 (1.0) 2 (1.0, 1.1) 

Commands (GET, POST...), r 1 (GET) 8 

Options, r 6 72 

User-agents, r, r1 5, 0 807, .44 

Hosts, r 3 13 

 

Table 7.5.  Comparison of HTTP requests in simulated traffic (inside weeks 1 and 3) and 10 

weeks of real traffic. 

 

 There are two simulated web servers (hume and marx).  However, the one real web server 

receives more traffic and has more web pages.  The distribution of real URLs is approximately Zipf, 

consistent with findings by Adamic (2002).  A characteristic of a Zipf distribution is that about half 

of all values occur exactly once.  The simulated URLs are distributed somewhat more uniformly.  

Many of the singletons are failed requests which were simulated by replacing the last 4 characters of 

the file name with xxxx (e.g. "GET /index.xxxx HTTP/1.0"). 

 There is a huge disparity in the number of user-agents (client types).  The simulated traffic 

has only five, all versions of Mozilla (Netscape or Internet Explorer).  Real web servers are 
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frequently accessed by search engines and indexing services.  We found the top five user-agents in 

the real data to be (in descending order) Scooter/3.2, googlebot/2.1, ia_archiver, Mozilla/3.01, and 

http://www.almaden.ibm.com/cs/crawler.  They also have a Zipf distribution. 

 The only simulated HTTP command is GET, which requests a web page.  The real traff ic 

has 8 different commands: GET (99% of requests), HEAD, POST, OPTIONS, PROPFIND, LINK, 

and two malformed requests, No and tcp_close,.  There is also a much wider variety of options, 

although some of these are due to the introduction of HTML/1.1.  Nevertheless there is wide 

variation in capitalization and spacing.  In the simulated traffic, HTTP options invariably have the 

form Keyword: value, with the keyword capitalized, no space before the colon and one space 

afterwards.  This is usually but not always the case in real traffic.  Furthermore, we occasionally 

find spelli ng variations, such as Referrer: (it is normally misspelled Referer:) or the even more 

bizarre Connnection: with three n's.  Some keywords are clearly malformed, such as XXXXXXX: or 

~~~~~~~:.  A few requests end with a linefeed rather than a carriage-return and linefeed as required 

by HTTP protocol.  Finally there are some requests which are clearly suspicious, as mentioned 

previously. 

 We look only briefly at SMTP (mail ) and SSH (secure shell ).  These are the only other 

TCP application protocols besides HTTP that exist in sufficient quantity in both data sets to do a 

useful comparison.  Like HTTP, we once again find that real traff ic is "messy", high in benign 

anomalies.  Table 7.6 summarizes the results. 
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Inbound Request Simulated Real 

SMTP requests, n 18241 12911 

First command, r 2  7 

HELO hosts, r, r1 3, 0 1839, .69 

EHLO hosts, r, r1 24, .04 1461, .58 

No initial HELO or EHLO 0 3% 

Lower case commands 0 0.05% 

Binary data in argument 0 0.1% 

SSH requests, n 214 666 

SSH versions, r, r1 1, 0 32, .36 

 

Table 7.6.  Comparison of inside sniffer weeks 1 and 3 with 10 weeks of real inbound SMTP 

and SSH requests. 

 

 A normal SMTP session starts with HELO or EHLO (echo hello), but these are optional.  

In the simulated traffic, every session starts with one of these two commands.  However, about 3% 

of real sessions start with something else, usually RSET, but also QUIT, NOOP, EXPN, or 

CONNECT.  About 0.2% of real commands are lower case.  One command (EXPN root) is 

suspicious. 

 The number of simulated remote hosts sending and receiving mail (arguments to HELO 

and EHLO) is clearly unrealistic.  This is also reflected in the small number of source IP addresses 

in general.  The simulated traffic has one malformed command, an EHLO with no argument.  The 

real traffic does too, and a variety of other malformed arguments, including binary strings (1-21 
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bytes, probably too short to be a buffer overflow).  The host name arguments are roughly Zipf 

distributed, with over half appearing only once. 

 An SSH session opens with the client version string.  The simulated traffic uses a single 

client version.  In real traffic there are many versions, again Zipf distributed. 

7.3.  Summary 

 In this chapter we collected real network traffic and compared it with the simulated training 

and background traffic in the IDEVAL data set.  We concluded that many attributes have a wider 

range of values (r) in real traffic, and that the range grows more rapidly.  This means that an 

anomaly detection system will learn many more "bad" rules in real traffic.  This should result in 

masked detections, lower anomaly scores, and higher false alarm rates, or if rule validation is used, 

fewer rules.  Among the worst offenders are remote client addresses, TTL, TCP options, TCP 

window size, and application payload keywords and arguments.  A large percentage of the attacks 

detected by PHAD, ALAD, LERAD, and NETAD are detected by these attributes. 

 However, we cannot conclude that these algorithms would not work.  Our analysis of the 

data suggests that there are still some "good" rules, although not as many as the IDEVAL simulation 

would suggest.  Our analysis does not reveal whether the additional values that appear in real traffic 

are the same ones that would appear in an attack, so we cannot say whether the alarm score would 

be zero or just smaller.  All of our algorithms adapt to data with bad rules either by reducing the 

alarm score (larger r) or by rule validation.  If there are any good rules, then these algorithms should 

find them, just as they are very good at finding simulation artifacts.  Although many attacks appear 

to be due to simulation artifacts, others appear to be due to legitimate features of the attack.  In the 

next chapter, we address the question of how many of these attacks would actually be detected if 

this real traffic had been used in the evaluation.
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Chapter 8 

  Evaluation with Mixed Traffic 

 In Chapter 7 we found strong evidence that the IDEVAL data would not reliably predict 

the performance of some network anomaly detection algorithms because the synthesized data 

appears to be too predictable.  Unfortunately there is no reasonable alternative data set, due to the 

great expense of producing this type of data.  We would prefer to "fix" the background and training 

data, if possible, then use it to test our algorithms with the original labeled attacks.  Thus, our goal is 

to answer two questions. 

1. Can the IDEVAL data be "fixed" by injecting real traffic? 

2. Would PHAD, ALAD, LERAD, and NETAD work on real traffic? 

We approach both questions injecting real background traffic into the IDEVAL data to make it 

appear as if there was a real host receiving real Internet traffic during the evaluation.  To answer the 

first question, we evaluate PHAD, ALAD, LERAD, NETAD, and another network anomaly 

detection system, SPADE (Hoagland, 2000), on this mixed traffic and test whether more of the 

detections are "legitimate".  If the answer is yes, then the results of these tests will answer our 

second question. 

 We propose to add real traffic to the IDEVAL data to make it appear as if it were being 

sent and received during the simulation.  We believe it is not necessary to remove the simulated 

background traffic because the combination should be similar (in the statistical sense of Section 7.2) 

to the real traffic alone.  To see this, let AS be the set of values of attribute A seen in simulation up 
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to the present time, and let AR be the corresponding set of values seen in real traffic.  Then the set of 

values AM seen in merged traffic would be at all times: 

 

 AM = AS ∪ AR 

 

Note that the r statistic for attribute AS, which we denote rS is simply |AS|.  Likewise, we define rR = 

|AR| and rM = |AM|.  Therefore, we have at all times: 

 

 max(rS, rR) ��� M ��� S + rR 

 

In cases where we suspect r is an artifact, we have rS << rR, and therefore rM � rR, so removing the 

simulated traffic would have little effect.  Furthermore, because this is true at all times, rM and rR 

would have similar growth rates. 

 A problem can occur when AR is too small or empty, i.e. there is little or no real traffic of 

types where A is defined to mix with the simulation.  In this case, rM � � S, and the artifact, if there is 

one, would not be removed.  One such example is the destination address of incoming traffic, where 

there are rS = 16 simulated hosts and rR = 1 real host.  We are unable to test whether the destination 

address is an artifact in the simulation (although we have no reason to believe that it would be).  

Other untestable attributes are those of FTP and telnet payloads, because there is little FTP and no 

telnet traffic in our real data.  (Remote login and FTP are available only via the SSH protocol). 

 We wish to evaluate network anomaly detection systems on mixed data.  Our approach is 

as follows.  First, we analyze the system to determine which attributes are monitored.  Then we test 

the simulated and real data to determine which attributes are present in the simulation, but absent or 

rare in the real data.  Then we modify the system to ignore these attributes. 
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8.1. Data Preparation 

 For our mixed traffic, we use the same large, filtered data set as described in Section 7.2.  

We have 579 hours of traffic, which is more than enough to mix into the 146 hours of traffic in 

inside sniffer week 3 plus the 198 hours in weeks 4 and 5.  We mix the traffic in a 1:1 ratio, i.e. one 

hour of simulated traffic is mixed with one hour of real traffic.  Other ratios would be possible by 

stretching or compressing the real traffic, but we do not do this. 

 We mix the traffic to make it appear as if all of the collected data occurs during the 

simulation.  We do this by adjusting the time stamp of the first real packet to match the time stamp 

of the first simulated packet, then maintain the relative times of the other real packets, excluding 

gaps in the two collections.  This is illustrated in Figure 8.1.  Time reads from left to right. 

 

Figure 8.1.  Mapping real time into simulation time when there are gaps in collection in both 

data sets. 

 

The real traffic consists of 50 traces, divided into 10 weeks.  We mix these into weeks 3 (training), 

4, and 5 (test) of the inside sniffer data to prepare three mixed data sets, which we label A, B, and C 

as shown in Table 8.1.  Prior to mixing, both the simulated and real traffic are filtered as described 

in Section 7.1 to pass only truncated and rate limited inbound client to server requests.  In particular, 

the simulated packets are truncated to 200 bytes so that they are indistinguishable from the real 

packets.  We denote the unmixed data (after filtering) as set S. 

 

Real 

Simulated 
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Set Training data Test data 

S IDEVAL inside week 3 IDEVAL inside weeks 4-5 

A S + real weeks 1-3 S + real weeks 4-7 

B S + real weeks 4-6 S + real weeks 7-10 

C S + real weeks 7-9 S + real weeks 1-4 

 

Table 8.1.  Mixed data sets used for evaluation.  All data is filtered. 

  

8.2.  Algorithm Preparations 

 In this section we describe how we modify PHAD, ALAD, LERAD, NETAD, and SPADE 

to meet the requirement that it not test any attributes where rR << rS.  We can do this by determining 

if there are any rules that would be conditioned on mostly simulated data and removing them.   For 

SPADE, we modify the input data rather than the algorithm. 

8.2.1. PHAD Modifications 

 Recall that PHAD is a time-based global model of packet header fields.  If any packet 

(inbound or outbound, client or server) displays a value never seen in training, then PHAD assigns a 

score of Σ tn/r, where t is the time since the previous anomaly, n is the number of training packets, 

and r is the number of allowed values, and the sum is over all of the anomalous attributes.  There are 

34 attributes corresponding to the various 1 to 4 byte fields in the Ethernet, IP, TCP, UDP, and 

ICMP packet headers.  The conditions for these fields to be present, is that the packet be of the 

corresponding type.  Therefore, if all of these packet types exist in the real data, then no 

modification is necessary.  If there are any packet types that PHAD tests for and which exist in the 

simulated but not the real data, then we would have to remove all of the attributes for that packet.  
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For example, if there were no real ICMP packets, then we would remove the ICMP type, ICMP 

code, and ICMP checksum fields. 

 Table 8.2 shows the number of packets for each type tested by PHAD in sets S, A, B, and 

C.  There is a significant increase in A, B, and C over S for all packet types, indicating the addition 

of a significant number of real packets.  Thus, no modification is needed to PHAD.  However we 

still expect PHAD to give a different result on set S than on the original data because the packets are 

filtered. 

 

Packet Type S A B C 

Ethernet 362,934 789,504 813,011 740,479 

IP 362,934 789,504 813,011 740,479 

TCP 170,435 407,858 482,351 395,693 

UDP 186,051 325,742 318,761 325,002 

ICMP 6448 55,904 11,899 19,784 

 

Table 8.2.  Number of packets of each type tested by PHAD in filtered IDEVAL inside week 3 

(S) and in mixed sets A, B, and C. 

8.2.2.  ALAD Modifications 

 Recall that ALAD models inbound client TCP streams and that the optimal combination of 

11 rule forms was found to be the following five: 

• P(client address | server address) 

• P(client address | server address and port) 

• P(TCP flags | server address) 

• P(server address and port) 
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• P(keyword | server port) 

The first three of these rule forms are conditioned on the server (local) address, which differs in the 

simulated and real traffic.  Each rule form consists of two sets of rules, one which models traffic on 

the simulated servers, and one set on the real server. 

 The fourth rule is unconditional, and therefore makes no distinction between simulated and 

real traffic.  However, because there is only one real server address, we know that any novel 

addresses must come from the simulation.  We can test the port number by itself, however.  

Therefore, we modify the first four rules to remove the server address, so that the modified ALAD 

uses the following rule forms: 

• P(client address) 

• P(client address | server port) 

• P(TCP flags) 

• P(server port) 

• P(keyword | server port) 

In addition, we must modify the TCP reassembly algorithm to work with the filtered and truncated 

packets, and do so consistently with the simulated and real traffic.  Recall that packets are truncated 

to 200 bytes (header plus 134 to 146 payload bytes), and that only packets containing the first 100 

bytes of the sequence are passed.  This means that we cannot capture the closing TCP flags as 

before.  Instead, we let the TCP flag attribute be the sequence of flags for the first three packets.   

Also, to avoid gaps in the TCP payload, only the first 134 bytes of the first TCP data packet are used 

in the reassembled stream (instead of the first 1000 bytes). 

 Of all the TCP protocols, only SSH, SMTP, and HTTP (ports 22, 25, and 80) exist in 

significant quantities in both the simulated and real traffic.  Therefore, the rules that are conditioned 

on server port are restricted to these three ports. 
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8.2.3. LERAD Modifications 

 Recall that LERAD is a time-based model, like PHAD and ALAD, assigning a score of  

Σ tn/r to novel attribute values, summed over the rules.  It creates conditional rules of the form  

 

 if A1 = v1 and A2 = v2 and ... then Ak+1 ∈ {vk+1, vk+2, ... vk+r} 

 

where the Ai are attributes and the vi are values.  The rules are randomly selected such that they are 

always satisfied in training and have high n/r.   

 LERAD models inbound TCP streams from client to server. The attributes are date, time, 

single bytes of the source and destination address, source and destination ports, TCP flags of the 

first, next to last or last packet, duration, length, and the first 8 words in the application payload. 

 There are many potential rules that could exclude real traffic, for example "if destination 

address = pascal and destination port = FTP then ...".  It would be error prone to manually modify 

LERAD to avoid such rules.  Instead, we experimented with modifying  LERAD to record the 

number of simulated and real training instances (by using the destination address to distinguish 

them) that satisfy the rule antecedent, then weight each rule by the fraction of real traffic when 

computing the anomaly score.  In other words, we use the scoring function tnR/r, where nR is the 

number of training instances from the real data.  The set of r allowed values can still come from 

either source.  This should have the effect of removing rules that depend only on the simulated 

traffic. 

 In practice, this modification had practically no effect.  Only a small fraction of the rules, 

less than 5%, were affected significantly (removing more than 80% of the training data).  When we 

compared the original and modified LERAD on mixed sets A, B, and C, both versions usually 

detected the same number of attacks (about 30) at 100 false alarms.  The difference, if any, was at 

most one detection. 
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 Although we did not modify LERAD, we did modify the TCP stream reassembly algorithm 

as with ALAD.  The three TCP flag attributes are for the first three packets, or blank if there are less 

than three packets after filtering.  The word attributes (up to 8) are extracted only from the first 134 

bytes of the first data packet. 

8.2.4.  NETAD Modifications 

 Recall that NETAD models nine types of packets: IP, TCP, TCP SYN, and TCP ACK for 

all ports, ports 0-255, telnet, FTP, SMTP, and HTTP.  NETAD already uses filtered traffic, so all 

that remains is to test whether the nine packet types are present in sufficient quantities in the real 

traffic.  As can be seen from Table 8.3, two are not – telnet and FTP – so we remove them and 

modify NETAD to test only the seven remaining types. 
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Packet Type S A B C 

IP 362,934 789,504 813,011 740,479 

TCP 170,435 407,858 482,351 395,693 

TCP SYN 29,263 83,660 79,686 80,520 

TCP ACK 56,923 141,426 124,214 132,041 

ACK 0-255 50,356 90,002 96,284 90,243 

ACK FTP 4668 4719 4743 4726 

ACK telnet 13,947 13,947 13,947 13,947 

ACK SMTP 20,944 28,392 29,290 28,363 

ACK HTTP 8458 31,020 33,382 31,556 

 

Table 8.3.  Number of packets of types modeled by NETAD in the filtered inside sniffer 

training traffic from IDEVAL week 3 (S) and in mixed sets A, B, and C. 

8.2.5.  SPADE Modifications 

 SPADE (Hoagland, 2000) is a network anomaly detection plug-in to SNORT (Roesch, 

1999).  It models ports and addresses of inbound TCP SYN packets (requests to servers).  It uses a 

pure frequency based model, in which the joint probability of a combination of ports and addresses 

depends only on the number of times that the combination was observed (including the current 

packet) divided by the total number of observations.  The anomaly score is inversely related to the 

probability.  There is no explicit training period.  Every packet is tested, then added to the training 

model. 

 SPADE has four probability modes, which can be selected by the user. 

0. 1/P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP) 
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1. 1/P(DA, DP, SA, SP) 

2. 1/P(DA, DP, SA) 

3. 1/P(DA, DP) (default) 

where SA, DA, SP, and DP are the source and destination IP addresses and port numbers.  All four 

models depend on the destination address (DA), which distinguishes the simulated and real traffic.  

Rather than modify these models (which we could do; it is open source), we modify the input data.  

For each real inbound TCP SYN packet, we randomly replace the destination address with one of 

the four main victim machines (pascal, marx, hume, or zeno).  Thus, to SPADE, it appears as if the 

real servers (HTTP, SMTP, etc.) are running on these victim machines rather than on a separate 

host. 

8.3.  Evaluation Criteria 

 We described a procedure for making it appear to an IDS that it is monitoring real traffic in 

the IDEVAL data.  This requires injecting the traffic into the simulated data (adjusting time stamps), 

and possibly modifying or removing rules from the IDS so that it makes no distinction between 

simulated and real traffic.  We wish to test whether this procedure works.  To do this, we compare 

the output of the IDS on simulated and mixed traffic.  If the procedure works, then we would expect 

that only "legitimate" detections appear in the IDS output on real traffic, and that detections that 

appear to be due to simulation artifacts would not.  We already identified suspicious detections in 

our analyses of previous results, for example, detections by TTL or detections of attacks on public 

servers by source address.  In (Mahoney & Chan, 2003) we use the following criteria to decide 

whether a particular anomaly legitimately detects an attack. 

• Source address is legitimate for denial of service (DOS) attacks that spoof it, or if the 

attack is on an authenticated service (e.g. telnet, auth, SSH, POP3, IMAP, SNMP, syslog, 
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etc), and the system makes such distinctions (i.e. conditioned on server port number).  FTP 

is anonymous in the IDEVAL data, so we consider it public. 

• Destination address is legitimate for probes that scan addresses, e.g. ipsweep. 

• Destination port is legitimate for probes that scan or access unused ports, e.g. portsweep, 

mscan, satan.  It is debatable whether it is legitimate for attacks on a single port, but we 

will allow them. 

• TCP state anomalies (flags, duration) are legitimate for DOS attacks that disrupt traffic 

(arppoison, tcpreset), or crash the target (ntfsdos, dosnuke). 

• IP fragmentation is legitimate in attacks that generate fragments (teardrop, pod). 

• Packet header anomalies other than addresses and ports are legitimate if a probe or DOS 

attack requires raw socket programming, where the attacker must put arbitrary values in 

these fields. 

• Application payload anomalies are legitimate in attacks on servers (usually R2L attacks, 

but may be probes or DOS). 

• TCP stream length is legitimate for buffer overflows. 

• No feature should legitimately detect a U2R (user to root) or Data attack (security policy 

violation). 

In (Mahoney & Chan, 2003), we evaluated PHAD, ALAD, LERAD, and NETAD using the EVAL 

implementation of the 1999 IDEVAL detection criteria (Mahoney, 2003b).  This differs from 

EVAL3, which we had been using, in three minor respects. 

• If an alarm occurs during two overlapping attacks, then EVAL counts both as detected.  

EVAL3 counts only the attack listed first in the IDEVAL truth labels. 

• The alarm IP address must be the target and not the source.  The IDEVAL truth labels 

contain both source and target addresses.  EVAL3 allowed a match to either.  This change 
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affects only PHAD on the original unfiltered data because no other system sees remote 

destination addresses. 

• EVAL does not count out-of-spec detections.  A detection is out-of-spec if it is not one of 

the 177 attacks that the IDEVAL truth labels lists as having evidence in the inside sniffer 

traffic.  EVAL3 counts these.  The difference is typically about 2%.  It is possible to detect 

an out-of-spec attack by coincidence or if it overlaps an in-spec attack.  In a few cases, 

attacks that generate no traffic (e.g. ntfsdos) and are labeled as such, can still be detected 

because the IDS detects interrupted TCP connections when the target is rebooted. 

8.4.  Experimental Results 

 We tested the modified PHAD, ALAD, LERAD, and NETAD on simulated set S and 

mixed sets A, B, and C as described in Section 8.1.  We evaluated the results with EVAL at 100 

false alarms.  Alarms were consolidated using AFIL (Mahoney, 2003b).  The results are shown in 

Table 8.4.  For comparison, the number of detections for the unmodified systems (but using 

AFIL/EVAL rather than EVAL3) are also shown. 

 For sets S and C, we manually inspect each detection and classify it as legitimate or not 

according to the criteria described in Section 8.3.  The results are presented in the form of a fraction, 

legitimate/total, and a percentage.  We analyze set C because it appears to be the most representative 

of the three mixed sets.  For all four systems, the number of attacks detected using C falls between 

the numbers for A and B. 
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System Original Total S Legit/Total A  Total B Total C Legit/Total 

PHAD 39 31/51 (61%) 17 31 19/23 (83%) 

ALAD 57 16/47 (34%) 11 17 10/12 (83%) 

LERAD 109 49/87 (56%) 29 30 25/30 (83%) 

NETAD 129 61/128 (48%) 38 46 27/41 (67%) 

SPADE-2  3/6 (50%) 2 1 1/1 (100%) 

 

Table 8.4.  Number of attacks detected at 100 false alarms (measured using EVAL) using the 

original IDEVAL inside sniffer week 3-5 data, data after filtering (S), and after injecting real 

traffic (A, B, and C).  For S and C, the number and percentage of detections judged legitimate 

is shown.  SPADE is evaluated in mode 2 at 200 false alarms. 

 

 For each of the four systems, the fraction of legitimate detections is higher in set C than in 

set S.  This suggests that the technique of injecting real data and removing rules dependent on 

simulated data effectively removes simulation artifacts.  In (Mahoney & Chan, 2003), a similar 

result was also obtained with SPADE (Hoagland, 2000), and with PHAD with the TTL field active.  

Most of the attacks detected by TTL on set S were absent in set C. 

 In the following sections, we summarize results for PHAD (without TTL), ALAD, 

LERAD, and NETAD for sets S and C. 

8.4.1.  PHAD Results 

 PHAD detects 51 attacks (plus 3 out of spec) on set S and 23 attacks (plus 1 out of spec) on 

set C.  These are grouped by the attribute that contributes the greatest fraction of the anomaly score.  

An asterisk indicates the detection is not legitimate according to our criteria. 
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• Ethernet destination address: mscan* in S and C.  The anomaly is most likely caused by an 

overlapping arppoison attack against another IP address, which is missed. 

• Ethernet source: insidesniffer* in S.  Coincidental. 

• Ethernet packet size: ncftp* in C. 

• ICMP checksum: 5 smurf* in S.  This is due to a bug in the attack, one of the few attacks 

that was simulated. 

• IP destination: portsweep, 2 in S and 1 in C; 3 ncftp* in S and C; guesstelnet* in S.  Since 

there is only one real IP destination address, this attribute cannot be tested. 

• IP fragment ID: neptune in S.  Although unlikely, it is legitimate by our criteria because 

neptune is programmed at the IP level to spoof the source address. 

• IP fragment pointer: pod, 4 in S and 2 in C, teardrop, 3 in S and C, insidesniffer* in S 

(coincidental).  The others exploit IP fragmentation. 

• IP source address: only in S: 2 portsweep*, neptune, back*, xlock*, syslogd, ncftp*, 

processtable*, sendmail*.  neptune and syslogd are legitimate because they spoof the 

source address.  Although processtable attacks an authenticated service, it is not legitimate 

because the rule is not conditioned on port number. 

• TCP checksum: apahce2* in S (probably coincidental). 

• TCP flags: 5 portsweep in S and 4 in C, 3 queso in S and 2 in C, 3 dosnuke in C.  All are 

legitimate.  portsweep and queso are detected by FIN without ACK.  dosnuke is detected 

by the URG flag. 

• Urgent pointer: 4 dosnuke in S and 1 in C. 

• TCP window size: 1 portsweep in S and 2 in C, ntinfoscan in S.  Although window size is 

probably an artifact, these are legitimate by our criteria because both attacks are 

programmed at the IP level. 

• UDP checksum: udpstorm in S. 
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• UDP destination port: all in S: 2 satan, 2 portsweep, 1 udpstorm. 

• UDP length: syslogd in S, satan in C. 

8.4.2.  ALAD Results 

 ALAD was modified to remove the destination address, telnet, and FTP from rule 

conditions.  The modified ALAD detects 47 attacks in S and 12 in C, all of them in-spec.  They are 

grouped by attributes that contribute at least 10% of the anomaly score.  Some attacks are therefore 

listed more than one.  A single detection may be legitimate for one attribute and not for another 

(marked with *).  A detection must have one legitimate attribute to be classified as legitimate 

overall. 

• Source address: 43 in S, 9 in C.  In S: 2 apache2*, arppoison*, casesen*, 5 crashiis*, 

fdformat*, ffbconfig*, 2 guessftp*, guesspop, guesstelnet*, mailbomb*, mscan, 2 ncftp*, 2 

netbus*, 2 netcat*, netcat_breakin*, netcat_setup*, 3 ntinfoscan*, 2 phf*, 1 ppmacro*, 2 

satan*, 2 sendmail*, sshtrojan*, 3 warezclient*, warezmaster*, xterm*, 2 yaga*.  In C: 

guessftp*, mailbomb*, ncftp*, 2 netcat*, netcat_breakin*, satan, 2 sendmail*.  Except 

satan, the source address scores are lower in C.  All of the detections in C are by at least 

one other attribute.  In S, guesstelnet is detected on port 80 (not 23) and sshtrojan on port 

25 (not 22), so these are not legitimate (probably coincidental). 

• TCP flags: 3, all in S: loadmodule*, 2 sendmail*.  Two anomalies are due to connections 

without an initial SYN, and one due to SYN-ACK-ACK. 

• Destination port: 2 netcat in S and C, netcat_breakin in S and C, 2 satan in S and 1 in C, 

mscan in S, guesspop in S.  All are legitimate by our criteria.  netcat is detected on port 53 

(DNS) because it uses TCP rather than the usual UDP.  satan is detected on port 70 

(gopher), mscan on port 111 (portmap), and guesspop on 110 (POP3).  We consider 
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guesspop legitimate although it would only be detected if the POP3 server were running 

but never used. 

• Keyword: 3 mailbomb in S and C by "mail", 2 sendmail in S and C by "MAIL", 2 

ntinfoscan on S only by "HEAD" on port 80.  All are legitimate by our criteria. 

8.4.3.  LERAD Results 

 LERAD was not modified except for the TCP reassembly algorithm, which was adjusted to 

deal with filtered and truncated packets as with ALAD.   In one test run of LERAD, it detects 87 

attacks on set S (plus 2 out of spec), and 30 (all in spec) on set C.  These are grouped by the one 

attribute that contributes the largest portion of the anomaly score.  Non-legitimate detections are 

marked with an asterisk. 

• Source address: 27, all in S: anypw*, casesen*, crashiis*, dict, fdformat*, ffbconfig*, 2 

guessftp*, 2 guesstelnet, 3 guest, netbus*, netcat_setup, 2 perl*, 2 ps, sechole*, sqlattack*, 

sshprocesstable, sshtrojan, warezclient*, warezmaster*, xterm*. 

• Destination address: 6 in S and C: guesstelnet*, mscan, 4 ncftp.  There is no difference 

probably because only one new destination address is added by the real traffic. 

• Destination port: 14 in S, 11 in C.  On both: 2 ftpwrite, 2 ls_domain, 3 named, 2 netcat, 

netcat_breakin, satan.  On S only: guesspop, imap, neptune.  ftpwrite is detected on port 

513 (rsh) which is not available in the real traffic.  satan is detected on port 70 (gopher).  

The others are detected on TCP port 53 (DNS), normally a UDP service.  POP3 and IMAP 

mailbox service traffic is found in the real traffic but not in the IDEVAL background. 

• TCP flags: In S and C: 4 dosnuke (URG flag set).  In S only: 3 back*, insidesniffer*, 

loadmodule*, sendmail*. 

• Length: in S: netbus*, ppmacro*.  In C: sendmail (a buffer overflow). 

• Duration: insidesniffer* in S (coincidental). 
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• Payload: 8 in C: back (word 1 = "G"), 2 imap (word 3 = """, a quote character), 2 

ntinfoscan (word 3 = "EOEBFECNFDEMEJDB"), phf (word 1 = "G"), satan (word 1 = 

"QUIT" on port 80), sendmail (word 3 = "root@calvin.worl").  29 in S: 3 apache2, back, 6 

crashiis, guesstelnet, imap, 3 mailbomb, 3 ntinfoscan, 3 phf, portsweep, queso, satan, 

sendmail, 4 yaga*.    The yaga (U2R) detections include a crasiis to reboot the target (after 

a registry edit) which is detected by the absence of word 3, normally the HTTP version.  

The back and phf anomalies ("G") could be due to the HTTP GET command being split 

among packets in an interactive telnet session to the HTTP port.  These would be missed 

using a better TCP reassembly algorithm. 

The difference between set S (87 detections) and the original results (117 detections) is mainly due 

to the loss of trailing TCP data.  This affects the closing flags, length, duration, and part of the 

payload.  On the modified data, LERAD is unable to detect broken TCP connections which are 

often a sign of a DOS attack. 

8.4.4.  NETAD Results 

 NETAD was modified to remove telnet and FTP rules.  The modified NETAD detects 129 

(plus 3 out of spec) attacks on S, and 41 (plus one out of spec) on set C.  The detections below are 

grouped by attributes that contribute at least 10% of the anomaly score.  Non-legitimate detections 

are marked with an asterisk. 

• Source address: 65 in S, 3 in C.  Most are not legitimate.  On S: anypw*, apache2*, 

arppoison*, 4 crashiis*, 2 eject*, fdformat*, 2 guessftp*, 2 guesstelnet*, 2 guest*, imap*, 

insidesniffer*, 3 ipsweep*, ls_domain*, mailbomb*, ncftp*, 3 netbus*, netcat_setup*, 2 

perl*, pod*, 3 portsweep*, ppmacro*, processtable*, 2 ps*, satan*, sechole*, secret*, 4 

smurf*, sqlattack*, sshtrojan*, 4 syslogd, tcpreset*, 3 warezclient*, 3 xlock*, 3 xsnoop*, 2 

xterm*, 2 yaga*.  On C: ncftp*, xlock*, xsnoop*.  Only source address forgeries (syslogd) 
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can be considered legitimate because the modified NETAD does not have any rules 

conditioned on private ports (telnet and FTP were removed). 

• Destination address: 8 in S, 10 in C.  This cannot be tested because C adds only one 

address.  In S: guesstelnet*, mscan, 4 ncftp*, netbus*, portsweep.  In C: 2 additional 

netbus*. 

• Destination port: 8 in S, 2 in C: In S: guesspop, 2 imap, 2 ls_domain, 2 netcat, 1 satan.  In 

C: 2 satan (port 70, gopher). 

• IP fragmentation: 7 in S and C: In S: 4 pod, 3 teardrop.  In C: 3 pod, 3 teardrop, 1 

insidesniffer* (coincidental). 

• TCP flags: 5 in S, 12 in C.  In S: 5 portsweep (FIN scan).  In C: 5 portsweep, 3 queso 

(FIN), 4 dosnuke (URG). 

• TOS: 2 in S and C: 2 ftpwrite*. 

• Payload: 22 in S, 6 in C.  In S: 3 back, casesen*, ffbconfig*, land, 3 named*, neptune, 6 

portsweep, 3 queso, 2 sendmail, udpstorm.  In C: back ("E" in first byte), 3 named (8-bit 

ASCII), 2 sendmail ("A" in "MAIL").  The payload anomalies in neptune, portsweep, and 

queso in S are actually due to the absence of TCP options (an artifact) where the payload 

would normally appear.  The back anomaly is probably due to TCP fragmentation of the 

HTTP "GET" command. 

• IP length/TCP header length: 23, all in S: 2 back*, ffbconfig*, land, 3 named, neptune, 2 

pod, 6 portsweep, 3 queso, 4 smurf.  Although many of these attacks produce unusually 

large or small packets, there is probably enough natural variation in real packet size to 

mask these detections. 
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8.4.5.  SPADE Results 

 We evaluated SPADE version 092200.1 within SNORT version 1.7 Win32 in each of the 

four user selectable probability modes, with all other SNORT rules turned off and with all other 

SPADE parameters set to their defaults.  SPADE has a variable threshold that adapts over a period 

of hours to regulate alarms, but we used the raw anomaly score reported by SPADE instead.  As 

mentioned, SPADE does not have an explicit training period.  Instead it tests each packet based on 

the joint frequency of the attributes in all previous packets.  We ran SPADE on inside sniffer weeks 

3-5 as a single data stream and reported all alarms during weeks 4-5.  Because SPADE was found to 

perform poorly on our data, we evaluated it at a threshold of 200 false alarms. 

 

SPADE Detections at 200 False Alarms S A, B, C 

0: P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP) 6 6, 6, 7 

1: P(DA, DP, SA, SP) 1 0, 0, 0 

2: P(DA, DP, SA) 6 2, 1, 1 

3: P(DA, DP) (default) 8 9, 8, 7 

 

Table 8.5.  SPADE detections at 200 false alarms on filtered IDEVAL weeks 3-5 (S) and on 

mixed sets A, B, and C. 

 

 Modes 0 and 1 include the source address, which does not normally contain meaningful 

information, as it is picked arbitrarily by the client.  The attacks detected in mode 0 on set S are 

insidesniffer, syslogd, mscan, tcpreset, arppoison, and smurf. All but mscan are probably 

coincidental because none of them generate TCP SYN packets and most are prolonged attacks with 

multiple targets. 
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 Modes 2 and 3 show the effect that we would expect if source address were an artifact, but 

not the destination address or port, as Chapter 7 suggests.  The six attacks detected by SPADE in 

mode 2 (1/P(DA, DP, SA)) on S are guest, syslogd, insidesniffer, perl, mscan, and crashiis. By our 

previously mentioned criteria, three of these are legitimate: guest because it attacks a private service,  

syslogd because it forges the source address, and mscan because it accesses unused ports.  We do 

not count insidesniffer (no TCP SYN packets), perl (U2R), or crashiis (a public server).  On sets A, 

B, and C, SPADE detects only mscan (and portsweep on A), both of which can be legitimately 

detected by the destination port.  Thus, the effect of injecting real traffic is to increase the 

percentage of legitimate detections from 50% to 100%.  There is no effect in mode 3 because we did 

not identify the destination address or port as being affected by artifacts. 

 

8.5.  Results Analysis 

 In this section, we analyze the combined results for each of our systems.  The top two 

systems are NETAD, which tests packets, and LERAD, which tests TCP streams.  All of the 

principles outlined in this paper are implemented in these two systems.  We can think of LERAD as 

an enhanced version of ALAD with rule learning and validation.  We can think of NETAD as an 

enhanced version of PHAD with conditional rules, filtering, and modeling of non-novel values.  

These two systems cover all of the attributes modeled by the other two, e.g. packet fields and TCP 

streams. 

 We had, up to this point, been evaluating our systems by the number of attacks detected, 

whether or not it was reasonable to detect them.  There are 201 attacks in weeks 4 and 5 of the 

IDEVAL data, but only 189 when you subtract the 12 in the missing day of inside sniffer traffic 

(week 4, day 2).  If you consider only those attacks for which there is evidence in the traffic 
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according to the IDEVAL truth labels, then there are 177.  Occasionally we detected a few others, 

due to coincidences, overlapping attacks, or unanticipated side effects of the attack. 

 In the 1999 evaluation, participants could classify their systems as to the types of attacks 

they were designed to detect, so they were not penalized for missing out-of-spec attacks.  

Participants categorized their systems not only by the data they examined, but also by the category 

of attack: probe, DOS, R2L, U2R, or data.  It is difficult for a network anomaly detection system to 

detect U2R attacks, where the attacker with user access gains the privileges of another user (usually 

root).  These attacks exploit operating system flaws using input data which is not directly observable 

on the network.  It might be possible to observe exploits in a telnet session or an FTP upload, but the 

attack could easily be hidden using encryption.  Also, it is difficult to detect data attacks, which are 

violations by authorized users of a written security policy for which the IDS has no knowledge, for 

example, copying or transmitting secret but unprotected data files. 

 Therefore, a reasonable specification for a network anomaly detection system is that it 

should detect probes, DOS, and if it examines the application payload, R2L attacks.  In the inside 

sniffer traffic, there are 148 such attacks.  In Figure 8.2, we show the detection-false alarm (DFA) 

graphs for NETAD and LERAD on sets S (simulated, modified), and C (mixed with real traffic).  

Recall that C gives the median number of detections out of A, B, and C at 100 false alarms for all 

four systems.  At 100 false alarms, LERAD detects 72 (49%) in-spec attacks on set S, and 30 (20%) 

on set C.  NETAD detects 111 (75%) on set S and 41 (28%) on set C.  If we are willing to tolerate 

more false alarms, then we could detect 69 attacks (47%) in the mixed set C using NETAD at 500 

false alarms (50 per day), while LERAD levels off at 34 (23%).   Remember that these results use 

modified algorithms to reduce the effects of simulation artifacts.  LERAD and NETAD would 

probably detect more legitimate attacks in real traffic if we had used more of the TCP payload for 

LERAD or included telnet and FTP rules for NETAD. 
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Figure 8.2.  Probe, DOS, and R2L attacks detected by NETAD and LERAD on simulated (S) 

and mixed (C) traffic as 0 to 500 false alarms (0 to 50 per day). 

 

 In Table 8.6 we summarize the number of inside sniffer detections by category for LERAD 

and NETAD on sets S and C.  (The totals are more than 177 because there are some R2L-Data and 

U2R-Data attacks).  One striking effect of injecting real network data that we have already seen is 

the near elimination of detections by source address, which account for about half of all detections 

in simulation.  These detections are, of course, mostly spurious.  Another effect, which can be seen 

in the table, is the elimination of U2R and data detections.  Again, this is the behavior we should be 

seeing.  It should be noted that PHAD and ALAD do not detect any U2R or data attacks on the 

mixed traffic either. 

 The last column of Table 8.6 shows the number and percentage of attacks detected by the 

combination of LERAD and NETAD on mixed set C when we take equal numbers of top scoring 

alarms from each system and consolidate duplicates.  The merged system detects 44 attacks, or 30% 

of the 148 in-spec attacks, better than either system alone.  This improvement is possible because 

the two systems monitor different attributes, and therefore detect different types of attacks.  This 

improvement does not occur when merging LERAD and NETAD on set S because there is 
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significant overlap due to detections by the client source address artifact.  This artifact is shared by 

both systems. 

 

Category Total LERAD-S LERAD-C NETAD-S NETAD-C Merged-C 

Probe 34 11 (32%) 7 (21%) 30 (88%) 12 (35%) 15 (44%) 

DOS 60 26 (43%) 5 (8%) 42 (70%) 11 (18%) 9 (15%) 

R2L 54 35 (65%) 18 (33%) 39 (72%) 18 (33%) 20 (37%) 

U2R 27 15 (56%) 0 (0%) 16 (59%) 0 (0%) 0 (0%) 

Data 7 1 (14%) 0 (0%) 2 (28%) 0 (0%) 0 (0%) 

Total 177 87 (49%) 30 (17%) 128 (72%) 41 (23%) 44 (25%) 

In-Spec 148 72 (49%) 30 (20%) 111 (75%) 41 (28%) 44 (30%) 

 

Table 8.6.  Attacks detected by modified LERAD and NETAD at 100 false alarms on 

simulated set S and mixed real set C.  Merged results are LERAD and NETAD combined on 

set C.  Only attacks visible in the inside sniffer traffic are counted.  In-spec refers to probes, 

DOS, and R2L. 

 

8.6.  Summary 

 We tested PHAD, ALAD, LERAD, and NETAD on the IDEVAL data set with real traffic 

injected, modifying the algorithms as needed to ensure that all of the rules are trained at least 

partially on real traffic to remove the effects of simulation artifacts in the background traffic.  To 

test whether we were successful, we used a somewhat subjective criteria to test whether the detected 

attacks were legitimate, i.e. whether the system was detecting a feature of the attack.  We found that 

in every system we tested, that the fraction of legitimate attacks was higher in mixed traffic than in 
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simulated traffic.  However, our criteria is not perfect.  On closer examination of some non-

legitimate detections, we often find reasonable explanations that do not fit our criteria.  Also, some 

legitimate detections in the simulated set are missed in the mixed set.  This could be due to a greater 

number of false alarms.  If nothing else, having twice as much background traffic should generate 

twice as many alarms. 

 In table 8.7, we summarize the number of probe, DOS, and R2L attacks (out of 148) 

detected by the original PHAD, ALAD, LERAD, and NETAD at 100 false alarms on the IDEVAL 

inside sniffer weeks 3-5, after modification in preparation for injecting real traffic (S), and after 

injection (sets A, B, and C).  All systems are evaluated with EVAL and exclude U2R and data 

attacks, and attacks for which no evidence is visible in the inside sniffer traffic.  Alarms are 

consolidated with AFIL. 

 

Attacks Detected IDEVAL – Or ig. Modified – S M ixed – A, B, C Average 

PHAD 39 (26%) 51 (34%) 17, 31, 23 24 (16%) 

ALAD 45 (30%) 39 (26%) 11, 15, 12 13 (9%) 

LERAD (average) 97 (66%) 72 (49%) 29, 30, 30 30 (20%) 

NETAD 111 (75%) 111 (75%) 38, 46, 41 42 (28%) 

 

Table 8.7.  Probe, DOS, and R2L attacks detected at 100 false alarms on IDEVAL inside 

sniffer weeks 3-5, on fil tered traff ic after modification to accept mixed traff ic (S), on mixed 

sets A, B, and C, and the average over the three mixed sets. 
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Chapter 9 

Conclusions 

 We described several methods of improving network anomaly detection systems and 

implemented these methods in four systems.  The best of these (NETAD) detects 75% of in-spec 

attacks (probe, DOS, and R2L) at 10 false alarms per day in the 1999 DARPA/Lincoln Laboratory 

intrusion detection evaluation (IDEVAL), compared to 40% to 55% for the top participants using a 

combination of methods (signature, host based) in the original blind evaluation.  However, an 

analysis of the IDEVAL data compared to real traffic suggests that the IDEVAL data contains many 

simulation artifacts that make attacks easy to detect.  When we remove these artifacts by injecting 

real traffic (and verify that most detections are legitimate), we find that the best combination of 

systems (merging LERAD and NETAD) detects 30% of attacks (median of 3 mixed data sets).  We 

can detect more attacks if we are willing to accept more false alarms.  At 50 false alarms per day, 

modified NETAD detects a median of 69 of 148 attacks (47%) on this data. 

9.1.  Summary of Contributions 

 The following is a summary of our contributions. 

 Time Based Modeling.  In anomaly detection, it is common to model the probability of 

events based on their average frequency in training.  Because some events occur in bursts (leading 

to alarm floods), we use a hybrid time-frequency model.  We use a model in which an event is 

anomalous if it is both rare on average, and has not occurred recently either.  For novel events (score 

= tn/r), the time-based part is t (time since the last anomaly), and the frequency-based part is n/r 

(low rate of novel values in training).  For non-novel events (score = ti/fi), the time-based part is ti, 
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the time since value i was last observed, and the frequency part is fi, the average frequency of i in 

training. 

 Protocol Modeling.  Some anomaly detection systems monitor only a few attributes, such 

as IP addresses and port numbers, because they can identify remote users or characterize their 

behavior.  These types of anomalies can detect port scans and some R2L attacks on private services 

such as telnet or POP3, but cannot detect most DOS or R2L attacks on public services such as IP, 

TCP, SMTP, or HTTP.  An attack can introduce protocol anomalies in one of four ways. 

• By exploiting a bug in the target.  If the data which invoked the bug were common, the bug 

would have been detected and fixed.  (Example: detecting pod and teardrop by IP 

fragmentation). 

• Failing to duplicate the target environment.  The more attributes we monitor, the harder it 

is for an attacker to get everything right.  (Example: detecting mailbomb and sendmail 

because the normal HELO/EHLO handshake was omitted). 

• Evasion.  Low-level attacks on the IDS used to hide high-level attacks on the target can 

backfire if we monitor low-level protocols.  (Example: detecting portsweep in FIN 

scanning mode). 

• Symptoms of a successful attack.  The output of a compromised target differs from normal.  

(Example: detecting DOS attacks by broken TCP connections). 

On real traffic, many different attributes detect only a few attacks each.   No single attribute 

dominates. 

 Rule Learning.  In LERAD we introduced a rule learning algorithm that automatically 

generates good rules for anomaly detection from training data with arbitrary nominal attributes.  

Like association mining algorithms such as RIPPER or APRIORI, it is off-line, requiring more than 

one pass through the training data.  Unlike these algorithms, its goal is different (to find rules with 

high n/r), and it is randomized.  We use matching attributes in pairs of training samples to suggest 

rule candidates, then remove redundant rules in favor of higher n/r estimated on a small sample. 
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 Rule Validation.  In LERAD and NETAD we remove, or assign a low weight to, rules that 

generate false alarms on an attack-free validation set taken from the end of the training data. 

 Filtering.  Most attacks can be detected by examining just a very small fraction of the 

traffic.  We look at only the first few client packets of inbound sessions, less than 2% of the total 

traffic.  All of our implementations can process 3 weeks worth of filtered data in times ranging from 

a few seconds to one minute on a 750 MHz PC. 

 Continuous Modeling.  A practical anomaly detection system must train and test 

continuously on the same traffic.  Some decrease in accuracy is inevitable as the IDS trains on 

hostile traffic as if it were normal.  This effect is smaller if the system models non-novel values 

(ti/fi).  However, rule validation cannot be used without attack-free traffic.  Also, off-line (multiple 

pass) rule learning algorithms such as LERAD cannot be used. 

 IDEVAL Simulation Artifacts.  We found several attributes in the IDEVAL training and 

background traffic that make it artificially easy to detect attacks by anomaly detection, in spite of 

great efforts to avoid this problem.  These attributes are client IP addresses, TTL, TCP options, TCP 

window size, SMTP and HTTP keywords, and HTTP and SSH client versions.  These rules are 

"good" in the IDEVAL data (r is small and does not grow) and "bad" in real traffic (r is large and 

grows steadily). 

 Removing Artifacts.  Some artifacts in the IDEVAL data can be removed by injecting real 

traffic.  Evaluation with mixed traffic requires that IDS rules not affected by the real traffic in 

training be turned off.  On all of our systems plus SPADE, this technique increases the fraction of 

detections judged legitimate.  On real traffic, a greater fraction of LERAD rules are removed by 

validation. 

 Merging IDS Outputs.  Sometimes a combination of intrusion detection systems can 

detect more attacks than any of its components.  The technique is to take the highest scoring alarms 

from each system and consolidate duplicates.  This technique works best if the components are 

equally strong but detect different types of attacks. 
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9.2.  Limitations and Future Work 

 We described several network anomaly detection techniques and implemented them in four 

experimental algorithms.  However, our systems have a number of limitations. 

• False alarms are a problem because unusual events are not necessarily hostile. 

• Alarm reports are not helpful.  The system can report anomalies but cannot help the user 

decide whether the alarm is hostile or not.  Making this decision requires the user to 

examine the traffic and to be an expert in network protocols and security. 

• Rule validation requires attack-free training data, which is hard to obtain. 

• Rule learning requires multiple passes through the training data, which prevents the method 

from being used online. 

• Application payload monitoring will become impractical with the increased use of 

encryption.  Eventually this problem will extend to lower level protocols as well (e.g. 

virtual private networks). 

In addition, there are problems with testing our systems. 

• They were not tested in a live environment. 

• Our systems were developed with access to the test data, which introduces a bias.  For this 

reason, we cannot claim an improvement over the IDEVAL participants. 

• The IDEVAL data appears to contain many simulation artifacts.  These are responsible for 

the majority of detections in our best systems, and an artificially low false alarm rate. 

Our solution to the artifact problem was to inject real traffic into the simulation, but that introduces 

new problems. 

• Real data contains unlabeled attacks. 

• Experiments with real data cannot be reproduced because privacy and security concerns do 

not allow the data to be made public. 
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• There is a 3 year time lag between IDEVAL and the real traffic that we used.  Protocols 

evolve.  The problem can only get worse. 

• Not all of the protocols seen in IDEVAL are available in the real data (e.g. telnet). 

• Evaluation with mixed traffic requires a careful analysis and system modifications to make 

sure that all rules depend at least partially on real traffic.  Testing whether this was done 

correctly is subjective. 

Given that attacks are now common, the approach of Newman et al (2002) of using honeypots in a 

live environment might be a more practical solution to the evaluation problem.  Still , this is a labor 

intensive and error prone process because the attacks are not under control of the experimenter, and 

must be identified and labeled.  Running several independent systems in parallel might be helpful 

because attacks could be labeled by consensus. 

 Despite these problems, anomaly detection in its present form might still be useful as a tool 

for off line forensic analysis after an attack, helping a network administrator pinpoint the attack 

within gigabytes of traffic, rather than as a first line defense.  In this respect, there are many small 

improvements that could be made to our systems, for example: 

• Adding session attributes, for example, packet rate.  Currently each packet or TCP stream 

is evaluated independently. 

• Being smarter about parsing the application payload (especially binary protocols like 

DNS).  Tokenizing words using white space does not work for every protocol. 

• Adding user feedback – allowing the user to specify whether an anomaly is hostile or not, 

and thus whether it should be added to the training data. 

• Developing an online rule learning algorithm.  Currently LERAD requires two passes, but 

this obstacle should not be insurmountable. 
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We do not expect that all of the problems with network anomaly detection will be easily solved.  

Computer security will be a problem for quite some time.  We do not pretend to have solved the 

problem.  Instead, we have outlined some principles by which the problem can be approached. 
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Appendix A 

Example LERAD Run 

 Appendix A lists the rules generated by one run of LERAD, the detected attacks, and the 

top scoring alarms as described in Section 5.2.2.  This run includes UDP and ICMP packets, and 

detects 111 attacks at 100 false alarms according to EVAL3. 

A.1.  Rules 

 The rules are sorted by descending n/r, where n is the number of inbound TCP streams and 

UDP and ICMP packets satisfying the antecedent, and r is the number of values observed in 

training.  The format is as follows: 

 

 Rule-number  n/r  if A1=v1 A2=v2 ... Ak=vk then Ak+1 = vk+1 vk+2 ... vk+r 

 

where the Ai are attributes and vi are values.  Values are represented by strings, and sometimes have 

a leading dot so that empty strings can be represented.  The attributes are as follows: 

• DATE, TIME in the form MM/DD/YY, HH:MM:SS. 

• SA3, SA2, SA1, SA0: source IP address as 4 decimal bytes (0-255). 

• DA1, DA0: lower two bytes of the destination IP address (always 172.16.x.x). 

• F1, F2, F3: first, next to last, and last TCP flags, in the form ".10UAPRSF", where a 

character is present if the corresponding flag bit is set to 1.  The flags correspond to the two 

reserved TCP flags, URG, ACK, PSH, RST, SYN, FIN.  For example, ".AP" means that 
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the ACK and PSH flags are set.  A dot by itself indicates that no flags are set.  For UDP 

packets, F1 = "UDP, F2 = F3 = ".".  For ICMP packets, F1 = "ICMP", F2 is the type field 

(0-255), and F3 is the code field (0-255). 

• SP, DP: source and destination port numbers (0-65535). 

• LEN: floor(log2(payload length in bytes)) 

• DUR: floor(log2(duration in seconds)) 

• W1-W8: first 8 words of the payload, with a leading dot to distinguish empty strings.  

Words are delimited by white space (spaces, tabs, carriage returns, linefeeds, etc.) and 

truncated at 8 characters.  Nonprintable characters are represented in the form ^C, where C 

is the character obtained by adding 64 to the ASCII code.  For example, ^@ is a NUL byte 

(ASCII code of 0). 

 

1 39406/1 if SA3=172 then SA2 = 016 

2 39406/1 if SA2=016 then SA3 = 172 

3 28055/1 if F1=.UDP then F3 = . 

4 28055/1 if F1=.UDP then F2 = . 

5 28055/1 if F3=. then F1 = .UDP 

6 28055/1 if F3=. then DUR = 0 

7 27757/1 if DA0=100 then DA1 = 112 

8 25229/1 if W6=. then W7 = . 

9 25221/1 if W5=. then W6 = . 

10 25220/1 if W4=. then W8 = . 

11 25220/1 if W4=. then W5 = . 

12 17573/1 if DA1=118 then W1 = .^B^A^@^@ 

13 17573/1 if DA1=118 then SA1 = 112 

14 17573/1 if SP=520 then DP = 520 
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15 17573/1 if SP=520 then W2 = .^P^@^@^@ 

16 17573/1 if DP=520 then DA1 = 118 

17 17573/1 if DA1=118 SA1=112 then LEN = 5 

18 28882/2 if F2=.AP then F1 = .S .AS 

19 12867/1 if W1=.^@GET then DP = 80 

20 68939/6 if then DA1 = 118 112 113 115 114 116 

21 68939/6 if then F1 = .UDP .S .AF .ICMP .AS .R 

22 9914/1 if W3=.HELO then W1 = .^@EHLO 

23 9914/1 if F1=.S W3=.HELO then DP = 25 

24 9914/1 if DP=25 W5=.MAIL then W3 = .HELO 

25 9898/1 if F1=.S F3=.AF W5=.MAIL then W7 = .RCPT 

26 28882/3 if F2=.AP then F3 = .AP .AF .R 

27 28055/3 if F1=.UDP then SA1 = 112 115 001 

28 34602/4 if F3=.AF then F2 = . .S .AP .AS 

29 68939/8 if then SA3 = 172 196 197 194 195 135 192 152 

30 68939/8 if then F3 = . .S .AP .AF .3 .0 .AS .R 

31 68939/8 if then F2 = . .S .AP .3 .A .0 .AS .8 

32 29549/4 if F1=.S then F2 = . .S .AP .A 

33 39406/6 if SA2=016 then SA1 = 112 113 115 114 000 116 

34 12885/2 if DP=80 then W1 = . .^@GET 

35 12867/2 if W1=.^@GET then W3 = .HTTP/1.0 .align= 

36 25169/4 if W3=. then LEN = 0 5 4 3 

37 30237/5 if SA2=016 DUR=0 W8=. then F2 = . .S .AP .0 .AS 

38 28055/5 if F1=.UDP then DP = 520 137 514 138 161 

39 68939/13 if then SA2 = 016 037 115 182 168 169 218 027 008 227 

073 007 013 



 138 

40 20732/4 if SA3=172 W3=. then LEN = 0 5 4 3 

41 35132/7 if W8=. then F3 = . .S .AP .AF .0 .AS .R 

42 28786/6 if F2=. then LEN = 0 5 7 6 9 8 

43 9585/2 if SA2=016 F3=. LEN=7 then SA0 = 234 050 

44 12838/3 if DP=25 then W1 = . .^@EHLO .^@HELO 

45 25229/6 if W6=. then W4 = . .^Ppd .syslogd: .lupitam@ .randip@z 

.^@^F^@^@ 

46 68939/17 if then DUR = 0 5 11 7 12 1 13 15 10 6 9 4 3 8 2 14 16 

47 68939/17 if then LEN = 0 5 11 7 12 13 15 10 6 9 4 3 8 14 16 18 

17 

48 35132/9 if W8=. then DUR = 0 5 7 12 1 6 4 3 2 

49 68939/18 if then SA1 = 112 113 075 115 091 114 218 251 060 000 

001 033 151 248 177 216 116 215 

50 58458/16 if DUR=0 then DP = 520 0 113 25 137 23 80 20 79 514 515 

1023 22 138 1022 161 

51 68939/19 if then DP = 520 0 113 25 137 23 80 135 20 79 21 514 

515 1023 22 138 139 1022 161 

52 68939/19 if then DA0 = 255 020 105 100 234 084 168 148 169 204 

194 050 207 149 005 010 087 044 201 

53 12838/4 if DP=25 then W3 = . .HELO .MAIL .^@^@^@^@ 

54 25229/8 if W6=. then W3 = . .^@^A .^@^A^@^D .PASS .6667^M^ 

.05:02:40 .05:02:41 .^@^A^@^@ 

55 35132/13 if W8=. then W5 = . .^@^A^@^D .^@ .! .^P^@^A .^Pp^E^@^ 

.SYST^M^ .^G .^Ppd .st4 .restart .QUIT^M^ .+^F^A^B^ 

56 2398/1 if SA3=195 SA2=115 then SA1 = 218 
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57 35132/16 if W8=. then DA0 = 255 020 105 100 234 084 168 148 169 

204 194 050 207 149 005 010  

58 39406/19 if SA2=016 then DA0 = 255 020 105 100 234 084 168 148 

169 204 194 050 207 149 005 010 087 044 201  

59 27757/14 if DA0=100 then DUR = 0 5 11 7 12 1 10 6 9 4 3 8 2 16  

60 14743/8 if DA1=112 W8=. then DA0 = 020 100 194 050  207 149 005 

010  

61 3521/2 if DA0=100 F2=.AP W6=.User - Age then W4 = .Referer: 

.Connecti  

62 34887/20 if DUR=0 W8=. then W7 = . .^Ps .O^@^@^@^ .^@^@^@^@ 

.^@^H^T^@ .esp0:^ ./sbus@1f .Zr2r2r2^ .UUUUUU^@ .Zq2q2q2^ .iv^@^@^@ 

.Z^@^A^@^ .ZqTqTqT^ .uiciPy^@ .Zp^Tp^ Tp .pleaP}^@ .Zqiqiqi^ 

.^H^@Py^@ .+^F^A^B^ .youPy^@^  

63 25365/15 if W7=. then DP = 520 0 113 25 137 23 80 135 20 79 21 

514 1023 22 1022  

64 15051/9 if LEN=7 then DUR = 0 5 7 10 6 9 4 8 2  

65 14826/9 if DA1=112 LEN=7 then DUR = 0 5 7 10 6 9 4 8 2  

66 35132/30 if W8=. then W6 = . .^@^F`^@ .^Pp^E^@^ .L^@^H .O^@^@^@^ 

.N^@^H .W .^@^H .^Ppd .^PqT^@^@ .P^@^H .M^@^H .^@^@`^B^ .^@^H^T^@ 

.at .is .QUIT^M^ .y^@^H^I .UUUUUU^@ .I^@^H .;^@^H .Z^@^A^@^ .@^@^H 

.^@^H^W .+^@^H .^A^@^H . - ^@^H .WP^X^P^@ .0P^P^P^@ .+^F^A^B^  

67 2805 5/25 if F1=.UDP then W8 = . .^Ps .waiting .135.13.2 .reverse 

.authenti .for .768 .generati .196.227. .to .by .196.37.7 .197.182. 

.ON .8mm .0^ .driver .SMB%^@^@ .+^F^A^B^ .135.8.60 .194.7.24 

.195.115. .197.218. .195.73.1  
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68 28055/34 if F1=.UDP then W6 = . . FAEDDACA .^@^A^@^D .^@^F`^@ 

.Connecti .SYSERR(l .SYSERR(g .SYSERR(m .SYSERR(r .^Ppd .Could 

.Password .SYSERR(c .Generati .RSA .Timeout .SYSERR(e .SYSERR(w 

.SYSERR(s .Closing .to .SYSERR(y .root' .SYSERR(b .4 .LOGIN 

.SYSERR(j .SYSERR(h .<Exabyte .at .is .SY SERR(f .EIFFENEF .+^F^A^B^  

69 34887/297 if DUR=0 W8=. then W3 = . .^@^A .^@^A^@^D .^AvL 

.6667^M^ .^AvK .W .^AvJ .^@^@ .^AvI .^AvG .^AvF .^AvD .^AvC .^AvB 

.^AvA .^Av@ .^Av? .^Av= .^Av< .^Av; .^Av: 23:00:01 .S^@^@ .U^@^@ 

.W^@^@ .Y^@^@ .\ ^@^@ ._^@^@ 

(remaining list of 297 values truncated) 

 

A.2.  Detected Attacks 

 This section lists the attacks detected at 100 false alarms by the rules listed in Section A.1.  

The format is as follows: 

 

 TP attack-name  rule-number (percent contribution)  A=v  A?=V 

 

TP indicates a true positive.  The rule number (001-169) is the number listed in the first column of 

Appendix A.1.  When more than one rule contributes to the anomaly, the rule that contributes the 

greatest fraction is shown.  The percent contribution is the fraction of the anomaly score contributed 

by the rule shown.  The remainder of the score is from other rules.  The conditions of the form 

"A=v" are the rule antecedents.  The consequent is shown by "A?=v" (with a question mark) where 

v is the anomalous value.  For example, for the first detection below (of syslogd), rule 1 contributes 
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65.56% of the anomaly score.  The rule is "if SA3=172 then SA2 = 016".  The anomaly is "SA2 = 

005". 

 

TP syslogd       001 (65.56) SA3=172 SA2?=005 

TP syslogd       001 (93.04) SA3=172 SA2?=005 

TP syslogd       001 (96.79) SA3=172 SA2?=003 

TP syslogd       001 (98.07) SA3=172 SA2?=005 

TP portsweep     007 (99.98) DA1?=118 DA0=100 

TP ncftp         012 (40.58) DA1=118 W1?=. 

TP ncftp         012 (40.83) DA1=118 W1?=. 

TP guesstelnet   012 (45.3) DA1=118 W1?=.^@ 

TP ncftp         012 (45.66) DA1=118 W1?=. 

TP ncftp         012 (50) DA1=118 W1?=. 

TP mscan         015 (100) SP=520 W2?=. 

TP neptune       016 (100) DA1?=112 DP=520 

TP neptune       016 (100) DA1?=114 DP=520 

TP eject         018 (55.67) F1?=.AP F2=.AP 

TP apache2       018 (57.18) F1?=.AP F2=.AP 

TP tcpreset      021 (66.73) F1?=.AP 

TP netbus        026 (100) F2=.AP F3?=.S 

TP satan         027 (27.65) SA1?=070 F1=.UDP 

TP portsweep     027 (59.97) SA1?=124 F1=.UDP 

TP portsweep     027 (73.62) SA1?=008 F1=.UDP 

TP portsweep     029 (25.52) SA3?=204 

TP yaga          029 (30.69) SA3?=206 

TP portsweep     029 (30.91) SA3?=202 



 142 

TP portsweep     029 (34.04) SA3?=209 

TP guest         029 (36.29) SA3?=153 

TP guessftp      029 (36.45) SA3?=208 

TP ipsweep       029 (40.7) SA3?=204 

TP smurf         029 (42.56) SA3?=023 

TP neptune       029 (48.42) SA3?=011 

TP portsweep     029 (48.55) SA3?=153 

TP anypw         029 (48.55) SA3?=204 

TP casesen       029 (48.55) SA3?=204 

TP ffbconfig     029 (48.55) SA3?=206 

TP netcat_setup  029 (48.55) SA3?=207 

TP perl          029 (48.55) SA3?=209 

TP guesstelnet   029 (48.55) SA3?=209 

TP smurf         029 (51.32) SA3?=001 

TP ps            029 (53.16) SA3?=209 

TP tcpreset      029 (58.16) SA3?=202 

TP xterm         029 (95.59) SA3?=202 

TP ntinfoscan    030 (37.21) F3?=.AR 

TP back          030 (45.85) F3?=.A 

TP portsweep     030 (46.38) F3?=.F 

TP portsweep     030 (51.68) F3?=.F 

TP queso         030 (58.63) F3?=.F 

TP portsweep     030 (62.84) F3?=.F 

TP dosnuke       031 (32.53) F2?=.UAP 

TP queso         031 (99.97) F2?=.10S 

TP dosnuke       032 (45.31) F1=.S F2?=.UAP 
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TP dosnuke       032 (52.32) F1=.S F2?=.UAP 

TP sshprocesstab 033 (45.36) SA2=016 SA1?=118 

TP dict          033 (71.54) SA2=016 SA1?=118 

TP crashiis      033 (83.71) SA2=016 SA1?=117 

TP resetscan     033 (88.58) SA2=016 SA1?=117 

TP imap          033 (94.75) SA2=016 SA1?=117 

TP processtable  033 (99.09) SA2=016 SA1?=118 

TP processtable  033 (99.77) SA2=016 SA1?=117 

TP crashiis      035 (100) W1=.^@GET W3?=. 

TP crashiis      035 (100) W1=.^@GET W3?=. 

TP crashiis      035 (47.82) W1=.^@GET W3?=. 

TP phf           035 (50.79) W1=.^@GET W3?=. 

TP phf           035 (88.39) W1=.^@GET W3?=. 

TP crashiis      035 (96.14) W1=.^@GET W3?=. 

TP back          035 (99.82) W1=.^@GET W3?=. 

TP phf           036 (58.33) LEN?=6 W3=. 

TP back          036 (95.98) LEN?=14 W3=. 

TP dosnuke       037 (35.13) SA2=016 DUR=0 F2?=.UAP W8=. 

TP queso         037 (99.21) SA2=016 DUR=0 F2?=.10S W8=. 

TP udpstorm      038 (43.81) DP?=7 F1=.UDP 

TP udpstorm      038 (65.85) DP?=7 F1=.UDP 

TP guesstelnet   039 (58.06) SA2?=005 

TP apache2       042 (100) F2=. LEN?=11 

TP satan         044 (100) DP=25 W1?=.^@ 

TP mailbomb      044 (43.53) DP=25 W1?=.^@mail 

TP mailbomb      044 (53.06) DP=25 W1?=.^@mail 



 144 

TP sendmail      044 (84.99) DP=25 W1?=.^@MAIL 

TP netcat_breaki 045 (25.35) W4?=.ver^ W6=. 

TP guesspop      045 (32.01) W4?=.alie0^M^ W6=. 

TP ftpwrite      045 (39.51) W4?=./etc/hos W6=. 

TP apache2       045 (51.37) W4?=.User-Age W6=. 

TP guessftp      045 (52.97) W4?=.rexn0^M^ W6=. 

TP netbus        047 (100) LEN?=19 

TP warez         047 (82.74) LEN?=19 

TP netbus        047 (99.98) LEN?=19 

TP ntfsdos       048 (100) DUR?=8 W8=. 

TP ntfsdos       048 (100) DUR?=8 W8=. 

TP teardrop      048 (100) DUR?=8 W8=. 

TP arppoison     048 (100) DUR?=9 W8=. 

TP ntinfoscan    048 (44.76) DUR?=10 W8=. 

TP back          048 (87.37) DUR?=9 W8=. 

TP crashiis      048 (99.99) DUR?=15 W8=. 

TP named         050 (29.27) DP?=53 DUR=0 

TP portsweep     050 (40.72) DP?=143 DUR=0 

TP named         050 (43.44) DP?=53 DUR=0 

TP ls_domain     050 (45.38) DP?=53 DUR=0 

TP named         050 (52.19) DP?=53 DUR=0 

TP portsweep     051 (30.6) DP?=19 

TP ls_domain     051 (57.85) DP?=53 

TP ftpwrite      051 (63.05) DP?=513 

TP mailbomb      053 (85.55) DP=25 W3?=.rcpt 

TP sendmail      053 (88.41) DP=25 W3?=.root@cal 
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TP insidesniffer 055 (59.26) W5?=.RCPT W8=. 

TP smurf         055 (28.83) W5?=.^F W8=. 

TP smurf         055 (38.18) W5?=.^H^@E^@^ W8=. 

TP ipsweep       055 (65.77) W5?=.V W8=. 

TP ipsweep       055 (68.62) W5?=.^Pp2^H^@ W8=. 

TP casesen       059 (100) DA0=100 DUR?=13 

TP guest         064 (44.49) DUR?=3 LEN=7 

TP secret        064 (50.38) DUR?=11 LEN=7 

TP guest         065 (90) DA1=112 DUR?=3 LEN=7 

 

A.3.  Top Scoring Alarms 

 This section shows the top scoring alarms in the same format as Appendix A.2, sorted by 

decreasing anomaly score.  The first column indicates a true positive (TP), a false positive (FP), or a 

duplicate detection of an attack detected by a higher scoring alarm (--).  An IDS is evaluated by the 

number of TP up to the first 100 FP, ignoring duplicates.  The highest scoring alarm is a detection of 

portsweep in which 99.98% of the anomaly score is from rule 7 in Appendix A.1.  Only alarms 

through the first 10 false alarms are shown. 

 

TP portsweep     007 (99.98) DA1?=118 DA0=100 

TP syslogd       001 (98.07) SA3=172 SA2?=005 

-- portsweep     012 (50) DA1=118 W1?=. 

TP syslogd       001 (96.79) SA3=172 SA2?=003 

TP ncftp         012 (40.58) DA1=118 W1?=. 

FP               017 (77.55) DA1=118 SA1=112 LEN?=6 

-- portsweep     020 (100) DA1?=117 
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TP neptune       016 (100) DA1?=112 DP=520 

TP mscan         015 (100) SP=520 W2?=. 

TP syslogd       001 (93.04) SA3=172 SA2?=005 

TP apache2       018 (57.18) F1?=.AP F2=.AP 

FP               026 (99.83) F2=.AP F3?=.AR 

TP neptune       016 (100) DA1?=114 DP=520 

FP               017 (75.74) DA1=118 SA1=112 LEN?=6 

TP tcpreset      021 (66.73) F1?=.AP 

FP               029 (48.55) SA3?=206 

-- tcpreset      018 (100) F1?=.AP F2=.AP 

TP ncftp         012 (45.66) DA1=118 W1?=. 

FP               030 (63.08) F3?=.F 

TP phf           035 (50.79) W1=.^@GET W3?=. 

TP queso         030 (58.63) F3?=.F 

TP dosnuke       032 (52.32) F1=.S F2?=.UAP 

-- neptune       028 (100) F2?=.A F3=.AF 

FP               029 (61.83) SA3?=206 

-- apache2       034 (54.65) DP=80 W1?=.^@^@^@^@ 

TP queso         031 (99.97) F2?=.10S 

TP satan         044 (100) DP=25 W1?=.^@ 

TP satan         027 (27.65) SA1?=070 F1=.UDP 

TP sendmail      053 (88.41) DP=25 W3?=.root@cal 

TP netbus        047 (100) LEN?=19 

FP               017 (76.76) DA1=118 SA1=112 LEN?=6 

FP               015 (100) SP=520 W2?=. 

-- ncftp         033 (63.26) SA2=016 SA1?=118 
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TP processtable  033 (99.77) SA2=016 SA1?=117 

-- queso         031 (100) F2?=.10S 

-- portsweep     052 (62.3) DA0?=030 

TP queso         037 (99.21) SA2=016 DUR=0 F2?=.10S W8=. 

TP dosnuke       037 (35.13) SA2=016 DUR=0 F2?=.UAP W8=. 

FP               020 (81.53) DA1?=117 

FP               021 (45.72) F1?=.AR 


